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Abstract: In this paper, we study a Susceptible-Infected-Susceptible (SIS) discrete-time model 
with two competing strains and distinct demographic dynamics. We use two different 
recruitment functions to model the population demography. Discrete models are capable of 
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those of coexistence and/or competitive exclusion of competing strains in a population with 
complex dynamics. The principle of competitive exclusion is the most prevalent under the 
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Abstract 

The population dynamics in two patch discrete-time systems are 
different if they are modeled by the Logistic and Verhulst equations. 
First, we analyze one- patch systems modeled with each of the equa­
tions. Then we study two patch systems, where the local dynamics 
between the two patches are coupled with Logistic equations regulated 
by the scramble competition. We also compare this with the Verhulst 
equation where the behavior is regulated by contest competition. It 
is known that fractal basin boundaries of attractors could occur in 
two-patch systems regulated by the scramble competition. We show 
that such complex dynamics do not occur in contest competition with 
dispersion between patches.[5] 

1 Introduction 

A patch or habitat is a continuous area of space with all the necessary re­
sources for the persistence of a local population and separated by unsuitable 
habitat from other patches (at any given time, a patch may be occupied or 
empty)[3]. In this paper we consider a single species in two patch system 
that are coupled with dispersion. 

We study the dynamics of populations in the two patches. Our main 
interest are two-patch models with contest and scramble competition. We 
studied these two cases and found that their dynamics are very different; 
the first one is modeled by a Verhulst equation and we observed that the 
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population is maintained; the second one is modeled by a Logistic equations 
and the population is not maintained: large population densities lead to very 
low densities in the next generation. 

This work is organized as follows. In section [2] we consider single patch 
models whose dynamics are regulated by time-discrete Logistic and Verhulst 
equations, respectively. In section [3] we study the dynamics of a population 
en two patches where local dynamics and dispersion are considered; specif­
ically, we use a Verhulst equation (which resembles contest competion) and 
follow closely A.Hastings' work ([6]), which uses a Logistic equation (scram­
ble competition). 
The results and discussion are presented in section [5]. Section [4] is an 
overview of A. Hastings'work [4]. The conclusions anf future work are pre­
sented in section [5]. 

2 Models and Analysis for a Single Patch 

First, we analyze the dynamics of a single patch discrete- time system with 
the logistic equation. Then we use Verhulst equation to do the same analysis. 

2.1 CASE 1: Logistic Model 

There are many mathematical models that predict the behavior of popula­
tions. We now discuss the discrete- time logistic model of population growth. 
Let Xn =population size of the species at generation n. The the discrete -
time logistc model is: 

(1) 

where 

(2) 

is named the logistic function. [3] 
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Here r is a positive constant that depends on ecological conditions and is 
a measure of the of population growth. 

If Xn = 0 (i.e., no individual is present), then Xn+l = 0. If Xn = 1, then 
Xn+l = 0. Thus, to understand the growth and decline of the population 
under this model, we must iterate the logistic function f(x) = rx(1 - x). 
We will show that this simple change gives rise to a very rich mathematical 
theory [3,10]. 

In practical applications, the logistic equation requires Xn never to exceed 
1. Otherwise subsequent iterations of some points diverge towards ( -oo) 
(wich means the population becomes extinct).[3] 

The logistic function has a fixed point at x when 

fr(x) =X. (3) 

The solutions for equation (3) are: X 00 . 0 and X 00 = 1- :. 
If r ~ 1, then f has only one non negative fixed point. If r > 1, then f 

has two fixed points 0, ( 1 - :) 
The stability of the fixed points is analyzed through the following theorem 

from [4,7,8 ]. 

Theorem 2.1. Let f: I-t I be a differentiable function at a fixed point X 00 

in the interior of I. 

1} If Jf'(xoo)l < 1, then X 00 is an attracting fixed point (asymptotically 
stable). 

2} If lf'(xoo)l > 1, then X 00 is a repelling fixed point (unstable). 

3} If lf'(xoo)l = 1, then X 00 can be stable, unstable or neither. 

In reference to the theorem above, we have that, X 00 = 0 is stable if r < 1, 
in other case is unstable. 

X 00 = 1 - : is asymtotically stable if 1 < r < 3 and unstable for r > 3. 

