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This dissertation focuses on risk and safety considerations in the design and

analysis of online learning algorithms for sequential decision-making problems

under uncertainty. The particular motivating application for the mathematical

models and methods developed in this dissertation is demand response pro-

grams. Demand response programs denote the general family of mechanisms

designed to improve the efficiency and the reliability of electric power systems

by affecting the demand of residential customers.

First, we design a risk-sensitive online learning algorithm for linear models.

In particular, we consider the setting in which an electric power utility seeks to

curtail its peak electricity demand by offering a fixed group of customers a uni-

form price for reductions in consumption relative to their predetermined base-

lines. The underlying demand curve, which describes the aggregate reduction

in consumption in response to the offered price, is assumed to be affine and sub-

ject to unobservable random shocks. Assuming that both the parameters of the

demand curve and the distribution of the random shocks are initially unknown

to the utility, we investigate the extent to which the utility might dynamically

adjust its offered prices to maximize its cumulative risk-sensitive payoff over

a finite number of T days. In order to do so effectively, the utility must de-

sign its pricing policy to balance the trade-off between the need to learn the

unknown demand model (exploration) and maximize its payoff (exploitation)



over time. We propose a semi-greedy pricing policy, and show that its expected

regret defined as the risk-sensitive payoff loss over T days, relative to an ora-

cle pricing policy that knows the underlying demand model, is no more than

O(
√
T log(T )). Moreover, the proposed pricing policy is shown to yield a se-

quence of prices that converge to the oracle optimal prices in the mean square

sense.

Second, we develop an online learning algorithm for linear models subject

to stagewise safety constraints. More specifically, we introduce the safe linear

stochastic bandit framework — a generalization of linear stochastic bandits —

where, in each stage, the learner is required to select an arm with an expected

reward that is no less than a predetermined (safe) threshold with high probabil-

ity. We assume that the learner initially has knowledge of an arm that is known

to be safe, but not necessarily optimal. Leveraging on this assumption, we intro-

duce a learning algorithm that systematically combines known safe arms with

exploratory arms to safely expand the set of safe arms over time, while facilitat-

ing safe greedy exploitation in subsequent stages. In addition to ensuring the

satisfaction of the safety constraint at every stage of play, the proposed algo-

rithm is shown to exhibit an expected regret that is no more than O(
√
T log(T ))

after T stages of play.

Third, we extend our methodology developed for linear models to design

an online learning algorithm with near-optimal performance for a more gen-

eral class of nonparametric smooth reward models. Specifically, we adopt the

perspective of an aggregator, which seeks to coordinate its purchase of demand

reductions from a fixed group of residential electricity customers, with its sale

of the aggregate demand reduction in a two-settlement wholesale energy mar-

ket. The aggregator procures reductions in demand by offering its customers



a uniform price for reductions in consumption relative to their predetermined

baselines. Prior to its realization of the aggregate demand reduction, the ag-

gregator must also determine how much energy to sell into the two-settlement

energy market. In the day-ahead market, the aggregator commits to a forward

contract, which calls for the delivery of energy in the real-time market. The un-

derlying aggregate demand curve, which relates the aggregate demand reduc-

tion to the aggregator’s offered price, is assumed to be unknown and subject

to unobservable, random shocks. Assuming that both the demand curve and

the distribution of the random shocks are initially unknown to the aggregator,

we investigate the extent to which the aggregator might dynamically adapt its

offered prices and forward contracts to maximize its expected profit over a time

window of T days. Specifically, we design a dynamic pricing and contract of-

fering policy that resolves the aggregator’s need to learn the unknown demand

model with its desire to maximize its cumulative expected profit over time. In

particular, the proposed pricing policy is proven to incur an expected regret

over T days that is no greater than O(
√
T log2(T )).
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CHAPTER 1

INTRODUCTION

The focus of this dissertation is on the design and analysis of provably safe

online learning algorithms for sequential decision-making problems under un-

certainty. In this class of problems, a learner interacts with an uncertain and

partially unknown environment over a finite (or an infinite) number of stages

with the objective of maximizing a cumulative reward function. The general

framework for the sequential decision-making problems is depicted in Figure

1.1. There are a number of practical applications that fit within this sequential

decision-making paradigm. These include power systems operation, clinical

trials, online advertisement, robotic systems, and stock markets. The motivat-

ing application for several problems studied in this dissertation pertains to the

design of demand response programs in modern electric power systems.

Learner Environment

Action

Reward

Figure 1.1: Sequential decision-making problem.

Demand response programs refer to programs operated by utility compa-

nies to affect the electric power consumption of consumers (e.g., residential

customers) with the objective of improving the efficiency and the reliability of

electric power systems. In other words, demand response programs are mech-

anisms designed to utilize the inherent flexibility of demand side resources to

provide specific services facilitating the operation of electric power systems. For

instance, an electric power utility (or another third party entity) manually ad-
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justs flexible loads in response to wholesale energy prices, e.g., by moving de-

ferrable loads off peak. Electric vehicles are an example of such deferrable loads

that due to their considerable capacity and flexibility have been the target of

several demand response programs, some of which are currently operational,

e.g., OptimizeEV administered by NYSEG [72]. Thermostatically Controlled

Loads (TLC)s, e.g., air conditioning units, are another category of flexible de-

mand resources that have been the focus of demand response programs. The

control mechanism and the incentives provided to customers for participation

vary from one demand response program to another. Despite such differences,

many of these programs fit within the framework of sequential decision-making

problem as illustrated in Figure 1.2.

Utility Company
Residential

Demand Reduction

Demand Reduction

Incentive

(kWh)

Customers

Figure 1.2: Modeling demand response program as a sequential decision-
making problem.

In Chapters 2 and 4, we consider a class of DR programs in which an electric

power utility seeks to elicit a reduction in the aggregate electricity demand of a

fixed group of customers, during peak demand periods as shown in Figure 1.3.

More specifically, in this class of demand response programs known as Peak-

Time Rebate (PTR) programs, an electric power utility elicits demand reduction

from a group of residential customers by offering a non-discriminatory price

for demand reduction from customers’ baseline consumption. The underlying

demand function, which models the reduction in consumption of customers in

2



response to the DR price is assumed to be initially unknown to the utility. Due to

this ignorance, the utility faces a challenge as to how to set the price for demand

reduction. We take an online learning approach from the perspective of the

utility. More specifically, we design an online learning algorithm to sequentially

adjust the offered prices with the objective of maximizing a cumulative reward

function. There are several reward functions that one may consider for this

particular application. In Chapter 2, we consider the objective of maximizing

the cumulative risk-sensitive revenue, which is defined as the revenue that the

utility is guaranteed to receive with a user-specified probability. In Chapter 4,

we consider the objective of maximizing the cumulative expected profit from

selling the aggregate demand reduction in wholesale energy markets.

Time (h)

0 14 20 24

D
em

an
d

(k
W

h
)

demand
reduction

DR period

baseline demand

reduced demand

Figure 1.3: Demand reduction during peak demand hours in a demand re-
sposne program.
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1.1 Challenges

1.1.1 Unknown Environments

The most basic challenge that the learner faces is due to its ignorance about

the environment or the reward function. More specifically, the learner faces

a dilemma in deciding upon which actions to take at each stage. On the one

hand, the learner can exploit the information at hand. More precisely, the learner

can estimate the underlying model using the information gathered in preceding

stages, and, then take the greedy action that is optimal assuming the correctness

of the estimated model. On the other hand, the learner can explore by taking

an action that reveals information about the underlying environment (e.g., a

randomly chosen action). This information, in turn, can be utilized to improve

the learner’s decision-making ability in subsequent stages. Naturally, there ex-

ists a trade-off between exploration and exploitation as taking the greedy action

may not elicit new information. Balancing this trade-off is critical in achieving

the objective of maximizing the cumulative reward. There are, however, other

considerations such as safety that are of significant importance for practical ap-

plications.

1.1.2 Safety

One of the primary challenges of implementing algorithms developed for the

aforementioned class of problems in real-world applications (e.g., robotic sys-

tems, clinical trials, electric power systems) pertains to safety [39]. In such ap-

plications, taking an unsafe action may cause an irreversible damage to the un-

4



derlying system. Consequently, the learner must incorporate safety considera-

tions in the design of online learning algorithms. There are several real-world

incidents in which failure to ensure safety of the learning methods resulted in

catastrophic outcomes. In 2016, a Microsoft AI chatbot started twitting offensive

remarks in less than 24 hours of its implementation1. In 2018, IBM’s algorithm

that recommends personalized cancer treatments for patients allegedly recom-

mended unsafe and dangerous treatments2. Although the notion of safety has

different implications across different fields (e.g., avoiding discriminatory and

offensive language on social networks, and not jeopardizing patients’ health in

personal healthcare recommendations) such incidents call for the careful con-

sideration of safety in designing online learning algorithms.

1.2 Algorithm Design Considerations

1.2.1 Failure of A Greedy Approach

In this section, we provide a more detailed account of the failure of greedy ap-

proaches as it pertains to the trade-off between exploration and exploration in-

troduced in Section 1.1.1. For the clarity of exposition, in this section, we restrict

our focus to parameterized models. That is, we assume that the reward function

is characterized by an unknown parameter θ?. Had the learner known the re-

ward parameter θ?, then, there was no need for exploration as the learner could

have taken the optimal action at every stage of play. A natural greedy approach

1https://en.wikipedia.org/wiki/Tay (bot)
2https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-

treatments/
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for the learner at each stage is to first estimates the reward parameter using the

history of observations, and then, take an action that is optimal assuming that

the estimated parameter is correct.

This intuitive greedy approach, which is also known as the myopic or cer-

tainty equivalent approach3 has been extensively studied in the literature. His-

torically, such approaches were incorrectly believed to be asymptotically efficient.

In particular, in 1976, Anderson and Taylor [4] proposed the Least Squares Cer-

tainty Equivalence (LSCE) control law for a scalar linear system of the form

Yt = 〈Xt, θ
?〉+ εt,

where Yt, Xt, and εt model the output, action, and noise at stage t, respectively.

They consider the objective of driving the output Yt to a prespecified level y?,

i.e., maximizing the cumulative reward function defined as −
∑T

t=1(Yt − y?)2.

Using numerical simulations, they conjecture that the actions chosen under their

proposed method converge to the optimal action with probability 1. However,

their conjecture was later shown to be incorrect by Lai and Robbins [56]. More

specifically, Lai and Robbins show that the LSCE control law with a positive

probability takes a sub-optimal action in all stages t ≥ 3.

The convergence of the sequence of parameter estimates θ̂t to an uninforma-

tive value different from the reward parameter θ? with positive probability, i.e.,

P
(

limt→∞ θ̂t 6= θ?
)
> 0 is referred to by incomplete learning in the literature. For

a more detailed analysis of the certainty equivalence approach and incomplete

learning, we refer the reader to [51] and the references therein.

3This approach stems from the certainty equivalence principle, which refers to “the proce-
dure to obtain control policies for stochastic systems by considering the optimal control policies
for the related deterministic systems where the random variables are replaced by their expected
values” [5].
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We close this section by describing indeterminate equilibria, a concept that is

closely related to incomplete learning. The indeterminate equilibria denotes

the set of parameters θ for which the observation under the respective greedy

actions will subsequently confirms the belief that θ is the underlying model pa-

rameter. We now clarify this concept with a detailed example. Consider the

problem of dynamic pricing of a single good with an unknown demand func-

tion with the objective of maximizing the cumulative expected revenue of the

seller. Assume that dt, the demand at stage t is of the form

dt = −α?pt + β? + εt,

where α? > 0 and β? > 0 are unknown model parameters and εt is a zero-mean

random variable modeling the demand shock. It is straight forward to observe

that the optimal price p? is given by p? = β?/(2α?). Indeterminate equilibria,

depicted in Figure 1.4 is the set of parameters (α, β) such that−α?p+β? = −αp+

β for p = β/(2α). Under the greedy approach, the sequence of parameters may

converge to an uninformative value belonging to the indeterminate equilibria.

That is, subsequent observations confirm the correctness of an “incorrect” belief.

α

β
{(α, β) | −α?p+ β? = −αp+ β for p = β/(2α)}

?

α?

β?

Figure 1.4: Indeterminate equilibria for a linear model.
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1.2.2 Exploration vs. Exploitation

The performance of an online learning algorithm is determined by its ability to

balance the trade-off between exploration and exploitation. On the one hand,

insufficient exploration may result in sub-optimal actions in subsequent stages

due to lack of information about the environment. On the other hand, exces-

sive exploration may negatively impact the cumulative reward by taking sub-

optimal exploratory actions more than necessary. There are several approaches

introduced in the literature to balance this trade-off in a way that over time, the

cumulative reward converges to the optimal value (i.e., the cumulative reward

gained by taking the optimal action at every stage). We briefly describe some

of the well-known approaches in this active area of research. We will provide a

more detailed review of the literature related to models studied in this disserta-

tion in respective subsequent chapters.

Thompson Sampling

Thompson Sampling (TS), introduced in early 1930’s by W. R. Thompson [88], is

perhaps the first method designed to balance the trade-off between exploration

and exploitation. Under this approach, the learner assumes a prior distribution

on the reward of each action (or on the parameter of the reward). At each stage,

the learner selects an action randomly according to its probability of being the

optimal action.

The trade-off between exploration and exploitation is implicit under Thomp-

son Sampling. That is, at each stage, after observing the reward of the chosen

action, the posterior distribution is updated. Depending on this observation, the
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probability of taking an exploitative action (e.g., the certainty equivalent action

associated with the maximum likelihood estimate of the parameter) is increased

or decreased in the proceeding stage.

Optimism in the Face of Uncertainty

In 1985, Lai and Robbins [57] introduced the principle of Optimism in the Face

of Uncertainty (OFU). Under this approach, at each stage, the learner construct

upper confidence bounds (UCB) on the reward of each action. The learner, then,

plays the most optimistic action (i.e., the action with the largest upper confi-

dence bound on its reward).

The UCB of the reward of an action is a measure of both its reward and

uncertainty. More precisely, the UCB of the reward an action being large implies

either that the estimated reward is large (exploitation) or the reward is highly

uncertain (exploration).

Information Directed Sampling

The Information Directed Sampling (IDS) approach [74] quantifies the trade-

off between exploration and exploitation by defining an information ratio. The

information ratio of each action measures the cost that the learner incurs (i.e.,

stagewise regret) per bit of information gained from taking the said action. At

each stage, the learner selects an action that minimizes this information ratio.
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1.2.3 Safety

TS, OFU, and IDS introduced in section 1.2.2 have been tailored to various

configurations of sequential decision-making problems. In particular, they are

shown to perform near-optimally for several variations of the bandit problem

[7, 1, 2, 3, 74, 53] and reinforcement learning [45, 41, 8]. However, the mentioned

approaches may not be directly applicable in safety-critical applications as they

may take unsafe actions during the learning process. As one may expects, differ-

ent notions of risk and safety require distinct approaches to algorithm design.

In what follows, we summarize the particular safety and risk considerations

studied in this dissertation, our contributions, and the organization of the dis-

sertation.

1.3 Summary of Contributions and Dissertation Organization

In the majority of the dissertation, we consider linear reward models, i.e., the

reward associated with each action is a linear function of the action with an

unknown parameter. In Chapter 2, we consider the objective of maximizing a

risk-sensitive reward function, which is closely related to the concept of Value-

at-Risk (VaR). In Chapter 3, we consider the objective of maximizing expected

reward subject to a more restrictive safety measure. More precisely, we model

safety as a stagewise probabilistic constraint on the reward of the chosen action.

Although linear functions may be too simplistic to model a complex envi-

ronment, studying them can provide insight on how to develop algorithms for

more complex systems. In particular, in the final Chapter of the dissertation, we

10



utilize misspecified linear proxies to develop an algorithm with near-optimal

performance for a more general family of smooth nonparametric reward mod-

els. Specifically, the algorithm estimates local linearizations of the demand

model through a careful data selection procedure. This careful data selection

procedure is needed to account for the potential model misspecification due

to linearization. The algorithm then takes semi-greedy actions with respect to

these estimated linear functions.

1.3.1 Risk-Sensitive Online Learning of Linear Models

In Chapter 2, we study the risk-sensitive dynamic pricing problem with appli-

cation to modern electric power systems. More specifically, we consider the

problem of pricing demand response programs and model the demand reduc-

tion from customers as an affine function of the demand response price subject

to additive random demand shocks. We assume that, a priori, the learner nei-

ther knows the demand model parameters nor the distribution of the demand

shock. The objective of the learner, alias the electric power utility administrat-

ing the demand response program, is to maximize her cumulative risk-sensitive

revenue. The risk-sensitive revenue is defined as the revenue that the utility is

subject to receive with probability 1 − α where α ∈ (0, 1) is the utility’s risk

tolerance.

Contributions

The consideration of risk in the reward function (the revenue of the utility) cre-

ates the need to learn the distribution of the demand shock as well as the de-
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mand model parameters. We propose a pricing policy, which carefully applies

perturbations to the sequence of certainty equivalent prices, under which the

utility learns both the demand model parameters and the distribution of the

demand shock. We show that our proposed method exhibits near-optimal ex-

pected regret, which is guaranteed to be no more than O(
√
T log(T )). Interest-

ingly, we show that the variations in the sequence of wholesale electricity prices

eliminates the need to generate exogenous exploration in the sequence of de-

mand response prices. This, in turn, results in a remarkable improvement of the

expected regret exhibited by the myopic policy. More precisely, the expected re-

gret under the myopic policy is no more than O(log2(T )) when the sequence of

wholesale electricity prices varies over time. It is worth noting that such varia-

tion in the sequence of wholesale electricity prices naturally occurs in wholesale

electricity markets across the United States.

1.3.2 Safe Online Learning of Linear Models

In Chapter 3, we introduce the safe linear stochastic bandit framework — a gen-

eralization of linear stochastic bandit — where, in each stage, the learner is re-

quired to select an arm with an expected reward that is no less than a predeter-

mined (safe) threshold with high probability.

Contributions

We propose a new learning algorithm that is tailored to the safe linear bandit

framework. The proposed algorithm is shown to exhibit near-optimal expected

regret, while guaranteeing the satisfaction of the proposed safety constraint at
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every stage of play. To the best of our knowledge our work is the first of its

kind that proposes an algorithm with stagewise safety guarantee that exhibits

near-optimal regret for the stochastic linear bandit framework.

1.3.3 Online Learning of Nonparametric Models

We adopt the perspective of an aggregator, which seeks to coordinate its pur-

chase of demand reductions from a fixed group of residential electricity cus-

tomers, with its sale of the aggregate demand reduction in a two-settlement

wholesale energy market. The aggregator procures reductions in demand by

offering its customers a uniform price for reductions in consumption relative to

their predetermined baselines. Prior to its realization of the aggregate demand

reduction, the aggregator must also determine how much energy to sell into the

two-settlement energy market.

Contributions

We generalize the linear model studied in Chapters 2 and 3 to a class of smooth

nonparametric models. We propose an online learning policy that coordinates

the purhcase of demand response from customers with its sale in the wholesale

energy market. We show that the upper bound on the expected regret of our

proposed policy is no more than O(
√
T log2(T )). The proposed method general-

izes the approach developed by Besbes and Zeevi [12] for the dynamic pricing

problem to the two-settlement market model.
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CHAPTER 2

RISK-SENSITIVE ONLINE LEARNING OF LINEAR MODELS

2.1 Introduction

The ability to implement residential demand response (DR) programs at scale has

the potential to substantially improve the efficiency and reliability of electric

power systems. In this chapter, we consider a class of DR programs in which an

electric power utility seeks to elicit a reduction in the aggregate electricity de-

mand of a fixed group of customers, during peak demand periods. The class of

DR programs we consider rely on non-discriminatory, price-based incentives for

demand reduction. That is to say, each participating customer is remunerated

for her reduction in electricity demand according to a uniform price determined

by the utility.

There are several challenges a utility faces in implementing such programs,

the most basic of which is the prediction of how customers will adjust their

aggregate demand in response to different prices – the so-called aggregate de-

mand curve. The extent to which customers are willing to forego consumption,

in exchange for monetary compensation, is contingent on variety of idiosyn-

cratic and stochastic factors – the majority of which are initially unknown or not

directly measurable by the utility. The utility must, therefore, endeavor to learn

the behavior of customers over time through observation of aggregate demand

reductions in response to its offered prices for DR. At the same time, the utility

must set its prices for DR in such a manner as to promote increased earnings

over time. As we will later establish, such tasks are inextricably linked, and

give rise to a trade-off between learning (exploration) and earning (exploitation)
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in pricing demand response over time.

Contribution and Related Work: We consider the setting in which the electric

power utility is faced with a demand curve that is affine in price, and subject

to unobservable, additive random shocks. Assuming that both the parameters

of the demand curve and the distribution of the random shocks are initially un-

known to the utility, we investigate the extent to which the utility might dynam-

ically adjust its offered prices for demand curtailment to maximize its cumula-

tive risk-sensitive payoff over a finite number of T days. We define the utility’s

payoff on any given day as the largest return the utility is guaranteed to receive

with probability no less than 1 − α. Here, α ∈ (0, 1) encodes the utility’s sensi-

tivity to risk. In this chapter, we propose a causal pricing policy, which resolves

the trade-off between the utility’s need to learn the underlying demand model

and maximize its cumulative risk-sensitive payoff over time. More specifically,

the proposed pricing policy is shown to exhibit an expected payoff loss over T

days – relative to an oracle that knows the underlying demand model – which is

at most O(
√
T log(T )). Moreover, the proposed pricing policy is shown to yield

a sequence of offered prices, which converges to the sequence of oracle optimal

prices in the mean square sense.

There is a related stream of literature in operations research and adaptive

control [12, 30, 50, 56, 29], which considers a similar setting in which a monop-

olist endeavors to sell a product over multiple time periods – with the aim of

maximizing its cumulative expected revenue – when the underlying demand

curve (for that product) is unknown and subject to exogenous shocks. What

distinguishes our formulation from this prevailing literature is the explicit treat-

ment of risk-sensitivity in the optimization criterion we consider, and the subse-
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quent need to design pricing policies that not only learn the underlying demand

curve, but also learn the shock distribution.

