SINGLE SERVER QUEUES WITH ARCH-TYPE DEPENDENCE
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ABSTRACT. In this paper, we propose a class of single server queueing models in which the inter-
arrival times or service times exhibit an ARCH-type (autoregressive conditionally heteroskedastic)
dependence. The main feature of this dependence is the volatility that depends on the sample
functions of the underlying process. We denote this property as QARCH. To illustrate the analysis
involved, we investigate the system M/QARCH/1, and derive upper and lower bounds for its mean
queue length in steady state expressed in terms of the mean queue length in M/G/1 with the same
first two moments of the service time.

1. INTRODUCTION

The basic assumption underlying the GI/G/1 queue is that the interarrival times {u,,n > 1}
and the service times {v,,n > 1} are two independent sequences of independent and identically
distributed (IID) random variables. Attempts have been made to relax this assumption, namely,
to introduce dependence within the terms of these sequences or between them. It is the nature of
the problem that a single consolidated theory that incorporates all of these dependencies cannot
be expected to emerge from these attempts. For this reason, although the literature in this area
is fairly extensive, the only results obtained are for models with a specific degree of dependence.
In broad terms, the problem is to model {(u,,v,),n > 1} as a bivariate time series and apply to
it the techniques of time series analysis. In this paper, we cite only relevant work that deals with
{un} or {v,}. The earliest paper in this area is due to Finch (1963) who considered a queue with
an arbitrary sequence {u,} and a sequence {v,} of IID random variables with Erlangian density
(including the special case of exponential density). A further investigation of this model was carried
out by Finch and Pearce (1965) in the case where {uy} is a moving average process and {v,} is
an IID sequence with exponential density. Pearce (1965) extended these results to the system with
batch arrivals. Pearce (1967) also considered the queue where {v,} is a moving average process.
In all of this work, the main object of study is the queue length, and the approach is analytical.

Jacobs and Lewis (1977) constructed a sequence of dependent exponential random variables
as follows. Let {e,,n > 1} be a sequence of IID random variables with density Ae’*, and let
{Jn,n > 1} and {K,,n > 1} be two independent sequences of IID Bernoulli random variables. For
n > 1, put

Xy = Bep + JnAp
where

A, = pAn_1 + Kpen.
The sequence {X,,} is called EARMA (exponential mixed moving average autoregressive) process
of order (1,1). If Ag is chosen to be independent of all the other random variables and with
density A\e’*, then it turns out that {X,} is a stationary sequence with marginal density Ae** and

positive autocorrelation. Jacobs (1978) investigated a closed queueing network with two nodes,
where the service times at the first node are given by an EARMA process that is independent of

AMS 1991 subject classifications. Primary 90B15; secondary 60K250.
Key words and phrases. correlated interarrival and service times, QARCH, queue length process, recurrence rela-
tions, stationary time series, volatility.



2 JASON S. ROTH AND N. U. PRABHU

the service times at the second node, which are ITD with the exponential density. Jacobs (1980) also
considered single server queues in which {(u,,v,)} is a cross-correlated EARMA process, namely,
the interarrival times and service times are EARMA processes constructed as above with a common
{A,} sequence.

Finally, Resnick and Samorodnitsky (1997) have investigated the GI/M/1 queue in which the
interarrival time sequence {u,} exhibits long range dependence (where the current state has a
strong dependency on the remote past).

In this paper, we formulate an ARCH (autoregressive conditionally heteroskedastic) model for
the service time sequence {v, }. The ARCH concept is due to Engle (1982) and has been the subject
of recent research in time series analysis. The main feature of an ARCH model is the volatility
that depends on the sample functions of the underlying process. Our model for {v,} is described
by the recurrence relation

(1) Un = (040 + a1vp_1 + vy + -+ apvn—p)en

where ag,a1,... ,0p (n > p+1 > 2) are nonnegative constants and {e,,n > p} is an IID sequence

of positive random variables with E(e,) = 1 and E(e2) = 2. In addition, we assume that e, is

independent of v,,_1,vp—2,... ,Vp—p. For given v,_1,vp_9,... ,Up—p, (1) shows that v, has mean
(2) ap + oUp—1 + aUp_g + -+ + 0pUn_p

and variance

(3) (ao + a1vp—1 + aoup_2 + -+ Olp'Un—p)z(C2 - 1)-
Thus, the conditional variance of vy, given v,_1,vy_2,... ,¥,—p can be high or low depending on
the magnitudes of a;v,—; (i = 1,2,... ,p). This conditional heteroskedasticity is what characterizes

