SCALABLE MESSAGE STABILITY DETECTION

PROTOCOLS

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Katherine Hua Guo

May 1998

© Katherine Hua Guo 1998

ALL RIGHTS RESERVED

SCALABLE MESSAGE STABILITY DETECTION PROTOCOLS

Katherine Hua Guo, Ph.D.

Cornell University 1998

In group communication, in order to deliver multicast messages reliably in a group,
it is common practice for each member to maintain copies of all messages it sends
and receives in a buffer for potential local retransmission. The storage of these
messages is costly and buffers may grow out of bound. A form of garbage collection
is needed to address this issue. Garbage collection occurs once a process learns
that a message in its buffer has been received by every process in the group. The
message is declared stable and is released from the buffer. An important part of
garbage collection is message stability detection.

This dissertation presents the result of an investigation into message stability
detection protocols. A number of message stability detection protocols used in
popular reliable multicast protocols are studied with a focus on their performance
in large scale settings. This dissertation proposes a new gossip-style protocol with
improved scalability and fault tolerance. This dissertation also shows that by
adding a hierarchical structure to the set of basic protocols, their performance can

be significantly improved when the number of participants is large.

Biographical Sketch

Katherine Hua Guo was born in 1969 in Beijing, People’s Republic of China. She
entered the University of Science and Technology of China as a biology major.
Shortly afterwards she transferred to the University of Texas at Austin in Austin,
Texas. After three and half years of college education, she earned a B.S. in com-
puter science and B.A. in mathematics with special honor and highest honor. Then
she moved to Ithaca, New York for her graduate study at Cornell University where
she earned an M.S. in computer science in 1995. Her Ph.D. followed in 1998. Now

she joins Bell Laboratories in Holmdel, New Jersey.

il

To those on whose shoulders I stand, and to my family.

v

Acknowledgements

First, I want to thank the Chair of my committee, Ken Birman, for his guidance
and support during my entire graduate study. His strategic insights, his unique
perspective on distributed systems and on computer science research has been
invaluable in my training process.

I am very lucky to have the opportunity to work with Robbert van Renesse.
Step by step, he has shown me how to discover problems and solve problems which
result in valuable computer system research. Werner Vogels started working with
me when I lost my directions. I am grateful for his unwavering encouragement and
sense of humor. I also want to thank S. Keshav for many insightful discussions
during this work.

I would like to thank my committee member Steve Vavasis for carefully reading
this dissertation and giving me valuable comments. My thanks also go to Nick
Trefethen for his encouragement and for the opportunity to explore numerical
analysis.

I wrote three papers with Luis Rodrigues at University of Lisboa. I am grateful
to him for sharing his insights, knowledge, experience and time with me, and
for being true friend. I am grateful to Alexey Vaysburd, Olga Veksler and Yuri

Boykov for being wonderful officemates and for many discussions that cleared up

my thoughts.

Many thanks go to all the Horus researchers who were always willing to help
me. I also wish to express my gratitude to Andrew Feng, who gave me help and
support in too many ways to enumerate.

Looking through my past, however, I must express my ever deep gratitude to
David Kincaid at the University of Texas at Austin, whose advice and guidance
have helped me choosing a career in computer science research and going through
difficult times in life.

Finally I would like to thank my parents and my brother for their constant love

and support.

vi

Table of Contents

Biographical Sketch
Dedication
Acknowledgements
List of Tables

List of Figures

1 Introduction
1.1 Large Scale Multicast L.
1.2 Two Categories of Reliable Multicast
1.3 Separate Issues in Reliable Multicast
1.4 Related Studieso
1.5 Dissertation Outline L.

2 Background

2.1 Categories of Reliable Multicast Protocols
2.1.1 Sender-initiated protocols
2.1.2 Receiver-initiated protocols
2.1.3 Combination of sender-initiated and receiver-initiated proto-

cols

2.1.4 Hierarchical protocols

2.2 Buffer Managemento
2.2.1 Garbage collection Lo,

2.3 Other Applications L L L
2.4 SUMMATY . . . v v e e e e e e e e

3 Failure Detection
3.1 Failure Detection Algorithms
3.1.1 Basic algorithmo o0
3.1.2 Gossip-style algorithm 0.

vil

iii

v

11

17
17
18
19
21
22

3.2 Integration of Stability Detection and Failure Detection 29

3.3 Summaryo e e 30
Stability Detection 31
4.1 Assumptions e e 31
4.2 The Basic Protocols oL 36
421 CoordPo 36
422 FullDist. 40
423 Train 42
424 GOSSIP 46
4.2.5 Analysis of Gossip protocol 52
4.3 The Structured Protocols 63
431 S CoordP 65
4.3.2 S_Train 68
4.3.3 S_GOSSIPp 70
4.4 Comparison of the Seven Protocols 72
4.5 SUIMINATY . .« . v v e e e e e e e e e e e e 75
Simulation of the Stability Detection Protocols 76
5.1 The Underlying Network 76
5.2 Complexity Metrics oL 80
5.3 The Gossip Protocol 82
5.3.1 Simulation with a fixed groupsize 83
5.3.2 Adaptive method: finding the window of optimal step intervals 92
5.3.3 Simulation with varying group sizes 95
5.3.4 Summary 96
5.4 Comparison of Various Protocols in Dense Groups with 50 Senders 99
5.4.1 Total number of messages on all hops in the system 100
5.4.2 Average and maximum queue sizes over all the nodes in the
system 104
5.4.3 Time-per-round (TPR) 106
5.5 Comparison of Various Protocols in Sparse Groups with 50 Senders 113
5.5.1 Total number of messages on all hops in the system 114
5.5.2 Average and maximum queue sizes over all the nodes in the
system ool o Lo 116
5.5.3 Time-per-round (TPR) 118
5.6 Comparison of Various Protocols in Dense Groups with One Sender 125
5.6.1 Total number of messages on all hops in the system 125
5.6.2 Average and maximum queue sizes over all the nodes in the
system L. Lo 126
5.6.3 Time-per-round (TPR) 127
5.7 Comparison of Various Protocols in Sparse Groups with One Sender 130
5.8 SUMMATY e e e e e e 131

6 Stability Triggering Mechanism
6.1 Summary e e e e

7 Discussion and Conclusions
Simulation Results for Gossip in Dense Groups
Simulation Results for Gossip in Sparse Groups

Simulation Results for Dense Groups with One Sender

o aQ =w »

Simulation Results for Sparse Groups with One Sender

Bibliography

X

133
138

139

142

146

150

155

162

List of Tables

4.1
4.2

5.1

5.2

Complexity of protocols (exact formula) 73
Complexity of protocols 74
The near-optimal step interval (in seconds) for Gossip for different

group sizes and different numbers of senders 98
Total number of messages on all hops for various protocols 102

List of Figures

2.1

2.2

2.3

24

2.5

3.1
3.2

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10

4.11
4.12

An example run of the generic sender-based protocol when message
m arrives at every receiver successfully.
An example run of the generic sender-based protocol when message
m does not reach receiver 7o in the original multicast.
An example run of the first variation of the generic receiver-based
protocol when message meo does not reach receiver r9 in the original
multicast. oL
An example run of the second variation of the generic receiver-
based protocol when message mo does not reach any receiver in the
original multicast. oL L Lo
An example run of the third variation of the generic receiver-based
protocol when message ma does not reach receiver ry in the original
multicast.

The Gossip-style failure detection protocol.
An example run of the gossip-style failure detection protocol.

Steps of protocol CoordP.
Steps of protocol FullDist.
Steps of protocol Train.
An example run of the gossip-style stability detection protocol Gos-
SIP. . . e
Part I of the stability detection protocol Gossip. (In this version,
the stability array S is piggybacked on all gossip messages.)

Part IT of the stability detection protocol Gossip. (In this version,
the stability array S is piggybacked on all gossip messages.)
Number of micro-steps needed to achieve different probability of

incomplete stability detections. P stands for Pipcompete in the figure.

Number of steps needed to achieve different probability of incom-

plete stability detections. P stands for Pj,compete in the figure. . . .
Cost of quality in terms of number of micro-steps.
Cost of quality in terms of number of steps.
Steps of protocol S_.CoordP.
Steps of protocol S_Train.

xi

10

13

14

15

27
28

37
41
44
48
49
30
62
63
64

64
67

4.13

5.1

5.2

9.3

5.4

5.9

5.6

2.7
5.8
5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

Structure of the S_Gossip protocol. 72

Typical network topologies: (A): A start topology, (B): A chain
topology, and (C): A bounded-degree tree where interior nodes all

have degree 4. L oo 7
Simulation I (no message loss) with a dense group of size 200, and
subset size 3. 85
Simulation I (no message loss) with a dense group of size 200 (part
D) oo 86
Simulation I (no message loss) with a dense group of size 200 (part
D). e 88
Simulation II (queue size = 64) with a dense group of size 200 (part
D). 90
Simulation II (queue size = 64) with a dense group of size 200 (part
D). 90
TPR for simulations I and II with 20 sparse groups of size 200. . . 91

Part I of the adaptive algorithm: finding a near-minimum TPR.
f(z) is the average measured TPR value for a step interval value x. 93
Part IT of the adaptive algorithm: finding the optimal step interval
window given a near-minimum TPR. f(x) is the average measured
TPR value for a step interval value z. 94
Near-minimum TPR and the corresponding number of steps needed
in a round for sparse groups in Simulation II using the global gossip
scheme with 50 senders. A data point with subset size x and step
interval y seconds is labeled as (x,y). 95
Near-minimum TPR and the corresponding number of steps needed
in a round for sparse groups in Simulation II using the global gossip
scheme with one sender. A data point with subset size x and step

interval y seconds is labeled as (z,y). 97
Total number of messages on all hops for the four basic protocols
in dense groups with 50 senders.o 101
Total number of messages on all hops for the three structured pro-
tocols in dense groups with 50 senders. 103

Total number of messages on all hops for the basic and their cor-
responding structured protocols in dense groups with 50 senders

Total number of messages on all hops for the basic and their cor-
responding structured protocols in dense groups with 50 senders

(part II). oo 104
Average and maximum queue sizes over all the nodes for the basic
and structured protocols in dense groups with 50 senders. 105

xii

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

9.33

5.34

5.35

5.36

Time-per-round (TPR) for the four basic protocols in dense groups
with 50 senders. oL 107
Time-per-round (TPR) for Gossip and FullDist employing the
scattering mechanism in dense groups with 50 senders. 108
Time-per-round (TPR) for the three structured protocols in dense
groups with 50 senders.o oL Lo 109
Time-per-round (TPR) for the basic and their corresponding struc-
tured protocols in dense groups with 50 senders (part I). 110
Time-per-round (TPR) for the basic and their corresponding struc-
tured protocols in dense groups with 50 senders (part II). 110
Total number of messages on all hops for the basic protocols in
sparse groups with 50 senders.o Lo oL 114
Total number of messages on all hops for the three structured pro-
tocols in sparse groups with 50 senders. 115

Total number of messages on all hops for the basic and their cor-
responding structured protocols in sparse groups with 50 senders

Total number of messages on all hops for the basic and their cor-
responding structured protocols in sparse groups with 50 senders

(part II). oo 117
Average queue size over all the nodes for the four basic protocols
in sparse groups with 50 senders. 118
Average queue size over all the nodes for the structured protocols
in sparse groups with 50 senders. 119
Maximum queue size over all the nodes for the four basic protocols
in sparse groups with 50 senders.o L. 119
Maximum queue size over all the nodes for the structured protocols
in sparse groups with 50 senders. L. 120
Time-per-round (TPR) for the four basic protocols in sparse groups
with b0 senders.o 120
Time-per-round (TPR) for the structured protocols in sparse groups
with 50 senders. Lo 121
Time-per-round (TPR) for the basic and their corresponding struc-
tured protocols in sparse groups with 50 senders (part I). 122
Time-per-round (TPR) for the basic and their corresponding struc-
tured protocols in sparse groups with 50 senders (part II). 123
Total number of messages on all hops for Gossip and S_Gossip with
different number of senders in dense groups. 126
Average queue size over all the nodes with different numbers of
senders for the basic and structured protocols in dense groups.. . . 128
Maximum queue size over all the nodes with different numbers of
senders for the basic and structured protocols in dense groups.. . . 128

xiil

5.37 Time-per-round (TPR) with different numbers of senders for the

5.38

6.1

6.2

Al

A2

A3

A4

A5

A6

B.1

B.2

B.3

B4

B.5

B.6

C.1

C.2

C.3

four basic protocols in dense groups. 129
Time-per-round (TPR) with different numbers of senders for the
three structured protocols in dense groups. 130

Optimal number of messages in the output buffer when the stability

detection protocol should be triggered (a =1) 137
Optimal number of messages in the output buffer when the stability
detection protocol should be triggered (a« =0.2). 138
Simulation I (no message loss) with a dense group of size n = 200
(part I). . . o o 143
Simulation I (no message loss) with a dense group of size n = 200
(part II). oo 143
Simulation II (queue size = 64 and 2 lost messages per step) with
a dense group of size n = 200 (part I). 144
Simulation IT (queue size = 64 and 2 lost messages per step) with
a dense group of size n = 200 (part IT). 144
Simulation III (2 lost messages per step) with a dense group of size
n=200 (part I). 145
Simulation III (2 lost messages per step) with a dense group of size
n =200 (part II). 145
Simulation I (no message loss) with 20 sparse groups of size n =
200 (part I). 147
Simulation I (no message loss) with 20 sparse groups of size n =
200 (part IT).o o oL 147
Simulation II (queue size = 64 and 2 lost messages per step) with
20 sparse groups of size n = 200 (part I). 148
Simulation II (queue size = 64 and 2 lost messages per step) with
20 sparse groups of size n = 200 (part II). 148
Simulation III (2 lost messages per step) with 20 sparse groups of
sizen =200 (part I). oL 149
Simulation IIT (2 lost messages per step) with 20 sparse groups of
sizen =200 (part IT).o 149
Total number of messages on all hops for the four basic protocols
in dense groups with one sender. 151
Total number of messages on all hops for the three structured pro-
tocols in dense groups with one sender. 151

Total number of messages on all hops for the basic and their cor-
responding structured protocols in dense groups with one sender

X1V

C.4 Total number of messages on all hops for the basic and their cor-
responding structured protocols in dense groups with one sender
(part II). o o

C.5 Average and maximum queue sizes over all the nodes for the basic
and structured protocols in dense groups with one sender.

C.6 Time-per-round (TPR) for the basic and structured protocols in
dense groups with one sender.

C.7 Time-per-round (TPR) for the basic and their corresponding struc-
tured protocols in dense groups with one sender (part I).

C.8 Time-per-round (TPR) for the basic and their corresponding struc-
tured protocols in dense groups with one sender (part IT).

D.1 Total number of messages on all hops for the four basic protocols
in sparse groups with one sender. L.
D.2 Total number of messages on all hops for the three structured pro-
tocols in sparse groups with one sender.
D.3 Total number of messages on all hops for the basic and their cor-
responding structured protocols in sparse groups with one sender

D.4 Total number of messages on all hops for the basic and their cor-
responding structured protocols in sparse groups with one sender
(part II). oo
D.5 Maximum queue size over all the nodes for the four basic protocols
in sparse groups with one sender.o
D.6 Maximum queue size over all the nodes for the structured protocols
in sparse groups with one sender.o
D.7 Average queue size over all the nodes for the four basic protocols
in sparse groups with one sender.o
D.8 Average queue size over all the nodes for the structured protocols
in sparse groups with one sender. Lo
D.9 Time-per-round (TPR) for the four basic protocols in sparse groups
with one sender.
D.10 Time-per-round (TPR) for the structured protocols in sparse groups
with one sender.
D.11 Time-per-round (TPR) for the basic and their corresponding struc-
tured protocols in sparse groups with one sender (part I).
D.12 Time-per-round (TPR) for the basic and their corresponding struc-
tured protocols in sparse groups with one sender (part II).

XV

Chapter 1

Introduction

Multicast is an efficient communication paradigm for disseminating data in a group
with a sender and a set of receivers. Typically a multicast group is identified by
a single group address. The semantics of reliable multicast communication are
normally defined such that all members of the group need to receive a copy of the
multicast message. Informally, this means that all correct processes deliver the
same set of messages, and that this set include all messages multicast by correct
processes, and no spurious messages [Mul93].

The growth of the Internet has triggered the widespread use of real-time multi-
cast, including applications that support voice (for example, vat [JM], NeVot [Sch92])
and video (nv [Fre]) which do not require reliable multicast. There are also appli-
cations that do require reliable multicast such as shared white-boards (for example,
wb [FILT96]).

Many other multicast applications also require reliable delivery of data to all
the receivers. For example, reliable multicast is used in Distributed Interactive

Simulations (DIS) for dynamic terrain updates [HSC95]. It is used for dissemina-

tion of stock quotes to a large number of clients, and for distribution of software
products to groups of customers. It is also used by web servers to send updates of
web pages to their proxies.

The increasing popularity of end-to-end multicast applications supporting ei-
ther video-conferencing, Computer Supported Collaborated Work (CSCW) or the
reliable data dissemination over the Internet is making the provision of reliable and

unreliable multicast services an integral part of its architecture.

1.1 Large Scale Multicast

In the near future, global information exchange will become an essential part of
everyday life. Driven by the availability of high speed networks and powerful pro-
cessors, more and more applications will require reliable data transfer within large
groups, whose members may be spread all over the world. Therefore, forthcom-
ing communication systems must scale well with respect to both number of group
members and geographical expansion.

Meanwhile, widespread availability of IP multicast [DC90] and the MBone
[Kum95] have dramatically increased the geographic extent and the size of com-
munication groups.

To support reliable multicast communication in such a scenario, efficient and

scalable multicast control mechanisms have become more and more essential.

1.2 Two Categories of Reliable Multicast

Generally, reliable multicast techniques fall in two categories: sender-initiated and
receiver-initiated, both of which employ a sequential numbering of data messages
at the sender.

The sender-initiated approach is based on the use of positive acknowledgments
(ACKs). It places the responsibility on the sender, which maintains state informa-
tion of all the receivers that it is multicasting data to. The receivers acknowledge
the receipt of data messages by sending unicast ACKs to the sender. The sender
keeps track of from whom it has received ACKs for each multicast message. A
timer is associated with each message at the sender, and whenever the timer ex-
pires before ACKs from all the receivers come in, the sender re-multicasts the
message.

In contrast, the receiver-initiated approach does not use ACKs at all. When-
ever receivers detect a missing message by observing gaps in the sequence number
stream of data messages, they send negative acknowledgments (NAKSs) which serve
as repair requests. In general, none of the members keep the state information re-
garding the set of receivers. If the receivers send repair requests to the sender,
then the sender is responsible for data retransmission; if the receivers multicast re-
pair requests in the group, then any member who has the requested message may

conduct the retransmission. The retransmission is multicast to the entire group.

1.3 Separate Issues in Reliable Multicast

Much work has been done on the performance issues of point-to-point and point-
to-multi-point transport protocols. The flow control, transmission error recov-
ery, and buffer space management issues seem to interact in a rather complicated
way [WMS8T].

We follow the discipline first proposed by Clark et al. in [CLZ87], whereby
any transport protocol that operates efficiently decouples flow control and error
control. Mixing the two in a single mechanism can make flow control vulnerable to
transmission errors and delays. Under this discipline, the protocol uses a window
for error control only. In practice, some protocols follow this discipline, and some
do not.

Protocols like TCP [Pos81] use the same window both for flow control and for
error control. A TCP transmitter stops at the window boundary and waits for a
new acknowledgment before it can continue. This wait for synchronization serves
as TCP’s flow control mechanism and can often cause performance degradation.

On the other hand, protocols like NETBLT [CLZ87|, Blast File Transfer Proto-
col [The92], and StarBurst Multicast File Transfer Protocol [Sta97] separate error
control from their rate-based flow control mechanism. NETBLT maintains a large
window at the sender, whereas Blast FTP and StarBurst MFTP keep the entire
file to be transferred in the error control window.

Out of the three important issues in the design of reliable multicast protocols:
flow control, error control and buffer management for the error control window,
this dissertation investigates the issue of buffer management, that is, how to free

messages from the error control window.

A message can be released from the buffer at any member (a sender or a receiver)
only if it is received by every member in the group at which point the message is
called stable. Therefore, buffer management is essentially the same as detecting

message stability and releasing stable messages from the buffers.

1.4 Related Studies

There have been comparative analysis of sender-initiated and receiver-initiated re-
liable multicast protocols by Pingali et al. in [PTK94| and by Levine in [Lev96].
These studies conduct throughput analysis of different protocols based on process-
ing requirements at both the sending and receiving hosts rather than the commu-
nication bandwidth requirements.

This dissertation studies only one aspect of reliable multicast protocols — the
buffer management mechanisms. The focus is on the scalability of these protocols.

We examine various buffer management mechanisms for reliable multicast pro-
tocols in a large scale environment where messages may be dropped and processes
may crash. We take both processing and communication bandwidth requirements

into account, and study delay performance using event simulation.

1.5 Dissertation Outline

The results presented in this dissertation are based on simulations. They apply to
generic protocols, rather than to specific implementations. We believe that they
provide valuable insight for the design of next generation scalable reliable multi-

cast protocols. Chapter 2 starts with a study of error control mechanism in reliable

multicast protocols, then introduces the need to do stability detection in reliable
multicast and other important protocols. In order to detect message stability, it is
necessary to have group membership information. Chapter 3 presents the failure
detection protocol and the integration of failure detection and stability detection.
The detailed comparison of stability detection protocols is presented in Chapter 4
followed by the simulation results in Chapter 5. Chapter 6 investigates the mech-
anism to invoke detection of stability. Chapter 7 concludes the dissertation. The

appendices at the end provide some additional simulation results.

Chapter 2

Background

2.1 Categories of Reliable Multicast Protocols

With respect to mechanisms for error correction, reliable multicast protocols can
be broadly separated into two categories: sender-initiated and receiver-initiated.
A sender-initiated protocol is defined as one in which the sender gets positive
acknowledgments (ACKs) from all the receivers periodically and release messages
from its buffer accordingly. A receiver-initiated protocol is defined as one in which
the receivers send negative acknowledgments (NAKs) when they detect message

losses, and they never send any ACKs to the sender.

2.1.1 Sender-initiated protocols

Sender-initiated reliable multicast protocols are based on the use of ACKs. The
responsibility of providing message reliability is placed on the sender, which main-
tains state information regarding all receivers to which it is multicasting data. The

sender keeps the list of all the receivers, and for each packet, the receivers from

which it has received ACKs.

Reliability and the maintenance of this state information are ensured by having
the receivers return ACKs for messages correctly received, and by using timers at
the sender for the purpose of detecting message losses.

A “generic” protocol might operate as follows:

e Whenever the sender multicasts a message, it starts a timer associated with

this message.

e Periodically, a receiver sends back a unicast ACK to the sender identifying
the messages it has correctly received so far. The ACK might indicate either

a specific message or a window of messages.

e Upon receipt of an ACK, the sender updates its ACK lists associated with

these messages indicated in the ACK.

e Whenever the timer expires before ACKs from all the receivers arrive at the

sender, the sender re-multicasts the message.

e Whenever the ACK list associated with a message contains all the receivers
in the group, the sender can release this message from its buffer and cancel

the corresponding timer.

Some example runs of the sender-initiated protocol are given in Figures 2.1
and 2.2. In the first case as illustrated in Figure 2.1, once the sender s multicasts
the message m to receivers r; and 7o, it starts a timer for m. After receiving the
unicast ACK from both r; and r9, the sender cancels the timer.

In the second case as in Figure 2.2, message m is multicast in the group. m

arrives at r; successfully, but it is lost on its way to r2. When the timer for m

Start timer_m \ m

ACK m

— ACK m

Cancel timer_m

time

Figure 2.1: An example run of the generic sender-based protocol when message m

arrives at every receiver successfully.

expires, the sender s has not received an ACK from 79, therefore, it re-multicasts
m.

The sender-initiated approach is used in early reliable multicast protocols such
as the Xpress Transport Protocol (XTP) [SDW92,XTP95]!.

The main limitation of the sender-initiated protocol is that the sender needs to
know the set of receivers, and needs to process ACKs from all the receivers. When

the group size is large, the sender can be overwhelmed by the large amount of state

IXTP actually uses a combination of both sender-initiated and receiver-initiated approaches.

10

Start timer_m T~

Timer_m expires

time

Figure 2.2: An example run of the generic sender-based protocol when message m

does not reach receiver rp in the original multicast.

information it must maintain, and experience an ACK implosion problem.

The ACK implosion problem is as follows. As the number of receivers becomes
very large, the sender is overwhelmed with ACK messages from all the receivers.
The network becomes congested from the arrival of a large number of messages in
a short period of time, and the sender process experiences significant overhead due
to the processing of the large number of ACK messages.

ACK implosion has the following impact:

e First, the tremendous number of ACK messages results in processing over-

11
head at the sender and results in delays in data communication.

e Second, a large number of ACK messages can cause an excess use of both

buffer space and bandwidth, triggering additional message losses.

One approach to address the limitations of sender-initiated protocols is to use
NAKs instead of ACKs for error detection and get rid of state information regarding

all the receivers. We call this a receiver-initiated mechanism.

2.1.2 Receiver-initiated protocols

Receiver-initiated protocols shift the burden of providing reliable data transfer
to the receivers, and conduct error control based on negative acknowledgments
(NAKS).

In this approach, the receivers are responsible for error detection and error
recovery. They do not need to return status reports or acknowledgments to the
sender. After a receiver detects lost messages by observing gaps in message se-
quence numbers, it informs other members via NAKSs that solicit retransmissions.
In order to guard against either the loss of the NAK or the subsequent message
retransmission, the receiver starts a timer for each missing message. If the timer
expires before the message is received, the receiver sends out another NAK mes-
sage and restarts the timer. The timer is canceled upon successful receipt of the
message.

To aid the loss detection for the last message in a burst, the sender must
multicast the sequence number of that last message periodically.

A “generic” protocol might operate as follows:

12

e Whenever a receiver detects a lost message, it sends a NAK, and then starts

a timer associated with this message.

e Whenever the timer expires before the requested message arrives, a receiver

sends a NAK again and re-starts the timer.

e There are two approaches to send retransmission requests (NAKs): one is to
unicast to the sender, the other is to multicast to the entire group. Com-
bined with the way retransmission is sent out, we have the following three

variations:

— In the first variation, upon receipt of a unicast NAK, the sender re-

multicasts the requested message.

— In the second variation, upon receipt of a multicast NAK, the sender
re-multicasts the requested message. Whenever a receiver receives a
NAK requesting the same message it has requested in its own NAK, it
resets the timer associated with the missing message. This mechanism

suppresses redundant NAKs by backing off the timers at receivers.