Focusing explicitly on demand response applications, there are several re-

lated papers in the literature, which formulate the problem of eliciting de-

mand response under uncertainty within the framework of multi-armed bandits

[87, 48, 44, 96]. In this setting, each arm represents a customer or a class of cus-

tomers. Taylor and Mathieu [87] show that, in the absence of exogenous shocks

on load curtailment, the optimal policy is indexable. Kalathil and Rajagopal

[48] consider a similar multi-armed bandit setting in which a customer’s load

curtailment is subject to an exogenous shock, and attenuation due to fatigue

resulting from repeated requests for reduction in demand over time. They pro-

pose a policy, which guarantees that the T -period regret is bounded from above

by O(
√
T log T ). There is a related stream of literature, which treats the problem

of pricing demand response under uncertainty using techniques from online

learning [40, 47, 70, 79]. Perhaps closest to the setting considered in this chapter,

Jia et al. [47] consider the problem of pricing demand response when the under-

lying demand function is unknown, affine, and subject to normally distributed

random shocks. With the aim of maximizing the utility’s expected surplus, they

propose a stochastic approximation-based pricing policy, and establish an up-

per bound on the T -period regret that is of the order O(log T ). There is another

stream of literature, which considers an auction-based approach to the procure-

ment of demand response [13, 14, 63, 67, 75, 98, 85]. In such settings, the primary

instrument for analysis is game-theoretic in nature.

Organization: The rest of the chapter is organized as follows. In Section 2.2,

we develop the demand model and formulate the utility’s pricing problem for
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demand response. In Section 2.3, we outline a scheme for demand model learn-

ing. In Section 2.4, we propose a pricing policy and analyze its performance.

We investigate the behavior of the proposed pricing policy with a numerical

case study in Section 2.6. All mathematical proofs are presented in Appendix

Chapter A.

2.2 Model

2.2.1 Demand Response Model

We consider a class of demand response (DR) programs in which an elec-

tric power utility seeks to elicit a reduction in peak electricity demand from

a fixed group of N customers over multiple time periods (e.g., days) indexed

by t = 1, 2, . . . . The class of DR programs we consider rely on uniform price-

based incentives for demand reduction.1 Specifically, prior to each time period

t, the utility broadcasts a single price pt ($/kWh), to which each participating

customer i responds with a reduction in demand Dit (kWh) – thus entitling cus-

tomer i to receive a payment in the amount of ptDit.2

We model the response of each customer i to the posted price pt at time t

according to a linear demand function given by

Dit = aipt + bi + εit, for i = 1, . . . , N,

1This class of DR programs falls within the more general category of programs that rely on
peak time rebates (PTR) as incentives for demand reduction [33].

2A customer’s reduction in demand is measured against a predetermined baseline. The
question as to how such baselines might be reliably inferred is a challenging and active area
of research [19, 22, 24, 25, 68]. Expanding our model to make endogenous the calculation of
customer baselines is left as a direction for future research.
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where ai ∈ R and bi ∈ R are model parameters unknown to the utility, and εit

is an unobservable demand shock, which we model as a random variable with

zero mean.3 Its distribution is also unknown to the utility. We define the aggregate

response of customers at time t as Dt :=
∑N

i=1Dit, which satisfies

Dt = apt + b+ εt. (2.1)

Here, the aggregate model parameters and shock are defined as a :=
∑N

i=1 ai,

b :=
∑N

i=1 bi, and εt :=
∑N

i=1 εit. To simplify notation in the sequel, we write

the deterministic component of aggregate demand as λ(p, θ) := ap + b, where

θ := (a, b) denotes the aggregate demand function parameters.

We assume throughout the chapter that a ∈ [a, a] and b ∈
[
0, b
]
, where the

model parameter bounds are assumed to be known and satisfy 0 < a ≤ a < ∞

and 0 ≤ b < ∞. Such assumptions are natural, as they ensure that the price

elasticity of aggregate demand is strictly positive and bounded, and that reduc-

tions in aggregate demand are guaranteed to be nonnegative in the absence of

demand shocks. We also assume that the sequence of shocks {εt} are indepen-

dent and identically distributed random variables, in addition to the following

technical assumption.

Assumption 1. The aggregate demand shock εt has a bounded range [ε, ε], and

a cumulative distribution function F , which is bi-Lipschitz over this range.

Namely, there exists a real constant L ≥ 1, such that for all x, y ∈ [ε, ε], it holds

that

1

L
|x− y| ≤ |F (x)− F (y)| ≤ L |x− y| .

There is a large family of distributions respecting Assumption 1 including

uniform and doubly truncated normal distributions. Moreover, the assumption
3We note that the assumption that εit be zero-mean is without loss of generality.
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that the aggregate demand shock takes bounded values is natural, given the

inherent physical limitation on the range of values that demand can take. And,

technically speaking, the requirement that F be bi-Lipschitz is stated to ensure

Lipschitz continuity of its inverse, which will prove critical to the derivation

of our main results. Finally, we note that the electric power utility need not

know the parameters specified in Assumption 1, beyond the assumption of their

boundedness.

Remark 1 (On the Linearity Assumption). While the assumption of linearity in

the underlying demand model might appear restrictive at first glance, there are

several sensible arguments in support of its adoption. First, the assumption of

linearity is routinely employed in the revenue management and pricing litera-

ture [11, 47, 46, 50, 83, 86], as it serves to facilitate theoretical analyses, thereby

bringing to light key features of the problem and its solution structure. More

practically, if the range of allowable prices is sufficiently limited, then it is rea-

sonable to assume that the underlying (possibly nonlinear) demand function is

well approximated by an affine function over that range. And, in the specific

context of pricing for DR programs, it is reasonable to expect that the electric

power utility, being a regulated company, will face restrictions on the range of

prices that it can offer to customers. Finally, there are recent results in the rev-

enue management literature [12], which demonstrate how the assumption of a

linear demand model might be dynamically adapted to price in environments

where the true demand function is nonlinear. In Chapter 4, we generalize and

adopt such techniques to the two-sided optimization problem of selling uncer-

tain demand response resources in wholesale energy markets.
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2.2.2 Utility Model and Pricing Policies

We consider a setting in which the utility seeks to reduce its peak electricity de-

mand over multiple days, indexed by t. Accordingly, we let wt ($/kWh) denote

the wholesale price of electricity during peak demand hours on day t. And, we

let f ($/kWh) denote the retail price of electricity, i.e., the fixed price that cus-

tomers are charged for their electricity consumption. For the remainder of the

chapter, it will be convenient to work with the difference between the wholesale

and retail prices of electricity on each day t, which we denote by ct := wt−f . We

assume throughout the chapter that ct ∈ [0, c] for all days t, where 0 ≤ c < ∞.4

In addition, we assume that ct is known to the utility prior to its determination

of the DR price pt in each period t. Upon broadcasting a price pt to its customer

base, and realizing an aggregate demand reduction Dt, the utility derives a net

reduction in its peak electricity cost in the amount of (ct − pt)Dt. Henceforth,

we will refer to the net savings (ct− pt)Dt as the revenue derived by the utility in

period t.

The utility is assumed to be sensitive to risk, in that it would like to set the

price for DR in each period t to maximize the revenue it is guaranteed to receive

with probability no less than 1 − α. Clearly, the parameter α ∈ (0, 1) encodes

the degree to which the utility is sensitive to risk. Accordingly, we define the

risk-sensitive revenue derived by the utility in period t given a posted price pt as

rα(pt) := sup {x ∈ R : P ((ct − pt)Dt ≥ x) ≥ 1− α} . (2.2)

The risk measure specified in (2.2) is closely related to the standard concept of

4Implicit in this requirement is the assumption that f ≤ wt ≤ c+ f for all days t. The lower
bound on wt implies that the utility will only call for a demand reduction on those days in
which the wholesale market manifests in prices that exceed the fixed retail price for electricity.
The upper bound on wt implies the enforcement of a price cap in the wholesale market.

20



value at risk commonly used in mathematical finance. Conditioned on a fixed

price pt, one can reformulate the expression in (2.2) as

rα(pt) = (ct − pt)(λ(pt, θ) + F−1(α)), (2.3)

where F−1(α) := inf{x ∈ R : F (x) ≥ α} denotes the α-quantile of the ran-

dom variable εt. It is immediate to see from the simplified expression in (2.3)

that rα(pt) is strictly concave in pt. Let p∗t denote the oracle optimal price, which

maximizes the risk-sensitive revenue in period t. Namely,

p∗t := argmax {rα(pt) : pt ∈ R}.

The optimal price is readily derived from the corresponding first order optimal-

ity condition, and is given by

p∗t =
ct
2
− b+ F−1(α)

2a
.

Notice that the optimal price may be negative if the wholesale price ct is small

or the risk parameter α is large. However, it is natural to assume that the utility

seeks to maximize the revenue it is guaranteed to receive with high probability,

i.e., choose a small α. Hence, in practice, it is unlikely to observe such negative

optimal prices. We define the oracle risk-sensitive revenue accumulated over T

time periods as

R∗T :=
T∑
t=1

rα(p∗t ).

The term oracle is used, as R∗T equals the maximum risk-sensitive revenue

achievable by the utility over T periods if it were to have perfect knowledge of

the demand model.

In the setting considered in this chapter, we assume that both the demand

model parameters θ = (a, b) and the shock distribution F are unknown to the util-

ity at the outset. As a result, the utility must attempt to learn them over time by
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observing aggregate demand reductions in response to offered prices. Namely,

the utility must endeavor to learn the demand model, while simultaneously try-

ing to maximize its risk-sensitive returns over time. As we will later see, such

task will naturally give rise to a trade-off between learning (exploration) and

earning (exploitation) in pricing demand response over time. First, we describe

the space of feasible pricing policies.

We assume that, prior to its determination of the DR price in period t, the

utility has access to the entire history of prices and demand reductions until

period t− 1. We, therefore, define a feasible pricing policy as an infinite sequence

of functions π := (p1, p2, . . . ), where each function in the sequence is allowed to

depend only on the past history. More precisely, we require that the function

pt be measurable according to the σ-algebra generated by the history of past

decisions and demand observations (p1, . . . , pt−1, D1, . . . , Dt−1) for all t ≥ 2, and

that p1 be a deterministic constant. The expected risk-sensitive revenue generated

by a feasible pricing policy π over T time periods is defined as

Rπ
T := Eπ

[
T∑
t=1

rα(pt)

]
,

where expectation is taken with respect to the demand model (2.1) under the

pricing policy π.

2.2.3 Performance Metric

We evaluate the performance of a feasible pricing policy π according to the T -

period regret, which we define as

∆π
T := R∗T −Rπ

T .
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Naturally, pricing policies yielding a small regret are preferred, as the ora-

cle risk-sensitive revenue R∗T stands as an upper bound on the expected risk-

sensitive revenueRπ
T achievable by any feasible pricing policy π. Ultimately, we

seek a pricing policy whose T -period regret is sublinear in the horizon T . Such

a pricing policy is said to have no-regret.

Definition 1 (No Regret Pricing). A feasible pricing policy π is said to exhibit

no-regret if limT→∞∆π
T/T = 0.

Implicit in the goal of designing a no-regret policy is that the sequence of

prices that it generates should converge to the oracle optimal price sequence.

2.3 Demand Model Learning

Clearly, the ability to price with no-regret will rely centrally on the rate at which

the unknown parameters, θ, and quantile function, F−1(α), can be learned from

the market data. In what follows, we describe a basic approach to learning the

demand model using the method of least squares estimation.

2.3.1 Parameter Estimation

Given the history of past prices and demand observations (p1, . . . , pt, D1, . . . , Dt)

through period t, define the least squares estimator (LSE) of θ as

θt := arg min

{
t∑

k=1

(Dk − λ(pk, ϑ))2 : ϑ ∈ R2

}
,
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for time periods t = 1, 2, . . . . The LSE at period t admits an explicit expression

of the form

θt =

 t∑
k=1

pk
1


pk

1


>

−1 t∑
k=1

pk
1

Dk

 , (2.4)

provided the indicated inverse exists. It will be convenient to define the 2 × 2

matrix

Jt :=
t∑

k=1

pk
1


pk

1


>

=

∑t
k=1 p

2
k

∑t
k=1 pk∑t

k=1 pk t

 .
Utilizing the definition of the aggregate demand model (2.1), in combination

with the expression in (2.4), one can obtain the following expression for the

parameter estimation error:

θt − θ = J −1
t

 t∑
k=1

pk
1

 εk
 . (2.5)

Remark 2 (The Role of Price Dispersion). The expression for the parameter es-

timation error in (2.5) reveals how consistency of the LSE is reliant upon the

asymptotic spectrum of the matrix Jt. Namely, the minimum eigenvalue of

Jt, must grow unbounded with time, in order that the parameter estimation

error converge to zero in probability. In [50, Lemma 2], the authors establish a

sufficient condition for such growth. Specifically, they prove that the minimum

eigenvalue of Jt is bounded from below (up to a multiplicative constant) by

the sum of squared price deviations defined as

Jt :=
t∑

k=1

(pk − pt)2,

where pt := (1/t)
∑t

k=1 pk. The result is reliant on the assumption that the under-

lying pricing policy π yields a bounded sequence of prices {pt}. An important
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consequence of such a result is that it reveals the explicit role that price dispersion

(i.e., exploration) plays in facilitating consistent parameter estimation.

Finally, given the underlying assumption that the unknown model parame-

ters θ belong to a compact set defined Θ := [a, a]× [0, b], one can improve upon

the LSE at time t by projecting it onto the set Θ. Accordingly, we define the

truncated least squares estimator as

θ̂t := arg min {‖ϑ− θt‖2 : ϑ ∈ Θ} . (2.6)

Clearly, we have that ‖θ̂t− θ‖2 ≤ ‖θt− θ‖2. In the following section, we describe

an approach to estimating the underlying quantile function using the parameter

estimator defined in (2.6).

2.3.2 Quantile Estimation

Building on the parameter estimator specified in Equation (2.6), we construct an

estimator of the unknown quantile function F−1(α) according to the empirical

quantile function associated with the demand estimation residuals. Namely, in

each period t, define the sequence of residuals associated with the estimator θ̂t as

ε̂k,t := Dk − λ(pk, θ̂t),

for k = 1, . . . , t. Define their empirical distribution as

F̂t(x) :=
1

t

t∑
k=1

1{ε̂k,t ≤ x},

and their corresponding empirical quantile function as F̂−1t (α) := inf{x ∈ R :

F̂t(x) ≥ α} for all α ∈ (0, 1). It will be useful in the sequel to express the empiri-

cal quantile function in terms of the order statistics associated with sequence of
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residuals. Essentially, the order statistics ε̂(1),t, . . . , ε̂(t),t are defined as a permuta-

tion of ε̂1,t, . . . , ε̂t,t such that ε̂(1),t ≤ ε̂(2),t ≤ · · · ≤ ε̂(t),t. With this concept in hand,

the empirical quantile function can be equivalently expressed as

F̂−1t (α) = ε̂(i),t, (2.7)

where the index i is chosen such that i−1
t
< α ≤ i

t
. It is not hard to see that

i = dtαe. Using Equation (2.7), one can relate the quantile estimation error to

the parameter estimation error according to the following inequality

|F̂−1t (α)− F−1(α)| ≤ |F−1t (α)− F−1(α)|+
(
1 + p2(i),t

)1/2 ‖θ̂t − θ‖2, (2.8)

where p(i),t is defined as the ith order statistic of the sequence of prices p1, . . . , pt.

Here, F−1t is defined as the empirical quantile function associated with the se-

quence of demand shocks ε1, . . . , εt. Their empirical distribution is defined as

Ft(x) :=
1

t

t∑
k=1

1{εk ≤ x}.

The inequality in (2.8) reveals that consistency of the quantile estimator (2.7)

is reliant upon consistency of the both the parameter estimator and the empirical

quantile function defined in terms of the sequence of demand shocks. Consis-

tency of the former is established in Lemma 1 under a suitable choice of a pricing

policy, which we specify in Equation (2.11). Consistency of the latter is estab-

lished in what follows under any feasible pricing policy. More specifically, as

the empirical quantile function F−1t (unlike F̂−1t ) only depends on the sequence

of random shocks, the rate at which it converges to F−1 is not determined by

the choice of the pricing policy.

Proposition 1. Let µ1 := 2/(L2 log(2)). It holds that

P
(
|F−1t (α)− F−1(α)| > γ

)
≤ 2 exp(−µ1γ

2t) (2.9)

for all γ > 0 and t ≥ 2.
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Proposition 1 is similar in nature to [31, Lemma 2], which provides a bound

on the rate at which the empirical distribution function converges to the true cu-

mulative distribution function in probability. The combination of Assumption

1 with [31, Lemma 2] enables the derivation of the upper bound in Proposition

1.

2.4 Design of Pricing Policies

Building on the approach to demand model learning in Section 2.3, we construct

a DR pricing policy, which is guaranteed to exhibit no-regret.

2.4.1 Myopic Policy

We begin with a description of a natural approach to pricing, which interleaves

the model estimation scheme defined in Section 2.3 with a myopic approach to

pricing. That is to say, at each stage t+1, the utility estimates the demand model

parameters and quantile function according to (2.6) and (2.7), respectively, and

sets the price according to

p̂t+1 =
ct+1

2
− b̂t + F̂−1t (α)

2ât
. (2.10)

Under this pricing policy, the utility essentially treats its model estimate in each

period as if it is correct, and disregards the subsequent impact of its choice of

price on its ability to accurately estimate the demand model in future time peri-

ods. A danger inherent to a myopic approach to pricing such as this is that the

resulting price sequence may fail to elicit information from demand at a rate,
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which is fast enough to enable consistent model estimation. As a result, the

model estimates may converge to incorrect values. Such behavior is well doc-

umented in the literature [30, 50, 56], and is commonly referred to as incomplete

learning. In Section 2.6, we provide a numerical example, which demonstrates

the occurrence of incomplete learning under the myopic pricing policy (2.10).

2.4.2 Perturbed Myopic Policy

In order to prevent the possibility of incomplete learning, we propose a pricing

policy that is guaranteed to elicit information from demand at a sufficient rate

through carefully designed perturbations to the myopic pricing policy (2.10).

The pricing policy we propose is defined as

pt+1 =


p̂t+1, t odd

p̂t + 1
2
(ct+1 − ct) + ρδt+1, t even,

(2.11)

where ρ ≥ 0 is a user specified positive constant, and

δt := sgn (ct − ct−1) · t−1/4.

We refer to the policy (2.11) as the perturbed myopic policy.5

The perturbed myopic policy differs from the myopic policy in two im-

portant ways. First, the model parameter estimate, θ̂t, and quantile estimate,

F̂−1t (α), are updated at every other time step. Second, to enforce sufficient price

exploration, an offset is added to the myopic price at every other time step.

Roughly speaking, the sequence of myopic price offsets {ρδt} is chosen to decay

at a rate, which is slow enough to ensure consistent model learning, but not so

5In defining the sign function, we require that sgn(0) = 1.
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slow as to preclude a sub-linear growth rate for regret. In Section 2.5, we will

show that the combination of these features is enough to ensure consistent pa-

rameter estimation and a sub-linear growth rate for the T -period regret, which

is bounded from above by O(
√
T log(T )).

Remark 3 (On the Perturbation Order). We briefly describe the rationale be-

hind the selection of the order of the perturbation sequence as δt = O(t−1/4).

First, notice from Equation (2.12) that the regret incurred by any feasible pricing

policy is equal to the sum of the squared pricing errors generated by the pol-

icy. Combining this expression with the upper bound on the absolute pricing

error induced by the perturbed myopic policy in (2.14), it becomes clear to see

the conflicting effects that the perturbation sequence has on regret. On the one

hand, an increase in the order of the perturbation sequence will tend to reduce

the growth rate of regret by increasing the rate at which the parameter estima-

tion error ‖θ̂t−θ‖2 converges to zero. On the other hand, an increase in the order

of the perturbation sequence will tend to have the counterproductive effect of

increasing the growth rate of regret by increasing the rate at which the deliber-

ate pricing errors ρ|δt| accumulate. A tradeoff, therefore, emerges in selecting

the order of the perturbation sequence. In Appendix A.2, we show that among

all perturbation sequences that are polynomial in t, perturbation sequences of

the order O(t−1/4) are optimal in the sense of minimizing the asymptotic order

of our upper bound on regret (ignoring logarithmic factors).
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2.5 A Bound on Regret

Given the demand model considered in this chapter, one can express the T -

period regret as

∆π
T = a

T∑
t=1

Eπ
[
(pt − p∗t )2

]
, (2.12)

under any pricing policy π. It becomes apparent, upon examination of Equation

(2.12), that the rate at which regret grows is directly proportional to the rate at

which pricing errors accumulate. We, therefore, proceed in deriving a bound

on the rate at which the absolute pricing error |pt − p∗t | converges to zero in

probability, under the perturbed myopic policy.

First, it is not difficult to show that, under the perturbed myopic policy

(2.11), the absolute pricing error incurred in each even time period t is upper

bounded by

|pt+1 − p∗t+1| ≤ κ1‖θ̂t−1 − θ‖2 + κ2|F̂−1t−1(α)− F−1(α)| + ρ|δt+1|, (2.13)

where κ1 := (a2 + (b+ ε)2)1/2/(2a2) and κ2 := 1/(2a). The pricing error incurred

during odd time periods t is similarly bounded, sans the explicit dependency

on the myopic price perturbation. The upper bound in (2.13) is intuitive as it

consists of three terms: the parameter estimation error, the quantile estimation

error, and the myopic price perturbation – each of which represents a rudimen-

tary source of pricing error.

One can further refine the upper bound in (2.13), by leveraging on the fact

that, under the perturbed myopic policy, the generated sequence of prices is

uniformly bounded. That is to say, |pt| ≤ p for all time periods t, where

p :=
1

2
max

{
c− ε

a
, c− ε

a
,
b+ ε

a

}
.
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Combining this fact with the previously derived upper bound on the quantile

estimation error in (2.8), we have that

|pt+1 − p∗t+1| ≤ κ3‖θ̂t−1 − θ‖2 + κ2|F−1t−1(α)− F−1(α)| + ρ|δt+1|, (2.14)

for even time periods t, where κ3 := κ1 + κ2(1 + p2)1/2.

Consistency of the perturbed myopic policy depends on the asymptotic be-

havior of each term in (2.14). The price perturbation converges to zero by con-

struction, and consistency of the empirical quantile function is established in

Proposition 1. The following Lemma establishes a bound on the mean squared

parameter estimation error under the perturbed myopic policy (2.11).

Lemma 1 (Consistent Parameter Estimation). There exists a finite positive con-

stant µ2 such that, under the perturbed myopic policy (2.11),

E
[
‖θ̂t − θ‖2

]
≤ µ2

ρ2
log(t)√

t
,

for all t ≥ 3 and ρ > 0.

The following Theorem establishes an O(
√
T log(T )) upper bound on the T -

period regret.