ARCH models such as (1).
We can rewrite (1) as

(4) V=4V 1+ B, (n2p)
where
ale, Qoep, ot Qp_iep Qpen
U"’” 1 0 .- 0 0 0‘006"
n—1
o 0 a1 0

Here B, is a p-dimensional random vector and A,, is a p X p random matrix. Clearly, {(A,,, B,),n >
1} is a sequence of IID matrices such that (A, By,) is independent of V,,_;. The difference equa-
tion (4) is of the type studied by Furstenberg and Kesten (1960) and Kesten (1973). We restrict
ourselves to the case p = 1, in which case (1) reduces to

(6) vp = (a0 + a1vp-1)en,  (n>1).

We shall refer to this sequence {v,} as QARCH (queueing ARCH). In Figures 1 and 2 below, we
have plotted sample paths of this sequence for the following special cases.

1. e, has exponential density.
2. ep has the distribution

P ifa=1-0,
(7) Plen,=a}=¢1-2p ifa=1,
P ifa=1+4 4,

where 0 < p < 1 and 0 < 8 < 1. For certain choices of p and S, e, models severe jumps that
occur infrequently.
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We consider a single server queue with Poisson arrivals at a rate A (0 < A < o0) and QARCH
service times; the appropriate notation for this queue is M/QARCH/1. Within this framework,
other queues of interest are QARCH/M/1, GI/QARCH/1, etc.

In Section 2, we derive the properties of the sequence {v,,}. It turns out that under appropriate
constraints on the parameters ag, a1, ¢ and with a proper choice of vy, {v,} is a stationary time
series. Our analysis follows the main outlines of the investigation of a somewhat more general
model carried out by Embrechts et al. (1997). However, our approach is more elegant and can also
be used to simplify these authors’ proofs in some details. In Section 3, we consider the system
M/QARCH/1. As in the classical system M/G/1, the epochs of departure provide a regenerative
set for the queue length. However, we have to expand the state description to (@, v,), where
vy, is the service time of the departing customer. (In M/G/1, the marginal chain {Q,} is also
Markovian, which is not the case here.) While we are unable to derive the steady state distribution
of the process {(Qn,vn)}, we establish some bounds for the mean queue length.

In Section 4, simulation studies are carried out to support the conclusions of section 3 and also
provide additional insights into the behavior of the queue length process.

2. PROPERTIES OF {v,}

For a given vy, it is obvious that the recurrence relations (6) can be solved to yield an expression
for v, in terms of ey, es,... ,e,. This expression will be the starting point of our discussion. We
have the following.

Theorem 1. For a given vy, the equations (6) have the unique solution

n—1
(8) Uy = Qg Z a{enen_l o-ep—j +ofvgerer--e,  (n>1).
=0
More generally, we have
n—1 )
(9) Um+n = Q0 Z a{em—i—nem—i-n—l “emin—j T a?'umem—i-lem—l—Q *Cm4n (m >0,n > 1)-
=0

Proof. It suffices to prove (9) for m > 0 and n > 1. The result (8) will then follow for m = 0. For
m > 0,n = 1, the right hand side of (9) equals

apemt1 + 1Umemt1 = (0 + 10y )emi1 = Umt1

by definition. This proves (9) for m > 0,n = 1. Assume that (9) holds for m > 0 and up to some
n. Then

Um+n+1 = (Oéo + alvm—l—n)em-{—n—f—l

= C0Cm+4n+1
n—1 )
+aremint1 | Qo Z a{em—knem—l—nfl “cemin—j T a?vmem+lem+2 * ot emtn
j=0
n—1 )
= apemin+1 + X Z a{+lem+n+lem+n "t emin—j T a?+lvmem+lem+2 “mtndtl
7=0

n

— } : J n+1
= Q1emintl1€mtn " €mintl—j T Q7 Um€m+t1€m+42 -~ Emin+l
Jj=0

which agrees with the right hand side of (9) for n + 1. The proof is completed by induction. [
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We are interested in the limit behavior of v,, as n — oo. The existence of such a possible limit is
suggested by the fact that the distribution of the first term on the right hand side of (8) is invariant
with respect to the permutation

(e1,€2,... ,en) = (en,€n_1,--- ,€1).
Therefore,
n—1
p .
(10) vy = aOZa{eleg---eﬂl + afvgeres - - - e,
Jj=0

where the convergence as n — oo of the expression on the right hand side depends on whether its
second term converges to 0 as n — oo.