— The third variation is the same as the second one, except any member
with a copy of the requested message can re-multicast in the group upon

receipt of a NAK.

Examples of the three variations of the receiver-initiated protocol are presented
in Figures 2.3 to 2.5. Figure 2.3 illustrates the first variation of the protocol. The
sender s multicasts messages mj, ma, and mgs to the two receivers. Out of these

three multicast messages, m; and mg arrive at both receivers successfully, msy

time

r1

(7]

I
/
/

L

2

~Z
-
-~
-
3 ~

\

NAK_m2

/
\mz

v

<

4

13

1

/%

r2: Start timer for
NAK_m2

r2: Cancel timer for
NAK_m2

v

<

Figure 2.3: An example run of the first variation of the generic receiver-based

protocol when message msy does not reach receiver ry in the original multicast.

arrives at 1 but not r5. As soon as ry detects the loss of ms from the gap in the

sequence number space, it sends a unicast NAK message to the sender s requesting

the retransmission of mg, and starts a timer for the NAK message of ma. Once the

sender receives the NAK from 79, it re-multicasts msy to both receivers. r; ignores

the message since it is a duplicate. After ro receives my successfully, it cancels the

timer for the NAK.

Figure 2.4 presents a sample run of the second variation. Message my fails to

arrive at either r1 or r9. Receiver r; detects the loss first, then it multicasts a

time

14

S r1 r
m1
s=sis
m3 -~
\\m‘
r1: Start/timer
for NAK| m2
=
m2
r1: Cancel timer
for NAK_m2
v v v

r2: Start timer for
NAK_m2

r2: Cancel timer for
NAK_m2

<

Figure 2.4: An example run of the second variation of the generic receiver-based

protocol when message my does not reach any receiver in the original multicast.

NAK message for ms and starts a timer for the NAK. After ry receives the NAK,

it starts a timer for the NAK for my as if it has just sent out the NAK itself. Once

the sender s receives the NAK from 71, it re-multicasts mg in the group. After ms

arrives at 1 and ra, both receivers cancel their corresponding timers for the NAK.

In Figure 2.5, the third variation is used. Message ms arrives at 71 but not rs.

Once 7y detects the loss, it multicasts a NAK message requesting my. It also starts

a timer for this NAK. As soon as r1 receives this NAK request, since it has already

received mg, it re-multicasts my in the group. Once mgy arrives at rg, the timer

15

NAK_M2_~ 2 Start timer for

) NAK_m2

NAK_m2
s: Ignores
NAK _m2 .
r2: Cancel timer for
NAK_m2
time

v v v
Figure 2.5: An example run of the third variation of the generic receiver-based

protocol when message msy does not reach receiver ry in the original multicast.

for the NAK is canceled. The sender s receives the NAK for mq9 after it receives
ma, it ignores the NAK accordingly since it knows some other member has already
re-multicast mo.

The first variation is used by Birman in the ISIS reliable multicast protocol
[Bir93] in a local area network (LAN) environment.

The second variation is proposed by Ramakrishnan and Jain in the “Negative
Acknowledgments with Periodic Polling” (NAPP) protocol [RJ87] for a LAN. Ja-

cobson has used similar ideas to implement a reliable multicast protocol suitable

16

for the wide area network (WAN) [Jac93].

The third variation is used in the Scalable Reliable Multicast (SRM) protocol
designed by Floyd et al. [FJL196], where any member which has the requested
message may conduct the retransmission. This technique effectively reduces the
burden on the sender and shortens the retransmission delay.

Because the sender does not have group membership information, and the re-
ceivers do not send feedback to the sender upon successful receipt of messages, the
sender has no mechanism to ascertain when it can safely release messages from its
buffer. Furthermore, this approach is not suitable to provide a full-reliable com-
munication service, because there is no mechanism for any member to detect when
a receiver fails or leaves the group.

The benefit of this scheme is that since the state information is minimum, it
scales well.

Clearly in the receiver-initiated approach, in order to handle possible retrans-
mission requests, if the sender is responsible for retransmission, then all the multi-
cast messages must be kept in the sender’s buffer; whereas if all the members are
responsible for retransmission, then all the messages must be maintained in the
buffers of all the members.

A pure receiver-initiated approach lacks a buffer management scheme to detect
when a message is received by all the members, and therefore can be safely released
from each member’s buffer. To combat the limitation of the pure receiver-initiated

approach in practice, many protocols combine the use of both ACKs and NAKs.

17

2.1.3 Combination of sender-initiated and receiver-initiated

protocols

In the hybrid approach that combines the sender-initiated and receiver-initiated
mechanisms, regardless of whether the sender or the receivers are in charge of de-
tecting message losses and conducting retransmission, that is, despite of the use
of ACKs or NAKs for retransmission requests, the sender is in charge of releasing
a message from its buffer and from receivers’ buffers after every receiver has posi-
tively acknowledged receipt of the message. ACKs are employed by the sender to
ascertain that it is safe to release messages from memory.

The combination of ACKs and NAKs have been used extensively for reliable
multicast protocols. For example,the Xpress Transport Protocol (XTP) [SDW92,
XTP95], the “Negative Acknowledgments with Periodic Polling” (NAPP) proto-
col [RJ87], and the StarBurst Multicast File Transfer Protocol (StarBurst MFTP)
[Sta97] group together large partitions of data messages that are periodically

ACKed, while lost messages within the partition are NAKed.

2.1.4 Hierarchical protocols

A hierarchical structure can reduce the ACK implosion problem in sender-initiated
protocols. The Reliable Multicast Transport Protocol (RMTP) developed at Bell-
Labs by Sabnani et al. [SLPB97] employs a hierarchy by dividing the receivers into
some number of subsets and using Designated Receivers (DRs), one per subset,
to collect ACKs from other members in that subset. Thus, the sender only keeps
the list of DRs, and each DR keeps membership information of its subset. This

hierarchy reduces both the amount of state information required at the sender, and

18

the number of ACKs collected by the sender.

The receiver-initiated protocol can also benefit from a hierarchy. For exam-
ple, the Log-Based Receiver-reliable Multicast (LBRM) developed by Holbrook et
al. [HSC95] uses a hierarchy of log servers to store all multicast messages indefi-
nitely. Receivers request retransmissions of lost messages from a log server. The
log servers significantly reduce the sender’s burden of handling retransmissions.

The Local Group-based Multicast Protocol (LGMP) by Hofmann [Hof96a,
Hof96b] is based on the concept of Local Groups where lost messages are first
recovered inside Local Groups using NAKs. A message is requested from the
sender only if not a single member of the Local Group holds a copy of the missing

message.

2.2 Buffer Management

Transport level buffers have a certain bound in terms of size. For example, in
Unix, the default buffer size for each TCP connection is 32K bytes at the sender
and at the receiver. The purpose of transport level buffers is to store messages for
reasonable amount of time in case retransmission is needed. After these buffers
become full, new messages are either dropped or forced to replace existing messages
in the buffer depending on the buffer management scheme.

In the following simple calculation, we assume the sender is responsible for
retransmission, and it stores all the multicast messages it has sent out in its buffer.
Assume the sender multicasts fixed-size messages at the rate r messages per second,
and the message size is k bytes. Also assume the buffer size at the sender is B

B

bytes. Then ¢t = -+ seconds after the sender starts multicasting, the buffer will

19

be full. After this point, new messages have to replace old messages in the buffer.
If the time it takes to detect message loss and send back NAK messages is greater
than ¢, then the original message is not available in the transport level buffer for
retransmission any more.

If the application layer can store all relevant data, then lost messages that are
not in the transport level buffers can be reconstructed by the application, and
retransmitted; otherwise, they are lost and can not be retransmitted.

SRM uses the first approach, employing a concept called Application Level
Framing (ALF) proposed by Clark and Tennenhouse in [CT90]. In the design
principle ALF, the application breaks the data into suitable aggregates called Ap-
plication Data Units, or ADUs. ADUs will take the place of the packet as the
unit of manipulation. When mis-ordered or incomplete data units occur, the ap-
plication rather than the transport protocol provides the data for retransmision by

reconstructing the data.

2.2.1 Garbage collection

In scalable reliable multicast protocols [FJLT96 Hof96a,Hof96b,SLPB97], it is most
efficient to use the local repair scheme, that is, for each group member to retransmit
messages in response to requests by other members that have detected message
losses. For applications that require all messages to be delivered to all correct
processes in the group, it is also necessary to buffer all the received messages at
every member to handle the case of sender crash and network partition.

On the other hand, the storage of these messages is costly and the buffer space

at each member is limited, preventing the protocols from scaling to a large group

20

size. A form of garbage collection is needed to address this issue.

In order for members that join the group late to catch up with the rest of
the group, a small number of members are designated as the Late-Join Handlers
(LJHs). LJHs keep all messages they sent and received in their buffers. The deci-
sion of how long the LJHs should keep multicast messages is made by applications
instead of the garbage collection mechanism.

Whenever a data message has been received by all the members, only the LJHs
should store the message. Other members should discard it, since none of the
members in the current multicast group needs retransmission. A message is called
stable if it is received by all the members of the group. To do this garbage collection,
a mechanism is needed to detect which messages are stable. Also a failure detection
mechanism is needed to report the current group membership, otherwise a failed
member could prevent garbage collection altogether.

Under the ideal situation where the sender does not crash and there is no net-
work partition, sender-initiated protocols already have built-in buffer management
and garbage collection mechanisms. After the sender gets ACKs from all the re-
ceivers, it can detect which messages are stable and can be released from each
member’s buffer. Receiver-initiated protocols do not have this stability detection
mechanism since none of the members have group membership information.

If we want to guarantee reliable message delivery in face of sender crash and
network partition, then we need a mechanism to do stability detection and buffer
management for both sender-initiated and receiver-initiated protocols.

The problem of buffer management is largely ignored in existing scalable reliable

multicast protocols in the literature. Based on the concept of Application Level

21

Framing (ALF) [CT90], the issue of how long a message should be buffered is
handled by the application layer. For example, in SRM, all messages belong to
the current white-board session are stored in the buffer of each group member.
Depending on how long a session is, the number of messages in a session could be
unbounded. To our knowledge, this is the first comprehensive study of transport
level buffer management for reliable multicast protocols.

This dissertation evaluates the scalability and performance of existing stability

detection protocols and further proposes new protocols.

2.3 Other Applications

The message stability detection mechanism can also support atomic message order-
ing which means that a message is not delivered to any group member until all the
members have received it. For example, the research reported here was triggered
by a problem that a Swiss bank faced when using the Isis group communication
system [Bir93]. In their set-up, they had two server machines and about a hundred
PC workstations organized in a group. The servers multicast updates to replicated
data maintained at each of the workstations. The updates had to be delivered
atomically, in spite of server failures. Therefore, the workstations had to buffer
the data until it was known that the data was delivered everywhere. The rate
of the updates was sometimes so high, that Isis’ stability detection protocol was
not able to keep up, and buffers grew too large. The effect was much exacerbated
by the fact that multiple groups were used. Correct ordering between the groups
required that switching from sending in one group to another was done only after

the messages sent and delivered in the first group had become stable.

22

These machines were inside a single branch and on a single local area network.
One can easily envision multiple branches being linked together, with many hun-
dreds if not thousands of machines. Our interest is in finding a scalable stability
detection protocol that fits future requirements.

The concept of message stability has been used in more traditional areas such as
distributed database management and parallel computing. In distributed database
systems, partial failures of transactions can lead to inconsistent results. Therefore,
termination of a transaction that updates distributed data has to be coordinated
among its participants. In the atomic commit protocols [BHG87|, a process can not
commit a transaction until everybody else has agreed to commit. This is similar to
message stability detection protocols in which all processes must deliver a message
if any does so.

In parallel computing, barrier synchronization [SKB89] requires that all pro-
cesses execute the barrier construct before any process can proceed past it to the
next statement. Every process has to know if all other processes have reached the
barrier before it can proceed again. This is also an agreement problem similar to

message stability and atomic commit.

2.4 Summary

This chapter provides the background to the study of message stability detec-
tion protocols to be presented in subsequent chapters. Two categories of reliable
multicast protocols, the sender-initiated and the receiver-initiated protocols, are
described along with the pros and cons of each category. Two common approaches

to improve the scalability of reliable multicast protocols are studied: one is to com-

23

bine the two categories of protocols, the other is to employ a hierarchical structure.
The question of efficient buffer management and the concept of garbage collection
are raised in the context of reliable multicast.

This background makes it possible to now study the failure detection algorithms
(Chapter 3), and look in detail at the different schemes to conduct message stability

detection (Chapters 4 to 6).

Chapter 3

Failure Detection

To do effective garbage collection, one must detect when a message is stable and
obtain a consistent view of the current group membership. Therefore, the stability
detection protocol and failure detection protocol are two integral parts of garbage

collection. This chapter describes the failure detection algorithms.

3.1 Failure Detection Algorithms

To conduct multicast in a distributed environment, one must face the problem of
dynamic group membership changes. Initially, there are n members in the group
numbered 1 through n. As time passes by, new members might join the group,
existing members might crash or might leave the group voluntarily. The failure
detection problem is to detect which members of the group are still operational

and therefore constitute the current membership.

24

25

3.1.1 Basic algorithm

Traditionally failure detection algorithms are based on time-out mechanisms. In
general, a failure is detected when the lack of response from a remote member pro-
cess makes communication protocols unable to make progress. Under the assump-
tion that every member process is constantly sending out messages, if a member
has not been heard from after a certain time, it is assumed to have crashed or left
the group. The failure detection algorithms normally reside in the transport layer
that implements inter-process communication.

To ensure timely detection of failures when data traffic is low or unidirectional,
some systems require each member to multicast “I-am-alive” session messages in
the group periodically.

In general, failure detection algorithms can be divided into two categories under
the same time-out principle according to Vogels in [Vog96].

The first scheme uses a heartbeat mechanism, where each process sends out “I-
am-alive” session messages in the group of processes using multiple point-to-point
messages or a single [P-multicast message. Each process records the reception times
of messages and if a number of consecutive heartbeats from a certain member are
missing, a suspicion is raised for this member. The lengths of inter-heartbeat gaps
and time-out periods are configurable by the application. The application can also
piggyback data messages on the heartbeat messages.

The second scheme uses a polling method where the failure detector sends
request messages to processes in the group and collects acknowledgments from
them. If no acknowledgments are received after a number of retries, the failure

detector raises a suspicion. Poll periods, time-outs, and retransmission limits are

26

also configurable by the application.

When scaled up to more than several dozens of members, many failure detectors
are either unreasonably slow, or make too many false detections as reported by van
Renesse et al. in [vRMH98]. The reason is that in either the heartbeat method or
the polling method, the large number of “I-am-alive” messages and polling requests

add unnecessary loads to the system.

3.1.2 Gossip-style algorithm

We propose a new gossip-style algorithm to do failure detection. The protocol is
based on the gossiping technique pioneered in the Clearinghouse project in the
1980’s [DGH*87,0D83]. Over a decade before that, Baker and Shostak [BST72]
describe a gossip protocol using ladies and telephones before the widespread use
of computers and networks.

The goal of gossip protocols is to distribute information in the group. The
mechanism is for each member to forward new information to randomly chosen
members periodically. The randomly chosen members during each gossip constitute
a gossip subset. And the gossip period is called step interval.

The gossip-style failure detection algorithm works as follows. Every member
maintains an n-element “Live” array L which is filled with 0’s initially. This
protocol is divided into equally timed steps. During every gossip step, each member
i increments all the other elements in its “Live” array L by 1 while keeping L[i] = 0,
then it gossips L to a random subset. Upon receiving a data message from member
J, a member sets L[j] = 0. Upon receiving another “Live” array L', a member

replaces its own “Live” array L with the element-wise minimum of its old L and

27

L'. Small values in the live array indicate that the corresponding members are
active, and large values signify that the corresponding members have not been

heard from recently. The pseudo-code is presented in Figure 3.1.

Each member ¢ keeps a live array L,.
Initially L;= [0 0 ... 0] at every member i.

Periodically, member ¢ does the following:
Li[j] = Li[j] + 1; for all j # ¢
sends out a gossip message containing L = L;;

Every member reacts to received messages as follows:
Upon receiving a data message from j, member ¢ does the following:
Li[j] = 0;
Upon receiving L, member i does the following:
L; = ArrayMin(L;,L);

Figure 3.1: The Gossip-style failure detection protocol.

Figure 3.2 presents a sample execution of the gossip-style failure detection pro-
tocol. In this example, there are four members in the group — A, B, C and D.
We examine the behavior of the protocol at member A. Initially, the “Live” array
at Ais [0 0 0 0]. After one step interval, A increments every element of the “Live”
array by 1 except for itself, and the “Live” array becomes [0 1 1 1]. After this
increment, A gossips its current “Live” array to B. When the next step interval
passes, the “Live” array becomes [0 2 2 2] and A gossips it to C. When A receives a
data message from C, it sets the element for C' to be 0. The “Live” array becomes
[0 2 0 2] at this point. After some time passes, the “Live” array is [0 4 3 6]. At

this moment, A receives D’s “Live” array [2 1 2 0], and calculates the element-wise

28

ABCD
[0000]
[0111]

[022 2] 0222]

[020 2]

[0111]

[2120]

[0436] //

[0120]

v v v v tl me

Figure 3.2: An example run of the gossip-style failure detection protocol.

minimum ArrayMin([0 4 3 6], [21 2 0]) = [0 1 2 0] which is the new “Live” array
at A.

It takes time for the “Live” array from each member to propagate throughout
the entire group. Therefore we set a threshold value Kyq;, the maximum “Live”
array value. Once Ky, is reached, the corresponding member is considered failed.
The value K4 depends on the gossiping rate (the length of step interval) and the
subset size during each gossip step. Ky, is selected so that the probability that

anybody makes an erroneous failure detection is less than some small threshold

P, mistake-

29

In [vRMH98], van Renesse et al. conduct a statistical analysis for a better
version of the protocol where during each gossip step, only one member is gossiping.
This member is chosen at random and chooses one other member to gossip to at
random. Under this condition, the number of steps needed increases logarithmically
with the number of members n. The “Live” array size increases with the group size
n, therefore, in order to keep the bandwidth requirement per member constant,
the gossip step is set to be proportional to n. With this requirement, Kyq; grows
in the order of nlogn.

Assuming each element of the “Live” array occupies 1 byte, the size of a gossip
message becomes n bytes where n is the group size. A hierarchical structure
can be employed in the failure detection protocol to reduce gossip message sizes
and improve scalability. Since the stability detection protocol is the focus of this

dissertation, the failure detection protocol is not discussed further.

3.2 Integration of Stability Detection and Fail-
ure Detection

When there are membership changes, the failure detection protocol assists the sta-
bility detection protocol. If a faulty member is detected, this information is propa-
gated throughout the group. As presented in Section 4.1, each member maintains
an n-bit “Whom-I"ve-heard-from” bitmap array W for recording from which mem-
bers it has received information needed for stability detection. Members always
check the “Whom-I've-heard-from” array W against the current group member-

ship before deciding if message stability is reached, thus preventing an indefinite

30

wait for faulty members’ sequence number arrays.

Recall from Section 2.2, a small set of members are designated as Late-Join
Handlers (LJHs) and the LJHs will provide new members with data necessary
to catch up with existing members. When a new receiver joins the group, after
receiving necessary information from the LJHs, it also joins the stability detection
protocol. The “Whom-I've-heard-from” bitmap array W adds one more bit at the
end representing the new receiver. Any member which hears indirectly or directly
from this new receiver notices the change in W from gossip messages and adds one
bit to its own W.

The invocation of the stability detection protocol depends on patterns of mes-
sage sending and membership changing. Since there is a limit on buffer space at
multicast group members, a round of the stability protocol should start whenever
the buffers reach some threshold. An analytical model for determination of this

threshold is discussed in Chapter 6.

3.3 Summary

The stability detection protocol and failure detection protocol are two integral
parts of garbage collection. This chapter starts with a survey of failure detection
protocols, followed by the proposal of a new gossip-style protocol to detect fail-
ures. Finally, this chapter describes how failure detection protocols assist stability
detection protocols when there are membership changes. With this background,
in the next few chapters, we can start looking at mechanisms to conduct stability

detection which are the main focus of this dissertation.

Chapter 4

Stability Detection

The protocol that collects message stability and distributes this information to ev-
ery group member is called a message stability detection protocol. Such protocols
are implemented as an integral part of reliable multicast protocols in many dis-
tributed systems [ADKM92,Bir93,Car85,Cri91,CM95, Hay98, KTHB89,vRBM96].
We first study three representative protocols named CoordP, FullDist, and Train,

then propose a new protocol called Gossip.

4.1 Assumptions

As mentioned in Chapter 1, this dissertation studies the message stability detection
and failure detection framework intended for reliable multicast in a large scale
environment where messages may be dropped and processes may crash.

In a dynamic distributed environment, certain communication problems may
mimic process failures. For example, when processes p and ¢ are both functional,

but the communication link between them experiences transient failures, perhaps

31

32

process p will consider that process ¢ has failed while process ¢ believes the opposite
is true. This situation is called a network partition or partitioning failure. In order
for the system to make progress, one of these events must become official.

If a partitioning failure occurs in a system, it is impossible to guarantee that
multiple components can deliver the same set of messages. To obtain strong system-
wide guarantees, a protocol must wait for communication to be reestablished in
at least one side of the partition. In the primary partition approach pioneered
in the Isis system [Bir93|, one and only one of these components is designated as
the primary component. The primary component is permitted to make progress,
and other components are forced to shut down. Processes within non-primary
components reconnect to the primary component when communication is restored.

An alternative non-primary partition approach is used in the Transis [ADKM92,
DMS94] and Totem [MAMSA94 MMSA96] systems in which any component that
can reach internal agreement on its membership is permitted to continue operation.
However, only a single component of the system is the primary one. Applications
might continue to be available in non-primary components. When the partition
failure ends, non-primary components merge their states back into the primary
one.

If the system follows the primary partition approach, then stability detection
protocols only execute in the primary component when network partition happens.
If the system allows non-primary component(s) to execute, the stability detection
protocols are executed in these components also.

When the system is free of partition failures, whenever a message is determined

stable by the stability detection protocols, it can be released (or garbage collected)

33

from every member’s buffer. When network partition occurs, messages can not
be released even if they are detected to be stable within the network component,
because members in other component may need the retransmission during the
merge process.

The merge of network partitions is handled by users of the stability detection
protocols. Therefore we only describe the protocols under the situation where no
network partition can happen.

We base our analysis on the following common assumptions about reliable mul-

ticast protocols. Notice we do not assume FIFO ordering.

¢ A multicast group of size n consists of a set of processes named from 1 to n.

e Each member of the group can be a sender multicasting data messages to the
entire group. Without loss of generality, we assume m (m < n) processes are

senders and they are numbered 1 through m.

e Each member is always a receiver. This means the sender is also a receiver

for the messages it sends out.

e The sender assigns each data message a sequence number that is unique for
the particular sender. Therefore, each data message has a unique name;
this name consists of the globally unique sender name and a locally unique

sequence number.

e Each sequence number occupies 4 bytes. (The sequence number space is

between 0 and 232, which is large enough for most applications).

¢ A multicast message is always sent to the entire group, and therefore a sender

also receives a multicast message from itself.

34

e Multicast in the stability detection mechanisms can use the underlying reli-
able multicast protocols, even though some stability detection protocols have

their own built-in reliability mechanism.

For easy comparison, all protocols under consideration will be organized into
rounds. A round begins when the protocol is initiated externally, and each round
has a definite termination point. The reason is that one could imagine a stability
protocol that runs autonomously, asynchronously, and continuously.

For a stability detection protocol to conduct useful work, the following condition
must be satisfied. If a message is stable at time ¢ when a protocol round begins,
then the stability detection protocol must certify its stability by the time the round
finishes. It is because during the execution of the protocol, the number of stable
messages can only increase, but not decrease. With this constraint, we rule out
any protocol that does not make progress.

Notice there is a time difference between the moment a message becomes stable
and the moment it is detected to be stable. If a protocol is triggered when a message
becomes stable at ¢1, and it is detected to be stable at ¢o, then the time difference
to — t1 indicates the performance of the stability detection protocol. The smaller
the time difference, the better the protocol performs.

Without considering the underlying network topology, we can use two metrics
to characterize the performance of stability detection protocols.

We use number of steps per round as a time complexity metric. Since not
every step takes the same amount of time, the number of steps alone does not
give accurate information about time complexity. We use it as a convenient aid in

description of the protocols. We can also draw conclusions on protocol performance

35

based on the number of steps needed and the estimated time needed for each step.

To measure the distribution of processing load among group members, we use
number of messages processed per round, which is the sum of the number of mes-
sages sent and received by each member during each protocol round.

In all the protocols we study, each member maintains an m-element sequence
number array R where its j-th element R][j] is the maximum sequence number of
all messages from sender j that have arrived at this member. Each member also
maintains an n-element “Live” array L reflecting current group membership (as
described in Section 3.1.2) and an n-bit “Whom-I've-heard-from” bitmap array W
for recording from which members it has received sequence number arrays.

All the message stability detection protocols follow the same procedure in a

round of execution:

e When the sequence number array R from each member is collected somehow,
a stability array S is created where S[j] is the minimum of the j-th element

of each member’s sequence number array.

o After the stability array .S is built, it is distributed in the group using various

mechanisms.

o After receiving S, each member can release data messages from sender j with

sequence numbers less than S[j].

36

4.2 The Basic Protocols

4.2.1 CoordP

CoordP is a centralized protocol run by one of the members of the group, des-
ignated as the coordinator. There are m senders in the group, each member ¢
therefore maintains an m-element sequence number array R; where its j-th ele-
ment R;[j] is the maximum sequence number in the sense that all messages with
lower sequence numbers from sender j have arrived at member 7. Three types of
messages are used in this protocol: the START message has an empty body!, and
the ACK and INFO messages are of size 4m bytes. There are three steps in a

round of execution as shown in Figure 4.1:

e Step 1: The coordinator multicasts a START message in the group;

o Step 2: After receiving the START message, each member ¢ sends its se-
quence number array R; to the coordinator as an ACK message by point-to-

point links;

e Step 3: After collecting sequence number arrays from all the members,
the coordinator calculates the stability array S =ArrayMin;=1. ,(R;), where
S[j] =min(R1lj], Ralj], ---, Rnlj]). S is then multicast in the group as an
INFO message. Based on the received S, any member in the group can label
a message received from member ¢ as stable if the message has a sequence

number less than or equal to STi].

'In implementation of protocols, one field in message header normally designates the message
type.