The stability for fixed point X 00 = 1 - : changes in r = 3. In this case 
we can say that the fixed point undergoes a flip-bifurcation at r = 3 does 
indeed spawn a 2-cycle. We solve the equation 

(4) 
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we obtain that 

(r + 1) + y'(r- 3)(r + 1) 
XI=------~-2-r~2--------

(r + 1) - y'(r- 3)(r + 1) 
X2 = --'------'--~c........c....---------'-

2r2 

are the points period-2. They are real numbers and positive whenever r > 3 
We examine the stability of a 2-cycle through the following theorem, from 

[4,7,8]. 

Theorem 2.2. Let f: I- I be a differentiable function at a period-n point 
X 00 in the interior of I. 

1) If l(fn)'(xoo)l < 1, then X 00 is an attracting period-n point (asymptoti­
cally stable). 

2) If l(fn)'(xoo)l > 1, then X 00 is a repelling period-n point (unstable). 

3) If l(fn)'(xoo)l = 1, then X 00 can be stable, unstable or neither. 

We have I (j2)' (p) I < 1 hence 14 + 2r - r 21 < 1 which implies that 3 < r < 
1 + v'6. 

In reference to the theorem above, we have that XI and x 2 are period -2 
stables points, if 3 < r < 1 + J6. If r > 1 + J6, then the period-2 cycle 
becomes unstable. 

As r is increased even further, xi and x 2 in turn lose their property 
of stability to other states (with periods 4,8,etc). This period - doubling 
phenomenon continues until r = 3.83 when periodic solutions whose periods 
are not powers of 2 begin to appear, but these solutions are unstable. For 
r > 3.83 there is a periodic solution of period K for every integer K, but 
different initial values give different solutions. There also solutions whose 
behavior is apparently random; such solutions are called chaotic [2]. 
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2.2 Case 2. Verhulst equation 

Now we study a single patch that is modeled in accordance with the Verhulst 
equation. 

Let Xn = population size of the species at generation n, the Verhulst 
equation is given by 

rxn 
Xn+l = Xn +A (5) 

where r is the carrying capity of population, and A = 9(0) is the growth 
speed ratio Here the reproduction curve is: 

f(x) = __!!____ 
x+A 

The fixed points are X 00 = 0 and X 00 = r - A. 

(6) 

By the theorem (2.1), we are able examine to stability of these fixed points. 
If r < A, then f has only one fixed point x = 0 and is asymtotically stable. 
Hence, every solution tends to the zero under n iterations [2]. 

If r > A, then f has two fixed points X 00 = 0 and X 00 = r - A. 
By the theorem (2.1) , X 00 = 0 is a repelling fixed point (unstable) and 
X 00 = (r- A) is an attracting a fixed point ( asymtotically stable). 

We can conclude that for r > A, every positive solution, regardless of 
initial value x0 tends to the limit X 00 = r - A. In the Verhulst equation 
unlike the Logistic equation there is no possibility of period - doubling or 
chaotic behavior, or even of stable oscillations.[3] 

3 Models and Analysis for a Two Patch 

In this section, we consider a two - patch single species population model 
with dispersal, where the local dynamics is given by the Logistic and the 
Verhulst equation. 
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3.1 Logistic Equation System 

To understand the dynamics between two patches governed by the logistic 
equation we review the article of [Alan Hastings [6]]. In this article he an­
alyzed the dynamics with dispersion given by the logistic model. (In other 
words he study the dynamics where the two patchs (patch 1 and patch 2 ) 
are coupled by dispersion). 

The dynamics can be represent by the following diagram. 

Figure 1: Dynamics between two- patches. The parameter D represented the 
dispersion. 

Let xi(t), be the population size in patch i at time t, before the local 
dynamics have taken place, and xi ( t), be the population size after the local 
dynamics have occured, but before the dispersal phase. 