Theorem 1 (Sub-linear Regret). The T -period regret incurred by the perturbed

myopic policy (2.11) satisfies

∆π(T ) ≤ C0 + C1

√
T log(T ) + C2 log(T ), (2.15)

for all T ≥ 3. Here, C0, C1, and C2 are finite positive constants.6

6We refer the reader to Equations (A.17) -(A.19) for the exact specification of the coefficients
C0, C1, and C2.
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In the process of proving Theorem 1, we also show that the perturbed my-

opic policy generates a sequence of market prices {pt} that converges to the

oracle optimal price sequence {p∗t} in the mean square sense. More formally, we

have the following corollary.

Corollary 1 (Price Consistency). The sequence of prices {pt} generated by the

perturbed myopic policy (2.11) satisfies

lim
t→∞

E
[
(pt − p∗t )2

]
= 0,

where {p∗t} denotes the oracle optimal price sequence.

2.5.1 The Exploratory Effect of Wholesale Price Variation

Thus far in this chapter, we have made no assumption on the nature of variation

in the sequence of wholesale electricity prices {wt}. In particular, all of the previ-

ously stated results hold for any sequence of time-varying wholesale electricity

prices. This includes the special case in which the wholesale price of electricity

is constant across time, i.e., wt = w for all time periods t. It is, however, natural

to inquire as to how the degree of variation in the sequence of wholesale prices

might impact the performance of the pricing policies considered in this chapter.

First, it is straightforward to see from Equation (2.10) that variation in the

sequence of wholesale prices induces equivalent variation in the sequence of

myopic prices. Such variation in the myopic price sequence is most naturally

interpreted as a form of costless exploration. In the following result, we estab-

lish a sufficient condition on the variation of wholesale prices, which eliminates

the need for external perturbations to the myopic price sequence (i.e., setting
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ρ = 0), while guaranteeing an upper bound on the resulting T -period regret

that is O(log2(T )). The redundancy of exogenous exploration in the presence of

sufficient variation in the sequence of observations generated by the environ-

ment is also independently discovered in the revenue management literature

[9].

Theorem 2 (Logarithmic Regret). Assume that there exists a finite positive con-

stant σ > 0 such that

|wt − wt−1| ≥ σ, (2.16)

for all time periods t.7 It follows that the T -period regret incurred by the per-

turbed myopic policy (2.11), with ρ = 0, satisfies

∆π(T ) ≤M0 +
M2

σ2
+M1 log(T ) +

M2

σ2
log2(T ), (2.17)

for all T ≥ 3. Here, M0,M1, and M2 are finite positive constants8, which are

independent of the parameter σ.

Several comments are in order. First, under the additional assumption

of persistent wholesale price variation (2.16), we establish in Theorem 2 an

improvement upon the original order of regret stated in Theorem 1 from

O(
√
T log(T )) to O(log2(T )). However, as one might expect, the magnitude of

the upper bound on regret in (2.17) scales in a manner that is inversely propor-

tional to σ2. As a result, the upper bound on the T -period regret goes to infinity

as σ goes to zero, and, therefore, provides little useful information when σ is

small.
7Note that Assumption (2.16) in Theorem 2 implies that |ct − ct−1| ≥ σ.
8We refer the reader to Equations (A.20) -(A.22) for the exact specification of the coefficients

M0,M1, and M2.
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2.6 Simulations

We conduct a numerical analysis to compare the performance of the myopic

policy (2.10) against the perturbed myopic policy (2.11) over a time horizon of

T = 104. We set the tuning parameter ρ = 0.19. We consider the setting in

which there are N = 1000 customers participating in the DR program. For

each customer i, we select ai uniformly at random from the interval [0.04, 0.20],

and independently select bi according an exponential distribution (with mean

equal to 0.01) truncated over interval [0, 0.1]. Parameters are drawn indepen-

dently across customers.9 For each customer i, we take the demand shock to

be distributed according to a normal distribution with zero-mean and standard

deviation equal to 0.04, truncated over the interval [−0.4, 0.4]. We consider a

utility with risk sensitivity equal to α = 0.1. In other words, the utility seeks to

maximize the revenue it is guaranteed to receive with probability no less than

0.9. Finally, we set the retail price of electricity to f = 0.17 ($/kWh), and set the

wholesale price of electricity to wt = 1.67 ($/kWh) for all days t. Such values

are consistent with the average residential retail and peak wholesale prices of

electricity in the state of New York in 2016 [91, 71].

2.6.1 Discussion

Because the wholesale price of electricity is fixed over time, the parameter and

quantile estimates represent the only source of variation in the sequence of

prices generated by the myopic policy. Due to the combined structure of the

9It is worth noting that the range of parameter values ai ∈ [0.04, 0.20] considered in this
numerical study is consistent with the range of demand price elasticities observed in several
real-time pricing programs conducted in the United States [90, 34].
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myopic policy and the least squares estimator, the value of each new demand

observation rapidly diminishes over time, which, in turn, manifests in a rapid

convergence of the sequence of prices generated under the myopic policy. The

resulting lack of exploration in the sequence of myopic prices results in incom-

plete learning, which is seen in Figure 2.1. Namely, the sequence of myopic

prices converges to a value, which substantially differs form the oracle optimal

price. As a consequence, the myopic policy incurs a T -period regret that grows

linearly with the horizon T , as is observed in Figure 2.2.

On the other hand, the sequence of perturbations {ρδt} generate enough

variation in the sequence of prices generated by the perturbed myopic policy

to ensure consistent model estimation, as is seen in Figures 2.1a and 2.1b. This,

in turn, results in convergence of the sequence of posted prices to the oracle op-

timal price. This, combined with the fact that the price offset ρδt vanishes at a

sufficiently fast rate, ensures sublinearity in the growth rate of the correspond-

ing T -period regret, as is observed in Figure 2.2.

35



0 2000 4000 6000 8000 10000
100

110

120

130

140

150

160

170

180

(a) Sequences of demand parameter ât.
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Figure 2.1: (a)-(b) Sample paths of the parameter estimates, and (c) sample path
of the shock quantile estimates under the myopic policy ( ), the perturbed my-
opic policy ( ), and the oracle policy ( ).

36



T
0 2000 4000 6000 8000 10000

0.65

0.7

0.75

0.8

0.85

0.9

(a) Sequences of posted prices.

0 2000 4000 6000 8000 10000
0

0.005

0.01

0.015

0.02

(b) Mean squared pricing error.

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

(c) Regret.

Figure 2.2: (a) Sample path of posted prices, (b) mean squared pricing error, and
(c) regret under the myopic policy ( ), the perturbed myopic policy ( ), and the
oracle policy ( ).
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CHAPTER 3

SAFE ONLINE LEARNING OF LINEAR MODELS

3.1 Introduction

We investigate the role of safety in constraining the design of learning algo-

rithms within the classical framework of linear stochastic bandits [27, 73, 1].

Specifically, we introduce a family of safe linear stochastic bandit problems where—

in addition to the typical goal of designing learning algorithms that minimize

regret—we impose a constraint requiring that an algorithm’s stagewise ex-

pected reward remains above a predetermined safety threshold with high prob-

ability at every stage of play. In the proposed framework, we assume that a

“safe” baseline arm is initially known, and consider a class of safety thresholds

that are defined as fixed cutbacks on the expected reward of the known baseline

arm. Accordingly, an algorithm that is deemed to be safe cannot induce stage-

wise rewards that dip below the baseline reward by more than a fixed amount.

Critically, the assumption of a known baseline arm—and the limited capacity

for exploration implied by the class of safety thresholds considered—can be

leveraged on to initially guide the exploration of allowable arms by playing

combinations of the baseline arm and exploratory arms in a manner that ex-

pands the set of safe arms over time, while simultaneously preserving safety at

every stage of play.

There are a variety of real-world applications that might benefit from the de-

sign of stagewise-safe online learning algorithms [52, 60, 81]. Most prominently,

clinical trials have long been used as a motivating application for the multi-

armed bandit [10] and linear bandit [27] frameworks. However, as pointed out
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by [95]: “Despite this apparent near-perfect fit between a real-world problem

and a mathematical theory, the MABP has yet to be applied to an actual clinical

trial.” One could argue that the ability to provide a learning algorithm that is

guaranteed to be stagewise safe has the potential to facilitate the utilization of

bandit models and algorithms in clinical trials. More concretely, consider the

possibility of using the linear bandit framework to model the problem of opti-

mizing a combination of d candidate treatments for a specific health issue. In

this context, an “arm” represents a mixture of treatments, the “unknown re-

ward vector” encodes the effectiveness of each treatment, and the “reward”

represents a patient’s response to a chosen mixture of treatments. In terms of

the safety threshold, it is natural to select the “baseline arm” to be the (possibly

suboptimal) combination of treatments possessing the largest reward known to

date. As it is clearly unethical to prescribe a treatment that may degrade a pa-

tient’s health, the stagewise safety constraint studied in this chapter can be in-

terpreted as a requirement that a patient’s response to a chosen treatment must

be arbitrarily close to that of the baseline treatment, if not better.

3.1.1 Contributions

In this chapter, we propose a new learning algorithm that is tailored to the safe

linear bandit framework. The proposed algorithm, which we call the Safe Explo-

ration and Greedy Exploitation (SEGE) algorithm, is shown to exhibit near-optimal

expected regret, while guaranteeing the satisfaction of the proposed safety con-

straint at every stage of play. Initially, the SEGE algorithm performs safe ex-

ploration by combining the baseline arm with a random exploratory arm that

is constrained by an “exploration budget” implied by the stagewise safety con-
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straint. Over time, the proposed algorithm systematically expands the family

of safe arms in this manner to include new safe arms with expected rewards

that exceed the baseline reward level. Exploitation under the SEGE algorithm is

based on the certainty equivalence principle. That is, the algorithm constructs

an “estimate” of the unknown reward parameter, and selects an arm that is

optimal for the given parameter estimate. The SEGE algorithm only plays the

certainty equivalent (i.e., greedy) arm when it is safe—a condition that is deter-

mined according to a lower confidence bound on its expected reward. More-

over, the proposed algorithm balances the trade-off between exploration and

exploitation by controlling the rate at which information is accumulated over

time, as measured by the growth rate of the minimum eigenvalue of the so-

called information matrix.1 More specifically, the SEGE algorithm guarantees

that the minimum eigenvalue of the information matrix grows at a rate ensur-

ing that the expected regret of the algorithm is no greater than O(
√
T log(T ))

after T stages of play. This regret rate is near optimal in light of Ω(
√
T ) lower

bounds previously established in the linear stochastic bandit literature [27, 73].

3.1.2 Related Literature

There is an extensive literature on linear stochastic bandits. For this setting, sev-

eral algorithms based on the principle of Optimism in the Face of Uncertainty

(OFU) [27, 73, 1] or Thompson Sampling [3] have been proposed. Although

such algorithms are known to be near-optimal under various measures of re-

gret, they may fail in the safe linear bandit framework, as their (unconstrained)

1We note that a closely related class of learning algorithms, which explicitly control the rate
of information gain in this manner, have been previously studied in the context of dynamic
pricing algorithms for revenue maximization [30, 50].
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approach to exploration may result in a violation of the stagewise safety con-

straints considered in this chapter.

In the context of multi-armed bandits, there is a related stream of literature

that focuses on the design of “risk-sensitive” learning algorithms by encod-

ing risk in the performance objectives according to which regret is measured

[18, 28]. Typical risk measures that have been studied in the multi-armed bandit

literature include Mean-Variance [77, 94], Value-at-Risk [93], and Conditional

Value-at-Risk [36]. Although such risk-sensitive algorithms are inclined to ex-

hibit reduced volatility in the cumulative reward that is received over time, they

are not constrained in a manner that explicitly limits the stagewise risk of the

reward processes that they induce.

Closer to the setting studied in this chapter is the conservative bandit frame-

work [97, 49, 38], which incorporates explicit safety constraints on the reward

process induced by the learning algorithm. However, in contrast to the stage-

wise safety constraints considered in this chapter, conservative bandits encode

their safety requirements in the form of constraints on the cumulative rewards

received by the algorithm. Along a similar line of research, [82] investigate the

design of learning algorithms for risk-constrained contextual bandits that bal-

ance a tradeoff between cumulative constraint violation and regret. Given the

cumulative nature of the safety constraints considered by the aforementioned

algorithms, they cannot be directly applied to the stagewise safe linear bandit

problem considered in this chapter. In Section 3.6.3, we provide a simulation-

based comparison between the SEGE algorithm and the Conservative Linear

Upper Confidence Bound (CLUCB) algorithm [49] to more clearly illustrate the

potential weaknesses and strengths of each approach.
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We close this section by mentioning another closely related body of work

in the online learning literature that investigates the design of stagewise-safe

algorithms for a more general class of smooth reward functions [81, 80, 92].

Although the proposed algorithms are shown to respect stagewise safety con-

straints that are similar in spirit to the class of safety constraints considered in

this chapter, they lack formal upper bounds on their cumulative regret.

3.1.3 Organization

The remainder of the chapter is organized as follows. We introduce pertinent

notation in Section 3.2. In Section 3.3, we define the safe linear stochastic bandit

problem. In Section 3.4, we introduce the Safe Exploration and Greedy Exploita-

tion (SEGE) algorithm. We present our main theoretical findings in Section 3.5,

and close the chapter with a simulation study of the SEGE algorithm in Section

3.6. All mathematical proofs are presented in the Appendix Chapter B.

3.2 Notation

We denote the standard Euclidean norm of a vector x ∈ Rd by ‖x‖ and define

its weighted Euclidean norm as ‖x‖S =
√
x>Sx where S ∈ Rd×d is a given

symmetric positive semidefinite matrix. We denote the inner product of two

vectors x, y ∈ Rd by 〈x, y〉 = x>y. For a square matrix A ∈ Rd×d, we denote its

minimum and maximum eigenvalues by λmin(A) and λmax(A), respectively.
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3.3 Problem Formulation

In this section, we introduce the safe linear stochastic bandit model consid-

ered in this chapter. Before doing so, we review the standard model for linear

stochastic bandits on which our formulation is based.

3.3.1 Linear Bandit Model

Linear stochastic bandits belong to a class of sequential decision-making prob-

lems in which a learner (i.e., decision-maker) seeks to maximize an unknown

linear function using noisy observations of its function values that it collects

over multiple stages. More precisely, at each stage t = 1, 2, . . . , the learner is re-

quired to select an arm (i.e., action) Xt from a compact set X ⊂ Rd of allowable

arms, which is assumed to be an ellipsoid of the form

X =
{
x ∈ Rd | (x− x̄)>H−1(x− x̄) ≤ 1

}
, (3.1)

where x̄ ∈ Rd and H ∈ Rd×d is a symmetric and positive definite matrix. In

response to the particular arm played at each stage t, the learner observes a

reward Yt that is induced by the stochastic linear relationship:

Yt = 〈Xt, θ
∗〉+ ηt. (3.2)

Here, the noise process {ηt}∞t=1 is assumed be a sequence of independent and

zero-mean random variables, and, critically, the reward parameter θ∗ ∈ Rd is

assumed to be fixed and unknown. This a priori uncertainty in the reward pa-

rameter gives rise to the need to balance the exploration-exploitation trade-off

in adaptively guiding the sequence of arms played in order to maximize the

expected reward accumulated over time.
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Admissible Policies and Regret.

We restrict the learner’s decisions to those which are causal in nature. That is

to say, at each stage t, the learner is required to select an arm based only on

the history of past observations Ht = (X1, Y1, . . . , Xt−1, Yt−1), and on an external

source of randomness encoded by a random variable Ut. The random process

{Ut}∞t=1 is assumed to be independent across time, and independent of the ran-

dom noise process {ηt}∞t=1. Formally, an admissible policy is a sequence of func-

tions π = {πt}∞t=1, where each function πt maps the information available to the

learner at each stage t to a feasible arm Xt ∈ X according to Xt = πt(Ht, Ut).

The performance of an admissible policy after T stages of play is measured

according to its expected regret,2 which equals the difference between the ex-

pected reward accumulated by the optimal arm and the expected reward ac-

cumulated by the given policy after T stages of play. Formally, the expected

regret of an admissible policy is defined as

RT =
T∑
t=1

〈X∗, θ∗〉 − E

[
T∑
t=1

〈Xt, θ
∗〉

]
, (3.3)

where expectation is taken with respect to the distribution induced by the un-

derling policy, and X∗ ∈ X denotes the optimal arm that maximizes the expected

reward at each stage of play given knowledge of the reward parameter θ∗, i.e.,

X∗ = argmax
x∈X

〈x, θ∗〉. (3.4)

At a minimum, we seek policies exhibiting an expected regret that is sublinear

in the number of stages played T . Such policies are said to have no-regret in

the sense that limT→∞ RT/T = 0. To facilitate the design and theoretical anal-

ysis of such policies, we adopt a number of technical assumptions, which are
2It is worth noting, that in the context of linear stochastic bandits, expected regret is equivalent

to expected pseudo-regret due to the additive nature of the noise process [1].
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standard in the literature on linear stochastic bandits, and are assumed to hold

throughout the chapter.

Assumption 2. The unknown reward parameter is bounded according to

‖θ∗‖ ≤ S, where S > 0 is a known constant.

Assumption 2 will prove essential to the design of policies that safely explore

the parameter space in a manner ensuring that the expected reward stays above

a predetermined (safe) threshold with high probability at each stage of play. We

refer the reader to Definition 2 for a formal definition of the particular safety

notion considered in this chapter.

Assumption 3. Each element of {ηt}∞t=1 is assumed to be ση-sub-Gaussian,

where ση ≥ 0 is a fixed constant. That is,

E [exp(γηt)] ≤ exp
(
γ2σ2

η/2
)

for all γ ∈ R and t ≥ 1.

Assumptions 2 and 3, together with the class of admissible policies consid-

ered in this chapter, enable the utilization of existing results that provide an

explicit characterization of confidence ellipsoids for the unknown reward pa-

rameter based on a `2-regularized least-squares estimator [1]. Such confidence

regions play a central role in the design of no-regret algorithms for the linear

stochastic bandits [27, 73, 1].

3.3.2 Safe Linear Bandit Model

In what follows, we introduce the framework of safe linear stochastic bandits stud-

ied in this chapter. Loosely speaking, an admissible policy is said to be safe if
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the expected reward E [Yt | Xt] = 〈Xt, θ
∗〉 that it induces at each stage t is guar-

anteed to stay above a given reward threshold with high probability.3 More

formally, we have the following definition.

Definition 2 (Stagewise Safety Constraint). Let b ∈ R and δ ∈ [0, 1]. An ad-

missible policy π—or equivalently the arm Xt that it induces—is defined to be

(δ, b)-safe at stage t if

P (〈Xt, θ
∗〉 ≥ b) ≥ 1− δ, (3.5)

where the probability is calculated according to the distribution induced by the

policy π.

The stagewise safety constraint requires that the expected reward at stage

t exceed the safety threshold b ∈ R with probability no less than 1 − δ, where

δ ∈ [0, 1] encodes the maximum allowable risk that the learner is willing to tolerate.

Clearly, without making additional assumptions, it is not possible to design

policies that are guaranteed to be safe according to (3.5) given arbitrary safety

specifications. We circumvent this obvious limitation by giving the learner ac-

cess to a baseline arm with a known lower bound on its expected reward. We

formalize this assumption as follows.

Assumption 4 (Baseline Arm). We assume that the learner knows a determinis-

tic baseline arm X0 ∈ X satisfying

〈X0, θ
∗〉 ≥ b0,

where b0 ∈ R is a known lower bound on its expected reward.

3To simplify the exposition, we will frequently refer to E [Yt | Xt]—the expected reward con-
ditioned on the arm Xt—as the expected reward, unless it is otherwise unclear from the context.
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We note that it is straightforward to construct a baseline arm satisfying As-

sumption 4 by leveraging on the assumed boundedness of the unknown reward

parameter as specified by Assumption 2. In particular, any arm X0 ∈ X and its

corresponding “worst-case” reward given by b0 = min‖θ‖≤S 〈X0, θ〉 = −S‖X0‖

are guaranteed to satisfy Assumption 4.

With Assumption 4 in hand, the learner can leverage on the baseline arm to

initially guide its exploration of allowable arms by playing combinations of the

baseline arm and carefully designed exploratory arms in a manner that safely

expands the set of safe arms over time. Plainly, the ability to safely explore in the

vicinity of the baseline arm is only possible under stagewise safety constraints

defined in terms of safety thresholds satisfying b < b0. Under such stagewise

safety constraints, the difference in rewards levels b0 − b can be interpreted as a

stagewise “exploration budget” of sorts, as it reflects the maximum relative loss

in expected reward that the learner is willing to tolerate when playing arms that

deviate from the baseline arm. Naturally, the larger the exploration budget, the

more aggressively can the learner explore. With the aim of designing safe learn-

ing algorithms that leverage on this simple idea, we will restrict our attention

to stagewise safety constraints that are specified in terms of safety thresholds

satisfying b < b0.

Before proceeding, we briefly summarize the framework of safe linear stochas-

tic bandits considered in this chapter. Given a baseline arm satisfying Assump-

tion 4, the learner is initially required to fix a safety threshold that satisfies

b < b0. At each subsequent stage t = 1, 2, . . . , the learner must select a risk

level δt ∈ [0, 1] and a corresponding arm Xt ∈ X that is (δt, b)-safe. The learner

aims to design an admissible policy that minimizes its expected regret, while
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simultaneously ensuring that all arms played satisfy the stagewise safety con-

straints. In the following section, we propose a policy that is guaranteed to both

exhibit no-regret and satisfy the safety constraint at every stage of play.

Relationship to Conservative Bandits.

