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The carboxylate platform converts organic feedstocks to short- or medium-chain 

carboxylates with reactions that are catalyzed by undefined mixed cultures in 

anaerobic systems.  The undefined mixed cultures first convert substrate biomass to 

primary fermentation products (e.g., ethanol, acetate, propionate, lactate, n-butyrate, 

hydrogen, and carbon dioxide). Next, secondary fermentation reactions (e.g., 

carboxylate oxidation, methanogenesis, or carboxylate chain elongation) couple 

oxidation and reduction of primary products to achieve a final product spectrum.  The 

most successful application of the carboxylate platform, thus far, has been anaerobic 

digestion, because most substrate is efficiently and almost exclusively converted to 

methane and carbon dioxide.  Additionally, problems are relatively easy to address 

because of years of experience with anaerobic digesters and a good understanding of 

the underlying microbial processes. The carboxylate platform can also be applied to 

production of liquid bioproducts, such as carboxylates.  Until now, this application has 

suffered from low product specificity and poor yields due to unclear links between 

operating conditions and performance and a poor understanding of the underlying 

microbial communities.  In this dissertation, we improve carboxylate production with 

undefined mixed cultures by using molecular biology tools to guide engineering of 

carboxylate-producing systems.  First, we studied the efficiencies of thermophilic 

bioreactors producing n-butyrate for 421 days to determine how bioreactor operating 
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conditions (substrate pretreatment and undissociated carboxylic acid toxicity 

reductions) affected the undefined mixed cultures.  We used high-throughput 16S 

rRNA gene analysis, combined with ordination strategies, to observe the connection 

between development and performance of the bacterial community structure.  Also, 

machine learning enabled us to probe the taxonomic structure to understand why 

performance did not increase with decreased carboxylic acid toxicity at pH 5.8.  

Finally, we implicated lactate in decreased n-butyrate specificity because of competing 

n-caproate production (i.e., lactate + n-butyrate  n-caproate), indicating that 

secondary fermentation reactions are important factors in determining the efficiency of 

carboxylate-producing systems. We concluded that in-situ product-specific 

carboxylate removal and secondary reaction control would be necessary to further 

decrease toxicity and increase performance of carboxylate-producing bioreactors.  

Because n-butyrate is relatively difficult to recover, next, we sought to study 

production of n-caproate, which, with a more hydrophobic nature is easier to remove 

from solution.  Thus, we performed a functional metagenomics study of bioreactors 

operated at three temperatures (55oC, 40oC, and 30oC) to produce n-caproate and n-

caprylate.  We combined an electron pushing strategy (i.e., ethanol supplementation to 

promote coupling of ethanol oxidation and short-chain carboxylate elongation) and in-

situ product specific extraction to optimize n-caproate and n-caprylate formation.  

Functional metagenomics could map the dynamics between operating conditions and 

performance, indicating that better extraction efficiency could further improve 

performance.  In the current setup, we achieved a maximum 52% n-caproate/n-

caprylate specificity (i.e., the ratio of n-caproate and n-caprylate COD to the COD of 
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all other fermentation products) and maximum rates that were six times those without 

extraction.  Further, we challenged traditional knowledge by suggesting that 

hydrogenotrophic methanogenesis and carboxylate production can occur 

simultaneously, and that the community function may have depended on management 

of the hydrogen partial pressure by methanogens.  Overall, we showed that many 

principles driving product specificity in anaerobic digestion (product removal and 

directed secondary fermentations) also apply to efficient production of liquid 

carboxylates.
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PREFACE 
 

To the reader, I would like to mention that our lab specializes in long-term studies of 

bioreactors (in this work, ranging from 124 days to 420 days).  This type of operation, 

combined with the high-throughput DNA sequencing techniques we performed 

generates massive amounts of data.  I mention this because the reader will find that 

each of the three main research papers herein is supported by information in the 

appendices.  The appendices are not absolutely necessary to understand the content of 

the chapters, but often it provides important support for arguments made in the text.  

This is necessary in order to keep the chapters at a readable length, and not to bog the 

text down with excessive amounts of data and details.  We have tried to be as clear 

and organized as possible to make moving between chapters and appendices easy, 

when necessary.  To that end, the LIST OF FIGURES and LIST OF TABLES places 

each set of appendix figures just after the chapter it supports.  I hope that the reader 

will find that this approach is useful, and will find the supplementary information in 

the appendices to be valuable, when he/she is interested in further information or 

support. 
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1. INTRODUCTION  

 

CENTRAL HYPOTHESIS AND SUMMARY OF THE EXPERIMENTS 

CARRIED OUT 

 
 

Central Hypothesis 

Efficient production of a specific carboxylate end product from lignocellulosic 

waste with undefined mixed microbial cultures has, thus far, been elusive because of 

low yields and low product specificity.  Low yields have been a result of product 

inhibition because high levels of undissociated volatile fatty acids are toxic to 

fermenting microorganisms.  Further, the low pH generally used to inhibit 

methanogens during carboxylate production increases the levels of undissociated 

volatile fatty acids, further inhibiting substrate conversion.  To improve yields and 

rates of product formation, bioreactors should be designed to remove products in-situ.  

Product specificity results from the combined effect of primary fermentation pathways 

(i.e., carbohydrate, protein, and lipid fermentation to short-chain carboxylates and 

alcohols) and secondary fermentation pathways (i.e., conversion of primary 

fermentation products to endproducts) by constituent microbial community members 

to produce an array of fermentation products and to convert those to end products.  To 

direct the microbial community structure to orient toward secondary fermentations 

that funnel the product spectrum to a specific endproduct, the bioreactor conditions 

(temperature, pH), product removal, electron acceptor availability, and electron 

pushing substrate (i.e., the source of energy and electrons to upgrade primary 
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fermentation products) must all be coordinated to drive a specific process.  We 

investigated this hypothesis with the following experiments: 

 
High product to substrate conversion efficiency and product specificity via 

anaerobic digestion for methane production and evaluating how to eliminate 

thermophilic hydrogenotrophic methanogenesis 

 We operated two anaerobic sequencing batch reactors (ASBRs) fed thin 

stillage as substrate for 412 days to optimize methane production and to 

evaluate factors limiting its formation.  CHAPTER 3.   

 We analyzed suppression of hydrogenotrophic methanogenesis via carboxylic 

acid inhibition with n-butyrate, one valuable product of the carboxylate 

platform.  APPENDIX 2. 

 

Decreasing end product inhibition to improve product specificity and product 

formation rates in n-butyrate production with undefined mixed cultures of 

microbes 

 We operated three ASBRs fed dilute-acid, dilute-alkali, or hot-water pretreated 

corn fiber for 421 days to optimize n-butyrate production CHAPTER 4. 

 We performed a 16S rRNA gene survey of n-butyrate producing bioreactors at 

various conditions and linked bioreactor operating conditions, community 

structure, and performance. CHAPTER 4. 
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 Upgrading short-chain carboxylates and dilute ethanol to medium-chain 

carboxylates to significantly enhance product specificity in open mixed microbial 

communities 

 We operated two ethanol-supplemented ASBRs fed dilute-acid pretreated corn 

fiber for 124 days to evaluate electron pushing with ethanol at three 

temperatures. CHAPTER 5. 

 We performed continuous in-situ product-specific extraction of n-caproate and 

n-caprylate in one bioreactor and compared ethanol utilization specifically for 

chain elongation of primary fermentation products to a bioreactor without 

product extraction. CHAPTER 5. 

 We performed a functional metagenomic survey of ASBRs with varying 

degrees of n-caproate/n-caprylate specificity to link the environmental 

conditions with the community metagenome functional compositions capable 

of utilizing electron-pushing substrates CHAPTER 5. 
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CHAPTER 2. 

 

LITERATURE REVIEW: WASTE TO BIOPRODUCT CONVERSION WITH 

UNDEFINED MIXED CULTURES: THE CARBOXYLATE PLATFORM 

Adapted from: Agler, Wrenn, Zinder, and Angenent.  Trends in Biotechnology, 

February 2011.  29(2):70-78 

 

 

Abstract 

Our societies generate increasing volumes of organic wastes.  Considering that 

we also need alternatives to oil, an opportunity exists to extract liquid fuels or even 

industrial solvents from these abundant wastes.  Anaerobic undefined mixed cultures 

can handle the complexity and variability of organic wastes, producing carboxylates 

that can be efficiently converted; however, to date, barriers, such as inefficient liquid 

product separation and persistence of methanogens, have prevented the production of 

bioproducts other than methane.  Here, we discuss combinations of biological and 

chemical pathways that comprise the “carboxylate platform”, used to convert waste to 

bioproducts.  To develop the carboxylate platform into an important system within 

biorefineries, we must understand the kinetic and thermodynamic possibilities of 

anaerobic pathways, understand the ecological principles underlying pathway 

alternatives, and develop superior separation technologies. 
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2.1 Introduction 

The discrepancy between the rates of discovery of new oil reserves and 

consumption will undoubtedly lead to a future oil crisis.  Our societies are also 

generating an increasing quantity of organic wastes, such as industrial and agricultural 

wastewater.  An opportunity, therefore, exists to shift the view of these waste streams 

from pollutant to renewable resource.  In the biorefinery concept, the value of each 

stream must be maximized (similar to oil refineries) [Fernando et al., 2006], and such 

waste treatment creates an opportunity to generate additional fuels or chemicals (i.e. 

bioproducts), while simultaneously recycling nutrients and water.  Processing steps 

within biorefineries, such as chemical/physical pretreatment, enzyme production, and 

fermentation and extraction steps, all create large volumes of wastewater that must be 

treated.  The two best-known biorefinery platforms are the sugar platform, in which 

purified enzymes convert biomass into five- and six-carbon sugars as intermediate 

feedstock chemicals that are converted further by, for example, fermentation to fuels; 

and the syngas platform, in which thermochemical systems convert biomass into 

syngas (i.e. synthesis gas: CO, H2, CO2, etc.) as feedstock chemicals that are converted 

further by, for example, catalysis to fuels (National Renewal Energy Laboratory: 

www.nrel.gov/biomass/biorefinery.html).  We envision a third important platform – 

the carboxylate platform – to convert organic feedstocks, which are often derived from 

industrial and agricultural wastes, to short-chain carboxylates as intermediate 

feedstock chemicals, using hydrolysis and fermentation with undefined mixed cultures 

in engineered systems under anaerobic conditions.  The differences in platforms are 

essentially based on the method of biomass conversion and its resulting chemicals 
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(e.g. sugar, syngas and carboxylates), because the subsequent conversion step into 

bioproducts is interchangeable between platforms.  The use of undefined mixed 

cultures in waste treatment systems is vital, because they can tolerate the complexity 

and variability of substrates owing to the metabolic flexibility conferred by the many 

members of the community [Angenent and Wrenn, 2008; Kleerebezem and van 

Loosdrecht, 2007].  Furthermore, they are open and anaerobic systems, which makes 

energetically unfavorable sterilization and aeration superfluous [Angenent and Wrenn, 

2008]. 

 The terminology “carboxylate platform” is not new, and has been used to 

describe an undefined-mixed-culture process to generate a mixture of carboxylates as 

intermediate platform chemicals toward generation of complex fuels [Holtzapple and 

Granda, 2009].  Carboxylates are dissociated organic acids characterized by the 

presence of at least one carboxyl group.  The short-chain carboxylates – acetate, 

propionate, lactate and n-butyrate – are the main organic products of undefined mixed 

cultures through primary fermentation reactions (Figure 2.1b).  They are themselves 

valuable products when separated from the culture broth, but often they are substrates 

for further fermentation in the same undefined mixed culture through secondary 

fermentation reactions (Figure 2.1c-j) or in separate bioprocesses.  The carboxylates 

from primary fermentations can also be further processed with separate pure-culture 

biochemical, electrochemical and thermochemical steps (chemical post-processing 

step in Figure 2.2).  An important carboxylate flux occurs within its undefined mixed 

culture; as such, anaerobic digestion is included within the carboxylate platform 

because short-chain carboxylates are the (pen)ultimate intermediate platform products 
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for gaseous methane formation (Figure 2.1).  Even though pure culture and defined 

mixed culture studies are performed to understand the underlying ecological principles 

of undefined mixed communities [Read et al., 2010; Rosenbaum et al., 2011; 

Wittebolle et al., 2009], the commercial process to convert biomass into carboxylates 

must be an undefined microbial processing step to handle the complexity of the 

organic waste stream.  
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Figure 2.1.  Hydrolysis of solid polymers to monomers and oligomers (e.g. insoluble polysaccharides, 
such as cellulose and hemicellulose) and subsequent conversion by primary and secondary fermentation 
reactions with undefined mixed cultures.  During primary fermentation of sugars, substrates are 
converted to pyruvate, resulting in the production of NADH and H+.  All equivalents must be re-
oxidized via H+ reduction by: (a) NADH oxidation; or (b) NADH oxidation via reduction of pyruvate or 
its oxidized organic derivatives, depending upon the hydrogen partial pressure [Angenent et al., 2004].  
At increasing hydrogen partial pressures, the flow of electrons from NADH shifts from H2, acetate and 
CO2 production towards formation of increasingly reduced fermentation products [McInerney et al., 
1981].  CO2 and H2 are produced in the pyruvate oxidation reaction catalyzed by pyruvate:ferredoxin 
oxidoreductase.  The products of primary fermentation can react further within undefined mixed 
cultures through several secondary fermentation reactions: (c) autotrophic homoacetogenesis; (d) 
hydrogenotrophic methanogenesis; (e) carboxylate reduction to alcohols with hydrogen or ethanol; (f) 
aceticlastic methanogenesis; (g) chain elongation of carboxylates with ethanol; (h) electricigenesis (i) 
lactate oxidation to n-butyrate (acetate and H+ as electron acceptor); and (j) lactate reduction to 
propionate (oxidation to acetate for energy conservation). 
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Figure 2.2.  Chemical post-processes that convert carboxylates to bulk fuels or solvents with pure-
culture biochemical, electrochemical, and thermochemical steps, or a combination thereof.  In post-
processing step 1, carboxylates are converted to esters via esterification [Holtzapple et al., 1999; Levy 
et al., 1981; Park et al., 2009]; are reduced to carbonyls [Glinski et al., 2007; Schirmer et al., 2010]; or 
ketonized to carbonyls [Gaertner et al., 2009].  In post-processing step 2, the carbonyl intermediates are 
converted to alkanes via decarbonylation [Schirmer et al., 2010]; or reduced to alcohols [Holtzapple et 
al., 1999; Tashiro et al., 2004].  Finally, in post-processing step 3, the alcohol intermediates are 
converted to alkanes via reduction [Belay and Daniels, 1988].  Other conversions (not shown here) are 
possible. 
 

This review is a much-needed update to previous reviews [Angenent et al., 2004] 

because several additional bioprocessing schemes have been developed in the interim 

to generate energy-rich chemicals with undefined mixed cultures, rather than with 

pure or defined cultures.  The organization of this review is based on the production 

and subsequent conversion of the primary fermentation end products, the carboxylate 

feedstock chemicals: acetate (C2), propionate and lactate (C3), n-butyrate (C4), and 

mixed carboxylates.  In this review, we discuss how these chemicals can be further 

processed into high-volume fuels or industrial solvents because these bulk bioproducts 

would have the largest impact in an integrated biorefinery.  Table 2.1 shows balanced 

chemical equations and their thermodynamic values under standard biological 
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conditions for the reactions and processes that we discuss in this review.  Other 

chemicals that may also be generated within a carboxylate platform concept, but are 

not discussed here, are iso-butyrate, long-chain fatty acids, and biopolymers, such as 

polylactic acid. 
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aSecondary fermentation reactions correspond to those in Figure 2.1 [(h) is not shown here]. 
bCarboxylate reduction to alcohol with H2 as the electron donor has been observed in undefined mixed cultures [Steinbusch et al., 2008]. 
cPropionate reduction with ethanol has been observed in undefined mixed cultures [Smith and McCarty, 1989]. 
dFor reactions that are coupled within microbes, number of repetitions of individual reactions to achieve the total reaction. 
eAll Gr

o’ values are calculated considering all reactants and products to be in the aqueous phase except for H2, CO2 and CH4, which are gaseous at 1 atm.  Gr
o’ 

values are at biological standard state (pH = 6.82 at 37oC; 6.58 at 55oC).  Reactions that are coupled by microbes are shown individually with individual and 
coupled (total) Gr

o’ values.  Gr
o’ quantities were calculated from Gf

o values from [Amend and Shock, 2001], except for n-caproate- and n-hexanol, which 
were calculated using the HKF equations of state [Shock and Helgeson, 1990] and thermodynamic parameters [Shock, 1995]. 
 

Table 2.1.  Secondary fermentation reactions and processesa 
Reaction Microbe Carboxylate conversion reactions Coupled 

repetitionsd 
Gr

o’ 
(kJ/mol at 37 oC)e 

Gr
o’ 

(kJ/mol at 55 oC)e 
(c) Carbon dioxide 
reduction to acetate 

Acetobacterium woodii 4H2 + 2CO2  acetate- + H+ + 2H2O  -86.78 -74.56 

(d) Hydrogenotrophic 
methanogenesis 

Methanospirillum 
hungatei 

4H2 + CO2  CH4 + 2H2O  -125.84 -118.47 

(e) Carboxylate reduction 
with molecular hydrogen 

b acetate- + H+ + 2H2  ethanol + H2O 
propionate- + H+ + 2H2  propanol + H2O 
n-butyrate- + H+ + 2H2  n-butanol + H2O 
n-caproate- + H+ + 2H2  n-hexanol + H2O 

 -7.22 
-7.49 
-3.58 
-7.55 

-4.37 
-4.59 
-0.73 
-3.63 

(e) Propionate reduction 
with ethanol 

c ethanol + H2O  acetate- + H+ + 2 H2 
propionate- + H+ + 2 H2  propanol + H2O 
 

×1 
×1 

7.22 
-7.49 

Total = -0.27 

4.37 
-4.59 

Total = -0.22 
(f) Aceticlastic 
methanogenesis 

Methanosaeta 
soehngenii 

acetate- + H+  CH4 + CO2  -39.06 -43.91 

(g) Chain elongation of 
acetate with ethanol 

Clostridium kluyveri ethanol + H2O  acetate- + H+ + 2H2 

ethanol + acetate-  n-butyrate- + H2O 
×1 
×5 

7.22 
-201.68 

Total = -194.46 

4.37 
-198.50 

Total = -194.13 
(g) Chain elongation of n-
butyrate with ethanol 

C. kluyveri ethanol + H2O  acetate- + H+ + 2H2 
ethanol + n-butyrate-  n-caproate- + H2O 

×1 
×5 

7.22 
-190.00 

Total = -182.78 

4.37 
-195.20 

Total = -190.83 
(i) Lactate oxidation to n-
butyrate 

Clostridium 
acetobutylicum 

2 acetate- + H+ + 2H2  n-butyrate- + 2H2O 
2 lactate- + H+  n-butyrate- + 2CO2 + 2H2 

×1 
×2.5 

-47.55 
-209.35 

Total = -256.90 

-44.10 
-232.55 

Total = -276.65 
(j) Lactate reduction to 
propionate 

Selenomonas 
ruminantium 

lactate- + H2O  acetate- + CO2 + 2H2 

lactate- + H2 propionate- + H2O 
×1 
×2 

28.51 
-86.63 

Total = -58.12 

25.96 
-85.21 

Total = -59.25 
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2.2 Acetate 

When the hydrogen partial pressure is maintained at low levels in stable anaerobic 

digesters by scavenging hydrogenotrophic methanogens (secondary fermentation reaction 

in Figure 2.1d), a maximum acetate flux is maintained (mainly the primary fermentation 

pathway in Figure 2.1a).  This maximum acetate flux explains the superiority of 

anaerobic digestion as an efficient biomass-to-energy conversion process because 

primary fermentation is directed towards acetate and hydrogen, both of which are then 

converted to the end product methane with secondary fermentation reactions (Figure 

2.1d, f).  Propionate and n-butyrate are formed during protein hydrolysis and subsequent 

fermentation of amino acids, regardless of the H2 partial pressure [Nagase and Matsuo, 

1982].  On the other hand, propionate and n-butyrate can only be converted to the 

intermediate products acetate and hydrogen by secondary syntrophic carboxylate-

oxidation reactions, if these products are removed by methanogens (low H2 partial 

pressure) (Box 2.1; Table I).  This guarantees the maximum carbon and electron flux 

towards methane because almost no side-products that decrease efficiency are released 

from the anaerobic food web [De Schamphelaire and Verstraete, 2009]; or, in other 

words, the microbial process is directed to the final product (i.e. methane) with the lowest 

available free energy content per electron [Hanselmann, 1991].  Because anaerobic 

digestion is a mature technology and methane freely bubbles out without requiring 

additional separation processes, it is easy to understand why anaerobic digestion is the 

most popular waste-to-energy conversion technology worldwide.  However, methane has 

a low monetary value, and therefore we focus here on the promises and challenges of 

producing liquid fuels and high-value chemicals with the carboxylate platform. 
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Acetate by itself is a useful chemical; or as a feedstock chemical, acetate can be 

processed into bulk bioproducts via secondary fermentation reactions (Figure 2.1e-i) and 

chemical post-processing reactions (Figure 2.2).  Although a variety of chemical and 

biological processes can be used to transform carboxylate intermediates to valuable 

products, three biological processes in particular may integrate well with the production 

of carboxylates from complex waste streams by undefined mixed cultures.  These 

processes are biological reduction of carboxylates to the corresponding alcohols (Figure 

2.1e); biological elongation of short-chain carboxylates to longer chain products (Figure 

2.1g); and bioelectrochemical systems (BES), in which biological reactions are coupled 

to reactions at solid electrodes to produce electric power or valuable chemicals (Figure 

2.1h).  Regardless of the conversion method, further processing of acetate relies on being 

able to separate it from the undefined mixed culture broth, because consolidated 

bioprocesses in which the primary and secondary fermentation reactions occur in the 

same bioreactor are often precluded by incompatible optimal conditions.  One of the main 

barriers for large-scale liquid fuel and chemical production with the carboxylate platform 

is limitations with separation (Box 2.2).  The other barrier is that hydrogenotrophic 

methanogenesis must be ceased. 

Bioelectrochemical oxidation to electrons 

Most BES research initially focused on production of electric power by 

bioelectrochemical oxidation of organic substrates in microbial fuel cells (MFCs) in 

which a solid electrode served as the electron acceptor (Figure 2.1h) [Logan et al., 2006].  

Electric power is generated in MFCs by developing a natural potential difference between 

an anaerobic anode and an aerobic cathode. Although more complex substrates have been 
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used, only acetate and other short-chain carboxylates result in coulombic efficiencies 

appropriate for scale up [Fornero et al., 2010].  Recent studies, however, suggest that 

converting organic substrates, such as short-chain carboxylates, into chemical products 

by applying an electric potential across the electrodes has greater economic and 

environmental benefits than the production of electric power [Foley et al., 2010; Fornero 

et al., 2010].  This approach overcomes the thermodynamic limitations of the cathodic 

reactions by using a potentiostat to apply an electric potential between the electrodes in 

microbial electrolysis cells (MECs).  Separation of product formation at the cathode from 

substrate oxidation at the anode is an inherent advantage of using a membrane-based BES 

to generate valuable products from complex organic wastes.  Abiotic cathodes have been 

used to produce hydrogen [Liu et al., 2005; Logan et al., 2006], hydrogen peroxide 

[Rozendal et al., 2009], and sodium hydroxide [Rabaey et al., 2010], and undefined 

mixed cultures have been used to produce methane without the addition of mediators at 

potentiostatically poised cathodes (i.e. biocathodes) [Cheng et al., 2009; Villano et al., 

2010].  Recent studies have demonstrated reduction of CO2 in biocathode-based and 

potentiostatically poised BESs [Cao et al., 2009; Nevin et al., 2010]; and reduction of 

carbon dioxide into multi-carbon products (i.e. microbial electrosynthesis), such as 

alcohols, with all electrons originating from carboxylate oxidation at the anode, is a focus 

of ongoing research. 

Biological reduction to alcohols 

Biological reduction of carboxylates, such as acetate, n-butyrate and n-caproate, to 

the corresponding alcohols has been observed in separate secondary fermentation 

bioprocesses (Figure 2.1e) [Steinbusch et al., 2008; Steinbusch et al., 2010].  The 
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thermodynamic free energy under biological standard conditions (Table 2.1) is smaller 

than the biologically limit for cellular functions (Box 2.1) [Kleerebezem and Stams, 

2000; Thauer et al., 1977]; therefore, the hydrogen partial pressure must be maintained at 

elevated levels (~1.5 atm).  Because hydrogen would be available in a biorefinery that 

includes the carboxylate platform, it is an attractive reducing agent.  Unfortunately, very 

low rates of alcohol production from acetate (0.07 g ethanol l-1 day-1) have been observed 

under these conditions [Steinbusch et al., 2009].  Alternatively, acetate can also be 

reduced to ethanol with an artificial mediator and a mixed culture at the cathode of a BES 

[Steinbusch et al., 2010], where electrons donated from the cathode provide the required 

reducing power. 

High-rate consolidated bioprocesses for producing ethanol from acetate cannot be 

envisioned because high hydrogen partial pressures are required to drive acetate 

reduction and very low partial pressures are required to sustain high rates of acetate 

production.  Thus, a secondary-fermentation bioprocess with two separate streams of 

acetate and hydrogen would be required.  The ethanol concentrations obtained in batch 

experiments with an undefined mixed culture (0.17 g/l at an acetate conversion efficiency 

of ~55%) [Steinbusch et al., 2008] are too low for economical recovery of the product by 

ex situ distillation, and the maximum concentration that can be achieved (<1.1 g/l at pH 

4.5) is limited by the required threshold free energy for this reaction [Steinbusch et al., 

2009].  Therefore, it might be necessary to remove ethanol continuously during the 

acetate reduction process to maintain sufficiently low product concentrations and high 

fluxes.  Because ethanol is polar, continuous extraction of ethanol would be difficult, and 
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further conversion to longer-chain chemicals that are easier to separate from the aqueous 

medium (e.g. medium-chain carboxylates, described below) might be a solution. 

Chain elongation to medium-chain carboxylates 

An undefined mixed culture capable of reducing acetate to ethanol (Figure 2.1e) can 

also produce n-butyrate (0.61 g/l) by further reaction of ethanol with acetate (Figure 2.1g; 

Box 2.3) [Steinbusch et al., 2009].  Thus, these two secondary fermentation processes 

allow one undefined mixed culture to convert acetate and hydrogen to n-butyrate by 

elongation of the acetate carbon chain.  Further optimization is needed to accelerate the 

production rates, but conversion of the intermediate ethanol to n-butyrate is logical 

because, as discussed above, ethanol accumulation renders the biological reduction 

reaction thermodynamically unfeasible.  It is important to understand that 

hydrogenotrophic and aceticlastic methanogens must be completely inhibited by heat-

shocking the inoculum, lowering the pH, or by adding a methanogenic inhibitor (e.g. 2-

bromoethanosulfonic acid), because methanogenesis competes with the desired reaction. 

(Comment from the author: This is an example of the old paradigm thinking which was 

prevalent at the time of publication of this chapter.  Later in this thesis we find that 

hydrogenotrophic methanogenesis can occur simultaneously with chain elongation under 

the right bioreactor conditions, and we hypothesize that it may even be desirable. 

[CHAPTER 5]) 

Further chain elongation reactions can also occur, ultimately converting acetate to n-

caproate (C6) (Figure 2.1g) and even n-caprylate (C8).  n-Caproate concentrations of 

8.27 g/l and n-caprylate concentrations of 0.32 g/l have been observed when acetate and 

hydrogen (or ethanol) are provided to undefined mixed cultures [Steinbusch, 2010].  
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These concentrations approach the solubility limits for these carboxylates (n-caproate: 

10.19 g/L; n-caprylate: 0.79 g/L).  The rate of n-caproate formation is promising (0.49 

g/L/day) at neutral pH [Steinbusch, 2010].  Both of these compounds have excellent 

energy densities, may be relatively easy to separate from the fermentation broth, and both 

can be precursors for production of biodiesel and fuel alkanes by chemical post-

processing reactions (Figure 2.2) [Gaertner et al., 2009].  These chain-elongation 

reactions proceed most effectively when ethanol is available as the reducing agent and 

when reduction of acetate to ethanol occurs at a relatively slow rate; however, it may be 

necessary to add a separate stream of ethanol to economically produce n-caproate and n-

caprylate.  This ethanol may have to come from the sugar platform in the biorefinery 

concept because of the cumbersome production and extraction of ethanol from undefined 

mixed cultures.  An in-depth economic analysis is needed to investigate if the higher 

energy density of a fuel derived from medium-chain carboxylates and the superior 

separation characteristics warrant the use of ethanol in an integrated biorefinery. 

 

2.3 Propionate and lactate 

Propionate 

Propionate is one of the reduced products of primary fermentation at elevated levels 

of hydrogen (Figure 2.1).  Under anaerobic conditions, propionate can only be oxidized 

when the hydrogen partial pressure is extremely low (Box 2.1; Table I).  Microbial 

production of propionate from industrial waste has been studied primarily with pure 

cultures and has been plagued by microbial toxicity of the accumulating undissociated 

propionic acid at low pH values [Colomban et al., 1993].  To circumvent propionate 
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accumulation, in-situ extraction provides some improvement over traditional 

fermentation, but the short chain length of propionate makes it relatively difficult to 

extract [Ozadali et al., 1996]. 

Undefined mixed cultures can reduce propionate to propanol (Figure 2.1e).  

Relatively high rates of propionate reduction to propanol (0.49 g l-1 day-1) have been 

observed in a continuous-flow bioreactor when propionate and ethanol are provided 

(Figure 2.1e) [Smith and McCarty, 1989], even though the calculated free energy of the 

coupled reaction is below the expected threshold value (Table 2.1; Box 2.1).  Others have 

shown propionate-to-propanol reduction in the absence of ethanol oxidation at elevated 

hydrogen partial pressure, but the rates are lower (0.03 g l-1 day-1), even though the 

calculated free energy change is sufficient (Box 2.1) [Steinbusch et al., 2008].  The 

preference for ethanol as a reducing agent might be attributed to the availability of a 

simple mechanism for energy conservation during ethanol oxidation. 

Biological chain elongation can be used to convert propionate into n-valerate (i.e. 

addition of two carbon atoms) [Ding et al., 2010; Smith and McCarty, 1989].  The 

process is similar to that described for elongation of the acetate carbon chain (C2), except 

that uneven chain-length carboxylates, such as n-valerate (C5) and n-heptanoate (C7), are 

produced.  n-Butyrate (C4) and n-caproate (C6) are also produced in this process because 

ethanol is oxidized to acetate – which can start the even-chain carboxylate elongation 

process – to provide energy for microbial growth (Table 2.1). 