The equation which illustrates these dynamics has the general form 

(7) 

where the parameter r is the measure of the how fast the population grows, 
and where f is the map version of the discrete time logistic model. 

f(r, x) = rx(1- x). (8) 
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The two patches will be coupled by passive movement, or simple exchange 
of a fixed fraction of the population for each year . The dispersal phase is 
describe by the following equations: 

and 

Where D is the fraction of the population that is exchanged. 
Using the Logistic equation f(r, x) = rx(l- x), we obtain 

and 

(9) 

(10) 

The author in his article states used numerical and analytical approaches 
for to understand the dynamics. He analyzed where the local population 
dynamics when the two patches haved equal srowth rates ri = r 2 = r. He 
founded two general classes of asymtoptic solutions for different values of 
the growth parameter r. In the first type of solution, an in phase solution, 
the populations sizes in the two patches are always the same XI = x2 . The 
second type of solution, an out of phase solution the populations sizes in the 
two patches are always different XI =I= x2 . 

The bifurcation diagram allow us to see the dependence of the dynamic 
on the growth parameter r, and determine the regions of stability and exis­
tence of the in phase and the out phase solutions. Figures (2) and (3) show 
for a particular value of the coupling D = 0.10, and the identical growth 
rates r in two patches r = ri = r2. 
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Figure 2: Bifurcation diagram for the coupled logistic model, with identical 
growth rates r, and D = 0.10 in two patches. It shows the in phase solution, 
with equal population size for both patches x 1 = x2 here the total population 
size is plotted against r. 
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Figure 3: Bifurcation diagram for the coupled logistic model, with identical 
growth rates r and D = 0.10 in two patches. It shows the out of phase 
solutions, where the sizes differ, x1 #- x2 ; here the difference in population 
sizes x1 - x2 is plotted against r 
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Finally, in the case of identical dynamics in two patches, the author stud­
ied the existence of sensitive dependence on initial conditions due to the 
existence of a fractal basin boundary. For r = 3.8 and D = 0.15, there are 
three different asymtotically solutions; any initial condition is attracted to a 
period - 2 solution or to period-4 solution or to chaotic attractor. 

Figure 4: Illustration of the fractal basin boundary, initials conditions that 
are gray areas are attracted to the period two solution while the ones that 
are white areas are attracted to the period four solution. Initial conditions 
which form diagonals on the figure, end up at other solutions are typically 
chaotic. 

We analyze only the cases with the same growth rate in both patches, for 
0 ~ D ~ ~· The analytical expression for a period two cycle and its stability 
are given in the Appendix. 
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3.2 Verhults Equation System 

In this section, we analyze the dynamics of a two-patch model governed by 
the Verhulst equation.The following equations show the dynamics 

and 

If ri = r2 = r, the system reduces to 

and 

rx2(t) Drxi(t) 
x2(t + 1) = (1- D) ( ) A + ( ) A. 

X2 t + XI t + 

To find the fixed points, we make the following change the variables. 
Let 

and 

So XI and x 2 are equivalent to 

and 

YI + Y2 
X I = .::....__2---=-

10 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 



Hence we have for y1 ( t + 1) and y2 ( t + 1) the following expressions: 

(21) 

and 

y2(t + 1) = rx1 A (1- 2D) - rx2 A (1- 2D). (22) 
X1 + X2 + 

Replacing (19) and (20) in (21) and (22), we have 

Yl(t + 1) = r(yl + Y2) + r(yl- Y2) (23) 
Y1 + Y2 + 2A Y1 + Y2 + 2A 

and 

Y2(t + 1) = r(y1 + y2) (1- 2D) + r(y1 - y2) (1- 2D). (24) 
Y1 + Y2 + 2A Y1 + Y2 + 2A 

3.2.1 Fixed Points 

The condition for fixed points establish that: 

and 

Y2(t + 1) = Y2· 

So, replacing equation (23) and (24) 

r(yl + Y2) + r(yl - Y2) 
Yl + Y2 + 2A YI + Y2 + 2A = Yl 

and 

(25) 

(26) 

(27) 

r(y1 + y2) (1 - 2D) + r(y1 - y2) (1 - 2D) = Y2· (28) 
YI + Y2 + 2A Yl + Y2 + 2A 

Solving for y1 and y2, we obtain the following six fixed points: 

P1 = (0, 0), 
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P2 = (2(r- A), 0), 

P3 = ((2r- A), 2[)r2 - Ar(l- 2D)), 

P4 = ((2r- A), -2[Jr2 - Ar(l- 2D)), 

P5 = (0, 2[) A2 - Ar(l- 2D)), 

P6 = (0, -2[) A2 - Ar(l- 2D)]. 