We briefly discuss the relationship between the safety constraints considered in

this chapter and the conservative bandit framework orginally studied by [97] in

the context of multi-armed bandits, and subsequently extended to the setting

of linear bandits by [49]. In contrast to the stagewise safety constraints consid-

ered in this chapter, conservative bandits encode their safety requirements in

the form of constraints on the cumulative expected rewards received by a pol-

icy. Specifically, given a baseline arm satisfying Assumption 4, an admissible

policy is said to respect the safety constraint defined in [49] if

P

(
t∑

k=1

〈Xk, θ
∗〉 ≥ (1− α)

t∑
k=1

b0, ∀ t ≥ 1

)
≥ 1− δ, (3.6)

where δ ∈ [0, 1] and α ∈ (0, 1). Here, the parameter α encodes the maximum

fraction of the cumulative baseline rewards that the learner is willing to forgo

over time. In this context, smaller values of α imply greater levels of conser-

vatism (safety). It is straightforward to show that conservative performance

constraints of the form (3.6) are a special case of the class of stagewise safety

constraints considered in Definition 2. In particular, if we set the safety thresh-

old according to b = (1−α)b0, and let {δt}∞t=1 be any summable sequence of risk

levels satisfying
∑∞

t=1 δt ≤ δ, then any admissible policy that is (δt, b)-safe for

each stage t ≥ 1 also satisfies the conservative performance constraint (3.6).
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3.4 A Safe Linear Bandit Algorithm

In this section, we propose a new algorithm, which we call the Safe Exploration

and Greedy Exploitation (SEGE) algorithm, that is guaranteed to be safe in every

stage of play, while exhibiting a near-optimal expected regret. Before proceed-

ing with a detailed description of the proposed algorithm, we briefly summarize

the basic elements underpinning its design. Initially, the SEGE algorithm per-

forms safe exploration by playing convex combinations of the baseline arm and

random exploratory arms in a manner that satisfies Definition 2. Through this

process of exploration, the SEGE algorithm is able to expand the family of safe

arms to incorporate new arms that are guaranteed to outperform the baseline

arm with high probability. Among all safe arms available to the algorithm at

any given stage of play, the arm with the largest lower confidence bound on its

expected reward is used as the basis for safe exploration. The SEGE algorithm

performs exploitation by playing the certainty equivalent (greedy) arm based on

a `2-regularized least-squares estimate of the unknown reward parameter. The

SEGE algorithm only plays the greedy arm when it is safe, i.e., when a lower

confidence bound on its expected reward exceeds the given safety threshold.

Critically, the proposed algorithm balances the trade-off between exploration

and exploitation by explicitly controlling the growth rate of the so-called infor-

mation matrix (cf. Eq. (3.8)) in a manner that ensures that the expected regret of

the SEGE algorithm is no greater than O(
√
T log(T )) after T stages of play. The

pseudocode for the SEGE algorithm is presented in Algorithm 1.

In the following section, we introduce a regularized least-squares estimator

that will serve as the foundation for the proposed learning algorithm.
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3.4.1 Regularized Least Squares Estimator

The `2-regularized least-squares estimate of the unknown reward parameter θ∗

based on the information available to the algorithm up until and including stage

t is defined as

θ̂t = argmin
θ∈Rd

{
t∑

k=1

(Yk − 〈Xk, θ〉)2 + λ‖θ‖2
}
.

Here, λ > 0 denotes a user-specified regularization parameter. It is straightfor-

ward to show that

θ̂t = V −1t

t∑
k=1

XkYk, (3.7)

where

Vt = λI +
t∑

k=1

XkX
>
k . (3.8)

Throughout the chapter, we will frequently refer to the matrix Vt as the informa-

tion matrix at each stage t.

The following result taken from [1, Theorem 2] provides an ellipsoidal char-

acterization of a confidence region for the unknown reward parameter based on

the regularized least-squares estimator (3.7). It is straightforward to verify that

the conditions of [1, Theorem 2] are satisfied under the standing assumptions of

this chapter.

Theorem 3. For any admissible policy and δ ∈ (0, 1), it holds that

P (θ∗ ∈ Ct(δ), ∀t ≥ 1) ≥ 1− δ,

where the confidence set Ct(δ) is defined as

Ct(δ) =
{
θ ∈ Rd : ‖θ̂t − θ‖Vt ≤ rt(δ)

}
. (3.9)
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Here, rt(δ) is defined as

rt(δ) = ση

√
d log

(
1 + tL2/λ

δ

)
+
√
λS, (3.10)

where L = maxx∈X ‖x‖.

In the following section, we propose a method for safe exploration using the

characterization of the confidence ellipsoids introduced in Theorem 3.

3.4.2 Safe Exploration

We now describe a novel approach to “safe exploration” that will be utilized in

the design of the proposed learning algorithm. At each stage t ≥ 1, given a risk

level δt, the SEGE algorithm constructs a safe exploration arm (XSE
t ) as a convex

combination of a (δt, b0)-safe arm (XS
t ) and a random exploratory arm (Ut), i.e.,

XSE
t = (1− ρ)XS

t + ρUt. (3.11)

Qualitatively, the user-specified parameter ρ ∈ (0, 1) controls the balance be-

tween safety and exploration. Figure 3.1 provides a graphical illustration of the

set of all safe exploration arms induced by a given safe arm XS
t according to

(3.11).

The random exploratory arm process {Ut}∞t=1 is generated according to

Ut = x̄+H1/2ζt, (3.12)

where the random process {ζt}∞t=1 is assumed to be a sequence of independent,

zero-mean, and symmetric random vectors. For each element of the sequence,

we require that ‖ζt‖ = 1 almost surely and σ2
ζ = λmin(Cov (ζt)) > 0. Addition-

ally, we define σ2 = λmin(Cov (Ut)). The parameters σ and ρ both determine
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Figure 3.1: The figure illustrates the effect of the safety constraint on the
learner’s decision making ability. The shaded blue ellipse X SE

t depicts the set
of all safe exploration arms constructed using the safe arm XS

t under the SEGE
algorithm, i.e., X SE

t = {(1 − ρ)XS
t + ρx | ρ ∈ (0, ρ̄], x ∈ ∂X}. The red shaded

area depicts the set of unsafe arms. The black ellipse (and its interior) depicts
the entire set of allowable arms.

how aggressively the algorithm can explore the set of allowable arms. How-

ever, exploration that is too aggressive may result in a violation of the stagewise

safety constraint. In the following Lemma, we establish an upper bound on ρ

such that for all choices of ρ ∈ (0, ρ̄], the arm XSE
t is guaranteed to be safe for

any σ ≥ 0.

Lemma 2. Let ρ ∈ (0, ρ̄] where ρ̄ > 0 is defined as

ρ̄ = min

{
1,

b0 − b
2S
√
λmax(H)

}
. (3.13)

Then, for every stage t ≥ 1, the safe exploration arm XSE
t defined in Equation

(3.11) is (δ, b)-safe for any δ ∈ [0, 1].

As the SEGE algorithm expands its set of safe arms over time, it attempts to

increase the stagewise efficiency with which it safely explores by exploring in
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the vicinity of the safe arm with the largest lower confidence bound on its ex-

pected reward. More specifically, at each stage t, the SEGE algorithm constructs

a confidence set Ct−1(δt) according to Equation (3.9). With this confidence set in

hand, the proposed algorithm calculates a lower confidence bound (LCB) on the

expected reward of each arm x ∈ X according to

LCBt(x) = min
θ∈Ct−1(δt)

〈x, θ〉.

It is straightforward to show that the lower confidence bound defined above

admits the closed-form expression:

LCBt(x) = 〈x, θ̂t−1〉 − rt(δt)‖x‖V −1
t−1
.

We define the LCB arm (XLCB
t ) to be the arm with the largest lower confidence

bound on its expected reward among all allowable arms. It is given by:

XLCB
t = argmax

x∈X
LCBt(x). (3.14)

Clearly, the LCB arm is guaranteed to be (δt, b0)-safe if LCBt(XLCB
t ) ≥ b0. In

this case, the SEGE algorithm relies on the LCB arm for safe exploration, as its

expected reward is potentially superior to the baseline arm’s expected reward.4

Putting everything together, the SEGE algorithm sets the safe arm (XS
t ) at each

stage t according to:

XS
t =


XLCB
t , if LCBt(XLCB

t ) ≥ b0,

X0, otherwise.
(3.15)

Before closing this section, it is important to note that the LCB arm (3.14)

can be calculated in polynomial time by solving a second-order cone program.

4It is important to note that the condition LCBt(X
LCB
t ) ≥ b0 does not guarantee superiority

of the LCB arm to the baseline arm, as b0 is only assumed to be a lower bound on the baseline
arm’s expected reward.
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This is in stark contrast to the non-convex optimization problem that needs to

be solved when computing the UCB arm (i.e., the arm with the largest upper

confidence bound on the expected reward)—a problem that has been shown to

be NP-hard in general [27].

3.4.3 Safe Greedy Exploitation

We now describe a novel approach to “safe exploration” that will be utilized in

the design of the proposed learning algorithm. Exploitation under the SEGE al-

gorithm relies on the certainty equivalence principle. That is, the algorithm first

estimates the unknown reward parameter according to Equation (3.7). Then,

the algorithm chooses an arm that is optimal for the given parameter estimate.

Given the ellipsoidal structure of the set of allowable arms, the optimal arm X∗

can be calculated as

X∗ = x̄+
Hθ∗

‖θ∗‖H
. (3.16)

Similarly, the certainty equivalent (greedy) arm can be calculated as

XCE
t = x̄+

Hθ̂t−1

‖θ̂t−1‖H
, (3.17)

where θ̂t−1 is the regularized least-squares estimate of the unknown reward pa-

rameter, as defined in Equation (3.7).

It is important to note that the SEGE algorithm only plays the greedy arm

(3.17) when the lower confidence bound on its expected reward is greater than

or equal to the safety threshold b. This ensures that the greedy arm is only

played when it is safe.
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Algorithm 1 SEGE Algorithm

1: Input: X0, b0, X , S > 0, c > 0, ν ∈ (0, 1), λ > 0, b < b0, ρ ∈ (0, ρ̄], δt ∈
[0, 1] ∀t ≥ 1

2: for t = 1, 2, 3, . . . do
{Parameter Estimation}

3: Set θ̂t−1 according to Eq. (3.7)
4: Set Ct−1(δt) according to Eq. (3.9)
{Safe Greedy Exploitation}

5: if LCBt(XCE
t ) ≥ b and λmin(Vt−1) ≥ c(t− 1)ν

6: Set Xt = XCE
t according to Eq. (3.17)

{Safe Exploration}
7: else
8: Set Xt = XSE

t according to Eq. (3.11)
9: end if

10: Observe Yt = 〈Xt, θ
∗〉+ ηt

11: end for

3.5 Theoretical Results

We now present our main theoretical results showing that the SEGE algorithm

exhibits near optimal regret for a large class of risk levels (cf. Theorem 5), in

addition to being safe at every stage of play (cf. Theorem 4). As an immediate

corollary to Theorem 5, we establish sufficient conditions under which the SEGE

algorithm is also guaranteed to satisfy the conservative bandit constraint (3.6),

while preserving the upper bound on regret in Theorem 5 (cf. Corollary 2).

Theorem 4 (Stagewise Safety Guarantee). The SEGE algorithm is (δt, b)-safe at

each stage, i.e.,

P (〈Xt, θ
∗〉 ≥ b) ≥ 1− δt

for all t ≥ 1.

The ability to enforce safety in the sequence of arms played is not surprising

given the assumption of a known baseline arm that is guaranteed to be safe
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at the outset. However, given the potential suboptimality of the baseline arm,

a naı̈ve policy that plays the baseline arm at every stage will likely incur an

expected regret that grows linearly with the number of stages played T . In

constrast, we show, in Theorem 5, that the SEGE algorithm for an appropriate

choice of parameters c and ν exhibits an expected regret that is no greater than

O(
√
T log(T )) after T stages—a regret rate that is near optimal given existing

Ω(
√
T ) lower bounds on regret [27, 73].

Theorem 5 (Upper Bound on Expected Regret). Fix δ ∈ (0, 1], ν ∈ (0, 1), and

K ≥ 0. Let {δt}∞t=1 be any sequence of risk levels satisfying

δt ≥ δe−Kt
ν

for all t ≥ 1. (3.18)

Fix c > 2dKL2σ2
η/(b0 − b)2 and ν ∈ [ν, 1). Then, there exist finite positive con-

stants C1 and C2 such that the expected regret under the SEGE algorithm is

upper bounded as

RT ≤ C1T
ν + C2 log(T )T 1−ν (3.19)

for all T ≥ 1.

In what follows, we provide a high-level sketch of the proof of Theorem

5. The complete proof is presented in Appendix B.3. We bound the expected

regret incurred during the safe exploration and the greedy exploitation stages

separately. First, we show that the stagewise expected regret incurred when

playing the greedy arm is proportional to the mean squared parameter estima-

tion error. We then employ Theorem 3 to show that, conditioned on the event

{λmin(Vt) ≥ ctν}, the mean squared parameter estimation error at each stage t

is no greater than O(log(t)/tν). It follows that the cumulative expected regret

incurred during the exploitation stages is no more than O(log(T )T 1−ν) after T
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stages of play. Now, in order to upper bound the expected regret accumulated

during the safe exploration stages, it suffices to upper bound the expected num-

ber of safe exploration stages, since the stagewise regret can be upper bounded

by a finite constant under any admissible policy. We show that the expected

number of safe exploration stages is no more than O(T ν) after T stages of play

for any sequence of risk levels that does not decay faster than the rate specified

in (3.18).

Several comments are in order. In Theorem 5, we establish a sufficient condi-

tion on the sequence of risk levels for which we can guarantee a near-optimal ex-

pected regret. Qualitatively, in order to satisfy more stringent safety constraints

in subsequent stages, the learner needs to gain more information during pre-

ceding stages. More precisely, the information gain, measured by the minimum

eigenvalue of the information matrix, controls the structure of the uncertainty

ellipsoid, which, in turn, determines the lower confidence bound on the reward

of each arm. That is to say, the LCB of the reward of an arm is an increasing

function of the information gain. The sub-exponential condition (3.18) estab-

lishes a limit on the decay rate of the sequence of risk levels for which the learner

can safely and near-optimally balance the trade-off between exploration and ex-

ploitation. Establishing a necessary condition on the rate at which the sequence

of risk levels can decay to ensure near-optimal regret is an interesting direction

for future research.

For sub-exponentially decaying sequence of risk levels according to condi-

tion (3.18) with ν ≤ 1/2, the SEGE algorithm is guaranteed to exhibit a near-

optimal expected regret for appropriate choices of parameters c and ν. More
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precisely, for parameters ν = 1/2 and c that satisfies

c >
2dKL2σ2

η

(b0 − b)2
, (3.20)

the expected regret under SEGE algorithm is upper bounded by O(
√
T log(T ))

using Theorem 5. The choice of ν = 1/2 ensures that λmin(Vt) = O(
√
t),

which, in turn, balances the trade-off between exploration and exploitation

near-optimally. It is worth noting that the lower bound on parameter c in (3.20)

is proportional to d and σ2
η . That is, there is a need to gain more information

(i.e., ensure larger λmin(Vt)) in higher dimensional problems or environments

with larger noise variances. Moreover, the lower bound (3.20) is proportional

to risk level parameter K and inversely proportional to the exploration budget

(b0 − b)2. Hence, the learner needs to gain more information when facing more

strict safety constraints.

We close this section with a result establishing sufficient conditions under

which the SEGE algorithm is guaranteed to satisfy the conservative perfor-

mance constraint (3.6), in addition to being stagewise safe, while satisfying an

upper bound on its expected regret that matches that of the CLUCB algorithm

[49, Theorem 5]. Corollary 2 is stated without proof, as it is an immediate con-

sequence of Theorems 4 and 5.

Corollary 2 (Conservative Performance Guarantee). Let δ ∈ (0, 1). Assume, in

addition to the standing assumptions of Theorem 5, that {δt}∞t=1 is a summable

sequence satisfying
∑∞

t=1 δt ≤ δ. Then, the SEGE algorithm satisfies the con-

servative performance constraint (3.6), and exhibits an expected regret that is

upper bounded by O(
√
T log(T )) for all T ≥ 1.

58



3.6 Simulation Results

In this section, we conduct a simple numerical study to illustrate the qualita-

tive features of the SEGE algorithm and compare it with the CLUCB algorithm

introduced by [49].

3.6.1 Simulation Setup

Model Parameters.

We consider a linear bandit with a two-dimensional input space (d = 2), and

restrict the set of allowable arms X to be closed disk of radius r = 1 centered

at x̄ = (1, 1). The true reward parameter is taken to be θ∗ = (0.6, 0.8), and the

upper bound on its norm is set to S = 1. We select a baseline arm at random

from the set of allowable arms as X0 = (1.2, 1.9), and set the baseline expected

reward to b0 = 〈X0, θ
∗〉 = 2.24. We set the safety threshold to b = 0.8 × b0. The

observation noise process {ηt}∞t=1 is assumed to be an IID sequence of zero-mean

Normal random variables with standard deviation ση = 1.

SEGE Algorithm.

We set the parameters of the SEGE algorithm to c = 0.5, λ = 0.1, and ρ = ρ̄ =

0.224. We generate the random exploration process according to Ut = x̄ + ζt,

where {ζt}∞t=1 is a sequence of IID random variables that are uniformly dis-

tributed on the unit circle. To enable a direct comparison between the SEGE

and CLUCB algorithms, we restrict our attention to a summable sequence of
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risk levels that satisfy the conditions of Corollary 2. Specifically, we set the se-

quence of risk levels to δt = 6δ/(π2t2) for all stages t ≥ 1, where δ = 0.1.

CLUCB Algorithm.

We note that the implementation of the CLUCB algorithm requires the repeated

solution of a non-convex optimization problem in order to compute UCB arms.

To circumvent this intractable calculation, we approximate the continuous set

of arms X by a finite set of arms X̂ that correspond to a uniform discretization

of the boundary of X . The error induced by this approximation is negligible, as

maxx∈X 〈x, θ∗〉 −maxx∈X̂ 〈x, θ∗〉 ≤ 3× 10−3.

3.6.2 Performance of the SEGE Algorithm

We first discuss the transient behavior and performance of the SEGE algorithm.

As one might expect, the SEGE algorithm initially relies on the baseline arm for

safe exploration as depicted in Figure 3.3a. Over time, as the algorithm accumu-

lates information, it is able to gradually expand the set of safe arms as shown

in Figure 3.2. This expansion enables the algorithm to increase the stagewise

efficiency with which it safely explores by selecting arms in the vicinity of the

safe arm with the largest lower confidence bounds on their expected rewards.

In turn, the SEGE algorithm is able to exploit the information gained to play the

greedy with increasing frequency over time. As a result, the growth rate of re-

gret diminishes over time as depicted in Figure 3.3c. Critically, Figure 3.3a also

shows that the SEGE algorithm maintains stagewise safety throughout each of

the 250 independent experiments.
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Figure 3.2: The blue curves depict the gradual expansion of the set of safe arms
{x ∈ X | LCBt(x) ≥ b} over time under the SEGE algorithm for t = 250, 500,
1000, 2000, 5000, 10000, and 50000. The blue dot depicts the baseline arm X0, the
black star depicts the optimal arm X∗, and the red shaded area depicts the set
of unsafe arms.

3.6.3 Comparison with the CLUCB Algorithm

Unlike the SEGE algorithm, the CLUCB algorithm is seen to violate the stage-

wise safety constraint at an early stage in the learning process as depicted in

Figure 3.3b. The violation of the stagewise safety constraint by the CLUCB al-

gorithm is not surprising as it is only guaranteed to respect the conservative

performance constraint (3.6). The SEGE algorithm, on the other hand, is guar-

anteed to satisfy the conservative performance constraint, in addition to being

stagewise safe (cf. Corollary 2). However, as one might expect, the more strin-

gent safety guarantee of the SEGE algorithm comes at a cost. Specifically, the

regret under the SEGE algorithm initially grows more rapidly than the regret

incurred by the CLUCB algorithm, as shown in Figure 3.3c. However, over time
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(a) Stagewise expected reward under the
SEGE algorithm.

(b) Stagewise expected reward under the
CLUCB algorithm.

(c) Cumulative regret of the SEGE algorithm (blue) and the
CLUCB algorithm (green).

Figure 3.3: These figures illustrate the empirical performance of the SEGE and
CLUCB algorithms. The solid lines depict empirical means and the shaded re-
gions depict empirical ranges computed from 250 independent simulations.

the growth rate of regret of the SEGE algorithm slows down as information ac-

cumulates and the need for safe exploration diminishes enabling the algorithm

to play the greedy arm more frequently.
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CHAPTER 4

ONLINE LEARNING OF NONPARAMETRIC MODELS

In many practical applications, linearly parameterized models are not flex-

ible enough to capture the characteristics of the underlying system. However,

one may be able to utilize the insight gained from the analysis of linearly pa-

rameterized models to develop methods that can be applied to more complex

models. In particular, in this chapter, we rely on the methodology developed

in Chapter 2 to design an online learning algorithm for a more general class of

nonparametric smooth functions, which is of practical importance in modern

electric power networks.

4.1 Introduction

The large scale utilization of demand response (DR) resources has the poten-

tial to substantially improve the reliability and efficiency of electric power sys-

tems. Accordingly, several state and federal mandates have been established to

facilitate the integration of demand response resources into wholesale electric-

ity markets. For example, FERC Order 719 mandates that Independent System

Operators (ISOs) permit the direct sale of energy produced by DR resources into

wholesale electricity markets [35]. However, as individual residential customers

often posses insufficient capacity to participate in such markets directly, there

emerges the need for an intermediary, or aggregator, with the ability to coordi-

nate the demand response of large numbers of residential customers for direct

sale into the wholesale electricity market. Such is consistent with the growing

multitude of ISO and utility-run DR programs, which require that aggregated

DR resources have a minimum load curtailment capability. For example, the
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Proxy Demand Resource (PDR) program operated by the California ISO has

minimum capacity requirement of 100 kW, while the Day-Ahead Demand Re-

sponse Program (DADRP) operated by the New York ISO has a more stringent

capacity requirement of two MW.

In this chapter, we adopt the perspective of an aggregator, which seeks to

coordinate its purchase of an aggregate demand reduction from a fixed group of

residential electricity customers, with its sale of the aggregate demand reduction

into a two-settlement wholesale energy market.1 Formally, this amounts to a

two-sided optimization problem, which requires the aggregator to balance the

cost it incurs in procuring a reduction in demand from participating customers

against the revenue it derives from its sale of the (a priori uncertain) demand

reduction into the wholesale energy market.

More specifically, we consider the setting in which the aggregator purchases

demand reductions from its customers using a non-discriminatory, posted price

mechanism. That is to say, each participating customer is payed for her reduc-

tion in electricity demand according to a uniform per-unit energy price deter-

mined by the aggregator. Pricing mechanisms of this form fall within the more

general category of DR programs that rely on peak time rebates (PTR) as in-

centives for demand reduction. Prior to its realization of the aggregate demand

reduction, the aggregator must also determine how much energy to sell into the

two-settlement energy market. In the day-ahead (DA) market, the aggregator

commits to a forward energy contract, which calls for delivery of the contracted

energy in the real-time (RT) market. If the realized reduction in demand exceeds

(falls short of) the forward contract, then the difference is sold (bought) in the

1From the perspective of the wholesale electricity market, the provisioning of a measurable
reduction in demand from an aggregator is equivalent to an increase in supply.
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RT market. Therefore, in order to maximize its profit, the aggregator must co-

optimize the DR price it offers its customers with the forward contract that it

commits to in the wholesale energy market, as the former determines its ability

to deliver the latter.