Lactate 

Lactate fermentation (Figure 2.1) dominates primary fermentation in undefined mixed 

cultures when high concentrations of easily degradable substrate are available, because 
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the lactate pathway enables rapid disposal of reducing equivalents [Russell and Hino, 

1985].  This phenomenon of lactate accumulation occurs in the rumen with diets high in 

grain [Owens et al., 1998] and in fermentation processes used to preserve plant material, 

such as in silage and sauerkraut fermentation [Stiles, 1996].  In fact, bio-energy crops, 

such as maize, are sometimes ensiled as a pretreatment and storage step before anaerobic 

digestion at full-scale installations (primary and secondary fermentations in different 

processes).  To our knowledge, mixed cultures have not been used specifically to produce 

useful quantities of pure lactate, but pure cultures have been used to produce lactate in an 

optically pure (only D- or L-isomer) form [John et al., 2007] aided by in situ lactate 

extraction [Tong et al., 1998]. 

Lactate can be oxidized and reduced by secondary fermentation reactions to other 

carboxylates with undefined mixed cultures, such as in the gut [Belenguer et al., 2007].  

For example, lactate oxidation to n-butyrate (Figure 2.1i) is catalyzed by Clostridium 

acetobutylicum [Diez-Gonzalez et al., 1995].  However, this reaction must be coupled to 

acetate reduction to become energetically feasible (Table 2.1), effectively converting both 

acetate and lactate to n-butyrate.  Another secondary fermentation pathway is lactate 

reduction to propionate (Figure 2.1j), which is catalyzed by Selenomonas ruminantium 

[Chen and Wolin, 1977].  In this pathway, energy is conserved as ATP during acetate 

production while it is coupled to lactate reduction (Table 2.1), resulting in the conversion 

of three molecules of lactate into one molecule of acetate and two molecules of 

propionate.  The former pathway to convert lactate into n-butyrate may actually add more 

value than the latter pathway, because chemicals with a higher carbon chain are generally 

energetically superior and easier to separate. 
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2.4 n-Butyrate 

n-Butyrate is usually a product in undefined-mixed-culture acidogenic systems, from 

both primary and secondary fermentation pathways.  It has often been found to be the 

most important side product during biological hydrogen production with dark 

fermentation [Zhang et al., 2003].  Similar to propionate and lactate, n-butyrate 

production with undefined mixed cultures has been largely ignored.  Problems with 

bacterial production with pure cultures include low yields owing to product toxicity at 

lower pH levels and product streams contaminated with co-products, such as acetate and 

propionate [Zigová and Šturdík, 2000].  Because of a longer carbon chain for n-butyrate 

compared with acetate and propionate, the extraction of n-butyrate might become feasible 

in the future, especially by using ionic liquids [Li et al., 2002; Marták and Schlosser, 

2008].  Pure culture fermentation studies have already reported improved n-butyrate 

yields and product purity with in-situ liquid/liquid extraction, and this technology should 

considerably improve the prospects of producing n-butyrate with undefined mixed 

cultures [Wu and Yang, 2003]. 

n-Butyrate is an excellent feedstock for the production of n-butanol with pure cultures 

of Clostridium sp., using organic electron donors (Figure 2.2) [Tashiro et al., 2004].  

Therefore, we have proposed coupling n-butyrate production by an undefined mixed 

culture with a pure culture bioprocess that would reduce n-butyrate to n-butanol (sugars 

are necessary for reducing equivalents) [Angenent and Wrenn, 2008].  Recently, the 

feasibility of reducing n-butyrate to n-butanol with an undefined mixed culture has been 

demonstrated by using high partial pressures of H2 (Figure 2.1e), although this biological 
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reduction is slow.  Others have also found chain elongation of n-butyrate with undefined 

mixed cultures [Ding et al., 2010; Segers et al., 1981; Smith and McCarty, 1989; Smith 

and McCarty, 1989]; but, to our knowledge, never by feeding a separate stream of n-

butyrate. 

 

2.5 Mixed carboxylates 

Rather than optimizing the production and separation of a single carboxylate as a 

bulk feedstock, researchers have developed systems for which the product spectrum is 

mixed and variable.  In some cases, the carboxylate products are converted into a blend 

of liquid fuels and organic chemicals by chemical post-processing (Figure 2.2).  For 

example, one system has converted wastes into carboxylates using an undefined mixed 

culture, followed by electrochemical conversion into either esters (Figure 2.2) or a 

mixture of alkanes and alcohols [Levy et al., 1981].  The authors proposed using 

liquid/liquid extraction to remove and concentrate the carboxylates before post-

processing.  Another system, the MixAlco process, has been tested for many different 

feedstocks [Holtzapple et al., 1999].  For example, fermentation studies with pretreated 

municipal solid waste and sugarcane bagasse as substrate have achieved up to 69% and 

60% degradation of volatile solids with maximum total carboxylate concentrations of 

20.5 g/L and 18.7 g/L, respectively [Chan and Holtzapple, 2003; Thanakoses et al., 

2003].  The MixAlco system concentrates the carboxylates by drying and calcium 

precipitation.  The carboxylate mixture is thermally decomposed to ketones, and the 

ketones are catalytically hydrogenated to a mixture of alcohols (Figure 2.2). 
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2.6 Outlook 

The volume of organic waste will drastically rise when crude lignocellulosic or algal 

biomass is converted to liquid biofuels in biorefineries using the sugar and syngas 

platforms.  Integration of the carboxylate platform into the biorefinery concept would 

increase bioproduct formation and recover nutrients and water that can be recycled within 

the biorefinery, thereby serving as a crucial component of biorefineries.  Anaerobic 

digestion is the only bioprocess within the carboxylate platform that is currently utilized 

for complex waste treatment on a large scale because production of liquid chemicals 

presents important scientific and technical challenges that production of gaseous methane 

does not.  Three major barriers must be overcome: (i) the separation barrier (efficient 

separation of carboxylates from fermentation broth); (ii) the methanogen barrier 

(economic inhibition of hydrogenotropic methanogens); and (iii) the ecology barrier, 

(directing the microbial process to generate the target carboxylates at sufficient rates). 

Two promising research directions are being pursued to overcome the separation 

barrier.  First, lab-scale bioelectrochemical systems have used ion-exchange membranes 

to separate production of organic chemicals at cathodes from anaerobic microbial 

processes that occur at anodes [Nevin et al., 2010; Steinbusch et al., 2010].  Second, 

medium-chain carboxylates, such as n-caproate and n-caprylate, have been produced by 

undefined mixed cultures at promising rates [Steinbusch et al., 2011].  For the first time, 

this would allow undefined mixed cultures to produce liquid chemicals with an energetic 

value that is equivalent to n-butanol and with chemical characteristics that ensure 

superior extraction. 

These developments provide incentives to seriously address the methanogen barrier.  
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The n-caproate and n-caprylate experiments described in this review were all performed 

by adding bromoethane sulfonic acid [Steinbusch et al., 2009; Steinbusch et al., 2011], 

which is too expensive for use at a large scale.  If a cheaper chemical that selectively 

inhibits methanogens cannot be developed, two alternative methods must be pursued: 

periodic heat shock, or low pH (~5.5).  The former might be possible when enough waste 

heat is available in the biorefinery to perform this periodic activity to enrich for spore-

forming bacteria while inhibiting methanogens.  The latter might be especially effective 

at a combination of low pH and high concentrations of carboxylic acids, owing to a 

relatively high abundance of the inhibiting undissociated form.  These methods could be 

aided by managing trace elements carefully; for example, cobalt is not available in corn-

derived waste, and its continued absence severely limits methanogenic activity [Agler, et 

al., 2008]. 

We must realize, however, that these methods, such as the slightly acidic conditions 

(pH ~5.5), might be incompatible with the conditions needed to overcome the ecology 

barrier.  Microbial ecology cannot be uncoupled from thermodynamic considerations, and 

this interplay is important to predict and manage the behavior of complex communities.  

The environmental conditions, in turn, determine which reactions are thermodynamically 

feasible and which microbes are selected [Hanselmann, 1991].  Indeed, the relative 

product composition of sugar-fed acidogenic bioreactors with high hydrogen partial 

pressures has been affected by environmental conditions [Ren et al., 1997; Segers et al., 

1981; Zoetemeyer et al., 1982].  In a full-scale system, several environmental conditions 

will be varying constantly owing to the complexity and variability of organic wastes.  It 

is, therefore, important to perform experiments to predict which environmental conditions 
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have the largest effects on community composition.  A combined approach of high-

throughput metagenomics and massive environmental data monitoring is necessary to 

find correlations between environment and community [Werner et al., 2011b].  In 

addition, ecological principles such as parallel metabolic pathway richness [Hashsham et 

al., 2000], community evenness [Wittebolle et al., 2009], and resistance, resilience, or 

redundancy [Allison and Martiny, 2008] can aid in selecting for superior communities 

that can sustain a stable bioprocess.  Based on all this knowledge, the engineer must 

make decisions on how to design, inoculate and operate the full-scale system to obtain 

the sufficient kinetic rates and yields for a viable bioproduct.  We realize, however, that 

some breakthroughs, such as better separation technologies, still need to be made before 

success can be achieved. 
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Box 2.1. Predicting reaction occurrence 
The food web of the undefined mixed culture is made up of a network of reactions in which 

microorganisms convert one or more substrates (S1) into products (P1) (Figure I).  Modeling of the 
sequence of reactions that will occur for a specific set of operating conditions might help engineers 
optimize the product spectrum.  In any biological system, there are two prerequisites for a reaction to 
proceed in space and time: (i) a catalyst is present to drive the reaction; (ii) the reaction is 
thermodynamically favorable.  The microorganisms in the undefined mixed culture are the catalysts 
(i.e. their enzymes) that decrease the activation energy (Ea) of the transition state, resulting in 
increased kinetic rate constants (Eqn 1) and reaction rates (Eqn 2) (Figure I).  The second requirement 
dictates that the available free energy of reaction, which is a function of the temperature, pressure, and 
substrate and product activities (Eqn 3), is below an energetic threshold (∆Gthr).  Thus, if the required 
microorganism is available in a culture, the environmental conditions (e.g. pH, temperature, pressure) 
must be maintained to favor the reaction of interest (∆Gr < ∆Gthr). 
 

 
Figure I.  Reaction coordinate diagram and equations to calculate reaction kinetics and thermodynamics.  The presence of microbial catalysts decreases 
the activation energy Ea to E*a so that the rate of reaction is increased with increasing rate constants (Eqns 1 and 2).  Environmental conditions, 
microbial biochemistry, and substrate (S1) and product (P1) activities affect the thermodynamic feasibility of a reaction (Eqn 3). 

 
Table I.  Thermodynamic considerations for secondary oxidation reactions 

Microbes Carboxylate oxidation reactions Gr
o’ 

(kJ/mol at 37oC)a 
Gr

o’ 
(kJ/mol at 55oC)a 

Syntrophospora bryantii 
or 
Syntrophomonas wolfei 

acetate- + H+ + 2H2O  4H2 + 2 CO2 

propionate- + 2H2O  acetate- + CO2 + 3H2 
n-butyrate- + 2H2O  2 acetate- + H+ + 2H2

86.96 
68.53 
47.55 

74.56 
60.74 
44.07 

aAll Gr
o’ values are calculated considering all reactants and products to be in the aqueous phase except for H2, CO2, and 

CH4, which are gaseous at 1 atm.  Gr
o’ values are at biological standard state (pH = 6.82 at 37oC and 6.58 at 55oC).  

Gr
o’ quantities were calculated from Gf

o values from Ref. [Amend and Shock, 2001]. 
 

The energetic threshold is the amount of energy that must be conserved in a reaction 
pathway.  Here, we show an example of how this threshold was calculated for the specific oxidation 
reaction of n-butyrate to acetate.  In this reaction, 1 ATP is produced by substrate-level 
phosphorylation; however, up to 2/3 ATP is reinvested in a proton gradient with a combined ∆Gthr ≈ -
23.3 kJ/mol [Schink, 1997].  For many reactions throughout our review where the biochemistry has 
been poorly defined, we have used this ∆Gthr value as a conservative approximation.  Note that in the 
text we have used the free energy nomenclature for standard biological conditions (Gr

0’) to compare 
∆Gthr to free energy numbers of specific reactions in Table 1.  Research has shown, however, that 
certain reactions (including n-butyrate oxidation) have occurred when ∆Gr was above -10 kJ/mol 
(Table I).  Indeed, modelers have been able to explain biological metabolic activity under these 
conditions (∆Gr > ∆Gthr) by allowing the energy required to produce ATP and pump protons to be 
variable, depending on environmental conditions [Jin, 2007; Kleerebezem and Stams, 2000]; but for 
such modeling efforts, a detailed knowledge of the biochemical pathways is required. 
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Box 2.2.  Liquid/liquid extraction to separate acetate 

Currently, acetate is primarily produced petrochemically or via microbial 
fermentations that convert yeast-derived ethanol to acetate, but it may also be 
possible to develop an undefined-mixed-culture process with high acetate yields.  
To do so, it is useful to consider two systems with a high acetate flux: a termite gut 
and an anaerobic digester.  In both systems, a maximum acetate flux from 
polysaccharide breakdown (Figure 2.1a) occurs because a low hydrogen partial 
pressure is maintained by scavenging homoacetogens (Figure 2.1c) [Leadbetter et 
al., 1999; Odelson and Breznak, 1983] and hydrogenotrophic methanogens (Figure 
2.1d) [Chen and Wolin, 1977].  However, accumulating the product acetate would 
quickly inhibit these hydrogenotrophs, resulting in rising hydrogen partial 
pressures and a shift towards increasingly reduced fermentation products.  
Anaerobic digesters can maintain a sustainably high acetate flux because acetate is 
converted and removed by aceticlastic methanogens (Figure 2.1f).  Termites have 
another strategy: they take up acetate.  Thus, to produce acetate at high yields, both 
hydrogen and acetate should be maintained at low concentrations in the mixed 
culture. 

One possibility to remove acetate from our engineered systems is with 
continuous liquid/liquid extraction by using membranes (i.e. perstraction) [Ozadali 
et al., 1996].  This separation technology has been shown to improve carboxylate 
yields and selectivity for pure cultures and may hold promise for undefined mixed 
cultures [Tong, Y et al., 1998; Wu and Yang, 2003].  Liquid/liquid extraction of 
organic acids is traditionally achieved by contacting the fermentation broth with an 
organic solvent phase (often a substituted amine or phosphine, such as 
trioctylphosphine oxide, dissolved in an alkane), followed by contact of the 
organic phase with an aqueous alkaline phase.  In this way, undissociated acids 
move along a pH gradient and the dissociated form of the carboxylate concentrates 
in the alkaline phase.  Dissolution in the organic phase is particularly effective for 
relatively hydrophobic acids, such as n-butyrate and n-caproate (although it is 
much easier to separate the C6 n-caproate than the C4 n-butyrate), while shorter 
chain molecules, such as the C2 carboxylate acetate and the C3 carboxylate 
propionate, have always presented greater challenges [Li et al., 2002].  Extraction 
of acetate has become more feasible recently by using ionic liquids as the organic 
phase [McFarlane et al., 2005]. 
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Box 2.3.  Biological chain elongation

 Biological chain elongation includes reversed -oxidation of carboxylates 
– the addition of a two-carbon acetyl-CoA derived from ethanol, which has been 
described for a pure culture of C. kluyveri [Barker et al., 1945].  Although 
reversed -oxidation of acetate with ethanol is thermodynamically feasible (Gr

0’ 
< -23.3 kJ/mol), it cannot gain ATP, and the oxidation of ethanol to acetate is 
required to conserve the necessary energy.  The latter reaction has a positive free 
energy in acidogenic systems with high hydrogen partial pressures, and thus the 
ethanol oxidation and reversed -oxidation reactions must be coupled (Table 2.1).  
The combined process has a sufficiently negative free energy under biological 
standard conditions (Gr

0’ = -194.5 kJ/mol at 1 atm and 37C) (Table 2.1).  
Through this process, 5 mol ethanol and 5 mol acetate are converted to 5 mol n-
butyrate for every 1 mol ethanol oxidized to acetate [Seedorf et al., 2008].  It has 
been known for decades that C. kluyveri can also generate n-caproate [Barker et 
al., 1945], which is a C6 carboxylate.  The process is analogous to n-butyrate 
formation through chain elongation, and results in the same two-carbon-atom 
elongation, but now through reversed -oxidation of n-butyrate with ethanol 
(Gr

0’ = -182.8 kJ/mol for n-butyrate at 1 atm and 37C) (Table 2.1). 
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CHAPTER 3.  

 

THERMOPHILIC ANAEROBIC DIGESTION TO INCREASE THE NET 

ENERGY BALANCE OF CORN GRAIN ETHANOL 

Adapted from: Agler, Garcia, Lee, Schlicher, and Angenent. Environmental Science and 

Technology, September 2008. 42(17):6273-6279 

 

Note: Supplementary information can be found in Appendix 1 and is denoted in this text 

as A1.SX, where X denotes the appendix section. 

 
Abstract 

U.S. production of fuel ethanol from corn grain has increased considerably over the 

last 10 years.  Intense debate regarding the true environmental impact of the overall 

production process has been ongoing.  The present study evaluated the utilization of thin 

stillage (a major by-product of the dry-mill corn grain-to-ethanol process) in lab-scale 

thermophilic anaerobic sequencing batch reactors for conversion to methane.  We found 

that augmentation of cobalt as a growth factor to the thermophilic anaerobic digestion 

process is required.  After reaching sustainable operating performances, the methane 

potential in the bioreactors was 0.254 l CH4/g total chemical oxygen demand (TCOD) 

fed.  Together with a reduction in the mass of solids that needs drying, methane 

generation translates to a 51% reduction of natural gas consumption at a conventional dry 

mill, which improves the net energy balance ratio from 1.26 to 1.70.  At the design 

hydraulic retention time of 10 days, the digesters achieved TCOD, biodegradable COD, 

volatile solids, and total solids removal efficiencies of 90%, 75%, 89%, and 81%, 
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respectively.  We also found that struvite precipitation occurred in the thermophilic 

digesters during the course of the study, resulting in possibilities for nutrient recovery. 

 

3.1 Introduction 

Current attitudes towards the environment and a political movement that desires to 

reduce dependence on foreign oil have bolstered liquid biofuel production in the U.S.A.  

In addition, restrictions on the fuel additive methyl tertiary butyl ether (MTBE) have 

promoted ethanol production, resulting in the virtual replacement of MTBE in the U.S.A. 

by a 5-10% addition of ethanol to petroleum-based fuel [Solomon et al., 2007].  Total 

annual U.S.A. ethanol production has increased considerably between 1997 and 2005 

from ~ 5106 to ~ 15106 m3, mostly from corn (Zea mays ssp. mays) grain (called kernel 

in the corn-to-ethanol industry) [Solomon et al., 2007].  Corn grain-to-ethanol plants 

based on dry grinding (i.e., dry mill) constituted to 67% of U.S.A. corn-ethanol 

production in 2005 with wet grinding (i.e., wet mill) making up the difference.  Further 

growth in ethanol production is anticipated to be primarily by constructing dry mills 

because of the relatively lower capital costs [Belyea et al., 2006; Bothast and Schlicher, 

2005]. 

Creating a sustainable biofuel industry requires a holistic assessment that takes into 

consideration numerous factors, such as deforestation, crop production methods, 

nonrenewable energy and water consumption, and world food supplies.  Some of the 

environmental-based criticism of corn grain-to-ethanol has mainly focused on the small 

positive net energy balance that is achieved [Farrell et al., 2006; Hill et al., 2006; 

Solomon et al., 2007; WSTB, 2007].  For example, Hill et al. [2006] calculated through 
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life-cycle assessment that 26% more energy is gained from ethanol than is contained in 

nonrenewable fuels required for its production (i.e., a 1.26 net energy balance ratio), but 

that this gain is mostly due to energy credit of coproduced animal feed.  They found a 

relatively large input of 0.60 units energy per one unit ethanol-energy output for 

processing the corn grain into ethanol and animal feed (or a 62.5% energy requirement 

for operating the processing facility out of all the energy inputs).  The remaining energy 

requirements stem from the processing facility construction and laborer household energy 

use (1%), all energy requirements for farming (31.3%), and crop and biofuel 

transportation (5.2%) [Hill et al., 2006]. 

Because of the small positive net energy balance, corn grain-to-ethanol has been 

suggested only to be an intermediate step until more favorable technology has been 

scaled up [Schnoor, 2006].  Because ethanol from corn grain is a reality, the net energy 

balance can be improved in the immediate future by, for example, finding alternative uses 

for process streams (e.g., thin stillage) [Farrell et al., 2006; Rausch and Belyea, 2006].  In 

dry mills, thin stillage is the centrate of distillation bottoms (i.e., the residue after ethanol 

is distilled from “beer”) and is partially recycled as fermentation broth for ethanol 

production or dehydrated in evaporators to produce syrup.  Usually, less than a 50% 

recycle ratio for thin stillage as fermentation broth (called backset in the corn-to-ethanol 

industry) can be utilized due to solids build up and toxicity to yeast by lactic acid, acetic 

acid, and/or sodium [Egg et al., 1985; Ingledew, 2003; Shojaosadati et al., 1996].  

Evaporation requires a large energy dedication (often from waste heat), but it enables 

some of the condensed water to be recycled as make-up water in the fermentation 

process.  Syrup is added to wet distillers’ grains (WDG) and flash dried (often with steam 
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from natural gas) to produce distillers’ dried grains with solubles (DDGS), which is sold 

as animal feed (wet distillers’ grains dried without syrup is also known as distillers’ dried 

grains [DDG]). 

Anaerobic digestion of thin stillage (called biomethanation in the corn-to-ethanol 

industry) may be an advantageous process step compared to evaporation and syrup drying 

because energy is recovered in the form of biogas, which could substantially increase the 

net energy balance. Anaerobic digestion of stillage from various fermentation feedstocks, 

such as cane molasses, beet molasses, whey, wheat, and grapes, has been previously 

studied with a diverse group of bioreactor types, including continuously stirred tank 

reactors (CSTR) and upflow anaerobic sludge blanket (UASB) reactors [Bories et al., 

1988; Hutnan et al., 2003; Machado and Sant'Anna, 1987; Wilkie et al., 2000].  For thin 

stillage treatment from corn grain feedstock, Ganapathi [1984] used continuous-flow 

mesophilic (35ºC) digestion with a CSTR, but this was after complete physical removal 

of the solids and subsequent dilution with water.  Another published study was by 

Schaefer et al. [2008], who studied thermophilic (55ºC) anaerobic treatment of thin 

stillage in semi batch-fed continuously-stirred digesters. 

Due to high total chemical oxygen demand (TCOD) concentrations of ~ 100 g/l in 

thin stillage, cost-efficient digestion requires very high organic loading rates, and thus 

increased degradation kinetics, to enable reduced bioreactor volumes.  Thermophilic 

anaerobic digestion is, therefore, advantageous compared to mesophilic anaerobic 

treatment of thin stillage because of higher metabolic rates [Hutnan et al., 2003; Mackie 

and Bryant, 1995; Wilkie et al., 2000].  In addition, fats, oils, and grease (FOG), which 

are common at high concentrations in thin stillage from dry mills without fractionation of 
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the corn grain, can accumulate in mesophilic digesters by forming a foam layer, and 

cause operating problems by washing out active biomass [Jeganathan et al., 2006].  This 

is not a problem in thermophilic digesters due to sufficient solubilization and degradation 

of FOG at higher temperatures [Reimann et al., 2002].  In many cases, however, due to 

high effluent volatile fatty acid (VFA) concentrations and increased heating costs, 

thermophilic digestion has been largely ignored [Lettinga, 1995; Speece et al., 2006].  

Recent work by Speece et al. [2006] has removed the first limitation of high VFA 

concentrations by supplementing prominent trace elements to prevent inhibition of 

methanogenesis.  It was already known that trace elements are important in the function 

of many methanogenic enzymes [Thauer, 1998], that they are scarce in most digester 

substrates [Speece, 1996], and that addition of trace elements has been credited with 

causing dramatic improvements in bioreactor performance [Fathepure, 1987; Murray and 

van den Berg, 1981], but it seems even more imperative for thermophilic digestion 

[Speece et al., 2006].  The second limitation of increased heating costs is not valid for 

thermophilic digestion of thin stillage because the whole stillage is already hot after 

leaving the distillation column. 

This study sought to ascertain the applicability of an integrated method of 

thermophilic anaerobic digestion of thin stillage from dry mill corn grain-to-ethanol 

plants by utilizing anaerobic sequencing batch reactors (ASBRs).  By allowing biomass 

to settle in the ASBR before decanting effluent vs. no settling in completely-stirred 

digesters, the concentration of active biomass is increased and the sludge retention time 

(SRT) is elongated compared to the hydraulic retention time (HRT), to pursue higher 

volumetric degradation rates (high-rate vs. low-rate digestion).  We will also discuss 
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whether thermophilic digestion with high-rate systems is a better use of thin stillage than 

evaporation and syrup drying to produce animal feed.  From preliminary calculations, we 

have estimated a substantial increase in the net energy balance ratio when thin stillage is 

treated with thermophilic anaerobic digestion. 

 

3.2 Methods 

Experimental Setup and Operation 

The experimental setup of replicates bioreactor 1 (R1) and bioreactor 2 (R2) is given 

in the supporting information (A1.S1 and Figure A1.S1).  Each of the bioreactors was 

inoculated by adding 1.7 l of thermophilic anaerobic sludge from an anaerobic digester 

treating a mixture of primary and waste activated sludge at a municipal wastewater 

treatment plant (Western Lake Superior Sanitary District, Duluth, MN) to 3.3 l of de-

ionized water.  After inoculation, 10 l of natural gas was bubbled through each bioreactor 

to ensure anaerobic conditions after which the digesters were allowed 24 h to acclimate 

before feeding commenced.  Thin stillage samples were received periodically from the 

National Corn-to-Ethanol Research Center in Edwardsville, IL, which is a demonstration-

scale dry mill (~ 1/200 the size of a full-scale plant), and were stored at -20oC in 1-l 

bottles until a day before feeding.  Five different thin stillage samples were received from 

the dry mill and fed consecutively (F1-5); each had somewhat different characteristics 

and each was fed for different periods of time (Table 3.1).  From day 78 to day 106 of the 

operating period, 5 mL of a modified trace element solution according to Zehnder et al. 

[1980] (Table 3.2) and Angenent et al. [2002] was added weekly to R1.  To R2, we added 

a 5-mL solution of only FeCl34H2O (10 g/l) on day 85 of the operating period; 
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FeCl3·4H2O (10 g/l) and CoCl2·6H2O (2 g/l) on days 92 and 99; and CoCl2·6H2O (2 g/l) 

on day 106.  From day 113 until the end of the operating period, a solution of 

CoCl2·6H2O (2 g/l) was added to both bioreactors at a rate of 1 ml/10 g influent TCOD 

once a week.  All trace element solutions in this study contained EDTA (1 g/l) and HCl 

(1 ml concentrated HCl/l).  A more detailed rationale for this augmentation is given in 

A1.S3. 

The semi-batch ASBRs (R1 and R2) were sequenced through a 24-h cycle with an 

instant feeding period, a 23-h react period with intermittent mixing, a 58-min settling 

period (no mixing), and a 2-min decanting period (the volume of feeding and decant 

solution was the same).  Initially, intermittent mixing of the ASBRs was every h for one 

min, but this was changed to every 15 min for one min on day 69 of the operating period 

in an attempt to circumvent accumulation of rapidly settling solids.  The HRT was 

decreased in a stepwise manner from 40 days (with an organic loading rate of 2.42 g 

TCOD/l/d) to 7 days (10.71 g TCOD/l/d) on day 392 after which the HRT was 

maintained at an 8-day HRT (9.37 g TCOD/l/d) from days 394-417.  The HRT was 

shortened upon achieving pseudo steady-state conditions when stable biogas production 

rates (within 10% of average values), total VFA concentrations, volatile solids (VS) 

concentrations, and pH levels were achieved and after a minimum time period of one 

HRT, except at the 40 and 25-day HRTs during which the bioreactors were operated for 

22 and 21 days, respectively.   

We estimated the methane potential and methane yield by plotting the specific 

volumetric methane production rates against TCOD loading rates or removal rates, 

respectively, and forcing a linear regression of the points through zero on the y-axis.  The 
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specific biogas production rate was found by calculating the average biogas production 

rate (corrected to standard temperature and pressure) during each organic loading rate, 

except for two periods; the unstable period of R1 (days 284-362) and the time for both 

bioreactors beyond the 10-day HRT.  The latter data were not included because both 

bioreactors were not able to handle the increase in the hydraulic pressure to an HRT of 7-

8 days and/or an organic loading rate of 9.37-10.71 g TCOD/l/d.  The specific volumetric 

methane production rate is the product of the specific biogas production rate and the 

average methane content of the biogas during a TCOD loading rate.  Correlation of daily 

biogas production values were corrected for and linear regression were performed using 

the “AUTOREG” and “GLM” procedures, respectively, in SAS software, version 9.1 

(SAS Institute Inc., Cary, NC, USA). 

Physical and Chemical Analysis 

All periodic analyses for evaluating digester performance were performed according 

to Standard Methods [Clesceri et al., 1998], unless otherwise indicated.  Daily 

measurements included pH, biogas production, and room temperature and ambient 

pressure (to correct biogas production to standard conditions).  Total VFA (distillation 

method), total solids (TS), VS, TCOD, soluble chemical oxygen demand (SCOD) 

(closed-reflux titrimetric method), and total ammonium (i.e., free ammonia and 

ammonium) concentration (electrode model Orion 9512, Thermo Electron Corporation, 

Beverly, MA) analysis were performed at least weekly. FOG and sludge volume index 

(SVI) measurements were also performed periodically.  Methane concentration in the 

biogas was measured bi-weekly with a gas chromatograph (Series 350, Gow-Mac 

Instrument Co., Bethlehem, PA) with a thermal conductivity detector.  The GC column 
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was a 4’ x 1/8” o.d. 20% DC-200 on Chromosorb P AW-DMCS, 80/100 mesh (Varian, 

Inc., Palo Alto, CA).  The temperatures for injection port, detection, and column were 

50oC, 115oC, and 25oC, respectively.  Elemental analysis of influent and effluent was 

performed with an inductively coupled plasma mass spectrometer (ICP-MS) (Model 7500 

ICP-MS ChemStation, Agilent, Santa Clara, CA) equipped with an SP-5 autosampler.  

Precipitate analysis was performed with a scanning electron microscope (SEM) with a 

15-kV accelerating voltage (Model S-4500, Hitachi High-Technologies America, 

Schaumburg, IL) equipped with an energy dispersive x-ray spectroscopy (EDX) 

microanalysis system (Noran, Madison, WI).  Further analysis on the precipitate was 

done by x-ray powder diffraction using Cu K radiation (Geigerflex D-MAX/A, Rigaku, 

The Woodlands, TX).  Software by Materials Data, Inc. (Livermore, CA) was used to 

control the diffractometer.  Soluble protein concentration was measured in the influent 

and effluent using the colorimetric BCA Protein Assay kit (Pierce Biotechnology, 

Rockford, IL).  Total protein was measured by the same method, but prior to analysis the 

sample was heated in 0.1M NaOH for 10 min at 90oC, centrifuged at 9,300 x g for 20 min 

after which the supernatant was analysed.  Colorimetric analysis was done using an end 

point reading in a 96-well plate at 562 nm and ambient temperatures (SPM Synergy HT, 

Bio-Tek, Winooski, VT).  The method for calculating the nitrogen mass balance and 

measuring the N composition of the precipitate is included in A1.S2. 

