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With the rapid developments in hardware and software technology, so called

networked systems have expanded significantly in the recent years. Due to

their significant advantages, these networks grow continuously in size (num-

ber of agents, links) and complexity. However, this enormous growth brings

potential problems, i.e., complexity issues and failure consequences. For this

reason, in this study, we focus on efficient, scalable and reliable information diffu-

sion algorithms on complex networks. We first focus on so called average con-

sensus problem under finite rate communications. We utilize increasing spatial

and correlation among node states to reduce quantization error in the system

and propose coding with side information schemes for quantized consensus al-

gorithms. We analyze the convergence behavior of the quantized consensus as

well as analytically modeling the mean squared error of the algorithm.

Moreover, we propose a gossiping algorithm, i.e.,broadcast gossiping, for con-

sensus type problems on sensor networks. Similar to other gossiping algo-

rithms, our scheme generates only local traffic and robust to link/node failures

due to the iterative update structure. The main advantage of the algorithm is

the fact that our updates rely on the wireless nature of the links in between

nodes rather than point to point communications. We further analyze perfor-

mance characteristics of our algorithm such as the speed of convergence and

mean squared error.

We also propose a gossiping based scheme for asymmetric information dif-



fusion problem. In this particular problem, a subset of the network is interested

in a separable function of the data which is stored in another subsets of the

nodes. Given the underlying network connectivity and the source-destination

sets, we provide necessary and sufficient conditions on the update weights (re-

ferred to as codes) so that the destination nodes converge to the desired function

of the source values. We show that the evolution of the source states does not

affect the feasibility of the problem, and we provide a detailed analysis on the

spectral properties of the feasible codes. We also study the problem feasibility

under some specific topologies and provide guidelines to determine infeasibil-

ity. We also formulate different strategies to design codes, and compare the

performance of our solution with existing alternatives.

Finally, we propose a gossiping based method for modeling opinion propa-

gation through social networks. In particular, we model the individuals’ opin-

ions as binary variables (such as 0 or 1, democrat or republican, etc), and assume

that there exists certain individuals in society who do not change their opinions.

We analyze the behavior of individual’s opinions as well as the collective opin-

ion of the society in the long run. We completely characterize long term mean

and variance of the average opinion in the networks as well as posing optimal

stubborn agent replacement problem.
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CHAPTER 1

INTRODUCTION

1.1 Information Diffusion in Networks

With the improvement of hardware technology and emergence of fiber-optic in-

frastructure, so called networked systems have expanded significantly. These

systems, in most of the cases, consist of static or mobile agents which can col-

lect, store and process data, and communication links which can carry informa-

tion in between these agents. Networked systems have improved the quality

of our lives and become an integral part of our society. For instance, the Inter-

net which has almost 2 billions users today [87], is being utilized for e-mails,

instant messaging, VOIP communications, social networking, online banking,

etc. Moreover, sensor networks which rely on wireless communications in be-

tween agents, have been deployed for the detection of fire, of anomalies and of

intruders in urban environments, for climate control in houses/apartments, for

data collection in various applications as well as cell phone communications [3].

Due to their significant advantages, these networks grow continuously in

size (number of agents, links) and complexity. However, this enormous growth

brings potential problems, i.e., complexity issues and failure consequences. In

other words, the complexity of queries, data processing, data retrieval and net-

work structure increases which results in more vulnerable networked systems.

On the other, we become more and more dependent on these networks which

brings out the issue of them becoming too important to fail.

For the reasons discussed above, in this study, we focus on reliable, scalable
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and efficient information diffusion algorithms on complex networks. Complex

nature of these networks is due to their non-trivial topological features. The

first three chapters of the study, Chapters 2 − 4, will be on symmetric diffusion

problems on wireless networks, while in Chapter 5, asymmetric diffusion in

wired networks will be of our interest. Finally, in Chapter 6, we will focus on

opinion propagation through social networks via gossiping.

1.2 Coding and Access Protocols for Scalable Wireless Average

Consensus

In the first three chapters of the study, we will focus on the average consen-

sus problem in wireless sensor networks. Our primary motivation is that, in

wireless networks, there is no real link, and one can realize different network

topologies with the same power and bandwidth resources depending on how it

encodes the data (quantization) and how it structures the access. For instance,

if one is willing to sacrifice the precision it can connect at a longer range by uti-

lizing lower quantization rates. Moreover, if one is willing to broadcast rather

than employing point to point communication, it can perform more exchanges

at once. Keeping these points in my mind, we will investigate coding and access

protocols for average consensus problems on wireless networks.

1.2.1 Quantized Average Consensus

In particular, in Chapters 2 − 3, we will focus on so called average consen-

sus problems. In this special class of problems, each agent i in the network

2



has an initial quantity xi(0) ∈ R, and the network is interested in calcu-

lating the average of these initial quantities, i.e., 1/N
∑N

i=1 xi(0) [88, 22, 47].

Consensus problems, in general, have many practical applications including

coordination of autonomous and geographically separated field agents, dis-

tributed computing and congestion control, tracking objects by several un-

manned air vehicles (UAVs) and decentralized reconstruction or compression

of a field [48, 75, 39, 83, 52, 94].

To calculate the average, we will utilize the so called gossiping protocols

which are iterative and based on near neighbor communications. These algo-

rithms are known to generate local traffic only and to be robust to link/node

failures due to their iterative nature [88, 19, 21, 47, 62]. These protocols have

been first introduced by Tsitsiklis in his PhD thesis [88], and have gained sig-

nificant attention after Boyd et.al.’s work in [21]. Boyd et.al. have analyzed

discrete time update case and studied wide range of problems from conver-

gence characteristics to the design of optimal update weights for faster conver-

gence [92, 19, 20]. Saber and Murray have analyzed the case of continuous time

updates with a dynamically changing network topology [82]. Moreover, they

have explored the necessary conditions on the update weights and connectivity

of the sensors for convergence. Ren et.al. have studied consensus algorithms

for the solution of Kalman filtering context [80]. Rabbat et.al. have focused on

optimization consensus problem with binary erasure links between neighbor-

ing nodes [79]. Interested readers may refer to consensus literature for detailed

analysis as well as several interesting applications [19, 20, 93, 55, 71, 72, 50].

As we have discussed above, there exists a substantial body of work on av-

erage consensus protocols under infinite precision and noiseless peer to peer

3



communications. However, little research has been done introducing distor-

tions in the message exchange. In general, the networks envisioned for the ap-

plication of consensus algorithms involve large numbers of possibly randomly

distributed inexpensive sensors, with limited sensing, processing and commu-

nication power on board. In many of the applications, limitations in bandwidth

and sensor battery power and computing resources place tight constraints in the

transmission rate. Other applications such as camera networks and distributed

tracking demand communication of large volumes of data. When the power

and bandwidth constraints, or large volume data sets are considered, neglect-

ing rate constraints is unrealistic.

Xiao and Boyd have studied an average consensus algorithm where each

update is corrupted by an additive noise with zero mean and fixed variance.

They have concluded that consensus is only achievable in the mean1 and the

mean squared difference between the initial average and asymptotic average is

unbounded [93]. On the other hand, recent work on quantized average con-

sensus by Aysal et.al, has modeled the quantization noise more accurately and

suggests that convergence can be attained almost surely under a probabilistic

quantization scheme [11, 12, 10]. More specifically, the authors have proposed

a scheme where each node updates its state as a linear combination of its own

quantized state and the probabilistically quantized states of its neighbors (x̃(t)),

i.e.:

x(t+ 1) = Wx̃(t). (1.1)

To prove the convergence to a consensus, the quantized sensor states have been

precisely modeled as a finite state Markov chain rather than assuming that

quantization is equivalent to an additive analog noise.

1limt→∞ E
{
1/N

∑N
i=1

[
xi(t)− 1/N

∑N
i=1 xi(t)

]}
= 0.
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Kashyap et. al. have examined the effects of quantization in consensus al-

gorithms from a different point of view [53]. They require that the network

average, (x̄ = 1/N
∑N

i=1 xi(t)), be preserved at every iteration. To do this us-

ing quantized transmissions, nodes must carefully account for round-off errors.

Suppose we have a network of N nodes and let ∆ denote the “quantization

resolution” or distance between to quantization lattice points. If x̄ is not a mul-

tiple of N∆, then it is not possible for the network to reach a strict consensus

(i.e., limt→∞maxi,j |xi(t) − xj(t)| = 0) while also preserving the network aver-

age, x̄, since nodes only ever exchange units of ∆. Instead, Kashyap et. al define

the notion of a “quantized consensus” to be such that all xi(t) take on one of

two neighboring quantization values while preserving the network average; i.e.,

xi(t) ∈ {l∆, (l + 1)∆} for all i and some t, and
∑

i xi(t) = Nx̄. They have shown

that, under reasonable conditions, their algorithm will converge to a quantized

consensus. However, the quantized consensus is clearly not a strict consensus,

i.e., all nodes do not have the same value.

Carli et.al. have studied quantized consensus algorithm from control the-

ory perspective. In particular, they have mapped quantized average consen-

sus into stability under quantized feedback problem [24]. They have proposed

two schemes, i.e., zoom-in/zoom-out and logarithmic quantizers, whose properties

have been analyzed rigorously. They have provided the conditions under which

the system will converge to a consensus.

Our key observation is that both temporal and spatial correlations among

the node states increase as the system progresses through time. We are propos-

ing two communication schemes to exploit the increasing correlation to drive

the distributed quantized averaging algorithms to a consensus: (1) Predictive
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coding for temporal correlation and (2) Wyner-Ziv coding for spatial correla-

tion. Approximating the error as additive quantization noise, in Chapter 2, we

show that under these schemes, a consensus in the mean square sense (i.e., in

L2) can be achieved where such consensus is defined as:

lim
t→∞

E


(

1

N

N∑
i=1

[
xi(t)−

1

N

N∑
i=1

xi(t)

])2
 = 0. (1.2)

We discuss that one can still achieve convergence in L2 by decreasing quantiza-

tion rate incrementally. We also derive necessary and sufficient conditions on

the quantization noise variances for bounded MSE convergence, where MSE is

defined as:

MSE = lim
t→∞

E


(

1

N

N∑
i=1

xi(t)−
1

N

N∑
i=1

xi(0)

)2
 . (1.3)

In Chapter 3, we focus on the predictive coder where nodes utilize only their

previous state values. Similar to Chapter 2, we utilize a dithered quantizer and

thus model the quantization effect as temporally and spatially uncorrelated ad-

ditive analog noise which is also uncorrelated with the message. Since charac-

terization of the MSE performance is a challenging problem for general graphs,

we focus on a particular communication patterns, i.e., regular graphs with sym-

metric connectivity. In this setting, we provide explicit expressions and scaling

laws for the MSE. In particular, we show that MSE is inversely proportional

with the network connectivity. In addition, we will show that MSE is a function

of the network size and scales as O(N−1) when other parameters are fixed. We

further study the characteristics of the average consensus algorithm under vari-

able rate quantization scheme. In a special case where the quantization rates are

chosen such that quantization noise variance decreases like a geometric series,

we determine the rate regions where asymptotic quantization rate approaches
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zero while convergence in L2 is guaranteed. In addition, we show that the rate

regions achieving zero asymptotic rate and L2 convergence with bounded MSE,

also achieve finite-sum rates. Therefore, the sum of the quantization rates over

the iterations, is indeed finite. We discuss that transmitting more bits in early

iterations and decreasing them gradually results in a better performance than

using a predictive encoder with a fixed rate. We note that our work in Chapters

2− 3 has been published in [102, 99, 100, 97].

1.2.2 Broadcast Gossiping Algorithms

In Chapter 4, we step back and focus on unquantized consensus problem, and

study different ways to improve convergence speed of the existing algorithms.