There are a variety of challenges that the aggregator faces in operating such

DR programs. The most basic challenge is the prediction of how customers will adjust

their aggregate demand in response to different DR prices, i.e., the aggregate demand

curve. If the offered price is too low, consumers may be unwilling to curtail

their demand; if the offered price is too high, the aggregator pays too much and

gets more reduction than is needed. As the aggregator is initially ignorant to

the customers’ aggregate demand curve, the aggregator must attempt to learn

a model of customer behavior over time through repeated observations of de-

mand reductions in response to the DR prices that it offers. Simultaneously, the

aggregator must jointly adjust its DR prices and forward contract offerings in

such a manner as to facilitate profit maximization over time. As we will later

show, such tasks are intimately related, and give rise to a fundamental trade-off

between the need to learn (explore) and earn (exploit).

Contribution: In this chapter, we study the setting in which the aggregator is

faced with an aggregate demand curve that is unknown, and subject to unob-

servable, additive random shocks. We do not make any parametric assumption

on the aggregate demand curve. Specifically, we assume that both the demand

curve and the probability distribution of the random shocks are fixed, but ini-

tially unknown to the aggregator. Faced with such ignorance, we explore the

extent to which the aggregator might dynamically adapt its posted DR prices

and offered contracts to maximize its expected profit over a time frame of T
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days. Specifically, we design a causal pricing and contract offering policy that

resolves the aggregator’s need to learn the unknown demand model with its

desire to maximize its cumulative expected profit over time. The proposed pric-

ing policy is proven to exhibit regret (relative to an oracle) over T days that is

at most O(log(T )
√
T ). In addition, the proposed policy is proven to generate a

sequence of posted DR prices and forward contracts that converge to the oracle

optimal DR price and forward contract in the mean square sense. Our method

generalizes the approach introduced by Besbes and Zeevi [12]. Specifically, they

consider the problem of maximizing the expected revenue of a seller of a single

product with unknown demand function. In contrast to their setting, in our

two-sided optimization problem, there is a need to learn the underlying distri-

bution of the demand shocks (in addition to the demand function).

Related Work: There is a large body of literature in power systems concerned

with the aggregation and coordination of flexible demand-side resources to op-

timize certain economic objectives that an aggregator might encounter in whole-

sale energy or ancillary service markets. In such settings, the aggregator will

typically exercise control over the consumption of participating demand-side

resources using either (1) a direct load control mechanism whereby the aggregator

can directly regulate the consumption of participating load resources according

to a pre-specified contract [14, 21, 23, 32, 43, 55, 66, 69, 78, 84, 98]; or (2) an indi-

rect load control mechanism whereby customers adjust their load in response to

price signals or incentives offered by the aggregator (e.g., time-of-use pricing,

peak time rebates, etc.) [15, 37, 47, 62, 61, 65, 76, 99].

The literature—as it relates to the problem of co-optimizing an aggrega-

tor’s (two-sided) transactions between end-use customers and the wholesale
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market—is much less developed. Campaigne et al. [17] consider a two-sided

market model that is perhaps closest in nature to the one considered in this

chapter. Specifically, the authors adopt a mechanism design approach to the

procurement of load reductions from customers, where customers are rationed

and remunerated according to their self-reported types.2 In this chapter, we

adopt a posted price approach to the procurement of demand reductions from

customers. This is in sharp contrast to the mechanism design approach of [17],

as it gives rise to the need to learn customers’ types (i.e., demand functions)

over time from measured data. From a practical standpoint, there are a variety

of reasons as to why a posted price approach might be preferable to the mech-

anism design approach advocated by Campaigne et al. [17], not the least of

which pertains to the simplicity and ease of implementation of posted pricing

schemes. We refer the reader to [59] for a detailed discussion surrounding the

advantages and disadvantages of such an approach in the context of online mar-

ketplaces. To the best of our knowledge, this chapter is the first to analyze the

use of a posted pricing scheme by an aggregator participating in such two-sided

markets.

Organization: The remainder of the chapter is organized as follows. In Sec-

tion 4.3, we formulate the aggregator’s profit maximization problem. In Section

4.4, we propose an adaptive pricing and contract offering policy for the aggrega-

tor. In Section 4.5 , we provide a theoretical analysis that establishes a sublinear

growth rate of the expected regret incurred by the proposed policy. In Section

4.6, we illustrate the performance of our proposed policy with a numerical case

study.

2We refer the reader to [20, 26] for a related line of literature, which also employs a mecha-
nism design approach to the procurement of demand reductions in such two-sided markets.
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4.2 Notation

We denote by N, Z, and R the sets of natural, integer, and real numbers, respec-

tively. Given a real number x ∈ R, we denote bxc := max {m ∈ Z | m ≤ x}

and x+ := max {0, x}. Given a function h : R → R, we denote its first and

second derivative with respect to its argument by h′ and h′′, respectively, i.e.,

h′(x) = dh(x)/dx and h′′(x) = d2h(x)/dx2.

4.3 Model

We adopt the perspective of an aggregator who seeks to purchase demand

reductions from a fixed group of N customers for sale into a two-settlement

wholesale energy market. The market is assumed to repeat over multiple time

periods indexed by t = 1, 2, . . .. Each time period can be viewed as the specific

time-slot during the day in which the demand response is scheduled (e.g., peak-

load hour on each day). The actions taken by the both aggregator and customers

are described in detail in the following subsections, and concisely summarized

in Table 4.1.

4.3.1 Two-Settlement Market Model

At the beginning of each day t, the aggregator commits to a forward contract for

energy in the day-ahead (DA) market in the amount of Qt (kWh). The forward

contract is remunerated at the DA energy price. The forward contract calls for

delivery in the real-time (RT) market. If the energy delivered by the aggregator
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(i.e., the aggregate demand reduction) falls short of the forward contract, the

aggregator must purchase the shortfall in the RT market at the shortage price. If

the energy delivered exceeds the forward contract, the aggregator must sell the

excess supply in the RT market at the overage price.3 The wholesale energy prices

may vary both during each day and from day to day. We denote the wholesale

energy prices (measured in $/kWh) averaged over the demand response time-

slot on day t by:

• λt, DA energy price,

• ρ+

t , RT overage price,

• ρ−
t , RT shortage price.

We make several standard assumptions regarding the aggregator’s actions

and the determination of energy prices in the wholesale market. First, we as-

sume that the aggregator’s maximum demand curtailment capacity is small rel-

ative to the total volume of the energy market. Under this assumption, it is

reasonable to assume that the aggregator cannot appreciably affect price. Ac-

cordingly, we assume that the aggregator behaves as a price taker in the DA and

RT energy markets. Second, as the wholesale energy prices λt, ρ+

t , and ρ−
t are not

known to the aggregator at the time of posting the DR price, which is prior to

committing to a forward contract in the DA market, we model them as random

variables whose expected values are denoted by

µλ := E [λt] , µ+

ρ := E [ρ+

t ] , and µ−
ρ := E [ρ−

t ]

3We note that this two-settlement market structure reflects existing market rules, which gov-
ern the behavior of aggregators in a variety of DR programs in operation today—including the
day-ahead demand response program (DADRP) and the proxy demand resource (PDR) pro-
gram administered by the New York ISO and the California ISO, respectively.
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for each period t. Note that while we allow the realizations of wholesale energy

prices to vary across time, we require that their expected values be time invariant.

We make the following technical assumption in a similar manner to [17].

Assumption 5. The DA energy price satisfies µλ > 0 and µ+
ρ < µλ < µ−

ρ .

Assumption 5 serves to facilitate clarity of exposition and analysis in the se-

quel, as it will preserve the concavity of the aggregator’s expected profit func-

tion (4.2). Moreover, this assumption eliminates the possibility of perverse mar-

ket outcomes in which the aggregator offers forward energy contracts with the

explicit intention of deviating from the contract in the RT market.

4.3.2 Demand Response Model

In order to fulfill its forward contract commitment Qt on day t, the aggregator

must elicit an aggregate reduction in demand from its customers. It does so

by broadcasting a uniform DR price pt ≥ 0 prior to observing the DA price,

to which each customer i responds with a reduction in demand in the amount

of Dit (kWh) in real time. This entitles each customer i to receive a payment

of ptDit. We note that implicit in this model is the assumption that each cus-

tomer’s reduction in demand is measured against a predetermined baseline. The

problem of accurately estimating baseline demand is a challenging and active

area of research [19, 22, 25, 64]. The generalization of our model to accommo-

date the endogenous estimation of a priori uncertain customer baselines is left

as a direction for future research.
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Actor
Description of actions on day t

(Decision)

Aggregator Prior to committing to a contract in the DA market, the
(pt) aggregator posts a uniform price pt for demand reduction to the

participating customers.

Aggregator In the DA market, the aggergrator commits to a forward energy
(Qt) contract Qt, which calls for delivery over prespecified interval

of time in the RT market.

Customers In the RT market, customers respond to the aggregator’s offered
(Dt) price pt by reducing their aggregate demand by an amount Dt.

Table 4.1: Description and timing of actions taken by the aggregator and cus-
tomers.

We model the aggregate demand reduction Dt :=
∑N

i=1Dit as

Dt = g(pt) + εt, (4.1)

where g : R+ → R+ is a deterministic function representing the expected aggre-

gate demand reduction given the DR price pt, and εt is an unobservable random

demand shock. We interchangeably refer to g, the expected aggregate demand

reduction, as the demand function throughout.

We assume that both the demand function and the probability distribution

function of the demand shock are initially unknown to the aggregator. We al-

low the expected demand function to be nonlinear, and do not make explicit

parametric assumptions about its form. We assume that g is concave, strictly

increasing, and twice continuously differentiable in addition to the following

technical assumption.

Assumption 6. There exists a constant κ ∈ [0, 1) such that

1

2

(
|g′′(p)|g(p)

g′(p)2

)
≤ κ
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for all p ∈ [0, µλ].

There are several standard demand functions that satisfy the requirements

of Assumption 6 including linear, exponential, and logit demand functions.

Loosely speaking, Assumption 6 imposes a restriction on the curvature of the

demand function. This restriction of the curvature, enables the utilization of

misspecified linear models in the problem of optimizing the aggregator’s profit.

In other words, demand functions with smaller values of κ can be more accu-

rately approximated with linear functions. In particular, the constant κ asso-

ciated with the family of linear functions is κ = 0. Moreover, in the proof of

Lemma 3, we show that Assumption 6 ensures convexity of pg(p), which, in

turn, is utilized to show concavity of the aggregator’s profit (4.2).

We also assume that the sequence of aggregate demand shocks {εt} are zero-

mean, independent and identically distributed (IID) random variables, which

are mutually independent from the wholesale energy prices {λt}, {ρ+

t }, and

{ρ−
t }.

Assumption 7. The aggregate demand shock εt takes values in the interval [ε, ε]

for all t ≥ 1. Moreover, its cumulative distribution function F is strictly increas-

ing over this range.

The assumption that the aggregate demand shock takes bounded values is

natural, given the physical limitation on the range of values that demand can

take. We also note that we do not require the aggregator to have explicit knowl-

edge of ε and ε specified in Assumption 7. It is worth noting that the rigorous

guarantees provided in this chapter hold under a weaker assumption on the

aggregate demand shock. In particular, the assumption of boundedness of the
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demand shock can be relaxed to sub-Gaussianity.

4.3.3 Aggregator Profit

The expected profit derived by the aggregator during period t given a fixed

forward contract Qt and price pt is determined by

πt(Qt, pt) := E [λtQt + ρ+

t (Dt −Qt)+ − ρ−
t (Qt −Dt)+ − ptDt] ,

where the expectation is taken with respect to the randomness in the whole-

sale energy prices and the demand shock. Given our previous assumption that

the demand shocks {εt} are mutually independent from the wholesale energy

prices {λt}, {ρ+

t }, and {ρ−
t }, the expected profit function simplifies to

πt(Qt, pt) = µλQt + µ+

ρE [(Dt −Qt)+]− µ−
ρE [(Qt −Dt)+]− ptg(pt). (4.2)

Here, expectation is taken with respect to the random demand shock εt.

We define the oracle optimal contract and price as

(Q∗, p∗) := argmax
(Q,p)∈R2

rt(Q, p). (4.3)

That is to say, (Q∗, p∗) denote the forward contract and DR price, which jointly

maximize the aggregator’s expected profit on day t given perfect knowledge

of the demand model. It is straightforward to calculate the oracle optimal con-

tract and price from the first-order optimality condition associated with prob-

lem (4.3), as the expected profit criterion (4.2) is guaranteed to be jointly concave

in its arguments given Assumptions 5 and 6. The implicit equations determin-

ing the oracle optimal price and contract are given in the following lemma.
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Lemma 3 (Oracle Optimal Policy). The oracle optimal contract and price (Q∗, p∗)

satisfy

p∗ = µλ −
g(p∗)

g′(p∗)
, (4.4)

Q∗ = g(p∗) + F−1(ζ), (4.5)

where

ζ :=
µλ − µ+

ρ

µ−
ρ − µ+

ρ

.

Moreover, the optimal price is unique and p∗ ∈ [0, µλ].

Here, F−1(ζ) := inf{x ∈ R | F (x) ≥ ζ} denotes the ζ-quantile of the random

demand shock εt. Assumption 5 ensures that the price ratio ζ is a valid proba-

bility, i.e., ζ ∈ (0, 1). Several comments are in order. The structure of the oracle

optimal contract resembles the optimal inventory control decision in the clas-

sical newsvendor problem in the revenue management literature [6]. It is also

worth noting thatQ∗ can be interpreted as the minimum demand reduction that

the aggregator is guaranteed to receive with probability at least 1− ζ under the

oracle optimal price p∗. Moreover, the price ratio ζ is inversely proportional to

the difference between the imbalance prices. Therefore, the aggregator will offer

larger contracts as the difference between imbalance prices decreases.

We define the oracle optimal profit accumulated over T time periods as

Π∗T :=
T∑
t=1

πt(Q
∗, p∗).

We employ the term oracle, as Π∗T equals the maximum expected profit that an

aggregator is able to extract over T time periods given perfect knowledge of the

demand model at the outset.
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4.3.4 Policy Design and Regret

We consider the scenario in which the aggregator knows neither the demand

function g or the aggregate shock distribution F at the outset. Accordingly,

the aggregator must endeavor to learn these features directly from the demand

response data that it collects over time in response to its posted DR prices. At the

same time, the aggregator must dynamically adapt its sequence of posted DR

prices (and forward contract offerings) to improve its profit over time. In what

follows, we describe the space of feasible policies that the aggregator might use

to guide its adaptation of contracts {Qt} and DR prices {pt} over time.

Prior to its determination of the contract Qt and the price pt at time t, the

aggregator has access to the entire history of prices, contract offerings, and ag-

gregate demand reductions, up to and including time period t − 1. We define

a feasible policy as an infinite sequence of functions γ := ((Q1, p1), (Q2, p2), . . .),

where each function in the sequence is allowed to depend only on the past data

available until that point in time. More formally, we require that the functions

(Qt, pt) be measurable according to the σ-algebra generated by the history of

offered contracts, prices, and demand observations, i.e.,

(Q1, . . . , Qt−1, p1, . . . , pt−1, D1, . . . , Dt−1)

for all time periods t ≥ 2. For the initial time period t = 1, we require that

(Q1, p1) be a pair of deterministic constants, as the aggregator has yet to collect

any information about demand.

The expected profit generated by a feasible policy γ over T time periods is
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defined as

Πγ
T := Eγ

[
T∑
t=1

πt(Qt, pt)

]
, (4.6)

where the expectation is taken with respect to the demand model (4.1) under

the policy γ. We measure the performance of a feasible policy γ over T time

periods according to the T -period expected regret, which is defined as

Rγ
T := Π∗T − Πγ

T .

The T -period expected regret incurred by a feasible policy equals the difference

between the oracle optimal profit and the expected profit incurred by that pol-

icy over T time periods. Clearly, policies that produce low expected regret are

preferred, as the oracle optimal profit is an upper bound on the maximum ex-

pected profit achievable by any feasible policy. Accordingly, we seek the design

of policies whose T -period expected regret grows sublinearly with the horizon

T . Such policies are said to have no-regret in the long run, as their average ex-

pected regret (1/T )Rγ
T is guaranteed to vanish asymptotically. More formally,

we have the following definition.

Definition 3 (No-Regret Policy). A feasible policy γ is said to have no-regret if

limT→∞R
γ
T/T = 0.

4.4 Perturbed Certainty Equivalent Policy

In this section, we propose a pricing and contract offering policy that is guar-

anteed to have no-regret. We refer to this policy as the Perturbed Certainty

Equivalent (PCE) policy. The PCE policy is episodic in nature. At the outset of

each episode, it constructs a linear estimate of the demand function using only
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data gathered during the preceding episode and discarding data from earlier

episodes. This episodic approach to data selection will prove useful to limit the

estimation error due to the misspecification of the demand model by a linear

function. The PCE policy is semi-greedy. In particular, as depicted in Figure

4.1, each episode is split into two phases, with the first phase being dedicated to

greedy exploitation, and the latter phase being dedicated to exploration. More

specifically, during the exploitation phase of the episode, a certainty equivalent

(CE) price and contract is offered based on the linear estimate of the demand

model. That is, the price and contract that are optimal assuming the correctness

of the estimated linear model. During the exploration phase of the episode,

the PCE policy adds deliberate perturbations to the CE price to generate ex-

ploration, which facilitates improvement of model estimation in the proceeding

episode. We design the length of each episode and the magnitude of these per-

turbations to balance the trade-off between exploration and exploitation near-

optimally. Specifically, we show that the expected regret under the PCE policy

is guaranteed to be no more than O(log(T )
√
T ).

Figure 4.1: A sample path of the sequence of DR prices under the PCE policy.
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4.4.1 Estimation via Linearization

We now introduce a linear approximation of the demand model that will be

utilized in the PCE policy. More specifically, we define α(p) and β(p) as the

slope and the intercept of the linearization of the true demand function at a

particular price p, respectively, i.e.,

α(p) := g′(p),

β(p) := g(p)− g′(p)p.

The oracle optimal price (4.4) can be equivalently expressed in terms of the de-

mand function linearization as

p∗ =
1

2

(
µλ −

β(p∗)

α(p∗)

)
. (4.7)

Thus, in order to learn the oracle optimal price, it suffices to learn the parameters

of the linearization of the demand function at the oracle optimal price.

As the underlying demand model may be nonlinear, incorporating the entire

history of past observations to estimate the linearization of the demand model

may result in estimation bias. Thus, in order to accurately estimate α(p) and

β(p) for a particular price p, only demand observations in response to prices that

are in close proximity to p should be assimilated. The PCE policy streamlines

this data selection by partitioning the time horizon into episodes in which the

DR prices do not vary significantly. The policy then only uses observations

taken during the preceding episode to estimate these parameters and discards

observations during earlier episodes. More formally, we partition the natural

numbers N into episodes Ei of length 2Li, i.e.,

Ei := {Ti−1 + 1, . . . , Ti−1 + 2Li},
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where Ti denotes the last time period of episode i. Recursively, we have that

Ti := Ti−1 + 2Li,

where T0 := 0.

Given the history of demand and price observations during episode i, the

least squares estimate (LSE) of the parameters of the linearization of the demand

model is defined as

(α̂i, β̂i) := argmin
(α,β)∈R2

∑
t∈Ei

(Dt − (αpt + β))2 . (4.8)

In addition to estimating the demand model, we estimate the distribution of the

demand shock as the oracle optimal contract depends on the quantile function

of the demand shock. As the demand shock is unobservable, we rely on the

sequence of residuals to estimate the quantile function. More precisely, let {ε̂it}

be the sequence of residuals associated with the linear demand estimates (α̂i, β̂i),

i.e.,

ε̂it := Dt − (α̂ipt + β̂i) for t = Ti−1 + 1, . . . , Ti−1 + Li.

We denote by F̂i, the empirical distribution function associated with the residu-

als, i.e., for all x ∈ R define F̂i(x) := (1/Li)
∑Ti−1+Li

t=Ti−1+1 1{ε̂it ≤ x}. The empirical

quantile function associated with the residuals is then given by

F̂−1i (η) := inf
{
x ∈ R | F̂i(x) ≥ η

}
(4.9)

for all η ∈ [0, 1].

Then, the CE price and contract are defined as

p̂i := P

(
1

2

(
µλ −

β̂i−1
α̂i−1

))
, (4.10)

Q̂i := α̂i−1p̂i + β̂i−1 + F̂−1i−1(ζ), (4.11)
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where P := max{0,min{µλ, p}} is the projection operator onto interval [0, µλ].

The projection of the price onto the interval [0, µλ] reduces the pricing error as

p∗ ∈ [0, µλ] from Lemma 3.

4.4.2 Price Exploration

Although it may seem natural to adopt the CE policy (4.10) and (4.11), it fails

to elicit the information needed to accurately estimate the linearization of the

demand function. More specifically, under this myopic approach, the estimated

parameters may converge to a value that is different from the true model param-

eters. This phenomenon known as incomplete learning is well-documented in the

adaptive control literature [16, 54, 56] and the revenue management literature

[30, 50]. Sufficient exploration (excitation) in the sequence of prices is required

to avoid incomplete learning, and ensuring that the policy exhibits no-regret.

The PCE policy generates exploration by adding perturbations to the CE

price. More precisely, at each time period in episode i, the policy sets the price

and contract according to

pt :=


p̂i−1, t ∈ {Ti−1 + 1, . . . , Ti−1 + Li},

p̂i−1 + δi, t ∈ {Ti−1 + Li + 1, . . . , Ti},
(4.12)

Qt := Q̂i−1, t ∈ {Ti−1 + 1, . . . , Ti}, (4.13)

where (Q̂i, p̂i) are the certainty equivalent contract and price defined as (4.11)

and (4.10), and (Q̂0, p̂0) are deterministic constants.

The length of each episode Li ∈ N and the magnitude of the price perturba-

tions δi ∈ R+ play a critical role in balancing the trade-off between exploration
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and exploitation. On the one hand, as the underlying demand curve may be

non-linear, δi should be small to reduce the estimation bias. Moreover, to limit

the regret incurred during the exploration phase of each episode, the perturba-

tions must decay as the sequence of CE prices converge to the oracle optimal

price. On the other hand, δi and Li should be large enough to ensure sufficient

exploration to accurately estimate the demand model, which will be used in the

proceeding episode. A choice of Li and δi that balances the trade-off between ex-

ploration and exploitation in a way that the policy exhibits near-optimal regret

is given by

δi = δ0L
−1/4
i , (4.14)

Li = bL0ν
ic, (4.15)

where δ0 > 0, L0 ≥ 1, and ν > 1 are user specified constants. Notice that by

construction the length of episodes are increasing over time, i.e., Li+1 > Li, and

the size of price perturbations decays over time such that limi→∞ δi = 0.