 

3.3 Results 

Thin Stillage Characteristics 
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We measured the COD and solids concentrations for seven different thin stillage 

samples, five from a demonstration-scale dry mill (F1-5 used as substrate in this study), 

and two from different full-scale corn grain-to-ethanol dry mills.  In addition, we showed 

published data from one full-scale dry mill (Table 3.1).  The average TCOD 

concentrations for the F1-5 samples were from 74-97 g/l, while they were 96-182 g/l for 

thin stillage from the three different full-scale plants (Table 3.1).  The SCOD accounted 

for 36-53% of the TCOD in the feed substrate from the National Corn to Ethanol 

Research Center, which was in the same range compared to thin stillage from the full-

scale plants (39, 54, and 53-63%).  The VS concentration in the substrate batches was 

lower than those from the full-scale plants (32 to 45 g VS/l compared to 59-84, 84 and 94 

g VS/l) (Table 3.1), and VS contributed 87-92% and 90-92% to the TS in the substrate 

and the thin stillage from full-scale plants, respectively. 
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Table 3.1.  Characteristics of five thin stillage samples used as substrate for this study (F1-5), two 
thin stillage samples from different full-scale dry mill corn grain-to-ethanol facilities (Plant 1 and 2), 
and average values for weekly-sampled thin stillage batches during three different HRT periods for 
the full-scale MGP plant (no statistical data reported).  Standard deviations are given for the 
variations in averages with n being the number of measurements for the F1-5 samples. 

Thin Stillage Sample [days fed] SCOD (g/l) TCOD (g/l) VS (g/l) TS (g/l) 

F1 [0-106, 219-238] 39±10, n=14 97±19, n=12 37.29±3.08, n=6 42.09±3.14, n=6 
F2 [107-163] 35±6, n=6 97±29, n=6 45.17±4.30, n=3 49.93±3.91, n=3 
F3 [164-218] 36.5±11, n=7 77.5±5.5, n=5 37.11±0.44, n=5 41.87±0.46, n=5 
F4 [239-295] 39±4, n=7 73.5±13, n=8 31.55±0.57, n=3 36.01±0.56, n=3 
F5 [295-416] 33.5±2, n=14 75±12, n=13 31.85±1.51, n=4 36.63±1.60, n=4 

Plant 1 71±12.5, n=5 182±4, n=4 93.76±1.05, n=3 104.30±0.93, n=3 
Plant 2 66±3, n=5 123±7, n=5 84.44±1.04, n=3 92.82±1.04, n=3 

MGP plant, ave for 30-day HRT* 59 97.1 61.9 68.9 
MGP plant, ave for 20-day HRT* 76 121 83.5 90.3 
MGP plant, ave for 15-day HRT* 51 96.1 59.1 65.9 

* From the Midwest Grain Processors (MGP) ethanol plant, Lakota, IA [Schaefer and Sung, 2008]. 
 

Differences in COD and solids concentrations can be accounted for by varying 

operating conditions in the dry mill.  For example, the solids concentrations from the 

demonstration-scale facility were lower compared to the full-scale facilities due to a 

relatively larger capacity of the centrifuge at the demonstration facility compared to a 

full-scale facility.  Elemental analysis of one of the feed substrates (F5) showed that 

cobalt was not present in detectable concentrations (Table 3.2).  In addition, magnesium, 

phosphorus, and potassium were all present in relatively high concentrations of 3.70102, 

4.14103, and 5.56103 mg/l, respectively, while manganese, iron, nickel, copper, and zinc 

were detected at lower concentrations (Table 3.2).  FOG levels were 3.81 and 2.05 g/l in 

F4 and F5, respectively.  The influent total ammonium concentration remained below 30 

mg NH4
+-N/l over the course of the study, and the total protein concentration in F5 was 

7.2103 mg/l (SE = 41.7 mg/l, n = 3).  pH values of the thin stillage varied from 3.46 to 

4.35.  
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Table 3.2. Elemental analysis of thin stillage (F5), R1 and R2 effluent samples, syrup, and trace 
element solution. 

Element F5 
(mg/l) 

R1 effluent 
(mg/l) 

R2 effluent 
(mg/l) 

Belyea et. al * 
(mg/kg dry basis) 

Zehnder et. al **
(mg/l) 

Mg 3.70102 1.66101 1.40101 6870±437 - 

P 4.14103 3.37102 3.53102 15200±1280 - 

K 5.56103 ND 5.43103 23200±1340 - 

Mn 1.17 <DL <DL 29.2±6.30 1.39102 

Fe 6.6110-1 5.7810-1 6.5810-1 138±33.3 2.38103 

Co <DL 2.71 2.77 <DL 4.95102 

Ni 1.2510-1 9.6010-2 1.0010-1 4.9±0.90 3.51101 

Cu 1.9510-1 2.1610-1 2.4210-1 6.3±3.30 1.42101 

Zn 6.24 6.3510-1 8.810-1 126±21.5 2.40101 

Na ND ND ND 2360±305 1.63101 

Al ND ND ND 10.8±1.10 1.01101 

Mo ND ND ND 0.8±0.02 2.64101 

Sr ND ND ND 2.6±3.40 - 
* Values given are for syrup (product of evaporation of thin stillage) [Belyea et al., 2006] 
** Trace Element Solution [Zehnder et al., 1980] 
<DL = less than detection level, ND = not determined. 

 

Bioreactor Operation and Performance 

R1 and R2 were operated similarly over the operating period with step-wise increases 

in the organic loading rates except during unstable periods due to trace element 

limitations in both bioreactors (days 70-106 of the operating period: A1.S3) and an 

accidental oxygen influx in R1 (days 284-362: A1.S.4).  In addition, the five changes in 

the feed batch were implemented simultaneously for both bioreactors on days 107, 164, 

219, 239, and 295 (Table 3.1), which resulted in changing organic loading rates within 

periods of similar HRTs.  Therefore, the performances for R1 and R2 were similar with 

analogous trends of volumetric biogas production rates following step-wise increases in 

organic loading rates over the operating time or changing organic loading rates within 

HRT periods during times of stable performances with low total VFA concentrations 
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(Figures 3.1A and 3.1B).  This is reflected in statistically (95% confidence interval) 

similar methane potentials and methane yields for both bioreactors (0.253 and 0.254 l 

CH4/g TCOD fed; and 0.278 and 0.284 l CH4/g TCOD removed, for R1 and R2, 

respectively, with R2 values of 0.99).  A methane potential of 0.254 l CH4/g TCOD fed, 

which was estimated from the combined data of both bioreactors, is used subsequently in 

this paper (Figure A1.S2).  The methane concentrations in the biogas of both bioreactors 

were also similar and were on average 59.6% (SE = 5.1%, n=30) and 59.7% (SE = 5.3%, 

n=36) for R1 and R2, respectively.  
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Figure 3.1. Bioreactor operating conditions and performance for R1 and R2: A. Volumetric biogas 
production rate over the operating period; B. Effluent volatile fatty acid concentration over the operating 
period; C. Volatile solids concentration over the operating period; D. Influent and effluent chemical oxygen 
demand over the operating period; and E.  Total ammonium concentrations over the operating period ( – 
F1-5 (substrate);  – R1;  – R2;  – R1 Biomass;  – R2 Biomass).  Vertical lines indicate periods with 
different HRTs.  
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The solids and COD removal efficiencies were determined for each HRT period 

(Figures 3.1C and 3.1D).  The 10-day HRT is the design HRT for this study because a 

stable performance was found for an extended period of operating time at this hydraulic 

loading.  At the HRT of 10 days and an organic loading rate of 7.5 g TCOD/l/d, the 

removal efficiencies for R1 and R2 were similar, but because more data for R2 is 

available compared to R1 (10 HRT periods of stable performance vs. 3 HRT periods) we 

report the information from R2 here (data for R1 in A1.S4).  The mean TCOD removal 

efficiency for R2 measured (effluent vs. influent) at the 10-day HRT was 92.2%, which 

included removal due to methane generation and biomass accumulation in the high-rate 

bioreactor (biomass was wasted naturally with the effluent, but this occurred periodically 

and not during the COD measurements at a 10-day HRT).  The relative TCOD removal 

efficiency due to methane formation not including biomass accumulation was 81.1%.  

This efficiency was calculated from the ratio of the methane yield (0.284 l CH4/g TCOD 

removed) to the maximum methane yield (0.350 l CH4/g TCOD removed).  By 

multiplying the measured and methane formation TCOD removal efficiencies, we 

estimated the efficiency due to biodegradation to be 74.7% at a 10-day HRT.  The 

biodegradation of VS resulted in a measured 80.3% removal efficiency of TS since VS 

accounted for 88% of TS in thin stillage.  The SCOD removal efficiency based on the 

TCOD concentration of the influent and the SCOD concentration of the effluent was 

95.8% (Table A1.S1).  Despite the shorter HRT of 10 days at the end of the operating 

time compared to the longer HRT of 40 and 30 days at the beginning of the operating 

period, the TCOD, VS, and TS removal efficiencies were higher (Table A1.S1) because 

of significantly lower effluent TCOD ( = 0.01), VS ( = 0.01), and TS ( = 0.05) 
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concentrations.  This was due to the better settleability of the biomass, which may have 

resulted in longer SRTs at the end of the operating period compared to the beginning of 

the operating period.  Biomass characteristics of the bioreactor contents and effluent 

throughout the operating period are shown in Figure 3.1C (volatile solids) and described 

in A1.S5 and Figures A1.S3 and A1.S4. 

Nutrient and Element Removal 

The total ammonium concentration in the effluent was stable through the end of the 

10-day HRT with average concentrations of 450 mg NH4
+-N/l (SE=96.2, n=49) and 467 

mg NH4
+-N/l (SE=88.0, n = 49) for R1 and R2, respectively (Figure 3.1E).  The resulting 

high alkalinity levels in the effluent varied with feed and loading rate, but remained 

between 2,000 and 3,000 mg/l as CaCO3 through the 10-day HRT (data not shown).  As a 

result, the pH values of the bioreactor contents were stable without any addition of 

alkalinity or acid (except after accidental oxygen influx) even during the initial start-up 

period (Figure A1.S5).  The nitrogen balance during the 10-day HRT operating condition 

(see details in A1.S2) shows that the increase in total ammonium concentration in the 

effluent compared to the influent was due to protein degradation.  It also shows an 

approximately equal concentration of total nitrogen in the influent and the effluent with 

concentrations of 1180, 1180, and 1190 mg/l N for the influent, R1 effluent, and R2 

effluent, respectively.  ICP-MS analysis on R1 and R2 effluent during the 10-day HRT 

period showed a 96% magnesium removal in both bioreactors when compared to influent 

levels (Table 3.2), and 92% and 91% phosphorus removals in R1 and R2, respectively. 

Over the operating period, a ~ 10-cm layer of white precipitate accumulated in the 

bottom cone of both bioreactors.  SEM/EDX analysis showed that this precipitate 
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contained Mg, P, and O with 16.12% ± 0.74 and 28.93% ± 1.58 (atomic basis) for Mg 

and P, respectively, which explained the reduction in Mg and P levels in the effluent 

compared to thin stillage.  SEM photographs of the crystals resembled struvite (i.e., 

MgNH4PO4·6H2O) (Figure A1.S6A), and the x-ray powder diffraction spectrum of the 

precipitate was similar to struvite’s standard spectra although an amorphous phase peak 

was present (Figure A1.S6B).  We found that the precipitate only contained 0.286 moles 

of N per mole of precipitate (an equal molar amount is anticipated for crystalline 

struvite).  Because of the relatively low levels of N in the precipitate and a slow 

accumulation of struvite due to Mg limitations, we were able to close the nitrogen 

balance without accounting for struvite precipitation in the bioreactors. 

 

3.4 Discussion 

We operated two similar thermophilic, high-rate anaerobic bioreactors to investigate 

if anaerobic digestion of thin stillage is a more energetically favorable approach 

compared to evaporation and syrup drying, which is the conventional process in corn 

grain-to-ethanol dry mills.  A basic schematic of the conventional process of corn grain-

to-ethanol fermentation and a conceptual process with an integrated anaerobic digester is 

shown in Figure 3.2.  We propose a system based on this study that includes thermophilic 

anaerobic digestion, biomass recovery, and recycling of digester effluent as make-up 

water.  To successfully advance the process technology through this change, the net 

energy balance ratio must be improved considerably, while recovering nutrients, 

improving the quality of animal feed, and reducing water consumption. 
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Figure 3.2. Overall process diagram of dry-mill corn grain-to-ethanol processes: A. Conventional 
facility; and B. Conceptual process diagram with an integrated anaerobic digester (water 
purification technology and purification requirements are not yet determined). 

 

Digester Methane as an Energy Supplement 

The generated methane from thin stillage digestion will partially replace 

nonrenewable fuels (often natural gas) as energy inputs in the ethanol production process.  

Using the combined methane potential from R1 and R2 of 0.254 l CH4/g TCOD fed 

combined with full-scale data, we anticipate a 51% reduction in required energy input 

from nonrenewable fuels for a 3.8108 l ethanol per year corn grain-to-ethanol dry mill 

(see details in A1.S6).  This estimation included a projected reduction of 45% in the mass 

of produced animal feed (DDG vs. DDGS) and the resulting circumvention of flash 
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drying syrup (with steam from natural gas) (Table A1.S2 and Figure 3.2).  Currently, 

approximately a third of the total energy input is recovered as waste heat and provides the 

energy for thin stillage evaporation.  Since an integrated anaerobic digestion process 

would make evaporation of thin stillage redundant, the leftover heat is still available, and 

therefore a new application for it can be found.  However, we have not included this 

available energy in the calculations for the anticipated 51% energy input reduction 

because some of this waste heat may be necessary to recover make-up water from 

digester effluent.  Stover et al. [1984] found a higher anticipated reduction in energy 

input of 60% based on methane potential data from Ganapathi [1984] due to accounting 

for the available energy from waste heat by not having to evaporate thin stillage.  If these 

authors had not included waste heat recovery, their anticipated energy input reduction for 

corn processing would have been 40%.  The absence of suspended solids in the thin 

stillage substrate of the Ganapathi [1984] study is one contributing reason for a lower 

energy input reduction compared to ours.  Schaefer et al. [2008] published an energy 

input reduction at the processing plant of 43% based on their methane potential with low-

rate thermophilic anaerobic digestion of thin stillage without any correction for the 

considerable lower mass of produced animal feed.  We also estimated a 43% energy input 

reduction from our data when we did not account for a lower mass of DDG vs. DDGS, 

however, this is an over simplification, and animal feed quantity reductions should be 

included in the calculations. 

To our knowledge, this is the first report on thin stillage digestion with a high-rate 

anaerobic digester system.  We obtained a shorter design HRT of 10 days and a higher 

organic loading rate of 7.50 g TCOD/l/d with prolonged stable performance compared to 
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Schaefer et al. [2008], who were able to achieve stable operating conditions at a 20-day 

HRT and an organic loading rate of 6.1 g TCOD/l/d with thermophilic low-rate digesters.  

The shorter HRT will directly result in smaller bioreactor volumes, and thus reduced 

construction costs.  Therefore, we anticipate that high-rate anaerobic digestion will be 

preferential to low-rate digestion and that other high-rate bioreactor configurations should 

be evaluated. 

Nutrient Recovery 

For a practical corn-to-ethanol industry, nutrient recovery for plant growth, yeast 

fermentation, and animal growth is critical.  Direct recycle of up to 50% of thin stillage to 

the ethanol fermenters [Egg et al., 1985; Shojaosadati et al., 1996] will provide nutrients, 

such as phosphorus (4,140 mg/l, Table 3.2), for yeast metabolism.  Subsequently, an 

integrated anaerobic digestion technology can aid in nutrient recovery because nutrient 

species are not oxidized and lost to the atmosphere from the process and remain in a 

closed nutrient cycle, while they are liberated from the VS matrix.  Indeed, we were able 

to obtain a closed nitrogen balance for both bioreactors during formation of total 

ammonium from protein degradation.  Magnesium, phosphorus, and relatively minor 

amounts of nitrogen were removed from the digester solution by the generation of 

struvite, which was a mixture of crystalline and amorphous phases, and precipitated out 

to accumulate on the bottom of the bioreactor over the operating period.  Our results with 

x-ray powder diffraction were similar to the identification of struvite by Wang et al. 

[2005], including an amorphous region.  A close to complete removal of the incoming 

magnesium was obtained, indicating magnesium to be the limiting species for struvite 

formation.  The precipitated struvite must be removed from a full-scale digester to 
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prevent any operating problems, but it can be used as a slow-release fertilizer for plant 

growth [Bridger et al., 1962]. 

Animal Feed Improvement 

In the conventional processing scheme of dry mills (Figure 3.2A), thin stillage is 

evaporated to syrup, added to wet distiller’s grains (WDG), and flash dried to produce 

distiller’s dried grains with solubles (DDGS), which is used as animal feed.  After 

integrating anaerobic digesters in the dry-mill plant, syrup will no longer be added to 

WDG (Figure 3.2B), leaving only distiller’s dried grains (DDG) as a higher value animal 

feed because of increased protein concentrations due to a relatively lower concentration 

of salts.  Long-term effects on animals fed with DDGS may be of concern due to high 

concentrations of certain elements that stem from syrup (e.g., potassium has a laxative 

effect and is present at levels of 1.5% in syrup [Table 3.2]) [Rausch and Belyea, 2006; 

Wilkie et al., 2000].  Our ICP-MS analysis confirmed high levels of both potassium and 

phosphorus in thin stillage samples (Table 3.2).  By degrading VS from thin stillage in 

anaerobic digesters, a considerably lower quantity of animal feed (DDG) will be 

produced albeit at a higher relative protein content.  As mentioned above, we anticipate 

this reduction to be 45% of the total mass of animal feed based on the dry weight of 

WDG and syrup per quantity of corn grain (Table A1.S2).  Currently, animal feed is an 

important product to ensure economic viability of corn grain ethanol, especially since 

demand has recently outpaced the increase in supply mostly due to recent growth in 

exports [USDA, 2008].  Thus, for anaerobic digestion of thin stillage to be economical, 

the increased value of a higher quality feed plus the savings due to reduced natural gas 

consumption must be higher than reduced revenue due to the loss in feed quantity. 



 
 

49

Cobalt Augmentation 

We discovered that augmentation of the trace element cobalt is necessary for 

successful long-term anaerobic digestion of thin stillage under thermophilic conditions 

(A1.S3).  Cobalt is an important factor in enzymatic catalysis of methyl group transfer in 

methanogenesis [Fathepure, 1987; Murray and van den Berg, 1981; Thauer, 1998].  We 

found cobalt levels to be below detection in thin stillage because cobalt is not added as a 

trace element during yeast fermentation in corn-to-ethanol plants.  This is in agreement 

with Belyea et al. [2006], who found that syrup (evaporated thin stillage) contained 

below-detection levels of cobalt (Table 3.2).  Augmenting cobalt will add cost (~ $0.4 – 

$1.20/1,000 kg TCOD), which must be taken into consideration during a full life cycle 

and economic assessment of the integrated digester system.  Codigestion of thin stillage 

with animal manure would also supplement enough cobalt to sustain long-term anaerobic 

digestion.  For example, cow manure contains levels of cobalt of ~ 2 mg/kg (dry basis) 

[Capar et al., 1978].  However, codigestion of thin stillage with animal manure as an 

integrated technology would result in a digester effluent that is much harder to purify and 

recycle as make-up water for yeast fermentation.  It seems, therefore, an unlikely 

alternative due to considerably higher water consumption rates at the dry mill. 

Outlook 

Based on the estimated reduction of 51% for the nonrenewable energy input to 

process corn grain, the energy input at the facility is anticipated to be 0.30 instead of 0.60 

units per unit energy output for ethanol based on published life cycle assessment data (a 

45.2% instead of a 62.5% nonrenewable energy requirement for operating the processing 

facility out of all the energy inputs) [Hill et al., 2006].  Such a decrease in nonrenewable 
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energy input per output would increase the net energy balance ratio from 1.26 to 1.70, 

which would make corn grain-to-ethanol a more acceptable technology as an existing 

intermediate step towards lignocellulosic-to-energy technology with a much higher net 

energy balance.  Our calculation included a 45% reduction in animal feed quantity and a 

resulting loss in energy credit (from 0.203 to 0.112 by using the Hill et al. [2006] data) 

and a 45% lower mass that needs flash drying with nonrenewable energy (17% of 

nonrenewable fuel in a conventional dry mill goes to flash drying of animal feed [Hill et 

al., 2006]).  However, the calculation did not include the energetic costs to physically 

replace the evaporator with the integrated digester system (this will be a relatively small 

fraction of the energy input because the percentage of energy input per unit of ethanol 

energy output for construction of the entire conventional dry mill is 0.2% [Hill et al., 

2006]); the improved quality in animal feed (DDG vs. DDGS); nor the available waste 

heat from circumventing thin stillage evaporation.  Since the anaerobic digester will be 

integrated within the dry mill, all changes will cascade through the plant, affecting water, 

mass, and energy balances, and to firmly establish the net energy balance ratio, an 

extensive life cycle and economic assessment should be performed after the changes have 

become apparent.  Further work is necessary to establish the level of purification of 

recycled anaerobic digester effluent in the dry mill to prevent inhibition of yeast 

fermentation.  Finally, we must assess a new water balance, especially since we project a 

considerable increase in water reuse (and thus decrease in water consumption) in part due 

to not releasing water to the atmosphere by circumventing syrup drying. 
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CHAPTER 4. 

 

FUNCTIONALLY PREDICTIVE MICROBIAL COMMUNITY STRUCTURE 

LINKS OPERATING CONDITIONS TO n-BUTYRATE PRODUCTION 

Adapted from: Agler, Werner, Iten, Cotta, Dien, and Angenent. Submitted to Microbial 

Biotechnology, August 2011. 

 

Note: Supplementary information can be found in Appendix 3 and is denoted in this text 

as A3.SX, where X denotes the appendix section. 

 

Abstract 

Corn fiber was evaluated as a lignocellulosic feedstock for n-butyrate production 

using the carboxylate platform.  Corn fiber was pretreated by dilute-acid, dilute-alkaline, 

or hot-water regimes and fermented to n-butyrate using an undefined mixed cultures of 

microbes.  During an operating period of 419 days, the maximum n-butyrate yield from 

corn fiber was 23% (i.e., the ratio of n-butyrate produced in chemical oxygen demand 

[COD] to corn fiber substrate in COD) with a maximum n-butyrate specificity of 59% 

(i.e., the ratio of n-butyrate produced in COD to all fermentation products in COD).  

Further, we observed that the bacterial community was stable and predictive - variation of 

41% in phylogenetic structure among communities was predicted by the combination of 

n-butyrate specificity and the undissociated short-chain carboxylic acid concentration.  In 

addition, the relative abundances of specific taxonomic groups were predictive of 

performance, and we used these community-based predictions to link operating 
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parameters to performance with statistical certainty.  We found that a community 

structure with improved n-butyrate yield and specificity can be shaped by a decrease in 

short-chain carboxylic acid toxicity through product dilution and by the occurrence of 

beneficial secondary fermentations, such as conversion of lactate and acetate into n-

butyrate.  These two strategies -- product removal and secondary fermentation reactions 

directed toward product of interest -- may have broad applications for the carboxylate 

platform because they are beneficial for anaerobic production of methane and, as 

demonstrated here, for n-butyrate production. 

 

4.1 Introduction 

The carboxylate platform includes at least one bioprocessing step that converts 

biomass through hydrolysis and fermentation pathways to short-chain carboxylates 

(possibly as intermediate products) with undefined mixed cultures of microbes under 

anaerobic conditions [Agler et al., 2011].  Anaerobic digestion has been the most 

successful application to date of the carboxylate platform because it converts 

lignocellulosic feedstocks to a single end product - methane - with high yield and 

specificity [Kleerebezem and van Loosdrecht, 2007].  Researchers are now exploring 

production of carboxylates as end products (e.g., n-butyrate and n-caproate), rather than 

methane, to be utilized as biofuels or as replacements for petroleum in bulk industrial 

chemical production [Agler et al., 2011; Holtzapple et al., 1999; Steinbusch et al., 2009; 

Steinbusch et al., 2011].  n-Butyrate is a versatile carboxylate product that can be reduced 

to the biofuel n-butanol [Grethlein et al., 1991; Richter et al., 2011], incorporated into 

food and fragrance esters [Shu et al., 2011], and used directly as an inhibitor of microbial 



 
 

54

growth [Butkus et al., 2011].  Abundant and low-value agricultural feedstocks, such as 

corn fiber (i.e., mostly pericarp [outer skin] of corn kernel), wheat straw, manure, and 

corn stover (i.e., mostly stalks and leaves of the corn plant), are currently used in 

anaerobic digestion for methane production, and therefore are good candidates for 

conversion to relatively higher-value carboxylates.  These feedstocks are already 

collected with existing technology and they do not compete with human food production 

[Ragauskas et al., 2006]. Production of carboxylates, such as n-butyrate from agricultural 

waste lignocellulose, however, has not been commercialized because of important factors 

that contribute to low product yields (i.e., the ratio of product to substrate) and low 

product specificity (i.e., the ratio of product to all fermentation products). 

The first important factor that specifically limits the product yield is biomass 

recalcitrance to microbial digestion of carbohydrate present within the plan cell wall 

matrix.  Biomass recalcitrance can be overcome using chemical/physical pretreatments, 

such as dilute-acid, dilute-alkali, or hot-water strategies that improve microbial and/or 

enzymatic degradation rates by opening up the cell wall matrix [Hendriks and Zeeman, 

2009; Mosier et al., 2005a].  Each of dilute-acid [Dien et al., 1999], dilute-alkaline [Saha 

and Bothast, 1999], and hot-water [Mosier et al., 2005b] strategies have been reported, 

specifically, to be effective for corn fiber pretreatment.  Dilute-acid pretreatment 

hydrolyzes the hemicellulose, often to monosaccharides, thereby exposing the cellulose 

fibers [Noureddini and Byun, 2010].  Dilute-alkali pretreatment removes hemicellulose 

by extraction [Kim and Holtzapple, 2005].  Finally, hot-water pretreatment can be used 

instead of dilute-acid pretreatment to circumvent the need for corrosive chemicals while 
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the mode of action is similar although hydrolysis of solubilized hemicellulose to 

monosaccharides is limited [Mosier et al., 2005a]. 

Once biomass recalcitrance is overcome and substrate can be converted to 

fermentation products, accumulation of carboxylates is the second important factor that 

limits both product yield and product specificity.  For example, carboxylic acid toxicity 

can directly inhibit efficient primary fermentation reactions (i.e., conversion of substrate 

to acetate, lactate, propionate, n-butyrate, and ethanol [Agler et al., 2011]) by inhibiting 

hydrolysis of particulates, such as cellulose [Russell and Wilson, 1996b].  Researchers 

usually maintain a low pH to promote carboxylate specificity by inhibiting the secondary 

fermentation pathway (i.e., conversion of primary fermentation products into end 

products [Agler et al., 2011]) that leads to methane [Van Kessel and Russell, 1996], but 

such a change in operating conditions considerably increases the toxicity of carboxylates 

to all community members by increasing the fraction of undissociated carboxylic acids.  

This toxicity, therefore, also inhibits community members that perform secondary 

fermentation reactions that have the potential to increase product specificity. 

The third important factor that limits efficient product yields and specificity is a lack 

of understanding of the relationships between bioreactor operating conditions, microbial 

community structure, and bioreactor performance.  The complex and undefined microbial 

communities of the carboxylate platform are difficult to control, but at the same time they 

provide a major advantage; the phylogenetic and functional diversity in carboxylate 

bioreactors allows them to be robust in response to perturbations, such as variations in 

operating conditions or substrates [Hashsham et al., 2000; Werner et al., 2011b].  In 

addition, lignocellulose feedstocks, such as corn fiber, are often rich in hemicelluloses, 
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and thus pentose polysaccharides.  These pentoses are easily metabolized by mixed 

cultures, but are often problematic for pure cultures [Enari and Suihko, 1983].  To 

maintain these advantages and simultaneously improve product yields and specificity, we 

must improve our understanding of the factors controlling structure and function of the 

microbial community [Kleerebezem et al., 2008; Lee et al., 2009; Temudo et al., 2007].  

The exact nature of the responses of community structure to environment, however, is 

difficult to predict.  Recently, Werner et al. [2011b] linked the conditions and 

performance of anaerobic digesters to the structures of their bacterial communities 

(measured via high-throughput 16S rRNA gene surveys) using computational ecological 

tools, including constrained ordination and machine learning.  Here, we hypothesized that 

a similar approach could provide insight into the structure and dynamics of thermophilic 

n-butyrate production from pretreated lignocellulosic feedstock, by allowing us to 

precisely link environmental and performance gradients, including the optimization of n-

butyrate yields. 

 

4.2 Methods 

Corn fiber pretreatment, bioreactor setup, and bioreactor operation 

Corn fiber (Aventine ethanol wet-milling plant [Pekin, IL]) was treated in fluidized 

sand bath reactors at 160oC for 20 min in dilute acid (0.5% w/w H2SO4), dilute alkali 

(1:10 Ca(OH)2 to dry biomass), or distilled water (Table 4.1, Table A3.S1, and Table 

A3.S2).  Four identical thermophilic (55oC) anaerobic sequencing batch bioreactors 

(ASBRs) that were maintained at a pH of 5.5 were inoculated with a mix of inoculum 

from three sources.  Details are given in the supporting information. 
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Table 4.1. Composition of corn fiber before and after pretreatment 
Treatment TS [g l-1] VS [g l-1] TCOD [g l-1] SCOD [g l-1] 

Glucose 
[mM] 

Xylose 
[mM] 

Arabinose 
[mM] 

Dilute Acid 
51.77 ± 3.71 

(n = 15) 
50.63 ± 3.15 

(n = 15) 
84.86 ± 6.52 

(n= 9) 
44.50±2.51 

(n = 6) 
53.79 ± 3.06 

(n = 2) 
52.45 ± 1.74 

(n = 2) 
29.17 ± 3.39 

(n= 2) 

Dilute 
Alkali 

63.69 ± 6.66 
(n = 15) 

56.06 ± 6.60 
(n = 15) 

93.87 ± 26.89 
(n= 15) 

37.50±5.53 
(n=6) 

0.67 ± 0 
(n = 2) 

0.27 ± 0.09 
(n = 2) 

1.03± 0.14 
(n= 2) 

Hot Water 
56.39 ± 8.68 

(n = 15) 
55.68 ± 9.24 

(n = 15) 
80.60 ± 15.09 

(n= 13) 
26.00±1.92 

(n=6) 
1.44 ± 0 
(n = 2) 

6.06 ± 0.47 
(n = 2) 

15.15 ± 1.84 
(n= 2) 

None 167.50 166.99 
296.22 ± 12.41 

(n= 8) 
5.40±2.42 

(n=4) 
NA NA NA 

1No Standard deviation is provided for the nonpretreated TS and VS because it was calculated based on how much corn 
fiber was added to water. 

2Nonpretreated TCOD is calculated based on the COD of dry corn fiber and addition of 67.5 dry g TS to 1 l of water. 
The value following ± represents the standard deviations, and n= represents the number of replicates.  TS , VS, TCOD, 
and SCOD measurements were performed once or twice for each batch of substrate, depending on variability in 
replicates.  Glucose, xylose, arabinose, and lactate were only performed for the first two batches of substrate. 