In particular, we propose broadcast gossiping for consensus which utilizes wire-

less nature of the communications in sensor networks. In [20], the authors pro-

posed a consensus algorithm where each update results in a pairwise average

of their values, the operation preserves both the total sum, and hence also the

mean, of the node values. It was shown that gossiping for consensus algorithm

converges to a consensus if the graph is strongly connected on the average. Be-

cause the transmitting node must send a packet to the chosen neighbor and then

wait for the neighbor’s packet, this scheme is vulnerable to packet collisions and

yields a communication complexity (measured by number of radio transmis-

sions to drive the estimation error to within Θ(N−α), for any α > 0) on the order

of Θ(N2) over random geometric graphs [20]. The geographic gossip algorithm

proposed in [34] combines gossip with geographic routing to improve the con-

vergence rate of random gossiping. Similar to the standard gossip algorithm, a

node randomly wakes up, chooses a node randomly in the whole network, rather
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than in its neighborhood, and performs a pairwise averaging with this node. Ge-

ographic gossiping increases the diversity of every pairwise averaging oper-

ation. The authors show that the communication complexity is in the order of

O(N3/2
√
log(N)), which is an improvement with respect to the standard gossip-

ing algorithm. More recently, a variety of the algorithm that “averages around

the way” has been shown to converge in O(N logN) transmissions [16].

In our algorithm, a node in the network wakes up uniformly at random ac-

cording to the asynchronous time model and broadcasts its value. This value is

successfully received by the nodes in the predefined radius of the broadcasting

node, i.e., connectivity radius. The nodes that have received the broadcasted

value update their own state value and the remaining nodes sustain their value.

It is shown here that by iterating this procedure, this type of gossiping algo-

rithm is capable of achieving consensus over the network with probability one.

We also show that the random consensus value is, in expectation, equal to the

desired value, i.e., the average of initial node measurements. Because the sum of

the node state values is not preserved at each iteration, the broadcast gossiping

algorithm converges to a value that is in the neighborhood of the desired aver-

age. we provide theoretical and simulation results on the mean square error and

communication cost performance of the broadcast gossip algorithm. Moreover,

we study the effect of the so called mixing parameter on the convergence rate and

limiting mean square error through theoretical results and numerical experi-

ments. In addition, we derive the optimal mixing parameter when approached

from the convergence rate perspective. Although the convergence time of our

algorithm is commensurate with the standard pairwise gossip algorithms, we

present simulations showing that for more modest network sizes our algorithm

converges to consensus faster than other algorithms based on pairwise averages
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or routing. This work has been published in [13, 8, 9].

1.3 Generalized Network Computation via Gossiping

In Chapter 5, we focus on a special network computation problem, where a

group of destination nodes is interested in a function that can be decomposed as

a sum of functions of local variables stored by another set of source-nodes. We

refer to this problem as the Computing Along Routes (CAR) problem. This par-

ticular problem has a wide range of applications including aggregation queries,

distributed detection, content distribution, decentralized traffic monitoring, dis-

tributed control and coordination [107, 65, 76, 92].

We focus on the case where the set of source nodes and the set of destina-

tion nodes are disjoint, and hence our case does not include average consensus

gossiping [92] as a special case. This particular assumption has strong practical

appeal since, in many cases, the nodes which are responsible for collecting the

data and the nodes that are designated to process these data are disjoint and

geographically separated. For instance, in the problem of distributed detection,

only the fusion centers are interested in the outcome of the sensor decisions. In

the case of content distribution, the entity who is interested in the data does not

necessarily have access to any part of it before the distribution occurs. In the

case of the leader-follower coordination problem [49], several nodes are to fol-

low a group of leaders, and the source and destination sets are clearly disjoint.

In fact, the problem considered in this chapter is closely related to the data

aggregation and routing problems studied in the computer science literature,

where spatially distributed data is to be collected by a fusion center, utilizing
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data aggregation and in-network processing techniques [107, 37, 70, 25, 4]. The

similarity is obvious if one observes that solutions to the so called duplicate-

sensitive data aggregation problem (see e.g. [70]) can be generalized to find

codes that solve our problem. Duplicate-sensitive data aggregation refers to the

case where destinations seek a single copy of data from each source. In the case

of a single source and multiple destinations, the duplicate-sensitive aggrega-

tion problem has been studied extensively, proposing energy efficient schemes

based on spanning trees [64, 96], and algorithms that are robust to link/node

failures [70]. In the case of multiple source and multiple destinations, solutions

have been proposed including hierarchical structures and minimizing routes

costs [4, 45, 25]. These methodologies are not viable for solving the CAR prob-

lem, because one would need to explicitly consider duplicating the data of all

sources at the destinations. Moreover, it falls short of explaining the relationship

between type of topologies and the feasible queries and it does not incorporate

feedback.

One solution to the problem we posed is to unicast between each pair

of source-destination nodes via the shortest path joining source and destina-

tion [32]. After receiving all the information, each destination node can com-

pute the desired function independently. Except in very special cases, this strat-

egy is inefficient since the exact same information flows in the network several

times, and it is unreliable since it is severely affected by link failures. The second

approach is multicasting the information, having a single source node transmit-

ting at a time to all destinations, thereby allowing the computation of the sought

results independently [29]. Thanks to network coding [2],[35],[57], multicasting

can be done using the links efficiently. However, this decomposition of the prob-

lem is agnostic to the fact that the nodes do not want the data themselves, but
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an aggregate result.

We note that a setup resembling more to our problem is considered in [55],

where the authors have applied the gossiping algorithm to solve a sensor local-

ization problem, assuming that each node in the network wants to compute a

linear combination of the anchor (source) nodes, to determine their exact loca-

tions. Unfortunately, this analysis can not be utilized to solve our problem since

all of the non-source nodes are destinations, and destination nodes are not nec-

essarily interested in the same function of the source nodes. A significant work

is also due to Mosk-Aoyama et.al. who have considered distributed computa-

tion of separable functions as well as information dissemination on arbitrary

networks [68, 69]. Morever, Benezit et.al. have studied average consensus prob-

lem via randomized path averaging to achieve increased convergence rates [17].

However, our problem differs from these models in the sense that source and

destination sets are disjoint, and there may exist intermediate nodes which are

neither sources nor destinations.

In Chapter 5, we are proposing a gossiping based algorithm for jointly rout-

ing and calculating the desired function at the destinations. The innovative as-

pect of this procedure is that it incorporates feedback, unlike similar problems

that consider a unidirectional flow of data. On the other hand, it does not nec-

essarily distribute the desired value to the whole network which makes our

scheme more secure and flexible. we introduce necessary and sufficient condi-

tions for the existence of solutions to the prosed problem. By focusing on non-

negative update weights, we investigate spectral properties of feasible codes

and show what classes of code structures leads to feasible solutions. Moreover,

we introduce reductions of the network topology which can be employed to
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simplify the design problem without loss of generality. By focusing on stochas-

tic codes, we provide necessary conditions on the topology for the feasibility

and discuss some infeasible cases. We introduce a formulation for so called par-

tially directed solution in terms of multicommodity flow problem. We compare

the performance of our solution with the existing solutions. This work has been

published in [103, 101, 104].

1.4 Opinion Diffusion in Social Networks via Gossiping

In Chapter 6, we study opinion diffusion in social networks and propose a gos-

siping based model to capture the diffusion. The seminal work on this partic-

ular area is due to DeGroot [30] where opinions of individuals are modeled as

probabilities that might be thought of the probability that a given statement is

true. The interaction patters are captured through near neighbor based linear

updates. We note that the updates of the DeGroot model has the exact the same

as the synchronous average consensus updates. Finally, in their recent work,

Acemoglu et.al. have studied an extension of the DeGroot model where updates

are asynchronous and certain individuals are spreading misinformation by not

updating their own beliefs [1]. In Chapter 6, we propose a gossiping based

model where individuals randomly meet with their neighbors and probabilisti-

cally update their opinions. However, unlike the Degroot and misinformation

models, we assume that individuals’ opinions are discrete rather than continu-

ous variables and there exists so called stubborn individuals who do not change

their decisions. Therefore, unlike the models in [30, 1], individuals’ opinion do

not converge to a particular number, on the contrary, the opinions keep chang-

ing. This, in return, will help us to capture correlations among the opinions of
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different individuals as well as the variations in the collective opinion of the so-

ciety. We note that unlike Bayesian learning and observation models [46], we

do not assume that there is a true parameter which the society is interested in

capturing. We are interested in the propagation of opinions on a certain subject.
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CHAPTER 2

CODING WITH SIDE INFORMATION FOR QUANTIZED AVERAGE

CONSENSUS

2.1 Motivation and Related Work

In this chapter, we are exclusively concerned with the symmetric information

diffusion in complex networks, i.e., agrement protocols. In particular, our fo-

cus will be on discrete time average consensus problem. As we have discussed

in Chapter 1, discrete time average consensus algorithm is an iterative proto-

col which is based on local interactions only. The algorithm is quite powerful

in the sense that under mild connectivity conditions, and perfect communica-

tions among local agents, any network will converge to consensus1 under this

particular protocol [92]. Moreover, the consensus point is not just any random

value, on the contrary, it is the average value of the initial node states [92]. Un-

fortunately, these results hold under the crucial and non-practical assumption

that nodes can store and transmit continuous values. While one can assume

that nodes can store almost continuous quantities thanks to moderate storage

abilities, transmitting even a single value from an uncountable set would take

infinite amount of time [26]. Therefore, we will focus on the case where nodes

have to quantize their values before transmitting them to their local neighbors.

Specifically, we focus on the attainable mean square convergence performance

under source encoding rate constraints at each node.

On the one hand, if the quantization noise is modeled as an independent ad-

1We use the notion of consensus in the sense each and every node in the network will hold
the same value.
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ditive noise with fixed variance, it is concluded that consensus is not achievable

and the asymptotic mean squared error is unbounded [93]. On the other hand,

recent work on average consensus by Aysal et.al suggests that convergence can

be attained almost surely under a probabilistic quantization scheme [10]. To

prove it, the quantized sensor states are more precisely modeled as a finite state

Markov chain rather than assuming that quantization is equivalent to an addi-

tive analog noise.

Kashyap et.al. have examined the effects of quantization in consensus algo-

rithms from a different point of view [53]. They require that the network aver-

age to be preserved at every iteration. To do this using quantized transmissions,

nodes must carefully account for round-off errors at each iteration. Kashyap

et.al. define the notion of a “quantized consensus” to be such that all the node

values take on one of two neighboring quantization values while preserving the

network average. They show that, under reasonable conditions, their algorithm

will converge to a quantized consensus. However, the quantized consensus is

clearly not a strict consensus, i.e., all nodes do not have the same value.

Our work is also closely related to [51]. In this particular study, authors

have focused on average consensus algorithm under dithered quantization and

random link failures. By utilizing stochastic approximation theory, they have

showed that the proposed algorithm converges to a consensus with probability

one. They have derived the analytical relationships between the design param-

eters (link weight sequence, quantizer bin width, the number of quantization

levels) and the convergence speed of the algorithm as well as the mean squared

error.

Finally, one can refer to [73] for detailed comparison of several quantized
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consensus algorithms.

2.1.1 Summary of Main Contributions

In this chapter, we employ the additive noise model for the quantization error

using a variable rate quantizer. Furthermore, we observe that consensus algo-

rithms offer the perfect example of network communication problems where

there is correlation between the data exchanged, and that the correlation in-

creases as the system updates its computations. We would like to emphasize

that while quantized consensus has been analyzed by numerous researchers as

we have discussed in the previous section, the increasing correlation in the net-

work has never been observed and analyzed before. Moreover, the connection

between quantized consensus and information theoretic notions such as quanti-

zation rate, source coding is unique.

Considering coding strategies using side information we derive necessary

and sufficient conditions on the quantization noise variances for bounded mean

squared convergence and prove that such a convergence is possible even under

zero asymptotic quantization rates. Our main contribution is summarized in

the following lemma:

Theorem 1 There exists rate allocation schemes for which the nodes converge to a con-

sensus with a bounded mean squared error with respect to the true mean along with the

quantization rate per message converges to zero. To achieve the vanishing per message

rate one needs to employ side information, at either encoder and/or decoder in the form

of the predictive coding and Wyner-Ziv coding schemes.
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The chapter content can be, in a nutshell, summarized as the proof of the the-

orem above. Our results consider both the asymptotic limit of vector quantiza-

tion as well as the practical case of scalar quantizers. We numerically analyze

scalar quantizers based on predictive and nested lattice Wyner-Ziv encoding

schemes, and validate the results of our theoretical findings with solutions that

bear moderate encoding cost.