4.5 Theoretical Results

In this section, we establish a near-optimal upper bound on the expected regret

incurred by the PCE policy. We first establish an upper bound on the expected

regret of any feasible policy in terms of the pricing and contract offering errors

relative to their oracle optimal counterparts.

Theorem 6. Let γ be a feasible policy. There exist finite positive constants C0

and C1 such that the T -period expected regret under γ is upper bounded by

Rγ
T ≤ C0E

γ

[
T∑
t=1

(pt − p∗)2
]

+ C1E
γ

[
T∑
t=1

(Qt − g(pt)− (Q∗ − g(p∗)))2
]

(4.16)
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for all T ≥ 1. Here, (Q∗, p∗) denote the oracle optimal contract and price.

We now apply Theorem 6 to establish an upper bound on the T -period ex-

pected regret under the PCE policy. In particular, we bound the expected regret

in terms of the episode lengths Li, price perturbations δi, CE pricing error p̂i−p∗,

and quantile estimation error F−1i (ζ)− F−1(ζ). Here, F−1i denotes the empirical

quantile associated with the sequence of demand shocks, i.e.,

F−1i (η) := inf {x ∈ R | Fi(x) ≥ η} (4.17)

for all η ∈ [0, 1] where Fi denotes the empirical distribution of the sequence

of demand shocks defined as F̂i(x) = (1/Li)
∑Ti−1+Li

t=Ti−1+1 1{εt ≤ x} for all x ∈ R.

Note that we cannot utilize F−1i (instead of F̂−1i ) in the design of a feasible policy

as the sequence of demand shocks are unobservable as the demand function is

unknown at the outset.

Corollary 3. There exist finite positive constants C0, C1, and C2 such that the

T -period expected regret under the PCE policy is upper bounded by

Rγ
T ≤ C2

IT∑
i=1

Liδ
2
i + 3C0

IT∑
i=1

LiE
[
(p̂i − p∗)2

]
+ 3C1

IT∑
i=1

LiE
[(
F−1i (ζ)− F−1(ζ)

)2]
,

(4.18)

for all T ≥ 1 where IT denotes the number of episodes covering the horizon T ,

i.e., IT := min {i ∈ N | Ti ≥ T}.

To establish an upper bound on the expected regret of the PCE policy, we

bound each term in Inequality (4.18) separately. We first establish an upper

bound on the mean squared pricing error in Lemma 4.

Lemma 4 (Mean Squared Pricing Error). Let parameter ν ∈ (1, 4/(1 + κ2)2).
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Then, there exists a finite positive constant C3 such that the mean squared pric-

ing error under the PCE policy is upper bounded by

E
[
(p̂i − p∗)2

]
≤ C3

i− 1√
νi−1

(4.19)

for all i ≥ 2.

The proof of Lemma 4 follows from a similar argument as the proof of [12,

Theorem 1]. To keep the chapter self-contained, we provide its proof in Ap-

pendix C.4.

The parameter ν controls the rate at which the length of episodes grow over

time. The upper bound on this growth rate specified in Lemma 4, 4/(1+κ2)2, is a

decreasing function of the curvature parameter κ defined in Assumption 6. The

CE price needs to be adjusted more frequently for demand models with larger

curvature to account for the model misspecification due to the linearization of

the demand function. Equivalently, the lengths of episodes should grow more

slowly for demand functions with larger curvatures.

We now establish an upper bound on the mean squared quantile estimation

error that is inversely proportional to the length of the episodes.

Lemma 5 (Mean Squared Quantile Error). There exists a finite positive constant

C4 such that for all η ∈ (0, 1)

E
[(
F−1i (η)− F−1(η)

)2] ≤ C4
1

Li
. (4.20)

We provide a detailed proof of Lemma 4.20, which utilizes Hoeffding’s in-

equality [42] in Appendix C.5.

Finally, we upper bound the expected regret under the PCE policy using

Corollary 3 and intermediary Lemmas 4 and 5.
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Theorem 7 (Upper Bound on Regret). Let parameter ν ∈ (1, 4/(1 + κ2)2). There

exists a finite positive constant C5 such that the T -period expected regret in-

curred by the PCE policy is upper bounded by

Rγ
T ≤ C5 log(T )

√
T (4.21)

for all T ≥ 1.

The proof of Theorem 7 follows from applying the upper bounds on the

mean squared pricing error (4.19) and the mean squared quantile error (4.20) to

the upper bound on the expected regret in Corollary 3. We provide the detailed

derivation of upper bound (4.21) in Appendix C.6.

4.6 Experiments

In this section, we we illustrate the behavior of the PCE policy for a nonlinear

demand function using a synthetic example.

4.6.1 Model Parameters

We assume that the aggregate demand function has the form

g(p) = 9
√
p,

which satisfies Assumption 6 with κ = 1/2. This choice of demand function

is consistent with the range of price elasticities observed in several real-time

pricing programs operated in the United States [90, 34]. The estimated range

of price elasticity for residential DR programs is [0.04, 0.20]. Under our model,
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(a) Episode i = 1 (b) Episode i = 6

(c) Episode i = 11 (d) Episode i = 16

Figure 4.2: The figures depicts the demand function (in solid blue) and its esti-
mated linearizations. The blue dot depicts g(pi) and the black star depicts the
optimal demand g(p∗). The red dashed lines depict the empirical mean of the
estimated linearization of the demand functions at prices p̂i, i.e., α̂ip+β̂i, and the
shaded areas depict their respective middle 80% empirical confidence interval
computed using 1000 independent experiments.

assuming that the aggregator registers N = 100 customers in the program, this

range of price elasticity is observed for DR prices in the range [0.05, 1.26] $/kWh.

We assume that the sequence of demand shocks is an IID sequence of zero-mean

normal random variables with variance equal to 2, truncated over the interval

[−4, 4]. We set the mean of the DA energy price, the RT overage price, and the

RT shortage price as µλ = 0.5, µ+
ρ = 0.1 , and µ−

ρ = 0.8 ($/kWh), respectively.
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PCE Policy Parameters

We initialize the policy by choosing p̂0 = 0.7µλ and Q̂0 = 0. We choose the

parameters of the PCE policy as L0 = 2, δ0 = 0.25, and ν = 1.5. Given these

parameters the first episode consists of six time periods.

4.6.2 Discussion

Figure 4.2 illustrates improvement in two aspects of model estimation over time

under the PCE policy. First, the estimation error of the parameters of the lin-

earization of the demand model decreases over time. More precisely, one can

observe that the empirical confidence region on |(αi−α(p̂i)p−(βi−β(p̂i))| shrinks

over episodes for all p ∈ [0, 0.5]. This improvement is due to increased explo-

ration over episodes guaranteed by the choice of parameters δi and Li of the

form (4.14) and (4.15), respectively. That is, the exploration is guaranteed to in-

crease over episodes as the rate at which the lengths of episodes grow is faster

than the rate at which the magnitude of price perturbations decay.

Second, we observe that the sequence of CE prices converge to the oracle

optimal price over time. Moreover, the CE pricing error together with the price

perturbations decay at a sufficiently fast rate to ensure that the regret grows

sublinearly as depicted in Figure 4.3.
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Figure 4.3: Regret under the PCE policy. The solid blue line depicts the em-
pirical expected regret, and the shaded area depicts the middle 80% empirical
confidence interval computed using 1000 independent experiments.
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APPENDIX A

PROOFS OF RESULTS IN CHAPTER 2

In the following proofs, we consider a more general form of the perturbation

as δt = sgn(ct − ct−1) · t−r, where r is allowed to be an arbitrary constant in the

interval [0, 1/2). Ultimately, we will prove that a choice of r = 1/4 minimizes the

asymptotic order of the upper bound on regret (ignoring logarithmic factors),

which we establish in (A.15).

A.1 Proof of Lemma 1

The parameter estimation error derived in Equation (2.5) is given by

θt − θ = J −1
t ε̃t,

where ε̃t is defined as

ε̃t =
t∑

k=1

pk
1

 εk.
Using the Cauchy-Schwarz inequality and assuming that Jt is invertible, the

2-norm of parameter estimation error is bounded as follows.

‖θt − θ‖2 = ‖J −1
t ε̃t‖2 ≤ ‖J −1/2

t ‖2‖J −1/2
t ε̃t‖2.

Using the definition of matrix norms, we get

‖J −1/2
t ‖2 =

(
λmax(J

−1/2
t )

)2
=

1

λmin(Jt)
,

where the operators λmax and λmin denote the largest and the smallest eigenval-

ues, respectively. In the following Lemma, we establish a lower bound on the

minimum eigenvalue of Jt in terms of the price perturbations and the whole-

sale energy price variations.
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Lemma 6. Under the perturbed myopic policy (2.11), it holds that

λmin(Jt) ≥
1

1 + p2
Lt a.s., (A.1)

where Lt is defined as

Lt :=
1

8

ρ2bt/2c1−2r +

bt/2c∑
k=1

(c2k − c2k−1)2
 . (A.2)

Using Inequality (A.1), the mean squared parameter estimation error can be

bounded as

E
[
‖θt − θ‖2

]
≤ E

[
1

λmin(Jt)
‖J −1/2

t ε̃t‖2
]
≤ 1 + p2

Lt
E
[
ε̃>t J −1

t ε̃t
]
. (A.3)

We now establish an upper bound on E
[
ε̃>t J −1

t ε̃t
]

by adopting a similar ap-

proach as [58, Lemma 1]. More specifically, we establish a recursive inequality

relating E
[
ε̃>t J −1

t ε̃t
]

to E
[
ε̃>t−1J

−1
t−1ε̃t−1

]
. It holds that

E
[
ε̃>t J −1

t ε̃t
]

= E


ε̃t−1 +

pt
1

 εt

>

J −1
t

ε̃t−1 +

pt
1

 εt



= E
[
ε̃>t−1J

−1
t ε̃t−1

]
+ 2E

ε̃>t−1J −1
t

pt
1

 εt
+ E


pt

1


>

J −1
t

pt
1

 ε2t
 .
(A.4)

Using the fact that ε̃t−1, pt, and Jt are all measurable according to the σ-algebra

generated by ε1, . . . , εt−1, and the law of iterated expectations, we get

E

ε̃>t−1J −1
t

pt
1

 εt
 = E

E
ε̃>t−1J −1

t

pt
1

 εt∣∣∣∣ε1, . . . , εt−1



= E

ε̃>t−1J −1
t

pt
1

E
[
εt
∣∣ε1, . . . , εt−1]


= 0, (A.5)
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where the last identity follows from the fact that εt is independent of ε1, . . . , εt−1

and is zero-mean. Using a similar argument, we get

E


pt

1


>

J −1
t

pt
1

 ε2t
 = E


pt

1


>

J −1
t

pt
1


E

[
ε2t
]

≤ E


pt

1


>

J −1
t

pt
1


 (ε− ε)2

4
, (A.6)

where the last inequality follows from Popoviciu’s inequality on variances. By

combining Equations (A.4) and (A.5) with Inequality (A.6), we get

E
[
ε̃>t J −1

t ε̃t
]
≤ E

[
ε̃>t−1J

−1
t ε̃t−1

]
+ E


pt

1


>

J −1
t

pt
1


 (ε− ε)2

4
. (A.7)

Here, we bound each term in the right hand side of Inequality (A.7) separately.

For the first term, using the Sherman-Morrison formula, we get

J −1
t =

Jt−1 +

pt
1


pt

1


>

−1

= J −1
t−1 −

J −1
t−1

pt
1


pt

1


>

J −1
t−1

1 +

pt
1


>

J −1
t−1

pt
1


.

Thus,

E
[
ε̃>t−1J

−1
t ε̃t−1

]
= E

[
ε̃>t−1J

−1
t−1ε̃t−1

]
− E



ε̃>t−1J −1
t−1

pt
1




2

1 +

pt
1


>

J −1
t−1

pt
1




≤ E

[
ε̃>t−1J

−1
t−1ε̃t−1

]
, (A.8)

where the equality follows from the fact that the random variable in the second

expectation is non-negative almost surely.
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For the second term in Inequality (A.7), we have thatpt
1


>

J −1
t

pt
1

 =
1

Jt

pt
1


>  1 −p̄t

−p̄t (1/t)
∑t

k=1 p
2
k


pt

1


=

1

Jt

(
(pt − p̄t)2 +

1

t
Jt

)
=
Jt − Jt−1

Jt
+

1

t
, (A.9)

where the last inequality follows from the fact that Jt − Jt−1 = (pt − p̄t)2. Now

using Inequalities (A.7), (A.8), and (A.9) we get

E
[
ε̃>t J −1

t ε̃t
]
≤ E

[
ε̃>t−1J

−1
t−1ε̃t−1

]
+

(
Jt − Jt−1

Jt
+

1

t

)
(ε− ε)2

4
.

By summing both sides of the above inequality from 3 to t we get

E
[
ε̃>t J −1

t ε̃t
]
≤ E

[
ε̃>2 J −1

2 ε̃2
]

+
(ε− ε)2

4
E

[
t∑

k=3

(
Jk − Jk−1

Jk
+

1

k

)]
.

It is straightforward to show that

E
[
ε̃>2 J −1

2 ε̃2
]

= E
[
ε21 + ε22

]
≤ 1

2
(ε− ε)2.

Note that
∑t

k=3(1/k) ≤ log(t). We also have that

t∑
k=3

Jk − Jk−1
Jk

=
t∑

k=3

∫ Jk

Jk−1

dx

Jk

≤
t∑

k=3

∫ Jk

Jk−1

dx

x

=

∫ Jt

J2

dx

x

≤ log(Jt)

≤ log(tp2),

where the last inequality follows from the fact that (pk− p̄t)2 ≤ p2 almost surely.
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Finally, we get

E
[
ε̃>t J −1

t ε̃t
]
≤ 1

2
(ε− ε)2 (1 + log(p̄) + log(t))

≤ 1

2
(ε− ε)2 (2 + log(p̄)) log(t),

where the last inequality follows from the fact that log(t) ≥ 1 for t ≥ 3. Finally,

by applying the above inequality to the bound on the mean squared parameter

estimation error (A.3), we get

E
[
‖θt − θ‖2

]
≤ 1

2
(1 + p2)(ε− ε)2 (2 + log(p̄))

log(t)

Lt
. (A.10)

To complete the proof, we set r = 1/4. For this choice of r, we have that Lt ≥

ρ2
√
bt/2c/8 ≥ ρ2

√
t/16. Setting µ2 := 8(1 + p2)(ε− ε)2 (2 + log(p̄)) concludes the

proof.

A.2 Proof of Theorem 1

We introduce an additional assumption on the variation in the sequence of

wholesale electricity prices.1 Namely, let σ ≥ 0 be nonnegative constant such

that |ct − ct−1| ≥ σ for all t ≥ 1. Ultimately, we will establish the desired result

for σ = 0, the setting considered in the statement of the Theorem.

1Such assumption will prove useful in facilitating the proof of Theorem 2.
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We begin with the following upper bound on the T -period regret.

∆π
T = a

T∑
t=1

E
[
(pt − p∗t )

2]
≤ a

bT+1
2
c∑

t=1

E
[
(p̂2t−1 − p∗2t−1)2 + (p̂2t−1 − p∗2t−1 + ρδ2t)

2
]

≤ a

bT+1
2
c∑

t=1

(
3E
[
(p̂2t−1 − p∗2t−1)2

]
+ 2ρ2δ22t

)
= K0 + 2aρ2

bT+1
2
c∑

t=1

(2t)−2r + 3a

bT+1
2
c−1∑

t=1

E
[
(p̂2t+1 − p∗2t+1)

2
]
, (A.11)

where the second inequality follows from the fact that x2 + (x+ y)2 ≤ 3x2 + 2y2

for any pair of scalars x, y ∈ R. Here, the constant K0 is defined as

K0 = 3a(p1 − p∗1)2.

Recall that p1 is assumed to be a deterministic constant. We now establish upper

bounds on each term of the bound (A.11) separately.

Second term: For all T ≥ 3, we have that

bT+1
2
c∑

t=1

(2t)−2r ≤
∫ bT+1

2
c

0

(2t)−2rdt

=
1

2(1− 2r)

(
2

⌊
T + 1

2

⌋)1−2r

≤ 2

3(1− 2r)
T 1−2r, (A.12)

where the last inequality follows from the fact that (T+1
T

)1−2r ≤ 4/3 for all T ≥ 3

and all r ∈ [0, 1/2).

Third term: Using the upper bound on the pricing error (2.14), we get

(p̂2t+1 − p∗2t+1)
2 ≤ 2κ23‖θ̂2t − θ‖2 + 2κ22(F

−1
2t (α)− F−1(α))2.
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Then,

bT+1
2
c−1∑

t=1

E
[
(p̂2t+1 − p∗2t+1)

2
]
≤
bT+1

2
c−1∑

t=1

E
[
2κ23‖θ̂2t − θ‖2 + 2κ22(F

−1
2t (α)− F−1(α))2

]

≤
bT+1

2
c−1∑

t=1

(
κ4

log(2t)

L2t

+ 2κ22E
[
(F−12t (α)− F−1(α))2

])
,

(A.13)

where the last inequality follows from the upper bound (A.10) on the mean

squared parameter estimation error and κ4 := (1 + p2)(ε − ε)2 (2 + log(p̄))κ23.

Using the fact that for a continuous nonnegative random variable X , it holds

that E[X] =
∫∞
0

P (X ≥ x) dx, we get

E
[
(F−12t (α)−F−1(α))2

]
=

∫ ∞
0

P
(
(F−12t (α)− F−1(α))2 ≥ γ

)
dγ

≤
∫ ∞
0

2 exp(−µ1γ(2t))dγ

=
1

µ1t
, (A.14)

where the inequality follows from the bound (2.9). By combining Inequalities

(A.11), (A.12), (A.13), and (A.14), we get

∆π
T ≤ K0 +

4a

3(1− 2r)
ρ2T 1−2r + 3a

bT+1
2
c−1∑

t=1

(
κ4

log(2t)

L2t

+
2κ22
µ1t

)

≤ K0 +
4a

3(1− 2r)
ρ2T 1−2r + 24aκ4

bT+1
2
c−1∑

t=1

log(2t)

ρ2t1−2r + σ2t

+
6aκ22
µ1

(1 + log(T )), (A.15)

where the last inequality follows from the definition of L2t in Equation (A.2) and

the assumption that |ct − ct−1| ≥ σ for all t. For σ = 0, it is straightforward to

show that a choice of r = 1/4 minimizes the asymptotic order of the upper

bound (A.15) with respect to the horizon T up to multiplicative logarithmic
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factors. Setting r = 1/4 and σ = 0 yields

∆π
T ≤ K1 +K2 log(T ) +K3ρ

2
√
T +

K4

ρ2

bT+1
2
c−1∑

t=1

log(2t)√
t

, (A.16)

where K1 := K0 +K2, K2 := 6aκ22/µ1, K3 := 8a/3, and K4 := 24aκ4. It holds that

bT+1
2
c−1∑

t=1

log(2t)√
t
≤ log(2) +

bT+1
2
c−1∑

t=2

log(2t)√
t

≤ log(2) +

∫ T/2

1

log(2t)√
t

dt

≤ log(2) + 2

√
T

2
log (T ) .

Finally, we define the nonnegative constants C0, C1, and C2 as follows to con-

clude the proof.

C0 := K1 +
K4 log(2)

ρ2
(A.17)

C1 :=

√
2K4

ρ2
+K3ρ

2 (A.18)

C2 := K2. (A.19)

A.3 Proof of Theorem 2

Inequality (A.15) is a valid upper bound on the T -period regret incurred by

perturbed myopic policy, under the assumption that σ > 0. By setting ρ = 0, the

upper bound simplifies to

∆π
T ≤ K0 + 24aκ4

bT+1
2
c−1∑

t=1

log(2t)

σ2t
+

6aκ22
µ1

(1 + log(T )),

It holds that
T/2∑
t=1

log(2t)

t
≤ log(2) +

∫ T/2

1

log(2t)

t
dt ≤ log(2) + log2(T ).
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We define the nonnegative constants M0, M1, and M2 as follows to conclude the

proof.

M0 := K0 +M1 (A.20)

M1 :=
6aκ22
µ1

(A.21)

M2 := 24aκ4. (A.22)

A.4 Proof of Lemma 6

It is straightforward to show that the characteristic polynomial of Jt is given

by

λ2 − λ

(
t+

t∑
k=1

p2k

)
+ tJt = 0.

Then,

λmax(Jt) + λmin(Jt) = t+
t∑

k=1

p2k,

λmax(Jt)λmin(Jt) = tJt.

From the first identity it follows that

λmax(Jt) ≤ t+
t∑

k=1

p2k ≤ t(1 + p2).

Thus, we get

λmin(Jt) =
tJt

λmax(Jt)
≥ Jt

1 + p2
.

We now bound the random process {Jt} from below by a deterministic se-

quence. Fix t. A direct substitution of the perturbed myopic policy yields

Jt ≥
bt/2c∑
k=1

{
(p̂2k−1 − p̄t)2 +

(
p̂2k−1 − p̄t +

1

2
(c2k − c2k−1) + ρδ2k

)2
}
.
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The above inequality can be further relaxed to eliminate its explicit dependency

on the (random) price process. Namely, it is straightforward to show that

Jt ≥
1

2

bt/2c∑
k=1

ρ2

(2k)2r
+

1

8

bt/2c∑
k=1

(c2k − c2k−1)2 . (A.23)

One can further relax inequality (A.23) by using the facts that

t∑
k=1

1

k2r
≥
∫ t+1

1

1

x2r
dx =

(t+ 1)1−2r − 1

1− 2r
,

and

(t+ 1)1−2r − 1 ≥ t1−2r
(

1− 1

21−2r

)
.