Theorem 2. Let the random variables e, be such that loge, has a finite mean, and let log oy +
loge; < 0. Then, as n — co, v, converges in distribution to the random variable v, where

o0
(11) Voo = Qg E aleres: - ejpr
7=0

independently of vg.

Proof. By the strong law of large numbers,

n
Zlog(alej) — log(aie;) < 0asn — oo
=1

1
n
with probability one. Therefore,

Z log(aiej) = —o0
Jj=1

with probability one, and so also

aferes ey, — 0.

We note the special case where the e,, have density e *. We have
o
E(loge,) = / e Tlogzdr = —y
0

where «y is Euler’s constant (=0.5772157).
Letting n — oo in (6), we find that vy satisfies the distributional equation

d
(12) Voo = (g + a1Us0)e1
where v, is independent of e1. If we choose vg 4 Voo, then from (6), we obtain
d d
v = (Oéo + Oll'Uoo)el = Vo

and by induction vy, 4 Voo for all m > 1. Thus, we may call vy, a “stationary” solution of (12).
The uniqueness of the solution is guaranteed by the following.

Theorem 3. The random variable vy, defined by (11) is the unique solution of (12).
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Proof. We have already proved that vy is a solution of (12). Suppose vl is a second solution. Let
{vl,} be the sequence obtained from the recurrence relations (6) with v 4 vl,. Then, as before,

d .
v}, = vl . From (10), we obtain
n—1
y d j n !
Vno = QO E 04316162 el T ajvge1er - en
7=0

for n > 1. As n — oo, this gives vl 4 Uso a8 Was to be proved. O

Equation (11) represents vy, as a weighted sum of products of IID random variables. As far as
we are aware, this representation does not lead to a standard probability distribution. However,
the moments of v, can be easily derived (under appropriate conditions on «1) either from (11) or
else from (12).

The most important result for our purpose is the following.

Theorem 4. Let E(e2) = c¢?(> 1) and assume that a; < ¢~ . Choose vy % veo. Then the sequence
{vn} is stationary in the strict sense, with

a. B(vn) = 192
Qo 2 -1
b. Var(va) = (12%;) 1555

c. Corr(vp, Vmtn) = aF.

Proof. As we have already seen, the choice of vg 4 Uso leads to vy, 2 Uso. Now, given v,,, the

random variables e;11,€m+2,--. ,€m+n are independent of v, and have the same distribution as
e1,€,-.. ,e,. Therefore, from (9), we obtain
n—1
d j m
(13) Umtn = Qo g alenen 1+ en_j+ allvperes - ep.
=0

. d ..
Since vy, = Vo, this gives

d
(Vm, Vmin) = (Voo, Un)

in view of (8). More generally,

(Umtn1s Umangs - - - s Umtnn) = (Voos Ung—nis Uns—ngs -« - > Vnm—nn_1)
which proves the strict sense stationarity. To derive a and b, we use (12). Thus,
E(voo) = ap + o1 E(vy)
and
E(v,) = (o] + 20001 E(vs) + ? E(v,))c?

which lead to a and b. To prove ¢, we use (9). Thus,

1— Oé? n 2
E(vmvm+n) = E(vm)ao 1 + o] E(vy)
o
o 2
= ( 0 ) + of Var(vy,)
1— (05}

leading to c. O
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3. THE QUEUE LENGTH PROCESS IN M/QARCH/1

Let Dy = 0,D1, D3, ... be the successive epochs of departure and denote by v, the service time
of the customer leaving at D,,. Also, let @, be the queue length (the number of customers waiting
to be served plus the one at the counter, if any) at time D;". Then we have the recurrence relations