 

Chemical analysis 

All measurements were performed according to Standard Methods [APHA, 1998], 

unless otherwise indicated.  We measured biogas production, ambient temperature, and 

ambient pressure daily.  Every week we evaluated the hydrogen content of the biogas by 

gas chromatography.  Other weekly measurements of the effluent were TS and VS, short-

chain carboxylates, alcohols, and soluble and total COD.  Monthly, we measured the 

concentration of effluent soluble carbohydrates.  We also characterized weekly the mixed 

liquor VS, TS, and sludge volume index (SVI), after day 163.  We sampled the inoculum 

and biomass for subsequent microbial community analysis four times during startup and 

several times during steady state in each of Period 1-4.  Details about the operating 

procedures of the chemical analysis are provided in the supporting information. 

DNA extraction, amplification, and data preparation 

We extracted DNA from bioreactor mixed liquor samples during each Period 1–4, 

using the MoBio PowerSoil 96-well gDNA isolation kit (MoBio Labs, Inc, Carlsbad, 
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CA) and subsequently amplified the V1-V2 region of 16S rRNA genes using universal 

bacterial primers 8F (including 454 primer ‘A’) and 338R (including 454 primer ‘B’ and 

a unique barcode for each sample).  We quantified the dsDNA in the amplified product, 

pooled the samples in equimolar concentrations, and sequenced on the Roche 454 

pyrosequencing platform using Titanium chemistry (Engencore, Columbia, SC).  Details 

can be found in the supporting information.  Nucleotides have been submitted to the MG-

RAST database under reviewer login BEE6940.  We used the QIIME 1.2.1 pipeline 

[Caporaso et al., 2010] to denoise, quality filter, split sequences into the proper samples, 

and pick OTUs at 97% sequence identity.  We assigned taxonomy to the OTUs according 

to the GreenGenes database [Werner et al., 2011a].  We also used QIIME to determine 

the Gini coefficient and weighted and unweighted UniFrac distances between samples.  

We only report weighted UniFrac distances here because sample clustering was more 

informative than in unweighted UniFrac.  We used principal coordinate decomposition to 

graphically display the phylogenetic distances between samples. 

(Constrained) redundancy analysis 

We used redundancy analysis in the Vegan community ecology package for R 

[Oksanen et al., 2011] to evaluate which metadata gradients were most predictive of 

community structure.  Unconstrained redundancy analysis is essentially a principal 

component decomposition of principal coordinates.  Redundant coordination is useful 

because the new axes can be constrained by metadata gradients.  Essentially, the original 

principal coordinates are given a score based on how they fit to the chosen environmental 

or performance gradients, and then the samples are scored based on the weighted 

principal coordinate scores.  Thus, when used with UniFrac principal coordinates, a good 
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correlation of the constrained and unconstrained axes indicates that the gradient could 

predict variation in phylogeny.  We initially constrained the model with the gradients that 

fit best to the unconstrained model, and then we removed insignificant gradients 

(ANOVA p > 0.05) and non-unique gradients (variance inflation factor > 10). 

Machine learning to identify predictive OTUs to explain patterns 

To narrow down the OTU table to OTUs that could help explain patterns between 

bioreactors, we used nearest shrunken centroids (NSC) analysis in the Pamr 1.4 package 

for R [Tibshirani et al., 2002] to identify OTUs that were predictive of the pairs Racid vs. 

Rbase/Rheat, Rbase vs. Racid/Rheat, and Rheat vs. Racid/Rbase during Period 1-3.  These resulting 

OTUs are ones that together could identify a single bioreactor against the other two with 

at least 92% confidence.  We first trimmed the entire OTU table to include only OTUs 

present in 3 or more samples, and OTUs that had at least 4 sequences in any given 

sample.  The resulting table contained 189 OTUs.  Before performing NSC, we 

normalized OTU counts in each sample by the total number of sequences in the sample.  

In the predictive OTU table, we reported OTUs that were made up >3% of the relative 

abundance of a given sample. 

 

4.3 Results 

Pretreatment of lignocellulosic biomass 

We pretreated corn fiber with dilute-acid, dilute-alkali, and hot-water strategies, each 

of which resulted in different biomass hydrolysates (Table 4.1, Table A3.S1).  Dilute-acid 

pretreatment achieved the largest reduction in total solids (TS) and volatile solids (VS) 

from corn fiber compared to dilute-alkali and hot-water pretreatments, resulting in the 
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highest soluble chemical oxygen demand (SCOD) concentration of 45 g l-1.  This solution 

included the monosaccharides glucose (primarily from starch), and xylose and arabinose 

(from hemicellulose) at considerable concentrations (Table 4.1).  Dilute-alkali 

pretreatment resulted in a SCOD concentration of 38 g l-1, which was lower than dilute-

acid pretreatment but higher than hot-water treatment.  We only detected low levels of 

monosaccharides in the dilute-alkali hydrolysate (Table 4.1), and we determined that 

most of the soluble carbohydrates were polysaccharides (most likely xylan; details on 

xylan analysis in supporting information).  The hot-water pretreatment strategy resulted 

in a SCOD concentration of 26 g l-1 with considerable concentrations of xylose and 

arabinose monosaccharides from hemicellulose (Table 4.1).  
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Figure 4.1. Fermentation product rates (as COD (g O2) per liter bioreactor volume per day) and biogas 
composition in Racid, Rbase, and Rheat: A. Individual short-chain carboxylate and ethanol production rates in 
Racid, Rbase, and Rheat during the 419-day operating period; and B. Average with standard deviation of n-
butyrate and total fermentation product rates in each period, averaged for three stable points at the end of 
each period.  Time periods signify the following major changes in operating conditions: startup and stable 
operation (Period 1), decrease in HRT from 25 d to 20 d (Period 2), decrease in HRT from 20 d to 15 d 
(Period 3), increase in pH from 5.5 to 5.8 (Period 4). 

 

Bioreactor operating conditions and performances 

We operated three thermophilic (55°C) bioreactors (designated: Racid, Rbase, and Rheat) 

by feeding dilute-acid, dilute-alkali, or hot-water pretreated corn fiber hydrolysate, 

respectively.  These three bioreactors were operated continuously for 419 days at a 

constant VS and COD loading rate (Table A3.S2; Figure 4.1).  A fourth thermophilic 

bioreactor fed nonpretreated corn fiber was discontinued after day 100 due to poor 

performance (supporting information).  We divided the entire study into four periods by 

adjusting the operating conditions (shortening HRT to dilute substrate and products and 
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lowering pH to reduce the concentrations of undissociated carboxylic acids) in each 

sequential period to decrease carboxylic acid toxicity (Table A3.S2).  During the first 

operating period (Period 1) from day 1 to 163, a 25-d HRT and pH of 5.5 was 

maintained.  After an initial start-up period (supporting information), stable 

concentrations of short-chain carboxylates and ethanol were achieved for all bioreactors 

(Figure 4.1).  During the second operating period (Period 2) from day 164 to 243, a 

shorter HRT of 20 days was applied while a pH of 5.5 was maintained.  Similarly, during 

the third operating period (Period 3) from day 244 to 337, an even shorter HRT of 15 

days was applied at a pH of 5.5.  Since our loading rates were constant throughout the 

entire operating period, we accomplished shorter HRTs by adding more water to the 

pretreated corn fiber substrate solution during Period 2 and 3.  This dilution decreased the 

concentration of carboxylates but increased the fermentation product rates (i.e., the 

combined production rates of acetate, propionate, iso-butyrate, n-butyrate, iso-valerate, n-

valerate, n-caproate, and ethanol in COD); these rates increased 15-22% between Period 

1 and 3 for all bioreactors (Table A3.S3).  Further, the dilution also increased the n-

butyrate specificity (i.e., the ratio of n-butyrate produced in COD to all fermentation 

products in COD); these specificities increased 8-24% between Period 1 and 3 for all 

bioreactors (Table A3.S3).  During the final period (Period 4) from day 338 to 419, we 

increased the pH to 5.8 and maintained the 15-d HRT.  The pH increase resulted in a 

reduction in the concentration of undissociated carboxylic acids by ~50% at the end of 

Period 4 (Table A3.S3).  However, this pH change did not have the preferred outcome 

because fermentation product rates, n-butyrate specificity, and n-butyrate yields (i.e., the 

ratio of n-butyrate produced in COD to corn fiber substrate in COD) stayed similar or 
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declined between Period 3 and 4 for all bioreactors (Table A3.S3).  For future n-butyrate 

studies with pretreated corn fiber, we, therefore, do not recommend increasing the pH 

above 5.5. 

Effect of pretreatment strategy on rates and n-butyrate specificity 

The fermentation product rates were the highest in Racid compared to the other 

bioreactors during Period 1-3 (Table A3.S3) because dilute-acid hydrolysate consisted of 

the highest concentration of monosaccharides (Table 4.1), which was completely 

fermentable by the mixed community (Figure A3.S1).  The dilute-alkaline hydrolysate 

was characterized by very low concentrations of monosaccharides (Table 4.1) and in Rbase 

the available soluble polysaccharides were not completely fermented (Figure A3.S1).  

This resulted in the poorest fermentation product rates for Rbase compared to the other 

bioreactors.  The fermentation product rates for Rheat were intermediate (between Racid 

and Rbase) because of two reasons: 1. intermediate concentrations of easily-fermentable 

monosaccharides in hot-water hydrolysate; and 2. the biomass in Rheat was consistently 

the best settling of the three bioreactors (Figure A3.S2), resulting in the longest solids 

retention times and the most efficient biological VS removal efficiencies (Figure A3.S2). 

The n-butyrate specificity was also the highest for Racid compared to the other 

bioreactors (Table A3.S3).  We are not completely sure why, but hypothesized that the 

higher concentration of monosaccharides in dilute-acid hydrolysate compared to the other 

hydrolysate substrates promoted n-butyrate production through primary fermentation 

reactions.  In addition, the interplay of primary and secondary fermentation pathways to 

produce n-butyrate, and secondary fermentation pathways to remove n-butyrate in the 

complex food web played a role.  For both hypotheses the microbial community 
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dynamics are important.  To study the second hypothesis, we performed batch tests with 

mixed liquor from Racid at thermophilic conditions and 48-h bioreactor cycle analyses 

(i.e., 48-h is the period from one feeding to the next).  One secondary pathway that 

produces n-butyrate is present in cow rumen through the coupling of lactate oxidation 

and acetate reduction (i.e., lactate + acetate → n-butyrate) [Agler et al., 2011; Counotte 

and Prins, 1981].  Indeed, our batch experiment (see supporting information) and in-situ 

cycle analysis showed that lactate was an important intermediate product from primary 

fermentation in Racid (1.67 mM at 19 h in Figure 4.2A).  The subsequent disappearance of 

lactate accumulation during the cycle and simultaneous decrease in acetate specificity 

(i.e., the ratio of acetate produced in COD to all fermentation products in COD) showed 

that secondary fermentation was indeed occurring (Figure 4.2A).  In addition to a modest 

increase in n-butyrate specificity, we observed a distinct and temporary increase in n-

caproate specificity (i.e., the ratio of n-caproate produced in COD to all fermentation 

products in COD) with a peak around 28 h during the cycle analysis for Racid (Figure 

4.2A).  This phenomenon indicates the existence of a hereto-unknown secondary 

fermentation pathway (i.e., lactate + n-butyrate → n-caproate) under thermophilic 

conditions.  Although the pathway has not been described in literature, one possible 

mechanism would couple oxidation of lactate to butyrate with reduction of butyrate and 

acetate to caproate (Table 4.2).  The other known possible secondary fermentation 

pathway to produce n-caproate, which occurs through the coupling of ethanol oxidation 

and n-butyrate reduction (i.e., ethanol + n-butyrate → n-caproate) [Agler et al., 2011; 

Seedorf et al., 2008], did not occur in our thermophilic bioreactor studies even after 

repeated trials (data not shown). 
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Figure 4.2. 48-hour cycle analysis demonstrates the dynamic relationship between intermediate lactate and 
the acetate, n-butyrate, or n-caproate specificities (i.e., ratio of specific product in COD to all fermentation 
products in COD) in Racid (A), Rbase (B), and Rheat (C).  
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Even though no lactate accumulated in Rbase, a peak in the n-caproate specificity 

within the 48-h cycle suggests that secondary fermentation occurred (Figure 4.2B).  We 

did measure primary fermentation of substrate to lactate (0.68 mM at 5.5 h in Figure 

4.2C) during the cycle analysis for Rheat, and removal of lactate concurrent with increases 

in both n-butyrate specificity and n-caproate specificity (Figure 4.2C).  This result 

showed that both secondary fermentation pathways -- lactate + acetate → n-butyrate and 

lactate + n-butyrate → n-caproate -- played important roles along with primary 

fermentation in producing n-butyrate.  Thus, from this data it is apparent that both 

primary and secondary fermentation pathways to form n-butyrate were important in all 

bioreactors.  However, we did not perform flux analyses to determine the relative 

importance for each of these pathways.  The final concentrations of n-caproate were 

indicative, however, that conversion of n-butyrate into n-caproate had the highest relative 

importance in Rheat compared to the other two bioreactors.  For optimization of the n-

butyrate specificity, however, this secondary fermentation pathway is disadvantageous 

and should be repressed. 

Table 4.2.  Standard state Gibbs free energy of a possiblea secondary fermentation coupled reaction set
Reaction Carboxylate conversion reactions Gr

o’ 
(kJ/mol at 37 oC)b 

Gr
o’ 

(kJ/mol at 55 oC)b

Lactate oxidation 
to n-caproatea 

acetate- + n-butyrate- + H+ + 2H2  n-caproate- + 
2H2O 
2 lactate- + H+  n-butyrate- + 2CO2 + 2H2

-45.22 
-83.75 

Total = -128.97 

-45.50 
--93.02 

Total = -138.52
aTo our knowledge, the actual mechanism of n-caproate formation from lactate and n-butyrate has not been described.  The 
individual reactions shown here are presumed, and are shown as being coupled within a single microbe. 
bAll Gr

o’ values are calculated considering all reactants and products to be in the aqueous phase except for H2 and CO2, 
which are gaseous at 1 atm.  Gr

o’ values are at biological standard state (pH = 6.82 at 37oC; 6.58 at 55oC).  The reactions 
that are coupled are shown individually with individual and coupled (total) Gr

o’ values.  Gr
o’ quantities were calculated 

from Gf
o values from [Amend and Shock, 2001], except for n-caproate-, which was calculated using the HKF equations of 

state [Shock and Helgeson, 1990] and thermodynamic parameters [Shock, 1995]. 
 

Bacterial community structure 
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We compared the structure of bacterial communities via high-throughput sequencing 

of bacterial 16S rRNA gene amplicons of 70 samples representing at least three time 

points for each of the Periods 1-4 from Racid, Rbase, and Rheat (Figure 4.3A). 

 

Figure 4.3. Redundancy analysis of the phylogeny described by weighted UniFrac principal coordinates:  
A. Unconstrained redundancy analysis showing as much of the UniFrac distance between samples as 
possible in two dimensions demonstrates that bioreactors were clearly differentiated after Period 1 (see 
Figure A3.S3D for points colored by period); and B. The undissociated short-chain carboxylic acids 
concentration and the n-butyrate specificity gradients predict ~41% of the community phylogenetic 
variation between samples in constrained redundancy analysis. 

 

Our primary measure of bacterial community structure was weighted UniFrac 

distances with principal coordinates analysis [Lozupone and Knight, 2005] in which 

phylogenetic relationships between operational taxonomic units (OTUs) and abundances 

of OTUs are taken into account.  However, due to long-term operating periods, we were 

restricted to one bioreactor for each pretreatment.  To test whether the bacterial 

communities for each of these nonreplicated bioreactors were primarily dependent on 

operating conditions rather than influenced by random fluctuations, we operated two 

additional identical bioreactors for over 200 days using dilute-acid hydrolysate 

(supporting information).  We found that the communities in the replicated bioreactors 

Racid Rbase Rheat
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were very similar to each other and stable and resilient over the operating period, which 

validates our results with nonreplicated bioreactors.  To find statistically relevant 

relationships between bacterial community structure and bioreactor operating conditions 

and performances, we used constrained ordination of the UniFrac principal coordinates.  

We determined that the constrained ordination technique was able to explain 41% of the 

variation in the bacterial community structure for Racid, Rbase, and Rheat (i.e., 41% of the 

first two unconstrained ordination axes [Figure 4.3A]) by the two combined gradients for 

undissociated short-chain carboxylic acid concentration (function of both environmental 

conditions and performance) and n-butyrate specificity (function of performance) (Figure 

4.3B).  Moreover, a direct comparison of constrained and unconstrained axes revealed 

that the community structure could be associated with not only within-bioreactor 

performance differences, but also between-bioreactor performance differences (R2=0.99 

for RDA 1 vs. cRDA 1; Figure A3.S3A and Figure A3.S3B).  Indeed, the community 

structures were grouped by pretreatment (between bioreactors) or by period (within 

bioreactors) (Figure A3.S3D), indicating that operating conditions determined the 

community structure, which caused changes in the bioreactor performance. 

Bacterial taxonomic structure 

Assignment of taxonomy to bacterial OTUs clearly demonstrated differences between 

reactors (Figure 4.4A), so we used a machine-learning method (i.e., nearest shrunken 

centroids) to find important taxa by automatically selecting OTUs that were predictive of 

pretreatment regimes (i.e., specific bioreactors). Indeed, some of the predictive OTU set 

had taxonomy assignments that could allow us to speculate about physiology of specific 

OTUs to improve our understanding of differences in performance between bioreactors 
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during Period 1-3 (Table A3.S4).  For example, one of the two OTUs that were predictive 

of Racid belonged to the family Lachnospiraceae (the other was a Clostridium, for which 

the diverse physiology is not specific enough to be useful), and was present after an 

initial start-up period (Figure 4.4A).  Lachnospiraceae likely contributed to relatively 

higher n-butyrate specificities in Racid than the other bioreactors, because several genera 

(i.e., Butyrivibrio, Roseburia, and Anaerostipes) in that family are known to produce 

mostly n-butyrate from carbohydrates utilizing primary fermentation pathways [Cotta and 

Forster, 2006].  Next, we found a group of predictive OTUs within the genus 

Thermoanaerobacterium of which some were specific to Rbase and some predictive of 

both Racid and Rheat (Figure 4.4B).  Members of Thermoanaerobacterium are well-known 

xylan and xylose fermenters and some species have pH optima near or below our 

bioreactor conditions [Lee et al., 1993; Liu et al., 1996; Ren et al., 2008]; the specific 

OTU that was solely identified in Rbase may, thus, have been xylan degraders because 

dilute-alkaline pretreated corn fiber hydrolysate contained almost no xylose in contrast to 

the other two hydrolysates.  We also found that the presence of all 

Thermoanaerobacterium OTUs was positively correlated to fermentation product rates 

during Period 1–4 (Figure 4.4C).  During Period 4 in which the pH had been increased to 

5.8, the Thermoanaerobacterium abundance decreased (Figure 4.4D), which may explain 

the deterioration of all performance parameters in, for example, Racid (discussed earlier 

for Period 4).  Finally, the presence of OTUs within Thermosinus spp. was positively 

correlated with rates of n-caproate formation in all three bioreactors (Figure A3.S4).  This 

genus is placed in the Veillonaceae family, and includes the mesophilic bacterium 

Megasphaera elsdenii that was able to grow on lactate by generating acetate, n-butyrate, 
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and n-caproate [Marounek et al., 1989], suggesting that our OTUs within the genera 

Thermosinus are likely candidates to perform the newly described thermophilic 

secondary fermentation pathway to convert lactate and n-butyrate into n-caproate. 

 

 

Figure 4.4.  The taxonomic structure of the bioreactors reflects differences in overall community structure 
and performance: A. Heatmap of the relative abundance (logarithmic scale) of major taxonomic groups in 
Racid, Rbase, and Rheat. SU in Period 1 indicates the period of time after inoculation until stable bioreactor 
performance, and SS indicates steady-state conditions; B. Thermoanaerobacterium spp. OTU speciation in 
Racid, Rbase, and Rheat in Period 1-3 reflects speciation of pentose units as xylan (alkali pretreatment) vs. 
xylose (dilute-acid and hot water pretreatment); C.  Thermoanaerobacterium spp. relative abundance 
corresponded to total fermentation production rates; and D. Thermoanaerobacterium spp. relative 
abundance increased with end product dilution at pH 5.5, but the pH shift to 5.8 was detrimental to the 
community (no R2 values given, lines are intended to show trend). 
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4.4 Discussion 

n-Butyrate specificity was predictable based on community and taxonomic structure 

We showed that the performance of bioreactors in regards to n-butyrate specificity 

was predictable based on the structure of the bacterial community.  Further, even though 

community structures between bioreactors were similar due to generally analogous 

operating conditions, the communities were sensitive to difference in substrate (i.e., 

hydrolysate) composition.  Our work agrees with other sequencing efforts that have 

found stable carboxylate-producing populations that were linked, theoretically, to 

performance [Kim et al., 2006; Ren et al., 2007].  It is important that this has now been 

shown for acidogenic mixed culture communities with enough sequencing depth for 

statistical certainty so that further work in isolating factors contributing to improved 

bioreactor performance can continue. 

n-Butyrate-producing communities were uneven 

Previous work has suggested that bioreactor stability is positively correlated to 

evenness in ecosystem populations; a higher evenness (i.e., lower Gini coefficient) 

resulted in more robust systems [Werner et al., 2011b; Wittebolle et al., 2009].  Our 

systems were associated with high Gini coefficients (ranging from ~0.6 to 0.8), similar to 

those found with other high-depth sequencing efforts in thermophilic acidogenic systems 

[Hollister et al., 2010].  A small increase in evenness during Period 3 was outside of 

statistical certainty (Figure A3.S5), so it is unclear if minor gains in n-butyrate specificity 

would be correlated with evenness as a result of, for example, the onset of secondary 

fermentation pathways (i.e., the coupling of lactate oxidation and acetate reduction to n-

butyrate).  The uneven bacterial populations in our bioreactors could have been a 
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response to high temperatures, product toxicity, or both, or the higher unevenness may be 

determined after future research to be a characteristic of thermophilic communities 

compared to their mesophilic counterparts.  Regardless, we predict that manipulation of 

environmental conditions to promote secondary fermentation processes that improve 

system functionality (e.g., lactate + acetate → n-butyrate) will also improve community 

evenness and increase culture productivity and n-butyrate specificity.  This is already true 

for anaerobic digesters with optimized methane production pathways [Werner et al., 

2011b]. 

Carboxylic acid inhibition limits pentose-rich substrate conversion to n-butyrate 

Product buildup and toxicity, especially with undissociated carboxylic acids, are 

commonly implicated in incomplete conversion of substrate to fermentation products 

[Russell and Wilson, 1996b; Wu and Yang, 2003].  We found that diluting the 

undissociated carboxylic acid concentrations, via applying shorter HRTs, while 

maintaining a constant pH during Periods 2-3, led to a bacterial community structure with 

enhanced fermentation product rates.  Specifically, our results showed that the abundance 

of Thermoanaerobacterium spp., which are well-known pentose saccharide (xylan and 

xylose) fermenting bacteria [Lee et al., 1993], was positively correlated to fermentation 

product rates (Figure 4.4B-4.4D).  We anticipated that an increase in pH from 5.5 to 5.8 

during Period 4 would further promote pentose degradation due to lower undissociated 

carboxylic acid concentrations, but this did not occur.  Rather, an increase in pH 

negatively affected the relative abundance of Thermoanaerobacterium spp. even though 

this pH increase, indeed, considerably reduced the concentration of undissociated 

carboxylic acids, and thus also reduced toxicity.  The nonoptimum growth of 
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Thermoanaerobacterium spp. at the slightly higher pH decreased the conversion 

efficiency of our pentose-rich substrate, and places Thermoanaerobacterium spp. with 

other bacteria that are superior at conditions of low pH/high carboxylate concentrations 

because of mechanisms preventing the toxic effects of carboxylic acids (e.g., [Russell and 

Wilson, 1996b]).  The complex interactions between substrate type, population dynamics, 

environmental conditions, and product inhibition also explain ambiguities between 

studies [Vavilin et al., 2008], and the effects of changes in pH are clearly not universal 

for mixed communities due to the growth optima of different populations for each 

substrate type. 

Better control over secondary fermentation processes can improve functionality 

Mathematical models describing mixed culture carboxylate production have typically 

focused only on primary fermentation and have simply predicted a metabolic shift toward 

n-butyrate specificity at low pH levels because of energetic costs in transport of 

carboxylic acids out of the cell at low pH [Lee et al., 2009; Rodriguez et al., 2006].  We 

discovered that secondary fermentation pathways considerably affected product 

specificities through the flux of the primary fermentation product lactate.  Lactate had 

been identified as an intermediate in both mesophilic and thermophilic systems, and has 

been widely studied as a precursor in a pathway to generate n-butyrate (lactate + acetate 

→ n-butyrate) in colon and rumen microbial communities [Belenguer et al., 2007; 

Duncan et al., 2004; Kim et al., 2003].  To our knowledge, this secondary fermentation 

pathway had not been implicated in bioreactors designed for carboxylate-specific 

production.  We also observed the occurrence of another secondary fermentation pathway 

(lactate + n-butyrate → n-caproate), which was maybe carried out by bacteria in the 
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genera Thermosinus.  Our results show that future bioreactor studies and mathematical 

efforts should focus on these secondary fermentation pathways to affect product 

specificity. 

Continuous, long-term, and specific production of n-butyrate 

We showed continuous production of carboxylates from pretreated lignocellulose for 

operating periods exceeding 400 days.  By combining pretreatment, biological 

hydrolysis, and fermentation, we achieved a maximum fermentation product yield from 

corn fiber of ~40% (on a COD basis, which is equivalent to 0.56 g COD/g VS added) and 

n-butyrate yields exceeding 23% (on a COD basis, which is equivalent to 0.33 g COD/g 

VS added).  Compared to anaerobic digestion of lignocellulose for methane production, 

we achieved a yield that was only half that of typical yields (e.g., producing methane 

from grasses [Tong et al., 1990]).  Therefore, there is considerable room for improvement 

of carboxylate production.  More research is needed to better understand the effects of 

decreasing short-chain carboxylic acid toxicity and the occurrence of beneficial 

secondary fermentations on performance that we observed in this study.  To shape 

carboxylate-producing communities that are as effective as anaerobic digestion 

communities, we must follow broad rules that apply to both anaerobic digestion and 

carboxylate production: 1. remove the products (primary fermentation products are 

converted to methane, which freely bubbles out in anaerobic digesters); and 2. direct all 

secondary fermentation pathways towards the product of interest (methane has the lowest 

free energy content per electron, which even allows the anaerobic oxidation of organic 

intermediates in anaerobic digesters [Angenent and Kleerebezem, 2011]).  To address 

these needs, we are currently integrating membrane-based extraction [Wu and Yang, 
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2003] with mixed culture bioreactors to specifically remove the product of interest.  This 

will not only reduce product toxicity by lowering the undissociated carboxylic acid 

concentrations, but also will promote secondary fermentation pathways that increase 

specificity.  Under these operating conditions, however, secondary reactions that decrease 

specificity must be prevented as much as possible by manipulation of environmental 

conditions and the application of ecological theory. 
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CHAPTER 5. 

 

DIRECTING MIXED MICROBIAL CULTURES TOWARD UPGRADING 

ACETATE, N-BUTYRATE, AND ETHANOL TO SPECIFIC MEDIUM-CHAIN 

CARBOXYLATES  

This chapter is not yet published 

 

Note: Supplementary information can be found in Appendix 4 and is denoted in this text 

as A4.SX, where X denotes the appendix section. 

 

Abstract 

We studied chain-elongation reactions that couple ethanol oxidation to n-butyrate 

reduction (i.e., n-butyrate + ethanol  n-caproate) in mixed communities of microbes to 

upgrade miscible ethanol and short-chain carboxylate products derived from biomass into 

better extractable medium-chain carboxylates (n-caproate and n-caprylate).  To do so, 

two bioreactors were operated with mixed communities under anaerobic conditions to 

convert ethanol and dilute-acid pretreated corn fiber to primarily n-caproate and n-

caprylate.  Promising chain elongation rates were achieved when both electron pushing 

(addition of ethanol as an external chemical source of energy and electrons) and in-situ 

product extraction (continuous removal of hydrophobic and acidic end products) were 

applied.  However, environmental conditions such as the operating temperature needed to 

be optimized. Indeed, the n-caproate/n-caprylate carboxylate specificity (i.e., the ratio of 

n-caproate and n-caprylate in COD to all other fermentation products in COD) improved 
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from 12% at 55oC to 52% at 30oC in the bioreactor with in-situ extraction and from 6% to 

18% in the bioreactor without in-situ extraction.  Surprisingly, methane production 

proceeded via carbon dioxide reduction with hydrogen and low hydrogen pressures did 

not apparently negatively affect the process.  This is a paradigm shift because completely 

inhibiting methane production had been described as an absolute requirement.  We used 

the metagenome of the communities to link with statistical certainty the operating 

conditions - temperature and extraction - to the ability of the bioreactors to utilize ethanol 

as the electron pushing substrate.  Further, gene taxonomy results indicated that chain 

elongation might be catalyzed by more complex consortium of microbes than previously 

described. 

 

5.1 Introduction 

The	 carboxylate	 platform	 produces commercially valuable bioproducts from 

biomass with	 undefined	 mixed	 communities	 of	 microbes	 [Agler et al., 2011; 

Holtzapple et al., 1999].  For example, the potential products n-caproate and n-caprylate 

are valuable commodities in the lubricant industry, the food and fragrance industry, and 

others that usually rely on petrochemical production of carboxylates [Gaertner et al., 

2009].  Until now, researchers have not been able to produce carboxylates with high 

enough product specificity with mixed communities in engineered bioreactors.  In these 

systems, microbes utilize the best available electron acceptors to extract energy from the 

system by oxidizing primary fermentation products (i.e., acetate, ethanol, propionate, 

lactate, and n-butyrate) to the most energetically favorable end products, usually only 

methane and carbon dioxide if methanogen populations are active.  In methanogen-
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inhibited systems, the best biologically available electron donors are relatively reduced 

primary fermentation products (e.g., ethanol and lactate) and the only available electron 

acceptors are relatively more oxidized fermentation products (e.g., acetate and n-

butyrate) [Angenent and Kleerebezem, 2011]. Therefore, secondary-fermenting 

microorganisms thrive in this environment by coupling, for example, ethanol oxidation to 

reduction of n-butyrate (e.g., ethanol + n-butyrate  n-caproate) [Duncan et al., 2004; 

Ding et al. 2010; Steinbusch et al., 2011].  The end product spectrum is achieved when 

electron donors are depleted – typically resulting in a diverse array of carboxylates [Borja 

et al., 2005].  Thus, a driving force, such as an electron pushing substrate (i.e., an 

exogenous supply of electron donor), is required to drive fermentation products toward a 

product of interest. 