We check the condition for fixed points and we find that only PI = (0, 0) 
and p2 = (2(r- A), 0) are true fixed points. These fixed points in terms of 
xiandx2 become PI = (0, 0) and P2 = (r- A, r- A). Then if r < A only 
exists one fixed point (0, 0). If r > A, we have two fixed points, they are 
(0,0) and (r- A,r- A) 

3.2.2 Stability for Fixed Points 

The stability of the solutions is determined as follows. Let 

and 

4Ary2(1 - 2D) 
G(xi, x2) = ( 2A) 2 2 . 

· YI + - Y2 

The Jacobian is given by 

aF(xt.x2)) 
ay2 

aG(x1,x2) 
ay2 

and after calculating the partial derivatives, we obtain 
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(
(2Ar( (2A+y~ -y2)2) + (2A+y~ +y2)2 ) 

BA( -1+2D)r(2A+yi)Y2 
((2A+yi)Ly~)2 

-8Ar(2A+YIJY2 ) 
((2A+yl)Lyz)2) 

-4A( -1+2D)r((2A+yi)2-y2)2 
((2A+YI)2 -y~)2 

By evaluating the Jacobian at the point (0, 0), we have 

We find the eigenvalues 

r 
>.2 = (1 - 2D) A 

If 0:::; D:::; 1/2 with r <A, the fixed point (0,0) is stable. 

(30) 

(31) 

We evaluate the fixed point (r- A, r- A) in the Jacobian and we obtain 

(32) 

The eigenvalues are: >.1 = 1 and >.2 = (l-~D)A 
If r >A, and 0:::; D :::; 0.5 then (0, 0) is a fixed point unstable (saddle) and 
(r- A, r- A) is stable. 

3.2.3 Globally Stability 

Theorem 3.1. i) In system, given by equations (15) and (16), if r < A, 
then (0, 0) is globally stable. 
ii) In system, given by equations (15) and (16)if r > A, then (0, 0) is unstable 
and (r- A,r- A) is globally stable in (O,oo)x(O,oo). 

13 



Proof: 
Now, we show that every point has a bounded orbit, under F iterations. 

First, we define, the reproduction function F for system ( 2) F: ( 0, oo ]x[ 0, oo], 
is defined by 
F(x1, x2) = ((1- D)x1g1(x1) + Dx2g2(x2), (1- D)x2g2(x2) + Dx1g1(x1)] 
where 

If x1g1(x1) < x2g2(x2) 
Then, 

and, 

F2(x1, x2) ~ x2g2(x2) 

If x1g1(x1) > x2g2(x2), then 

and 

So, 
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with 

If 

we have, 

Since 

F1(x11x2) ~ x1g1(x1) < r- A 

F2(x11 x2) ~ x2g2(x2) ~ r- A 

If: T = [O,r- A]x[O,r- A] 

Then Tis F-invariant.Hence every point has a bounded orbit the region 
T = [O,r- A]x[O,r- A] . 

. Now we demostrate that if r < A, then (0,0) is a globally stable. Let 
V(xb x2) a Lyapunov function such that 

We have, 
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Thus, 

But, 

So, 
V(F(x1, x2)) < v(x1, x2) 

For all non zero point (x1,x2) in [O,oo)x[O,oo) The part ii) is for to 
demostrate. 

r 
- < 1 
A 

4 Competition among members of the same . 
specie 

In this section we will define the concepts of scramble competition and con­
test competition. We will begin by defining competition amoung different 
species and individuals of same species. The term competition is defined as a 
"manifestation of the struggle for existence in which two or more organisms 
of the same or of different species exert a disadvantageous influence upon 
each other because their more or less active demands exceed the immediate 
supply of their common resources ([11])". 

Among a specie, individuals compete for food, habitat, and other lim­
ited resources; this increases the mortality rate. This effect is more no­
ticeable if the initial population density is high. This type of behavior is 
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called Intraspecific competition. The effect of intraspecific competition is al­
ways measurable as a density dependent process. 

4.1 Scramble and Contest Competition 

There exist two extreme forms of competition given by Nicholson [9], called 
"contest" and "scramble" competition. 