2.1.2 Chapter Organization

The remainder of this chapter is organized as follows: In Section 2.2, we re-

view the main mathematical relationships characterizing average consensus al-

gorithms. Section 2.3 explores the conditions on the noise variance under which

the system converges to a consensus. We propose a predictive coding scheme

which has the structure shown in Fig.2.1.2a in Section 2.4. In Section 2.5, we

discuss Wyner-Ziv encoder/decoder scheme as in Fig.2.1.2b. Numerical exam-

ples evaluating the performances of the proposed algorithm and validating the

theoretical findings are presented in Section 2.6. Finally, we present the end of

the chapter discussions in Section 2.7.

2.2 Quantized Average Consensus Model

Denote by zi(t) the unquantized message of node i at iteration t, and by z̃i(t)

its quantized value. We consider two main strategies which are represented in

Fig. 2.1.2. For each of these two strategies, we consider the two possible com-

munication scenarios in Fig. 2.1.2 called the peer to peer and the broadcast cases,
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respectively. As seen in Fig. 2.1.2 a) the peer to peer schemes utilize a different

encoder for each particular destination, while the broadcast schemes in Fig. 2.1.2

b) require only one encoder for all receivers of a given sender. The reason of

this distinction is that the peer to peer methods generally outperform the broad-

cast methods, but at the price of a more complex encoder structure and forcing

to send a different message to each neighbor. While sending a different mes-

sage over each link is acceptable in a wired network, it is wasteful in a wireless

medium, where communications are naturally broadcast and each transmission

reaches all neighbors. The peer to peer methods are proposed for wired networks

and the broadcast methods are proposed for wireless networks, though our main

focus will be broadcast methods.

We consider an undirected graph G(V , E) with the set of vertices V and the

set of edges E . We assume that there are N nodes in the network, i.e., |V| = N

and N is finite. The set of edges E consists of doubles (i, j), i, j ∈ V , and if

(i, j) ∈ E , it means that nodes i and j are neighbors and they can communicate

with each other. We note that since the network of interest is assumed to be

undirected, (i, j) ∈ E if and only if (j, i) ∈ E . We define the adjacency matrix of

the graph G as A [67]:

[A]ij =

 aij > 1, if there is an edge between node i and j

aij = 0, if i = j or i ̸= j and there is no edge
. (2.1)

Laplacian matrix associated with graph G is defined as:

L = D − A, (2.2)

where D = diag(A1) is the degree matrix, diag(.) is the diagonal matrix of its

arguments and 1 is all ones column vector. In this study, we consider the dis-
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tributed average consensus algorithm which follows the update rule:

xi(t+ 1) = xi(t)−
N∑

j=1,j ̸=i

ϵlij
(
xj(t)− xi(t)

)
(2.3)

for i ∈ V and t = 0, 1, . . .. We can rewrite (2.3) in vector form as:

x(t+ 1) = (I − ϵL)x(t) = Wx(t) (2.4)

where x(t) = [x1(t) x2(t) . . . . xN(t)]
T and [L]ij = lij . It was shown by Xiao and

Boyd that above system converges to the average of any initial vector x(0) ∈

RN if and only if W is balanced1, and ∥ W − 1
N
11T ∥< 1 where the norm is

maximum singular value norm [92]. In other words, convergence is satisfied

if 1 is an eigenvalue of W and it is also the only eigenvalue with the greatest

magnitude. Similar results for continuous time iterations are in [82]. For A =

AT , by constraining 0 < ϵ < 1/max(A1), we guarantee that (2.4) asymptotically

converges to average as in [92].

If we decompose (2.3) as follows:

x(t+ 1) = (I − ϵD)x(t) + ϵAx(t) (2.5)

we see that there are two different parts in the update rule: computing (I −

ϵD)x(t) requires only local values and ϵAx(t) uses the neighbors’ values. We

can therefore define:

z(t) = ϵx(t) (2.6)

as the vector of variables which needs to be exchanged over the links available

on G at each iteration t. The entries of the vector z(t), quantized with finite

precision, are received by the neighbor as z̃(t) = z(t) + w(t), where w(t) is the

quantization error.

11TW =
(
W1)T = 1T
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While there exists a substantial body of work on average consensus proto-

cols under infinite precision and noiseless peer to peer communications, little

research has been done introducing distortions in the message exchange, such

as the noisy update assumption made in [93]. Specifically, Xiao and Boyd con-

sider the following extension of (2.3):

xi(t+ 1) = xi(t)− ϵ

N∑
j=1,j ̸=i

lij
(
xj(t)− xi(t)

)
+ wi(t) (2.7)

where wi(t), i ∈ V , t ≥ 0 are independent zero mean fixed variance identically

distributed random variables. The authors show that under these assumptions,

the system converges to the initial average only in mean (i.e. we do not have

mean squared convergence) and that the mean squared error (MSE) deviation

from the actual average, increases beyond a certain iteration. The authors also

show that the node values do not converge to a common value as the number

of iterations increases.

We propose, under a detailed internode communication model, to charac-

terize wi(t) as an additive quantization noise in (2.7). By utilizing the increas-

ing correlation among the node state values, we show that the variance of the

quantization noise diminishes even with zero asymptotic rate. Furthermore,

we show that the node values converge to a consensus as t → ∞. We derive

an expression for the mean squared deviation of the consensus value for both

practical scalar quantizer and infinite length vector quantizer schemes. We also

show that the mean squared deviation is bounded even under vanishing quan-

tization rate regimes.

In the rest of the chapter, we will be using the following assumptions:
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(A1) The entries of x(0) are random variables with zero mean2 and finite vari-

ance (not necessarily independent).

(A2) The nodes are strongly connected3, and W satisfies convergence condi-

tions satisfied by unquantized average consensus protocol [92].

(A3) The quantization noise samples at each step and sensor are uncorrelated

with the messages and are also spatially and temporally uncorrelated, zero

mean random variables4.

(A4) Knowledge of the initial node statistics and topology (W matrix) is avail-

able at each node.

Remark 1 With regard to (A3), in [86] Synder proved that a sufficient condition for

quantization noise to be modeled as uniformly distributed and uncorrelated with the

input message in the uniform scalar quantizater model is that characteristic function

(CF) of the input message is bandlimited where 2π
∆

is the upper bound on the bandwidth

and ∆ is the quantization bin width. In practice, characteristic functions are not exactly

band-limited and the quantization theorems apply only approximately. However, as our

adaptive consensus algorithm iterates ∆ converges to 0 as discussed in Sections 2.4

and 2.5. Therefore above assumption will hold closely for larger iterations. Even in the

initial iterations, under sufficiently large quantization rates such an assumption closely

reflects the actual system behavior. In [86], Synder also showed that similar rules apply

for spatial and temporal uncorrelation, i.e. the joint CF has to be band-limited.

In Section 2.6, we numerically show that the theoretical behavior of the system

matches with the simulated behavior and conclude that such assumptions hold closely
2In the case of unknown mean, due to the fact that the predictive coding scheme transmits

the difference between the current state and its Linear Minimum Mean Squared Estimate, the
mean of the difference can be approximated as 0. Hence, the performance is expected to be
similar.

3A graph is strongly connected if there is a path from each vertex to each of the others.
4E[wi(t)wj(l)] = 0 unless t = l and i = j.
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even under lower rate regimes. In the case of infinite length vector coding, Zamir et.al.

showed in [105] that the quantization noise approaches to a white Gaussian process.

Remark 2 The knowledge of the topology mentioned in (A4) is not practical in a decen-

tralized setting. While this assumption is used to keep track of the network statistics at

each node, any predictive strategy or coding with side information strategy which does

not make explicit use of the statistics can still be analyzed with our methods. Moreover,

in [99], we have showed that as the node density increases or in homogeneously dis-

tributed networks, the encoder-decoder coefficients become independent on the network

size and specific location of a node. Therefore, (A4) can be relaxed even for relatively

small network sizes (i.e.. N = 64 as discussed in [99]).

2.3 Convergence Conditions With Additive Quantization

Noise

In this section, we utilize assumptions (A1)-(A3) and derive necessary and suffi-

cient conditions on the quantization noise variances at each iteration and sensor,

so that the nodes converge to a common value. We note that our convergence

definition is in the mean squared sense, i.e. the nodes converge to a consensus if

lim
t→∞

N∑
i=1

E[{xi(t)− (N)−11Tx(t)}2] = 0. (2.8)

Then, we give additional constraints that lead to a consensus where the final

value is bounded from the initial mean in the mean squared sense. Our ap-

proach is similar to that in [93]. We will focus on the behavior of the transmitted

random vector z(t) = ϵx(t) rather than x(t) for brevity. The noisy recursion has
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the following simple form:

x(t) = (I − ϵD)x(t− 1) + Az̃(t− 1) (2.9)

where z̃(t− 1) = z(t− 1) + w(t− 1) as discussed in Section 2.2. Therefore:

z(t) = ϵx(t) = (I − ϵD)z(t− 1) + ϵAz̃(t− 1)

= (I − ϵD)z(t− 1) + ϵAz(t− 1) + ϵAw(t− 1)

= Wz(t− 1) + ϵAw(t− 1). (2.10)

In the rest of the chapter we will be using the system model in (2.9) and (2.10).

The noise vector (w(t)) is assumed to be spatially and temporally uncorrelated

as discussed in (A3). The following lemma is in order:

Lemma 1 The nodes converge to a consensus in mean squared sense, if and only if the

noise variance at each sensor converges to 0, i.e.. E{w2
i (t)} → 0 as t → ∞ ∀i ∈ V .

Proof Proof is given in Appendix A.1.

In the rest of the chapter, we will denote convergence in mean squared sense as

L2 convergence. We note that speed of the convergence, i.e., how fast quantiza-

tion noise wi(t) converges to zero, does not change the fact that the nodes will

reach a consensus.

Corollary 1 If the node values converge to a consensus in mean squared sense then,

E{z(t)zT (t)} → Σ⋆ where Σ⋆ is in the form of α11T .

Proof We will prove the corollary by showing [Σ⋆]ii = [Σ⋆]ij ∀{i, j}. If

the node values converge to a consensus in mean squared sense, then
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limt→∞ E{|zi(t)|2} = limt→∞ E{|1
Tz(t)
N

|2} ∀ i ∈ V . Therefore, limt→∞ E{|zi(t)|2} =

limt→∞ E{|zj(t)|2} ∀ {i, j} pairs. As t → ∞:

E{|zi(t)− zj(t)|2} = E{|zi(t)|2}+ E{|zj(t)|2} − 2E{zi(t)zj(t)} = 0

E{|zi(t)|2}+ E{|zj(t)|2} = 2E{|zi(t)|2} = 2E{zi(t)zj(t)}

E{|zi(t)|2} = E{zi(t)zj(t)}.

Therefore,[Σ⋆]ii = [Σ⋆]ij ∀ {i, j}.

We note that Corollary 1 simply shows that the node values will be perfectly

correlated in the limit. Unfortunately without further constraints on the quanti-

zation noises, the nodes may agree on a value which is very far from the initial

average. In fact, if the noise variances converge to zero slow enough, the con-

sensus value may even be unbounded. For this reason, we derive the conditions

for bounding the final value from the initial mean in the mean squared sense.