The carboxylate platform system with the highest product specificity, thus far, is 

anaerobic digestion.  These systems convert nearly all substrate to methane through 

carboxylate intermediates, because in well-functioning digesters protons are available 

electron acceptors for secondary fermentation reactions that oxidize carboxylates to 

acetate and hydrogen [Schink, 1997].  Secondary-fermenting methanogens then split 

acetate to methane and carbon dioxide and/or oxidize hydrogen and reduce carbon 

dioxide to methane [Thauer, 1998].  Thus, in anaerobic digesters the sources of energy 

and electrons for secondary fermentations leading to methane are carboxylates and 

hydrogen, which are continuously supplied by primary and secondary fermentation 

reactions.  Researchers first demonstrated the same principle for carboxylate-producing 

bioreactors by continuously adding ethanol as an electron donor and acetate as electron 

acceptor.  In their systems with mixed cultures of microbes at pH 7 with chemical 
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methanogen inhibition, the result was formation of mostly n-caproate and n-caprylate 

[Steinbusch et al., 2011].  More recently, we found that in bioreactors producing n-

butyrate from corn fiber, lactate oxidation was coupled to reduction of acetate to produce 

n-butyrate [Agler et al., 2011].  We hypothesized, therefore, that external addition of an 

electron donor to undefined mixed cultures (i.e., electron pushing) could boost beneficial 

secondary fermentations. 

Besides beneficial secondary reactions, other undesirable reactions may compete for 

energy and electrons.  For example, in the same study to optimize n-butyrate production, 

we showed that n-caproate production from lactate and n-butyrate was lowering the n-

butyrate specificity (i.e., the ratio of n-butyrate in COD to all fermentation products in 

COD), while n-butyrate production from lactate and acetate was increasing this 

specificity [Agler et al., 2011].  When ethanol is the electron pushing substrate to reduce 

short-chain carboxylates to n-caproate and n-caprylate, competing reactions could 

include, for example, ethanol oxidation coupled to reduction of propionate to propanol 

[Smith and McCarty, 1989].  Regardless, additional efforts, such as in-situ product 

removal, are needed to specifically and rapidly remove the product of interest to provide 

a competitive advantage to desirable secondary fermenters.  This technique would also 

reduce carboxylate toxicity, which is crucial for microbial activity [Russell and Wilson, 

1996a].  Membrane-based extraction is one option for direct carboxylate removal that has 

already been shown to be effective for pure culture fermentations [Wu and Yang, 2003].  

For efficient extraction, n-caproate and n-caprylate are ideal products because they are 

relatively easy to remove with typical extraction systems [Zigová and Šturdík, 2000] and 
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the maximum solubility of the undissociated acid is relatively low (~11 g l-1 and 0.68 g l-1 

for n-caproate and n-caprylate, respectively). 

The complex microbial ecosystems that catalyze the carboxylate platform are 

promising for production of biochemical, such as n-caproate, because they are robust, 

resilient, and are functionally diverse [Hashsham et al., 2000; Werner et al., 2011b].  

These systems feature a complex and difficult-to-predict food web, however, and 

attempts to directly link operating conditions and performance have yielded conflicting 

results because researchers have not considered unintended effects to microbial 

interactions.  Molecular biology tools, such as metagenomic analysis of undefined mixed 

microbial communities, have recently been applied to better understand complex 

microbial communities [Martin et al., 2006; Schluter et al., 2008].  Only recently has 

work revealed that ecological tools applying correlation and regression (i.e., constrained 

ordination) to functional metagenomic analysis (studying community metagenome 

relationships via the functional structure of the metagenome) can statistically correlate 

environmental parameters with community function [Dinsdale et al., 2008; Gianoulis et 

al., 2009].  Thus, we suggest that applying functional metagenomics and ecological 

theory to the carboxylate platform will contribute to our understanding of processes, such 

as electron pushing, which may have complex and difficult to predict interactions with 

operating parameters.  Here, we operated two bioreactors degrading pretreated corn fiber 

and supplemented them with ethanol to promote chain-elongation reactions that upgrade 

the product spectrum to higher-value n-caproate and n-caprylate.  We combined a 

functional metagenomic survey with constrained ordination of 12 bioreactor samples to 

determine the dynamic effects of operating conditions (three temperatures and product-
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specific extraction) on the function of bioreactors.  Further, we evaluated the taxonomic 

structure of chain-elongation genes to gain insights into how the community performs the 

chain-elongation function at these conditions. 

 

5.2 Methods 

Bioreactor operation 

We operated two ethanol-supplemented anaerobic sequencing batch bioreactors 

(ASBRs) treating dilute-acid pretreated corn fiber for 124 days to direct metabolism 

toward medium-chain carboxylates (n-caproate and n-caprylate).  The dilute-acid 

pretreated corn fiber was the same as described in our previous work converting dilute-

acid pretreated corn fiber to n-butyrate [Agler et al., 2011].  Two strategies were 

employed to direct the community to produce primarily n-caproate and c-caprylate in the 

liquid fraction.  First, we added ethanol to both bioreactors at a rate of 0.75 g l-1 d-1 to 

encourage chain-elongation of acetate and n-butyrate that was produced during primary 

fermentation to n-caproate and n-caprylate and to encourage reduction of carbon dioxide 

to methane.  Second, we performed in-situ product specific extraction of n-caproate and 

n-caprylate in one bioreactor (Rp), while products only left the other bioreactor in the 

effluent (Rc).  Both bioreactors were previously operated for ~119 days at a thermophilic 

temperature (55oC) and a pH of 5.5 with supplemented ethanol.  After operating at 55oC, 

we reduced the temperature to 40oC, and after 33 days we reduced the temperature to 

30oC to promote a microbial community structure more efficient at the desired chain-

elongation reactions. 

In-situ product-specific extraction 
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We incorporated an in-line continuously recirculating membrane-based liquid/liquid 

extraction system (a system diagram is given in Figure A4.S1).  To ensure extraction 

specificity, the system was designed to extract the more hydrophobic carboxylates 

(medium-chain) by employing a light mineral oil based solvent with 3% tri-n-

octylphosphine oxide as a “carrier” molecule (Sigma-Aldrich, Inc). Further, we ensured 

that only acidic molecules could be extracted by regenerating the solvent with a borate 

buffer solution maintained at pH=9 with automated addition of 5M NaOH.  Thus, the 

driving force of extraction was the concentration gradient of undissociated acids while 

non acidic molecules (e.g., ethanol) were not removed.  To control for potentially 

negative affects of the solvent on the microbial community, both Rp and Rc were in 

contact with the solvent continuously.  However, regeneration of the solvent only 

occurred for Rp, so carboxylates were not extracted from Rc (Figure A4.S1).  To provide 

a large aqueous/solvent contact area while maintaining separation of the phases, we used 

commercially available hollow-fiber membrane units, each providing ~0.5 m2 of 

membrane surface area (Membrana, Inc).  Two membrane units in series were located at 

the bioreactor broth/solvent interface and the solvent/aqueous alkaline interface.  The 

bioreactor broth and aqueous alkaline solution were each continuously recirculated from 

the reservoir through the membrane and back at ~10mL min-1.  The solvent was 

continuously recirculated between the bioreactor broth and aqueous alkaline regenerant.  

We never experienced noticeable reductions in extraction rates due to reduced solvent 

capacity, and we only replaced it when a leak occurred. 

Chemical analysis 
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We monitored the chemical oxygen demand (COD) and volatile and total solids (VS 

and TS) levels in the substrate and effluent weekly or bi-weekly during the operating 

period, according to Standard Methods [APHA, 1998].  Every day we measured the 

biogas production and recorded the temperature and pressure to standardize the 

measurements.  Biogas composition was measured weekly.  For hydrogen composition 

we used a Gow-Mac Series 580 GC (Gow-Mac, Inc) with a 5’ x ¼” stainless column 

packed with 60/80 Carboxen 1000 packing material (Supelco, Inc).  The temperature of 

the column, injector, and detector were 100, 110, and 105oC, respectively, and the current 

to the TCD detector was 70 mA.  Carbon dioxide and methane were measured with an 

SRI 8610C GC with a 1m x ¼” Rt-XLSulfur column (Restek, Inc).  The temperature of 

the column, injector, and detector were 40oC, 25oC, and 101oC, respectively, and the 

current was 167 mA.  We determined the composition of the effluent and the stripping 

solution by measuring the individual carboxylate and ethanol concentration after every 

48-h cycle of feeding.  Individual carboxylates were measured with an HP 5890 Series II 

GC equipped with an autosampler with a 15m x 0.53mm Nukol column.  Ethanol was 

measured with the same GC setup and a Supelco 6’ ¼” x 2mm glass column packed with 

10% CW-20M (treated with 0.01% H3PO4) on 80/100 Chromasorb WAW support. 

DNA isolation and metagenomic analysis 

We collected biomass directly from bioreactors by mixing them for 5 min, rapidly 

sampling, centrifuging 2-mL vials of sample at 10,000 rpm for 10 min, disposing of 

supernatant, then freezing at -80oC until further analysis.  We isolated whole community 

genomic DNA (gDNA) from 12 bioreactor biomass samples (4 from R1 and 8 from R2) 

with the MoBio PowerSoil DNA Isolation Kit (MoBio, Inc).  DNA extracted from 
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samples from 55oC and 40oC operating periods resulted in low concentrations of DNA, so 

we concentrated DNA by ethanol precipitation so that all samples had at least 10 ng/ul, 

measured with the PicoGreen dsDNA measurement kit (Invitrogen, Inc).  Samples were 

sequenced with an Illumina HiSeq 2000 sequencing system in two lanes (6 samples in 

each lane), resulting in 10-15 million high quality and nonredundant reads per sample.  

We filtered the sequences for quality, using a trimming threshold of two consecutive low-

quality bases, no unknown bases, and a final minimum length of 75 bp, and removal of 

identical sequences, using the QIIME 1.3.0 pipeline [Caporaso et al., 2010], and uploaded 

them to MG-RAST [Meyer et al., 2008] for further analysis. 

We annotated sequencing reads in MG-RAST based on SEED subsystem-based 

functional abundances, with a minimum 50% identity and an e-value cutoff of 1 x 10-3.  

Next, we created a QIIME-style table using subsystem-based functions instead of OTUs 

so that we could calculate between-sample Pearson distances to compare gene functional 

profiles.  Pearson distances were calculated based on a table generated from the mean of 

100 rarefactions at a depth of 350,000 sequences per sample.  We then generated 

principal coordinates of the subsystem-based Pearson distances to visualize the 

relatedness of sample metagenome structures.  We also used ANOVA in the QIIME 

package to determine genes that shifted in abundance with statistical significance (p < 

0.05 with a 3-fold abundance shift) between the operating categories temperature (55oC 

vs. 30oC) and extraction (extraction/no extraction). 

To evaluate how operating or performance gradients described the subsystem-based 

function of the metagenome, we used redundancy analysis of the Pearson distance 

principal coordinates in the Vegan community ecology package for R [Oksanen et al., 
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2011].  Redundancy analysis is essentially a principal component decomposition of 

principal coordinates.  The resulting principal components are known as “unconstrained 

principal components”, and they show as much separation as possible between samples 

on two axes.  Constrained principal components are made by using gradients, such as 

operating conditions or performance variables, to recreate the unconstrained principal 

components.  Thus, in our application using subsystem-based between-sample distances, 

a good correlation between constrained and unconstrained axes indicates that the 

constraining variables are predictive of the subsystem-based function of the metagenome.  

Next, we constrained the entire set of principal coordinates by one operating or 

performance variable at a time and plotted them against one another (operating conditions 

vs. performance).  The type of correlation between the constraints is useful in identifying 

the dynamic between operating condition-explained metagenome functional composition 

and performance-explained functional composition, thus, linking the operating conditions 

and performance through the community metagenome.	

We used USEARCH version 4.2.133 [Edgar, 2010] to search against the NCBInr 

database, which we divided into 29 equal parts to increase the speed of searches.  We 

queried 4 million sequence reads against each part of the database with a 10-6 e-value 

cutoff and 70% sequence identity (USEARCH does not count gaps, so this corresponds to 

~60% identity in a BLAST search).  We used a last common ancestor (LCA) algorithm to 

annotate the taxonomy and function of genes.  After annotation, we summarized the 

taxonomy results for the whole metagenome and two processes within the metagenome: 

1. The chain-elongation pathway catalyzed by Clostridium kluyveri [Seedorf et al., 2008], 
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and 2. Both the NAD- and NADP-dependent alcohol dehydrogenases (EC 1.1.1.1 and EC 

1.1.1.2). 

 

5.3 Results 

Bioreactor operation and performance 

We operated two ethanol-supplemented anaerobic bioreactors converting dilute-acid 

pretreated corn fiber to carboxylates.  We supplemented ethanol (i.e., electron pushing) as 

a source of energy and electrons for microorganisms that couple ethanol oxidation to 

reduction of short-chain carboxylates (acetate and n-butyrate), resulting in medium chain 

carboxylates (n-caproate and n-caprylate) [Agler et al., 2011; Steinbusch et al., 2011].  

We compared performance between a bioreactor with in-situ product specific extraction 

(Rp) and one without extraction (Rc) at three different operating temperatures to optimize 

the chain elongation reactions leading to n-caproate and n-caprylate (Figure 5.1).  Here, 

we report n-caproate/n-caprylate specificity (i.e., the ratio of n-caproate and n-caprylate 

in COD to all other carboxylates in COD) and carboxylate production rates (i.e., the rate 

of formation of a carboxylate or a group of carboxylates in COD) as the total of products 

collected in the effluent and in the extraction system.   
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Figure 5.1. Performance comparison between a bioreactor with in-situ product specific extraction (Rp) and 
a bioreactor without product extraction (Rc).  A. Fermentation product specificities in chemical oxygen 
demand (COD) and biogas carbon speciation at 55oC; B.  Fermentation product specificities COD biogas 
carbon speciation at 40oC; and C.  Fermentation product specificities COD speciation and biogas carbon 
speciation at 30oC 
 
 

The first operating condition we tested was 55oC, corresponding to typical 

thermophilic bioreactor conditions.  At this temperature, the n-caproate/n-caprylate 

specificity was 11% and 6% for Rp and Rc, respectively, (Figure 5.1A) and about two-

thirds of the biogas carbon was in methane.  To promote chain elongation in the 

bioreactors, we decreased the temperature to 40oC, but the n-caproate/n-caprylate 

specificity only changed marginally, indicating that this temperature was still not 
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optimum for chain elongation (Figure 5.1B). Carbon dioxide reduction to methane was 

more complete, with 95% and 85% of biogas carbon in the form of methane for Rp and 

Rc, respectively (Figure 5.1B).  Even though some carbon dioxide may have been 

reduced to acetate at 40oC, it could not have been responsible for the increase in acetate 

specificity in Rp at 40oC because the acetate production rate increase from 0.011 mol 

acetate C l-1 d-1 at 55oC to 0.023 mol acetate C l-1 d-1 at 40oC was very large compared to 

the total available biogas carbon at 55oC (0.0018 mol C l-1 d-1).  Finally, we decreased the 

bioreactor temperature to 30oC, resulting in the maximum n-caproate/n-caprylate 

specificity for Rp of 52% and for Rc of 18% (Figure 5.1C).  The n-caproate/n-caprylate 

production rate was six times higher in Rp compared to Rc (1.16 vs. 0.19 g COD l of 

bioreactor-1 d-1) and the total carboxylate production rate (i.e., the combined rate of 

formation of acetate, propionate, is butyrate, n-butyrate, iso valerate, n-valerate, n-

caproate and n-caprylate in COD) in Rp was more than double that of Rc (2.10 vs. 0.97 g 

COD l-1 d-1).  Hydrolysis of the corn fiber substrate was relatively consistent throughout 

the entire operating period (Figure A4.S2), indicating that the increase in specificity and 

product rates was due to higher rates of ethanol utilization in Rp (~89% of the supplied 

ethanol was utilized in Rp vs. ~30% in Rc).  The portion of biogas carbon as methane at 

30oC was higher in Rp with 95% methane compared to 55% in Rc (Figure 5.1C).  The 

methane production rates were also higher in Rp, with 0.116 g COD l-1 d-1 vs. 0.026 g 

COD l-1 d-1 in Rc.  We attribute the lower methane production rates in Rc to accumulation 

of toxic n-caproate concentrations without product extraction [Butkus et al., 2011]. 

The community metagenome structure  
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We used the community metagenome structure of Rp and Rc to understand the 

dynamics between operating conditions and bioreactor utilization of the electron-pushing 

substrate ethanol to upgrade acetate and n-butyrate to n-caproate and n-caprylate and to 

reduce carbon dioxide to methane.  We sequenced the metagenome of a total of 12 

samples (8 from Rp and 4 from Rc); one sample from each bioreactor was collected at 

55oC, one from each at 40oC, and 6 from Rp and two from Rc at 30oC.  The 30oC samples 

were collected at various levels of n-caproate/n-caprylate specificity so that we could 

evaluate changes in the structure along performance gradients.  Using barcoded 

sequencing on the Illumina HiSeq platform, we obtained an average of 12.5 million high-

quality reads sample-1 (average 98.2 bp per sequence) after filtering.  Our primary 

measure of community metagenome structure was principal coordinate analysis of SEED 

subsystem-based functional abundances, using Pearson distances to compare gene 

functional profiles between samples.  In redundancy analysis of the functional subsystem-

based principal coordinates, we could visualize 85% of community metagenome inertia 

(i.e., variation) on two axes (Figure 5.2A). 

To find statistical correlation between operating conditions, metagenome functional 

composition, and performance, we performed constrained ordination of the functional 

subsystem-based principal coordinates.  We constrained the distances between samples 

with the operating variables temperature (55oC, 40oC, and 30oC) and extraction 

(extraction or no extraction), and found that the variables described 98% of the inertia 

described by the metagenomic functional data (98% is calculated by the total inertia 

described by cRDA 1 and cRDA 2 divided by the total inertia described by RDA1 and 

RDA 2, multiplied by 100)(Figure 5.2B).  Next, to link bioreactor performance and 
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metagenomic functional shifts due to operating conditions, we again constrained the 

functional subsystem-based principal coordinates with three variables one at a time: 1. 

rate of ethanol consumption (performance), 2. temperature (operating condition), and 3. 

extraction (operating condition).  Because higher productivity corresponded with 

increased ethanol utilization, we reasoned that the rate of ethanol consumption should 

describe the sum of electron pushing pathways (n-caproate, n-caprylate, and methane 

production) that were active, and thus the overall performance of the bioreactors.  We 

plotted each of the operating condition-constrained axes against the performance-

constrained axis (Figure 5.2C and 5.2D), and found that the aspects of metagenome 

functional composition that were determined by the bioreactor operating conditions also 

explained bioreactor performance (R2 = 0.56 for temperature and R2 = 0.93 for extraction 

Figure 5.2C and 5.2D), although the relationships were different (nonlinear for 

temperature and linear for extraction).  The nonlinear relationship for temperature 

explains that the community metagenome was capable of efficient ethanol utilization at 

30oC.  The linear correlation for extraction and performance indicates that extraction 

continuously altered the same metagenome functional composition that corresponded to 

performance.  Thus, extraction efficiency is directly correlated to performance 

improvements.  
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Figure 5.2.  (Constrained) redundancy analysis of SEED subsystem-based functional abundance principal 
coordinates.  Green circles correspond Rp samples and red triangles correspond to Rc samples.  A. 
Unconstrained redundancy analysis showing as much of the functional abundance-based distance between 
samples as possible on two axes; B. The operating categories temperature and extraction predict ~98% of 
the unconstrained functional abundance-based distance between samples; C. One-dimensional constrained 
redundancy analysis comparison of the constraints rate of ethanol consumption (performance) and 
extraction (operating conditions) display a linear dynamic relationship between the variables; and D. One-
dimensional constrained redundancy analysis comparison of the constraints rate of ethanol consumption 
(performance) and temperature (operating conditions) display a nonlinear dynamic relationship between the 
variables. 
 
 

To further validate the inference that operating conditions dictated the metagenomic 

functional composition and that the functional composition was indicative of 

performance, we created a 100-fold bootstrapped sample-distance tree of the same 
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subsystem abundance data (again using Pearson distances).  In the bootstrapped tree, 

bioreactor samples clustered by temperature, regardless of whether or not extraction was 

performed on the sample.  Within the group of 30oC samples, clustering was by whether 

the sample derived from Rp (extraction) or Rc (no extraction) (Figure 5.3).  Furthermore, 

within the group of extraction samples at 30oC, samples corresponding to the highest n-

caproate/n-caprylate specificity clustered closely together (blue shading in Figure 5.3).  

Gene plots (Figure A4.S3) describing the significance of changes in gene abundance due 

to temperature or extraction further showed that both operating conditions had substantial 

effects on the community metagenome structure (529 and 101 significant genes for 

temperature and extraction, respectively at p < 0.05 and a 3-fold relative abundance 

shift).  Therefore, the bioreactor operating conditions determined the metagenome 

functional structure of the mixed microbial communities, and the functional structure, in 

turn, was correlated with ethanol utilization for electron pushing. 
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Figure 5.3.  100-fold bootstrapped sample-distance tree of the SEED subsystem-based functional 
abundance data, demonstrating sample clustering first based on temperature, then based on extraction or no 
extraction.  The pair of samples shaded in blue represent samples with the highest n-caproate/n-caprylate 
specificity. 
 

Gene taxonomy and performance 

We already determined that the community metagenome functional composition 

could predict the ability of the bioreactors to accept ethanol as an electron-pushing 

substrate.  Next, we wanted to determine if we could correlate the taxonomic distribution 

of genes in the bioreactor with n-caproate/n-caprylate specificity.  Annotation of short 

shotgun-genome sequences with taxonomy should be performed carefully because the 

results are biased by both the database and how well conserved specific genes are 

between species.  Thus, we searched against NCBInr, a relatively large database of gene 

taxonomy, and used an LCA algorithm to assign genes with hits to multiple organisms to 

the last common ancestor of the multiple hits.  Even with these strategies, we expect bias 

in gene taxonomy results, therefore, we use the analysis as a tool to probe taxonomy and 

form hypotheses.  First, we examined the distribution of taxonomy for genes assigned to 
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the class Clostridia in the entire metagenome of the samples (Figure 5.4A), because we 

expected Clostridium kluyveri or a similar organism to perform the chain elongation 

reactions [Seedorf et al., 2008].  From this analysis, it was apparent that the overall 

taxonomic distribution was primarily affected by temperature, with a large shift within 

Clostridia from primarily genes assigned to Thermoanaerobacterales to primarily genes 

assigned to Clostridiales.  We were not able to directly correlate abundance of any 

Clostridia taxonomic groups with n-caproate/n-caprylate specificity. 

Next, we examined the taxonomic distribution for only the metabolic pathway that 

Clostridium kluyveri uses to elongate acetate to produce n-butyrate (the same or 

analogous genes are used to produce n-caproate [Seedorf et al., 2008]).  We found that in 

samples with the highest n-caproate/n-caprylate specificity, 65-75% of genes were 

assigned to the class Clostridia.  We were surprised to find that genes assigned to the 

family Clostridiaceae (which includes Clostridium kluyveri) were decreasing during the 

operating period at 30oC; note that Clostridium kluyveri has already been implicated in 

chain elongation with ethanol in undefined mixed culture fermentations at pH 7 

[Steinbusch et al., 2011].  We did find two correlations to n-caproate/n-caprylate 

specificity at 30oC: the entire order Clostridiales (R2 = 0.87) and the family 

Syntrophomonadaceae (R2=0.93) (Figure A4.S4).  Bacteria in Syntrophomonadaceae 

(e.g., Syntrophomonas wolfei) are typically found in syntrophic relationships with 

hydrogenotrophs in anaerobic digesters, where they oxidize carboxylates [McInerney et 

al., 1981].  We do not expect that this was its role in these chain-elongating bioreactors 

for two reasons.  First, Syntrophomonas sp. oxidation reactions are inhibited by minor 

buildup of carboxylates (~20 mM acetate) [Beaty and McInerney, 1989] and carboxylate 
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levels in our bioreactors were much higher.  Second, we calculated that oxidation of n-

butyrate at bulk bioreactor conditions was only marginally thermodynamically favorable 

at 30oC (ΔGr = -3 kJ/mol to 0 kJ/mol, Figure A4.S5), probably not enough to support 

growth [Kleerebezem and Stams, 2000].  It is more likely that these 

Syntrophomonadaceae operated in a reductive fashion, similar to Syntrophomonas wolfei 

grown in pure culture on crotonate, wherein it uses an electron bifurcating pathway 

(oxidation of some of the crotonate for energy and reduction of some of the crotonate) 

similar to Clostridium kluyveri to produce n-butyrate and n-caproate [Beaty and 

McInerney, 1989].  If a Syntrophomonadaceae sp. was partly responsible for chain 

elongation, it is surprising that relatively few genes were assigned to the family in the 

whole metagenome taxonomic distribution (Figure 5.4A).  However, other factors, such 

as poor specificity in taxonomic identification for Syntrophomonadaceae genome 

sequences, could obscure the population in the overall community.  
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Figure 5.4.  Taxonomy distribution of the class Clostridia (other phyla are shown for comparison) in genes 
annotated by searching against the NCBInr database, overlaid with the n-caproate (C6)/n-caprylate (C8) 
specificity.  Bars with a * symbol are samples taken from the bioreactor with in-situ product extraction 
(Rp).  The bars are organized first by temperature (from left to right), then in order of increasing n-
caproate/n-caprylate specificity within temperatures; A. Taxonomic distribution within the class Clostridia 
for the entire metagenome; and B. Taxonomic distribution within the class Clostridia for the chain 
elongation pathway from acetate to n-butyrate [Seedorf et al., 2008]. 
 

Alcohol dehydrogenase gene taxonomy 

Syntrophomonadaceae were correlated with n-caproate/n-caprylate specificity and 

these organisms have been shown to metabolize crotonate to n-butyrate and n-caproate 

reductively, but we found no evidence in the literature to indicate that it could elongate 

short-chain carboxylates with ethanol.  Potentially, other microbes oxidized ethanol and 

Syntrophomonadaceae used an intermediate metabolite to produce n-caproate and n-
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caprylate.  We looked at the taxonomic distribution of alcohol dehydrogenase genes in 

our bioreactors to determine how genes were distributed among groups of organisms 

(Figure A4.S6).  The gene distribution for ethanol oxidation, compared to chain 

elongation, was much more broadly distributed among bacterial taxa.  Specifically, in the 

four samples with the highest n-caproate/n-caprylate specificity, about 20-25% of ethanol 

oxidation genes were assigned to various Clostridia, 5-15% were assigned to Bacilli 

(mostly the family Lactobacillaceae), and 15-25% were assigned to Actinobacteria 

(mostly the family Bifidobacteriaceae) (Figure A4.S6).  We did not find significant 

correlations of taxonomy to performance.  The wide distribution amongst taxa may 

indicate that several organisms were involved in ethanol oxidation.  We calculated at bulk 

conditions during operation at 30oC in Rp, that ethanol oxidation directly to acetate and 

hydrogen was thermodynamically favorable (Figure A4.S5), which makes oxidation by 

multiple species of microbes very likely.  

Only a few alcohol dehydrogenase genes were assigned to Archaea (not shown), 

indicating that a direct coupling of ethanol oxidation and carbon dioxide reduction by a 

single methanogen (e.g., Methanogenium organophilum [Frimmer and Widdel, 1989]) 

was unlikely.  Therefore, we expect that hydrogen utilized for carbon dioxide reduction 

to methane was produced when ethanol was oxidized, either directly to acetate and 

hydrogen, or with a coupling reaction such as chain elongation that also produced some 

hydrogen (Figure A4.S5).  

 

5.4 Discussion 
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Bioreactor functionality is accurately linked to operating conditions through 

metagenomics 

We determined via metagenomic analysis of carboxylate bioreactors that the variables 

temperature and extraction had significant effects on metagenomic functional 

composition of the bioreactors.  Dinsdale et al. [2008] first showed that this was possible 

by using functional metagenomic data to show that environment (i.e., operating 

conditions) corresponds to metagenomic structure.  In our bioreactors, temperature 

affected the functional metagenome content the most, which is expected because 

microbial colonization of diverse temperatures has required distinct evolutionary changes 

[Berezovsky and Shakhnovich, 2005].  The nonlinear (i.e., threshold) correlation of 

performance to the metagenome functional composition caused by temperature in our 

bioreactors is the expected, since 30oC was the only temperature at which the bioreactor 

community could catalyze chain elongation with ethanol.  Extraction was also important, 

and the linear correlation to performance through functional composition indicates that 

bioreactor metagenomes exhibited a smooth transition from no extraction and poor ability 

to utilize ethanol to extraction and rapid ethanol utilization.  Because the main function of 

extraction is to remove end products, we can predict that the transition to communities 

allowing more electron pushing would continue along this gradient if product removal 

were more efficient. 

Metagenome taxonomy implicates chain elongation by a consortium of microbes 

We found that supplementing ethanol to bioreactors converting dilute-acid pretreated 

corn fiber to carboxylates at 30oC while simultaneously performing in-situ product-

specific extraction adjusts the product spectrum from primarily acetate and n-butyrate to 
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higher-value n-caproate and n-caprylate.  Steinbusch et al. [2011] already determined in 

methanogen-inhibited mixed culture ethanol supplemented fermentations at pH 7, that 

acetate and n-butyrate are converted to n-caproate and n-caprylate.  They suggested that 

Clostridium kluyveri dominated the process, but they only used selective sequencing 

methods (i.e., DGGE band isolation followed by cloning and sequencing). Here, we 

found that within genes in the chain elongation pathway, the taxonomic group correlated 

with n-caproate/n-caprylate specificity was the family Syntrophomonadaceae.  Because 

Syntrophomonas sp. are known to reduce crotonate to n-butyrate and n-caproate [Beaty 

and McInerney, 1989], and because bioreactor conditions made oxidation of short-chain 

carboxylates by these species unlikely, our results suggest that species within 

Syntrophomonadaceae may have participated in chain elongation.  Further, alcohol 

dehydrogenase genes were dispersed throughout a wide variety of taxa, and we did not 

find evidence in literature that cultured Syntrophomonas sp. are capable of ethanol 

oxidation (indeed, the Syntrophomonas wolfei genome does not contain an annotated 

alcohol dehydrogenase gene), indicating that electrons may have been transferred 

between species.  Thus, our results suggest that another bacterium may be required in a 

hitherto undescribed mutualistic relationship.  For example, ethanol oxidation could 

proceed directly to acetate and hydrogen and hydrogen could be used to reduce acetate to 

an intermediate, such as crotonate, which Syntrophomonadaceae can convert to n-

caproate. This hypothesis requires further research because it is only based on the 

taxonomy of genomic DNA sequences and thermodynamic calculations.  If future work 

shows that some microbes oxidize ethanol in the process of providing substrate for 

Syntrophomonas, maintaining a low hydrogen partial pressure with hydrogenotrophic 
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methanogens may be more than an added benefit: it could be a requirement to sustain a 

functioning community that can elongate carboxylates if the chain elongation process 

does not itself consume hydrogen. 