It follows that

Jt ≥
ρ2

21+2r

bt/2c1−2r

1− 2r

(
1− 1

21−2r

)
+

1

8

bt/2c∑
k=1

(c2k − c2k−1)2 ≥ Lt, (A.24)

where Lt is defined as

Lt :=
1

8

ρ2bt/2c1−2r +

bt/2c∑
k=1

(c2k − c2k−1)2
 .
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APPENDIX B

PROOFS OF RESULTS IN CHAPTER 3

In this Appendix chapter, we provide a detailed proof of the theoretical results

including Lemma 2, and Theorems 4 and 7 of Chapter 3. To facilitate the pre-

sentation of the mathematical proofs, we introduce the following notation. For

all t ≥ 1, define events Vt, St, and Zt as

Vt = {λmin(Vt) ≤ ctν} ,

St =
{

LCBt(XCE
t ) ≤ b

}
,

Zt =

{
Nt ≥

⌈
ctν

µρ2σ2

⌉}
.

We denote by Nt the number of safe exploration stages until stage t for all t ≥ 1.

B.1 Proof of Lemma 2

Recall from the definition of XS
t that P

(
〈XS

t , θ
∗〉 ≥ b0

)
≥ 1 − δt. Thus, with

probability 1− δt, it holds that,

〈XSE
t , θ∗〉 = 〈(1− ρ)XS

t + ρUt, θ
∗〉

= 〈(1− ρ)XS
t + ρx̄+ ρH1/2ζt, θ

∗〉

= 〈XS
t , θ

∗〉 − ρ〈XS
t − x̄, θ∗〉+ ρ〈H1/2ζt, θ

∗〉

≥ b0 − ρ‖XS
t − x̄‖‖θ∗‖ − ρ

√
λmax(H)‖θ∗‖, (B.1)

where the inequality follows from the Cauchy-Schwarz inequality and the fact

that ‖ζt‖ = 1. For any x ∈ X , it holds that

‖x− x̄‖ ≤ ‖x− x̄‖H−1

√
λmax(H) ≤

√
λmax(H), (B.2)
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where the inequality follows from the definition of X in Equation (3.1). By ap-

plying Inequality (B.2) to Inequality (B.1), with probability 1− δt, it holds that

〈XSE
t , θ∗〉 ≥ b0 − 2ρ

√
λmax(H)‖θ∗‖.

Recall Assumption 2 that ‖θ∗‖ ≤ S. Thus, in order to guarantee that

P
(
〈XSE

t , θ∗〉 ≥ b
)
≥ 1− δt it suffices to choose ρ such that

ρ ≤ b0 − b
2S
√
λmax(H)

. (B.3)

B.2 Proof of Theorem 4

From Lemma 2, it follows that the safe exploration arm XSE
t is (δt, b)-safe by

construction. Moreover, under the SEGE algorithm the greedy arm XCE
t is only

played if LCBt(XCE
t ) ≥ b, which, in turn, implies

P
(
〈XCE

t , θ∗〉 ≥ b
)
≥ 1− δt.

Thus, the greedy arm XCE
t if played is (δt, b)-safe.

B.3 Proof of Theorem 5

We upper bound the expected regret during safe exploration stages and greedy

exploitation stages separately. Recall the definition of expected regret RT

RT = E

[
T∑
t=1

〈X∗ −Xt, θ
∗〉

]
.
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The expected regret can be decomposed into two parts,

RT = E

 ∑
t∈{1,...,T}∩{Vt∪St}

〈X∗ −XSE
t , θ∗〉

+ E

 ∑
t∈{1,...,T}∩{Vct∩Sct }

〈X∗ −XCE
t , θ∗〉

 .
(B.4)

Expected regret during safe exploration stages: From the fact that ‖x‖ ≤ L for

all x ∈ X , Assumption 2 that ‖θ∗‖ ≤ S, and the Cauchy-Schwarz inequality it

almost surely holds that 〈X∗ −XSE
t , θ∗〉 ≤ 2LS. Thus,

E

 ∑
t∈{1,...,T}∩{Vt∪St}

〈X∗ −XSE
t , θ∗〉

 ≤ 2LSE [NT ] .

Roughly speaking, the expected number of safe exploration stages grows lin-

early with the minimum eigenvalue of the information matrix. The following

Lemma, establishes an upper bound on the expected number of safe exploration

stages under the SEGE algorithm.

Lemma 7 (Safe Exploration Stages). Let {δt}∞t=1 be any sequence of risk levels

satisfying Inequality (3.18) for all t ≥ 1. Let c > 2dKL2σ2
η/(b0 − b)2 and ν ∈

[ν, 1). Then, there exists a finite positive constant C0 such that under the SEGE

Algorithm 1, it holds that

E [Nt] ≤ C0t
ν ,

for all t ≥ 1.

The proof of Lemma 7 is postponed to Appendix B.4. Using Lemma 7, the

expected regret during the safe exploration stages is upper bound as

E

 ∑
t∈{1,...,T}∩{Vt∪St}

〈X∗ −XSE
t , θ∗〉

 ≤ C1T
ν , (B.5)
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where C1 := 2LSC0.

Expected regret during greedy exploitation stages: Recall that the greedy arm

is only played if LCBt(XCE
t ) ≥ b and λmin(Vt) ≥ ctν , i.e., the event Vct ∩Sct occurs.

Moreover, it almost surely holds that 〈x, θ∗〉 ≤ LS for all x ∈ X . Then, we have

E

 ∑
t∈{1,...,T}∩{Vct∩Sct }

〈X∗ −XCE
t , θ∗〉


=

T∑
t=1

∫ 2LS

0

P
({
〈X∗ −XCE

t , θ∗〉 ≥ γ
}
∩ Vct ∩ Sct

)
dγ

≤
T∑
t=1

∫ 2LS

0

P
({
〈X∗ −XCE

t , θ∗〉 ≥ γ
}
∩ Vct

)
dγ. (B.6)

To bound the integrand in Inequality (B.6), we first establish an upper bound on

the stagewise regret under the greedy arm in terms of the parameter estimation

error.

Lemma 8 (Stagewise Regret). The conditional expected reward given the greedy

(certainty equivalent) arm XCE
t is almost surely lower bounded as

〈XCE
t , θ∗〉 ≥ 〈X∗, θ∗〉 − k1

∥∥∥θ∗ − θ̂t−1∥∥∥2 (B.7)

for all t ≥ 1, where the constant k1 is given by

k1 =
2‖X0‖λmax(H)

b0
√
λmin(H)

.

The proof of Lemma 8 is postponed to Appendix B.5. By applying Inequality
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(B.7) to (B.6), we get

E

 ∑
t∈{1,...,T}∩{Vct∩Sct }

〈X∗ −XCE
t , θ∗〉


≤

T∑
t=1

∫ 2LS

0

P
({
k1‖θ∗ − θ̂t−1‖2 ≥ γ

}
∩ Vct

)
dγ

≤
T∑
t=1

∫ 2LS

0

P

(
‖θ∗ − θ̂t−1‖2Vt−1

≥ γctν

k1

)
dγ, (B.8)

where the last inequality follows from the fact that ‖θ∗ − θ̂t−1‖Vt−1 ≥ ‖θ∗ −

θ̂t−1‖
√
λmin(Vt−1). We now utilize Theorem 3 to bound the integral in Inequal-

ity (B.8). More precisely, we define a parameter δ†t (γ) for which it holds that

γctν/k1 = r2t (δ
†
t (γ)), i.e.,

δ†t (γ) =

(
1 +

tL2

λ

)
exp

(
− 1

dσ2
ηk1

(√
γctν −

√
kλS

)2)
. (B.9)

Define γt−1 as

γt−1 = k7
log (t)

ctν
, (B.10)

where k7 is defined as

k7 = 2k1dσ
2
η

(
log(1 + L2/λ) +

2λS2

dσ2
η

)
. (B.11)

We then have that∫ 2LS

0

P

(
‖θ∗ − θ̂t−1‖2Vt−1

≥ γctν

k1

)
dγ

≤ γt−1 +

∫ 2LS

γt−1

P

(
‖θ∗ − θ̂t−1‖2Vt−1

≥ γctν

k1

)
dγ

= γt−1 +

∫ 2LS

γt−1

P
(
‖θ∗ − θ̂t−1‖Vt−1 ≥ rt(δ

†
t (γ))

)
dγ

≤ γt−1 +

∫ 2LS

γt−1

δ†t (γ) dγ. (B.12)

We now establish an upper bound on the integral in Inequality (B.12). Using the

fact that for any two real numbers x, y > 0, we have that (
√
x−√y)2 ≥ x/2− y,
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we get

δ†t (γ) ≤ (1 + tL2/λ) exp

(
2λS2

dσ2
η

)
exp

(
− ctν

2k1dσ2
η

γ

)
.

Then,∫ 2LS

γt−1

δ†t (γ) dγ ≤ (1 + tL2/λ) exp

(
2λS2

dσ2
η

)∫ 2LS

γt−1

exp

(
− ctν

2k1dσ2
η

γ

)
dγ

≤ (1 + tL2/λ) exp

(
2λS2

dσ2
η

)
exp

(
− ctν

2k1dσ2
η

γt−1

)
2k1dσ

2
η

ctν

≤
2k1dσ

2
η

ctν
, (B.13)

where the last inequality follows from the definition of γt−1. By applying In-

equalities (B.12) and (B.13) to (B.8), we get

E

 ∑
t∈{1,...,T}∩{Vct∩Sct }

〈X∗ −XCE
t , θ∗〉

 ≤ T∑
t=1

(
k7

log(t)

ctν
+

2k1dσ
2
η

ctν

)

≤ 1

c
(k7 log(T ) + 2k1dσ

2)
T∑
t=1

t−ν

≤ C1 log(T )T 1−ν ,

where C1 is defined as

C1 =
1

c(1− ν)
(k7 + 2k1dσ

2).

B.4 Proof of Lemma 7

From the definition of Nt, for t ≥ 0 we have,

Nt+1 =


Nt, λmin(Vt) ≥ ctν and LCBt+1(X

CE
t+1) ≥ b,

Nt + 1, otherwise,
(B.14)
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where N0 = 0.

Fix µ ∈ (0, 1). Define the random process {Zt}∞t=1 as follows. For any t ≥ 0,

Zt is defined as

Zt = 0 ∨
(
Nt −

⌈
ctν

µρ2σ2

⌉)
. (B.15)

We show that E [Zt] is finite for all t ≥ 0 and thus establish an O(tν) upper

bound on expected number of safe exploration stages until stage t. Note that

conditioned on the event Zct , we have Zt+1 = 0. Thus,

E [Zt+1] = E [Zt] + E [1 {Zt ∩ (Vt ∪ St+1)}]

= E [Zt] + P (Zt ∩ (Vt ∪ St+1))

=
t∑

k=1

P (Zk ∩ (Vk ∪ Sk+1)) . (B.16)

Thus, in order to establish an upper bound on E [Zt+1], it suffices to establish

an upper bound on P (Zt ∩ (Vt−1 ∪ St)) for all t ≥ 0. Using the union bound, it

holds that

P (Zt ∩ (Vt ∪ St+1)) = P
(
Zt ∩

(
Vt ∪ (St+1 ∩ Vct−1)

))
≤ P (Zt ∩ Vt) + P (St+1 ∩ Vct ) . (B.17)

We upper bound each term in inequality (B.17), separately.

Fist term: Qualitatively, we gain more information as we play the safe explo-

ration arm more frequently. More specifically, we expect λmin(Vt) not to be too

small if Nt is large. The following Lemma quantifies the relationship between

these two random variables.
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Lemma 9 (Random Exploration). Under the SEGE Algorithm, for any µ ∈ (0, 1)

it holds that

P
(
λmin(Vt) ≤ µρ2σ2Nt | Nt = n

)
≤ de−k4(1−µ)

2n, (B.18)

where k4 is defined as

k4 =
ρ4σ4

2(2ρ((1− ρ)L+ ρ‖x̄‖)
√
λmax(H) + ρ2λmax(H)− ρ2σ2d)2

.

We postpone the proof of Lemma 9, which relies on the Matrix Azuma-

Hoeffding inequality (Theorem 8) to Appendix B.6. Using Lemma 9 and total

probability theorem, we have

P (Zt ∩ Vt) =
∞∑

n=
⌈

ctν

µρ2σ2

⌉P (λmin(Vt) ≤ ctν |Nt = n )P (Nt = n)

≤
∞∑

n=
⌈

ctν

µρ2σ2

⌉ d exp

(
−k4

(
1− ctν

ρ2σ2n

)2

n

)
P (Nt = n)

≤ d exp

(
−k4 (1− µ)2

µρ2σ2
ctν

)
∞∑

n=
⌈

ctν

µρ2σ2

⌉P (Nt = n)

≤ d exp

(
−k4 (1− µ)2

µρ2σ2
ctν

)
. (B.19)

Second term: We establish a lower bound on P (St+1 ∩ Vct ). It holds that

LCBt(XCE
t+1) = 〈XCE

t+1, θ̂t〉 − rt(δt)‖XCE
t+1‖V −1

t
≥ 〈XCE

t+1, θ̂t〉 −
L√

λmin(Vt)
rt(δt).

105



It holds that

〈XCE
t+1, θ̂t〉 = 〈XCE

t+1 −X∗, θ̂t〉+ 〈X∗, θ̂t − θ∗〉+ 〈X∗, θ∗〉

≥ 〈X∗, θ̂t − θ∗〉+ 〈X∗, θ∗〉

≥ − L√
λmin(Vt)

‖θ̂t − θ∗‖Vt + 〈X∗, θ∗〉

≥ b0 −
L√

λmin(Vt)
‖θ̂t − θ∗‖Vt ,

where the first inequality follows from the fact that XCE
t+1 is the optimal arm for

reward parameter θ̂t and the last inequality follows from the fact that 〈X∗, θ∗〉 ≥

〈X0, θ
∗〉 ≥ b0. Then,

LCBt(XCE
t+1) ≥ b0 −

L√
λmin(Vt)

‖θ̂t − θ∗‖Vt −
L√

λmin(Vt)
rt(δt).

Then,

P (St+1 | Vct ) = P

(
‖θ̂t − θ∗‖Vt ≥

b0 − b
L

√
λmin(Vt)− rt(δt)

∣∣∣ Vct)
≤ P

(
‖θ̂t − θ∗‖Vt ≥

b0 − b
L

√
ctν − rt(δt)

∣∣∣ Vct)
Then, using the fact that δt ≥ δe−Kt

ν ≥ δe−Kt
ν , we get

P (St+1 | Vct ) ≤ P

(
‖θ̂t − θ∗‖Vt ≥

b0 − b
L

√
ctν − rt

(
δe−Kt

ν) ∣∣∣ Vct) .
In order to utilize Theorem 3, we define δ̃t as

δ̃t = exp

(
4λS2

σ2
ηd

)
(1 + tL2/λ)2

δ
exp

(
−
(

(b0 − b)2c
2L2σ2

ηd
−K

)
tν
)
. (B.20)

It is straightforward to verify that

rt(δ̃t) ≤
b0 − b
L

√
ctν − rt

(
δe−Kt

)
.

Thus, using Theorem 3, we get

P (St+1 ∩ Vct ) ≤ P
(
‖θ̂t − θ∗‖Vt ≥ rt(δ̃t)

)
≤ δ̃t. (B.21)

106



By applying Inequalities (B.17), (B.19), and (B.21) to Inequality (B.16), we get

E [Zt+1] ≤ b
t∑

k=1

exp

(
−k4 (1− µ)2

µρ2σ2
ckν

)

+ exp

(
4λS2

σ2
ηd

) t∑
k=1

(1 + kL2/λ)2

δ
exp

(
−
(

(b0 − b)2c
2L2σ2

ηd
−K

)
kν
)
.

Note that, using the integral test, one can verify that
∑∞

k=1 k
2 exp(−skr) con-

verges for all s > 0 and r > 0. Thus, using the fact that K < (b0 − b)2c/(2L2σ2
ηd),

there exists a finite k6 such that

E [Zt] ≤ k6

for all t ≥ 1. Thus,

E [Nt] ≤ E [Zt] +

⌈
ctν

µρ2σ2

⌉
≤ k6 + 1 +

ctν

µρ2σ2

for all t ≥ 1. Defining C0 := k6 + 1 + c/(µρ2σ2) concludes the proof.

B.5 Proof of Lemma 8

For each t ≥ 1, the expected reward under the greedy arm is lower bounded as

〈XCE
t , θ∗〉 = 〈X∗, θ∗〉 − 〈X∗ −XCE

t , θ∗〉

= 〈X∗, θ∗〉 − 〈X∗ −XCE
t , θ∗ − θ̂t−1〉 − 〈X∗ −XCE

t , θ̂t−1〉

≥ 〈X∗, θ∗〉 − 〈X∗ −XCE
t , θ∗ − θ̂t−1〉,

where the inequality follows from the fact that 〈XCE
t , θ̂t−1〉 ≥ 〈x, θ̂t−1〉 for all

x ∈ X as the greedy arm is the optimal arm for the reward parameter θ̂t−1.

Using the Cauchy-Schwarz inequality, we get

〈XCE
t , θ∗〉 ≥ 〈X∗, θ∗〉 − ‖X∗ −XCE

t ‖‖θ∗ − θ̂t−1‖

= 〈X∗, θ∗〉 −

∥∥∥∥∥ Hθ∗

‖θ∗‖H
− Hθ̂t−1

‖θ̂t−1‖H

∥∥∥∥∥ ‖θ∗ − θ̂t−1‖. (B.22)
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We now show that∥∥∥∥∥ Hθ∗

‖θ∗‖H
− Hθ̂t−1

‖θ̂t−1‖H

∥∥∥∥∥ ≤ 2‖X0‖λmax(H)

b0
√
λmin(H)

‖θ∗ − θ̂t−1‖. (B.23)

Using the triangle inequality, we get∥∥∥∥∥ Hθ∗

‖θ∗‖H
− Hθ̂t−1

‖θ̂t−1‖H

∥∥∥∥∥ =

∥∥∥∥∥ Hθ∗

‖θ∗‖H
− Hθ̂t−1
‖θ∗‖H

+
Hθ̂t−1
‖θ∗‖H

− Hθ̂t−1

‖θ̂t−1‖H

∥∥∥∥∥
≤

∥∥∥∥∥ Hθ∗

‖θ∗‖H
− Hθ̂t−1
‖θ∗‖H

∥∥∥∥∥+

∥∥∥∥∥Hθ̂t−1‖θ∗‖H
− Hθ̂t−1

‖θ̂t−1‖H

∥∥∥∥∥
=

1

‖θ∗‖H
‖H(θ∗ − θ̂t−1)‖+

‖Hθ̂t−1‖
‖θ∗‖H‖θ̂t−1‖H

∣∣∣‖θ∗‖H − ‖θ̂t−1‖H∣∣∣
≤ 1

‖θ∗‖H
‖H(θ∗ − θ̂t−1)‖+

‖Hθ̂t−1‖
‖θ∗‖H‖θ̂t−1‖H

‖θ∗ − θ̂t−1‖H ,

where the last inequality follows from the reverse triangle inequality. Using the

Cauchy-Schwarz inequality and the fact that ‖H‖ = λmax(H), we get

1

‖θ∗‖H
‖H(θ∗ − θ̂t−1)‖+

‖Hθ̂t−1‖
‖θ∗‖H‖θ̂t−1‖H

‖θ∗ − θ̂t−1‖H

≤ λmax(H)

‖θ∗‖H
‖θ∗ − θ̂t−1‖+

√
λmax(H)‖θ̂t−1‖H
‖θ∗‖H‖θ̂t−1‖H

√
λmax(H)‖θ∗ − θ̂t−1‖

=
2λmax(H)

‖θ∗‖H
‖θ∗ − θ̂t−1‖, (B.24)

where the inequality follows from the fact that ‖Hθ̂t−1‖ ≤ ‖H1/2‖‖H1/2θ̂t−1‖ =√
λmax(H)‖θ̂t−1‖H . Recall from Assumption 4 that 〈X0, θ

∗〉 ≥ b0. So, ‖X0‖‖θ∗‖ ≥

b0

‖θ∗‖H ≥
√
λmin(H)b0
‖X0‖

. (B.25)

Thus, by applying Inequality (B.25) to (B.24), we get Inequality (B.23). Finally,

combining Inequalities (B.22) and (B.23) yields the desired lower bound on the

expected reward of the greedy arm.
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B.6 Proof of Lemma 9

Let N SE
t be the set of stages in which a safe exploration arm is played up to and

including stage t. Our objective is to establish a lower bound on the minimum

eigenvalue of Vt in terms on Nt. As yy> is a positive semidefinite matrix for any

y ∈ Rd, it holds that

Vt = λI +
t∑

k=1

XtX
>
t

�
∑
k∈N SE

t

XSE
k XSE

k

>

=
∑
k∈N SE

t

(
((1− ρ)XS

k + ρx̄+ ρH1/2ζk)((1− ρ)XS
k + ρx̄+ ρH1/2ζk)

>
)

�
∑
k∈N SE

t

(
((1− ρ)XS

k + ρx̄)(ρH1/2ζk)
>

+ ρH1/2ζk((1− ρ)XS
k + ρx̄)> + ρ2H1/2ζkζ

>
k H

1/2

)
=
∑
k∈N SE

t

(
ρ2H1/2E

[
ζkζ
>
k

]
H1/2 +Wk

)
�
∑
k∈N SE

t

(
ρ2λmin

(
H1/2E

[
ζkζ
>
k

]
H1/2

)
+Wk

)
,

where Wk is defined as

Wk :=((1− ρ)XS
k + ρx̄)(ρH1/2ζk)

>

+ ρH1/2ζk((1− ρ)XS
k + ρx̄)> + ρ2H1/2(ζkζ

>
k − E

[
ζkζ
>
k

]
)H1/2. (B.26)

Recall that σ2 is defined as the minimum eigenvalue of the covariance matrix of

Uk, i.e.,

σ2 = λmin

(
E
[
(Uk − E [Uk]) (Uk − E [Uk])

>
])

= λmin

(
H1/2E

[
ζkζ
>
k

]
H1/2

)
.
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Thus, using the fact that |N SE
t | = Nt, we get

Vt � ρ2σ2NtI +
∑
k∈N SE

t

Wk.

Using Weyl’s inequality, it immediately follows that

λmin(Vt) ≥ ρ2σ2Nt − λmax

 ∑
k∈N SE

t

Wk

 . (B.27)

We rely on the Matrix Azuma Inequality (B.28) to establish an upper bound on

λmax(
∑

k∈NtWk), which holds with high probability.