(14) Qn+1 = Qn + A(vny1) — 19,>0
(15) Vpt1 = (g + @1V )ent1

for n > 0, where A(t) is the number of arrivals during a time interval of length ¢. From (14)-
(15), it follows that {(Qn,vn),n > 0} is a time-homogeneous Markov process on the state space
{0,1,2,...} x [0,00). We shall call this the queue length process. From (14)—(15), we find that for
0<2z<1,0>0,

E(an+le*9”n+1 |Qn’ ) = 2@n—1,=(0+A=Az)(a0+a1vn)ent1 19,50 + e~ (0+A=A2)(ao+aivn)en+1 19, =o-

Therefore,

ZE(an+le—9Un+1) — E(ane—(0+)\—)\z)(a0+a1vn)en+1)
—(1-2) E(ane—(0+/\—/\z)(ao+a1vn)en+1; Qn =0).

We shall assume that as n — oo,

(16) (Qnyvn) % (@ vl):
Then,
(17) E(zQe(Gﬂ—)\f)\z)(oeo—kawéo)ﬁ _ zQ+1670”$x>) =(1-2) E(ef(0+)\f)\z)(a0+a1vﬁ,o)e1; Q = 0).

For fixed 6 > 0, letting z — 1 in (17), we obtain
(18) E(e eotavey — ge ),

In view of Theorem 3, we conclude that the marginal distribution of v/ is the same as that of v
as defined by (11). Accordingly, we shall denote the limit in (16) as (@, v ), although in the joint
distribution of (@, v),), the variable v/ behaves differently.

Writing (17) as

E(e—(9+)\—/\z)(ao+a1voo)e1; Q= 0) _ E(zQe_(0+)\—)\2)(0!0+a11}oo)el) — E(ZQ-I—le_Qvoo)

1—2
and letting z — 1, we obtain

E(efb?(ao—kawoo)el; Q _ O) _ E((Q + 1)6700"") . E(Qefﬁ(ao-kawoo)el)
(19)
— >\E(e_é’(o‘o‘"o‘”’”)e1 (o + a1v0)e1)-

Letting & — 0 in this, we obtain
(20) P{Q=0}=1-p

where p = AE(vy) and 0 < p < 1 is a necessary condition for the convergence in (16). Differenti-
ating (19) with respect to 6 and letting 8 — 0, we obtain

(21) E(Q(ao + @196)) + B((ap + @1v00); @ = 0) — E(Quas) = E(vee) — AE(v3,).
Finally, taking the second derivative of (17) with respect to z and letting z — 1 and 8 — 0, we
find that

/\2

(22) AE(Q(an + a1vs)) + AE((o + @1000); @ = 0) + E(v3) = B(Q).
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Although the results (21) and (22) do not yield in general an explicit result for E(Q), some important
conclusions can be drawn.

Theorem 5. In the queue M/QARCH/1, the queue length process {Qn,vn} converges in distribu-
tion as m — oo only if p < 1, where p = AE(vy). In this case, we have the following.
a. In the system with deterministic service times (e, =1),

1 p?
2 E(Q)=p+-=
(23) @ =p+57— 5
b. More generally,
ar dp? —p 1 A2 E(v2) a;  dp?
24 E — —
(24) oy 1-, “F@ (’”2 1—p ) S1—ai—p
where
201 _ 2
(25) PRt BT
1-c2of

Proof. First we prove a. If e, = 1, then the equation vs = (g + @1V )e1 has the unique solution
ap

Voo = .
1—051

Using this in (22), we obtain
1
PE(Q) +p(1 = p) + 52" E(vg) = E(Q)
which simplifies to (23).
Now we prove b. From (21) and (22), we find that
1
E(Q) = p+ N E(vgo) = AE(Quoo) + 5 A" B(vg,)-
This can be written as
1
(1-p)E(@Q) =p+ 5)\2 E(v3) + A(Cov(Q, veo) — A Var(veo))-
The desired inequalities (24) follow from the following result. O
Theorem 6. In the M/QARCH/1 system in steady state, we have

(26 (5 ) < MCov(Qv0) ~ AVar(v) <

Proof. We simplify (21) as

(27) (1 — a1)MCov(Q, veo) — A Var(vee)) = a1 A2 E(veo) — a1 A E(ve0; Q > 0).