We denote the average of the state values at time t by a(t):

a(t) =
1

N

N∑
i=1

xi(t) =
1

N
1Tx(t). (2.11)

We also denote the average of the exchanged vector z(t) by b(t) which has the

simple relation of b(t) = ϵa(t). In the rest of the section, we focus on b(t) to

streamline the derivations. Then,

b(t+ 1) =
1

N
1T z(t+ 1) =

1

N
1TWz(t) +

ϵ

N
1TAw(t)

= b(t) +
ϵ

N
1TAw(t) (2.12)

where (2.12) follows the fact that 1T is an eigenvector of W with corresponding

eigenvalue 1.
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Lemma 2 In the quantized consensus, the mean of the states is preserved in expecta-

tion, i.e.. ∀ t ≥ 0:

E{a(t)− a(0)} = E{ 1

N
1Tx(t)− 1

N
1Tx(0)} = 0. (2.13)

Proof The proof follows from the fact that the noise vector is an uncorrelated

quantity with zero mean and initial states are assumed to be zero mean.

We are interested in the behavior of the expected mean squared distance be-

tween the asymptotic average and initial average. In particular from (2.12):

E{(b(t)− b(0))2} =
( ϵ

N

)2
E


(

t−1∑
l=0

1TAw(l)

)2


=
( ϵ

N

)2 t−1∑
l=0

E{(1TAw(l))2} (2.14)

=
( ϵ

N

)2 N∑
i=1

 t−1∑
l=0

E{w2
i (l)}

(
N∑

m=1

ami

)2
 (2.15)

where (2.14) is due to the fact that the noise is temporally uncorrelated,

and (2.15) follows from the fact that the noise is spatially uncorrelated. We

would like to explore the conditions under which the above sum is bounded

as t → ∞.

Lemma 3 Given finite number of sensors (N < ∞) and bounded A matrix (ali <

∞; ∀ l, i ∈ V), the mean squared deviation from the initial average is bounded if and

only if limt→∞
∑t−1

t=0 E{w2
i (t)} converges ∀ i ∈ V . Therefore, a necessary and sufficient

condition for E{(b(t)− b(0))2} to be bounded is that the noise variances at each sensor

form a convergent series.

Proof Proof of the lemma is straightforward from (2.15) and omitted.

26



We would like to note that by bounding E{(b(t) − b(0))2}, we guarantee that

E{(a(t)− a(0))2} is also bounded since E{(b(t)− b(0))2} = ϵ2E{(a(t)− a(0))2}.

We derived necessary and sufficient conditions on the noise variances for

agreeing on a common value whose mean squared distance from the average

of the initial states a(0) is bounded. The implication of this is that if the quan-

tization rates can be chosen such that noise variances at each sensor forms a

convergent series one can guarantee that the nodes will converge to the same

value and that the error with respect to the actual value will be bounded. For

example, one way to achieve this convergence is to choose the communication

rates such that the quantization noise variances decay exponentially. In fact, any

convergent sequences such as p-series2 with p > 1 and geometric series3 with

α > 1 would be sufficient. On the other hand, if one is to consider source coding

without side information (i.e.. just quantize and transmit the state values z(t)),

one would need a non-zero quantization rate (in bits) as t → ∞ for achieving

consensus. In the next two sections, we will study two different coding schemes

which utilize the side information at the encoder or decoder to decrease quanti-

zation rate demand for bounded convergence.

2.4 Predictive Coding

In this section, we study the predictive encoding/decoding algorithm in

Fig.2.1.2 a) for the broadcast and peer to peer scenarios. The predictive coding

method utilizes past quantized node values to decrease the uncertainty of the

present value, thus decreasing the transmission rate. This method is suitable for

2∑∞
t=1

1
pt

3∑∞
t=1

1
tα

27



Decoder

Predictor Delay(-1)

)(~ tz
i

)(ˆ tz
i

+)(
~
td

i

)(
~
td

i
)(tz

i Quantizer

Predictor Delay(-1)

)(td
i

)(ˆ tz
i

-

+

Encoder

Figure 2.2: Differential encoder/decoder diagram.

the consensus problem since as the algorithm iterates, the past quantized val-

ues become more and more correlated with the current value, thus decreasing

the prediction error. We explore both the optimal vector and scalar quantization

schemes and, derive necessary analytical expressions.

2.4.1 Broadcast Predictive Coding

To exploit the local temporal correlation, the nodes can digitize zi(t) in (2.6) via

the differential encoding/decoding scheme depicted in Fig.2.2. For each node i

and time instant t, define:

ẑi(t) = prediction

di(t) = prediction error

d̃i(t) = quantized prediction error
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z̃i(t) = noisy reconstruction

wi(t) = quantization error

The noisy reconstruction z̃i(t) is obtained through the following steps:

ẑi(t) =

p≤t∑
l=1

a
(t)
i (l)z̃i(t− l) (2.16)

di(t) = zi(t)− ẑi(t) = zi(t)−
p≤t∑
l=1

a
(t)
i (l)z̃i(t− l) (2.17)

d̃i(t) = Q[di(t)] = Q[zi(t)− ẑi(t)] = zi(t)− ẑi(t) + wi(t) (2.18)

z̃i(t) = ẑi(t) + d̃i(t) = zi(t) + wi(t) (2.19)

where in (2.16) ẑi(t) is a linear minimum mean squared estimate (LMMSE) of

zi(t) of order p; di(t) in (2.17) is the prediction error, to be quantized and trans-

mitted; (2.18) is due to the fact that quantization error can be modeled as addi-

tive noise, and (2.19) is the reconstruction of zi(t) at the decoder. (2.19) shows us

that zi(t) can be reconstructed at the receiver within some noise wi(t). We note

that in predictive coding scheme prediction error is applied to the quantizer,

and the output is transmitted to the decoder. Since linear predictor ẑi(t) is also

available at the decoder, zi(t) can be reconstructed. Interested readers may refer

to [60] for more details on predictive coding.

Remark 3 The analysis we will be making is actually valid with minor changes if the

prediction error coefficients are fixed and the strategy (rate allocation and quantizer

parameters) are fixed. For example, one could completely fix the strategy by using a
(t)
1 =

1, a(t)i = 0 for i > 1 and strictly decreasing quantizer range, irrespective of the topology.

In the following, we consider an optimized scheme using all of the information available.

The optimum linear prediction coefficients in the mean squared sense are:

a
(t)
i = vTzi(t)M

−1
z̃i(t−1) (2.20)
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where, for l,m = 1, . . . , p ≤ t:

[Mz̃i(t−1)]lm = E{z̃i(t− l)z̃i(t−m)} (2.21)[
vzi(t)

]
m

= E{zi(t)z̃i(t−m)}. (2.22)

Hence:

V AR [di(t)] = V AR [zi(t)]− vTzi(t)M
−1
z̃i(t−1)vzi(t) (2.23)

is the prediction error variance of a given node i and iteration t.

2.4.2 Analytical Framework

In this section, we will be utilizing (A1)-(A4). To be able to compute [Mz̃i(t−1)]

and
[
vzi(t)

]
, we need to calculate E{z̃i(t − l)z̃i(t − m)} and E{zi(t)z̃i(t − l)} for

t, l ∈ {1, . . . , p}. Either terms can be obtained taking the ii element of the cross-

covariance matrices for a given t and l:

E{z̃i(t− l)z̃i(t−m)} =
[
E{z̃(t− l)z̃T (t−m)}

]
ii

E{zi(t)z̃i(t−m)} =
[
E{z(t)z̃T (t−m)}

]
ii

which are easier to calculate because the recursions are more compact to express

in terms of vectors.

Further details on the calculation of E{z̃(t−l)z̃T (t−m)} and E{z(t)z̃T (t−m)}

are given in Appendix A.2 and A.3. We define state and noise vector covariances

as follows:

Σ(t−m) , E{z(t−m)zT (t−m)}

Υ(t−m) , E{w(t−m)wT (t−m)}.
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Table 2.1: Cross Correlations of Noisy States

E{z̃(t− l)z̃T (t−m)} =

l = m Σ(t−m) + Υ(t−m)

l < m Wm−lΣ(t−m) + ϵWm−l−1AΥ(t−m)

l > m Σ(t− l)(W l−m)T +Υ(t− l)ϵ
(
W l−m−1A

)T
E{z̃(t− l)z̃T (t−m)} is presented in Table 2.1 for a given t,m, l triplet in terms of

the state and noise vector covariances, W , A, and ϵ. Similarly, E{z(t)z̃T (t−m)}

can be written in terms of these quantities as:

E{z(t)z̃T (t−m)} = WmΣ(t−m) + ϵWm−1AΥ(t−m). (2.24)

The values of Σ(t − m), and Υ(t − m), that change with the index t − m, can

be calculated in an iterative fashion. In fact, using (2.10), we can express state

covariances in terms of known previous state covariances and noise covariances

as follows:

Σ(t−m) = WΣ(t−m− 1)W T + ϵ2AΥ(t−m− 1)AT .

Last but not least, based on our Remark 1 and due to (A3), we model the co-

variance matrix due to quantization Υ(t − m) as a diagonal matrix where ith

diagonal element represents the ith node’s quantization noise variance. Given

that optimal lattice quantizers are utilized at node i ([105]):

[Υ(t−m)]ii =

(
K

K + 2

)
V AR [di(t−m)] 2−2Ri(t−m) (2.25)

where Ri(t) is the quantization rate of node i at time (t − m) and (K) is the

dimension of the lattice quantizer. Throughout the symbol △i(t) will denote the

volume of the quantization tile used by node i at iteration t.
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Remark 4 In the case of infinite length vector coding (i.e. K → ∞), K
K+2

→ 1. In this

scenario, we assume that each sensor observes a long data stream as opposed to a scalar

state xi(0). While state vector at each sensor is encoded with K dimensional quantizer,

each node runs K independent average consensus in parallel to update their states. In

the case of scalar quantizer, K = 1 and variances are calculated accordingly.

Remark 5 Provided that the conditions necessary to apply (A3) hold, the performance

of coding without side information can be analyzed simply setting p = 0.

2.4.3 Algorithm Summary

In this subsection, we simply summarize our algorithm based on the predictive

coder. At iteration t ≥ 0, each node i ∈ V :

1. obtains the linear predictor coefficients a
(t)
i , the prediction error variance

V AR[di(t)], and the quantization interval length △i(t),

2. quantizes and transmits prediction error di(t),

3. updates state and noise covariances matrices for the next iteration.

Receiving transmitted value, neighbor j ∈ V :

1. obtains the linear predictor coefficients a(t)i ,

2. reconstructs zi(t) as z̃i(t),

3. updates state and noise covariances matrices for the next iteration.

Once, transmissions are complete for all nodes, state values are updated by (2.9).
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2.4.4 Asymptotic Rate Behavior for Predictive Coding

In this section, we show that the proposed scheme achieves a consensus with

zero asymptotic rate per dimension in the case of vector coding. To prove, we

will first introduce Lemma 4.

Lemma 4 The system converges to a consensus if and only if σ2
di
(t) → 0 as t → ∞

where di(t) = zi(t)− ẑi(t).

Proof Forward: If σ2
di
(t) → 0, then the node values converge to a consensus.

Define σ2
wi(t)

, E{w2
i (t)}. If σ2

di(t)
→ 0 then:

σ2
wi(t)

= 2−2Ri(t)σ2
di(t)

→ 0. (2.26)

Reverse: If the nodes values converge to a consensus, then σ2
di
(t) → 0.

Assume that the nodes converge. Then by Lemma 1, E{w(t)wT (t)} → 0 and

by Corollary 1, Σ(t) → Σ⋆ = α11T

N
. By (2.24),

E{z(t)z̃T (t−m)} = WmE{z(t−m)zT (t−m)}

+ ϵWm−1AE{w(t−m)wT (t−m)}.

Then, E{z(t)z̃(t−m)} → WmΣ⋆+0 = Σ⋆; ∀m ∈ {1, . . . , p}. Thus, [vzi(t)]m → Σ⋆
ii.

By Table2.1,

E{z̃(t− l)z̃(t−m)} → Σ⋆ + 0 = Σ⋆. (2.27)

Thus, [Mz̃i(t−1)]lm → Σ⋆
ii; ∀ l,m ∈ {1, . . . , p}.