Theorem 8 (Matrix Azuma Inequality). [89, Theorem 7.1. and Remark 7.8.] Let

{Fk}∞k=0 be a filtration. Consider the random process {Yk}∞k=1 adapted to the

filtration {Fk}∞k=1. Each Yk is a self-adjoint matrix with dimension d such that

E [Yk | Fk−1] = 0 for k = 1, 2, 3, . . . .,

and

Y 2
k � A2

k almost surely for k = 1, 2, 3, . . . ,

where {Ak}∞k=1 is a sequence of deterministic matrices. Moreover, the sequence

{Yk}∞k=1 is conditionally symmetric, i.e., Yk ∼ −Yk conditional on Fk−1. Then,

for all δ ≥ 0 and t ≥ 1, it holds that

P

(
λmax

(
t∑

k=1

Yk

)
≥ δ

)
≤ d · exp

(
− δ2

2
∥∥∑t

k=1A
2
k

∥∥
)
. (B.28)

In order to apply the Matrix Azuma Inequality (B.28), we first show that the

sequence of random matrices {Wk}∞k=1 satisfy the assumptions of Theorem 8.

From the definition of Wk in Equation (B.26), it follows that Wk = W>
k for all

k ≥ 1. Define the filtration Fk = σ(XS
1 , . . . , X

S
k+1, ζ1, . . . , ζk) for all k ≥ 1. It

immediately follows that Wk is Fk-measurable, conditionally symmetric, and
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E [Wk | Fk−1] = 0. We now construct the sequence of deterministic matrices

{Ak}∞k=1 such that it almost surely holds that W 2
k � A2

k. Using the fact that the

trace of a matrix is equal to the sum of its eigenvalues, it almost surely holds

that λmax(Wk) ≤ trace (Wk). Then,

λmax(Wk) ≤ 2((1− ρ)XS
k + ρx̄)>(ρH1/2ζk)

+ ρ2ζ>k Hζk − ρ2trace
(
H1/2E

[
ζkζ
>
k

]
H1/2

)
≤ 2((1− ρ)XS

k + ρx̄)>(ρH1/2ζk) + ρ2λmax(H)− ρ2σ2d,

where the inequality follows from the fact that ‖ζk‖ = 1 for all k ≥ 1 and the def-

inition of σ2. Using the fact that ‖XS
k‖ ≤ L, and the Cauchy-Schwarz inequality,

it almost surely holds that

λmax(Wk) ≤ k3,

where k3 is defined as

k3 = 2ρ((1− ρ)L+ ρ‖x̄‖)
√
λmax(H) + ρ2λmax(H)− ρ2σ2d.

Define Ak = k3I for all k ≥ 1. Then, it almost surely holds that W 2
k �

λmax(Wk)
2I � A2

k for all k ≥ 1. Thus, the sequence of random matrices {Wk}∞k=1

satisfies all the assumptions of Theorem 8. Using the Cauchy-Schwarz inequal-

ity, we get ∥∥∥∥∥∥
∑
k∈N SE

t

A2
k

∥∥∥∥∥∥ ≤
∑
k∈N SE

t

∥∥A2
k

∥∥ ≤ Ntk
2
3.

Using the Matrix Azuma Inequality (B.28), for any δ ≥ 0, it holds that

P

λmax

 ∑
k∈N SE

t

Wk

 ≥ δ

∣∣∣∣ Nt = n

 ≤ d · exp

(
− δ2

2nk23

)
.
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By setting δ = (1− µ)ρ2σ2Nt, we get

P

λmax

 ∑
k∈N SE

t

Wk

 ≥ (1− µ)ρ2σ2Nt

∣∣∣∣ Nt = n

 ≤ d · exp

(
−(1− µ)2ρ4σ4n2

2nk23

)

≤ d · exp
(
−k4(1− µ)2n

)
,

where k4 is defined as

k4 :=
ρ4σ4

2k23
.
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APPENDIX C

PROOFS OF RESULTS IN CHAPTER 4

We introduce the following quantities, which will be useful in the se-

quel. Define M0 = g(µλ) = maxp∈[0,µλ] g(p), m1 = minp∈[0,µλ] g
′(p), M1 =

maxp∈[0,µλ] g
′(p), and M2 = maxp∈[0,µλ] |g′′(p)|. Note that m1 > 0 as g is assumed

to be strictly increasing.

C.1 Proof of Lemma 3

Given a fixed pair (Q, p), we have that

πt(Q, p) = µλQ− pg(p) + µ+

ρE [(g(p)−Q+ εt)+]− µ−
ρE [(Q− g(p)− εt)+] .

We show that πt is concave in (Q, p). First, we prove that pg(p) is convex. From

Assumption 6 it follows that

(pg(p))′′ = 2g′(p) + pg′′(p) ≥ 2g′(p)− 2p
g′(p)2

g(p)
≥ 0,

where the last inequality follows from concavity of g and the fact that g(0) ≥

0. The concavity of µ+
ρE [(g(p)−Q+ εt)+]− µ−

ρE [(Q− g(p)− εt)+] follows from

Assumption 5 and the fact that g is concave .

Thus, one can characterize the unique maximizer of πt as the solution to the

first-order optimality conditions:

dπt(Q, p)

dp
= 0 and

dπt(Q, p)

dQ
.
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By Fubini’s theorem, we have

d

dp
E [(g(p)−Q+ εt)+] = E [g′(p)1 {g(p)−Q+ εt ≥ 0}]

= g′(p)P (g(p)−Q+ εt ≥ 0)

= g′(p)(1− F (Q− g(p)).

We then get

dπt(Q, p)

dp
= −g(p)− pg′(p) + µ+

ρ g
′(p)(1− F (Q− g(p))) + µ−

ρ g
′(p)F (Q− g(p)),

(C.1)

dπt(Q, p)

dQ
= µλ − µ+

ρ (1− F (Q− g(p)))− µ−
ρF (Q− g(p)). (C.2)

By replacing Equations (C.1) and (C.2) in the first-order optimality conditions,

we get Equations (4.4) and (4.5), respectively.

C.2 Proof of Theorem 6

Let t ≥ 1, and fix (Qt, pt). To streamline the proof, we define Yt := Qt − g(pt) for

each time period t. It follows that the expected profit of the aggregator can be

expressed as

πt(Qt, pt) = µλYt + (µλ − pt)g(pt) + µ+

ρE [(εt − Yt)+]− µ−
ρE [(Yt − εt)+] .

It will be helpful to decompose the expected profit as rt(Qt, pt) = r1t(Qt, pt) +

r2t(Qt, pt), where

π1t(Qt, pt) := (µλ − pt)g(pt)

π2t(Qt, pt) := µλYt + µ+

ρE [(εt − Yt)+]− µ−
ρE [(Yt − εt)+] .
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We first show that there exists a positive finite C0 such that for all t ≥ 1, we

have

π1t(Q
∗, p∗)− π1t(Qt, pt) ≤ C0(pt − p∗)2. (C.3)

It holds that

π1t(Q
∗, p∗)− π1t(Qt, pt) = (µλ − p∗)g(p∗)− (µλ − pt)g(pt)

= (µλ − p∗)(g(p∗)− g(pt)) + (pt − p∗)g(pt).

By Taylor’s theorem, there exists q1t and q2t with |q1t − p∗| ≤ |pt − p∗| and |q2t −

p∗| ≤ |pt − p∗| such that

g(pt) = g(p∗) + (pt − p∗)g′(q1t),

g(pt) = g(p∗) + (pt − p∗)g′(p∗) +
1

2
(pt − p∗)2g′′(q2t).

Using Equation (4.4), we get

π1t(Q
∗, p∗)− π1t(Qt, pt) = −(µλ − p∗)(pt − p∗)

(
g′(p∗) +

1

2
(pt − p∗)g′′(q2t)

)
+ (pt − p∗)g(p∗) + (pt − p∗)2g′(q1t)

= (pt − p∗)2
(
−1

2
(µλ − p∗)g′′(q2t) + g′(q1t)

)
≤ C0(pt − p∗)2,

where C0 is defined as C0 := 1
2
µλM2 +M1 .

We now show that there exists a positive finite C1 such that for all t ≥ 1, we

have

π2t(Q
∗, p∗)− π2t(Qt, pt) ≤ C1(Yt − Y ∗)2, (C.4)

where Y ∗ := Q∗ − g(p∗) = F−1(ζ). First, consider the case in which Yt ≥ Y ∗. It
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follows that

π1t(Q
∗, p∗)− π1t(Qt, pt)

= µλ(Y
∗ − Yt) + µ+

ρ

∫ ∞
Y ∗

(εt − Y ∗) dF − µ+

ρ

∫ ∞
Yt

(εt − Yt) dF

− µ−
ρ

∫ Y ∗

−∞
(Y ∗ − εt) dF + µ−

ρ

∫ Yt

−∞
(Yt − εt) dF

= µλ(Y
∗ − Yt) + µ+

ρ

∫ ∞
Y ∗

(Yt − Y ∗) dF + µ−
ρ

∫ Y ∗

−∞
(Yt − Y ∗)dF

+ (µ−
ρ − µ+

ρ )

∫ Yt

Y ∗
t

(Yt − εt)dF

= (Y ∗ − Yt)
(
µλ − µ+

ρ (1− F (Y ∗))− µ−
ρF (Y ∗)

)
+ (µ−

ρ − µ+

ρ )

∫ Yt

Y ∗
(Yt − εt) dF

= (µ−
ρ − µ+

ρ )

∫ Yt

Y ∗
(Yt − εt) dF, (C.5)

where the last equality follows from Equation (C.2) and the fact that F (Y ∗) =

F (F−1(ζ)) = ζ . We have∫ Yt

Y ∗
(Yt − εt) dF ≤

∫ Yt

Y ∗
(Yt − Y ∗) dF

= (Yt − Y ∗)F (Yt − Y ∗)

≤ L(Yt − Y ∗)2, (C.6)

where L := maxx,y 6=x∈R |F (x)−F (y)|/|x− y|. Thus, by applying Inequality (C.6)

to Equality (C.5), we get the desired inequality with C1 := L(µ−
ρ − µ+

ρ ). For

the case in which Yt < Y ∗, one can obtain an identical upper bound using an

analogous approach as above.

Finally, combining Inequality (C.4) and Equation (C.3) yields the desired up-

per bound on regret.
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C.3 Proof of Corollary 3

By applying Theorem 6 to the PCE policy (4.12) and (4.13), we get

Rγ
T ≤ C2

IT∑
i=1

Liδ
2
i + 3C0

IT∑
i=1

LiE
[
(p̂i − p∗)2

]
+ 3C1

IT∑
i=1

LiE
[(
Q̂i−1 −Q∗ − g(p̂i−1) + g(p∗)

)2]
, (C.7)

where C2 := 2C0 + 2C1M1. We now upper bound the last term in Inequality

(C.7). From the definition of empirical quantile function in Equation (4.9), for

all η ∈ (0, 1), we have

F̂−1i (η) = g(p̂i)− α̂ip̂i + β̂i + F−1i (η). (C.8)

where F−1i (η) is the quantile function associated with the sequence of demand

shocks defined in Equation (4.17). Using Equation (C.8), we get

Q̂i −Q∗ − g(p̂i) + g(p∗) = F−1i−1(η)− F−1(η). (C.9)

C.4 Proof of Lemma 4

We first find the CE pricing error in terms of the linearization error. Using the

definition of p∗ in terms of the demand function linearization in Equation (4.7)

and the definition of the CE price in Equation (4.10), we get

|p̂i+1 − p∗| =

∣∣∣∣∣P
(

1

2

(
µλ −

β̂i
α̂i

))
− 1

2

(
µλ −

β(p∗)

α(p∗)

)∣∣∣∣∣
≤ 1

2

∣∣∣∣∣ β̂iα̂i − β(p∗)

α(p∗)

∣∣∣∣∣
≤ 1

2

∣∣∣∣β(p̂i)

α(p̂i)
− β(p∗)

α(p∗)

∣∣∣∣+
1

2

∣∣∣∣∣ β̂iα̂i − β(p̂i)

α(p̂i)

∣∣∣∣∣ , (C.10)
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where the last inequality follows from the triangle inequality. We now bound

each term in Inequality (C.10) separately.

First term: Using the definition of α and β, we get

β(p̂i)

α(p̂i)
− β(p∗)

α(p∗)
=
g(p̂i)

g′(p̂i)
− p̂i −

g(p∗)

g′(p∗)
+ p∗.

By Taylor’s theorem, there exists q ∈ R with |q − p∗| ≤ |p̂i − p∗| such that

g(p̂i)

g′(p̂i)
=
g(p∗)

g′(p∗)
+

(
1− g(q)g′′(q)

g′(q)2

)
(p̂i − p∗).

Then,

1

2

∣∣∣∣β(p̂i)

α(p̂i)
− β(p∗)

α(p∗)

∣∣∣∣ =
1

2

(
g(q)|g′′(q)|
g′(q)2

)
|p̂i − p∗| ≤ κ|p̂i − p∗|, (C.11)

where the last inequality follows from Assumption 6.

Second term: We first bound the estimation error of the parameters of the

demand function linearization. The closed from solution to the LSE (4.8) is given

by

α̂i =

∑
t∈Ei

(
Dt − D̄i

)
(pt − p̄i)∑

t∈Ei(pt − p̄i)2
,

β̂i = D̄i − α̂ip̄i.

where D̄i := 1/(2Li)
∑

t∈Ei Dt and p̄i = 1/(2Li)
∑

t∈Ei pt. After some elementary

computations, we get

α̂i =
g(p̂i + δi)− g(p̂i)

δi
+

1

δi
(Wi2 −Wi1), (C.12)

β̂i = β(p̂i) +Wi1 − (α̂i − α(p̂i))p̂i, (C.13)
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where

Wi1 :=
1

Li

Ti−1+Li∑
t=Ti−1+1

εt,

Wi2 :=
1

Li

Ti−1+2Li∑
t=Ti−1+Li+1

εt.

By Taylor’s theorem, there exists qi ∈ [p̂i, p̂i + δi] such that

g(p̂i + δi)− g(p̂i)

δi
= α(p̂i) +

δi
2
g′′(qi).

Then, from Equations (C.12) and (C.13) it follows that∣∣∣∣∣ β̂iα̂i − β(p̂i)

α(p̂i)

∣∣∣∣∣ =
1

|α̂iα(p̂i)|
|Wi1α(p̂i) + g(p̂i)(α(p̂i)− α̂i)|

≤ 1

|α̂i|δi

(
δi +

g(p̂i)

|α(p̂i)|

)
(|Wi1|+ |Wi2|) + δi

g(p̂i)|g′′(qi)|
2|α̂iα(p̂i)|

≤ Zi, (C.14)

where

Zi :=
1

|α̂i|

((
δ0 +

M0

m1

)
|Wi1|+ |Wi2|

δi
+ κM1δi

)
(C.15)

By combining Inequalities (C.10), (C.11), and (C.14), we get

|p̂i+1 − p∗| ≤ κ|p̂i − p∗|+
1

2
Zi.

It immediately follows that

(p̂i+1 − p∗)2 ≤
1 + κ2

2
(p̂i − p∗)2 +

1 + κ2

2(1− κ2)
Z2
i . (C.16)

In order to establish an upper bound on the mean squared pricing error us-

ing Inequality (C.16), we define a high probability event under which Zi is ap-

propriately bounded. More precisely, define eventW as

W =

{
max{|Wi1|, |Wi1|} ≤

m1

√
log(Li)

4
√
Li

}
.
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By the total expectation theorem, we have

E
[
(p̂i+1 − p∗)2

]
= E

[
(p̂i+1 − p∗)2 | W

]
P (W)

+ E
[
(p̂i+1 − p∗)2 | Wc

]
P (Wc)

≤ E
[
(p̂i+1 − p∗)2 | W

]
+ µ2

λP (Wc) , (C.17)

where the last inequality follows from the fact that p̂i+1 ∈ [0, µλ] by definition.

We now bound the first term in Inequality (C.17). Using Inequality (C.16), we

get

E
[
(p̂i+1 − p∗)2 | W

]
≤ 1 + κ2

2
E
[
(p̂i − p∗)2 | W

]
+

1 + κ2

2(1− κ2)
E
[
Z2
i | W

]
. (C.18)

We now bound E [Z2
i | W ]. Conditioned onW , using the triangle inequality, we

have

|α̂i| ≥
g(p̂i + δi)− g(p̂i)

δi
− 1

δi
(|Wi1 + |Wi2|)

≥ m1 −
1

δi

m1

√
log(Li)

2
√
Li

≥ m1

2
.

Then,

E
[
Z2
i | W

]
≤ 4

m2
1

((
δ0 +

M0

m1

)
|Wi1|+ |Wi2|

δi
+ κM1δi

)2

≤ 4

m2
1

(
M0 + δ0m1

2
+ κM1

)2
log(Li)√

Li
, (C.19)

where the last inequality follows from the definition of δi = δ0L
−1/4
i . By applying

Inequality (C.19) to (C.18), we get

E
[
(p̂i+1 − p∗)2 | W

]
≤
(

1 + κ2

2

)i
(p̂1 − p∗)2 + c0 log(Li)

i∑
j=1

(
1 + κ2

2

)i−j
1√
Lj
,

where c0 is defined as

c0 :=
4

m2
1

(
M0 + δ0m1

2
+ κM1

)2
1 + κ2

2(1− κ2)
.
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Using the definition of Li = bL0ν
ic, we get

E
[
(p̂i+1 − p∗)2 | W

]
≤
(

1 + κ2

2

)i
µ2
λ

+ c0 log(L0ν
i)

√
ν√

L0ν − 1

1√
νi

i∑
j=1

(
(1 + κ2)

√
ν

2

)i−j
.

From the assumption that ν ≤ 4/(1 + κ2), it follows that

E
[
(p̂i+1 − p∗)2 | W

]
≤ c1

i√
νi
, (C.20)

where c1 is defined as

c1 := µ2
λ + c0 log(L0ν)

2
√
ν√

L0ν − 1(2− (1 + κ2)
√
ν)
.

By applying Inequality (C.20) to Inequality (C.17), we get

E
[
(p̂i+1 − p∗)2

]
≤ c1

i√
νi

+ µ2
λP (Wc) .

Thus, we are left to bound the probability of eventW . Using the fact that {εt} is

an i.i.d. sequence of random variables, we have

P (Wc) ≤ 2P

(
|Wi1| ≥

m1

√
log(Li)

4
√
Li

)
.

As εt ∈ [ε, ε] almost surely, we utilize Hoeffding’s inequality to bound P (Wc).

Lemma 10 (Hoeffding’s Inequality). Let {Xk} be a sequence of independent ran-

dom variables such that Xk ∈ [ak, bk] almost surely for all k ∈ N. Then, for all

s ≥ 0 and n ∈ N

P

(∣∣∣∣∣ 1n
n∑
k=1

(Xk − E [Xk])

∣∣∣∣∣ ≥ s

)
≤ 2 exp

(
− 2n2s2∑n

k=1(bi − ai)2

)
. (C.21)

Using Hoeffding’s inequality (C.21), we get

P

(
|Wi1| ≥

m1

√
log(Li)

4
√
Li

)
≤ 2 exp

(
− m2

1

8(ε− ε)2

)
1

Li
.
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Defining C2 as follows yields the desired upper bound on the mean squared

pricing error (4.19).

C2 = c1 + 2c2µ
2
λ

√
ν√

L0ν − 1
.

C.5 Proof of Lemma 5

For all η ∈ [0, 1], define Fi(η) as

Fi(η) :=
1

Li

Ti−1+Li∑
t=Ti−1+1

1{εit ≤ x}.

Note that LiFi(η) ∼ Bern(Li, F (η)) as LiFi(η) is the sum of Li Bernoulli random

variables of the form 1{εit ≤ x}. Then, for all s > 0, we have

P
(
|F−1i (η)− F−1(η)| ≥ s

)
≤ P

(
F−1i (η) ≥ F−1(η) + s

)
+ P

(
F−1i (η) ≤ F−1(η)− s

)
= P

(
η ≥ Fi

(
F−1(η) + s

))
+ P

(
η ≤ Fi

(
F−1(η)− s

))
≤ exp

(
− 2

Li

(
LiFi

(
F−1(η) + s

)
− Liη

)2)
+ exp

(
− 2

Li

(
Liη − LiFi

(
F−1(η)− s

))2)
,

where the last inequality follows from Hoeffding’s inequality (C.21). increasing.

Then,

P
(
|F−1i (η)− F−1(η)| ≥ s

)
≤ 2 exp

(
− 2

C3

Lis
2

)
.

where C3 is defined as

C3 :=
1

min {η − Fi (F−1(η)− s) , Fi (F−1(η) + s)− η}
.
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From Assumption 7, we have that F is strictly increasing, and thus, C3 < ∞.

Then,

E
[
(F−1i (η)− F−1(η))2

]
=

∫ ∞
0

P
(
|F−1i (η)− F−1(η)| ≥

√
s
)
ds

≤
∫ ∞
0

2 exp

(
− 2

C3

Lis

)
ds

= C3
1

Li
.

C.6 Proof of Theorem 7

By applying Inequalities (4.20) and (4.19) to (C.7), we get

Rγ
T ≤ C2

IT∑
i=1

Liδ
2
i + 3C0C3

IT∑
i=1

Li
i− 1√
νi−1

+ 3C1C4

(
(Q̂0 −Q∗ − g(p̂0) + p∗)2 +

IT∑
i=2

Li
1

Li−1

)

≤ C2δ0
√
L0

IT∑
i=1

νi/2 + 3C0C3L0ν

IT∑
i=1

iνi/2

+ 3C1C4

(
(Q̂0 −Q∗ − g(p̂0) + p∗)2 +

L0ν

L0ν − 1
IT

)
≤ C6

IT∑
i=1

iνi/2,

where C6 is defined as

C6 := C2δ0
√
L0 + 3C0C3L0ν + 3C1C4

(
(Q̂0 −Q∗ − g(p̂0) + p∗)2 +

L0ν

L0ν − 1

)
.
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Then,

Rγ
T ≤ C6

IT∑
i=1

iνi/2

≤ C6IT

IT∑
i=1

νi/2

≤ C6

√
ν√

ν − 1
IT
√
νIT .

We not show that IT ≤ log(T )+C7. From the definition of IT = min {i ∈ N | Ti ≥

T}, it follows that 2
∑IT−1

i=1 Li ≤ T. Using the fact that Li = bL0ν
ic ≥ L0ν

i−1, we

have
∑IT−1

i=1 νi ≤ T/2 + IT . Note that IT ≤ T so

νIT − 1

ν − 1
≤ 3

2
T.

Then, IT log(ν) ≤ log(3(ν − 1)T/2) + 1. Thus,

IT ≤ log(T ) + C7,

where C7 := (1 + log(3(ν − 1)/2))/ log(ν).

Finally, defining C5 as follows yields the desired upper bound on regret.

C6 = C6

√
ν√

ν − 1
(1 + C7)

√
νC7 log(ν).
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