In contest competition each successful animal gets all it requires the un­
successful animals get unsuffi.cient for survival reproduction.Thus, a certain 
number of individuals can be maintained, at the expense of the others. [2] 
In scramble competition the available resources are partioned equally among 
all individuals. Hence as the population increases the rate of growth de­
creases. [1,9, 11] 

For the difference equations Xn+I = rf(x), where f(x) is called the growth 
function per-capita. If f(x) is 

is the Logistic equation. 
And 
If 

is the Verhulst equation. 

Xn+l = r A 
Xn+ 

The Verhulst equation is monotone increasing, and the Logistic equation 
rises to a maximum and then fall involves the nature of the intra-species 
for resources. Functions with a maximum corresponds to "scramble compe­
tition", and functions monotone corresponden a "contest competition" [2]. 

If we have a single patch, biologically for the scramble competition, by 
the graph of the Logistic equation map which is a parabola. We note that 
initially, the population is small and the resource is abundant. After the 
function reaches a maximum, the resource begins to decrease. Since the re­
source is equally divided among the individuals, each individual receives a 
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very small amount.Thus, the individuals begin to die. This effect is trans­
fered to the next generation. In scramble competition, the population is not 
maintained.[1,9,11] 

For the scramble competition regulated by the Logistic equation equation 

Nt 
Nt+l = rNt(l- k 

As Nt --+ oo' then Nt+ 1 --+ 0 
In contest competition regulated by Verhulst's equation, we have an in­

creasing section that grows assymptotically until it reaches the value Xn+ 1 = 

r. 

For contest competition regulated under the Verhulst equation, we have 

rNt 
Nt+l =A+ Nt 

As Nt --+ oo then Nt+ 1 --+ r 
Thus, in contest competition the population is maintained. The resources 

are shared unequally. 
If we have a population in two patches and they are regulated by the 

scramble competition, the situation is more complex than the case in a single 
patch. In two patches depending of the initial conditions the population will 
be attracted a stable two-period point or a stable four period point or a 
chaotic solution. The population in two patches regulated by the Verhulst 
equation es equal than a single patch. 

5 Conclusions and future works 

From a two patch system we can conclude: 

• In contest competition, the dispersion does not impact the global dy­
namics. 

• In scramble competition, the dispersion does impact the global dynam­
ics. 
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• However, the scramble competition models do not generate qualita­
tively equivalent basins of attractors. This case is showed by Eratstenes 
Florez in his project. 

The future work can be: 

• Analyze a model with local dynamics regulated by the equation Xn+l = 
2 

;~;~ , which has an Allee effect, multiple equilibria and not complex 
dynamics (closer to contest competition). 

• Look at a multipach system with Verhults and the above model. 

• Study the non-symetric case. Non- symetric growths rates and different 
dispersion rates. 
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6 Appendix 

In this section we will calculate, the results give for the author in his arti­
cle.We get the conditions for the determination of the stability of systems of 
difference equations. We are e changing co-ordinates to the total population 
size. 

(33) 

(34) 

19 



.,. 

Where YI is the total population andy2 is the difference between two popu­
lations. 

we have for XI and x2: 

YI + Y2 
XI=-2-

YI- Y2 
X2=--

2 

We obtain for YI(t + 1) and Y2(t + 1) the following equations 

(35) 

(36) 

Y2(t + 1) = (2D- 1)r2x2(1- x2) + (1- 2D)rixi (1- xi) (38) 

With ri = r 2 replacing Eq.(19) y Eq.(20) in Eq.(21) y Eq.(22) we have: 

(39) 

(40) 

The numerical solutions show that the out of phase solution is constant. 
Thus we will check for the existence ans stability of solution of the form 

(41) 

(42) 

We will find y2(t + 2), of Eq.(24) we have 
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fJ2(t + 2) = (1- 2D)rfJ2(t + 1)(1- fJ1(t + 1) (43) 

So, 

A2 A2) 

fJ2(t + 2) = (1- 2D)2r 2fJ2(1- fJI)[1- r(fJ1 - (y1 ~ y2 )] (44) 

By the Eq.(26) 

Here we have two solutions 

and 

The Eq.(29) is for a fixed point or in phase solution. 
Furthermore, by the Eq.(25), we have the equation 

(46) 

YI(t + 2) = r[fJI(t + 1)- [(YI(t + 1))2; (y2(t + 1)2
)] (48) 

Replacing Eq.(30) in Eq.(31) 

(49) 