At step t, and sensor i, equation (2.20) can be rewritten as:

Mz̃i(t−1)a
(t)
i = vTzi(t). (2.28)
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As t → ∞, all entries of M matrix and v vector converges to Σ⋆
ii as in Corollary1.

Therefore, (2.28) has infinitely many MMSE solutions. We pick a
(t)
i = [1 0 . . . 0]T .

In other words, di(t) = zi(t)− z̃i(t− 1). Then,

σ2
di(t)

→ σ2
zi(t)

− (E{zi(t)z̃i(t− 1)})2

E{z̃i(t− 1)z̃i(t− 1)}
= Σ⋆

ii −
(Σ⋆

ii)
2

Σ⋆
ii

= 0.

Lemma 5 In the class of coding strategies which requires bounded rates Ri(t) < ∞

per iteration, predictive coding can use a vanishing rate per sensor, i.e. have Ri(t) → 0

as t → ∞, while guaranteeing converge to a consensus in mean squared sense.

Proof By Lemma 1 and Lemma 4, the nodes converge to a common value if and

only if σ2
wi(t)

and σ2
di(t)

→ 0. By (2.26), Ri(t) can be chosen as any non-negative

number. Then, Ri(t) → 0 ∀i ∈ V .

By Lemma 5, we have showed that under the predictive coding scheme, a con-

sensus can be achieved with zero asymptotic rate. While we do not have an

analytical expression for the rate regions which satisfies the unbounded con-

sensus, one strategy is given in the following subsection.

2.4.5 Feasible Rate Allocation for Bounded Convergence

We choose an arbitrary initial quantization rate Ri(0) > 0 ∀ i. In the next itera-

tion, i.e.. t = 1, quantization rates are chosen such that:

σ2
wi(1)

σ2
wi(0)

=
2−2Ri(1)σ2

di(1)

2−2Ri(0)σ2
di(0)

=

(
t+ 1

t+ 2

)β

=

(
1

2

)β

(2.29)

and β > 1. Then:

Ri(1) = 2β(Ri(0) +
1

2
log2

σ2
di(1)

σ2
di(0)

). (2.30)
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By recursion, at tth step, quantization rate is:

Ri(t+ 1) =

(
t+ 2

t+ 1

)β
(
Ri(t− 1) +

1

2
log2

σ2
di(t)

σ2
di(t−1)

)
. (2.31)

Such constraint on the noise variances guarantees bounded convergence since

quantization noises form a convergent p-series. If one did not use a coding

scheme with no side information, under the same conditions quantization rate

is:

Ri(t+ 1) =

(
t+ 2

t+ 1

)β
(
Ri(t− 1) +

1

2
log2

σ2
zi(t)

σ2
zi(t−1)

)
. (2.32)

In Section 2.6 We numerically analyze quantization rate behavior for a spe-

cific β and initial quantization rates for both coding with side information and

no side information.

2.4.6 Peer to Peer Predictive Coding

At a given time instant t, sensor i knows not only its own previously quantized

values (z̃i(t− 1), z̃i(t− 2), . . .), but also neighbors’ previously quantized values,

i.e.. z̃j(t − 1), z̃j(t − 2), . . . where j is a neighbor of i. If the link is bidirectional

the prediction error at node i can be further reduced by having:

ẑi(t) =

p∑
l=1

a
(t)
i (l)z̃i(t− l) + b

(t)
i (l)z̃j(t− l) (2.33)

where a
(t)
i and b

(t)
i are corresponding LMMSE coefficients. The derivations re-

lated to this method follow exactly the same logic steps in Section 2.4.1. For

brevity, the detailed calculations are given in [98].

Remark 6 In [95], the authors have proposed a protocol to avoid average drift for quan-

tized consensus problem where the message exchange is asymmetric, i.e.. one node
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sends its quantized state and the corresponding reciever sends the difference between

the states. Such a scheme will be a special case of our peer to peer coding algorithm

when a
(t)
i (l) = 0 ∀i, t, l and b

(t)
i (l) = 1 for l = 1, 0 otherwise.

2.5 Wyner-Ziv Coding

In this section, we exploit the fact that a node can use its own sequence of

present and past values locally, all or in part, as side information ([91],[85]) and

therefore can improve the accuracy in the reconstruction of the neighbors’ state

in a way that is comparable to predictive coding. To this end, we note that the

calculations done in Section 2.4.2 provide the covariance matrices of the current

states and the cross covariance of current states with previous states of all nodes.

We propose the use of a simple nested lattice code to utilize the side information

in the scalar case. We analyze two schemes which are the broadcast and the peer

to peer versions of the strategy.

2.5.1 Broadcast WZ Coding

Coding with side information or Wyner-Ziv (WZ) coding is the encoding strat-

egy that leads to reduced rate or improved performance by relying on the fact

that the decoder can make use of side information correlated with the incoming

message. In the classical WZ scheme, there is a single decoder-encoder pair and

the decoder has access to a corrupted version of the encoded data. Parallel to

this scheme, in average consensus problem the decoder has access to the past

values of the encoder’s quantized states and its own current and past states.
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Let us denote the neighbor set of sensor i as Ni. Then for each sensor j ∈ Ni,

available side information is:

ẑji(t) =

p∑
l=1

bji(l)z̃ji(t− l) +

p∑
l=0

cji(l)zj(t− l) (2.34)

where ẑji(t) is the linear estimate of zi(t) at neighbor j and bji(l), cji(l) are the

corresponding LMMSE coefficients. The reason why we utilize LMMSE as the

side information is the following: WZ coding has been extensively studied for

the case where the side information is a corrupted version of the message to be

decoded and the noise is assumed to be additive and independent from the mes-

sage ([91],[89]). Therefore by utilizing LMMSE of the transmit sensor’s value as

side information, we analyze the rate constrained average consensus problem

with classical WZ coding scheme.

Note that, although there is only one encoder used for all neighbors, the

reconstruction of the state value z̃ji(t− l) (and its quantization noise) is different

at each receiver due to the heterogonous side information ẑji(t). To compute the

side information, the decoder uses the supervector γji(t):

γji(t) = [zj(t) zj(t− 1) . . . zj(t− p) z̃ji(t− 1) . . . z̃ji(t− p)]T (2.35)

and the covariance matrix and cross-correlation vector:

Mji(t) = E{γji(t)γT
ji(t)} (2.36)

vji(t) = E{zi(t)γT
ji(t)}. (2.37)

Then, the side information in (2.34) can be written in a compact form as:

ẑji(t) = vTji(t)M
−1
ji (t)γji(t). (2.38)

The reader should note that Mji(t) is a (2p+1)×(2p+1) matrix for a given order

p. The upper left (p+ 1)× (p+ 1) block of the matrix contains cross correlations
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of the states t, . . . , t − p at sensor j and can be calculated by (A.13). The lower

right p × p block is the covariance of the noisy reconstructions of sensor i, and

is calculated via the recursion shown in Table 2.1. The upper right and lower

left blocks of the matrix are cross correlations between reconstructions of sensor

i and states of sensor j and are derived in (2.24). The necessary equations to

derive vji(t) vector are (2.24) and (2.25).

Once all the neighbors’ information is received and decoded, the sensor i

performs the following state update:

xi(t) = (1− ϵ
N∑
j=1

aij)xi(t− 1) +
N∑
j=1

aij z̃ij(t− 1). (2.39)

To write the network equations we introduce Z̃(t) as a N × N matrix whose ij

entry is reconstruction of zj(t) by sensor i. The network equation is given as:

x(t) = (I − ϵD)x(t− 1) + (A⊙Z̃(t− 1))1 (2.40)

where ⊙ represents entry by entry matrix multiplication and 1 is all ones col-

umn vector.

Once all sensors update their current states (at time t) as in (2.39), the new

step requires knowing Mji(t + 1), and vji(t + 1) defined in (2.36) and (2.37). As

mentioned before, these quantities can be written in terms of the state and the

noise covariances and calculated recursively as indicated in Section 3.1.1. The

only difference here compared to Section 3.1.1 is that, because each term z̃ij(t−1)

has its own specific quantization error wij(t − 1) associated, the update of the

covariance matrix of the states has a different form compared to (2.25). By 2.6

and (2.40):

z(t) = Wz(t− 1) + β(t− 1) (2.41)
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where [β(t− 1)]i = ϵ
∑N

j=1 aijwij(t− 1). Then:

E{z(t)zT (t)} = WE{z(t− 1)zT (t− 1)}W T + E{β(t− 1)βT (t− 1)}

where, approximating the wij(t− 1) as being spatially uncorrelated:

[E{β(t− 1)βT (t− 1)}]ii = ϵ2
N∑
j=1

a2ijV AR[wij(t− 1)]

and the non-diagonal entries are 0. In the case of infinite length vector coding

Wyner has shown that if the source and the side information are jointly Gaus-

sian with i.i.d entries, WZ quantization rate is equal to the rate which would

be required if the encoder is informed of the side information as well as the

decoder [90]. In this case, we can treat the problem as predictive coding where

there is extra side information with respect to Section 2.4, i.e., receiver’s past

and current values. In this case, the quantization noise is:

V AR[wji(t)] = E{(zi(t)− ẑji(t))
2} 2−2Ri(t)

=
(
V AR[zi(t)]− vTji(t)M

−1
ji (t)vji(t)

)
2−2Ri(t).

In the case of scalar coding, our implementation will be based on a nested

lattice code construction (see e.g. [78] and [106]). We will use a simple encoding

approach discussed in [63] and [89]. While we are not going to repeat the algo-

rithm itself, we show how to choose quantization step parameter for the average

consensus problem. Quantization step for sensor i is chosen such that average

error variance per neighbor is minimized. Given quantization rate, the optimal

quantization step is found by solving the following convex optimization prob-

lem:

argmin
△>0

∑
j∈Ni

Φ
(
Ri(t),△, 22Ri(t) V AR[wji(t)]

)
(2.42)
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such that

Φ(R,△, 22Ri(t) V AR[wji(t)]) = 22Ri(t)△2

∞∑
t=0

(2t+ 1)Q

(
(t+ 1

2
)2Ri(t)△

22Ri(t) V AR[wji(t)]

)

+
△2

12
.

Define △i(t) as the solution of the above optimization problem. Then, node i’s

state is reconstructed at the neighbor j with some noise where the noise variance

is equal to V AR[wji(t)] = Φ
(
R,△i(t), 2

2Ri(t)
)
.

Remark 7 In the peer to peer WZ coding scheme, each sensor utilizes a different en-

coder for each neighbor. In this case, each sensor (i) will solve |Ni| optimization problems

in parallel to obtain optimum quantization steps for |Ni| neighbors.

For WZ coding the results pertaining convergence that we state are limited

to the Gaussian infinitely long vector quantizer case. In this case we add the

following:

Lemma 6 For Gaussian vectors of infinite length and for an identical connectivity ma-

trix, quantization rates and initial correlation the WZ scheme outperforms the purely

predictive coding scheme.

Since for the Gaussian case WZ coding is asymptotically equivalent to a scheme

that shares the same side information at both encoded and decoder [91], this

means that asymptotically at each iteration the scheme is equivalent to scheme

that encodes a prediction error with smaller variance V AR[di(t)] compared to

the scheme that utilizes exclusively past states to calculate the prediction error.

Hence, greater precision is attained for the same rate, leading to more (or sim-

ply no less) accurate bounded convergence. In Fig.2.3, we simulate the infinite

length vector coding case (by calculating noise variances iteratively under some
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Figure 2.3: Theoretical performance comparison between WZ and Predic-
tive coding, N = 10, r = 0.4

initial conditions) where at each iteration all the side information is used, i.e.

p = t − 1. The x-axis represents quantization bits per sensor per dimension

and y-axis represents MSE per dimension. As Lemma 6 suggests WZ outper-

forms the predictive coding scheme due to extra side information available at

the decoder.

Combined with Lemma 5 a small corollary of this lemma, is that also WZ

asymptotically will guarantee convergence with bounded MSE with respect to

the true mean. Note that one can repeat the construction given in to determine

one achievable rates that grants bounded convergence with vanishing asymp-

totic rate per sensor. For brevity we will omit its straightforward extension.