37

START

4,|

START

START| SteP!

ACK
Step 2

VB
\& /
/

H\.f

INFO

—

INFO

§ INFO i
\

/

}.7

time v

<
<
<
<
<
<

Figure 4.1: Steps of protocol CoordP.

In this protocol, there are 2 multicasts by the coordinator and n — 1 point-to-
point messages from the non-coordinators. The coordinator sends 1 START and
1 INFO multicast, it receives 1 START, 1 INFO, and n — 1 ACKs. Therefore,
the total number of messages processed by the coordinator is n + 3, of which 2
messages are sent and n + 1 are received. The multicast is counted as a message
sent and received by the coordinator. A non-coordinator sends 1 point-to-point
ACK message, receives 1 START and 1 INFO messages. The total number of
messages processed by a non-coordinator is 3, of which 1 is sent and 2 are received.

Lost ACKs from non-coordinators will prevent the coordinator from getting all

38

information in the group. This problem is solved by making non-coordinators send
unicast ACK messages to the coordinator repetitively.

In an extension to the Tandem global update protocol [Car85] and the Amoeba
total ordering protocol [KTHB89], a particular version of CoordP is employed as
their stability detection algorithm.

The original Tandem global update protocol works as follows. One member is
designated as the sequencer of the group. When a sender s sends a global update
message u to the group, it first sends u to the sequencer, then the sender sends u to
other group members one by one. At last it sends u to the sequencer again. Upon
receipt of u, each member sends a positive acknowledgment back to the sender.
Message losses are detected by time-outs, and result in message retransmissions.

The Tandem global update protocol allows at most one update to be multicast
at a time in the group. Therefore the performance is very bad when the group size
is large. In [CdBM94], Cristian et al. propose an extension to the global update
protocol called the Positive Acknowledgment or PA protocol that allows concurrent,
multicasts.

In the PA protocol, a sender s starts the multicast of an update u by sending
a message (u,l) to the sequencer where [is the local sequence number for u. If
the previous message received from s by the sequencer had local sequence number
[— 1, the sequencer assigns a global sequence number k& to this update and sends
a message (u, k) to every group member. Otherwise, the sequencer stores (u,!) in
a local buffer until the previous message (u/,l — 1) arrives from s after which it
assigns u’ and u global orders consistent with their origination order at s, and then

multicasts v’ and w in the group.

39

Upon receipt of (u,k), each member sends a positive acknowledgment for & to
the sequencer. Message losses are detected by time-outs, and result in message
retransmissions. Updates are delivered at members in the order imposed by the
global sequence numbers attached by the sequencer. Concurrency is allowed among
multicast senders as well as multiple multicast requests at a single sender.

Message stability detection works as follows. Group members send to the se-
quencer the global sequence number [/ of the last update they have delivered. The
sequencer records them in a sequence number array with one entry per member
and multicasts the minimum sequence number l,,;, stored in the array. Thus, an
update u with global sequence number £ is stable if k£ < [,,ip.

The Amoeba multicast protocol is also sequencer-based. To initiate the multi-
cast of update u, a sender sends u to the sequencer. The sequencer assigns a global
sequence number k£ to u and sends messages (u, k) to all group members.

After having received a message (u, k), a member sends a negative acknowl-
edgment to the sequencer only if the next message it receives contains a sequence
number greater than £+1. The sequencer retransmits messages only upon receiving
such negative acknowledgments. Concurrency is allowed among different senders.
But each sender handles only one multicast at a time. The message stability is
established in the same manner as for the PA protocol.

In both systems, there is a sequencer (or a coordinator in our terminology)
which assigns the global sequence number to each data message. Other members
periodically send to the sequencer a 4-byte field — the last consecutive sequence
number. After receiving these numbers, the sequencer calculates their minimum

and announces the sequence number of the last stable message in the group.

40
4.2.2 FullDist

FullDist is a fully distributed protocol in the sense that every member periodically
multicasts its information about message stability in the entire group. In FullDist,
each member keeps a stability matrix F of size n x m because there are m senders
in the group. Matrix element E|i, j] stores the sequence number of the last message
that is sent by sender j and has been received by member i. The i-th row of the
matrix at member ¢ stores the last sequence numbers of messages that have been
received by member ¢ from all the senders of the group. The minimum of the j-th
column represents the last sequence number whose corresponding message is sent
by the j-th sender and has been received by every member. Messages sent from
sender j with this sequence number or lower are stable. This protocol only uses
one type of 4m-byte INFO messages. Periodically, each member multicasts its row
of its stability matrix E in the group. For the purpose of measuring how long it
takes for each member to detect message stability in Chapter 5, we introduce two

steps in one round of execution of FullDist as illustrated in Figure 4.2:

e Step 1: The first member multicasts the first row of its matrix £ via an

INFO message. No significance is attached to the choice of the first member.

o Step 2: After receiving the INFO message, the i-th member multicasts the
i-th row of its stability matrix £ via an INFO message. Every member
replaces the i-th row of its matrix with the received row information from

member 7.

As every member maintains its own stability matrix and determines whether

or not any data messages in the system are stable, FullDist is decentralized with-

41

>
vs]
(@)
O

INFO
‘§§§§§§; INFO

tttti::t INFO Step 1
INFO Zzii;;E;;;;;;; Step 2
INFO ::::::::

\

time v

<
<
<
<
<
<

Figure 4.2: Steps of protocol FullDist.

out any coordinator. This protocol includes n multicast INFO messages. Every
member sends 1 INFO multicast and receives n INFO messages. Hence, the total
number of messages processed by each member is n + 1.

As with CoordP, this protocol is executed periodically, and as a result, an
INFO message will compensate for the one lost in the previous step.

FullDist is used as the stability detection protocol in Horus [vRBM96], En-
semble [Hay98] and SRM [FJL*96].

Horus is a group communication system which offers great flexibility in the

properties provided by protocols. It supports dynamic group membership, mes-

42

sage ordering, synchronization and failure handling. In the Horus architecture,
protocols are constructed dynamically by stacking micro-protocols, which support
a common interface. Each micro-protocol offers a small integral set of commu-
nication properties, and Horus implements them as different layers. One such
micro-protocol is the message stability detection protocol. Horus and its next gen-
eration system Ensemble [Hay98| implement a set of stability protocols in separate
layers so users can pick the appropriate one for their application. FullDist is one
of the stability protocols offered by Horus and Ensemble.

In SRM, each member periodically multicasts session messages to report the
sequence number state for active senders. This is essentially the FullDist protocol.
The average bandwidth consumed by session messages is limited to a small fraction
(for example, 5%) of the aggregate data bandwidth. SRM members dynamically
adjust the generation rate of session messages in proportion to the multicast group

size.

4.2.3 Train

Train is a decentralized linear protocol in the sense that a fixed size “train” is
passed around group members to spread the message stability information. In the
Train protocol, each member i keeps a sequence number array R; with m elements
where m is the number of senders. There is a cyclic order among group members
1,2, ..., n. A “train” with a fixed size of 4m bytes passes through all the members
in this cyclic order. Member 1 starts the protocol by putting its sequence number
array on the train. When the “train” arrives at any other member, this member

gets the array from the “train”, calculates the minimum of this array and its own

43

stability array using ArrayMin, then puts the result back in the “train”. After
one circulation, the first member gets back in the “train” the minimum of stability
arrays of all the members, since the “train” has visited every member once. The
“train” containing this minimum array then passes around the group in the circle
again. In this second step, every member takes this minimum array and marks
stable messages accordingly.

The two types of messages used by the Train protocol are the 4m-byte ACK
and INFO messages. The first member starts the protocol by assigning M; = Ry,
then sending a point-to-point ACK message containing M; to the second member.
Upon receiving this ACK, the second member calculates My =ArrayMin(M;, Ry),
and sends My to the third member via an ACK. In general, after receiving an
ACK message containing M;_;, member i calculates M; =ArrayMin(M;_1, R;),
and sends M; on an ACK message to member ¢ + 1. After an ACK message
from member n arrives at the first member, that is, after the ACK finishes cir-
culating the group once, the first member starts passing M, in the same circle
in an INFO message. At this point, the stability array S is constructed since
S = M,, =ArrayMin;=1._n(R;), that is, S contains the sequence numbers for the
last stable messages sent from each member. The Train protocol is shown in
Figure 4.3.

In this protocol, the ACK message needs to circulate the group once, and so
does the INFO message. Hence, 2n steps are required. Each member sends out
and also receives 1 ACK and 1 INFO message. The total number of messages
processed by each member is 4, out of which 2 are sent and 2 are received.

Once this protocol starts, each member repeatedly sends the same message to

44

A B C D

ACK

T Aok
\‘%‘ Step 1 ton
/

ACK | —]
/ A 4

INFO i

INFO
INFO Step n+1to 2n

\

time

v v v v

Figure 4.3: Steps of protocol Train.

the next member in line. This mechanism effectively combats message losses.

In the Train [Cri91] and Totem single-ring [MMSA96] protocols, the Train pro-
tocol is used to offer message stability detection.

In the Train protocol, there is a cyclic order among group members. A train
containing a sequence of messages circulates from one member to another in this
order. In order to multicast a message, a sender waits for the train to arrive.
When the train arrives, the sender first delivers all messages carried by the train,
and then appends all new messages that it wants to multicast at the end of the

train. The sender removes its own multicast messages when it sees the train again.

45

Group members other than the sender delivers all messages on the train when the
train passes by.

If there are no multicasts in progress, the empty train remains idle at some
designated group member, the trainmaster, and in such a case a sender must
request the train in order to multicast a message. A lost train is detected by the
trainmaster based on a time-out mechanism. The trainmaster is also responsible
for regenerating the train.

A message is detected to be stable when the train completes one more round
after delivering the message to all group members. The stability detection protocol
used here is a special version of the generic Train protocol. When the train
circulates in the first round starting at the sender, it delivers the message to all
members. After that the sender removes the message from the train. Therefore
when the train circulates the second round, it implicitly tells all members this
message is stable since the message is not on the train any more.

The Totem single-ring protocol [MSMA91,AMMS*95 MMSA*96] provides re-
liable totally ordered delivery of messages using a logical token-passing ring. The
token circulates around the ring as point-to-point messages. Only the member
holding the token can multicast a message. Unlike the Train protocol, the to-
ken does not contain the multicast message. Instead of following the logical ring,
messages are multicast in the group by the sender.

In the single-ring protocol, a sequence number field in the token, called global_seq
provides global message sequence numbers for all multicast messages, and thus a to-
tal order on messages. When a sender multicasts a new message, it increments the

global_seq field of the token and gives the message that sequence number. Messages

46

are delivered with increasing global sequence numbers. Members recognize missing
messages by detecting gaps in sequence numbers, and request retransmissions by
inserting the sequence numbers of the missing messages into the retransmission
request list of the token.

Again, a special version of the Train protocol is used here to detect message
stability. Each member stores in seq its maximum sequence number such that all
messages with lower sequence numbers have arrived successfully. As the token
passes around the ring, it records the minimum seq of the members it has visited
so far in its all-received-upto field, or aru. After a full token rotation, the aru
field records a sequence number so that all members on the ring have received all
messages with lower sequence numbers. Each member can then reclaim the buffer
space used by messages with sequence numbers up to aru, because they will never

need to be retransmitted.

4.2.4 Gossip

The three basic stability detection protocols we have discussed so far have their
limitations on scalability. When the group size is large, an implosion problem will
occur at the coordinator in CoordP, and at every member in FullDist because
the number of messages they need to process increases linearly with the group size.
For Train, the message train needs to traverse the entire group before the stability
information is collected, as a result, the time for a round of protocol execution to
finish increases linearly with the group size.

To avoid the implosion problem in CoordP and FullDist, and the linear traver-

sal of all the group members in Train, we propose a new protocol called Gossip.

47

The protocol is divided into equally timed steps. During each step, every mem-
ber constructs a gossip subset consisting of p distinct members with ranks randomly
chosen from 1 to n. In the first step, every member sends its sequence number ar-
ray R to its gossip subset. After receiving a gossip message, a member computes
the “Min-so-far” array M which is the element-wise minimum of sequence number
arrays of itself and of other members that it has heard from. It also computes
the “Whom-I"ve-heard-from” array as the element-wise maximum of “Whom-I"ve-
heard-from” arrays of itself and of other members that it has heard from. In the
subsequent steps, every member gossips its “Min-so-far” array M and its “Whom-
I've-heard-from” array W to a different random subset. Instead of sending their
information to one coordinator, each member uses gossip messages to disseminate
their information in the group step by step. After certain number of steps, one
member receives information about all current members, and the “Min-so-far”
array M at this member becomes the stability array S. This is detected when
the “Whom-I've-heard-from” bitmap array W contains 1’s for all current group
members.

At this point, the member that detects message stability starts disseminating
S in the group by putting it on the future gossip messages. Upon receiving S, a
member discards stable messages accordingly. To save on bandwidth requirement
of future gossip messages and to disseminate S faster, one could multicast S in the
entire group. Instead of implementing reliable multicast again, an existing reliable
multicast protocol can be used. However, this method has a drawback. Some
reliable multicast protocols do not guarantee a multicast message to be received

by all members in the group. If these protocols are used to distribute .S, there is

Step 2

ABCD ABCD ABCD ABCD

time

<
<
<
<
<
<
<
<

Figure 4.4: An example run of the gossip-style stability detection protocol Gossip.

no guarantee that S will arrive at every member. A hybrid scheme can fix this
problem. S is multicast to the entire group, and periodically S is piggybacked on
future gossip messages to reach members which are left out in the original multicast
of S.

An example is given in Figure 4.4 to illustrate the protocol. The group size is
4, and the subset size for gossip is 2. One round of the protocol is finished after
2 steps. At the end of the first step, members B and C' construct the stability
array, whereas A and D only have partial information. During the second step,

A receives D’s sequence number array from D directly, and then constructs the

49

Notation:
ArrayMin is element-wise minimum of the input arrays.
ArrayMax is element-wise maximum of the input arrays.
For two arrays A and B, A < B means A[i] < Bli] for all i.

There are n members in the group numbered from 1 to n.

Each member i keeps four arrays and one number.
R;: Sequence number array.
M;: Minimum-so-far array.
W;: Whom-I've-heard-from array.
S;: Stability array at the end of the previous round.
r;: Round number for the current round.

Initially, every member ¢ has M; = R;, S; =[0...0], W;[i] = 1,W;[j] =0 for j # i and r;, = 0.

Periodically each member sends out a gossip message containing three arrays
and one number — (M, W, S,r) where M = M;, W =W,, S=S5;, and r = r;.

Figure 4.5: Part I of the stability detection protocol Gossip. (In this version, the

stability array S is piggybacked on all gossip messages.)

stability array. Meanwhile, D obtains the stability array directly from B and/or C.
At the end of the second step, all 4 members have the stability array, therefore they
can discard messages accordingly. In the optimized scheme, B and C' multicast
the stability array in the group at the end of the first step, and only one step is
needed to detect stability.

The end of a round of the protocol is reached at each member when the mem-
ber receives S. Each member keeps a round number to distinguish gossips from
different rounds. The starting points of gossip for group members are scattered
randomly during the interval of one step rather than concentrated at the begin-
ning of each time step. This effectively reduces message bursts. The pseudo-code

is presented in Figures 4.5 and 4.6.

30

Every member reacts to received messages as follows:

Upon receipt of a data message, member i updates R;.

Upon receipt of a gossip message (M, W, S,r), member i takes the following actions:
if (r ==r;) /* receive a message in the current round */
if (W; > W) /* this message is redundant */
do nothing;
else if (W; < W) /* the received message is more up-to-date */
M, =M; W, =W;
else /* normal process */
M; = ArrayMin(M;, M);
W; = ArrayMax(W;, W);
end if
S; = ArrayMax(S;,S); /* each round can have many (up to n) concurrent S;’s,
the maximum is the most up-to-date one. */
if (W; contains all 1’s) /* start next round */
Si=Mi;ri =r; +1; M; = R;;
Wilil = 1; Wilj] = 0 for j # s
end if
else if (r ==r; + 1) /* receive a message from the next round */
M, =M; W, =W;
S; = ArrayMax(S, S;);
ri=T;
if (W; contains all 1’s) /* start another round */
S; = ArrayMax(S;, M;);

r,=1;+1;

M, = R;;

Wili] = 1; Wij] = 0 for j # 4;
end if

else if (r > r; +1) /* should never receive a message like this */
error;

else if (r < r;) /* receive a message from previous rounds, ignore, since it is out of date */
do nothing;

end if

Figure 4.6: Part II of the stability detection protocol Gossip. (In this version, the

stability array S is piggybacked on all gossip messages.)

ol

It is possible that different stability arrays are constructed at different members
at the same time and piggybacked on future gossip messages. Actually during one
round of the Gossip protocol, there could be n concurrent stability arrays! This
race condition is not harmful because all the stability arrays are valid and only the
largest array is the most up-to-date. Therefore as shown in Figure 4.6, whenever
a gossip message is received by any member ¢, the element-wise maximum of the
stability array at member ¢ and the one on the gossip message is calculated to
replace the current stability array at member .

The Gossip protocol tolerates message losses without requiring a reliable mul-
ticast protocol underneath. By periodically sending gossip messages to random
sets of group members, this scheme overcomes routing errors, transient link fail-
ures and omission failures, because messages are randomly sent to other members,
and a message may take a different route in different steps.

The Gossip protocol tolerates group membership changes caused by member
crashes, leaves, or joins in two ways. First, it incorporates a gossip-style failure
detection protocol. Second, it propagates membership changes throughout the
entire group using gossip messages, and the normal operation of each group member
is not affected when membership change happens.

Gossip is implemented in the Ensemble system [Hay98] to aid various scalable
group communication.

Under the receiver reliable multicast model where group members do not know
the individual addresses of other members, one has to rely on other schemes to
construct subsets for gossip messages. One such scheme is to use the Time-To-Live

(TTL) [Com95] field in IP packets to limit the scope of a gossip. The TTL field

52

is initialized to a non-zero number when an IP packet is sent out by the source.
Every time the packet is forwarded by a router, the TTL field decrements by one.
A router or destination that decrements a packet’s TTL field to zero discards the
packet. Thus, a source could control how many hops away a packet can travel on
the network. Also in the case of a routing loop, the TTL field would eventually

kill off the packet.

4.2.5 Analysis of Gossip protocol

The Gossip protocol requires two input parameters — the step interval for each
gossip step and the subset size for each gossip. In order to find suitable values for
them, it is necessary to understand how these parameters affect the probability of
an incomplete stability detection. A stability detection is incomplete if not every
member has received sequence number information from all other members.

For simplicity, we analyze the protocol for a system in which the membership
of the group is static, that is, no new members join and no existing members fail
during the execution of the stability detection protocol. We also assume that group
membership is known to all members through the failure detection protocol.

The goal of a gossip-style protocol is to disseminate information in the group
step by step, where during each step, each member sends information it has col-
lected to a random subset of the group. The probabilities involved in the Gos-
sip protocol can be calculated using epidemic theory (for example, [Bai75,BHO"98,
DGH™'87,GT92|). A typical way is to use stochastic analysis given that the execu-
tion is broken up into synchronous steps, during which every process gossips once.

For a particular sender ¢, a member that has received the sequence number array

33

from sender i is called infected. It is indicated by W[i] = 1 in the “Whom-I"ve-
heard-from” array W.

During each step, the probability that a certain number of members are infected
given the number of already infected members is calculated. This is done for each
number of infected members. Therefore at the end, the number of steps needed to
achieve a large probability that every member is infected can be found.

This analysis becomes very complex if all members are gossiping in each step
or if more than one piece of information are propagated in the group using the
gossip technique. Usually approximations and/or upper bounds are used instead
(for example, see [BHO198]).

We conduct the following analysis based on the same simplification proposed
by van Renesse et al. in [vRMH98] and we calculate an upper bound on the number
of steps needed to achieve certain probability of an incomplete stability detection
as in [vVRMH98].

In practice, each member gossips at regular step intervals, but the intervals
are not synchronized. In fact, we intentionally scatter the gossips from different
members in each step to reduce message burstiness. Message propagation time
is typically much shorter than the length of step intervals. We therefore define
a different concept of step, called micro-step, in which only one (not necessarily
infected) member is gossiping. The member is chosen at random and chooses a
number of other members to gossip to at random. This set of members constitute
a gossip subset of size p. Thus, in a micro-step, the number of infected members
can grow by at most p. First, to simplify the analysis, we set p = 1. Later we

conduct the same analysis for p = 3.

o4

Analysis when the size of gossip subset is one

As a first step, assume only one member’s sequence number array needs to be
disseminated in the group using the gossip protocol. That is, only one piece of
information is propagated.

Let n be the total number of members, k; be the number of infected members
in micro-step ¢, and P,y be the probability that a gossip successfully arrives
at a chosen member before the start of the next micro-step. Initially only one
member is infected. The number of infected members cannot shrink because we
assume group membership remains constant during the execution of the stability
detection protocol.

We model the gossip process as a discrete time Markov chain. The state of
the system denotes the number of infected members. State transitions occur at
the end of each gossip micro-step. We conduct a transient analysis of this Markov
chain in which P(k;4+1 = k) is used to denote the probability that the total number
of infected members becomes k after micro-step ¢ + 1.

If £ out of n members are infected already, then the probability that a gossip is

from an infected member is %, the probability that this gossip is sent to an unin-

n—k

fected member is =,

thus the probability that the number of infected members

increments by one in a micro-step is

Pucli) = % 1=

X Parrival (41)

The probability that the number of infected members in micro-step 7 4+ 1 is

k(0 < k < n) consists of two parts:

1. The number of infected members in micro-step ¢ is k£ already and does not

55
increase during micro-step ¢ + 1.

2. The number of infected members in micro-step 7 is £k — 1 and increases by

one during micro-step i + 1.
This probability therefore becomes
P(ki+1 = k) = (1 — Pmc(k')) X P(k’l = l{)) + Pmc(k - 1) X P(kz =k - 1) (4.2)

Since initially one member is infected, the initial conditions for this Makov

chain are the following:

e Plkp=k)=0for k#1

P(k, = n) is the probability that all the n members get infected after r micro-
steps. Then, the probability that any member does not get infected by the sequence
number information from member a after » micro-steps is Pipcomplete(@,7) = 1 —
P(k, = n). To find Pj,complete(r), which is the probability that any member is
not infected by sequence number information from any other member, we need to
range over all members.

For any two members a and b, Pincomplete (@, 7) and Pipeomplete (b,) are not inde-
pendent. We bound Pjpcompiete(7) using the Inclusion-Exclusion Principle [Koz91]:
Pr(U;A;) < Y iPr(A;). Using this principle, we can bound Pjycompiete(r) as fol-
lows:

P’incomplete(r) <n X Pincomplete(a/a T) =nx (1 - P(kr = 77,)) (43)

96

From this we can calculate now many micro-steps are needed to achieve a
certain quality of stability detection. The calculation is done iteratively starting

at the first micro-step.

Analysis when the size of gossip subset is three

When the size of gossip subset is greater than one, the analysis is more complicated.
Here we present a case for p = 3, and analysis for other values of p can be conducted
in a similar fashion.

Again, we assume only the sequence number information from one member
needs to propagate through the group and only one member is infected initially.
Each gossip message is sent from one source to three different destinations.

If £ out of n members are infected already, then the probability that a gossip
is from an infected member is %

The probability that the number of infected members is incremented by one in

a micro-step consists of three parts because there are three scenarios where this

can happen.

1. One copy of the gossip message is sent to an uninfected member, two copies
are sent to two different already infected members and all copies arrive suc-
cessfully at their destinations. The process can be divided into two stages. In
the first stage, three out of three messages arrive successfully. In the second

stage, one message is sent to an uninfected member, two are sent to already

57

infected members. The probability for this event to happen is

P1 = E>< XP(?

rrival X

x P

= 3X arrival

Exn—kxk—lxk—Z 3 (4.4)
n n—1 n—2 n-3

2. One copy of the gossip message arrives at an uninfected member, another
copy arrives at an infected member and yet another copy is lost. This pro-
cess can be separated into two stages. In stage one, two out of three messages
arrive at their destinations successfully. In stage two, one of these two mes-
sages selects an uninfected member as its destination and the other selects

an infected member. The probability for this event is

n—k k—1
k 3) 1 1
Py = EX XParrivalX(l_PaTTival)x
2 n—1
2
k. n—k k-1
= GXExn_lxn_zxP,fmmlx(l—ParmGl) (4.5)

3. One copy of the gossip message arrives at an uninfected member, the other
two copies are lost. Again, this process can be divided into two stages. In the
first stage, one out of three messages arrive at its destination successfully. In

the second stage, this message picks a destination from the set of uninfected

98

members. The probability for this to happen is

n—k

k|3) 1

P3 = —X X Parrival X (1 - Parrival) X
n

1 n—1

1

kK n—k
= 3x E X nf X Parrival X (1 - Parrival)2 (46)

Adding up these three parts, we have the probability that the number of infected

members is incremented by one in a micro-step is
Pinc(k; 1) =P+ P+ P (47)
There are two cases where the number of infected members can increase by two.

1. Two copies of the gossip message are sent to different uninfected members.
The other copy is sent to an infected member. None of these copies are lost.
This process can be separated into two stages. In stage one, three out of
three messages are picked to arrive successfully. In stage two, two of these
messages choose their destinations from the set of uninfected members and

one choose from the set of infected members. This event’s probability is

k 3 2 1
Py = —x x P3

rrival X

X X X x P

n—3 arrival

k- n—k n—-k-1 k-1 3
= 3 X —
n

n—1 n—2

99

2. Two copies of the gossip message arrive at different uninfected members
successfully, and the other copy is lost. Again, this process can be divided into
two stages. In the first stage, two out of three messages arrive successfully.
In the second stage, both messages select their destinations from the set of

uninfected members. The probability is

n—k

k|3) 2

P = —x X Parrival X (1 o Parrival) X
n

2 n—1

2

k- - n—k n—-k-—1
= 3x—X X x P2 . X (1= Paprivat) (4.9)

n n-—1 n—2
Therefore, the probability that the number of infected members increases by
two 1s
Pipe(k,2) = Py + P (4.10)
There is only one scenario where the number of infected members increases by

three, which is when all three copies of the gossip message arrive at three different

uninfected members successfully. The probability for this is

n—=k
k|3 5 3
Pinc(ka3) = EX XParrivalxi
3 n—1
3
k n—-k n—-k—-1 n—-k-2
= ﬁxn—lx n—9 X n—3 XPa3rrival (411)

The probability that the number of infected members in micro-step 7 4+ 1 is

k(0 < k < n) consists of four parts: the first part comes from the case where

60

the number of infected members in micro-step 7 is k£ and does not increase, the
second part comes from the case where the number of infected members is k£ — 1

and increases by one, and so on. This probability is

P(ki_H = k) = (1 — Pinc(k, 1) — Pmc(k, 2) — Pmc(k, 3)) X P(ki = /C)
+Pinc(k — 1, 1) X P(/{Il =k— 1)
+Pe(k —2,2) x P(k; = k — 2)

4Pk —3,3) x P(k;i = k — 3) (4.12)

(when & > 3).