Simultaneous chain elongation and carbon dioxide reduction  

We showed here that the product spectrum and product specificity of undefined 

mixed cultures for the carboxylate platform can be significantly altered by electron 

pushing and simultaneous in-situ product-specific extraction.  Further, we demonstrated 

that electron pushing with ethanol resulted in two simultaneous product-upgrading 

reactions: chain elongation of acetate and n-butyrate to n-caproate and n-caprylate and 

reduction of carbon dioxide to methane.  In doing so, we recovered carbon in the form of 

methane - a useful product - that would otherwise have been lost as carbon dioxide off 

gas.  In fact, only small amounts of carbon dioxide were present in biogas, which 

consisted mainly of methane.  Traditional thinking had included hydrogenotrophic 

methanogenesis as a major “barrier” to effective carboxylate bioproduction [Agler et al., 

2011; Steinbusch et al., 2009].  The basis for this is that carboxylates are oxidized by 

syntrophic bacteria when hydrogen partial pressures are very low, which would be 

counter-productive.  Here, we found that at bulk bioreactor conditions when most of the 

hydrogen was oxidized for methane production, carboxylate oxidation was still only 

barely thermodynamically feasible, not enough to support the growth of syntrophic 

microorganisms.  It could be argued that more efficient product extraction (to remove all 

effluent carboxylates as n-caproate and n-caprylate) would result in more methane 

production, lower hydrogen partial pressures, and the onset of carboxylate oxidation.  

However, our metagenome functional ordinations showed that more efficient product 
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removal should also result in more efficient reduction of carbon dioxide with ethanol.  

This phenomenon could cause an increase in hydrogen partial pressures because there 

would be very little carbon dioxide remaining as an electron acceptor for hydrogen 

oxidation.  In this case, bioreactor design could include a catalytic system to remove 

excess hydrogen or should allow for external carbon dioxide supplementation to 

encourage hydrogenotrophic methanogenesis. 

Metagenomics yields valuable information to direct future work to improve stability 

Based on the functional content of bioreactor metagenomes, we determined with 

statistical certainty that effective electron pushing with ethanol is only possible at low 

temperature (30oC) and with efficient product-specific extraction.  This system resulted in 

up to 54% n-caproate/n-caprylate specificity and fermentation product rates of n-

caproate/n-caprylate that were 6 times those without product specific extraction.  The 

approach we used combined relatively low-cost (~$250 per sample) metagenomic 

sequencing methods with	 ecological	 techniques to precisely determine the operating 

conditions/performance relationship in bioreactors converting dilute-acid pretreated corn 

fiber to n-caproate and n-caprylate.  This application of metagenomics, which builds on 

work already performed by Dinsdale et al. [2008], is a diversification from previous 

bioreactor metagenomic studies that focus on covering as much of the metagenome as 

possible (at a higher cost per sample) to infer relationships and to discover new genes 

[Schluter et al., 2008].  This new application is important because it represents an 

opportunity to further improve performance of the carboxylate platform for which direct 

links between operating conditions and performance has until now yielded conflicting 

results. 
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CHAPTER 6. 

 

SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK 

This chapter is not published. 

 

6.1 Summary 

The carboxylate platform transforms biomass feedstocks into valuable biochemicals, 

using at least one bioprocess catalyzed by anaerobic undefined mixed cultures of 

microbes that transform the (pretreated) feedstock into carboxylates (Chapter 2). 

Bioprocesses with undefined mixed cultures of microbes have, thus far, largely focused 

on anaerobic digestion of biomass to produce methane as an end product (via 

carboxylates as intermediates).  In all carboxylate platform processes, carboxylates are 

always an intermediate from primary fermentation (i.e., conversion of biomass into the 

products ethanol, acetate, propionate, lactate, and n-butyrate).  Methane production is a 

secondary fermentation process (i.e., coupled oxidation of high energy primary 

fermentation products to reduction of low-energy primary fermentation products) that 

results in excellent product yields and specificity.  While we have shown that methane 

production is a valuable application of the carboxylate platform for industries with high-

energy waste streams (Chapter 3), we have also determined that application of principles 

that cause efficiency in anaerobic digesters can also guide new processing techniques that 

produce carboxylates as end products (Chapter 4 and Chapter 5).  Development of 

carboxylate platform bioprocesses to produce carboxylates have, thus far, struggled to 

achieve high product yields and specificity because the systems are not well understood.  
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We showed that application of ecological methods to high-throughput analysis of 

bacterial community structure has the potential to bring more certainty to predictions 

relating function to environmental factors, such as end product inhibition (Chapter 4).  

We also found that the structure of bacterial communities were substrate dependent and 

that secondary fermentation processes should be manipulated to maximize yields and 

specificity (Chapter 4).  Finally, we found that “electron pushing” (i.e., addition of a 

substrate, such as ethanol, to upgrade fermentation products) combined with in-situ 

product specific extraction can improve product specificity in carboxylate platform 

bioreactors (Chapter 5).  Functional metagenomic analysis showed that the dynamic 

relationship between environment (i.e., operating conditions) and function (i.e., 

performance) can be revealed with ecological techniques and that these relationships 

generated information about further improving community performance (Chapter 5).  In 

addition, we discovered that the pathway for chain elongation with ethanol (i.e., coupled 

ethanol oxidation and n-butyrate reduction to n-caproate and n-caprylate) in the 

bioreactors may proceed via a consortium of microorganisms and that this has 

implications for defining optimum operating parameters (Chapter 5).  The findings here 

bring up new potential applications and further questions about functionality of the 

carboxylate platform.  In light of the data from these studies, several recommendations 

for future work follow. 

 

6.2 Recommendations for Future Work 

Conversion of “beer” from the ethanol industry to medium-chain carboxylates 



 
 

105

In Chapter 3, we found that by producing methane from thin stillage (i.e., essentially 

the waste left over after distillation to remove ethanol from fermented “beer”), corn-

kernel to ethanol plants could offset a significant amount of the energy they consume.  

Most of the energy consumed in the plants is for distillation (Chapter 2), which upgrades 

ethanol from low concentrations in beer (with little value) to a 95% pure form that is 

valuable as a fuel and chemical feedstock.  In Chapter 5, we found that ethanol pushing 

helped to increase the value of carboxylate products fermented from dilute-acid 

pretreated corn fiber to n-caproate and n-caprylate.  Further, n-caproate and n-caprylate 

are easy to extract with membrane-based systems, which uses little energy (other than 

producing alkali chemicals to maintain the pH gradient).  This represents a new method 

to indirectly recover ethanol while converting both the ethanol and lignocellulosics 

contained in “beer” to a specific end product.  The economic and environmental 

sustainability of this process is unclear, and an assessment should include a full life-cycle 

analysis. 

Lactate chain elongation in thermophilic bioreactors 

In Chapter 4, we discovered that lactate was produced as an intermediate during the 

feeding cycle of the bioreactors producing primarily n-butyrate, because of fermentation 

of saccharides for pretreatment of corn fiber.  Lactate was most likely consumed by a 

coupling of lactate oxidation to acetate and n-butyrate reduction to produce n-butyrate 

and n-caproate, respectively (i.e., lactate chain-elongation), perhaps by a member of the 

genus Thermosinus.  In Chapter 5, we found that bioreactor communities were incapable 

of catalyzing ethanol chain-elongation at thermophilic (55oC) temperatures, and 

functional metagenomics confirmed that the community was incapable of performing the 
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process at these conditions.  Thus, lactate should be evaluated as an electron-pushing 

substrate to upgrade the product spectrum in thermophilic bioreactors.  In that study we 

correlated n-caproate production with Thermosinus, but it is possible that Thermosinus is 

only involved in an aspect of the chain elongation.  Therefore, the process should be 

evaluated in lab-scale carboxylate platform bioreactors, coupled with a functional 

metagenomic analysis to evaluate which factors contribute to lactate chain elongation so 

that the process can be optimized.  Based on our results with ethanol chain elongation, 

the study should focus on whether product extraction is required for chain elongation and 

whether or not significant increases in extraction efficiency improve performance.  

The role of community evenness in thermophilic bioreactors 

Research has already revealed that community evenness is important in maintaining 

ecosystem function under stress in mixed microbial communities [Werner et al., 2011b; 

Wittebolle et al., 2009].  In Chapter 4 we discovered that our thermophilic bioreactor 

communities were relatively uneven, and it is unclear if this is a function of temperature, 

toxicity of end products, or both, or if an uneven structure is relative and is always a 

result of thermophilic temperatures.  To study the stability of thermophilic systems, 

future research should implement high-throughput 16S rRNA gene surveys of microbial 

community structures in bioreactors to evaluate evenness under a range of conditions.  

One possible scenario would compare four bioreactors fed the same lignocellulosic 

substrate with key differences: 1. A mesophilic anaerobic digester supplemented with 

lactate and with optimum conversion of carboxylates to methane, 2. A thermophilic 

anaerobic digester supplemented with lactate and with optimum conversion of 

carboxylates to methane, 3. A thermophilic bioreactor supplemented with lactate to 
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accumulate a mix of carboxylates, and 4. A thermophilic bioreactor supplemented with 

lactate and with high-rate product specific extraction to remove nearly all carboxylates 

from the system.  This scenario would determine whether thermophilic temperatures are 

cause for uneven communities in bioreactors, if product removal is responsible for 

improvements in evenness in thermophilic environments, or if anaerobic digestion results 

in an even community because of the series of metabolic conversions required to 

completely convert substrate to methane. 

Chain elongation pathways in ethanol-supplemented bioreactors 

Previous research demonstrated with selective 16S rRNA gene sequencing techniques 

(i.e., DGGE followed by manual band selection, isolation, and cloning) that chain 

elongation with ethanol as the electron pushing substrate at pH 7 was catalyzed by 

microbial communities dominated by Clostridium kluyveri (26/45 clones had 98% 

sequence similarity to C. kluyveri) in their bioreactors [Steinbusch et al., 2011].  In 

Chapter 5, our metagenomic survey indicated that more than one microorganism 

(including a member of the family Syntrophomonadaceae) might be responsible for chain 

elongation with ethanol at pH 5.5.  If this is true, it is important to reveal the mechanisms 

of the chain elongation process to help reveal how different operating conditions would 

affect the process.  For example, a distribution of the three metabolic functions ethanol 

oxidation, intermediate metabolite formation, such as crotonate, and conversion of 

intermediates to n-caproate would force a reevaluation of what is considered to be an 

optimum environment.  Experiments should use high-throughput 16S rRNA sequencing, 

possibly combined with standard Sanger sequencing of isolated or enriched microbes or 

consortia and/or Sanger sequencing of isotope-labeled “heavy” 16S rRNA genes (i.e., 
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DNA-SIP) to determine with more certainty which microorganisms are responsible for 

chain elongation.  After this analysis, hypotheses can be made about whether or not direct 

oxidation of ethanol to acetate and hydrogen is necessary for chain elongation, or if other 

intermediates contribute to syntrophic relationships leading to chain elongation, and 

further experiments can determine the precise mechanisms in the bioreactors. 

Further research on the implications of methanogenesis for chain elongation 

In Chapter 5, we found that hydrogenotrophic methanogens could reduce carbon 

dioxide to methane side-by-side with chain elongation reactions that produce medium-

chain carboxylates, even though the hydrogen partial pressure was very low.  This 

finding alters the prevailing view that methanogens must be inhibited to prevent loss of 

product to competing processes [Agler et al., 2011; Steinbusch et al., 2009].  While we 

did show that n-butyrate oxidation would be unlikely at our bioreactor conditions, we did 

not perform experiments to prove that we did not experience some loss of product to 

oxidation reactions.  We also were unable to determine if high-efficiency product 

extraction would allow the onset of carboxylate oxidation.  If necessary, methanogens 

can be inhibited at both thermophilic (Appendix 2) and mesophilic [Steinbusch et al., 

2009; Van Kessel and Russell, 1996] temperatures, but the two prevailing techniques, 

chemical additives and carboxylate inhibition, add cost and limit bioreactor productivity, 

respectively.  Further, the added benefit of increased carbon recovery would be lost.  

Thus, experiments should determine with more certainty if a bioreactor pH of 5.5 at 

mesophilic temperatures prevents carboxylate oxidation so that methanogenesis and 

chain elongation with ethanol can exist together side-by-side (or if product extraction out-

competes carboxylate oxidation).  Experiments should also explore our hypothesis that 



 
 

109

for chain elongation at pH 5.5, hydrogenotrophs are required to maintain a low hydrogen 

partial pressure for bioreactor functionality (Chapter 5). 

Isolation and characterization of chain elongating microbes and/or consortium 

In parallel to experiments studying optimization of chain elongation with lactate or 

ethanol at thermophilic and mesophilic temperatures, respectively, isolated microbes or 

microbial consortia should be cultured and characterized.  In thermophilic systems, we 

expect this to include species within Thermosinus that catalyze chain elongation of 

acetate and n-butyrate with lactate.  Because other related microbes have been described 

that convert lactate to n-caproate [Marounek et al., 1989], we hypothesize that one 

microbe may be responsible for this reaction.  In mesophilic systems, we have 

hypothesized that a consortium of microorganisms is responsible for chain elongation 

with ethanol.  Culturing the responsible consortia should be followed by metabolic 

analysis with stable isotopes to determine which intermediate chemicals are involved.  If 

direct ethanol oxidation to acetate is involved, the ethanol-oxidizing microbe could be 

isolated on ethanol with artificial hydrogen removal or in culture with a hydrogenotrophic 

microorganism.  Once intermediates are identified, the culture could be fed the 

intermediate substrate to enrich a specific community member and DNA-SIP could be 

used with a labeled carbon source to determine with certainty which microorganisms are 

responsible for chain elongation. 
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APPENDIX 1. 

SUPPLEMENTAL INFORMATION FOR: THERMOPHILIC ANAEROBIC 

DIGESTION TO INCREASE THE NET ENERGY BALANCE OF CORN GRAIN 

ETHANOL 

 

Summary 

This supporting material provides additional information on bioreactor setup (A1.S1 

and Figure A1.S1); the nitrogen mass balance (A1.S2); trace element limitations (A1.S3) 

and effluent COD and VS/TS characteristics (Table A1.S2); oxygen influx (A1.S4); the 

methane yield (Figure A1.S2); biomass characteristics (A1.S5 and Figures A1.S3 and 

A1.S4); energy supplement calculations (A1.S6 and Table A1.S2); pH over the operating 

period (Figure A1.S5); and SEM pictures and X-ray powder diffraction spectra for 

characterization of struvite (Figure A1.S6). 

 

A1.S1 Experimental Setup 

The experimental setup included two identical lab-scale bioreactors (Mid-Rivers 

Glassblowing, Inc., St. Charles, MO), R1 and R2, each with a 5-l working volume 

(Figure A1.S1).  The bioreactors included a water jacket connected to a heating 

recirculator (Model 210, PolyScience, Niles, IL) to maintain a constant temperature of 55 

± 1oC.  Mixing was provided by recirculating headspace gas to the conical bottom of the 

bioreactor with a peristaltic pump (Cole-Parmer Instrument Co., Vernon Hills, IL).  A 

glass tube extending to the 3-l level of the bioreactor was used to feed thin stillage once 
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every day without headspace gas loss.  A similar tube was used to decant effluent with a 

peristaltic pump.  The gas collection system included a foam collection bottle, a gas 

sampling port, pressurized balls to prevent air entrance during decanting of effluent, a 

bubble counter to visualize gas flow, and a gas meter (Actaris Meterfabriek B.V., 

Dordrecht, The Netherlands). 

 
Figure A1.S1. Setup of a 5-l thermophilic anaerobic sequencing batch bioreactor (ASBR) for the 
bioconversion of thin stillage to methane (R1 and R2).  Lengths in cm.  
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A1.S2 Nitrogen Balance 

Assuming all nitrogen in the influent and effluent are contained in protein and 

ammonia species, the nitrogen balance was:  

Ntotal = Nprotein + Nammonium 

Nprotein = Protein  (g N/g protein) 

,where: 

Nprotein = concentration of N bound in protein 

Nammonium= total concentration of NH4
+-N (ammonia and ammonium) 

Protein = concentration of total protein 

(g N/g protein) = 0.16 g/g [Wang et al., 2003] 

 

To measure the N composition of the struvite precipitate, a known amount of 

precipitate was dissolved in 1 mL concentrated hydrochloric acid and neutralized (to pH 

7.0) by diluted sodium hydroxide.  Next, the total ammonium concentration in the 

solution was measured by the colorimetric phenate method with an end point reading at 

640 nm and ambient temperatures [APHA, 1998].  Total ammonium standards were 

made as described in Standard Methods [APHA, 1998], except we used a solution of 

sodium chloride instead of pure water with a concentration that was equal to that of the 

neutralized hydrochloric acid solution. 
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A1.S3 Trace Element Limitations 

The initial start-up period of 49 days showed low total VFA concentrations of 170 mg 

CH3COOH/l (SE =75.6, n =13) and 112 mg CH3COOH/l (SE = 55.5, n = 13) in the 

effluent of R1 and R2, respectively, which showed that startup was progressing in a 

stable manner (Figure 3.1B of main text).  However, on day 49 of the operating period 

the VFA levels began to rise in both bioreactors (Figure 3.1B).  They continued to rise 

until day 78 (to ~ 2,900 mg CH3COOH/l in R1), negatively impacting bioreactor 

performance with decreasing biogas production rates (Figure 3.1A).  On day 78 of the 

operating period, 5 ml of a mixed solution of several trace elements was added to R1.  A 

rapid decrease in the effluent VFA concentration to ~ 200 mg CH3COOH/l by day 99 and 

an increase in biogas production was observed (Figures 3.1A and 3.1B), implicating trace 

element deficiencies as the reason for digester instability.  After day 92, a cobalt solution 

was added to R2 rather than a mixed trace element solution.  This was done after finding 

that adding solely iron on day 85 of the operating period had no effect on bioreactor 

performance.  Similarly to the mixed trace element solution augmentation, the 

performance improved immediately after adding the cobalt solution with total VFA levels 

decreasing to ~ 200 mg CH3COOH/l on day 99 and biogas production rates returning to 

stable levels (Figures 3.1A and 3.1B).  A new batch of thin stillage feed was initiated on 

day 106 of the operating period with higher VS and TCOD concentrations (Table 3.1) 

without increasing the cobalt supplementation.  A subsequent rise in the total VFA 

concentration in R2 from ~ 100 to ~ 900 mg CH3COOH/l between days 113 and 119 was 

found (Figure 3.1B), which was immediately reversed after returning to the rate of cobalt 

augmentation of 1 ml/10 g influent TCOD once a week.  The rate of augmentation of 
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cobalt solution was constant from day 120 until the end of the operating period for both 

bioreactors. 

Table A1.S1. Characterization of effluent from thermophilic anaerobic digesters R1 and R2. 

HRT (RX) 
SCOD (g/l) TCOD (g/l) VS (g/l) TS (g/l) 

% Removal % Removal % Removal % Removal 

40 (R1) 3±0.5, n=3 16±3, n=2 6.65±2.77, n=4 9.85±3.76, n=4 
96.97 83.68 82.17 76.6 

40 (R2) 
3.5±1.5, n=3 16±11.5, n=2 6.18±2.46, n=4 9.04±3.27, n=4 

96.38 83.47 83.43 78.52 

30 (R1) 
5.5±2, n=3 14±5.5, n=4 4.72±0.15, n=3 8.26±0.37, n=3 

94.52 85.33 87.34 80.38 

30 (R2) 
5.5±2.5, n=3 12±2.5, n=4 4.71±0.10, n=3 8.06±0.02, n=3 

94.52 87.35 87.37 80.85 

25 (R1) 
2.5±1, n=3 7±1, n=3 4.97±0.07, n=3 8.63±0.13, n=3 

97.33 93.01 89 82.72 

25 (R2) 
3.5±0.5, n=3 8.5±0.5, n=3 5.15±0.11, n=3 9.63±1.85, n=3 

96.34 91.37 88.6 80.71 

20 (R1) 
3±0.5, n=4 6.5±2.5, n=4 4.19±0.51, n=6 7.66±0.76, n=6 

96.85 92.8 89.82 83.31 

20 (R2) 
3±0.5, n=4 6.5±2.5, n=4 4.90±0.53, n=6 8.51±0.52, n=6 

96.57 92.68 88.09 81.46 

15 (R1) 
2.5±0.5, n=7 8.5±2.5, n=6 3.71±0.97, n=11 7.13±1.14, n=11 

97.11 89.73 89.23 81.79 

15 (R2) 
2.5±0.5, n=5 7.5±4, n=4 3.92±0.97, n=9 7.34±1.13, n=9 

96.59 90.53 88.82 81.53 

10 (R1) 
3±0.5, n=3 7±0.5, n=3 3.41±0.78, n=4 6.94±0.83, n=4 

96.27 90.48 89.29 81.05 

10 (R2) 
3±0.5, n=5 6±2.5, n=5 3.42±0.50, n=5 7.15±0.62, n=5 

95.79 92.2 89.21 80.31 
 

 

A1.S4 Oxygen Influx 

Thirteen days after reaching the design HRT of 10 days, R1 was impacted by 

accidental oxygen exposure (day 284), while R2 continued to operate normally.  Oxygen 

inhibition to methanogens severely retarded the stability of R1, and for the following 30 
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days, the effluent total VFA concentrations were above 2,000 mg CH3COOH/l (Figure 

3.1B).  To stabilize R1, we reduced the HRT from 10 to 40 days on day 310 of the 

operating period (not indicated in Figure 3.1) and added diluted (1 M) sodium hydroxide 

on days 313 to 316 until the pH was increased from 6.64 to 6.86.  The bioreactor pH 

subsequently began to increase without sodium hydroxide addition to 7.08 on day 319 

(Figure A1.S5).  The HRT was reduced to 30 days on day 319, and eventually to 10 days 

by a step-wise shortening of the HRT during a period of 43 days (day 319 to 362).  Thus, 

R1 was able to recover from unstable conditions within a period of 2 months.  This 

accident resulted in a shorter period of 30 days (3 HRT periods) during which R1 was 

operated at a 10-day HRT compared to R2 (121 days or 12 HRT periods).  
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Figure A1.S5. pH level of bioreactor effluent over the operating period ( – R1;  – R2). 

 

A1.S5 Biomass Characteristics 

During the initial 200 days of the operating period, the VS concentrations in both 

bioreactors increased slowly and then reached a plateau (Figure 3.1C).  There are two 

reasons for this increase in VS concentration: 1. no deliberate (by opening a valve) or 

natural wasting (by effluent flow) of biomass took place: during the initial 200 days of 

the operating period, the top of the biomass blanket had not reached the 3-l working 

volume height (the inlet of the effluent tube) after the settling period; and 2. the 

settleability of the biomass increased, which was shown by a decreased SVI (Figure 

A1.S3), resulting in a more dense biomass blanket.  After day 200 of the operating 

period, VS levels in the effluent showed periodic spikes.  For example, the temporary 

increases in effluent VS during the 15-day HRT around day 230 for R1 and days 255 and 

330 for R2 were due to natural biomass wasting rather than bioreactor instability.  This 

wasting of biomass was a natural process, which allowed for selection of better settling 

biomass.  Despite not having a proper selection pressure on the bioreactors, some 

anaerobic granules (i.e., separate biomass entities after settling of most biomass with a 
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size of several mm) were found in the biomass of the bioreactor and floating on the top of 

the liquor (Figure A1.S4).  Deliberate wasting of surplus biomass from the bioreactor by 

opening a valve can prevent periodic higher VS levels in the effluent during full-scale 

treatment (however we did not perform deliberate wasting in this study).  A better 

settleability of the biomass after day 200 of the operating period, and thus a slightly 

higher SRT, resulted in the generally lower VS concentration in the effluent, with a 

combined average of 3.50 g/l (SE = 0.85 g/l, n = 69) during days 200-391 compared to 

4.55 g/l (SE = 0.62 g/l, n = 73) during days 50-200 of the operating period (Figure 3.1C).  

At the design HRT of 10 days, the biomass VS averaged 12.0 g/l (Figure 3.1) and the 

methane production was 2.00 l CH4/l/d (4.76 g CH4-COD/l/d).  Therefore, the calculated 

methanogenic activity based on mixed liquor VS was 0.40 g CH4-COD/g VS/d. 

 
Figure A1.S3. Sludge volume index (SVI) of the ASBRs over the operating period ( – R1;  – R2). 
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Figure A1.S4. SEM images of biomass granules. A. Biofilm growing in proximity of and on fiber particles 
(2,000 x magnification); and B. Surface of granule (10,000 x magnification). 
 

A1.S6 Energy Supplement Calculations 

To carry out energy supplement calculations, we used full-scale nonrenewable energy 

consumption and thin stillage production data for a 3.78108 l ethanol per year (100 

million U.S. gallon per year) dry-mill ethanol facility (Table A1.S1).  Since wet distillers’ 

grain and syrup dry weight data per volume of corn grain (kg/m3) make up the dry weight 

of DDGS per volume of corn weight, we could use data from a full-scale dry mill to 

calculate the 45% feed mass reduction without syrup addition (Table A1.S1, a).  The full 

scale facility used in this example has a typical natural gas requirement (for conventional 

dry mills, natural gas is used in boilers to produce steam, thermal oxidizers to remove 

volatile organic compounds from off gases, and flash dryers to dry DDGS) of 4.02108 

kJ/h.  In our calculation this requirement is reduced by: 1. the amount of natural gas that 

was originally dedicated to flash drying of syrup (7.62%) because syrup will no longer be 

added to wet distillers’ grain for animal feed production.  This percentage reduction was 

derived from the percentage of the total energy input dedicated to DDGS (16.86%) 

multiplied by the mass percentage of DDGS stemming from syrup (45.19%).  The 

resulting natural gas requirement without syrup drying is 3.71108 kJ/h (Table A1.S1, b); 
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and 2. the amount of natural gas used at the conventional dry mill, which can be replaced 

by the methane generated in thermophilic anaerobic digestion (42.94%).  The methane 

yield for the calculation (0.254 l CH4/g TCOD) is the combined yield from R1 and R2 

based on our study (Figure A1.S2).  The calculation for energy production rate from 

methane is based on the lower heating value of methane in biogas (Table A1.S2, c).  The 

percentage reduction from the energy required for a conventional plant is then 50.56% 

based on the energy production form methane (Table A1.S2, c) subtracted from the 

natural gas requirement without syrup drying (Table A1.S2, b).  The processing energy 

input (per unit energy in ethanol) that was assessed by Hill et al. [2006] was reduced by 

this percentage of ~ 51% in Table A1.S2 (d-1 and d-2).  We also reduced the energy 

output for feed credit (per unit energy in ethanol) (Table A1.S2, e) because of the ~ 45% 

reduction in animal feed quantity based on mass (Table A1.S2, a).  The new values of 

0.655 and 1.112, respectively (Table A1.S2, f), represent the new total input and output 

(per unit energy in ethanol) values for a dry mill with integrated thermophilic digestion of 

thin stillage, resulting in a new net energy balance (the ratio of output to input) of 1.70.  

We have not included the freed waste heat from circumventing evaporation in the 

calculation of the new net energy balance ratio.  In conventional dry mills, triple or 

quadruple-effect evaporators (~ 80% efficiency) are used to evaporate the ~ 143,000 kg 

of water per h (data from a 3.78108 l ethanol per year dry mill).  All of the required 

1.43108 kJ/h of energy for thin stillage evaporation is provided from low-grade energy 

derived from the original 4.02108 kJ/h input for steam generation and thermal oxidation.
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Table A1.S2. Calculation of the percentage of required nonrenewable energy input that can be 
replaced by methane from thermophilic ASBRs and the change of the NEB ratio for a 3.78108 l 
ethanol per year corn grain-to-ethanol plant with an integrated thermophilic ASBRs. 
 

Energy Input Source (per unit energy in ethanol) Ethanol DDGS Total  

Farm* 0.249 0.051 0.300  

Processing*     0.498 0.101 0.599 d-1 

Construction and Labor* 0.008 0.001 0.009  

Transport* 0.042 0.008 0.050  

Total* 0.797 0.161 0.958  

     

Energy Output (per unit energy in ethanol)     

Ethanol* 1.000    

Feed Credit* 0.203   e 

Total* 1.203     

     

Original Net Energy Balance Ratio* 1.26    

     

Processing     

Natural Gas Requirement in Conventional Plant** [kJ/h] 4.02·108    

Percent of Total Energy input to DDGS (from processing data)* 16.86% (due to flash drying)  

     

Processing with Anaerobic Digestion     

Wet Distillers’ Grain in Conventional Plant** (dry weight in kg/m3) 107.96   a 

Syrup Production in Conventional Plant** (dry weight in kg/m3) 89.00   a 

Feed Mass Reduction without Syrup Drying** 45.19%   a 

Natural Gas Requirement without Syrup Drying [kJ/h] 3.71·108   b 

     

Thin Stillage Flow** [l/h] 1.90·105   c 

Thin Stillage TCOD concentration*** [g TCOD/l] 1.00·102   c 

Methane Yield*** [l CH4/g TCOD]     2.54·10-1   c 

     

Methane Production Rate [l CH4/h] 4.83·106   c 

Methane Heat Content**** [kJ/l CH4] (Lower Heating Value) 3.58·101  Energy Production [kJ/h] 1.73·108 

     

Percent Reduction From Conventional Plant (due to Methane Generation and without Syrup Drying) 50.56% 

     

New Processing Energy Input (per unit energy in ethanol) 0.296   d-2 

New Total Energy Input (per unit energy in ethanol) 0.655   f 

New Total Energy Output (per unit energy in ethanol) 1.112   f 

     

New Net Energy Balance Ratio 1.70    

*Hill et al. [2006] 
**3.78108 l/yr full-scale dry mill data 
***This Study 
****Tchobanoglous et al. [2003]  
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Figure A1.S2. Methane yield graph for R1 and R2.  The combined yield was 0.254 l CH4/g TCOD fed with 
a R2 value of 0.99 ( – R1;  – R2). 

 

 
Figure A1.S6. Individual crystals of struvite: A. SEM view of the crystals (100 x magnification); and B. X-
ray powder diffraction intensity scan of the crystals.  The peak at 2 = 20 to 40 indicates an amorphous 
structure.  This scale does not show the top of the peaks with the goal to provide a higher resolution.  
Standard is provided for reference. 
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APPENDIX 2. 

HYDROGENOTROPHIC METHANOGEN INHIBITION DUE TO 
UNDISSOCIATED CARBOXYLIC ACID TOXICITY 
 

 

A2.1 Introduction 

Complete inhibition of methanogenesis has been implicated as being important in 

securing efficient production of carboxylates in the carboxylate platform [Shin et al., 

2004].  Methods of inhibition for undefined mixed cultures of microbes include heat 

shock [Oh et al., 2003] and chemical additions (such as 2-bromoethanesulfonate) [Zinder 

and Koch, 1984], both of which add operational costs.  Researchers have already shown 

that the undissociated form of carboxylic acids (specifically acetic acid) are toxic to 

methanogens at mesophilic (37oC) conditions [Van Kessel and Russell, 1996].  They 

attributed the mechanism of toxicity to intracellular accumulation of carboxylate anions 

when bulk bioreactor pH was acidic.  Therefore, to inhibit methanogens in a carboxylate 

platform process that is designed to produce (and thus would accumulate) carboxylate 

endproducts, low pH is an effective treatment.  Here, we sought to determine if the same 

mechanism could inhibit hydrogenotrophic methanogenesis at thermophilic temperatures. 