Unfortunately, WZ coding requires quite large vectors in order to achieve

near to optimal performance and finite dimensional cases that we explore in
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our numerical sections do not perform better than the predictive schemes, if

one uses the same number of states (past or present) to encode.

2.6 Numerical Results

In this section, we show the numerical performance of the broadcast algorithms

proposed, illustrating their convergence characteristics in the network scenario

defined next. Peer to peer schemes are not included in the section for brevity;

their performance are naturally better than those of the broadcast schemes. For

simulation purposes, several random geometric graphs G(N ; r) are generated

with nodes uniformly distributed over a unit square. According to the defini-

tion of G(N ; r), there exists a link between any two nodes if their range is less

than r. We assume that there are no channel errors between two nodes that are

connected. Moreover, we assume that matrix A in (2.1) is such that:

aij =

 aij = 1, if there is an edge between node i and j

aij = 0, if i = j or i ̸= j and there is no edge

 (2.43)

First, we investigate the behavior of the quantization rate and compare it

among three different schemes: broadcast, Wyner-Ziv and coding without any

side information. Our adaptive quantization scheme without any side informa-

tion encodes the sensor state without removing any redundancy using previous

values or side information at the decoder. It uses a uniform quantizer with a fi-

nite range. The range changes as a function of the state variance as discussed in

the predictive coding scheme. Therefore, more quantization bits are needed to

keep the state variances and thus the noise variances decreasing. Fig.2.4 shows

the behavior of the average number of quantization bits per sensor over 40 iter-

42



0 5 10 15 20 25 30 35 40
10−2

10−1

100

101

102

iteration number

av
er

ag
e 

nu
m

be
r 

of
 b

its
 p

er
 s

en
so

r 
(lo

g−
sc

al
e)

coding w/o side information
predictive coding p=1
WZ coding p=0

Figure 2.4: r = 0.4, N = 50, Total number of iterations = 65.

ations. The simulation parameters are r = 0.4, N = 50. The data at each sensor

is initialized as zero mean unit variance Gaussian random variable. At each it-

eration the quantization rates are chosen such that
σ2
wi

(t)

σ2
wi

(t−1)
=
(
t+1
t+2

)β and β = 4

to guarantee bounded MSE convergence as discussed in Section 2.5.1. Under

these conditions, we observe that WZ coding requires higher quantization rates

compared to predictive coding strategy in the initial steps. On the other hand,

WZ quantization rates approach to 0 faster.

In Fig. 2.5, we plot the simulated performance (rate-distortion) and the the-

oretical performance of the predictive coding algorithm using a uniform scalar

quantizer. The p value is chosen as 1 and c as 20. The results are averaged over

10 random networks with 64 nodes and 1000 independent Monte Carlo simula-

tions. We observe that when the quantization rate is sufficiently high (5 bits per
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Figure 2.5: Simulated performance vs. theoretical performance.

sensor per iteration) then (2.15) approximates very accurately the performance

of the predictive coding method. Unfortunately in the lower rate regimes, the

actual performance is not close to the analytical one, due to the inaccuracy of

assumption (a3) that we discussed in length in Section 2.2. Therefore, (2.15) will

be underestimating the actual error performance under the lower rate regimes.

In Fig. 2.6, we numerically compare the MSE error performances of two

schemes on a random graph with N = 25, r = 0.5 and fixed quantization rates

per sensor per iteration. Empirical MSE performance is defined as:

MSE(t) =

(
1

N

N∑
i=1

zi(t)−
1

N

N∑
i=1

zi(0)

)2

.

All algorithms are initialized by the same zero mean unit variance Gaussian ran-

dom data. The initial sensor observations are assumed to be uncorrelated. The

results are averaged over 1000 Monte-Carlo simulations. We observe that both
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Figure 2.6: Rate distortion curves for WZ and predictive coding schemes
over 50 iterations

schemes have similar MSE performances although the WZ scheme uses only

the current state of the receiver as the side information, i.e.. p = 0. The predic-

tive coding scheme stores and utilizes only the previous state value, i.e.. p = 1.

Due to the brute force minimization of (2.42), if the quantization parameters are

not pre-computed, the WZ scheme is more complex than the predictive coding

scheme. WZ is advantageous because it does not require storing past quantized

states.

In Fig. 2.7, we compare the MSE performance of the algorithm for different

amounts of side information (i.e.., p = 1,p = 5, and p = 10) under the predictive

coding scheme. We conclude from Fig. 2.6 that the increasing amount of the

past quantized state information does not increase the MSE performance sig-

nificantly. The behavior indicates that the correlation between the current state
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Figure 2.7: MSE performance of the predictive coding for different p val-
ues.

and the past states is captured almost entirely in the previous state only, and

it is unnecessary to use predictors of order greater than 1. This is intuitively

pleasing, since prediction error filter somewhat reverses the averaging process,

which is an AR process of order 1.

2.7 Discussions

We have explored conditions on the quantization noise variances which are re-

quired for convergence of the nodes in the average consensus problem and pro-

posed and investigated two source coding strategies which satisfy bounded

convergence constraints with zero average rate asymptotically. We have given

the mathematical framework for predictive coding, and nested lattice coding
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for both peer to peer and broadcast communications scenarios, providing the de-

tails on how to implement each strategy. Our most significant contribution is

showing that, using the temporal correlation and the ever increasing spatial

correlation, bounded consensus can be achieved with zero asymptotic rate.
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CHAPTER 3

MSE CHARACTERIZATION FOR QUANTIZED AVERAGE CONSENSUS

FOR FIXED AND VARIABLE RATE QUANTIZERS

3.1 Motivation and Related Work

In this chapter, we will continue investigating coding strategies for quantized

average consensus problem. While our results in Chapter 2 are significant in

terms of exploring positive effects of side information coding for consensus type

problems, we have not provided closed form expressions and scaling laws for

the system characteristics such as MSE. Moreover, our main result in Chapter 2

was Theorem 1 which argues that under side information coding schemes, one

can gradually decrease the quantization bit rate and still achieve a network wide

consensus. However, we have not analyzed what good strategies are for choos-

ing quantization rates over the iterations. In this chapter, by focusing on simpler

coding strategies, we will seek answers to the problems mentioned above.

3.1.1 Summary of Contributions

In this chapter, we focus on the predictive coder where nodes utilize only their

previous state values. Similar to Chapter 2, we utilize a dithered quantizer and

thus model the quantization effect as temporally and spatially uncorrelated ad-

ditive analog noise which is also uncorrelated with the message. Under these

assumptions, we prove that our scheme converges to a consensus in L2. Since
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characterization of the MSE performance, where MSE is defined as:

MSE = lim
t→∞

E


(

1

N

N∑
i=1

xi(t)−
1

N

N∑
i=1

xi(0)

)2
 , (3.1)

is a challenging problem for general graphs, we focus on a particular communi-

cation patterns, i.e., regular graphs with symmetric connectivity. In this setting,

we provide explicit expressions and scaling laws for the MSE. In particular, we

show that MSE is inversely proportional with the network connectivity and ini-

tial observation correlation. In addition, we show that MSE is a function of the

network size and scales as O(N−1) when other parameters are fixed. We further

study the characteristics of the average consensus algorithm under variable rate

quantization scheme. In a special case where the quantization rates are chosen

such that quantization noise variance decreases like a geometric series, we de-

termine the rate regions where asymptotic quantization rate approaches zero

while convergence in L2 is guaranteed. In addition, we show that the rate re-

gions achieving zero asymptotic rate and L2 convergence with bounded MSE,

also achieve finite-sum rates. Therefore, the sum of the quantization rates over

the iterations, is indeed finite. We conclude that transmitting more bits in early

iterations and decreasing them gradually results in a better performance than

using a predictive encoder with a fixed rate.

In the rest of the chapter, the quantization operation is denoted as Q[·] and

variables with a tilde mark are quantized quantities x̃ = Q[x]. Throughout our

analysis, we assume that each node encodes and transmits a long block (length

K) of state variables where the block entries are i.i.d. random variables. i.i.d.

assumption on the entries of the message blocks results in utilization of optimal

lattice quantizers in RK . Nice properties regarding quantization noise for opti-

mal lattice quantizers are discussed in Section 3.2. Therefore, the quantization
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rate per iteration, indicated by R(t), is per symbol rate where 22KR(t) is the total

number of lattice cells in RK , in general changing with the iteration index (t)

and vector quantizer dimension (K). While our notation considers one symbol

at a time, the use of vector quantization allows us to consider rates per symbol

which are not integers. Finally, Assumptions A(1) − A(4) of Chapter 2 are still

in order throughout this chapter.

3.1.2 Chapter Organization

In Section 3.2, we introduce a predictive coding scheme for quantized average

consensus problem. Section 3.3 summarizes some properties of the regular net-

works, discussed convergence proof and characterizes MSE performance of the

scheme using fixed rate quantization under the discussed regular networks. We

derive asymptotic rate behavior and optimum rate allocation for the variable

rate quantization scenario in Section 3.4. Finally, we conclude the chapter with

Section 3.5.

3.2 Quantized Average Consensus

In the rest of the chapter, we assume that initial sensor observations are zero

mean random variables with identical distributions (not necessarily indepen-

dent). As we have described in Chapter 2 in detail, sensors will exchange their

values with their neighbors at each iteration and update their state values as

a linear combination of these quantities. We are interested in the case where

sensors quantize their values before exchanging their state values.
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Figure 3.1: Differential encoder/decoder diagram with dithering.

Although, nodes encode a long block of data, state and noise values and

their statistics mentioned in the chapter are per dimension quantities. As the

source coding scheme, we will be using a simple first order differential en-

coder/decoder depicted in Fig. 3.1 to explore increasing temporal correlation.

This coding scheme has been first introduce in Section 2.4. Moreover, we will

utilize a dithered quantization to whiten the quantization noise. Our channel

model is based on protocol model where there are no channel errors between

neighboring nodes [42].

We denote di(t) as the innovation to be transmitted from node i to its neigh-

bor at time t, zi(t) as the dither to be added (which is uniformly distributed

in K dimensional lattice and independent from the message di(t)), d̃i(t) as the

quantized message, x̃i(t) as the noisy state reconstruction and wi(t) as the quan-
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tization error. Then, the noisy state reconstruction is follows:

di(t) = xi(t)− x̃i(t− 1) (3.2)

d̃i(t) = Q[di(t) + zi(t)] = Q[xi(t)− x̃i(t− 1) + zi(t)]

= xi(t)− x̃i(t− 1) + zi(t) + wi(t) (3.3)

x̃i(t) = d̃i(t) + x̃i(t− 1)− zi(t)

= xi(t) + wi(t) (3.4)

where (3.2) is due to the fact that at each iteration the difference between the

current state and the previous quantized state is transmitted, (3.3) follows from

utilizing a uniform dither and modeling the quantization error as additive noise,

and (3.4) follows since the previous quantized state value and dither are also

known at the neighbors’ decoders.

Once the prediction is transmitted and the noisy states are reconstructed at

the nodes, network update is performed through:

x(t+ 1) = Wx̃(t) = W (x(t) + w(t)) (3.5)

where w(t) = [w1(t), w2(t), . . . , wN(t)]
T and W is a doubly stochastic matrix. In

the rest of the chapter, we denote our algorithm defined in (3.2)-(3.5) as quan-

tized consensus algorithm with predictive coding (QCPC). We note that (3.5)

is slightly different than our formulation in (2.9). In Chapter 2, we have uti-

lized the fact that each node i has access to the unquantized version of its own

value xi(t), therefore it should utilize this particular value in the updates to

further reduce the quantization error. In this chapter, for the sake of mathe-

matical brevity, we focus on the case where nodes always use quantized state

values in the updates. We note that w(t) is assumed to be uncorrelated with

the messages and is also spatially and temporally uncorrelated, zero mean ran-

dom vector, uniformly distributed on the K dimensional lattice. While such
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assumptions require strict conditions on the distribution of the message and

quantization rates [86, 100], since we have utilized uniform subtractive dither-

ing, this approximation is accurate for all quantization levels [105]. Moreover,

since we utilize the K dimensional optimal lattice quantizers and assume that

input message data is i.i.d., second order statistics of the noise variances is given

by [99, 105]:

E{w2
i (t)} = CKE{di2(t)}2−2R(t) (3.6)

where E{·} denotes the statistical expectation and CK is a constant whose value

is a function of the quantizer dimension K. We note that state and noise statis-

tics, and quantization rates are per symbol (dimension).