There are two special cases for this probability when £ = 1 and £ = 2. Since
initially one member is infected, the probability that one member is infected in
micro-step ¢ + 1 only comes from the case where no member gets infected in that

micro-step. Thus,
P(kiy1=1) = (1 = Pipe(1,1) = Pine(1,2) — Pine(1,3)) X P(k; = 1) (4.13)

Similarly, the probability that two members are infected in micro-step ¢ + 1
comes from either of the two cases in which no member gets infected or exactly

one member gets infected. The probability is

P(kﬂ_l = 2) = (1 — Pmc(Q, 1) — Pmc(Q, 2) — Pinc(2; 3)) X P(/{,‘l = 2)

4 Pie(1,1) x P(k; = 1) (4.14)

Since initially one member is infected, the initial conditions for this Makov

chain are the following:

61
L] P(k():l):l
o Plko=k)=0for k#1

P(k, = n) is the probability that all the n members get infected after r micro-
steps. As with the subset size 1 case, the probability that any member does not get
infected by the sequence number information from member a after » micro-steps is
Pincomplete(a,7) =1 = P(kr = n). Pincomplete(r), the probability that any member
is not infected by sequence number information from any other member is bounded
by

Pincomplete(r) <nXx Pincomplete(aa T) =nX (1 - P(kr = n)) (4-15)

Comparing results from the analysis

We are interested in the time that it takes to reach a certain low probability of
incomplete stability detection being made. By iterating Pj,complete; We can find
how many micro-steps this takes. The probability that a gossip message arrives
at its destination in a micro-step is set to P, ive; = 1. This is reasonable, since
all that is required is that gossip arrives at the member before the member itself
gossips next.

We have plotted the number of micro-steps required for different values of n,
Pincomplete, and subset size in Figure 4.7. The near-linearity in n can be confirmed
visually. The growth of these curves is actually on the order of nlog(n), which will
become clear in the next paragraph.

In real execution of the protocol, every member gossips once during each step
interval. We are interested in the number of steps needed for different incomplete

probability. Dividing the number of micro-steps by the group size, we get the

62

14000

16000
o o0or p=1e-6 7 12000 - p=le-6
@ - p=le-4 @
° ° -—- p=le-4
8120007 . p=le-2 4 8
c & 10000 . p=le-2
8 8
Groooor 18
@ 7 6000
© 8000F 1o P
Q - Q Pra
£ B £ 6000 - - -
“= 6000 d -
5] 5] -
8 @ 4000 -7
2 s000f L7 12 -7
IS - E _
2 / 2
2000 T 1< 2000+ -
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 350 400 450 5(0 50 100 150 200 250 300 350 400 450

group size group size

(A): subset size =1 (B): subset size = 3

Figure 4.7: Number of micro-steps needed to achieve different probability of in-

complete stability detections. P stands for Pj,compete in the figure.

number of steps needed. From the results plotted in Figure 4.8 in log scale, we can
see clearly a logarithmical increase with group size. This confirms that the number
of micro-steps needed in Figure 4.7 is on the order of nlog(n).

From Figures 4.7 and 4.8, we see that the increase of subset size decreases the
number of micro-steps and steps needed to detect stability. When the subset size
changes from 1 to 3, this decrease is only about 55%. But the number of messages
sent out in the system per micro-step increases three times! This analysis suggests
that it is more beneficial to use a small subset size. It is better to gossip to one
member 55% faster to get the same time and quality as gossiping to three members
during each gossip.

There is a trade-off between minimizing the probability of making an incomplete

stability detection, and the number of steps needed for stability detection. In

500

63

40 : 40 T
_ P=1e-6 - P=1e-6
35 - - P=1e-4 35 —— P=1e-4
... P=1e-2 ... P=1e-2

EES 1 Beor
° °©
@ // @
Qs - Sast
7] e 7]
Q T o
ool -7 %20—
5 5 -
@ 151 o 15F
e o | - B
€ [
210 210

5 sk

0 5 4 0

10 10 10° 10°
group size group size
(A): subset size =1 (B): subset size = 3

Figure 4.8: Number of steps needed to achieve different probability of incomplete

stability detections. P stands for Ppcompete in the figure.

Figures 4.9 and 4.10, we show that this trade-off is satisfactory, in that only a few
extra gossip steps are necessary for better quality.

Notice in the optimized protocol execution, once any member collects message
stability information, it multicasts to the entire group. The analysis conducted

above gives the upper bound for the actual number of steps needed.

4.3 The Structured Protocols

It is a common practice to use hierarchical structures to improve scalability of
communication protocols. But the improved scalability comes with complexity of
managing the structure. On the other hand, since many reliable multicast protocols

employ built-in local groups [HSC95,SLPB97], their group division can be used by

64

9000

8000

~
=}
S
=)
T

6000 -

N I3
1=} =}
S S
=] =)
T T
I

I

!

I

number of micro-steps needed
w
3
!
!
1

group size = 300
group size = 200
group size = 100

9000

q 8000

N I3 @ ~
S =} =3 =}
S S S S
=] =) =] =)
T T T T

number of micro-steps needed
w
3
!
!
!

— — group size = 200

group size = 300

group size = 100 k!

2000 4 E 2000+ - 3
1000(- 4 1000F 1
‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘
10° 10° - 107 10 10° 10° - 107 107

(A): subset size = 1

107 10
probability of mistake

(B): subset size = 3

107 10
probability of mistake

Figure 4.9: Cost of quality in terms of number of micro-steps.

30 T T 30 T T
— group size = 300 — group size = 300
T - — group size = 200 - — group size = 200

_0257 T group size = 100 1 _0257 group size = 100 1
[0} T [0}
ko] RN ko]
[] ~ 2 []
2 2
wzo— ST 1 w20* 1
o N o
2 S~ L s
7] S 7] T
kS] © T
o 15F 1 = 15¢ > 1
[0 [0} ==
Ke) Ke) RSN
€ € o
2 2

10 g 10 T g

10° 107 N 107 107" 10° 107 N 107 10

(A): subset size = 1

107 10
probability of mistake

(B): subset size = 3

107 10
probability of mistake

Figure 4.10: Cost of quality in terms of number of steps.

65

the structured protocols we are proposing. This section focuses on the scalability
aspect of the structured protocols.

Hierarchical structures have been used in various reliable multicast protocols
in distributed systems [BFvR97,GVvR96,Mit97, MMSA*96] and barrier synchro-
nization algorithms [MCS91] in parallel systems. To improve scalability signifi-
cantly, we derive three structured stability detection protocols by adding a span-
ning tree structure to the basic protocols. They are called S_CoordP, S_Train,
and S_Gossip since they are derived from CoordP, Train, and Gossip respec-
tively. As we will see later, S_FullDist is equivalent to S_CoordP.

To describe the structured protocols, we use the same assumptions made in
Section 4.1. We also assume the group with n members is organized into a complete
tree with height p and fixed branching factor b at all levels. The root of the tree
is the first member. The size of the group can be expressed by tree parameters
band pasn=1+b+b>+ -+ b = %. The sibling members and their
parent constitute a sub-group of size b + 1. In the following description, a node is
identified by a pair (d,e), where d is its depth and e is its location on level d of
the tree. On level d, the left most node is labeled as 1 and the right most node is

labeled as b%. Hence d ranges from 0 to p and e ranges from 1 to b%. Each node

(d,e) also has a global number ¢ =14+ b4b% 4+ --- + b1 e,

4.3.1 S _CoordP

We derive S_CoordP from CoordP by employing a hierarchical structure. We
assign the root to be the coordinator. Each member (d,e) maintains a sequence

number array R(q.) with m elements. Three types of messages are used: an empty

66

START message, and 4m-byte ACK and INFO messages. The protocol has p + 2

steps as illustrated in Figure 4.11:
e Step 1: The root starts the protocol by multicasting a START message.

e Step 2: After receiving START, each leaf member sets M, .y = R(,.) and

p.e)
sends a point-to-point ACK message containing M, .) to its parent with node

number (p — 1,1(e)) where I(e) =ceiling(F).

e Step 3 to p+1: (The tree height is p, hence p — 1 steps are needed for
the ACKs from the next to bottom level to reach the root). Upon receiving
M(441,) from all its children, an internal member (d, c) (that is, a member
that is neither the root nor a leaf) sets My) = ArrayMin(R g c), M(g11.¢))

overe=(c—1)b+1, (c=1)b+2,..., cb. It then sends M, to its parent.

¢ Step p+2: With all the M, .)’s collected from its children, the root sets the
stability array S = Mg,y = ArrayMin(Rg 1), M(1¢)) over e = 1, 2, ..., b.
Then it multicasts an INFO message containing the stability array S. After
receiving S, a member can label any message from member ¢ stable if it has

a sequence number less than or equal to S[i].

In this protocol, there is 1 multicast of START, 1 multicast of INFO from the
coordinator located at the root and n — 1 point-to-point ACK messages from other
members. The root sends 1 START and 1 INFO multicast, while it receives 1
START, 1 INFO and b ACKs. Hence, the number of messages processed by the
root is b + 4, out of which 2 are sent and b + 2 are received. An internal member
sends 1 point-to-point ACK message, and receives 1 START, 1 INFO and b ACK

messages. Therefore the number of messages processed is b + 3, out of which 1 is

67

NS N
z\//f\ NN NNA

Figure 4.11: Steps of protocol S_CoordP.

sent and b + 2 are received. A leaf member sends 1 point-to-point ACK message,
receives 1 START and 1 INFO message. The number of messages processed is 3,
out of which 1 is outgoing and 2 are incoming.

In the tree structure, each interior node belongs to a lower sub-group with all
its children as well as an upper sub-group with its parent and all of its siblings.
Adding a tree structure to FullDist results in a protocol where each interior node
multicasts its sequence number array in its lower sub-group and after collecting
information from its children, it then multicasts the combined information in its
upper sub-group. But this multicast is redundant — a member only needs to report
its sequence number array to its parent in order for the information to propagate
to the top of the tree. After changing the redundant multicast into a point-to-point
message to its parent, the protocol becomes S_CoordP.

As in CoordP, ACK messages are sent out repeatedly in order to combat
message losses. Also, the hierarchy is designed such that each member knows about

all of its ancestors, so that when its parent crashes, it connects to its grandparent.

68

4.3.2 S _Train

Adding a tree structure to Train results in S_Train [AMMSB95]. We assign the
root to be the coordinator. There is a cyclic order 1, 2, .. ., b among sibling members
of each sub-group. Each member (d,) maintains a sequence number array Rq.e)
with m elements. This protocol uses four types of messages: the empty START
message, the 4m-byte ACK1, ACK2 and INFO messages. As in Figure 4.12, pb+ 2

steps are needed.

e Step 1: The root starts the protocol by multicasting an empty START

message.

e Step 2: After receiving START, the first member (p,e) of each leaf group
sets M, o) = R,) where e =1, b+ 1,20+ 1, ..., (p —1)b+ 1, and sends
a point-to-point ACK1 message containing M, .) to the second member of

the same leaf sub-group.

e Step 3 to b+2: Upon receiving ACK1 from its sibling (p,e+i—1), member
(p,e + i) with (0 < i < b) sets My, o) =Min(R, ctiy, M(petyi—1)), then
member (p, e+1) sends M, .1;) on an ACK1 message to member (p, e+i+1).
Member (p,e +b — 1) sends M, .41y on an ACK2 message to its parent

member (p — 1,l(e +b—1)).

e Step b+3 to bp+1: (Each level requires b steps to pass all its information
to its parent node, hence a total of bp steps are required for all the ACKs
to reach the root). After collecting the START and ACK2 from its b-th
child, the first member (d,e) in an internal sub-group, where e = 1, b + 1,

20+ 1, ..., (d=1)b+1, sets Mgy =ArrayMin(Rg c), M(q41,p)), and then

69

sends M4, to the second member (d,e + 1) of the same sub-group via
an ACK1 message. After receiving ACK2 from its b-th child, and ACK1
containing Mg c;—1) from its sibling (d, e+ 17— 1), a member (d, e + i) with
(0 <@ <b) sets Mg eqiy =ArrayMin(M g eqiys M(deti—1)s M(d+1,(e+iyp))> and
then sends M(g44) via an ACK1 message to its sibling (d,e+1i+1), whereas
member (d,e + b — 1) sends Mgeqp—1) via an ACK2 message to its parent

(d—1,0(e+b—1)).

o Step bp+2: After the root receives an ACK2 message from its b-th child
(1,0), it constructs the stability array S = Mg 1y = Min(Rg 1), M(1p)), then
multicasts an INFO message containing the stability array S in the entire
group. After receiving S, a member can label any message from member 7

stable if it has a sequence number less than or equal to S|i].

S /\
/1\//1\ NATVD A

Step 2 to bp + 1:
Step 1: START Step bp + 2: INFO

ACK1 and ACK2

Figure 4.12: Steps of protocol S_Train.

In this protocol, there is 1 multicast of START, 1 multicast of INFO from the
the root node and n — 1 point-to-point ACK1 and ACK2 messages from other
members. The root sends 1 START and 1 INFO multicast, while it receives 1

START, 1 INFO and 1 ACK2 message. Hence, the number of messages processed

70

by the root is 5, out of which 2 are sent and 3 are received. An internal node
sends 1 point-to-point ACK1 or ACK2 message, and receives 1 START, 1 INFO
and 1 ACK2 from one of its children. Each internal node except the first sibling
in a sub-group also receives 1 ACK1 message from the previous sibling. Thus, an
internal node processes 4 or 5 messages depending on its location. A leaf node
sends 1 point-to-point ACK1 or ACK2 message, receives 1 START and 1 INFO
message. Each leaf node that is not the first sibling in a sub-group also receives
1 ACK1 message from the previous sibling. Therefore, the number of messages
processed by a leaf node is 3 or 4, depending on its location.

As with Train, each member repeatedly sends the same message to the next
member in line to prevent message losses. In S_Train, every member needs to
know about all of its ancestors. In case its parent crashes, the sub-group reports
to their grandparent. In addition, every member also needs to know about all of
its siblings. In case any of the siblings crashes, the train has to follow a different

route.

4.3.3 S_Gossip

With the global stability detection framework Gossip described in Section 4.2.4,
a member gossips to a random set of members during each step. Furthermore,
the location of group members on the network does not have any effect on the
construction of the random set of members used in each gossip step. Each group
member on a subnet propagates its sequence number information by sending gossip
messages to some random members either on its local subnet or on some remote

subnet.

71

A more efficient way to detect message stability would be to collect local infor-
mation on each subnet first, then allow some designated members on each subnet
to exchange local information to form the global information.

We propose S_Gossip, a protocol that combines the gossip technique with
the concept of local groups. In this scheme, the multicast group is divided into
a number of local groups according to their location on the network. Each local
group has G Stability Controllers (SCs) where G is a user-defined parameter which
determines how robust the protocol is in case of SC failures. SCs from different
local groups constitutes the global SC group. In Figure 4.13, there are two subnets
connected by a WAN link. Members on different subnets form their own local
groups. There are two SCs in each local group. The four SCs then form the global
SC group.

The protocol proceeds in two phases. In the first phase, each member gossips
to other members in its local group trying to obtain stability information within
the local group. After the local stability arrays are constructed, the SCs start the
second phase by gossiping among all the SCs. After one SC receives the stability
information from SCs representing the other local group(s), the global stability
array is constructed and multicast to the entire group.

The global scheme would require group membership information at every mem-
ber. This is not likely to be feasible in a WAN. The local gossip scheme solves this
problem by only requiring each local group member to maintain the addresses of

other members on the same subnet.

72

SC group

Local Group 1

Local Group 2

(] Router O Local Member
WAN © Stability Controller (SC)
— LAN

Figure 4.13: Structure of the S_Gossip protocol.

4.4 Comparison of the Seven Protocols

This section compares the complexity of the stability detection protocols. The
measure for time complexity is the number of steps per protocol round, the measure
for processing load is the number of messages processed at each member per round.

From the description of the Gossip protocol, one can not determine the exact
number of steps needed to achieve message stability. However, each protocol step
is separated by a constant time interval and during each step, each member sends
out a constant number of messages, therefore on average, each member receives a

constant number of messages during unit time. As a result, there is no implosion in

73

Table 4.1: Complexity of protocols (exact formula)

CoordP FullDist Train Gossip
steps 3 2 2n N/A
messages | n+ 3 (coord) | n+1 4 N/A

processed 3 (other)

S_CoordP S_CoordP | S_Train S_Gossip
steps p+2 bp + 2 N/A
messages || b+ 4 (root) 5 (root) N/A
processed b+ 3 (internal) 4 or 5 (internal)

3 (leaf) 3 or 4 (leaf)

the gossip-style protocols. From the analysis in Section 4.2.5, we know the upper
bound of the number of steps increases logarithmically with group size n.

For the S_Gossip protocol, the group is divided into a number of local groups,
and Gossip is executed within each local group. Therefore, the upper bound for
the number of steps is still O(log(n)). The number of messages processed by each
member is still constant during unit time.

For the rest of the protocols, exact formula do exist for both time complexity
and processing load complexity. They are summarized in Tables 4.1 and 4.2. The
processing load is reduced to O(1) at every node in S_CoordP. This indicates that
message implosion is completely eliminated, therefore better scalability is expected

from the structured protocol.

74

Table 4.2: Complexity of protocols

CoordP FullDist Train Gossip
steps 0(1) 0(1) O(n) O(logn)
msgs O(n) (coord) | O(n) 0(1) 0(1)

processed || O(1) (other)

S_CoordP S_CoordP | S_Train | S_Gossip

steps O(logn) O(logn) O(logn) | O(logn)
msgs 0(1) 0(1) 0(1) 0(1)
processed

S_CoordP increases the number of steps to O(logn) from O(1) of the basic
protocols CoordP and FullDist. One might observe that it takes longer for the
structured protocol S_CoordP to complete a round than its corresponding basic
protocols. However, if the tree in the structured protocols is built according to the
physical layout of nodes on the network, a message from a leaf to the root needs
to go through p hops in any case, and the latency is not increased, but rather
decreased because of elimination of the implosion problem.

S_Train reduces the number of steps to O(log n) from O(n) of the basic protocol
Train, while keeping the processing load unchanged at each member. In S_Train,
the tree structure is used to help passing the sequence number arrays up to the

root, concurrently, therefore effectively reducing the latency of the protocol.

75
4.5 Summary

This chapter starts with the assumptions under which the stability detection pro-
tocols are presented. Particularly, we assume network partition does not happen.
This chapter then describes in detail the four basic protocols and their correspond-
ing structured versions. For each protocol, the algorithm is presented followed by
the mechanisms to combat message losses and process failures. Because of the sta-
tistical nature of the Gossip protocol, a stochastic analysis is conducted to derive
the upper bound of the number of gossip steps needed to detect message stabil-
ity. Finally, the seven protocols are compared in terms of the number of steps per

protocol round and the number of messages processed by each member per round.

Chapter 5

Simulation of the Stability

Detection Protocols

Sections 4.2 and 4.3 calculate the number of steps and the number of messages
processed by each member for the basic and structured protocols. Comparisons
are made for these protocols without considering the importance of the network
environment. This section measures other important performance metrics in a

number of network topologies.

5.1 The Underlying Network

For a given underlying network topology, set of group members, set of senders,
and patterns for message sending and message loss, it is possible to analyze the
behavior of the various stability detection protocols. However, our interest lies in
the performance of these algorithms across a wide range of network topologies and

scenarios. For this, we conducted simulations using the ns [MF95] simulator.

76

7

A: Star

B:Chain (O O O O O

C: Tree

(O Node — Link

Figure 5.1: Typical network topologies: (A): A start topology, (B): A chain topol-

ogy, and (C): A bounded-degree tree where interior nodes all have degree 4.

Network topologies can be divided into a few simple, yet representative cat-
egories, namely chain, star and tree topologies as shown in Figure 5.1. A tree
topology is the most general one since it combines aspects of both chains and
stars. Therefore, we conduct our simulation under the tree topology in order to
provide a foundation for understanding the behavior of various stability detection
protocols in more complex environments.

For a large randomly labeled tree, the probability that a particular node has a

degree of at most four approaches 0.98 [Pal85], therefore, the underlying network

78

used in the simulation is a balanced bounded-degree tree where interior nodes
all have degree four. The network topologies are based on some generic network
simulation schemes used in [FJL96].

To gain insight on scalability of different stability detection protocols, the simu-
lation is conducted in a set of wide-area networks. Each network in the simulations
consists of nodes and links.

We need to assign realistic parameters to links and nodes. A transmission link
can be characterized by two parameters: bandwidth and latency. The bandwidth of a
link measures its information carrying capacity [Bla90]. Using a plumbing analogy,
it is the width of the “information pipe”. A link carries information in the form of
analog symbols, where a symbol may correspond to one or more bits. Thus the bit
rate of a line, measured in bits per second, is the product of its capacity measured
in symbols per second and the mean number of bits each symbol represents.

A voice channel typically requires 64K bps(bits per second) bandwidth, we
want to allocate small percentage of the available bandwidth to stability detection
protocols, therefore we allocate 30K bps.

Link latency is determined by the time taken for a signal to propagate over the
medium. Since the speed of light in fiber is approximately 0.7¢, where ¢ (the speed
of light in vacuum) is 3 x 10° kilometers/second. The speed of light propagation
delay on a fiber-optic line is 0.7 x 3 x 10° kilometers/second. This works out to
4.76 microseconds/kilometer.

Assume there is a direct fiber-optic line between two endpoints 4100 kilometers
apart, that is, we ignore the effect of queueing and switching delays, then the one-

way latency between these two endpoints is 4100 x 4.76 = 19516 microseconds =

79

19.5 milliseconds.

The one-way propagation delay between New York and San Francisco, a dis-
tance of about 4100 kilometers, is about 20 milliseconds. The delay between New
York and London, a distance about 5700 kilometers, is about 27 milliseconds. To
simulate a wide-area network, it is reasonable to set the latency for each link to be
5 milliseconds.

We assume each link is bi-directional and each direction has a bandwidth of
30K bps allocated for the session messages in various protocols to conduct message
stability detection. Message propagation delay on each link is w = 5 milliseconds,
which is typical for wide area links. A rate-controlled network is assumed in which
the data source is shaping its traffic by delaying packet sends to meet the 30K bps
allocated rate requirement.

Under this assumption, the expected time a u-byte message spends on the wire
to travel one link is tg = w+u/v, where v is the bandwidth. The router processing
time for a message is 1 millisecond despite of message size!. The time needed for
a host to send a message follows the formula ¢5(u) = 100 + 2(94 + 35u/4000 +
50%/1000) + 50 = 338 + 47u /400 (microseconds) [AKS96,KP93]. The time needed
for a host to receive a message is normally about 10% higher than the sending
time since interrupts need to be handled [AKS96]. It is set to ¢,(u) = 1.1 X t5(u).
The queuing delays incurred at the hosts and routers are also simulated by ns.
The message header size is set to h = 32 bytes which is enough for most transport
protocols [AKS96,vR96|.

In the ns simulator, multicast messages follow the multicast routing trees that

I This is valid because the routing function at the router only examines the header of the
message before sending it to the appropriate output port.

80

are provided by underlying multicast routing protocols. In the Internet, these rout-
ing trees are constructed using protocols such as Core Based Tree (CBT) [BFC93],
Distance Vector Multicast Routing Protocol(DVMRP) [WPD88] and Protocol In-
dependent Multicast (PIM) [DEF194].

For simplicity, the stability detection protocols are tested in the situation where

group membership remains unchanged.

5.2 Complexity Metrics

Recall from Chapter 4, two primitive metrics (number of steps per round and
number of messages processed at each member per round) are used to aid the
analysis of complexities of the various protocols. Given the underlying network
topology, we can study more accurate complexity metrics.

The most important goal for a message stability detection protocol is to min-
imize the time to stabilize a message, reducing the buffer space required for data
messages at each member to a minimum. The effectiveness of the protocol in
achieving this goal is analyzed in terms of time and space.

To measure the time required for various stability detection protocols, we use
Time-Per-Round (TPR) which is defined as the duration of time between the start
of the stability detection protocol and the moment the first member constructs
the stability array S. After the first member constructs S, it has the option to
multicast the array in the group immediately, therefore every member will receive
the stability information within one multicast.

A more important time metric is Time-To-Stable (TTS), which is defined as

the time between the moment a data message is multicast and the moment it is

81

detected to be stable by at least one member. TTS depends on three things: TPR,
the frequency of rounds of the stability detection algorithm, and the underlying
reliable multicast protocol. Analysis of TTS requires implementation or simulation
of the reliable multicast protocols. If the reliable multicast protocol can deliver a
message to all the receivers within D seconds, the stability detection algorithm is
triggered every F' seconds, and it can detect the message’s stability within TPR
seconds, then the maximum TTS becomes D + F+TPR seconds. This means that
at most D + F+TPR seconds after a message is multicast from a sender, it can
be deleted from the network. Since TPR is the factor that is determined by the
stability detection protocol, this section only studies TPR, and an analysis on the
triggering mechanism for stability detection protocols is presented in Chapter 6.

To measure the space requirement, the queue size at each network node is
recorded whenever the node sends or receives a message. The marimum and aver-
age of the recorded queue sizes over all nodes in the network are calculated. They
indicate the load of processing message sends and receives, and also indicate how
congested the links are.

Normally in applications where the multicast group is large, a small percentage
of the members are active sources for data messages. Without loss of generality,
the number of senders is set to m = 1 and m = 50 where group sizes range from
50 to 500. We choose m = 1 because this is the absolutely smallest number of
senders. We also test the protocols when m = 50, because 50 is large in a group
with 50 members, but relatively small in a group with 500 members.

Recall from Chapter 4, in a group of size n with m senders, each gossip message

used to detect stability in Gossip and S_Gossip contains a 32-byte header, an m-

82

element sequence number array M where each sequence number occupies 4 bytes,
an n-element bitmap array W where each element is one bit long and an integer
round number which has 4 bytes. The overall gossip message size for a group of
sizenis 32+4Xxm+n/8+4=236+4xm+n/8 (with some padding to make it
aligned in the packet). In the simulation, n ranges from 50 to 500; and the packet
size ranges from 47 to 103 bytes when there is only 1 sender, and from 243 to
299 bytes when there are 50 senders. The message size in other protocols is only
32 + 4 x m bytes, smaller than the size of gossip message. Since a typical WAN
can handle packets shorter than 500 bytes without fragmentation [Pos81], packet

fragmentation is not considered in the simulations.