 

A2.2 Methods 

Batch hydrogenotrophic methanogen inhibition 

We inoulated 150-mL batch fermentation vessels with thermophilic sludge from a 

municipal wastewater treatment plant (Western Lake Superior Sanitary District, Duluth, 

MN).  All batch reactions were carried out in triplicate.  In short, in an anaerobic hood, 
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we added 7.5 mL basal medium (described elsewhere [Agler et al., 2010]), a 

predetermined amount of 1 M n-butyric acid (depending on the desired conditions), 100 

mM MES to a total volume of 72.75 mL, 2.5 mL thermophilic sludge, corrected to the 

correct pH at 25oC (corresponding to 5.5, 5.75, or 6.0 at 55oC), added 0.25 mL Na2S, 

capped the bottles with butyl rubber stoppers and crimp caps, and flushed each bottle 

with N2 for 10 min.  We incubated the bottles overnight with a 50/50 mixture of 

hydrogen/carbon dioxide and waited until methane headspace composition reached 10%.  

At this point we flushed bottles with nitrogen, added 75 kPa of 50/50 H2/CO2, and 

sampled periodically to record the rate of methane production.  At the end of the run, we 

measured the volatile suspended solids (VSS) in the solution to normalize methane 

production rates for the amount of biomass in each batch bottle.  Reported values are 

averages of the triplicates. 

Batch hydrogenotrophic methane formation in bioreactor mixed liquor 

We tested for hydrogenotrophic methane formation in mixed liquor taken from a 

bioreactor optimized for n-butyrate production during a 300-d operating period.  We 

performed triplicate 150 mL batch fermentations, as described above, except that we used 

bioreactor mixed liquor as inoculum and the medium contained 48.5 mM acetate and 

20.5 mM n-butyrate, approximately corresponding to the bioreactor composion.  We 

added a 50/50 mixture of hydrogen/carbon dioxide, resulting in ~6-7 mmol of each per 

gram of volatile solids added as inoculum.  This time we measured hydrogen, carbon 

dioxide, and methane biogas composition over the course of a 144-h operating period. 

 

A2.3 Results 
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We tested inhibition of thermophilic hydrogenotrophic methanogens via carboxylate 

toxicity with batch incubations of thermophilic sludge from an anaerobic digester.  We 

found that thermophilic hydrogenotrophic methanogenic activity (measured in terms of 

mL CH4 g volatile suspended solids (VSS)-1 d-1) decreased substantially in the presence 

of high concentrations of total n-butyrate (Figure A2.1A, Table A2.1).  The inhibition 

was much more pronounced at pH levels below 6, indicating that undissociated n-butyric 

acid may be responsible for inhibition. We extrapolated to 90% inhibition and found that 

it occurred in the range of 13.6 – 31.4 mM undissociated n-butyric acid at a pH of 5.5 – 6 

(Table A2.1).  This is a small range compared to the extrapolated 90% inhibition by total 

n-butyrate, which were 96.1 – 435.1 mM, which indicates that undissociated butyric acid 

is the inhibiting form of the acid. 

Table A2.1.  n-Butyrate and n-butyric acid levels (extrapolated from Figure 
A2.1A) to achieve 90% inhibition of hydrogenotrophic methanogenic 
activity. 

pH 
Total 

n-Butryate (mM) 
Undissociated 

n-Butyric Acid (mM) 
5.50 96.1 18.9 
5.75 111.9 13.6 
6.00 435.2 31.4 

 

To determine if methanogen inhibition extended to actual thermophilic bioreactors in 

which the microbial community had been shaped by envirnmental conditions to be 

optimized for n-butyrate production (Chapter 4), we tested for hydrogenotrophic 

methanogenic activity in biomass from a thermophilic bioreactor that had been operated 

to convert dilute-acid pretreated corn fiber to n-butyrate at pH 5.5 for 300 days.  The 

batch tests were run at conditions simulating the bioreactor environment, with a pH of 5.5 

and initial concentrations of 48.5 mM total acetate and 20.5 mM total n-butyrate (8.1 mM 

and 4.0 mM of undissociated acetic acid and n-butyric acid, respectively).  After 72 hours 
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we detected no accumulation of methane nor any significant decrease in hydrogen or 

carbon dioxide levels.  Hydrogen levels did decrease slightly between measurements at 

72 hours and 144 hours, but we did not detect any methane (Figure A2.1B) or acetate 

accumulation due to acetogenesis (not shown) and we expect that hydrogen diffused from 

the butyl bottle stoppers.  Thus, hydrogenotrophic methanogen inhibition was complete 

in a thermophilic microbial community that was formed under conditions to optimize n-

butyrate production. 

 

Figure A2.1. Inhibition of thermophilic hydrogenotrophic methanogens.  A.  Effect of the total n-butyrate 
concentration on hydrogenotrophic methanogenic activity at three pH levels; B. Inhibition of 
hydrogenotrophic methanogenesis in bioreactor sludge optimized for n-butyrate production. 
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A2.4 Discussion 

Control of hydrogenotrophic methanogens is important because depending on the 

carboxylate platform application, partial pressures of hydrogen may need to regulated 

precisely for two reasons.  First, the product distribution in primary fermentation (i.e., 

conversion of substrate carbon to ethanol, acetate, propionate, lactate, and n-butyrate) of 

carboxylates depends partly on hydrogen partial pressures because at partial pressures > 

~60 Pa, oxidation of NADH with protons to balance electron pools is inhibited [Angenent 

et al., 2004].  Second, product specific extraction (i.e., removal of a specific bioproduct 

of interest from fermentation broths) is a method to increase fermentation product yields 

[Wu and Yang, 2003] and product specificity (Chapter 5).  If methanogen inhibition is 

required for functionality or feasibility in a specific bioprocess, efficient product specific 

extraction may decrease system toxicity, resulting in the onset of methanogenesis. 

We found that, similar to the results of others at mesophilic temperatures and with 

acetate [Van Kessel and Russell, 1996], inhibition of thermophilic hydrogenotrophic 

methanogens by n-butyrate appeared to be primarily due to the toxicity of the 

undissociated form of acid.  Therefore, when methanogen inhibition is required and 

undissociated carboxylic acids cannot be maintained at high enough levels (e.g., at a pH 

of 7.0 or with product extraction), chemical inhibition of methanogens may be necessary.  

Further, our results with bioreactor inoculum demonstrated complete methanogen 

inhibition at ~ 12 mM of total undissociated carboxylic acids (total of acetic and n-

butyric acids) even though n-butyric acid was only ~4 mM.  This indicates that either the 

combination of acetate and n-butyrate are toxic, or that long-term community 
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conditioning in bioreactors may serve to eliminate methanogenic populations from 

biomass, but in reality both are likely contributors to inhibited methane production. 

 

A2.5 Acknowledgements 

Thanks to Jack Yi for help in development of the protocol for the batch methanogen 
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APPENDIX 3. 

SUPPLEMENTAL INFORMATION FOR: FUNCTIONALLY PREDICTIVE 

MICROBIAL COMMUNITY STRUCTURE LINKS OPERATING CONDITIONS 

TO n-BUTYRATE PRODUCTION  

 

Summary 

This appendix contains the following supplementary information: analysis of the 

effluent carbohydrates of Rbase (A3.S1); operation of a bioreactor with nonpretreated corn 

fiber as substrate (A3.S2); startup of bioreactors Racid, Rbase, and Rheat (A3.S3); batch test 

results for lactate as an intermediate to n-butyrate (A3.S4); and community dynamics 

under perturbation in two identically operated bioreactors (A3.S5).  

It contains the supplementary figures “Influent and effluent COD composition and 

effluent soluble carbohydrates for Racid, Rbase, and Rheat“ (Figure A3.S1); “Biological 

solids hydrolysis” (Figure A3.S2); “Direct correlation between community composition 

and environmental gradients” (Figure A3.S3); “Rates of n-caproate formation are 

correlated with relative abundance of the genus Thermosinus” (Figure A3.S4); “Principal 

component analysis and evenness of microbial communities of Racid-Rheat (Figure A3.S5); 

and “Community dynamics in identically perturbed bioreactors portray a nonrandom 

community structure” (Figure A3.S6). 

Further, it contains supplementary methods descriptions and the following 

supplemental tables: pretreatment (Table A3.S1), operating conditions (Table A3.S2), 

bioreactor performance (Table A3.S3); and machine learning (Table A3.S4). 
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A3.S1:  Analysis of the effluent carbohydrates of Rbase 

The dilute-alkali pretreatment solubilized more COD than the hot-water pretreatment 

(Table 4.1, main text), but we discovered that the soluble fraction of the hydrolysate was 

mostly composed of polysaccharides that were inefficiently degraded in Rbase, resulting in 

soluble carbohydrates in the effluent (Figure A3.S1).  We analyzed the effluent 

carbohydrates from Rbase via HPLC, which revealed that the peak retention was close to 

that of other polysaccharides (slightly earlier than cellobiose) and that it had the same 

retention time and shape as a xylan standard.  Although we did not perform techniques to 

identify the effluent carbohydrates with 100% certainty, xylan is the probable 

carbohydrate polymer because corn fiber is composed mostly of hemicellulose (Table 

A3.S1). 

A3.S2 Operation of a bioreactor with nonpretreated corn fiber as substrate 

We operated a fourth bioreactor for 100 days to convert nonpretreated corn fiber to n-

butyrate.  We discontinued operation because the nonpretreated pericarp (corn-kernel 

shell) fraction of the biomass was hydrophobic in nature, which caused poor degradation 

and mixing.  Indeed, by day 90 of the operating period, total product formation rates in 

this bioreactor were only 50-60% of the levels of the other bioreactors.  Besides 

hydrophobicity problems, the volatile solids (VS) loading rate in this bioreactor was 120-

130% higher than for the other bioreactors due to the absence of pretreatment, and this 

combined with low productivity resulted in excessive buildup of solids in the bioreactor. 

We determined by day 100 that further operation was unsustainable, and stopped 

operating that bioreactor.  
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A3.S3: Startup of Racid, Rbase, and Rheat 

We inoculated four bioreactors and immediately began an acidic pH regime (pH 5.5) 

to inhibit methanogens and promote n-butyrate metabolism.  During the immediate 

startup period, significant methane partial pressures were observed (e.g., 30-45% of 

biogas on day 13), but these decreased below detection by day 125 of the operating 

period in bioreactors fed dilute-acid and dilute-alkaline pretreated substrates (Racid and 

Rbase, respectively) and by day 97 in the bioreactor fed hot-water pretreated substrate 

(Rheat).  By day 120 of the operating period, production of short-chain carboxylates 

(acetate, n-butyrate, and n-caproate) became stable (Figure 4.1).  The biogas hydrogen 

composition and effluent TCOD and SCOD had also stabilized in all three of the 

bioreactors (Figure A3.S1).  Diversification of fermentation products from primarily 

acetate to a mixture of carboxylates and ethanol occurred as methane decreased and 

biogas hydrogen composition reached measurable levels (>1%) on day 13, 19, and 27 in 

Racid, Rbase, and Rheat, respectively.  The distribution of bacterial phylotypes in all of the 

bioreactor communities became very uneven during startup (Figure A3.S5C).  

Simultaneously, the phylogenetic structure of the bioreactor bacterial communities, 

measured using weighted UniFrac [Lozupone and Knight, 2005], diverged from the 

inoculum, and each bioreactor community was identifiably unique after ~50 days (Figure 

A3.S5 A, B).  

A3.S4: Batch test results for lactate as an intermediate to n-butyrate  

We directly tested the potential for lactate production and the coupling of lactate 

oxidation with acetate reduction to n-butyrate in batch fermentations using mixed liquor 

from Racid during Period 3 as inoculum.  First, we performed batch fermentations of 
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cellobiose (a common biological degradation product of cellulose) at conditions similar 

to Racid.  In 44-h fermentations with 10mM cellobiose, most of the cellobiose carbon 

ended up in glucose (21%) or lactate (48%) and the pH decreased to 5.0, inhibiting 

further conversion (neither glucose nor lactate were detected in control batches with no 

cellobiose).  In separate batch experiments we tested for lactate conversion to n-butyrate 

(via coupled oxidation of lactate with acetate reduction to n-butyrate) by adding 15mM or 

30mM L-lactate to triplicate batch fermentations (with a control set without L-lactate).  

Indeed, while the control triplicate formed negligible amounts of n-butyrate, the triplicate 

with 15 mM L-lactate as substrate produced 2.88 ± 0.84 mM n-butyrate and consumed 

1.30 ± 0.75 mM acetate in 3 days.  The triplicate with 30mM L-lactate produced only 

2.31 ± 1.42 mM n-butyrate and consumed 1.06 ± 1.16 mM acetate.  In both cases the 

stoichiometry is ~2.2 n-butyrate per acetate, while estimates in literature are ~1.5-1.75 

[Diez-Gonzalez et al., 1995; Duncan et al., 2004].  The low rates compared to the 

observed lactate utilization rates during the cycle analysis could be either due to absence 

of some nutrient that was available in the pretreated biomass, or due to oxygen intrusion 

during transfer of the effluent to batch bottles, or due to the fact that we only added L-

lactate, while D-lactate may have been the available compound in the bioreactors. 

A3.S5: Community dynamics in two identically operated and perturbed bioreactors 

Because of long operating periods (419 days), we were only able to operate one 

replicate of each of Racid, Rbase, and Rheat.  We wanted to test whether or not bioreactor 

bacterial communities were independent of the imposed bioreactor environment and if 

not, whether or not the community structure steady state was random.  To test this “null” 

hypothesis, we inoculated two 5-l thermophilic bioreactors with effluent from Racid during 
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Period 3 and subsequently semi-continuously fed them both acid pretreated corn fiber in 

a 48-h cycle at pH 5.5 and a 15-d HRT for ~200 days (identical conditions to Racid during 

Period 3).  Inoculation occurred at day -20 and on day 0 we combined both bioreactors 

into a bucket, exposed them to air, and evenly distributed the sludge back into the two 

bioreactors (Figure A3.S6).  Next, on day 72 the temperature of the bioreactors was 

increased to 70 oC for one 48-h cycle.  These two interruptions caused community 

disturbances that were nearly identical in both bioreactors (Figure A3.S6A and A3.S6B), 

indicating that the dynamic of the disturbance was controlled by environmental 

conditions.  Interestingly, the taxonomic structure was not exactly the same state it was 

before the perturbation.  Instead, a second population of bacteria existed alongside the 

previously dominant Clostridia.  UniFrac principal coordinates 1 and 2 and evenness 

(Figure A3.S6C and A3.S6D, respectively) returned to pre-disturbance levels.  The 

consistency between bioreactors indicates that the bioreactor community structure was 

not chaotic, even during a perturbation.  Further, the steady-state of the bacterial 

community structure was not random and local, but was determined by the specific 

operating conditions.    
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Figure A3.S1.  COD composition in substrate and effluent for Racid, Rbase, and Rheat.  A. Composition of 
COD in the dilute acid, dilute alkaline, and hot water, pretreated corn fiber hydrolysates; B. Composition of 
COD in the Racid, Rbase, and Rheat effluents; and C. Soluble carbohydrates in the effluent of Racid, Rbase, and 
Rheat, where red triangles are Racid, green squares are Rbase, and blue circles are Rheat. 
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Figure A3.S2.  Rheat was the most efficient at biological hydrolysis of solid substrate due to the best settling 
biomass.  Red triangles are Racid, green squares are Rbase, and blue circles are Rheat: A. Rate of solubilization 
of particulate COD; B. Percent VS destruction during conversion to n-butyrate; C. SRT for Racid, Rbase, and 
Rheat.  The black line indicates the hydraulic retention time for comparison; and  D.  SVI for the mixed 
liquor of the reactors, only measured in Period 2 - 4.  A higher SVI indicates a relatively poorer settling 
sludge, and values are normalized for total solids content of the sludge.  
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Figure A3.S3.  Supplemental community structure analysis plots.  In A-C, red triangles are Racid, green 
squares are Rbase, and blue circles are Rheat: A. and B. Plots of unconstrained (RDA) vs. constrained (cRDA) 
redundantly coordinated weighted UniFrac axes demonstrate that environmentally-constrained axes predict 
both within- and between-reactor community variation;  C. First two principal coordinates of weighted 
UniFrac distances; and D. Same as C., colored by period (red: Period 1, green: Period 2, gold: Period 3, 
blue: Period 4). 
 
 

 
Figure A3.S4.  Rates of n-caproate production are correlated with relative abundance of the genus 
Thermosinus across all bioreactors.  
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Figure A3.S5. Bacterial community information for Racid, Rbase, and Rheat during the operating period, 
where red triangles are Racid, green squares are Rbase, and blue circles are Rheat: A. Weighted UniFrac 
principal coordinate 1 describes 52.67% of community phylogenetic variation; B. Weighted UniFrac 
principal coordinate 2 describes 13.45% of community phylogenetic variation; and C. Evenness of the 
bacterial community, described by the Gini coefficient where 0 is a completely even community and 1 is a 
community dominated by only one phylotype.  
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Figure A3.S6. Community dynamics in identically operated and perturbed bioreactors portray a 
nonrandom community structure; A. Taxonomic structure determined at the level of class in replicate 
bioreactor 1;  B. Same as A for replicate bioreactor 2;  C. Principal components plot of the community 
UniFrac distances reveal similar overall community structures; and  D. Gini coefficient of the replicate 
bioreactors in which a coefficient of 0 is a completely even structure, and a coefficient of 1 is a structure 
dominated by a single phylotype.  
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Supporting Experimental Methods 

 
Corn fiber pretreatment 

Corn fiber pretreatment was performed at the USDA Agricultural Research Service in 

Peoria, IL, USA.  150g of corn fiber, which was received at ~45% solids content was 

mixed into a 316 stainless steel tube bioreactor with 320 ml of either dilute acid solution 

(0.5% w/w sulfuric acid), lime solution (1:10 Ca(OH)2 to dry biomass), or distilled water.  

The bioreactors were incubated at 160oC for 20 min in a fluidized-sand heating bath.  At 

the end of a 20-min operating period, the reactors were immediately quenched in water.  

The bioreactor contents were subsequently transferred to shipping buckets and the 

bioreactors rinsed with 700 ml of distilled water, so that the concentration of total solids 

added to water was ~66 g l-1.  The buckets were shipped at 4oC to Cornell University for 

anaerobic treatment and were frozen upon arrival, after mixing all buckets in a large 

container to assure homogeneity.  The nonpretreated substrate was prepared at Cornell 

University by adding 150 g of corn fiber at ~45% solids content to 1 l of distilled water.  

All substrates were adjusted to pH 5.5 immediately before feeding to bioreactors by 

adding HCl or NaOH, as necessary.  Table 4.1 and Table A3.S4 describe the 

characteristics of the three substrates as measured at Cornell University along with the 

nonpretreated substrate.  The variation in substrate characteristics was low between 

prepared batches so the data in Table 4.1 and Table A3.S4 are averages over all batches. 

Bioreactor Operation 

Four identical 5-l bioreactors were designed to convert pretreated or nonpretreated 

corn fiber to n-butyrate. The bioreactors were anaerobic sequencing batch reactors 

(ASBRs), designed to settle for one hour before drawing effluent to increase the solids 
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retention times (SRT) compared to the hydraulic retention time (HRT).  The bioreactors 

were timed to mix once per hour by biogas recirculation with a standard drive pump 

system (Masterflex, Cole-Parmer Instrument Company, Vernon Hills, IL).  All 

bioreactors were controlled at pH = 5.5 with a pH controller/transmitter (Eutech 

Instruments pH 800, Thermo Scientific, Vernon Hills, IL), connected to fixed-speed 

drives (Masterflex) for automatic addition of 5M HCl or NaOH.  The acid and base 

pumps shared a power source with the recirculation pumps so that addition of acid or 

base was only possible when the bioreactors were actively being mixed by gas 

recirculation.  The bioreactors were temperature controlled at 55 ± 1oC with water 

circulated through an external heating jacket with a heating recirculator (PolyScience, 

Inc., Niles, IL).  The biogas collection system included a manometer-style pressure 

control system in which one bottle that was open to the bioreactor was connected via 

acidified water (to prevent microbial growth) to a second bottle that was open to the 

atmosphere.  This insured that pressure inside the bioreactor would not drop below 

atmospheric pressure during drawing off and feeding or due to atmospheric pressure 

changes.  The biogas then flowed through a gas sampling port, a bubbler to prevent air re-

entry, and a gas meter (Model 1 l, Actaris Meterfabriek, Delft, The Netherlands) 

The bioreactors were inoculated from a homogenous mix of three sources: 1. The 

rumen contents of a young sheep, which was strained to remove large fibrous foodstuffs; 

2. Sludge from a full-scale thermophilic anaerobic digester treating primary and waste 

activated sludge (Western Lake Superior Sanitary District, Duluth, MN); and 3. Sludge 

from a lab-scale batch thermophilic anaerobic digester treating wheat straw.  We 

inoculated with 1 l of inoculum (200 mL rumen fluid, 300 mL batch thermophilic 
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digester, and 500 mL full-scale thermophilic digester sludge), added 4 l of tap water, and 

allowed five days of acclimation at 55oC before commencing feeding.  We fed the 

bioreactors every other day, resulting in a 48-h cycle consisting of: instant feeding, a 47-h 

reaction period with intermittent mixing and pH adjustment every h, and a 58-min 

settling period followed by drawing off effluent (volume equal to the feeding volume) 

within two min.  To compare conversion of corn fiber COD to n-butyrate COD, including 

any pretreatment losses, we always maintained a total COD loading rate to each 

bioreactor of 1.92 g O2 l bioreactor-1 day-1 based on the COD of corn fiber slurry before 

pretreatment.  The VS loading rate was constant, based on VS levels after pretreatment, 

with 1.01, 1.12, 1.11, and 1.35 g TS l bioreactor-1 day-1 for the acid, base, hot water, and 

nonpretreated corn fiber, respectively. 

Chemical analysis 

We used gas chromatography to measure the hydrogen content of the biogas on a 

Gow-Mac Series 350 TCD gas chromatograph.  We determined the soluble constituents 

of the effluent by filtering with a 0.2-μm nitrocellulose membrane.  Short-chain 

carboxylate and alcohol levels in the effluent were measured by gas chromatography (HP 

5890 Series II) following acidification of filtered samples with 2% formic acid.  Effluent 

soluble carbohydrates were determined colorimetrically by the phenol/sulfuric acid 

method using a 96-well plate reader (Bio-Tek, Winooski, VT).  

Biomass sampling, DNA extraction, and amplification 

We always sampled mixed liquor for subsequent sequencing at the end of a 48-hour 

cycle by first ensuring that the bioreactor was completely mixed, then rapidly collecting a 

sample from a side port on the bioreactor.  The 2-ml biomass aliquots were centrifuged at 
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10,000 rpm for 10 min, the supernatant was disposed of, and samples were stored at 4oC 

for up to 4 h before being transferred to -80oC until subsequent processing. 

Genomic DNA was extracted from 70 biomass samples using the MoBio PowerSoil 

96-well gDNA isolation kit (MoBio Labs, Inc, Carlsbad, CA).  DNA was extracted from 

~200 mg of biomass according to the MoBio protocol, except that cell lysis was 

performed by beadbeating.  PCR was carried out in triplicate for each sample to amplify 

16S RNA genes.  We also performed PCR on two water blanks carried through the 

extraction process.  The PCR mastermix utilized 31.25 μl of water, 0.25 μl of 5U μl-1 

Agilent Easy-A High Fidelity PCR Cloning Enzyme, 5 μl of 10X Easy-A reaction buffer, 

1 μl each of 10 μM forward and reverse primers and 10 mM dNTP, 5 μl of 25mM MgCl2, 

3 μl of 10 mg ml-1 BSA, and 2 μl of sample.  The forward primer combined the 454 

primer ‘B’ and the universal bacterial primer 8F: 5’-

GCCTTGCCAGCCCGCTCAGTCAGAGTTTGATCCTGGCTCAG-3’.  The reverse 

primer was a concatenation of the 454 primer ‘A’, followed by a barcode, unique for each 

sample, followed by the universal bacterial primer 338R: 5’-

GCCTCCCTCGCGCCATCAGXXXXXXXXXXXXCATGCTGCCTCCCGTAGGAGT-

3’.  On each 96-well plate PCR we included three negatives composed of randomly 

selected reverse primers and no template.  Triplicates were pooled with the Mag-Bind EZ 

Pure magnetic purification kit, and were eluted into 40 ul TE buffer according to the 

manufacturer’s instructions.  Pooled triplicates were run on a 1% agarose gel to verify the 

product.  All negatives had no visible band and were not analyzed further. The 

concentration of dsDNA in each pooled triplicate was measured via fluourometric 

analysis with the PicoGreen dsDNA quantitation kit (Invitrogen Corp, Carlsbad, CA).  
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The samples were pooled in equimolar amounts into a single sample with a final 

concentration 19.2 ng μl-1 dsDNA.  Sequencing was performed on the Roche 454 

pyrosequencing platform using Titanium chemistry and beginning sequencing at 454 

adaptor A (Engencore, Columbia, SC). 

OTU prediction, taxonomy assignment, and OTU table preparation 

We used the QIIME 1.2.1 pipeline [Caporaso et al., 2010] with default settings to 

denoise, quality filter, split sequences into the proper samples, and pick OTUs at 97% 

sequence identity with UCLUST [Edgar, 2010].  We aligned sequences to the 

GreenGenes (GG) core alignment template [DeSantis et al., 2006], trimmed to the V1-V2 

region of 16S and filtered the alignment with the GG lanemask.  We used the Bayesian 

classifier in mothur [Schloss et al., 2009] to assign taxonomy to OTUs using a 97%ID 

clustering of the GG database [Werner et al., 2011a].  We determined sample diversity 

with the Gini coefficient, a measure of the alpha diversity of each sample.  The Gini 

coefficient is essentially unevenness on a scale from 0 to 1.  Gini coefficients were 

calculated from 100 rarefactions of 400 sequences per sample.  UniFrac is a beta-

diversity index that calculates the phylogenetic distance between communities by 

determining the fraction of phylogeny the communities share [Lozupone and Knight, 

2005].   We determined weighted and unweighted UniFrac distances based on 100 

rarefactions of the OTU table at 500 sequences per sample.  Both weighted and 

unweighted UniFrac metrics calculate distances between samples based on phylogenetic 

trees. Unweighted UniFrac considers only presence/absence of an OTU in a given sample 

(which makes it more affected by uneven communities or low-level contamination), 

whereas weighted UniFrac weights distances by abundance of each OTU.  We only 



 
 

143

report weighted UniFrac distances here because sample clustering was more informative 

than with unweighted UniFrac.  We used principal coordinate decomposition to 

graphically display the phylogenetic distances between samples. 

Batch tests for lactate as intermediate 

To determine if lactate in Racid could originate from glucose, we conducted a 44-h 

fermentation experiment in triplicate batches designed to resemble conditions in Racid, 

with effluent from Racid as the inoculum and as the medium.  We added 0 or 10 mM of 

cellobiose as substrate.  Cellobiose is a glucose dimer, and is a typical product of 

cellulose degradation by bacterial hydrolytic enzymes. After 44 h, we sampled the 

bottles, measured the pH, and measured glucose and lactate accumulation via HPLC and 

individual carboxylates and alcohol via GC. To study the feasibility of lactate and acetate 

conversion to n-butyrate, we again designed triplicate batch fermentations set up to 

resemble conditions in Racid with effluent as inoculum and as medium and with 50mM of 

MES buffer (pH 5.5). The inoculum already contained 22.3 mM acetate and 32.7 mM n-

butyrate and we added 0, 15, or 30 mM of L-lactate as substrate.  We allowed the 

fermentation to proceed and sampled the bottles after three days.  We measured the 

concentrations of acetate, n-butyrate, and n-caproate in the bottles at the end of the three 

days.   
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Table A3.S1: Additional substrate characteristics 

Treatment 
Hemicellulose 

(g l-1) 
[%DM] 

Cellulose (g l-1) 
[%DM] 

Lignin (g l-1) 
[%DM] 

HMF 
(mM) 

Furfural 
(mM) 

Succinate 
[mM] 

Lactate 
[mM] 

Acetate 
[mM] 

Acetoin 
[mM] 

Ethanol 
[mM] 

Dilute Acid 

0.49 ± 0.04 
(n=2) 

[0.95%] 

6.16 ± 0.00 
(n=2) 

[11.90%] 

1.19 ± 0.07 
(n=2) 

[2.30%] 

 
1.16 ± 0.25 

(n=9) 

 
5.25 ± 0.80 

(n=9) 
1.06±0.54 

(n = 2)  
4.22 ± 0 
(n = 2) 

20.15 ± 3.63 
(n = 8) 

 
3.12 ± 0.56 

(n=2) 

 
1.81 ± 0.33 

(n=6) 

Dilute 
Alkali 

3.53 ± 0.07 
(n=2) 

[5.54%] 

8.27 ± 0.06 
(n=2) 

[12.98%] 

1.08 ± 0.09 
(n=2) 

[1.70%] 

 
0 

 
0.044 ± .064 

(n=9) 
1.95±0.48 

(n=2) 
6.05 ± 0.55 

(n = 2) 
24.18 ± 1.04 

(n = 8) 

 
6.30 ± 2.01 

(n=2) 

 
1.70 ± .33 

(n=6) 

Hot Water 

3.98 ± 0.07 
(n=2) 

[7.06%] 

8.36 ± 0.10 
(n=2) 

[14.83%] 

1.30 ± 0.04 
(n=2) 

[2.31%] 

 
0.043 ± .031 

(n=9) 
 

 
0.39 ± 0.21 

(n=9) 
1.95±0 
(n=2) 

3.83 ± 0.08 
(n = 2) 

2.41 ± 1.11 
(n = 8) 

 
2.26 ± 1.27 

(n=2) 
 

 
0.40 ± 0.62 

(n=6) 
 

None 

21.41 ± 0.27 
(n=2) 

[31.95%] 

8.36 ± 1.94 
(n=2) 

[12.48%] 

2.14 ± 1.81 
(n=2) 

[3.20%] 

 
0 

 
0 NA NA NA 

 
NA 

 
NA 

n=represents the number of replicate measurements, and the value after ± is the standard deviation.  Lignocellulose composition was only measured on one 
batch of substrate.  We measured HMF, furfural, acetate, and ethanol for each batch of substrate we received (we also measured other short-chain 
carboxylates but found none).  Succinate, lactate, and acetoin were measured only for the first two batches of substrate 
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Table A3.S2:  Operating conditions for Period 1 through Period 4 
  Period 1 Period 2 Period 3 Period 4 

HRT (d)  25 20 15 15 

pH  5.5 5.5 5.5 5.8 

Substrate 
Dilution 

 
2x 2.5x 3.33x 3.33x 

VS Loading 
(g l-1 d-1) 

Racid 
Ralk 

RHW 

1.01 
1.12 
1.11 

1.01 
1.12 
1.11 

1.01 
1.12 
1.11 

1.01 
1.12 
1.11 

COD 
Loading 

(g O2 l
-1 d-1) 

Racid 
Ralk 

RHW 

1.69 
11.88 
1.61 

1.69 
11.88 
1.61 

1.69 
11.88 
1.61 

1.69 
11.88 
1.61 

1Standard deviations for the total COD measurement of the substrate were very high, especially 
for Rbase, and this value is not statistically higher than Racid or Rheat (p>0.05), see Table 4.1 for 
standard deviations.  The loading rate based on the nonpretreated biomass is 1.92 g O2 l

-1 d-1. 
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Table A3.S3: Effects of changes in operating conditions for Period 1 to Period 4 

  Period 1 Period 2 Period 3 Period 4 
Undissociated 

Carboxylic Acid 
Concentration (mM) 

Racid 22.05 ± 1.72 18.07 ± 0.41 16.07 ± 0.09 6.76 ± 0.25 
Rbase 19.05 ± 0.30 15.92 ± 0.48 13.91 ± 0.59 7.16 ± 0.41 
Rheat 21.12 ± 1.85 16.63 ± 0.33 14.16 ± 0.87 8.24 ± 0.51 

Fermentation 
Product Rate 
(g O2 l

-1 d-1) 

Racid 0.644 ± 0.033 0.662 ± 0.010 0.744 ± 0.004 0.540 ± 0.020 
Rbase 0.481 ± 0.005 0.511 ± 0.015 0.586 ± 0.023 0.590 ± 0.032 
Rheat 0.546 ± 0.043 0.591 ± 0.027 0.641 ± 0.027 0.671 ± 0.042 

n-Butyrate 
Production Rate 

(g O2 l
-1 d-1) 

Racid 0.352 ± 0.009 0.395 ± 0.013 0.440 ± 0.005 0.273 ± 0.027 
Rbase 0.197 ± 0.017 0.201 ± 0.011 0.253 ± 0.030 0.255 ± 0.006 
Rheat 0.205 ± 0.015 0.261 ± 0.015 0.300 ± 0.030 0.278 ± 0.010 

n-Butyrate 
Specificity 

Racid 0.546 ± 0.022 0.596 ± 0.012 0.591 ± 0.010 0.504 ± 0.030 
Rbase 0.385 ± 0.008 0.394 ± 0.011 0.430 ± 0.036 0.433 ± 0.026 
Rheat 0.376 ± 0.003 0.442 ± 0.005 0.468 ± 0.030 0.415 ± 0.012 

 
 
 
Table A3.S4: OTUs determined by machine learning to be predictive of a bioreactor or combination of bioreactors 

Racid Rbase Rheat Racid/Rbase Rbase/Rheat Racid/Rheat 
OTU Taxonomy OTU Taxonomy OTU Taxonomy OTU Taxonomy OTU Taxonomy OTU Taxonomy 
1613 Clostridium 197 Thermoanaerobacterium 53 Thermoanaerobacterium None None 752 Thermoanaerobacterium 
2879 Lachnospiraceae 1297 Thermoanaerobacterium 888 Ethanoligenens     3631 Thermoanaerobacterium 

  2261 Lactobacillus 3479 Thermoanaerobacterium       
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APPENDIX 4. 

SUPPLEMENTAL INFORMATION FOR: DIRECTING MIXED MICROBIAL 

CULTURES TOWARD UPGRADING ACETATE, N-BUTYRATE, AND 

ETHANOL TO SPECIFIC MEDIUM-CHAIN CARBOXYLATES  

 

Summary 

This supporting material provides additional information on bioreactor setup and 

operating conditions (Figure A4.S1); volatile solids removal (Figure A4.S2); gene 

plots describing the significance of changes in gene abundance due to temperature or 

extraction (Figure A4.S3); correlations between taxonomy of the chain-elongation 

genes and the n-caproate/n-caprylate specificity (Figure A4.S4); energetics of n-

butyrate and ethanol oxidation (Figure A4.S5); and taxonomic distribution of alcohol 

dehydrogenase genes in bioreactor communities (Figure A4.S6). 
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Figure A4.S1. Bioreactor setup for Rp (with in-situ product extraction) and Rc (without in-situ product 
extraction).  Both bioreactors were operated identically, with automatic pH and temperature control.  
For Rp, we extracted n-caproate and n-caprylate in a membrane-based extraction system along a pH 
gradient.  Rc was exposed to the same extraction solvent but the solvent was not regenerated along a pH 
gradient, and no extraction occurred. 
 