At this point we would like to remind our readers Lemma 1 of Chapter 2.

Lemma 7 The nodes converge to a consensus in mean squared sense, if and only if the

noise variance at each sensor converges to 0, i.e.. E{w2
i (t)} → 0 as t → ∞ ∀i ∈ V .

We will use the above lemma to prove the convergence of both constant rate

and variable rate schemes in Sections 3.3 and 3.4.

3.3 Characterization of the MSE Performance

In this section, we first detail the graph model adopted throughout the rest of the

chapter. Then, we give the convergence proof of the quantized consensus under

fixed quantization rate and derive the explicit MSE performance of the proposed

algorithm. Moreover, by presenting an upper-bound on the MSE expression, we

relate the performance of the algorithm to the rate, graph connectivity and the

initial conditions.
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3.3.1 2-Dimensional Regular Networks

MSE characterization of the quantized average consensus is quite challenging

for general networks. For this reason, we restrict ourselves to a narrower com-

munication pattern, namely 2 dimensional symmetric regular graph topology

and in return we can provide explicit MSE expression and scaling laws. On the

other hand, by using the relationship between large random geometric graphs

and regular graphs, we can show that our MSE characterization indeed models

the behavior of the quantized consensus algorithm on large sensor networks.

A random geometric graph denoted by G(N, r) is a graph where N are nodes

uniformly distributed onto the surface of the d-dimensional unit torus in a ran-

dom fashion and two nodes are connected if and only if internode distances

are less than some value r. Such graphs are discussed to closely model the be-

havior of the sensor networks [42, 19] in the case of d = 2. It was also shown

that the degree (the number of neighbors) of each node becomes Θ(Nr2) with

high probability for sufficiently large N and r > 2
√
log(N)/N where Θ(.) is the

asymptotic upper and lower bound of its argument [19]. Moreover, a regular

graph is a graph where each vertex has the same number of neighbors. There-

fore, for large N and r > 2
√

log(N)/N , the connectivity of a geometric random

network becomes identical to that of a regular deployment. We will summarize

our discussion with the following Remark.

Remark 8 For r > 2
√
log(N)/N , the connectivity of a geometric random network

becomes identical to that of a regular deployment as N → ∞.

Before we discuss some of the nice properties of the regular graphs, we give

the definition of circulant and block circulant matrices:
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Definition 1 An N × N matrix A is called circulant and denoted A =

circ(a0, a1, . . . , aN−1) if its elements satisfy

Aj,k = a(N−1)j+k mod(N) ∀j, k ∈ {1, . . . , N}. (3.7)

Definition 2 An N2 ×N2 matrix A is called block circulant with circulant blocks if it

is of the form:

A = circ(A0, A1, . . . , AN−1) (3.8)

where Ai is N ×N and circulant ∀i ∈ {0, . . . , N − 1}.

Following the definitions above, the adjacency matrix (2.1) of a regular network

satisfies the following property:

Remark 9 The adjacency matrix A of a regular graph with N nodes on a 2-dimensional

square grid is block circulant with each (
√
N ×

√
N ) block is circulant in itself [28].

Since we are to model the behavior of (3.5), we are interested in weight matrix

W which can be expressed in terms of adjacency matrix A as:

W = I − ϵ (diag(A1− A)) (3.9)

where I is the N×N identity matrix, 1 is all ones column vector, diag represents

diagonal matrix. 0 < ϵ < 1/max(A1) constraint on ϵ guarantees convergence in

ideal communication case [76], so ϵ ∈ (0, 1/max(A1)). Since all of the matri-

ces in (3.9) are block circulant with circulant blocks (BCCB) and BCCB matrices

form a commutative algebra, W is also a BCCB matrix. Since the underlying

connectivity is symmetric, so is W matrix. Therefore, (W1)T = 1TW = 1T .

Thus, such W matrix is not only row stochastic but also column stochastic, i.e,

doubly stochastic.
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Remark 10 All (N×N ) block circulant matrices with (
√
N×

√
N ) circulant blocks are

simultaneously diagonalizable by the unitary matrix F ⊗F where F is an (
√
N ×

√
N )

matrix whose columns are FFT basis of length
√
N and ⊗ is the Kronecker product

operation. The eigenvalues of such a matrix is the transformation of the first column of

the matrix with F ⊗ F .

We will utilize Remarks 9 and 10 throughout the chapter to derive MSE perfor-

mance and scaling laws of quantized average consensus algorithm.

3.3.2 Mean Square Error

We first show that quantized consensus algorithm converges under fixed rate

quantization. Since necessary and sufficient condition for convergence is given

by Lemma 7 as the convergence of noise variances to 0 at each sensor, we first

model the behavior of the noise variances.

State covariance matrix of the network which evolves by (3.5) follows the

recursion:

E{x(t+ 1)xT (t+ 1)} = WE{x(t)xT (t)}W +WE{w(t)wT (t)}W. (3.10)

We note that E{w(t)wT (t)} is a diagonal matrix due to the correlation assump-

tions on the quantization noises. Moreover, we can show that covariance matrix

of the network states preserves BCCB property through iterations by the follow-

ing Lemma:

Lemma 8 Given a regular graph, BCCB initial sensor correlation matrix

E{x(0)xT (0)} and uniform quantization rate among the sensors, i.e, each sensor en-

codes with rate R at each step, then E{x(t)xT (t)} and E{w(t)wT (t)} are BCCB ∀ t ≥ 1.
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Proof The proof is by induction. Since initial sensor correlation matrix is BCCB

and quantization rates are uniform, initial noise covariance matrix is also BCCB.

Since BCCB matrices form a commutative algebra and the matrices on the right

side of (3.10) are BCCB for t = 0, then state correlation matrix is also BCCB for

t = 1. Above argument is repeated for t ∈ {1, 2, . . .} and the result follows.

Let’s denote

Σ(t) = E{x(t)xT (t)} (3.11)

Υ(t) = E{w(t)wT (t)} (3.12)

Since for a given t ≥ 0 both Σ(t) and Υ(t) are BCCB by Lemma 8, and W is also

BCCB by construction, they are all diagonalizable by F ⊗ F eigenmatrix, i.e.,

for any BCCB matrix Z we have that (F ⊗ F )−1 Z (F ⊗ F ) = diag(z1, z2, . . . , zN)

where z1, z2, . . . , zN represents the eigenvalues of Z. Denote eigenvalues of W

corresponding to the eigenmatrix (F ⊗ F ) as ωj , 1 ≤ j ≤ N . WLOG, assume that

the columns of (F ⊗ F ) are ordered such that 1 = w1 > w2 ≥ w3 . . . ≥ wN > −1.

Denote the eigenvalues of Σ(t) and Υ(t) corresponding to the ordered eigenma-

trix as σj(t) and υj(t). We note that Υ(t) is a diagonal matrix and diagonal ele-

ments are equal due to BCCB structure. Thus, υj(t) = υk(t) = E{w2
i (t)} k, t, i ∈

{1, . . . , N}. For mathematical brevity, we will denote these repeated eigenvalues

by a single variable, namely υ(t).

Following, the update equation in (3.10) can be written as a system of N

difference equations as follows:

σj(t) = ω2
j (σj(t− 1) + υ(t− 1)), (3.13)

∀t ≥ 1, 1 ≤ j ≤ N and initial conditions σj(0) and υ(0). On the other hand,
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combining (3.2) and (3.6), it is easy to see that:

υ(t) =
CK

N22R

(
N∑
j=1

(ωj − 1)2 (σj(t− 1) + υ(t− 1))

)
. (3.14)

We note that ω1 = 1, therefore the index of the summation in (3.14) may

be switched to {j}2
N

2 . One can combine equations (3.13) and (3.14) to obtain

a linear difference system with constant coefficients. In particular, defining

Y (t) = [σ1(t), σ2(t), . . . , υ(t)]
T , Y (t) vector follows the recursion ∀t ≥ 1:

Y (t) = HY (t− 1), (3.15)

where

H =



1 0 0 . . . 1

0 ω2
2 0 . . . ω2

2

... 0
. . . ...

...

0
... . . . ω2

N ω2
N

0 CK(ω2−1)2

N22R
. . . . . .

CK
∑N

j=2(ωj−1)2

N22R


. (3.16)

We note that (3.16) tracks the eigenvalues of the state covariance and the noise

variance matrices. Since υ(t) is also equal to the quantization noise at any node

i ∈ V at time t, the linear difference system above also identifies the evolution

of the quantization noise in the system.

The following lemma shows that quantized consensus algorithm with pre-

dictive coding scheme converges to a consensus in L2, i.e., mean squared sense.

Lemma 9 QCPC scheme converges to a consensus in L2 for any R such that

R > log

(
CK

maxi∈V ′(ωi − 1)2 maxi∈V ′ ω4
i

mini∈V ′ ω2
i mini∈V ′ 1− ω2

i

+ 4

)
, (3.17)

where V ′ = {i|i ∈ {2, . . . , N}, w2
i > 0}.

Proof The proof is given in Appendix B.1.
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In the rest of the section, we will assume that the quantization rate R satisfies

the condition given above. We denote the average of the state values at time step

t by a(t) = 1/N
∑N

i=1 xi(t), and recall that we are interested in the behavior of

the expected mean squared distance between the asymptotic average and initial

average, i.e.,

δ∞ , lim
t→∞

δ(t) = lim
t→∞

E{(a(t)− a(0))2}. (3.18)

It is easy to see that

a(t+ 1) = a(t) +
1

N

N∑
i=1

wi(t) ⇒ a(t) = a(0) +
1

N

t−1∑
l=0

N∑
i=1

wi(t). (3.19)

Moreover, recall that the noise samples are taken to be uncorrelated both tem-

porally and spatially. Thus, integrating the uncorrelated assumption along

with (3.19) reduces the limiting MSE expression to

δ∞ = lim
t→∞

1

N2

t−1∑
l=0

N∑
i=1

E{w2
i (t)}. (3.20)

Moreover, due to the special structure of the underlying graph, E[w2
i (t)] =

υ(t),∀i, t and the expression given above becomes:

δ∞ = lim
t→∞

1

N

t−1∑
l=0

υ(t). (3.21)

We note that we have a complete characterization of υ(t) in (3.15). Therefore,

MSE of our algorithm can be calculated by analyzing the linear difference equa-

tion given in (3.15).

Lemma 10 For sufficiently large N and R, MSE of the QCPC with constant quanti-

zation rate R is given by

δ∞ =
CK

N222R

(∑
j∈V ′

(1− ωj)
2

1− ω2
j

σj(0)

)
(3.22)

where ωj , are the ordered eigenvalues of W matrix and σj(0) are the eigenvalues of

E{x(0)xT (0)} corresponding to the ordered eigenvectors of W matrix.
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Proof The proof is given in Appendix B.2.

In the following, we derive upper-bounds on the MSE performance of the

quantized distributed average consensus where we relate the performance to

parameter of interests, such as the connectivity of the underlying graph mod-

eling the sensor network which can be inferred from the second largest eigen-

value of the weight matrix [93, 92]. Thus, the following corollary relates the

MSE performance of the proposed algorithm to the second largest eigenvalue

of the weight matrix.

Corollary 2 Suppose |ω2| > |ωj|, ∀j ≥ 2, then, the limiting MSE of the QCPC is

upper bounded by

δ∞ <
4CK

N22R
1

1− ω2
2

max
j ̸=1

σj(0). (3.23)

Proof The proof is give in Appendix B.3.