5.3 The Gossip Protocol

For a given underlying network topology, set of group members, set of senders,
and patterns for message sending and message loss, it is possible to analyze the
behavior of the Gossip protocol with a fixed step interval, and a fixed subset size
for each gossip. However, we are interested in finding the optimal step interval and
subset size for a range of network topologies and scenarios.

To investigate the behavior of the protocol in detail, two more metrics are
measured. The first is the average number of steps needed for a round. The second
metric is the average number of messages sent out by each member during unit
time. This is an indicator of the load the Gossip protocol adds to the network.
All the metrics are used to investigate the behavior of the protocols under a number

of scenarios.

83

5.3.1 Simulation with a fixed group size

For a given group size and a given number of senders, there are two control pa-
rameters in the Gossip protocol: the step interval and the subset size for each
gossip. The goal is to analyze the behavior of the Gossip protocol under different
values of these two parameters. To see the effect of step interval on the protocol,
the step interval is ranged from 1 second to 20 seconds with incremental steps of
1 second. To see the effect of the subset size on the protocol, the subset size is
varied from 1 to 5. In a WAN, IP-multicast is not efficient in sending messages to
small groups that are constantly changing [DL93], thus £ unicasts are used to send
gossip messages to each subset of size k.

For the fixed group size n = 200 with m = 50 senders, tests are conducted in
two categories: the dense test and the sparse test. In the dense test, a balanced
bounded-degree tree of size 200 is built, where every node in the tree is a member
of the multicast group. In the sparse test, a balanced bounded-degree tree of size
1000 is built. 200 nodes are randomly chosen to be in the multicast group, and
the remaining 800 are routers.

In both tests, the following two simulations are conducted:

1. Every node in the tree has infinite buffer space, thus the stability detection

protocol has no message loss.

I1. Every node in the tree only has enough buffer space to store 64 gossip messages
for each connected link?. Gossip messages arriving at a node with a full buffer

are dropped. Additionally, two random gossip messages in each step interval

2In Unix, the default buffer space for each TCP connection is 32K bytes. Therefore, each
buffer can store 32K /500 = 64 500-byte messages. To be conservative, the buffer size is limited
to 64 gossip messages.

84

are dropped at the senders.

An intermediate simulation is also conducted where every node in the tree has
infinite buffer space, and two random gossip messages in each step interval are
dropped at the senders. The results are similar to the first simulation, therefore
only presented in Appendices A and B.

A suite of 20-run statistical tests are conducted where each test has a given
subset size and step interval. For dense groups, a random number generator is
used for constructing subsets, and each run uses a different seed for the generator.
For sparse groups, each run corresponds to a different randomly constructed 200-
member group in the 1000-node tree.

The standard deviation of the sampling results follow similar trends in all the
simulations. Figure 5.2 presents the sample mean and sample standard deviation
for two metrics in simulation T with a dense group of size n = 200 and subset
size 3. The two metrics are the average queue size and TPR. The solid line in
each figure is the mean and the two dotted lines plot one standard deviation above
and below the mean. The largest ratio of standard deviation over mean among 20
tests, each with 20 samples is 7% for the average queue size and 5% for TPR. Under
the general assumption that the metrics follow normal distribution, approximately
67% of the sample points fall between the two dotted lines. Since the standard
deviation is small, only the mean is reported in the rest of this chapter.

Out of the 12,000 individual runs of the simulations?, 17 of them can not detect

message stability within 10 minutes. This means that close to 0.15% of the sample

3The dense and sparse tests each contain 3 simulations where each simulation covers 5 subset
sizes and 20 step intervals. 20 sample runs are executed for a pair of subset size and step interval
value. The total number of runs is 2 x 3 x 5 x 20 x 20 = 12, 000.

85

70

70
60 subset size = 3 1 601 subset size = 3
(0]
N
(73 50 50
()] —
(&}
8 401 D 40
> ~
o
D30 30
o
g —
G>J 20+ 20+
©
10+ 10+
00 é A‘t é é 1‘0 1‘2 1‘4 1‘6 1‘8 20 00 é A‘t é é 1‘0 1‘2 1‘4 1‘6 1‘8 20
step interval (sec) step interval (sec)
(A): average queue size (B): time-per-round (TPR)

Figure 5.2: Simulation I (no message loss) with a dense group of size 200, and

subset size 3.

points are bad. These bad samples are excluded from the statistical analysis in the
rest of this section. The probability for a round not to finish after a relatively long
time exists, but is very slim. In practice, a second round of the stability detection
protocol can start with a different seed for generating subsets. The probability
that both rounds take an unreasonably long time is even slimmer — 0.0225%

(0.0015 x 0.0015 = 0.000225).

Simulation I of dense groups

Since gossip messages are sent out by unicast, the number of messages sent out
by each member during each step is the same as the subset size. For a given data
point (x,y) in the simulation with subset size x and step interval y, the number of

messages each member sends out per unit time is z/y. Therefore the traffic load

86

1000
100 —Xx— subsetsize =5 1 900+ —X— subsetsize =5
90l —-0- subsetsize =4 i 8 sool —-0— subsetsize =4
. — .

GN) ool — . — subsetsize=3 =] — . — subsetsize =3
2 — — — subset size = 2 g 700+ — — — subset size = 2
% 70- _ subsetsize = 1] ’5 ool - subset size =1
D oot N
o) 500

50)
% ol 8 400

>

o O 300
> 30
= b

20k g 200

1ok 1001

0 2 4 é 8_ 10 12 14 16 18 20 0 2 4 6 8_ 10 12 14 16 18
step interval (sec) step interval (sec)
(A): average queue size (B): maximum queue size

Figure 5.3: Simulation I (no message loss) with a dense group of size 200 (part I).

generated by the stability detection protocol is proportional to z/y.

The average queue size reflects message burstiness. When large numbers of
messages are sent out during a short amount of time, buffers at hosts and routers
near message sources will receive a large number of messages to be processed and
forwarded, resulting in large queue sizes. Figure 5.3(A) plots the average queue
size recorded over all the nodes in the network.

For any given curve, the decreasing part comes from the fact that as the step
interval increases, the burstiness of messages decreases until it reaches a minimum.
After a certain point, the increase of step interval will not reduce message burstiness
any further. Subset size also influences message burstiness. For any fixed step
interval, as the subset size increases, the burstiness from sending to one subset
increases, which results in the increase of the average queue size.

The maximum queue size shows the same trend as the average queue size, and

87

is presented in Figure 5.3(B).

The goal of the Gossip protocol is to eliminate the implosion problem expe-
rienced by CoordP and FullDist when the group size n is large. As we can see
from Figure 5.3, if the step interval is too small, the implosion problem actually
happens in Gossip! We can see this effect from the dramatic increase of queue
sizes when the step interval is reduced pass certain limit. From Figure 5.3 alone
we can conclude that for each subset size, there is a smallest acceptable step in-
terval such that any step interval smaller than this limit would cause significant
increase of message burstiness which in turn will damage the performance of the
Gossip protocol.

TPR is the product of the step interval and the number of steps needed in
a round. The step interval is a parameter that can be controlled, whereas the
number of steps is an indicator of the behavior of the protocol. All the lines in
Figure 5.4(A) show the same trend: as the step interval increases, the number of
steps decreases to a minimum and remains there with any further increase in the
step interval. The step interval at which the minimum number of steps is reached
is called the critical point.

For a given subset size, before reaching the critical point, a decrease in the step
interval results in an increase in the number of steps. As the step interval decreases,
each member is scheduled to gossip its sequence number array in a shorter time
period. This shorter time period prevents each member from receiving all the
available new information. Therefore, more steps are needed to detect message
stability. Moreover, the less new information in each step, the more redundant

or repeating information flows in the network, increasing network traffic load and

88

35 r T T T T T T T T 120 T T T T T
-X— subset size =5
of |\ -X- subset size =5 100 -0 sugset Size = g
—o- subset size = 4 =~ subsetsize =
N . — — — subset size =2
Qo5 — . — subset size =3 ;
[. 8ol - subset size = 1
b7 — — — subset size =2 =
o2r - subsetsize =1 1 %
GLJ ~ 60}
_g 151 b E
3 F ool
S o ,
st 200
00 é 4 é é 1‘0 1‘2 1‘4 1‘6 1‘8 20 00 é 4‘1 é é 1‘0 1‘2 1‘4 1‘6 1‘8
step interval (sec) step interval (sec)
(A): number of steps in a round (B): time-per-round (TPR)

Figure 5.4: Simulation I (no message loss) with a dense group of size 200 (part II).

postponing the arrival of new information. These factors contribute to the increase
in the number of steps needed for detecting message stability.

For a fixed step interval less than 4 seconds, that is, before the critical point is
reached for any curve, the number of steps increases with the subset size because
traffic load increases from more messages sent out by each member during each
gossip. After the critical point is reached for all the curves, the step interval is
greater than 15 seconds, and gossip messages are scattered far enough to reduce
both traffic load and redundant gossips to a minimum. In this situation, the larger
the subset size, the more information is exchanged in each step, and a smaller
number of steps are needed to reach message stability. When the step interval
varies between 4 and 15 seconds, the number of steps goes through a transition
from increasing to decreasing with the subset size.

The behavior of the TPR curves plotted in Figure 5.4(B) can be derived from

89

Figure 5.4(A), because TPR is the product of the number of steps and the step
interval. Before reaching the critical point, the steeply declining trend of the
number of steps dominates the behavior of TPR, even though the increasing step
interval damps the TPR’s decline. After passing the critical point, TPR becomes a
linear function of the step interval with the coefficient being the value of the number
of steps, which is almost a constant. As Figure 5.4(A) shows, the smaller the subset
size, the larger the number of steps needed for detecting stability when the step
interval passes the critical point. This feature transferred into Figure 5.4(B) says
that the smaller the subset size, the steeper the slope of the TPR function is.
When the step interval falls in the range between 4 and 15 seconds, the opposite
movements of the two components of the TPR function cause TPR to fluctuate
in a narrow range from 28 to 40 seconds, except for the case of subset size 1.
For each subset size, a window of optimal step intervals exists in which TPR is

near-minimum.

Simulation II of dense groups

Figures 5.5 and 5.6 present the four metrics in simulation II for a dense group
of size 200. When the step interval is smaller than the critical point, a large
number of messages are dropped at intermediate and destination nodes because of
the 64-message buffer limit. Whereas in simulation I, a lot of bandwidth is wasted
carrying gossip messages that have no effect in the determination of stability. This

explains the better TPR observed in simulation II than simulation I.

90

16 —X— subsetsize =5 1 o 60 1
_o— ize = [}
ON) 14k 0- subset size =4 | 24]
D — . — subset size =3 8— 777777777777777777777777777
121 \ . 1 50 T
[} — — — subset size = 2 o)
8) [0 —X— subset size =5
= \ - subsetsize =1) % 45 —0- subset size = 4)
g sk @ 40 — . — subset size =3 i
o)} 8 — — — subset size = 2
g of 2 — subset size = 1 1
> x
@© 4t T —
,,,,,,,,,,,,, €
2r 25
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 20 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 2 14 16 18 20 4 12 14 16 18 20

6 8_ 10 1
step interval (sec)

6 8_ 10
step interval (sec)

(A): average queue size (B): maximum queue size

Figure 5.5: Simulation IT (queue size = 64) with a dense group of size 200 (part I).

35— 120 ; ; ; ; ;
| —X— subsetsize =5
30p | —x— subset size = 5 1 10 -0 subset sizeé = 4 i
» . —.— Subsetsize =3
a —-0— subset size = 4 .
o) . — — — subset size = 2
=250 — . — subset size =3 1)
17} . 80 - subset size = 1
5 — — — subset size = 2 =
o 20 - subset size = 1 1 3
[0} = 5
2 o
E 150 o
2 [
< 40
©1or o—5
Y
8
5L 20 J
0 2 4 12 14 16 18 20 0 4 12 14 16 18 20

6 8_ 10
step interval (sec)

6 8_ 10
step interval (sec)

(A): number of steps in a round (B): time-per-round (TPR)

Figure 5.6: Simulation IT (queue size = 64) with a dense group of size 200 (part

II).

120

TPR (sec)

91

80

60

401

20

120

—X— subset size =5 —X— subsetsize =5
—0—- subset size =4 100 —0—- subset size =4
— . — subset size =3 — . — subset size =3
— — — subset size = 2 1 __ 8oF — — — subset size = 2
. [¢) .
- subset size = 1 % - subset size = 1
1~ 60’
o
o
|_
] s0b
20
2 4 12 14 16 18 20 0 2 4 12 14 16 18 20

6 8 10
step interval (sec)

(A): Simulations I

(B): Simulation II

6 8 10
step interval (sec)

Figure 5.7: TPR for simulations I and IT with 20 sparse groups of size 200.

Simulations of sparse groups

The same simulation for a dense group and a sparse group of the same size shows

no major difference in all the performance metrics. This indicates that location

of group members and network topology do not have a noticeable effect on the

protocol. This is the result of the combination of the following factors: processing

speed, bandwidth and propagation delay. Under the given network condition,

bandwidth limitation is the dominating factor in TPR when the step interval is

smaller than the critical point, and the length of the step interval dominates TPR

when it is larger than the critical point. TPRs for the sparse group simulations

are presented in Figure 5.7.

92

5.3.2 Adaptive method: finding the window of optimal

step intervals

As observed from Figures 5.4(B), 5.6(B), and 5.7, every TPR curve has a flat por-
tion in which one can select any step interval to achieve a near-minimum TPR. The
process of finding the flat portion has two parts. The first part finds a step interval
that achieves a near-minimum TPR, and the second part finds a window around
that step interval. If TPR can be expressed as an analytical function, then New-
ton’s method [DS93] can find its minimum. Otherwise, better approaches exist in
experimental optimization. One such approach is the golden-ratio method [han79].
Figures 5.8 and 5.9 present the two-part algorithm for finding the window of opti-
mal step intervals.

Different groups and network topology require different input values for the
algorithm. For example, the following input values are given for a 200-member
dense group in simulation I: ¢ = 2 seconds, ag = 0, by = 20 seconds, e = 10%),
and p = 1 second. For the TPR curve for subset size of 3, part one finishes after 5
iterations, ending up with 9 seconds as the step interval that achieves a minimum
TPR of 28.6 seconds. Part two finds the lower bound s; = 4 seconds and the
upper bound sy = 10 seconds after total of 5 iterations of the while loops. Any
step interval in the range from 4 to 10 seconds can be used to achieve a TPR
between 28.6 to 31.2 seconds. The window sizes are different for different subset
sizes. For subset size of 1, the window is only from 2 to 4 seconds. As the group
size and network condition change over time, this two-part algorithm is executed
periodically to find the current window of optimal step intervals.

As indicated by Figures 5.4(B), 5.6(B), and 5.7, as the subset size increases,

93

the minimum TPR increases slightly, but the window size of optimal step intervals
increases significantly. There is a trade-off between the stability of the protocol
and the minimum TPR. If the window size is too small, for example, when subset
size is 1, then a slight perturbation of the network condition will result in dramatic
increase of TPR if the step interval is unchanged. A large window size is preferred
because slight changes in network condition will result in overlapping between the
new and current windows, therefore only slight changes in TPR. Also notice the
optimal window size is about the same for subset size of 4 and 5. As a result, the

recommended subset size is 2, 3 or 4.

Input: ag: smallest step interval in the search.

bo: largest step interval in the search.

g: distance between the two ends when the search stops.
Output: s: the step interval that achieves a near-minimum TPR.

a = ag; b := by; stop := false;
while —stop do
d:=b—a;
if (d > g) then
my1 :=a + 0.382 % d;
ma :=a + 0.618 x d;
if (f(m1) > f(mz)) then a := my; else b := my;
else
stop:= true;
s:=(a+b)/2;

Figure 5.8: Part I of the adaptive algorithm: finding a near-minimum TPR. f(z)

is the average measured TPR value for a step interval value .

94

Input: s: the step interval that achieves a near-minimum TPR from part L.
f(s): the near-minimum TPR from part I.
e: the fluctuation index. Step intervals that achieve TPR in the range
from (1 —e) * f(s) to (1 + €) x f(s) should be in the window.
p: initial search step size.
Output: s1: lower bound of the window.

8o: upper bound of the window.

s$1:=8; k:=1;

while ((s1 —k*xp>0)A(|f(s1 —kx*xp) — f(s)| <e)) do
s1: =81 —kxp; k:=2xk;

k:=k/2;

while ((k 2 1) A (|f(s1 —kx*p) — f(s)| <e)) do
s1 =81 —k+*p; k:=k/2

S$o:=8; k:=1;

while (|f(s2 + k*p) — f(s)| <e) do
So:=8s+kxp; k:=2xk;

k:=k/2;

while ((k > 1) A (|f(s2 +kxp) — f(s)] <e)) do
so =82+ k*p; k:=k/2

Figure 5.9: Part II of the adaptive algorithm: finding the optimal step interval
window given a near-minimum TPR. f(z) is the average measured TPR value for

a step interval value zx.

95

30

3
=)
T

251

near—minimum TPR (sec)
N o o N
o o o o
S

8
number of steps
(4]

=)
T

20-

-

I I I I I I I I I I I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

group size group size
(A): near-minimum TPR (B): average number of steps needed

Figure 5.10: Near-minimum TPR and the corresponding number of steps needed
in a round for sparse groups in Simulation II using the global gossip scheme with

50 senders. A data point with subset size x and step interval y seconds is labeled

as (z,y).

5.3.3 Simulation with varying group sizes

Simulations I and II are conducted for dense and sparse groups with various group
sizes, and the same pattern is observed as in the tests for 200 members. Simulation
IT for sparse groups is done for different group sizes in a balanced bounded-degree
tree of size 1000, and its near-minimum TPR is presented in Figure 5.10(A). The
average number of steps needed in a round to achieve the corresponding near-
mininum TPR is presented in Figure 5.10(B).

The group sizes are 50, 100, 200, 300, 400 and 500. For each group size, 20

simulations are conducted with subset size of 1 and an optimal step interval. For

96

each simulation, a new group is randomly constructed in the 1000-node tree. Each
simulation is represented by a dot in Figure 5.10(A). The solid line represents the
mean of the TPRs. We can observe that the minimum TPR increases approxi-
mately linearly with group size n. When n = 500, it reaches 71 seconds. The
resulting number of steps needed for each round of the protocol is plotted in Fig-
ure 5.10(B). We can see an approximately log(n) increase of the number of steps
with the group size n.

The simulations are also conducted with the number of senders m = 1, subset
size of 1 and the optimal step interval corresponding to each group size. The TPR
and the corresponding number of steps are presented in Figure 5.11. The optimal
step intervals are listed in Table 5.1. We see that the TPR is a lot smaller with
one sender than with 50 senders. This is because the message size is reduced by
4 x 49 = 196 bytes from the 50-sender case. As a result, messages are processed
faster at its sender and receiver, and spend less time on network links.

The simulations are run with 30K bps network bandwidth allocated to the
protocol. The same simulations are also conducted with a 300K bps bandwidth
and a 10-time decrease in TPR is observed. More bandwidth combined with an

optimal step interval will result in a faster stability detection time.

5.3.4 Summary

This section studies the behavior of the Gossip protocol under a wide range of
network topologies and scenarios. For a fixed group size, there is an optimal
combination of the size of step interval and the subset size for each gossip. An

adaptive mechanism is presented to find a window of optimal step intervals for a

97

30

30

(1,1.0)

25F 9 25F R
T (1,0.9)
2
o 20F 1 goop 1
a 2
[7]
Eisl (1,0.6) 1 Sust 1
1S)
E 2
£ £
IS S
T 10+ i €10 4
5 (1,0.5
(0]
c

s (1,02) {1 st]

(1,0.1)
00 5‘0 160 15‘0 260 2“"70 360 3..;)0 460 45‘0 500 00 5‘0 160 15‘0 260 2“"70 360 3..;)0 460 45‘0 500
group size group size
(A): near-minimum TPR (B): average number of steps needed

Figure 5.11: Near-minimum TPR and the corresponding number of steps needed
in a round for sparse groups in Simulation II using the global gossip scheme with

one sender. A data point with subset size x and step interval y seconds is labeled

as (z,y).

98

Table 5.1: The near-optimal step interval (in seconds) for Gossip for different

group sizes and different numbers of senders

1 sender | 50 senders
n=>50 | 0.1 0.7
n =100 || 0.2 0.7
n =200 || 0.5 3.0
n =300 || 0.6 3.0
n =400 || 0.9 4.0
n =500 || 1.0 5.0

certain subset size. The subset size for each gossip is recommended to be small (2,
3or4).

The TPR achieved by setting the optimal step interval increases approximately
linearly with the group size. The number of gossip steps needed increases ap-
proximately logarithmically with the group size. These results are not surprising

because we have seen in Section 4.2.5 that the upper bound of the number of steps

is O(log(n)).

99

5.4 Comparison of Various Protocols in Dense
Groups with 50 Senders

After determining the optimal step interval and subset size for the Gossip protocol,
we compare all the stability detection protocols in the same network environment.
We conduct two categories of tests for each group size n as in Section 5.3.1: the
dense test and the sparse test. In the dense test, a balanced bounded-degree tree
of size n is built, where every node in the tree is a member of the multicast group.
In the sparse test, a balanced bounded-degree tree of size 1000 is built. n nodes
are randomly chosen to be in the multicast group, and the remaining 1000 — n are
routers. Notice when n is small, the number of routers is relatively large compared
with the group size. But the transport level protocol does not need to use all
the routers necessarily. The number of routers actually used is much smaller than
1000 — n for a small n.

The Gossip protocol is simulated under the condition that every node in the
tree only has enough buffer space to store 64 gossip messages for each connected
link. Gossip messages arriving at a node with a full buffer are dropped. Addition-
ally, two random gossip messages in each step interval are dropped at their senders.
The reason is that the Gossip protocol tolerates message loss well, and dropping
messages can actually improve its performance as shown in Section 5.3.1.

The rest of the protocols are simulated with no message losses and every node
in the tree having infinite buffer space, because we are interested in the best per-
formance of the protocols.

Simulations in this section first investigate the best attainable performance

100

of various protocols. Under this guideline, the logical trees in S_CoordP and
S_Train are built to match the underlying network topology, that is, each logical
tree has a fixed branching factor of 3. The benefit of Gossip lies in its lack of
structure, and therefore its robustness to message losses. To show the benefit of a
hierarchical approach — S_Gossip, we build a one-level tree where each sub-group
has size 50.

Without loss of generality, the coordinator in CoordP is located at the root

of the network tree.

5.4.1 Total number of messages on all hops in the system

In CoordP, each non-coordinator member sends a point-to-point message to the
coordinator at the root of the underlying tree network. The number of hops each
message traverses is at most the height of the tree which is O(log(n)). Therefore,
the total number of messages on all hops is O(nlog(n)).

In FullDist, each member multicasts a message in the group. Each multicast
message traverses the entire tree to reach all the members. Therefore, the number
of hops each multicast message traverses is O(n) and the total number of messages
on all hops from n multicasts is O(n?).

In Train, each member sends a point-to-point message to the next member
in line, since it takes O(1) hops to reach the next member, the total number of
messages on all hops from n unicasts is O(n).

In Gossip, each member unicasts a constant number of messages to a random
set of members, therefore, the total number of messages in the system during each

step is O(n). The probability analysis in Section 4.2.5 shows the number of steps

1
5x0

5000
Q45 1 84500
o o
f 4r - FullDist 7 540007
© _ ® .
S35F —x— Gossip 1 Saso0l —-o- Train
3 st —-o- Train 18
= CoordP goor -~ CoordP
n25- - = 1 @
3 oor & 2500+
£ o 1S
S *S 2000
5150 18
Ke] Q1500
E 1t 1E
=} >
[< 1000
rhadl K|
S 9 soof
or Z
0 5‘0 160 15‘0 260 250 360 3‘50 460 45‘0 50(00 56 160 1 éO 260 25‘0 360 35;0 460 4‘50 500
group size group size
(A): four basic protocols (B): basic protocols (in detail)

Figure 5.12: Total number of messages on all hops for the four basic protocols in

dense groups with 50 senders.

needed is bounded by O(log(n)), thus the total number of messages is bounded by
O(nlog(n)).

The simulation results for the four basic protocols shown in Figure 5.12 confirm
the above analysis.

It also shows Gossip uses more messages in the system than CoordP and
Train. Let Pooorqp and Pgossip designate the number of messages used in Co-
ordP and Gossip respectively. It is interesting to observe that the number of
messages in both Gossip and CoordP are in the same order O(nlog(n)). How-
ever, Figure 5.12(A) shows approximately Pgossip = k X Pooorap, With k& > 1.
Notice in CoordP, each unicast message from non-coordinators traverses at most
log(n) hops, therefore nlog(n) is a tight upper bound for Pryorgp- In Gossip,

there are nlog(n) messages, assume on average each message traverses k hops be-

102

Table 5.2: Total number of messages on all hops for various protocols

basic protocols CoordP FullDist Train Gossip

of messages O(nlog(n)) | O(n?) O(n) O(nlog(n))

structured protocols | S_CoordP | S_CoordP | S_Train | S_Gossip

of messages O(n) O(n) O(n) O(nlog(50))

fore arriving at its destination, the total number of hops would be knlog(n) with
k > 1. Comparing CoordP and Gossip in Figure 5.12(A), we can clearly see the
factor k.

In S_CoordP and S_Train, each member needs to send out one message,
and this message traverses a constant number of hops, thus the total number of
messages is O(n). Adding a structure does not change the fact that each member
needs to send a constant number of messages in S_Gossip. Gossip is conducted in
local groups of size 50 in parallel, the number of steps needed is therefore log(50),
as a result, the total number of messages becomes O(nlog(50)). The results are
summarized in Table 5.2.

The simulation results for structured protocols presented in Figure 5.13 show
the number of messages in S_Gossip is larger than the other two, even though all
of their increase is linear. This is expected from the log(50) factor in O(n log(50)).

The comparison between the four basic protocols and their respective structured
protocols is presented in Figures 5.14 and 5.15. And we see adding a structure

reduces the total number of messages needed in all the protocols.