 
 

 
Figure A4.S2.  Volatile solids (VS) removal in Rp and Rc for bioreactor operating periods across three 
temperatures.  The dotted line indicates the concentration of VS in the dilute-acid pretreated substrate 
fed to both bioreactors.  
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Figure A4.S3.  Gene plots based on SEED subsystem-based functional abundances comparing gene 
abundance changes (as the log of the ratio of gene abundance at two conditions) due to temperature (A) 
and extraction (B).  Black dots are genes with shifts that were statistically significant (p < 0.05).  A 3-
fold abundance change corresponds to a log-value of ± 0.477. 
 
 
 

 
Figure A4.S4. Correlations between taxonomy of the chain-elongation genes and the n-caproate/n-caprylate 
specificity: A. n-Caproate/n-caprylate specificity vs. relative gene abundance (x 1000) for all Clostridiales 
(R2 = 0.87); and B. n-Caproate/n-caprylate specificity vs. Syntrophomonadaceae relative gene abundance 
(R2 = 0.93).  
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Figure A4.S5.  Gibbs free energy of reaction (ΔGr) for n-butyrate and ethanol oxidation at bulk 
bioreactor conditions during bioreactor operation. 
 
 
 

 
Figure A4.S6.  Taxonomic distribution of alcohol dehydrogenase genes in bioreactor communities. 
organized first by temperature, then by increasing n-caproate/n-caprylate specificity.  Bars with a * 
symbol are samples taken from the bioreactor with in-situ product extraction (Rp). 
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APPENDIX 5 

PROTOCOLS 

A5.1 Ammonia (ion-selective electrode method) 

 
Materials: 
 
 Distilled-Deionized water 
 Stock ammonium chloride solution (1M) 
 Diluted standards of ammonium chloride (.001M, .01M, and .1M) 
 
Procedure: 
 

1. Place 25 mL of standard solution or sample into a 100-mL beaker 
2. Immerse electrode while mixing with magnetic stirrer on a relatively low rate 

to minimize evaporation (if possible, cover with plastic wrap) 
3. Add 1 mL of ammonia adjusting ISA solution to beaker 
4. Allow time for electrode to equilibrate, and record mV reading 

   
 
Calculations: 

 
Prepare a stadard curve of concentration of ammonium chloride vs. mV readings on a 
semi-logarithmic graph.  Fit a logarithmic curve to the points, with R2 >0.98.  Last, fit 
sample points to the standard curve to find concentrations 
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A5.2 Chemical Oxygen Demand (COD) – Closed Reflux Titrimetric Method 
 
Materials: 
 
 Standard potassium dichromate digestion solution, 0.0167M: 

Add to about 500 mL distilled water: 4.913 g K2Cr207, 167 mL conc 
H2SO4, and 33.3 g HgSO4. Dissolve, cool to room temperature and 
dilute to 1000mL. 

 Sulfuric acid reagent 
  Add 5.5g AgSO4 per kg H2SO4, may need to dissolve 1-2 days 
 Ferroin indicator solution (available commercially) 
 Standard ferrous ammonium sulfate titrant (FAS), approximately 0.05M: 

Dissolve 19.6 g Fe(NH4)2(SO4)2*6H2O in distilled water. Add 
10mL conc H2SO4, cool, and dilute to 1000mL.  
 

Procedure: 
 
1. Dilute sample to less than 300 mg O2/L 
2. For soluble COD, filter through 0.22-um pore size nitrocellulose membrane 
3. Acid wash culture tubes and caps thoroughly and dry before use.  
4. Add 2.5 mL sample in culture tube, each sample at least in duplicate  
5. Add 1.5 mL digestion solution. 
6. Add 3.5 mL sulfuric acid reagent by carefully running down inside of vessel to 
maintain acid layer. 
7. Tightly cap tubes or seal ampules and invert each several times to mix.  
8. Place tubes in block digester set to 150oC for120 minutes.  
9. Cool to room temperature, remove caps, pour sample into small flask and add 
PTFE-covered magnetic stirring bar. 
10. Add 1-2 drops of ferroin indicator and stir rapidly on magnetic stirrer while 
titrating with 0.05M FAS. The end point is a sharp color change from blue-green to 
red-brown. 
 
Calculation: 
 

COD as mg O2 l
-1 = 

ሺ஺ି஻ሻ	ൈ	ெ	ൈ	଼଴଴଴

௠௅	௦௔௠௣௟௘
 

Where: 
A = mL FAS used for blank (typically should be ~3 for a clean blank) 
B = mL FAS used for sample 
M = molarity of FAS 
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A5.3 Volatile, Total, and Inert Solids (VS,TS, IS)  

 
Materials: 
 

1. Porcelain crucibles 
2. 50 mL graduated cylinder 
3. Solids samples 

 
Procedure: 
 

1. Place clean and dry crucible in desiccator for 15-30 minutes 
2. Record the tare mass of the crucible 
3. Add known volume of well-mixed sample, usually 25mL 
4. Rinse graduated cylinder into crucible to get all solids out 
5. Dry overnight at 105oC, desiccate, and record mass 
6. Burn at 550oC in muffle furnace for 30-60 min, or until sample loses no more 

weight with subsequent burnings (60 min is usually sufficient). 
7. Desiccate and record mass. 

 
Calculation: 
 

 VS = 
ሺ஽ି஺ሻ

௏
 

TS = 
ሺ஽ି்ሻ

௏
 

IS = 
ሺ஺ି்ሻ

௏
 

 
 
Where: 

T = Tare mass 
D = Dry mass 
A = Ash mass 
V = Volume of sample 
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A5.4 Sludge Volume Index 

 
Materials	
	
1.	 50	mL	graduated	cylinder	or	graduated	centrifuge	tube	

	
Procedure		
	
1. Determine	the	suspended	solids	concentration	of	a	well‐mixed	sample	of	

the	suspension	
2. For	some	sludges,	suspended	solids	are	difficult	to	determine,	in	that	case	

just	measure	the	total	solids.	
3. Determine	the	30	min	settled	sludge	volume	by	allowing	the	sample	to	

settle	for	30	minutes	(dilution	may	be	required	first)	in	graduated	
container	and	record	the	settled	and	total	volume.	

4. Results	are	only	comparable	between	samples	measured	in	exactly	the	
same	manner.	

	
Calculations		
 

SVI = 
ௌ௘௧௧௟௘ௗ	௦௟௨ௗ௚௘	௩௢௟௨௠௘	ቀ

೘ಽ
ಽ
ቁൈଵ଴଴଴

ௌ௨௦௣௘௡ௗ௘ௗ	௦௢௟௜ௗ௦	ሺ
೘೒
ಽ
ሻ
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A5.5 Batch Activity Assays 

 
(Note: Always perform tests in triplicates for each sample) 
	
Materials	
	
1. Serum	bottles,	size	is	optional,	depending	on	the	application	
2. Batch	nutrient	medium	–	depending	on	application.		For	methanogenic	

medium,	a	good	reference	is	Rinzema et al., 1988 (I leave out the buffer and 
make a separate buffer solution).	

3. Buffer solution – depending on application, BES is good for pH ~5.5, MES 
works closer to neutral pH.  Carbonate buffers are standard for rumen fluid 
analysis, but are a little tricky to work with.  Phosphate buffers should be 
avoided when working with methanogens because they are inhibiting at a 
neutral pH.	

	
Procedure		
 
Day 1 
 

1. Weigh empty serum bottles 
2. Weigh serum bottles filled with deionized water 
3. Make anaerobic buffer solution by flushing buffered and pH-ready deionized 

water with nitrogen gas for 30 minutes. 
4. Perform the following steps in an anaerobic hood. 
5. Add nutrient medium at the desired concentration (for methanogens, 1:10 

dilution of the above described medium is fine)  
6. Add buffer solution to make up volume minus what you will add to correct pH. 
7. If you are testing inhibition, add the compound of interest 
8. Check that pH is at the expected level, correct if necessary 
9. Add inoculum.  The amount depends on the rates you need for getting accurate 

measurements 
10. For methanogens, add 0.5 mL of 0.21M sodium sulfide solution 
11. Seal bottle, remove from hood, and flush headspace with nitrogen gas for 5 

minutes 
12. If testing aceticlastic or hydrogenotrophic methanogens, add some substrate 

now to get growth going.  For hydrogenotrophic methanogens, incubate until 
methane content of the headspace reaches ~5%.  For aceticlastic methanogens, 
add acetate and incubate overnight. 

13. Incubate at bioreactor conditions overnight on a shaker table set at 125 RPM 
 
Day 2 (or when methane reaches ~5% for hydrogenotrophic methanogens) 
 

1. Add substrate of interest 
2. Check and correct pH to desired conditions 
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3. Seal bottles and flush with nitrogen gas for 5 minutes 
4. Incubate on shaker table (125 RPM) for one hour, incubating at bioreactor 

conditions 
5. Periodically, measure headspace gas composition and pressure, and liquid 

fraction for other assays.  
a. Pressure can easily be measured with a gas-tight syringe.  Fill a known 

volume of water in the syringe and take a small volume of the 
headspace.  Seal the syringe, remove, and allow water to displace gas 
(gas should be at the plunger end of the barrel, water at the needle end).  
Open the seal and record how much the volume increases.  The 
pressure relative to atmospheric pressure is proportional to the volume 
increase. 

6. Repeat step 5 periodically, depending on the rate of reaction.  For 
methanogens, stay below ~3% methane if you are not correcting for pressure.   
If you rapidly reach this level, you are using too much inoculum. 

7. Measure pH immediately after opening bottles 
8. Weigh the bottles at the final volume 
9. Measure volatile suspended solids (VSS) of solution in each bottle by vacuum 

filtration 
 
Data Analysis for methanogenesis 

 
1. Plot the increase in percent methane over time (days), correcting for pressure. 
2. Calculate % methane per day from linear regression  
3. Multiply by volume of headspace and divide by grams VSS to find mL 

methane / gVSS / day 
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A5.6 Gow-Mac GC Protocol (CH4, CO2, N2, H2, CO) 

 
Notes:   
 

1. BEFORE PROCEEDING MAKE SURE THAT THE CARRIER GAS IS 
PROPERLY TURNED ON AND FLOWING AT THE PROPER RATE  

2. To measure hydrogen, nitrogen is the carrier gas at ~ 10 - 40 ml/min.  To 
measure nitrogen, methane, and carbon dioxide, helium is the carrier gas at 
~60 ml/min.   

3. A faster flow rate or higher column temperature will cause the peak to elute 
faster. 

4. To see the set and actual temperature for a component, press the desired button 
(e.g., detector) and use the other button to select “actual” or “set”. 

 
Procedure 
 
Startup 

1. MAKE SURE THAT CARRIER IS FLOWING BY CHECKING WITH 
A BUBBLE COLUMN 

2. Turn on the GC (the switch is on the back) 
3. Set the column temperature to 100oC 
4. Set the injector temperature to 110oC 
5. Set the detector temperature to 105oC 
6. Turn on the detector, set current to 70 – 110 mA.  Higher current provides 

more resolution but may result in more noise. 
7. Temperatures and current can be adjusted, but adjustments will affect the 

standard curve. 
 
Calibration with PeakSimple 
 

1. Calibrations are typically made on a percentage basis, where a full 500 ul 
syringe is 100%.  You MUST start with the smallest calibration level if using 
PeakSimple. 

2. Make an injection with, e.g., 10% (50 ul of 100% hydrogen in a 500 ul 
syringe).  Then press the timebase button to start recording 

3. Allow the peak to elute, then stop the recording by pushing the timebase 
button, or allow the recording to stop automatically. 

4. If you did not already have a components file, right-click on the peak and press 
add component.  Then, right click again and press edit component and add a 
peak name 

1. Right-click on the peak and press calibrate. 
2. If the program asks if you want to load a calibration file, press no. 
3. Select the appropriate level, or “1” if it is the lowest level. 
4. When the calibration opens, add the amount to the corresponding level and 

click “Accept”. 
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5. Verify that your point has been added to the curve. 
6. You can adjust the type of fitted curve if you desire (some GCs give non-linear 

response over a very large concentration range) 
7. Continue until you injected all of your calibration samples 
8. Save your calibration curve so that you don't have to make a complete new one 

every time. 
 
Measurements 

1.   If you did not make a new calibration, make sure that you have a calibration 
file loaded. 

1. Inject your sample, using the volume that corresponded to 100% for the 
sample. 

2. The peak area ratios represent a molar fraction, so if you used 250ul of 100% 
hydrogen for a 50% standard, a sample with 50% hydrogen would contain 
250ul in 500ul total. 

3. After the peak elution, click on the page icon at the top bar.  This should 
display results. 

4. You can save your chromatogram for later analysis if so desired.  Make a 
folder for yourself so as to not clutter the PeakSimple root folder. 
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A5.7 Individual Volatile Fatty Acid (VFA) Analysis 
 
Sample Preservation and Storage: 
 

 Samples should be filtered (0.22 um) to remove any suspended solids 
 Dilute sample to ~500 mg/L total VFA (as acetate) with 2% formic acid 
 For storage, filtered samples should be diluted at least 1:1 with 2% formic acid 

to lower the pH, and stored in 4oC refrigerator for subsequent analysis 
 If samples have precipitated (e.g., if your samples have phenolic monomers 

this may happen, re-filter) 
 
Materials: 
 

1.  Stock solution of volatile fatty acids with 10mM each of: formic, acetic, 
propionic, isobutyric, butyric, isovaleric, valeric, isocaproic, caproic, and 
heptanoic acids (formic acid does not show up on the GC).  

 
2. 2% formic acid solution for dilutions 

Note: people used to use HCl, but this is bad for capillary columns.  Avoid it. 
 

  3.  Standards of 1, 3, 5, and 7 mM, made by diluting with formic acid.  Standards 
should be run weekly at least. 

 
Procedure: 
 
Start-up 
 

1. FIRST Turn on the air, helium, and hydrogen cylinders, and turn the flow on 
at the GC (left hand side panel). 

2. Add your name, date, and planned number of samples to the logbook so you 
don’t forget.  If the number changes, you can fix it later. 

3. If the septum has not been replaced for over 50 injections, replace now. 
4. If the glass injector sleeve has not been replaced for over 150 injections, 

replace now. 
5. If you suspect the flow rate has changed, check it with the bubble meter.  The 

flow of air, carrier (He), makeup (He), and hydrogen should be approximately: 
350 ml/min, 10 ml/min, 20 ml/min, and 35 ml/min, respectively. 

6. Turn the switch on the right side (when facing the front) of the machine on. 
7. Turn on the communication module (separate unit to the left of the GC). 
8. On the Windows 98 computer, open “Instrument 1 (online)” from the desktop. 
9. If you have not already done so, skip to “Loading Samples”, below. 
10. Wait until GC reaches operating temperature (~15 minutes). 
11. Push the Ignite button (on left panel of GC) to light the flame (if you don’t 

hear it light, blow slightly in the exhaust port and it will light). 
12. Allow 15 minutes to equilibrate. 
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13. Check that solvent A is fresh Methanol, solvent B is fresh DDI water, and 
empty the waste vials 

14. Remove needle and check that the plunger moves smoothly through the barrel.  
Check that it takes up and dispels water properly.  Replace needle properly. 

 
Loading Samples (this can be performed while waiting for GC to warm up) 
 

1. Load your samples into the autosampler.  We recommend using a blank 2% 
formic acid sample every 5 samples (e.g., samples 1, 6, 11, etc.).  Because the 
GC measurements can fluctuate after very long periods, we recommend a 
maximum of 50 samples at a time.  For long runs, include a standard about 
every 25 samples and at the end of the run to ensure readings are the same all 
the way through or to adjust calibration if they are not. 

2. Under the menu “Sequences” open “Sequence Table” 
3. Click “Insert Vial Range” and put in the range of vials you will run on the 

autosampler (Method is: VFATRIAL, Injections: 1, Injection volume: 1). Click 
“OK”. 

4. Under the menu “Sequences” open “Sequence Parameters”.  Put in the name of 
the directory in which you want to store data files (e.g., mta81510).  Click 
“OK”. 

5. Under the menu “Sequences” click on “Save Sequence” and give it a name 
(you can reuse the same file later by opening it and changing the sequence 
table and re-saving.) 

6. Return to step 10 above, if you haven’t already. 
 

Starting Injections 
 
1. When all of the above steps are complete, check that the computer reads 

“Ready” 
2. If it is ready, press “Start” 
3. Most problems occur in the first few injections, keep an eye out to make sure 

no problems arise. 
4. If the autosampler gets stuck, it is usually a syringe problem.  Remove the 

syringe, make sure the plunger moves freely, and replace.  Restart the 
sequence. 

 
Shutting Down 

 
1. Shut off the program on the computer, and turn off the communication module. 
2. Turn off the hydrogen valve at the machine to extinguish the flame. 
3. Push [Oven Temp] and set to 25oC, set [DetA Temp] to 50oC, and [InjA Temp] 

to 50oC. 
4. After components have cooled at least to 100oC, turn off the GC, then turn off 

the air and carrier valves. 
5. LAST turn off the gas cylinders 
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Data Analysis 
 

1. Open “Instrument 1 (offline)” on the computer 
2. Go to “File” and “Load Signal”, and load your first standard vial 
3. Go to “Calibration” and click “Add Peaks” and put in the calibration level 

(concentration) when prompted. 
4. Remove (delete) unwanted peaks from the calibration table. 
5. Use manual integration to ensure the baseline is proper for each peak. 
6. Put in the names of the peaks 
7. Load a new standard vial and under “Calibration” click on “Add Level”.  The 

program should automatically recognize the proper peaks. 
8. Once you have filled your calibration table, you can load your data signals, one 

at a time. 
9. Click on the magnifying glass at the top right, which should bring up the report 

for your vial, with concentrations of the VFAs. 
10. Until further notice, you have to write these down, we haven’t figured out yet 

how to export the data to excel. 
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A5.8 Peak Simple – Data analysis for GCs and HPLC 

 
Materials 
 

1. PeakSimple data collection system (model 302) 
2. Wires, wiring supplies, and tools 

 
Note: Peak Simple has a really handy function:  Hold the mouse over any button 
or field to get a large information box about what that parameter will do. 
 
Procedures 
 
Data collection setup 
 

1. Gow-Mac and HP GCs and Waters HPLCs have terminals for signal output 
in the range +/- 10mV.  This can be wired directly to the channel terminals 
in the PeakSimple box. 

2. HP GCs and HPLCs have terminal for a start signal or “remote” signal.  
This tells PeakSimple to begin recording when a run is started at the 
instrument.  Wire this directly to the remote input in the PeakSimple box. 
 

PeakSimple Operation  
  

1. Open PeakSimple on the desktop computer 
2. Open the control file that has the settings for your instrument 

a. A setting of 10Hz is typically appropriate for data collection.   
b. The timebase setting fixes which number (1-4) is pushed to start 

recording 
c. The record time should be set so that all peaks elute, or slightly 

shorter than the run time of the instrument if an autosampler is 
being used 

3. Make sure the proper channel is showing in the recorder window 
4. If available, load the component and calibration files for your peaks 
5. If you have one, load your calibration curve (be sure to check that it is still 

valid, the GC parameters could have changed!) 
6. To add a new peak or to use a peak for calibration, right click on the peak and 

select the appropriate option from the menu 
If you use an autosampler, set the post-run settings so that chromatograms are 

automatically saved to file. 
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A5.9 gDNA Extraction and 16S rRNA Gene Amplification for High-throughput 
Barcoded 454 Pyrosequencing 
 
Materials:  
  
 Extraction and Elution 

1.   Robot Disposables, wells and tips, Krackler Scientific, #38-960050088-
EA, #38-960051017-EA 

2. MoBio PowerSoil 96-well gDNA extraction kit.  
http://www.mobio.com/soil-dna-isolation/powersoil-htp-96-well-soil-dna-
isolation-kit.html 

3. PicoGreen dsDNA quantitation kit. 
http://products.invitrogen.com/ivgn/product/P11496 

 
Gel 
2. Agarose (Sigma-Aldrich) 
3. 20X Borate Buffer 
4. Ethidium Bromide (10mg/mL) 
5. Gel Box and electrodes 

 
PCR and Cleanup 
1. Easy-A HIFI PCR cloning enzyme 

http://www.genomics.agilent.com/CollectionSubpage.aspx?PageType=Pro
duct&SubPageType=ProductDetail&PageID=1267 

2. dNTPs 
http://www.promega.com/applications/products/PartsList.asp?subappid=51 

3. Scaled up PCR mastermix recipe (see appendix below) 
4. Primers: 8F + 454 linker / 338R + barcode+ 454 linker (V1/V2 region) 

8F: AGAGTTTGATCCTGGCTCAG + 454 “A” linker 
338R: CTGCTGCCTCCCGTAGGAGT + barcode (one per sample) + 454 
“B” linker 
Primers: 515F + barcode + 454 linker / 806R + 454 linker (V4 region) 

5.  96-well PCR plates, semi-skirted, Fisher scientific, # E951020401 
6.  96-well PCR plate sealing tape, VWR, # 60941-074 
7.  Mag-bind EZ Pure magnetic purification beads, VWR #95059-680 
8.  Axygen “Max Recovery” filter pipet tips for DNA transfer, 20 ul, VWR 

#47749-870 
 

 
 
Procedure: 
 
 Extraction and Elution  

1. Load Powersoil 96-well extraction plate with samples (~0.25g / sample). 
a. For relatively dry samples, use sterile funnels to load plate wells 
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b. For more wet samples, use small spoon or cut pipet 
c. Sterile funnels help prevent contamination of surrounding wells 
d. Clean and flame the spoon or pipet between each sample 

2. Cover plate and store at 4oC until beginning extraction. 
3. Extraction is carried out with Eppendorf robot.  Load the PowerSoil 

extraction protocol on the robot control computer and put samples and 
plates in robot container as the program demands. 

a. The beadbeating is 2 minutes for the Ley Lab beadbeater, Plate 
goes in with square mat facing out, and knobs finger-tight. 

b. Make sure the plates are balanced and completely seated in the 
centrifuge holder before spinning! 

c. After the first beadbeating step, the next robot step is to transfer the 
lysed samples to a new plate.  Because of a high solids content at 
this step the robot can miss samples here that later have to be 
repeated.  Unless you are running thousands of samples and can run 
a whole new plate to repeat failed extractions, perform the sample 
transfer manually!! 

4. After extraction and before elution, samples can be stored at 4oC.   
5. Elution involves several steps of washing, spinning, and then finally 

elution into a microplate.  This should be done manually with a 
multichannel pipet.  The detailed steps are given in the MoBio PowerSoil 
kit protocol. 

6. For the first transfer to the spin plate, be sure to pipet the sample up and 
down to ensure it is well-mixed 

7. Run samples on 0.8% agarose gel with ethidium bromide, view quality and 
photograph. 

a. Add agarose to 1X borate buffer, and microwave 
i. Higher concentration agarose can separate DNA strands 

close to one another in length.  Longer DNA will run faster 
in a lower concentration gel.  Typically, 0.8-1.2% is good 
for our shorter strands. 

b. Microwave until just when it starts boiling 
c. Remove and CAREFULLY swirl (if too hot, may overflow) 
d. Repeat until no solids remain 
e. Cool to ~60oC, just too hot to touch. 
f. Add ~2 drops ethidium bromide per 100mL of gel. 
g. Pour into box with comb and allow to solidify 
h. Usually 2 ul loading dye with 2-5ul DNA product is sufficient, you 

can run 96 wells at once.  Use 12-channel pipet to do so. 
i. Run out at up to 150V, lower voltages run slower, and typically 

help keep bands from deforming. 
j. View under UV, with light on high.  Capture on computer. 

 
PCR and Cleanup – Use only filtered pipet tips!!!!! 
1. For each sample, the PCR reaction must be run in triplicate to reduce 
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variation.  If template DNA is extremely low and PCR products are not 
concentrated enough, quadruplicates may be necessary. 

2. Along with samples run several water negatives, adding some random 
reverse primers with no template to randomly check that primers are not 
contaminated. 

3. Keep all chemicals on ice here, when adding sample to PCR plate, also put 
it on ice 

4. Make enough mastermix for all of the reactions you will need.  Leave out 
the primer that is barcoded, this will be added individually to each sample. 

5. Make up barcoded primers at 10 uM, one for each sample you are running.  
Add these to your spreadsheet so that you know which one corresponds to 
which sample. 

6. Total volume in each well of the 96-well PCR plate will be 50 ul 
7. To each well, add 48 uL of mastermix, 1 uL of sample-specific barcoded 

primer (10 uM), and 1 ul of sample.  Before pipetting sample, centrifuge a 
few seconds to ensure no particulates are present 

8. Run the following PCR cycle: 
a. 95oC for 2 min 
b. 30 cycles of 

i. 95oC, 30 sec 
ii. 54oC, 30 sec 
iii. 72oC, 1 min 

c. 72oC, 7 min 
d. Hold at 4oC 

9.  Pool triplicate PCR products and purify with magnetic kit and elute into 
30-40ul.  Eluting with less does not always result in higher concentration!  
Sometimes it is necessary to elute into larger volume to get all the DNA off 
of the beads.  It may be worthwhile to experiment with ethanol 
precipitation in this case. 

10. Quantify pooled PCR product with PicoGreen kit 
 
Pooling 
1. Use the “max recovery” tips for this part of the protocol. 
2. The final pool should contain an equal amount of DNA from each sample. 
3. Set up a spreadsheet to help calculate how much of each extracted sample 

to add to the pool to finish with 15-10 ng/ul. 
4. Always pipet >10ul to avoid loss of product in the tip. 
5. Quantify final product and run a gel with ladder and 2ul to include in 

shipment to the sequencing center. 
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A5.10 gDNA Extraction and Preparation for Illumina Sequencing for 
metagenomics 

 
Materials: 
 

1. MoBio PowerSoil DNA isolation kit 
2. PicoGreen dsDNA quantification kit 
3. Molecular biology grade ethanol (if gDNA concentration is necessary) 

 
Procedure: 
 
gDNA Isolation 
 

1. Select samples for genomic sequencing, and determine if multiplexing 
(sequencing multiple samples in one ‘lane’) is necessary.  If the sequencing 
center uses ‘v3’ reagents, you should get ~150 million quality reads per 
lane  

2. Add ~0.2-0.3 g of sample to each extraction tube, or to each well if using 
the 96-well protocol. 

3. If extracting with single sample tubes, follow MoBio instructions (except 
replace vortex step with bead beating on high for two minutes), pipetting 
by hand as necessary with filtered pipet tips 

4. If extracting with 96-well plate protocol, follow MoBio instructions (bead 
beat on high for two minutes), using the MoBio protocol on the epMotion 
robot to perform necessary steps. 

5. If using robot, perform the first sample transfer after bead beating by hand, 
because the robot often does a poor job with the high-solids samples. 

6. Quantify endproduct DNA with the PicoGreen quantification kit.  For 
Illumina, sequencing centers prefer 30-100 ng/ul of DNA (as much as 
possible) in 50 ul.  We have sequenced with as little as 12 ng/ul with good 
results. 

7. Run an agarose gel to visualize quality of gDNA bands (with mixed 
communities, these may not be one perfect band). 

8. If you did not get enough DNA, precipitate with ethanol overnight in the 
freezer, centrifuge at 10,000 rpm for 30 min, gently pour off ethanol, 
completely dry, and elute into TE buffer. 
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