The calculations of Section 2 show that A2 E(vZ)) = dp®. Also,

(28) 0 < AE(we; Q@ >0) < p

since 0 < p < 1. From (27) and (28), we obtain (26). O

dp?.

Remark 1. In the system M/G/1 with Poisson arrivals at rate A and the service times having the
same mean and second moment as Voo, the mean queue length is given by
n 1 N E(v2) .
2 1—p
Theorem 5b establishes bounds for E(Q) in M/QARCH/1 in terms of the mean queue length in
M/G/1.
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Remark 2. Proceeding as in the M/QARCH/1 system, but noting that v, 1 does not depend on
Q. or vy, we can prove that

(29) Cov(Q, 1) = A Var(vy),

a result that does not seem to have been noticed in the literature. The inequalities (26) establish
bounds for Cov(Q,vs) in M/QARCH/1 in terms of the corresponding quantity in M/G/1.

Remark 3. The bounds in (24) depend on ai. In particular, if on = 0, then v, = apen and our
system reduces to M/G/1 with service times age, (n > 1). As is to be expected, the mean queue
length reduces to the known ezpression for this M/G/1.

Remark 4. For steady state sojourn times S (waiting time plus service time) of customers, we
have the formula E(Q) = NE(S). Therefore, the result (24) provides bounds for E(S).

Remark 5. We do not claim that the bounds in (24) and (26) are as tight as possible. To demon-
strate the behavior of these bounds, we evaluated (24) in the special case where the e, have the
exponential density and oy = 1 (without loss of generality). These results are displayed in Fig-
ures 3 and 4 below.

4. SIMULATION RESULTS

To verify results from previous sections and gain new insights about the behavior of queues
with arch-type dependence, we simulated an M/QARCH/1 system in which e, is exponentially
distributed. We also simulated a corresponding system (M/G/1) as a point of comparison. To
make a “fair” comparison, we chose the “G” distribution to be vy (IID) for the QARCH process.
With this selection, the two systems have the same marginal distributions, and we can attribute
differences in queueing performance to volatility. In addition, we used the same set of interarrival
times for the M/QARCH/1 and M/G/1 systems.

4.1. Generating IID from vy. Equation (11) expresses vy, as a sum of weighted products of
standard exponentials. As stated above, a closed form representation for its density or cdf cannot
be derived. This poses a problem from the simulation perspective. Most standard techniques
for generating IID samples from a distribution require the knowledge of the distribution’s density
and/or cdf.

In this case, we have a recursive representation for the series of QARCH random variables. The
most direct (although a not very efficient) way to generate IID samples from v, is to run the
recursion and store every hth observation (where h is chosen to be sufficiently large). We used

h = 25 so that consecutive realizations were essentially uncorrelated (Corr(-) = a2%).

42. M/QARCH/1. We simulated this system with customers having arrival rates

\e 1 2 9
207207777720

and service times having the QARCH parameters ap = 1 and a; = 1/2. This implies that the
long-run mean service time is 2 and the long-run variance is 8. The set of traffic intensities are

cli 2 9
PS110°10 710 [

Both the M/QARCH/1 and the M/G/1 systems were simulated for a “warm-up period” and
then the length of time until the 10,000th customer’s service completion. The results are presented
below.

In Figure 7, the mean queue lengths are plotted for both systems. The theoretical bounds
for E(Q) in the M/QARCH/1 system are also plotted. Clearly, the customers in the queue with
QARCH service times see longer lines; the difference is maximized for larger traffic intensities.
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Time series plots of the queue lengths in the two systems where the traffic intensity is 0.9 are
shown in Figures 5 and 6. Long lines persist longer in the M/QARCH/1 system. In that system,
long lines persist since large service requests are followed by more large service requests. In the
M/G/1 system, long lines are quickly attended to since consecutive service times are independent.

In Figure 8, we present a comparison of the histograms of the marginal distributions of queue
lengths seen by arrivals where the traffic intensity is 0.9. The queue length distribution in the
M/QARCH/1 system has much fatter tails than that in the M/G/1 system.
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