103

3500 351C
a8 a
‘9 3000r —0— S_Train (subg=4) 1 9 3 —x— S_Gossip (subg=50) 1
@ - S_CoordP (subg=4) ® .
£ 2500 1 gasf -o- S_Train (subg=4) |
3 3 - S_CoordP (subg=4)
gZOOO* % 2r B
12} (2]
(%] (%]
(0] (0]
E 15001 4 E 150 4
o o
9] 9]
-g 1000 g -g 1 g
=} =}
c c
< 500+ 1 ®os- 1
L ie]
L L L L L L L L L e —— L L L L L
00 50 100 150 200 250 300 350 400 450 500 00 50 100 150 200 250 300 350 400 450 500
group size group size
(A): without S_Gossip (B): with S_Gossip

Figure 5.13: Total number of messages on all hops for the three structured protocols

in dense groups with 50 senders.

5
4000 5x10

2 Basr - FullDist 1
§-3500f - CoordP 18
e <
- — 4 - — S_CoordP (subg=4 1
3000 - - S_CoordP (subg=4) | = - (subg=4)
c C35, 4
(o] o
w 1]
@ 2500 1 o 3l J
(o)) (o))
@ &
% 2000} H 825]
£ - E J
“— P “—
© 1500t -7 4 ©°
t - o
[_-7 D15+ q
£ £
5 1000 T 1 5 46 |
c - c
g 500 //’/ — 50-5’ 1

-7 o = e |

0 50 100 150 200 250 . 300 350 400 450 500 0 50 100 150 200 250 . 300 350 400 450
group size group size

(A): CoordP and S_CoordP

(B): FullDist and S_CoordP

Figure 5.14: Total number of messages on all hops for the basic and their corre-

sponding structured protocols in dense groups with 50 senders (part I).

104

»
o

& 4500 - Train

- Gossip

- — S_Gossip (subg=50)

IS
T

4000 - — S_Train (subg=4)

w
o
T

(&)
T

total number of messages on all hops
- N
- o N o

o
3
T

o

0 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
group size group size

o

(A): Train and S_Train (B): Gossip and S_Gossip

Figure 5.15: Total number of messages on all hops for the basic and their corre-

sponding structured protocols in dense groups with 50 senders (part II).

5.4.2 Average and maximum queue sizes over all the nodes

in the system

The average and maximum queue sizes recorded over all the network nodes during
the simulation are reported in this section. These numbers are indicators of pro-
cessing load at each node. They are different from the total number of messages
processed by a node, since they reflect how many messages are accumulated at
each node at any moment.

Figure 5.16(A) shows that out of the four basic protocols, FullDist has the
largest value for average queue size, followed by CoordP, both of which are in-
creasing with the group size, while the number for Train stays flat at 0. For any

internal node in protocol CoordP, the ACK messages from all of its descendants

105

18 T T 180 T T
- FullDist - FullDist
16 T 160 1
- - CoordP - — CoordP

14r - .- Gossip i 140 — . —Gossip -
8ol . S_Gossip (subg = 50) e - o120 ... S_Gossip (subg = 50)
b T N —x— Train, S_CoordP (subg = 4) o
§10, 1 @M1 S_Train (subg = 4) 7 i

= -

g 8t 1 2 sor - 1
Il x
o6r 4 8 gl e e o
o - g 60
=\

4t g 40 i

2r /// ’ 1 20 Ve —

or o

0 5‘0 160 15‘0 260 250 360 3‘50 460 45‘0 500 0 5‘0 160 15‘0 260 250 360 3‘50 460 45‘0 500
group size group size
(A): average queue size (B): maximum queue size

Figure 5.16: Average and maximum queue sizes over all the nodes for the basic

and structured protocols in dense groups with 50 senders.

need to go through it to reach the root. Therefore the average queue size increases
with ». The number for FullDist also increases with n simply because of the
O(n?) number of messages in the system. The number for Train stays at 0 since
each node only needs to handle 2 messages.

The average queue size stays constant at 0 in the two structured protocols
S_CoordP and S_Train which is the result of the number of messages handled by
each node being a small number. In S_CoordP, each node only needs to handle
3 ACK messages from its children. In S_Train, each node needs to handle up to
5 messages.

In Gossip and S_Gossip, the buffer size at each node is limited to 64 messages.
As a result, the average queue size for Gossip increases to 4 when group size

increases to 100 and stays at 4 with further increases of group size, whereas the

106

average queue size for S_Gossip stays at 0.5.

The same trend is observed for maximum queue size in Figure 5.16(B).

5.4.3 Time-per-round (TPR)

As introduced in Section 5.2, time-per-round (TPR) is the time needed for one
round of a stability detection protocol. It is defined as the duration of time between
the start of a protocol and the moment the first member constructs the stability
array. For FullDist, each member multicasts its sequence number array and each
member constructs its sequence number matrix separately. We measure the time
for the first and last member to detect stability. That is, we measure the smallest

and the largest TPR.

The basic protocols

Figure 5.17 shows TPR for the four basic protocols. Among them, Train has the
longest TPR, which is the result of the n protocol steps needed for the first member
to collect message stability information. CoordP and FullDist both show increase
of TPR as n increases, but since both of them have constant protocol steps, their
increment is not as significant as Train. It is interesting to notice that the TPR
for CoordP and the smallest TPR for FullDist are almost identical, whereas the

largest TPR for FullDist is twice as large as the smallest.

Comparing FullDist and Gossip

Both FullDist and Gossip are robust against message losses and process crashes

in the sense that in FullDist, each member constantly multicasts sequence number

107

—— Train

. Gossip
—0- FullDist (last)
—x— FullDist (first)
—x— CoordP

Time-Per-Round (sec)
B [2) o] 5
o o o o
\

n
=}
T

0

0 50 100 150 200 250 300 350 400 450 500
group size

Figure 5.17: Time-per-round (TPR) for the four basic protocols in dense groups

with 50 senders.

information in the entire group and in Gossip, each member constantly sends its
information to a random subset of members. In our simulation for FullDist,
we assume each network node has infinite buffer space and there are no message
losses. FullDist requires the buffer size to be able to hold 180 INFO messages
when the group size is 500. This is close to 42K bytes* of buffer space. As group
size increases, the maximum required buffer size increases approximately linearly as
presented in Figure 5.16(B). It is unreasonable to reserve buffer space large enough
to process all incoming messages. Therefore, messages are dropped because of the
lack of buffer space.

To avoid the implosion problem in FullDist, it is common practice to spread
the multicast of INFO messages from each member. This technique is used in the
management of session messages of SRM [FJL196]. In the following simulation,

the multicast from each member is scattered randomly and the average distance

“The size of the INFO message in the simulation is 32 +4 x m = 32 +4 x 50 = 232 bytes. 180
messages will occupy 180 x 232 = 41760 bytes of buffer space.

108

120 T T T
—-o- FullDist (last)
—x— FullDist (first)

o
=]
T

. Gossip

®
o
T

Time-Per-Round (sec)
B [23

n
=)
T

0

0 50 100 150 200 250 300 350 400 450 500
group size

Figure 5.18: Time-per-round (TPR) for Gossip and FullDist employing the scat-

tering mechanism in dense groups with 50 senders.

between each multicast increases linearly with the group size such that a fixed
number of messages are sent out in the system per unit time. When the group
size is 50, 100, 200, 300, 400 and 500, the average distance between each multicast
is set to 0.02, 0.04, 0.08, 0.12, 0.16 and 0.2 seconds respectively, and on average
25 messages are sent out every 10 milliseconds. Figure 5.18 shows that when the
group size is over 200, Gossip actually performs better than FullDist. The TPR

for FullDist would be even larger if message loss is taken into consideration.

The structured protocols

Figure 5.19 displays TPR for the three structured protocols. For both S_CoordP
and S_Train, TPR consists of the time for ACKs to go up each level. As group
size increases from 50 to 500, the height of the underlying bounded-degree tree
with degree 4 only increases from 4 to 6. This is why their TPR only increases

slightly as the group size increases. It takes one protocol step for the ACKs to go

109

IS

. S_Gossip (subg = 50)

N
T

—— S_Train (subg = 4)
— S_CoordP (subg = 4)

Time-Per-Round (sgc)

IS
T

0 50 100 150 200 250 300 350 400 450 500
group size

Figure 5.19: Time-per-round (TPR) for the three structured protocols in dense

groups with 50 senders.

up a level in the tree in S_CoordP, versus b = 3 steps in S_Train. This is why
S_CoordP has a smaller TPR than S_Train. TPR for S_Gossip is much larger
than the other two protocols and it shows approximately linear increase with the

group size. It is because only a one-level tree is used in the simulation.

Comparing the basic and their corresponding structured protocols

The TPR results for the basic protocols and their corresponding structured pro-
tocols are displayed in Figures 5.20 and 5.21. We see that a hierarchical structure
offers significant improvement in TPR to all the basic protocols.

Figure 5.20(A) shows the TPR for CoordP and S_CoordP. There are 3 steps
in CoordP, but p + 2 steps in S_CoordP. Contrary to what the protocol steps
suggest, we find that the TPR for CoordP increases dramatically as n increases,
while the TPR for S_CoordP stays almost flat. In CoordP, for any node in the

tree, ACK messages from all its descendants need to travel through the node in

110

14 T

- CoordP
—— S_CoordP (subg = 4)

=)
T
L

Time-Per-Round (sec)

30r *
—0- FullDist (last)

r -x— FullDist (first) 1

— - S_CoordP (subg = 4)
20+ T

N
a

Time-Per-Round (sec)

o
T
L

I I I I I I
200 250 300 350 400 450

group size

I I
100 150

(A): CoordP and S_CoordP

I I I I I I
200 250 300 350 400 450

group size

I I
100 150 500

(B): FullDist and S_CoordP

Figure 5.20: Time-per-round (TPR) for the basic and their corresponding struc-

tured protocols in dense groups with 50 senders (part I).

120 70
- Train
H : i 60 - Gossip ,
100 —— S_Train (subg = 4)
S Ssol - - S_Gossip (subg = 50)]
3 sof- 19
E R —
> >
O 60 B o
5 & a0]
ks ks
401 B
I T 20- i
oy o 20
E £
F 2of 1 ol [-
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, or B
or =
0 50 100 150 200 250 . 300 350 400 450 500 0 50 100 150 200 250 . 300 350 400 450 500
group size group size

(A): Train and S_Train

(B): Gossip and S_Gossip

Figure 5.21: Time-per-round (TPR) for the basic and their corresponding struc-

tured protocols in dense groups with 50 senders (part II).

111

order to reach the root. The closer a node is to the root, the more ACK messages
it needs to handle. This scheme will overload the root node, its neighbors and
the links connecting them when n becomes large. As a result, ACK implosion will
appear at the root and those nodes close to it. On the other hand, in S_CoordP,
each ACK message travels only one hop to its parent. There is only one ACK
message on any hop in the tree network. Each node only needs to handle up to
b ACK messages, and, when the branching factor of the tree b is small (3 in our
simulation), this will not cause an implosion problem at any node. The TPR for
S_CoordP is essentially the time spent for the START message to travel p hops
down the tree plus the time for the ACKs to travel p hops up the tree to reach the
root. Since there is no contention for the links, this time is proportional to the tree
height p. As the tree height varies from 4 to 6 when the group size ranges from
50 to 500 in our simulation, we see an almost flat line for the TPR of S_CoordP.
When n = 500, S_CoordP offers a 25-time improvement in TPR over CoordP.

Figure 5.20(B) shows TPR for FullDist and its corresponding structured proto-
col S_CoordP. We see a sharp increase in TPR for FullDist because of implosion
at every member when n is large. TPR for S_CoordP stays flat because the re-
duced number of messages each member needs to handle eliminates the implosion
problem.

The results for Train and its structured version S_Train are presented in
Figure 5.21(A). There is no message implosion problem in either protocol. The
TPR is proportional to the number of steps in the protocol. Train takes n steps,
whereas S_Train takes bp + 2 steps, where the branching factor of the tree b = 3

and the height of the tree p varies from 4 to 6 in the simulation. This explains why

112

S_Train scales significantly better than Train. When n = 500, S_Train offers
over 66-fold improvement in TPR over Train.
Even though only a one-level tree hierarchy is used in S_Gossip, its TPR shows

almost 6-fold improvement over Gossip when n = 500 as shown in Figure 5.21(B).

113

5.5 Comparison of Various Protocols in Sparse
Groups with 50 Senders

In the sparse test, a balanced bounded-degree tree of size 1000 is built. n nodes
are randomly chosen to be in the multicast group, and the remaining 1000 — n are
routers.

The same set of simulations are conducted in the sparse test as in the dense
test. In the sparse test, we choose a more realistic approach where the logical tree
in the structured protocols does not match the underlying network topology. To
see the effect of the branching factor of the logical tree on the performance of the
structured protocols, we conducted the following two tests.

In the first test, we build logical trees with a branching factor of 3. This means
that the size of each sub-group is 4. In the second test, we build a two-level tree
where at the bottom level, each sub-group contains 50 members, consisting of 49
siblings and one parent. Each local group reports to its parent at the middle level,
and the middle level members report to the root. In this case, the branching factor
at the bottom level is fixed to 49 and varies at the middle level.

All the logical trees in the sparse test are constructed randomly without respect
to the underlying network topology. We still can observe the similar trends as in
the dense test.

For each group size, we built 20 random sparse groups in the 1000-node tree
and conducted simulation for all the protocols for each of the sparse groups. The

results presented in this section are the average of the 20 tests.

1
5x0

5000
8.4'5 B 34500 —0— Train
2 FullDist 2
4r - ullDis 1 L A
= =R —— CoordP -
S35F —x— Gossip 1 Sas00k
w . 192
% 3r —0— Train b %3000
025 J— 4 0
a CoordP 2 2500
€ 2of 1S
5 5 2000
& 57 IR
o Q1500
€ 1t 1§
>)
c < 1000
rohadl IS i
2 O 5001 B
0 50 160 1 éO 260 25‘0 360 35;0 460 4‘50 50(00 50 160 1 éO 260 25‘0 360 35;0 460 4‘50 500
group size group size
(A): four basic protocols (B): basic protocols (in detail)

Figure 5.22: Total number of messages on all hops for the basic protocols in sparse

groups with 50 senders.

5.5.1 Total number of messages on all hops in the system

The total number of messages in the setting of sparse groups follow the same trend
as in the dense groups as summarized in Table 5.2.

The simulation results for the basic protocols are presented in Figure 5.22.
Their behavior is similar to the dense group case.

When the sub-group size is 4, S_CoordP uses more messages than S_Train as
shown in Figure 5.23(A). This is not surprising, because the construction of the
logical tree with degree 4 does not match the underlying network tree, therefore
on average, a message sent from an interior node of the tree to its parent traverses
slightly more hops than messages to its neighboring sibling.

When the sub-group size is 50 in the logical tree, on the other hand, a message

115

6000

ot
o

—0— S_Train (subg=4)
50001 - S_CoordP (subg=4)

w
T

—x— S_Gossip (subg=50)
- S_CoordP (subg=50)

N4
o

4000
—0— S_Train (subg=50)

)
T

o
T

n

=]

S

=)
T

o
S
=)

total number of messages on all hops
w
S
I
[,

total number of messages on all hops

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
group size group size

(A): sub-group size = 4 (B): sub-group size = 50

Figure 5.23: Total number of messages on all hops for the three structured protocols

in sparse groups with 50 senders.

from S_Train traverses slightly more hops than in S_CoordP as displayed in
Figure 5.23(B).

Figures 5.24 and 5.25 display the total number of messages for each basic proto-
col and its corresponding structured protocol with different sub-group sizes 4 and
50.

The smaller the sub-group size, the larger the height of the logical tree, and
fewer hops a message need to traverse going up one level of the tree, thus fewer
messages are used. As a result, we are expecting that the basic protocol uses more
messages than its structured protocol with sub-group size 50 which in turn uses
more messages than that with sub-group size 4.

It is interesting to notice in Figure 5.24(A), S_CoordP with either group size

actually uses more messages than the basic CoordP! Again, this is because the

116

1
6000 5210

-x— S_CoordP (subg=4)
5000 - — S_CoordP (subg=50)
- CoordP

>
o

- FullDist
X S_CoordP (subg=4)
- — S_CoordP (subg=50)

IS
T

w
o
T

4000

w
T

N
T

n

=}

S

=)

&)
T

total number of messages on all hops
3 8
8 8

total number of messages on all hops
n
o

e
3
T

of T X - - — - ¥ ——==== X mm— = X === -
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
group size group size

(A): CoordP and S_CoordP (B): FullDist and S_CoordP

Figure 5.24: Total number of messages on all hops for the basic and their corre-

sponding structured protocols in sparse groups with 50 senders (part I).

logical tree in S_CoordP does not match the underlying network tree.

5.5.2 Average and maximum queue sizes over all the nodes
in the system

The average queue size shows the same trend in sparse groups as in dense groups.
Figure 5.26 shows that out of the four basic protocols, FullDist has the largest
value for average queue size, followed by CoordP, both of which are increasing
with the group size, while the number for Train stays flat at 0.

Figure 5.27(A) shows that when the sub-group size is 4, the average queue size
increases with the group size for both S_CoordP and S_Train.

In S_CoordP and S_Train, the number of messages handled by each node is

117

& 4500t - Train 45 - Gossip

°

%40007 —x— S_Train (subg=4) 4t - - S_Gossip (subg=50)

S 3500 — — S_Train (subg=50) 35¢

w -

3000 - 3r .
g P

& 2500 -

o P

total number of messages on all hops
\
\
\

I
o
T

o

0 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
group size group size

o

(A): Train and S_Train (B): Gossip and S_Gossip

Figure 5.25: Total number of messages on all hops for the basic and their corre-

sponding structured protocols in sparse groups with 50 senders (part II).

a small number: in S_CoordP, each node only needs to handle 3 ACK messages
from its children, and in S_Train, each node needs to handle up to 5 messages. But
because the logical tree does not match the physical network tree, each message
needs to travel more than one hop before arriving at its destination. This causes
more congestion at the routers as the group size increases, which results in an
increase of the average queue size.

Figure 5.27(B) shows that when the sub-group size is 50, the average queue
size increases significantly with the group size for S_CoordP, but increases very
slowly for S_Train. This is because the larger sub-group size requires the interior
nodes in S_CoordP to handle 49 ACK messages, while the nodes in S_Train still
only need to handle up to 5 messages.

In Gossip and S_Gossip, the buffer size at each node is limited to 64 messages.

118

[}

©
T

- FullDist
— - CoordP
— . — Gossip

©
T

~
T

)
T

. Train

£ 3]
T T

average queue size
w

0 50 100 150 200 250 300 350 400 450 500
group size

Figure 5.26: Average queue size over all the nodes for the four basic protocols in

sparse groups with 50 senders.

As a result, the average queue size for both Gossip and S_Gossip only increases
slowly.

The same trend is observed for maximum queue size in Figures 5.28 to 5.29.

5.5.3 Time-per-round (TPR)

The basic protocols

From Figure 5.30, we can see that TPR results for the four basic protocols exhibit
the same trend in the sparse group test as in the dense group test in Section 5.4.3.
For all the basic protocols, the TPR increases as the group size increases. Out
of these four, Train has the largest TPR, followed by Gossip, FullDist and

CoordP.

119

(subg = 50)

3 6 T T

- S_CoordP (subg = 4) - 8_CoordP
250 __ s _Train (subg = 4) 1 ... S_Gossip (subg = 50)
- — S_Train (subg = 50)

average queue size
N & o
N
\
average queue size

o
3
T
\
\
L

or = __- 4

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
group size group size

(A): sub-group size = 4 (B): sub-group size = 50

Figure 5.27: Average queue size over all the nodes for the structured protocols in

sparse groups with 50 senders.

©
=}

- FullDist
- - CoordP
— . — Gossip

@
=]
T
L

N
=)
T
L

n
=]
T
L

Train P

o
=)
T

\
\
L

®
o
T
\
\
L

max queue size
3
\
\
\
\

40 - .

0 50 100 150 200 250 300 350 400 450 500
group size

Figure 5.28: Maximum queue size over all the nodes for the four basic protocols in

sparse groups with 50 senders.

120

70 80
60 - S_CoordP (subg = 4) | 7ok - S_CoordP (subg = 50) i
o - — S_Train (subg = 4) col S_Gossip (subg = 50) |
o | osl — — S_Train (subg = 50)
g o Qa0 i
B0 1 3
o s 0'30 L 4
20 B J
= e E 5l J
101 .7 i
L 10F 1
ot -7 g ob oo
0 50 100 150 200 250 . 300 350 400 450 500 0 50 100 150 200 250 . 300 350 400 450
group size group size

(A): sub-group size = 4

(B):

sub-group size = 50

500

Figure 5.29: Maximum queue size over all the nodes for the structured protocols

in sparse groups with 50 senders.

Time-Per-Round (sec)

o
=)
T

=3
=}
T

@
=]
T

N
o
T

201

—— Train
Gossip
—0—- FullDist (last)

—x— FullDist (first) -7
—x- CoordP

50

100

150

200 250 . 300
group size

350 400 450 500

Figure 5.30: Time-per-round (TPR) for the four basic protocols in sparse groups

with 50 senders.

121

©

7 —— S_Train (subg = 4) 1 20l I
. - SCoordP(subg=4) -~ |
§ - § — - S_Train (subg = 50)
'\E’5’ -‘.;S, . S_Gossip (subg = 50)
2 2 - S_CoordP (subg = 50)
< i
8 Bl
130]
(0] (0]
£ £
Bl i //
sl i
WL
00 5‘0 160 1 éO 260 25‘0 360 35;0 460 4‘50 500 00 5‘0 160 15‘0 260 2\;)0 360 3‘50 460 45‘0 500
group size group size
(A): sub-group size = 4 (B): sub-group size = 50

Figure 5.31: Time-per-round (TPR) for the structured protocols in sparse groups

with 50 senders.

The structured protocols

Figure 5.31(A) displays the TPR results for the two structured protocols S_Train
and S_CoordP with sub-group size 4.

For both protocols, TPR consists of the time for ACKs to go up each level. As
group size increases from 50 to 500, the height of the underlying bounded-degree
tree with degree 4 only increases from 4 to 6. Because the logical trees do not
match the physical network tree, the time it takes to go up one level in the tree
increases as the group size increases. This results in the increase of TPR with the
group size. It takes one protocol step for the ACKs to go up a level in the tree in
S_CoordP, versus b = 3 steps in S_Train. This is why S_CoordP has a slightly
smaller TPR than S_Train.

Figure 5.31(B) displays the TPR results for the three structured protocols

122

- CoordP 30r
121 —o- FullDist (last)
~— S _CoordP (subg = 4) 2 —x— FullDist (first)
§10’ . S_CoordP (subg = 50) § — - S_CoordP (subg = 4)
'\8’ o -\g’zo’ . 'S_CoordP (subg = 50
> >
[e] [e]
i -1 x5
I 6 - |
o -7 o
o ~- o
| =7 | 10+
O 4 (0]
S 7 =
= F ol
2r -
of or
0 5‘0 160 15‘0 260 250 360 3‘50 460 45‘0 500 0 5‘0 160 15‘0 260 250 360 3‘50 460 45‘0 500
group size group size
(A): CoordP and S_CoordP (B): FullDist and S_CoordP

Figure 5.32: Time-per-round (TPR) for the basic and their corresponding struc-

tured protocols in sparse groups with 50 senders (part I).

S_Train, S_CoordP, and S_Gossip with sub-group size 50. In this case, the
logical tree has only one level. It takes one protocol step for the ACKs to go up
a level in the tree in S_CoordP, versus b = 49 steps in S_Train. This is why
S_Train has a significantly larger TPR than S_CoordP. TPR for S_Gossip is

slightly larger than S_CoordP, but it is a lot smaller than S_Train.

Comparing the basic and their corresponding structured protocols

The TPR results for the basic protocols and their corresponding structured pro-
tocols are displayed in Figures 5.32 and 5.33. We see that a hierarchical structure
offers significant improvement in TPR to all the basic protocols.

Figure 5.32(A) shows the TPR for CoordP and S_CoordP with two different

sub-group sizes: 4 and 50. Over all the group sizes, S_CoordP with sub-group size

123

70

n
=]
T

— Train
. S_Train (subg = 50) 60l
—— S_Train (subg = 4) 1

- Gossip
— - S_Gossip (subg = 50)

o
=)

®
=]
T

Time-Per-Round (sec)
Time-Per—-Round (sec)

n
=]
T
=)

=)
T

I I I I I I I I I I I I I I I I
150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

o
SO
=]
o
S

group size group size
(A): Train and S_Train (B): Gossip and S_Gossip

Figure 5.33: Time-per-round (TPR) for the basic and their corresponding struc-

tured protocols in sparse groups with 50 senders (part II).

50 exhibits a smaller TPR than the same protocol with sub-group size 4. When
the sub-group size is 50, the height of the logical tree is 2, it takes 2 protocol steps
for ACK messages from all the members to arrive at the root of the logical tree.
When the sub-group size is 4, the height of the logical tree ranges from 4 to 6, so
it takes 4 to 6 protocol steps for ACK messages from all the members to arrive at
the root. Apparently from the simulation results, the effect of the ACK implosion
problem is not significant in the case for sub-group size of 50. The saving of protocol
steps makes 50 a better sub-group size than 4 for S_CoordP. The recommended
sub-group size for S_CoordP when the logical tree does not match the physical
network tree is as large as possible as long as the ACK implosion problem does not
occur.

When the group size is less than 150, CoordP even performs better than

124

S_CoordP with either sub-group sizes. Again this observation shows that there
is a trade-off between the sub-group size and the height of the logical tree. A
large sub-group size might trigger the ACK implosion problem which will increase
TPR whereas a small tree height decreases the number of protocol steps which will
in turn decrease TPR. For a fixed group size, the larger the sub-group size, the
smaller the tree height will be. Our suggested principle is to use a sub-group size
as large as possible in order to reduce the tree height.

Figure 5.32(B) shows TPR for FullDist and its corresponding structured pro-
tocol S_CoordP with sub-group sizes being 4 and 50. We see a sharp increase in
TPR for FullDist because of implosion at every member when n is large. TPR for
S_CoordP only increases slightly because the reduced number of messages each
member needs to handle eliminates the implosion problem.

The results for Train and its structured version S_Train are presented in
Figure 5.33(A). There is no message implosion problem in any of the protocols.
The TPR is proportional to the number of steps in the protocol. Train takes n
steps with n ranging from 50 to 500. S_Train with sub-group size 4 takes bp + 2
steps, where the branching factor of the tree b = 3 and the height of the tree p varies
from 4 to 6, as a result the number of steps ranges from 14 to 20. S_Train with
sub-group size 50 takes 49 steps to go up the bottom level of the logical tree, and
n/50 steps to get information from all the sub-groups. Therefore the total number
of steps is 49 + n/50 which ranges from 50 to 59.