The Eq.(32) has two solutions for fJ1(t). They are 

A 1 
Yl = 1 - r(1 - 2D) (50) 
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and 

A 1 
Yl = l + r(l - 2D) (51) 

With Eq.(33) and Eq.(34) we can find the solutions for y2 (t). So 

(52) 

Then the period -2 points out of phase are: 

(53) 

(54) 

The before equations must write in function ofthex1 and x 2 give en Eq.(l) 
and Eq. ( 2). So for the point Q 

A 1 [ 1 
Xn = 2 1 + r(1 - 2D) + 

1 1 1 2] 
2(1 + r(l- 2D))(l- ;) - r(l- 2D) 

(55) 

and 

A 1 1 
x 12 = 2[1 + r(l- 2D) -

1 1 1 2 

2(1 + r(l- 2D) )(l- ;) - r(l- 2D) (56) 

We must check if efectively the P and Q points found are period-2 points. 
We examine that: 
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and 
g(x1,x2) = x12 

Where f(x1, x2) and g(xb x2) are given by Eq.lO and Eq. (11) evalu­
ate in (xi, x2 ) . The following expressions were find with the aid program 
Mathematica. 

A 1- r( -1 + 2D)- J(r2 - 2r)(1- 2D)2 + (1- 4D) (57) 
XI = 2( -1 + 2D) 

A 1- r(-1 + 2D) + J(r2 - 2r)(1- 2D)2 + (1- 4D) (5S) 
x2 = 2(-1 + 2D) 

A -1- r(-1 + 2D)- J(r2 - 2r)(1- 2D) 2 - 3- 4D (59) 
xu= 2( -1 + 2D) 

A -1- r( -1 + 2D) + J(r2 - 2r)(1- 2D) 2 - 3- 4D (60) 
x 22 = 2( -1 + 2D) 

f( A A ) _ 1- r(-1 + 2D)- J(r2 - 2r)(1- 2D)2 + (1- 4D) (61) 
xl,x2 - 2(-1+2D) 

(

A A )-1-r(-1+2D)+J(r2 -2r)(1-2D)2 +(1-4D) (62) 
g xl,X2 - 2(-1 +2D) 

A A -1-r(-1+2D)+J(r2 -2r)(1-2D)2 -3-4D (63) 
f(xn, X22) = 2( _ 1 + 2D) 

A A -1-r(-1+2D)-J(r2 -2r)(1-2D)2 -3-4D (64) 
g(xu,x22)= 2(-1 + 2D) 
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We must prove that f[xr, x 2]q and g[x1 , x2] have constant solutions. 
Then 

and 

We calculate 

!( A A ) (A A ) 1 - r(1 - 2D) 
X1,X2 +g X1,X2 = (-1 + 2Dr) 

and 

A A 1 - r(1 - 2D) 
XI + X2 = ( -1 + 2Dr) 

The identify ( 49) is satisfied 
for the other point, also we check the identity 

!( A A ) (A A ) -1 - r(1- 2D) 
Xu, X22 + g Xu, X22 = r( _ 1 + 2D) 

and 

A A -1 - r(1 - 2D) 
Xu+ X22 = r( _ 1 + 2D) 

as we wait the identify (50) is satisfied. 
Also, we must demostrate that 

and 

! 2 ( A A ) 2 ( A A ) A A 
Xu, X22 - 9 Xu, X22 =Xu+ X22 

we calculate 

24 

(65) 

(66) 

(67) 

(68) 



•.. .. " 

f 2 (A A)- 2(A A )-_y'(r2-2r)(l-2D)2+(1-4D) 
Xn, X22 g Xn, X22 - 2( -l + 2D)r 

and 

A A y'(r2 - 2r)(l- 2D)2 + (1- 4D) 
XI + X 2 = - 2( -1 + 2D)r 

Tha identify (51) is satisfied 
we calculate 

f 2(A A)- 2 (A A )-_y'(r2 -2r)(l-2D)2 -3+4D) 
Xn, X22 g Xn, X22 - 2( -l + 2D)r 

and 

y'(r2 - 2r)(l- 2D)2 - 3 + 4D) 
2(-1+2D)r 

Then identify (52) ts satisfied. 
With the before demostration, we show with the points (x17 x2 ) and 

(xn, x22) are period-2. 
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