This explains why S_Train scales significantly better than Train. And between
the two versions of S_Train, we recommend the one with a smaller sub-group size

because the number of steps needed is smaller therefore the TPR is smaller.

125

The results for Gossip and its structured version S_Gossip are presented in
Figure 5.33(B). Even though only a one-level tree hierarchy is used in S_Gossip,

its TPR shows almost 6-fold improvement over Gossip when n = 500.

5.6 Comparison of Various Protocols in Dense
Groups with One Sender

In the following two sections, we present the simulation results when there is only
one sender. The protocols are still the same except the message sizes are reduced

by 4 x 49 = 196 bytes.

5.6.1 Total number of messages on all hops in the system

As mentioned in Section 5.3.3, we conducted simulations for the Gossip protocol
using the optimal step interval for each group size. When there is only one sender,
because the message size is smaller, the step interval is smaller as shown in Table 5.1
and Figure 5.11. Comparing Figures 5.10(B) and 5.11(B), we also notice that
more steps are needed to detect stability when there is only one sender. Since
each member sends out one random gossip message during each step interval, and
on average each message traverses the same number of hops, the total number
of messages on all hops is slightly larger when where is only one sender. This
observation is true for both Gossip and S_Gossip as shown in Figure 5.34.

For the rest of the protocols, the number of messages sent out in the system
and the number of hops each message traverses are independent of the message

size. Therefore the total number of messages is identical for different numbers

1
5x0

126

w »
o ES o
T T

(&)
T

- &) N
T T T

total number of messages on all hops
o n
o o

o

- Gossip

- — S_Gossip (subg=50)

o
T

IS
T

)
T

total number of messages on all hops
—_ w

- Gossip

- - S_Gossip (subg=50)

o

50 100 150 200 250 . 300
group size

I
350

I
400

I
450

500

o

o

50 100 150 200 250 . 300
group size

I
350

I
400

I
450 500

(A): with 50 senders (B): with one sender

Figure 5.34: Total number of messages on all hops for Gossip and S_Gossip with

different number of senders in dense groups.

of senders. The simulation results for the rest of the protocols are presented in

Figures C.1 to C.4 of Appendix C.

5.6.2 Average and maximum queue sizes over all the nodes
in the system

The average and maximum queue sizes recorded over all the network nodes during
the simulation are reported in this section. These numbers reflect how many mes-
sages are accumulated at each node at any moment. We present the average queue
size for different numbers of senders in Figure 5.35. We can observe the average
queue size is slightly larger for Gossip, S_Gossip, CoordP and FullDist when

there is one sender.

127

For Gossip and S_Gossip, the step interval is smaller when the number of
senders m = 1, and the number of messages sent out in the system during each
step is the same: n. Therefore, there are more messages sent out per unit time.
Recall in Section 5.1, we set the router processing time for a message to be 1
millisecond independent of message size. Routers still process messages with the
same speed, but there are more messages in the system per unit time. The natural
consequence of this is that more messages are accumulated at the routers, resulting
in a larger average queue size.

For CoordP and FullDist, the number of messages sent out in the system
is identical for different numbers of senders. When m = 1, the size of the ACK
message is smaller, therefore a message traverses a link in a shorter amount of
time. The router processing time is the same independent of message size. During
the 1 millisecond it takes a router to process a message, more messages arrive at
the router because of the shorter time period messages spent on the links. This
causes more messages to accumulate at the routers waiting for processing.

For Train, S_Train, and S_CoordP, the average queue size is 0 for either
number of senders because of the small number of messages each node needs to
handle.

The maximum queue size shows the same trend as the average queue size and

is displayed in Figure 5.36.

5.6.3 Time-per-round (TPR)

Compared with 50 senders, when there is only one sender, for Gossip and S_Gossip

the step interval is smaller, the gossip message size is smaller, a message traverses

128

=) N
T T

average queue size
©

- FullDist
- — CoordP
— . — Gossip
S_Gossip (subg = 50)

average queue size

=)

©

)

IS

N

=)

N
T

- FullDist
- - CoordP
- . — Gossip k!
S_Gossip (subg = 50) -
—x— Train, S_CoordP (subg = 4) -7
S_Train (subg.<4) PPl

50 100 150 200 250 300 350 400 450 500
group size

(A): with 50 senders

(B):

50 100 150 200 250 300 350 400 450 500
group size

with one sender

Figure 5.35: Average queue size over all the nodes with different numbers of senders

for the basic and structured protocols in dense groups.

180

160

® o n
=) =) =]
T T T

max queue size
(o2}
(=]

- FullDist

- — CoordP 160
- .- Gossip q 140
S_Gossip (subg = 50) ©120

—Xx— Train, S_CoordP (subg = 4) B
S_Train (subg = 4) 0 1 g™

- - (0]
- 1 28

x
T T Tl PR gso
R 40
B 20

- ‘FuIIDist

- — CoordP

- . — Gossip
S_Gossip (subg = 50)

—x— Train, S_CoordP (subg = 4)

S_Train (subg = 4)

50 100 150 200 250 300 350 400 450 500
group size

(A): with 50 senders

(B):

50 100 150 200 250 300 350 400 450 500
group size

with one sender

Figure 5.36: Maximum queue size over all the nodes with different numbers of

senders for the basic and structured protocols in dense groups.

129

30
1201 K —— Train
—— Train

. Gossip
—0- FullDist (last)
—x— FullDist (first)
-x— CoordP

N
a
T

. Gossip

o
=]

—0— FullDist (last)
-x— FullDist (first)
—x— CoordP

20

®
=]
T

o
=]
T

\
\

=)
T

Time-Per-Round (sec)

Time—Per—Eiound (sec)

20-

0 | | I I I I I T 1 I I I I I
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

group size group size
(A): with 50 senders (B): with one sender

Figure 5.37: Time-per-round (TPR) with different numbers of senders for the four

basic protocols in dense groups.

a link in a shorter amount of time, and a message is processed by a node faster. All
these factors lead to the result that TPR is significantly smaller when the number
of senders m = 1.

For the rest of the protocols, the message size is smaller, a message traverses a
link faster and is processed by a node faster. Therefore, the resulting TPR is a lot
smaller when m = 1 than when m = 50.

The TPR results for the four basic protocols are shown in Figure 5.37, and the
results for the three structured protocols are shown in Figure 5.38.

The TPR results for the basic and their corresponding structured protocols are

presented in Figures C.7 and C.8 of Appendix C.

130

14 T T T T T 2.5 T T T T T T
. S_Gossip (subg = 50) ... S_Gossip (subg = 50)
12) 1
—— S_Train (subg = 4) 2t —— S_Train (subg = 4)
o o
8§ - S CoordP (subg =4) b3 — S CoordP (subg = 4)
e) ©
c c 1.5+
S 8r >
[e] [e]
5 &
o 6 o
o o 1r
o o
£ 4 £
= =
05 T ——— e
Al] I
= - N
00 5‘0 100 15‘0 260 250 360 3‘50 460 45‘0 500 00 5‘0 160 1 éO 260 25‘0 360 35;0 460 4‘50 500
group size group size
(A): with 50 senders (B): with one sender

Figure 5.38: Time-per-round (TPR) with different numbers of senders for the three

structured protocols in dense groups.

5.7 Comparison of Various Protocols in Sparse

Groups with One Sender

The simulation results for sparse groups with the number of senders m =1 follow
the same trend as the results for dense groups with m = 1.

Compared with results for sparse groups with m = 50, the m = 1 case exhibits
the same characteristic as presented in Section 5.6. The total number of messages
on all hops in the system is slightly larger when m = 1 for Gossip and S_Gossip,
and remains the same for the rest protocols. The maximum and average queue sizes
are slightly larger when m = 1 for all the protocols. And the TPR is significantly
smaller when m = 1 for all the protocols.

The detailed results are presented in Figure D.1 to D.12 of Appendix D.

131
5.8 Summary

This chapter compares different stability detection protocols under a set of WAN
environments using simulation. A set of performance metrics are used to evaluate
the protocols.

There are two input parameters for the Gossip protocol — the subset size
and the step interval. Simulation results show that for each subset size, there is a
smallest acceptable step interval such that any step interval smaller than this limit
would cause significant increase of message burstiness which in turn will damage
the performance of the Gossip protocol. Simulation results also show that for any
subset size, there is a window of step intervals in which one can select any step
interval to achieve a near-minimum TPR. An algorithm is presented to find this
optimal range of step intervals.

Under different simulation tests, there are trade-offs between different proto-
cols, nevertheless we can draw certain conclusions for protocols under different
conditions.

The basic protocols can be listed in the following order according to decreasing
number of messages on all hops in the system: FullDist, Gossip, Train and
CoordP. They can be listed in the decreasing order of maximum and average
queue sizes as follows: FullDist, CoordP, Gossip and Train. The queue size
in Gossip is smaller than CoordP, because in all the simulations, the maximum
queue size is limited to 64 messages for the Gossip protocol. According to TPR,
these protocols can be listed in the following decreasing order: Train, Gossip,
FullDist and CoordP.

The structured protocols always perform better than their corresponding basic

132

protocols, as they use less number of messages and cause less congestion on the
network.

When the multicast group size is small, there is no danger of the message implo-
sion problem, the desired stability detection protocols are CoordP, FullDist and
Train. The reason is that these protocols are deterministic, in the sense that after
a predetermined number of steps, they are guaranteed to detect message stabil-
ity. On the other hand, when the group size is large, the recommended protocols
are GGossip and the structured protocols, because they effectively eliminate the

implosion problem.

Chapter 6

Stability Triggering Mechanism

After studying the various stability detection algorithms in detail in the previous
chapters, we now look at the triggering problem for these protocols. The triggering
mechanism addresses the question of how often the protocols should be executed
in order to release stable messages from buffers before buffer overflow happens.

Assume that all members are sending messages at the same rate r messages
per second, and that each member has an output buffer of size ¢ messages and an
input buffer of size ng messages. Notice that when each member is sending at the
same rate, during the time each sender sends g messages, it could at most receive
ng messages from all the n members. The corresponding time-per-round (TPR)
(in seconds) for the stability detection protocol is expressed as f = f(r), a function
of data message rate r messages per second. This is a naive assumption. But we
do know that the time for one round of the stability detection protocol to complete
is influenced by traffic load generated by data messages. We can say that f(r) is
a complicated function of which r is an important input variable.

We designate one node in the group to trigger the stability detection proto-

133

134

col. The triggering mechanism works as follows. When the output buffer at the
triggering node reaches X messages, the stability detection protocol is triggered.
During the time period f(r) of a TPR, the number of data messages sent out will
be @ = rf(r). Then the number of messages in the triggering node’s output buffer
will be X + @, where X is the number of existing messages before the trigger, and
@ is the number of newly sent messages since the trigger.

Suppose aX (0 < a < 1) messages are stable at the end of a round of the
stability detection protocol. In other words, 1 — « is the failure ratio which stands
for the percentage of data messages lost'!. Then aX out of the X messages can
be released from the top of the output buffer. If (1 — @)X + Q < X, then the
triggering node waits until the number of messages in its output buffer reaches X.
If (1—a)X+@Q > X, then the triggering node starts the next round of the stability
detection protocol. When the data messages fill up the buffer, all the senders stop
sending data messages.

In this triggering mechanism, the message number X in the triggering node’s
output buffer should be chosen, given the measured TPR f(r) for different proto-
cols. If X is too large, multicast group members will constantly be forced to stop
sending data messages since their buffers are full. If X is too small, the stability
detection protocol will be triggered too often and the total number of messages
in the system will increase unnecessarily. Therefore an optimal value of X should
be determined according to the following set of constraints enforced on X by the

buffer size:

e The first round of stability detection protocol starts when there are X mes-

'We do not assume that the FIFO property is provided by the underlying protocols here.
When FIFO is assumed, « = 1, and it is a special case in the following discussion.

135

sages in the buffer, therefore,

is a necessary condition.

o At the end of the first round, there are X + rf messages in the buffer, so
X+rf<yg (6.2)

must be satisfied. This makes Equation 6.1 redundant.

e After the first round, X messages can be released from the sender’s output
buffer. If (1 —)X +rf < X, then the sender waits until X is filled to start
the next round, so X +rf < g is required. If (1—a)X +rf > X, the second
round is trigger immediately, r f messages are newly sent during the second

round, in order to prevent buffer overflow,
l-a)X+rf+rf=1-a)X+2rf<g (6.3)
is needed.

Assume each member sends K messages in the test, and the sending rate is
r when the output buffer is not full. The optimization problem can be described
as follows. Given output buffer size g, message sending rate r, and TPR f =
f(r), choose X to minimize the total number rounds of the stability detection
protocol T(X) = %, or, equivalently, to maximize X, subject to the following

two constraints:

X+rf<g (i)

136

l-—a)X+2rf<g (ii)

(i) and (ii) can be simplified to

X<g-rf (iii)
X< 791__2;][(iv)

which result in the optimal X = min(g — rf, 91__2;f). When given some special

values of a, the optimal X becomes the following:
e When a =0, X = min(g—rf,g—2rf)=9g—2rf.
e When a = 0.5, X = min(g — rf,2(g — 2rf)).
e When a =1, 2rf < g is satisfied by the assumption, hence X = g — rf.
In general,
e When a =0, the optimal X =g — 2rf.

e When a =1, the optimal X =g —rf.

. _ . —2rf
o When 0 < a < 1, the optimal X = min(g — rf, =05).

Given the total number of messages K sent by each member, failure rate (1—a)

and the optimal X, the minimum number of tests needed is 7(X) = L. If a
smaller time-to-stable (TTS) is needed, X has to be reduced, which results in an
increase of T'(X).

In order to gain more intuition about X, the optimal number of messages in the
output buffer when a round of the stability detection protocol should be triggered,

we examine the behavior of X for a given set of parameters. Most messages on the

Internet are around 500 bytes. For simplicity, we assume each data message has

137

620

540

10 20 30 .40 50 60 70 80 90 100
msg sending rate (# of msgs per second)

Figure 6.1: Optimal number of messages in the output buffer when the stability

detection protocol should be triggered (o =1) .

a fixed size of 500 bytes. Assume the output buffer size for each group member
is 320K bytes, which can store g = 320 x 103/500 = 640 data messages. Assume
the TPR for the stability detection protocol is f = 2 seconds. We also assume the
message sending rate varies from 10 to 100 messages per second.

When a = 1, the optimal value of X is plotted in Figure 6.1. When o = 0.2,
X is plotted in Figure 6.2.

In a real network environment, messages might get lost in the network be-
cause of buffer overflow at some intermediate nodes, and later get retransmitted.
This and other non-deterministic factors will add more delay to the TPR and
TTS. Therefore, to use the triggering algorithm efficiently in practice, users should
measure the f(r) in the current system, then set X, @, and g accordingly. Our
simulation results presented in Chapter 5 are useful because they provide a lower
bound in TPR f(0) under the given tree shaped network structure. They also pro-

vide some insight on how to choose stability detection algorithms under different

138

N IS

o a

=] =)
T T

optimal X (# of msgs in output buffer)

W
o
=]

10 20 30 .40 50 60 70 80 90 100
msg sending rate (# of msgs per second)

Figure 6.2: Optimal number of messages in the output buffer when the stability

detection protocol should be triggered (o = 0.2).

circumstances.

6.1 Summary

After studying the various stability detection algorithms in detail in the previous
chapters, this chapter studies the triggering problem for these protocols. The
triggering mechanism addresses the question of how often the protocols should be
executed in order to release stable messages from buffers before buffer overflow
happens.

This triggering mechanism is formulated as an optimization problem and the

solution is derived accordingly.

Chapter 7

Discussion and Conclusions

Message stability detection is an integral part of garbage collection in reliable mul-
ticast protocols. In addition, it can support atomic message ordering as mentioned
in Section 2.3. For example, in a stock trading application, to be fair to all the
traders, a message is not delivered until it is received by all the group members.
Message stability detection protocols also play an important role in distributed
data base management systems, and parallel computing systems.

The basic stability detection protocols have their limitations in scalability. By
employing a tree structure in the basic protocols, we have derived three structured
protocols with significant increase of scalability.

There are some techniques commonly used to improve the performance of stabil-
ity detection protocols. Messages used for stability detection can be piggybacked
on data messages to reduce traffic load in the network and the time processors
spend handling messages received; only the changed sequence numbers need to
be exchanged among group members in order to reduce the message size; some

senders can be grouped together sharing one series of sequence numbers to reduce

139

140

the size of the sequence number array (or stability matrix) kept at each member,
therefore the size of ACK and INFO messages. In the extreme case, when the sta-
bility detection protocol is combined with a total ordering protocol, only 4 bytes
of information is needed from each member, and the message size is reduced to a
minimum. These techniques can be applied to both the basic and the structured
protocols to further improve their performance.

Message stability detection protocols are designed to discover the largest se-
quence number from each sender such that each message with a smaller sequence
number has been received by all the group members. All the protocols follow the

same general procedure:

e FEach member keeps a sequence number array in which it stores the largest
sequence number from each sender such that all messages with smaller se-

quence numbers have been received.

o A stability array is the element-wise minimum of the sequence number arrays
from all the members. Each protocol uses different mechanisms to collect this

stability array and to distribute it in the group.

In reliable multicast protocols, there are three ways for message receivers to

detect missing messages.

1. Receivers detect gaps in sequence number space.

2. The sender periodically multicasts the sequence number of the last message
sent out in a burst, because when the last message is lost, it is not detectable

using the first method.

141

3. Receivers exchange information about the largest sequence number they have

seen from each sender.

With a slight change in the definition of sequence number array, the stability
detection protocols become error detection protocols. The general error detection

mechanism works as follows:

e FEach member keeps a high-end sequence number array in which it stores the

largest sequence number from each sender.

e An error detection array is the element-wise maximum of the high-end se-
quence number arrays from all the members. Each protocol uses different

mechanism to collect this error detection array and distributed it in the

group.

We have presented simulations of the set of representative stability detection
protocols in a WAN environment with restricted bandwidth. Different network
characteristics will affect the behavior of these protocols, in terms of TPR and
queue sizes recorded over the nodes in the network. However, we believe that
the analysis of scalability of different protocol categories is valid in other types of

network environment as well.

Appendix A

Simulation Results for Gossip in

Dense Groups

142

143

80 T T 700
—X— subset size =5 —X— subset size =5
or —0- subsetsize =4 | geoop -o- subset size = 4 1
) — - subsetsize =3 = —.— subsetsize =3
N 60 — — — subset size = 2 13 .
» ——— subset size = 1 Os00r — — — subset size = 2 4
gf,o, o \ ——— subset size = 1
o Qaoop i
> —
oor %) \\
()] \
% ol 8 300 N
5 E
200 T
=200 =
© @
10k E 100+ N . o eTeeTemeemeoo o
00 2 A‘t 6 8_ 10 12 1‘4 16 18 20 00 é A‘t é é 1‘0 1‘2 1‘4 1‘6 1‘8 20
step interval (sec) step interval (sec)
(A): average queue size (B): maximum queue size

Figure A.1: Simulation I (no message loss) with a dense group of size n = 200

(part I).
60 R
_x— subset size =5 120 -X— subset size =5
s50F —0- subset size = 4 i -0- subset size =4
—.— subsetsize =3 100 —.— subsetsize =3 1
g, - - — subset size = 2 - — — subset size = 2
[T — slbsetsize =1 O s} ——— subsetsize =1
n o)
S 2
301 T
C 60
* o
S —
8 201 q a0l
10+ 1 20
00 é A‘t é é 1‘0 1‘2 1‘4 1‘6 1‘8 20 00 é A‘t é é 1‘0 1‘2 1‘4 1‘6 1‘8 20
step interval (sec) step interval (sec)
(A): number of steps in a round (B): time-per-round (TPR)

Figure A.2: Simulation T (no message loss) with a dense group of size n = 200

(part II).

144

18 T T T T T
‘ -x— subset size = 5 wol]
16 —0— subset size =4 1 ©
\ - . - subset size = 3 Q. |
Qrar — — —subset size =2 1’5
‘D \ ——— subset size = 1 L
w2k D sof i
q) .
3 [0} —x— subset size =5
Q1o % 7 —o— subset size = 4 i
o © 40 —.— subsetsize =3 i
S 3 - - — subset size = 2
© 335f - subset size = 1 B
2 =
© 4t c 37]
1S
oL .] 251
2 S S
00 2‘ A‘t é 2‘3 1‘0 1‘2 1‘4 1‘6 1‘8 20 0 2 4 6 8. 10 12 14 16 18 20
step interval (sec) step interval (sec)
(A): average queue size (B): maximum queue size

Figure A.3: Simulation II (queue size = 64 and 2 lost messages per step) with a

dense group of size n = 200 (part I).

120F —x— subset size =5
351 —X— sub-gsize =5 1 ;
{ b 9 . 4 —0— subset size =4
—0- sub-gsize =)
301 9 i 100 —.— subsetsize =3 1

—.— sub-gsize =3
— — — sub-gsize =2
——— sub-gsize =1

— — —subset size = 2
——— subset size =1

n
a
T

total # of steps

201

0 I I I I I I I
12 14 16 18 20 0 2 4

0 2 4 6 8 10 6 8 10 12 14 16 18 20
step interval (sec) step interval (sec)
(A): number of steps in a round (B): time-per-round (TPR)

Figure A.4: Simulation II (queue size = 64 and 2 lost messages per step) with a

dense group of size n = 200 (part II).

queue size

%€

. aveLa

o

145

—X— subset size =5
r —0- subset size =4
—.— subset size =3
r — — — subset size = 2
——— subset size = 1

ze recluire

S
S

max queue Ssi

o
=)

700

o
S
S

w
=]
=)

N
=]
=)

—X— subset size =5
—0- subset size =4 1
—.— subsetsize =3
— — — subset size = 2 B
——— subset size = 1

8 10

(A): average queue size

12

6
step interval (sec)

14 16 18 20

8 12 14 16 18 20

6 10
step interval (sec)

(B): maximum queue size

Figure A.5: Simulation III (2 lost messages per step) with a dense group of size n

= 200 (part I).

60

t%tal # of ste

—X— subset size =5
—0- subset size = 4
—.— subsetsize =3
— — — subset size = 2
——— subset size = 1

120

40

20

—x— subset size =5
—-0— subset size = 4
—.— subsetsize =3
— — — subset size = 2
——— subset size =1

8

6 : {0
step interval

12

I
14 16 18 20

(sec)

(A): number of steps in a round

6 8_ 10 12 1; 16 18 20
step interval (sec)

(B): time-per-round (TPR)

Figure A.6: Simulation III (2 lost messages per step) with a dense group of size n

= 200 (part II).

Appendix B

Simulation Results for (Gossip in

Sparse Groups

146

147

1200
1200 —Xx— subset size =5 1 —X— subset size =5
-0- subsetsize = 4 8 1000 —-0— subset size = 4 g
@ 1o0f - sugsei Size = g = — .- subset size =3
N - — — subset size = .
” ——— subset size = 1 8 8001 ~~ ~ Subset s!ze -2 ,
[CRPNE et ——— subset size = 1
3 o)
S N
o o) 600
o 60 [0}
(o)) >
< (0]
5 a0l 8‘ 400
>
© 3
20k £ 2001
O0 2 4 6 8. 10 12 14 1‘6 18 2C O0 é A‘t é é 1‘0 1‘2 1‘4 1‘6 1‘8 20
step interval (sec) step interval (sec)
(A): average queue size (B): maximum queue size

Figure B.1: Simulation I (no message loss) with 20 sparse groups of size n = 200

(part I).

—X— subset size =5 1201 -X— subset size =5
100} —0- subset size = 4 j -0- subset size =4
— . — subset size =3 100 — .- subsetsize =3 1
8wl T suk;se: s1ze = ? | - — — subset size = 2
2 ~ subseisize= O eof | |\-—— subset size =1
17} D
“— »n
O 60 , E:’ sl
5 z
= 40t 4
9 401
20 1 20k 1
O0 é A‘t é é 1‘0 1‘2 1‘4 1% 1/% 20 O0 é A‘t é é 1‘0 1‘2 1‘4 1‘6 1‘8 20
step interval (sec) step interval (sec)
(A): number of steps in a round (B): time-per-round (TPR)

Figure B.2: Simulation I (no message loss) with 20 sparse groups of size n = 200

(part II).

148

18 T T T T T 65 T I T T T T Y T T
—X— subset size =5 R T T T T T
16 . 1 60 1
—0- subset size =4 8 \
\
D 14f — . — subset size =3 4 =ss \]
N) g_ '
DL — — — subset size = 2 1 sl \ |
(0] . st \
= ! ——— subset size = 1 o |
g 10- ' N 451 . 4
o ‘» —x— subset size = 5
@ 8 D40 —0- subset size = 4 1
(o)) = :
© [} — .- subsetsize =3
o el - — — subset size = 2 i
% ab éao, ——— Ssubset size = 1 i
S
-] N 25 —
0 20 L L L L L L L L

I
12 14 16 18 20

0 2 4 6 8. 10 12 14 16 18 20 0 2 4 6 8. 10
step interval (sec) step interval (sec)
(A): average queue size (B): maximum queue size

Figure B.3: Simulation II (queue size = 64 and 2 lost messages per step) with 20

sparse groups of size n = 200 (part I).

45¢ —x— subset size = 5 | 1 -x- subsetsize =5
—0- subset size = 4 —-0- subsetsize =4
4or —.— subsetsize =3 il 100 —.— subsetsize =3 1
was| — — — subset size = 2 i L ——
o ——— subset size = 1 — subset s!ze =2
S0k] O sor ——— subset size = 1
17 o}
“— »n
O 25+ i E
H 60
— ool 1o
E 20 =
Ot 1 40+
10 T
20- T
5 T 7
0O é “1 é é 1‘0 1‘2 1‘4 1‘6 1‘8 20 0O é “1 é é 1‘0 1‘2 1‘4 1‘6 1‘8 20
step interval (sec) step interval (sec)
(A): number of steps in a round (B): time-per-round (TPR)

Figure B.4: Simulation II (queue size = 64 and 2 lost messages per step) with 20

sparse groups of size n = 200 (part II).

149

140 1200
—X— subset size =5
120 —-X— subset size =5 19 4000f —-0- subset size = 4 ,
0} -0- subset size = 4 L — . — subset size = 3
N —.— subsetsize =3 12 o ize =
@' — - — subset size = 2 el subset size = ? |
e ——— subset size = 1 e ——— subset size =
D soF e
3 -—
o) 600
(0]
% 60 8
g 8_ 400+
40-
>
© 3
20l E 200
0 0 -
0 2 4 6 8_ 10 12 14 16 18 2C 0 2 4 6 8_ 10 12 14 16 18 20
step interval (sec) step interval (sec)
(A): average queue size (B): maximum queue size

Figure B.5: Simulation III (2 lost messages per step) with 20 sparse groups of size

n = 200 (part I).

—Xx— subset size =5 1201 —x— subset size =5
100k —0— subset size =4] -0- subset size = 4
—.— subsetsize =3 100f —.— subsetsize =3 1

— — —subset size =2
——— subset size =1

— — — subset size = 2
——— subset size =1

80

40-

total # of steps

401

20 b

L L i i i X 5 0 L L L L L L L L L

6 8_ 10 12 14 16 18 20 0 2 4 6 8_ 10 12 14 16 18 20
step interval (sec) step interval (sec)
(A): number of steps in a round (B): time-per-round (TPR)

Figure B.6: Simulation III (2 lost messages per step) with 20 sparse groups of size

n = 200 (part II).

Appendix C

Simulation Results for Dense

Groups with One Sender

150

151

10
5% 5000
w45- 1w
845 & 4500
2 ; 2
— 4 - FullDist | = 4000}
C) ©
S85r -x— Gossip 1 Sasool —-o— Train
(%] . (%]
S ~0~ Train 1 Saooof :
& @ - — CoordP
Basp - — CoordP 19
3 & 2500+ -
E of 1 E
S 52000 i
5150 1%
o Q1500+ -
E 1r 1
]
c € 1000t g
Ichads T8
b I
2 L © s00- , |
‘ ‘ s ‘ ‘ ‘ ‘ s ‘ 0 ‘ ‘ s ‘ ‘ ‘ ‘ s ‘
0 50 100 150 200 250 300 350 400 450 50(0 50 100 150 200 250 300 350 400 450

group size

(A): four basic protocols

Figure C.1: Total number of messages

dense groups with one sender.

3500

group size

: basic protocols (in detail)

500

on all hops for the four basic protocols in

3000

N

G

=3

=)
T

N

=]

S

=]
T

1500

o

S

=)
T

total number of messages on all hops
o
o
o

3_5><10
a
—0— S_Train (subg=4) 1 9 3 —x— S_Gossip (subg=50) 1
=~ 5_CoordP (subg=4) | 525, —o- S_Train (subg=4) |
S
3 - S _CoordP (subg=4)
& 2t 1
(7]
(%]
Q
i 51,5, i
o
9]
12t i
]
c
1 Sost i
L
1 1 1 1 1 1 1 1 1 F e ——— i 1 1 1 1 1
00 50 100 150 200 250 300 350 400 450 500 00 50 100 15 200 250 300 350 400 450 500
group size group size
(A): sub-group size = 4 (B): sub-group size = 50

Figure C.2: Total number of messages on all hops for the three structured protocols

in dense groups with one sender.

152

4000 510
2] [2} L — 1 4
Q500 - CoordP i 8_4-5 FullDist
e e L _ - |
3000l —— S_CoordP (subg=4) 1 = ! S_CoordP (subg=4)
c C3s5l]
o o
192 w
@ 2500 1 o 3l i
()] (o)}
3 3
& 2000+ | gy |
£ - E ,l |
© 1500} -7 { ©
[0 _-7 D15+ B
o - o
E 1000f T 1 E | |
= - =
% 500 /,/’/ , %0»5’ 1
/// or = T |
00 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
group size group size
(A): CoordP and S_CoordP (B): FullDist and S_CoordP
Figure C.3: Total number of messages on all hops for the basic and their corre-
sponding structured protocols in dense groups with one sender (part I).
5000 610"
& 4s00- - Train a8
2 S5t 1
= 4000f - — S_Train (subg=4) 1 = - Gossip
c L | c
33500 3,4 r - — S_Gossip (subg=50) B
8‘)3000 r 1 g‘)
©] -
n (9] -
B 2500+ 1 @l]
£ | E
5 2000+ Tl s
o] o2r .
O 1500+ B Qo
£ £
> >
< 1000 B [«
= =N |
O s00F 1 8
00 5‘0 160 150 260 25‘0 360 35‘70 460 4‘50 500 00 5‘0 160 150 260 25‘0 360 35‘70 460 4‘50 500
group size group size

(A): Train and S_Train

(B):

Gossip and S_Gossip

Figure C.4: Total number of messages on all hops for the basic and their corre-

sponding structured protocols in dense groups with one sender (part II).

=) N

average queue size
©

Figure C.5: Average and maximum queue

30

N
a

n
=]

Timg—Per—Eiound (sec)

153

180

- FullDist - FullDist

- - CoordP 1 —— CoordP
- . — Gossip 1 140 - . — Gossip 1
S_Gossip (subg = 50) SR R S_Gossip (subg = 50)

-x= Train, S_CoordP (subg = 4) o N -x— Train, S_CoordP (subg = 4)
S_Train (subg <4) P 1 g S_Train (subg = 4) |
7 R % 80 -]
L7 - x
7 P 1 g 60 s e s s s E
<_7/~/~>”//4‘/7 1 40 i
//// - - q 20 4
0
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
group size group size

(A): average queue size

(B):

maximum queue size

sizes over all the nodes for the basic and

structured protocols in dense groups with one sender.
T 2.5
- - Train , S_Gossip (subg = 50)
Gossip e —— S _Train (subg = 4)]
—o— FullDist (last) 7 g
o 7 1 e - S_CoordP (subg = 4)
-x— FullDist (first) L k)
- c15 4
—-x— CoordP //// | é
LT 5
-7 a i g
’ 1 é
. £
.7 =
/// 05 - =
e i e
50 100 1 éO 260 25‘0 360 35;0 460 45‘30 500 00 50 160 1 éO 260 25‘0 360 35;0 460 45‘30 500
group size group size

(A): four basic protocols

(B): three structured protocols

Figure C.6: Time-per-round (TPR) for the basic and structured protocols in dense

groups with one sender.

154

2 5 T T T
—0— FullDist (last)
1.8r - CoordP 1 45 |
. —x— FullDist (first)

161 4 r 4
> - — S_CoordP (subg = 4) Syl - — S_CoordP (subg = 4) |
D14+ 4 [ORS
2 2
Biaf 129 il
> >
[e] Q25 B
oo 4 @

| |
[o 2
o 08r 1 a
o 150 i
g06r 1 E
= =R 1
0.4f 1
0.5 T
02 S
,,,,, -———— 07 4
O(; 50 160 1 éO 260 25‘0 360 35;0 460 4‘50 5})0 0 50 160 1 éO 260 25‘0 360 35;0 460 4‘50 500
group size group size
(A): CoordP and S_CoordP (B): FullDist and S_CoordP

Figure C.7: Time-per-round (TPR) for the basic and their corresponding struc-

tured protocols in dense groups with one sender (part I).

30 T 30 T
- Train - Gossip
25F . - 250 . bl
— — S_Train (subg = 4) - — S_Gossip (subg = 50)
2 2
&20* T &20* T
e) e)
c c
3 3
°|: 15[1 °|: 15[1
9] 9]
& ol 1 Bt 1
[0] [0]
E E
[[

o
T
L

o
T

oF B oF 1
0 5‘0 160 150 260 25‘0 360 35;0 4(;0 4‘50 500 0 5‘0 160 150 260 25‘0 360 35;0 4(;0 4‘50 500
group size group size

(A): Train and S_Train (B): Gossip and S_Gossip

Figure C.8: Time-per-round (TPR) for the basic and their corresponding struc-

tured protocols in dense groups with one sender (part II).

Appendix D

Simulation Results for Sparse

Groups with One Sender

155

156

5 6000 T
< 4 - FullDist | < so00r - FullDist]
= . =
35 —X— 4 < —X— i
s x— Gossip § ool x— Gossip |
1] . [%2] .7
@ 3f —0— Train 1 @ . -
o o) —0- Train -
© [P
Basp - — CoordP 19 3000 e
] [Chsand] — - CoordP -]
E af 1€ -
5 5 e
515¢ 1 & 2000k 7]
ko] o) -
€ 1t 1€ -
=} > -
c c _-
EO.E* A 51000* /,/ 1
o o -7
2 L o 7
0 50 100 150 200 250 . 300 350 400 450 50(0 50 100 150 200 250 . 300 350 400 450 500
group size group size

(A): four basic protocols

Figure D.1: Total number of messages

sparse groups with one sender.

(B): basic protocols (in detail)

on all hops for the four basic protocols in

x 10

6000

—-0— S_Train (subg=4)
50001 - S_CoordP (subg=4)

IS
o
S
=)
T

N

Q

=]

=]
T

1000

total number of messages on all hops
W
o
o
o

-x— S_Gossip (subg=50)
- S_CoordP (subg=50)
—-0— S_Train (subg=50)

I
&
T

!

w
T
L

n
S
T
L

o
T
I

o W’*’%

total number of messages on all hops
n

o
o
T

0 50 100 150 200 250 300 350 400
group size

(A): sub-group size = 4

I
450

500 0 50 100 150 201 250 300 350 400 450 500
group size

(B): sub-group size = 50

Figure D.2: Total number of messages on all hops for the three structured protocols

in sparse groups with one sender.

157

6000 5210
§ -x— S_CoordP (subg=4) §4.57 — FullDist 1
%sooof - - S_CoordP (subg=50) % af X S_CoordP (subg=4)]
- CoordP

s S350 - — S_CoordP (subg=50) 1
o 4000 0
9] O 3| 1
D ()]
2 2
&8 3000 825r]
€ £, |
S ks
& 2000 D150 —
Q Q9
1S 1S
> = 7
c c
T 1000 T L]
§ § 0.5

of e X - - - ¥ ——-—==5 X— == —— = — % - - = - = -

00 5‘0 160 15‘0 260 250 360 3‘50 460 45‘0 500 0 5‘0 160 15‘0 260 250 360 3‘50 460 45‘0 500
group size group size
(A): CoordP and S_CoordP (B): FullDist and S_CoordP

Figure D.3: Total number of messages on all hops for the basic and their corre-

sponding structured protocols in sparse groups with one sender (part I).

4
5000 6f 0

R 4500 — Train Q - Gossip

g [9)

2 . c5F . 7

= 4000f -X— S_Train(subg=4) 1 = - — S_Gossip (subg=50)

c . c

S 3500 - — S_Train (subg=50) 17 ©

g 18] ’

3000 -~ 1 o -

I o -

0 a -

B 2500+ 1 83 -7]

1S £ P

%5 20001 15 e

o o2t P |

© 1500 1 2 -7

£ E -7

S 2 -7

€ 1000+ 1 £ _oT

® g 2 |

S s00f 1 2 =

o

I I I I I I I I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
group size group size

o

(A): Train and S_Train (B): Gossip and S_Gossip

Figure D.4: Total number of messages on all hops for the basic and their corre-

sponding structured protocols in sparse groups with one sender (part II).

158

180 T T
- FullDist
160
— - CoordP
140
— . — Gossip
GNJ120*)
@ Train
© 100
>
g
o 80
x
g 60 T
,
w0l - -
, -
201 7
ok

I
0 50 100

I
150

I
200

I
250

I
300

group size

I
350

I I
400 450 500

Figure D.5: Maximum queue size over all the nodes for the four basic protocols in

sparse groups with one sender.

70 80
ol - S_CoordP (subg = 4) | 70k - S_CoordP (subg = 50) i
-~ S_Train (subg = 4) col S_Gossip (subg = 50) |
50 4
8 e D 50F - = S_Train (Subg = 50)
4o - {1 5
o et % 4ol
B30l - ;3
o - - Tyl
g - 5
201 e 4
£ P E !
10+ e - 1 1ok
o -7 A or
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

group size

(A): sub-group size = 4

(B):

group size

sub-group size = 50

Figure D.6: Maximum queue size over all the nodes for the structured protocols

in sparse groups with one sender.

159

10
9r - FullDist]
8F - - CoordP LA
z
. e
o 7T — . — Gossip e B
N 47
[2] H Py
6 . -
o Train L
O 50 c7 i
S5 _ .
(e _F L7
o B 7
o 3 - P —
> -7 7
® | p 7]
/ >
1+ ’ 7 4
or = - .|
0 50 100 150 200 250 300 350 400 450 500

group size

Figure D.7: Average queue size over all the nodes for the four basic protocols in

sparse groups with one sender.

3 6
_ S _CoordP (SUbg — 4) - S_CoordP (subg = 50)
25- . 1 5-) i
—— S Train (subg = 4) S_Gossip (subg = 50)

o o4} — — S_Train (subg = 50) J
No2r 7 N
w [%2]
[[

] _ >3 3k 4
S5t -1 3
o Pas o
[e [

(@] Phe o2 ~
o L .- | ©
= 1 - —
9] - 9]
> - >

© - - © 1k 4

0.5F e i
- [] e e
oF =_ _ _ - - 4
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

group size

(A): sub-group size = 4

(B):

group size

sub-group size = 50

Figure D.8: Average queue size over all the nodes for the structured protocols in

sparse groups with one sender.

160

30

n
o
T

201

Tim§—Per—|j{ound (sec)

—— Train -

Gossip e 1
—o- FullDist (last) -7
—x— FullDist (first) -
—x— CoordP e

%éi///i//:///‘

’ | | I I I
50 100 15 200 250 300 350 400 450 500

group size

Figure D.9: Time-per-round (TPR) for the four basic protocols in sparse groups

with one sender.

18 - — S_Train (subg = 4)

— S_CoordP (subg = 4)

[N
T

Time-Per-Round (sec)

Time—Per-Round (sec)

1 9r — — S_Train (subg = 50) 1
b 8r ... S_Gossip (subg = 50) 1
7F - S_CoordP (subg = 50) b

0 50 100 150 200 250 . 300
group size

(A): sub-group size = 4

0 I

I I I I I I
350 400 450 500 0 50 100 150 200

I I I I I
250 300 350 400 450 500

group size

(B): sub-group size = 50

Figure D.10: Time-per-round (TPR) for the structured protocols in sparse groups

with one sender.

161

3 T

- CoordP

&)

»
&
T

—o— FullDist (last) 1

- - S_CoordP (subg = 4) 1 —x- FullDist (first)
S_CoordP (subg = 50) - — S_CoordP (subg = 4)

S_CoordP (subg = 50)

N
o
T
IS
T

N
T
I
[
&) o
T T
I I

N
T
L

Time—Per—ﬁound (sec)

Time-Per-Round (sec)

0.5
05F
00 5‘0 160 1 éO 260 25‘0 360 35;0 460 4‘50 500 00 5‘0 160 1 éO 260 25‘0 360 35;0 460 4‘50 500
group size group size
(A): CoordP and S_CoordP (B): FullDist and S_CoordP

Figure D.11: Time-per-round (TPR) for the basic and their corresponding struc-

tured protocols in sparse groups with one sender (part I).

30 T 30 T
- Train - Gossip

N
a
T

= — — S_Gossip (subg = 50) |

S_Train (subg = 50) 1
— — S_Train (subg = 4)

n
=)
T
L
n
=)
T

=)
T
L

Tlme—Per—I_Round (sec)
Tlmg—Per—Bound (sec)

0 | - | I I I I I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
group size group size

(A): Train and S_Train (B): Gossip and S_Gossip

Figure D.12: Time-per-round (TPR) for the basic and their corresponding struc-

tured protocols in sparse groups with one sender (part II).

Bibliography

[ADKM92]

[AKS96]

[AMMS+95]

[AMMSB95]

[Bai75)

[BFC93]

[BFvRO7]

[BHGS7]

Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A commu-
nication sub-system for high availability. In Digest of Papers, The
22nd IEEE International Symposium on Fault-Tolerant Computing
Systems, pages 76-84, July 1992.

R. Ahuja, S. Keshav, and H. Saran. Design, implementation, and
performance of a native mode ATM transport layer. IEEE/ACM
Transactions on Networking, 4(4):502-515, August 1996.

Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and
P. Ciarfella. The Totem single-ring ordering and membership pro-
tocol. ACM Transactions on Computer Systems, 13(4):311-342,
November 1995.

D. A. Agarwal, L. E. Moser, P. M. Melliar-Smith, and R. K. Budhia.
Reliable ordered delivery across interconnected Local-Area Networks.
In Proceedings of the International Conference on Network Protocols,
pages 365-374, Tokyo, Japan, November 1995.

N. T. J. Bailey. The Mathematical Theory of Infectious Diseases and
its Applications (second edition). Hafner Press, 1975.

T. Ballardie, P. Francis, and J. Crowcroft. Core based trees (CBT):
An architecture for scalable inter-domain multicast routing. In Pro-
ceedings of ACM SIGCOMM’93, pages 85-95, San Francisco, October
1993.

R. Baldoni, R. Friedman, and R. van Renesse. The hierarchical daisy
architecture for causal delivery. In Proceedings of the 17th Interna-
tional Conference on Distributed Computing Systems, pages 570-577,
Baltimore, Maryland, May 1997.

P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Con-
trol and Recovery in Database Systems. Addison Wesley, 1987.

162

[BHO 98]

[Bir93]
[Bla9o]
[BST2]

[Car85|
[CdBMO4]

[CLZ87]

[CMO5]

[Com95]
[Cri9l]

[CT90]

[DC90]

[DEF+94]

163

K. P. Birman, M. Hayden, O. Ozkasap, M. Budiu, and Y. Minski.
Bimodal multicast. Technical Report CSTR98-1665, Cornell Univer-
sity, Department of Computer Science, January 1998.

K. Birman. The process group approach to reliable distributed com-
puting. Communications of the ACM, 9(12):36-53, December 1993.

R. E. Blahut. Digital Transmission of Information. Addison-Wesley,
1990.

B. Baker and R. Shostak. Gossips and telephones. Discrete Mathe-
matics, 2(3):191-193, June 1972.

R. Carr. The Tandem global update protocol, June 1985.

F. Cristian, R. de Beijer, and S. Mishra. A performance compari-
son of asynchronous atomic broadcast protocols. Distributed Systems
Engineering Journal, 1(4):177-201, 1994.

D. D. Clark, M. L. Lambert, and L. Zhang. NETBLT: A high
throughput transport protocol. In Proceedings of ACM SIGCOMM
Computer Communications Review, pages 353-359, August 1987.

F. Cristian and S. Mishra. The pinwheel asynchronous atomic broad-
cast protocols. In Proceedings of the Second International Symposium
on Autonomous Decentralized Systems, Phoenix, AZ, 1995.

Douglas E. Comer. Internetworking with TCP/IP (8rd Edition).
Prentice Hall, 1995.

F. Cristian. Asynchronous atomic broadcast. IBM Technical Disclo-
sure Bulletin, 33(9):115-116, February 1991.

D. D. Clark and D. L. Tennenhouse. Architectural considerations for
a new generation of protocols. In Proceedings of ACM SIGCOMM’90,
pages 200-208, Philadelphia, PA, September 1990.

S. E. Deering and D. R. Cheriton. Multicast routing in datagram
internetworks and extended LANs. ACM Transactions on Computer
Systems, 8(2):85-110, May 1990.

S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Lue, and
L. Wei. An architecture for wide-area multicast routing. In Pro-
ceedings of ACM SIGCOMM’9}, pages 126-135, London, September
1994.

[DGH*87]

[DLY3]

[DMS94]

[DS93]

[FIL*96]

[Fre]
[GT92]

[GVVRI6]

[han79)

[Hay98]

[Hof96a)

164

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic algorithms for
replicated database maintenance. In Proceedings of the Sizth ACM
Symposium on Principles of Distributed Computing, pages 1-12, Van-
couver, British Columbia, August 1987.

M. Doar and I. Leslie. How bad is naive multicast routing? In
Proceedings of IEEE INFOCOM’93, pages 82-89, San Francisco, CA,
March 1993.

D. Dolev, D. Malki, and R. Strong. An asynchronous membership
protocol that tolerates partitions. Technical Report TR94-6, The He-
brew University of Jerusalem, Institute of Computer Science, March
1994.

J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations. Prentice Hall Series
in Computational Mathematics. Prentice-Hall, Inc., 1993.

S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A reliable
multicast framework for light-weight sessions and application level
framing. IEEE/ACM Transactions on Networking, November 1996.

R. Frederick. “nv” manual pages.

R. Golding and K. Taylor. Group membership in the epidemic style.
Technical Report UCSC-CRL-92-13, UC Santa Cruz, Department of
Computer Science, May 1992.

K. Guo, W. Vogels, and R. van Renesse. Structured virtual syn-
chrony: Exploring the bounds of virtually synchronous group com-
munication. In Proceedings of the 7th ACM SIGOPS European Work-
shop, Connemara, Ireland, September 1996.

Handbook of Mathematics. High Education Publishing House, Bei-
jing, 1979.

M. Hayden. The Ensemble System. Ph.D. dissertation, Cornell Uni-
versity, Ithaca, NY, January 1998. Also available as Department of
Computer Science Technical Report CSTR98-1662.

M. Hofmann. Adding scalability to transport level multicast. In
Proceedings of Third COST 237 Workshop - Multimedia Telecommu-
nications and Applications, Barcelona, Spain, November 25-27 1996.

[Hof96b|

[HSC95]

[Jac93]
[IM]
[Koz91]

[KP93]

[KTHBSY]

[Kum95]

[Lev96]

[MAMSA94]

IMCS91]

[MF95]

[Mit97]

165

M. Hofmann. A generic concept for large-scale multicast. In Broad-
band Communications (B. Plattner ed.), Lecture Notes in Computer
Science, No. 1044, Proceedings of 1996 International Zurich Seminar
on Digital Communications. Springer Verlag, February 1996.

H. Holbrook, S. Singhal, and D. Cheriton. Log-based receiver-reliable
multicast for distributed interactive simulation. In Proceedings of
ACM SIGCOMM 95, pages 328-341, Cambridge, MA, August 1995.

V. Jacobson, Sepetember 1993. 1993 ARPA Networking PI Meeting.
V. Jacobson and S. McCanne. “vat” manual pages.

D. Kozen. The Design and Analysis of Algorithms. Springer Verlag,
1991.

J. Kay and J. Pasquale. The importance of non-data touching pro-

cessing overheads in TCP/IP. In Proceedings of ACM SIGCOMM’93,
San Francisco, CA, September 1993.

M. F. Kaashoek, A. S. Tanenbaum, S. F. Hummel, and H. E. Bal.
An efficient reliable broadcast protocol. Operating Systems Review,
23(4):5-19, October 1989.

V. Kumar. Mbone: Interactive Multimedia on the Internet. New
Riders Publishing, Indianapolis, Indiana, USA, 1995.

B. N. Levine. A comparison of known classes of reliable multicast
protocols. Technical report, University of California, Santa Cruz,
June 1996. Master Thesis.

L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal. Extended vir-
tual synchrony. In Proceedings of the 14th International Conference
on Distributed Computing Systems, pages 56-65, Poznan, Poland,
June 1994.

J. M. Mellor-Crummey and M. L. Scott. Synchronization without
contention. In Proceedings of the Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, Santa Clara, CA, April 1991.

S. McCanne and S. Floyd. Ns (network simulator). Available via
http://www-nrg.ee.lbl.gov /ns, 1995.

S. Mittra. Iolus: A framework for scalable secure multicasting.
In ACM SIGCOMM’97, pages 277-288, Cannes, France, September
1997.

166

[MMSA*96] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia,

[MSMAO91]

[Mul93]

[ODS83]

[Pal85]

[Pos81]

[PTKO4]

[RIS7]

[Sch92]

[SDW92]

[SKB8Y]

[SLPB97]

and C. A. Lingley-Papadopoulos. Totem: A fault-tolerant multi-
cast group communication system. Communications of the ACM,
39(4):54-63, April 1996.

P. M. Melliar-Smith, L. E. Moser, and D. A. Agarwal. Ring-based
ordering protocols. In Proceedings of the IEEE International Con-
ference on Information Engineering (Singapore), pages 882-891, De-
cember 1991.

S. Mullender, editor. Distributed Systems. ACM Press, Addison-
Wesley, 1993.

D. Oppen and Y. Dalal. The clearinghouse: A decentralized agent for
locating named objects in a distributed environment. ACM Transac-
tion on Office Information Systems, 1(3):230-253, July 1983.

E. Palmer. Graphical Evolution: An Introduction to the Theory of
Random Graphs. John Wiley & Sons, 1985.

J. B. Postel. Transmission control protocol. RFC 793, September
1981.

S. Pingali, D. Towsley, and J. F. Kurose. A comparison of sender-
initiated and receiver-initiated reliable multicast protocols. In SIG-
METRICS’94, Performance FEvaluation Review, volume 22, May
1994.

S. Ramakrishnan and B. N. Jain. A negative acknowledgement with

periodic polling protocol for multicast over LANs. In Proceedings of
IEEE Infocom’87, pages 502-511, March 1987.

H. Schulzrinne. Voice communication across the internet: A network
voice terminal. Technical Report UM-CS-1992-050, Dept. of Com-
puter Science, University of Massachusetts, Amherst, July 1992.

W. T. Strayer, B. J. Dempsey, and A. C. Weaver. XTP The Express
Transfer Protocol. Addison-Wesley Publishing Company, Inc., 1992.

M. Simmons, R. Koshela, and I. Bucher, editors. Instrumentation for
Future Parallel Computing Systems. ACM Press, 1989.

K. Sabnani, J.C. Lin, S. Paul, and S. Bhattacharyya. Reliable Mul-
ticast Transport Protocol(RMTP). IEEE Journal on Selected Areas
i Communication, April 1997.

[Sta97]

[The92]

[Vog96]

[VRI6]

[VRBMO96]

[VRMHOS]

[WMS87]

[WPDsS]

[XTP95]

167

StarBurst MFTP compared to today’s file transfer protocols:
A white paper, 1997. StarBurst Communications Corporation.
http://www.starburstcom.com.

D. Theriault. BLAST, an experimental file transfer protocol, March
1992.

W. Vogels. World wide failures. In Proceedings of the 7th ACM
SIGOPS European Workshop, Connemara, Ireland, September 1996.

R. van Renesse. Masking the overhead of protocol layering. In Pro-
ceedings of ACM SIGCOMM’96, pages 96-104, August 1996.

R. van Renesse, K. P. Birman, and S. Maffeis. Horus, a flexible group
communication system. Communications of the ACM, 39(4):76-83,
April 1996.

R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure de-
tection service. Technical Report In Preparation, Cornell University,
Department of Computer Science, Ithaca, NY, 1998.

R. Watson and S. Mamrak. Gaining efficiency in transport services by
appropriate design and implementation choices. ACM Transactions
on Computer Systems, 5(2):97-120, May 1987.

D. Waitzman, C. Partridge, and S. Deering. Distance vector multi-
cast routing protocol. RFC-1075, November 1988.

Xpress Transport Protocol specification (XTP revision 4.0). Avail-
able via http://www.ca.sandia.gov/xtp/xtp.html, March 1995.