Upper bounds on the MSE performance of the quantized consensus algo-

rithms are also given in [20, 10]. While corresponding scenarios are slightly

different (i.e, initial states are deterministic rather than random and quantizer is

probabilistic rather than adaptive), the MSE dependence on the second largest

eigenvalue of the weight matrix has the same form.

In the following, we compare theoretical MSE expression and bound with

the simulated performance. Fig. 3.2 depicts the performance of the algorithm

where uniform scalar quantizers are used at each sensor. A regular graph with

400 nodes is generated where each node has 48 neighbors. Initial observations

are i.i.d Gaussian samples N ∼ (0, 1). The algorithm is simulated over 1000
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Figure 3.2: Simulated versus theoretical MSE performance of QCPC.

Monte-Carlo runs. The quantization parameter CK is chosen as 24 in this sub-

optimum scenario. We conclude that the MSE expression in (3.22) closely re-

flects the behavior of the actual system. Of note is that when the rate is small

enough, i.e less than five bits in our simulation, the gap between the simulated

and predicted performance is large. Although MSE expression in (3.22) is valid

under sufficiently large network and rate, simulation results show that even a

network of 400 nodes and 5 bits per sensor is large enough. We also note that

upper bound in (3.23) follows the scaling of the actual performance.

Finally, we simulate the MSE performance of QCPC algorithm in both regu-

lar and random graphs in order to show that the performance of QCPC is similar

for both networks. Fig. 3.3 shows the MSE performances of the networks with

two different sizes (N = 64 and N = 400) and two different configurations;
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Figure 3.3: QCPC MSE (dB) performance for random and regular net-
works.

random deployment and regular deployment. For each N , a regular network

with connectivity radius 0.35 is generated. Furthermore, 5 random networks

with the same connectivity radius are also generated. We simulate the algo-

rithm over 1000 Monte-Carlo runs where the initial observations are i.i.d. re-

alizations of the normal distribution (Independence and Gaussian distribution

indeed characterizes the worst-case behavior of the algorithm). We average the

MSE behavior over the Monte-Carlo runs and the random networks and em-

ploy this average as the behavior of the random network. We conclude that the

regular network analysis closely reflects the behavior of the random networks

in average consensus algorithms with quantization noise. We observe the expo-

nentially decreasing behavior of the MSE with respect to the quantization rate

as predicted by (3.22). We also note that larger networks have smaller MSE.
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3.3.3 Scaling Laws in Regular Networks

Note that MSE expression is O(N−1), see (3.22). Therefore, cumulative quanti-

zation error tends to zero as N → ∞. This is a pleasing result, but the caveat

is that it is valid provided that the quantizer adaptively changes so that it is

possible to consider the quantization error uncorrelated. If one had not used a

differential encoding scheme, one would have required increasing quantization

rate over the iterations.

Next, we simulate the performance of the network in order to understand

the actual behavior of the MSE with respecto to the network size. Fig. 3.4 shows

the MSE behavior of the system with respect to the network size. Simulation

parameters are fixed as given above. We conclude that the actual MSE scales as

O(N−1). We note that such a behavior is also given in both MSE formula and
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MSE upper bound, (3.22) and (3.23) respectively.

We further calculate the scaling laws of the MSE for two dimensional regular

graphs in terms of the number of neighbors We consider the model studied in

[19]: An edge between two vertices exists if the maximum norm (L∞) distance

between them is less than k/
√
N where k ∈ Z. The following lemma charac-

terizes the scaling behavior of MSE with respect to the number of neighbors of

each node:

Lemma 11 Given k <<
√
N and initial conditions (node correlation, quantization

rate) are fixed,

δ∞ = O(k−2). (3.24)

Proof The proof is given in Appendix B.4.

For a given k ≥ 1, the number of neighbors is simply 4k(k + 1) = O(k2).

Therefore, one can conclude that MSE decreases almost linearly with the num-

ber of neighbors for large k in 2-D regular graphs. We note that, if the number

of neighbors is fixed as the network size increases, the graph becomes less con-

nected and O(1/N) scaling in (3.23) is canceled out and MSE does not scale with

respect to N , i.e., O(1).

In the following, we have simulated MSE performance of the system with

respect to the connectivity radius and results are given in Fig. 3.5. Of note is that

connectivity radius is simply
√

4k(k + 1)/N . As we have discussed above, MSE

decreases as radius of connectivity increases. We also note that as the number

of nodes increases, decrease in MSE is much sharper and it saturates around

smaller connectivity radius.
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3.4 Asymptotic Rate Behavior and Rate Allocation

In this section, we focus on the case where the quantization rate can change

from iteration to iteration. First, we study the asymptotic rate behavior of the

consensus algorithm under bounded convergence. Moreover, we completely

characterize the rate regions achieving consensus with bounded MSE with van-

ishing quantization rate and finite-sum rate. We also study optimal rate alloca-

tion among the iterations when the allowable sum-rate is fixed.
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3.4.1 Asymptotic Rate Behavior

In this section, we explore the consensus behavior under variable rates. Un-

der the condition that the noise variances form a convergent geometric series,

we fully characterize the asymptotic rate behavior in terms of the initial con-

ditions, quantization parameters and the connectivity of the network. Further-

more, we calculate quantization rate regions which guarantee both vanishing

rates and bounded convergence. We further show that such rate regions also

achieve bounded rate-sum.

We will use the difference system defined in (3.13) and (3.14) which are reit-

erated here for completeness:

σj(t) = ω2
j (σj(t− 1) + υ(t− 1)) (3.25)

υ(t) =
CK

N22R(t)

(
N∑
j=1

(ωj − 1)2 (σj(t− 1) + υ(t− 1))

)
(3.26)

R(t) > 0, ∀t ≥ 1. (3.27)

The constraint on R(t) > 0 guarantees that the above system represents a valid

quantization scheme (non-positive rate is not possible, and since we are inter-

ested in the asymptotic behavior we exclude the case where R(t) = 0 for finite

t). At each iteration,(t + 1), we would like the noise variances (eigenvalues) to

reduce as:

υ(t+ 1)

υ(t)
= β (3.28)

where 0 < β < 1. Of note is that this range of β guarantees bounded conver-

gence, i.e.:

δ∞ =
1

N

∞∑
t=0

υ(t) =
υ(0)

N

∞∑
t=0

βt =
υ(0)

N

1

1− β
< ∞. (3.29)
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Clearly, the geometric convergence of the noise variances is not the only way

to obtain convergence to a consensus with bounded MSE. More general cases

can be captured by allowing β to be a function of the iteration index. For

mathematical simplicity, we focus on the special case of geometric convergence.

First, having the geometric reduction of quantization noise variances in mind,

one need to characterize the rate recursion needed to achieve such reduction.

Given (0 < β < 1), network connectivity (ω1, . . . , ωN ), and initial conditions

(σ1(0), . . . , σN(0), R(0)), quantization rates follow the non-linear recursion for

all t ≥ 1 (see Appendix B.5):

R(t+ 1) =
1

2
log

22R(t)

∑N
j=2,ωj ̸=0(ωj − 1)2σj(t)∑N
j=2,ωj ̸=0

(ωj−1)2

ω2
j

σj(t)
+

CK

N

N∑
j=2

(ωj − 1)2

− 1

2
log β.

(3.30)

Equation (3.30) has no closed form solution, but further insight on its behavior

is gained in the following lemma:

Lemma 12 The quantization rate for the average consensus under predictive coding

scheme defined through (3.25)-(3.27) converges to:

R⋆ , lim
t→∞

R(t) =
1

2
log

(
CK

N(β −K⋆)

N∑
i=2

(ωi − 1)2

)
(3.31)

where:

K⋆ =

∑N
j=2,ωj ̸=0

(ωj−1)2ω2
j

β−ω2
j∑N

j=2,ωj ̸=0
(ωj−1)2

β−ω2
j

(3.32)

and ω2
j < β < 1 for all j ∈ {1, . . . , N}.

Proof The proof is given in Appendix B.6.

Equation (3.31) is the characterization of the asymptotic rate subject to the con-

straint that convergence to a consensus with bounded MSE is achieved. Note
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that above expression is a function of the network connectivity, noise variance

behavior and quantization parameters. It is interesting to observe that it is nei-

ther a function of the initial quantization rate nor the initial observation correla-

tion. However, the initial quantization rate and the initial correlation will affect

the limiting MSE which depends on the initial noise variance υ(0).

Of note is that the noise decay factor β is restricted as follows by Lemma 12:

maxj ω
2
j < β < 1. As the network connectivity increases, i.e, maxj ω

2
j decreases,

a wider range of β can be utilized and a sharper decrease in noise variance,

hence, faster convergence, is possible. Given initial conditions and noise decay-

ing factor, asymptotic MSE is simply υ(0)(1− β)−1/N by (3.29). Hence, smaller

β (faster decrease in the noise variance) will allow the algorithm to converge to

a consensus with a smaller MSE for given υ(0).

We are particularly interested in the rate allocation schemes achieving con-

sensus with bounded MSE with vanishing rate, i.e, δ∞ < ∞ and limt→∞R(t) =

0. Such a behavior, if it exists, has a particular importance since it is an insight

to the fact that consensus can still be achieved with decreasing communication

cost. As a first step for deriving such rate regions, we make the following obser-

vation:

Lemma 13 Let R⋆ given as in (3.31) and ω2
j < β < 1 for j ∈ {2, . . . , N}. Then, R⋆

decreases with increasing β given the network and quantization parameters.

Proof The proof is given in Appendix B.7.

Above result indicates that, as we decrease the speed of noise decay, the

limiting quantization rate decreases. Such a behavior is intuitive since one can
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think this phenomena as a trade-off between rate and distortion (MSE). The

next question of interest is the existence of a β ∈ (maxj ω
2
j , 1) which satisfies the

equality R⋆ = 0, i.e., are there particular noise decay rate regions tending to zero

cost in the limit? The following lemma proves that such β indeed exits.

Lemma 14 If |ω2| > |ωj| for j = 3, 4, . . . , N , and the eigenvalues satisfy the following

inequality for some small ϵ > 0,

ω2
2 − L(ω) + ϵ < ω2

j < 1− L(ω)− ϵ, ∀j (3.33)

where

L(ω) =
1

N

N∑
j=2

(1− ωj)
2 (3.34)

and ω = {ωj : j = 2, 3, . . . , N}, then, there exists a unique β such that ω2
2 < β < 1

and R⋆ = 0.

Proof The proof is given in Appendix B.8.

Since in general, the noise variance does not have to decrease as a geometric se-

ries the lemma above gives conditions on the underlying graph that permit this

behavior with vanishing rate. We note that the regular graphs we considered

throughout meet condition (3.33).

A more important result from the communication cost perspective is the fol-

lowing:

Lemma 15 Assume ∃ a β ∈ (0, 1) achieving vanishing asymptotic quantization rate

(R⋆ = 0) as given in Lemma 14. Then under such β, the sum of the quantization rates

over the iterations is finite, i.e.,
∞∑
t=0

R(t) < ∞. (3.35)
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and MSE is bounded.

Proof The proof is given in Appendix B.9.

In words, although QCPC requires infinite number of iterations, the total

transmission time per node is finite. In a similar fashion, one can conclude that

the energy required for inter-node transmission is also finite.

Since our proofs are constructive, it is possible to formulate a simple rate

allocation policy that will satisfy both Lemmas 14 and 15. Under the conditions

given in Lemma 14, rate-distortion (MSE) regions satisfying zero asymptotic

rate with bounded error is calculated by the following algorithm:

1. Determine β converging quantization rate R to 0 by (3.31).

2. Given target MSE, i.e MSE∞, calculate initial quantization rate by (3.29).

3. Determine quantization rates at each step, R(t) via (3.30).

Remark 11 Similar to the behavior fixed rate consensus in Section 3.3, MSE of the

variable rate QCPC is O(N−1) when the rest of the parameters are fixed (see (3.29)).

The result is interesting in a way that although decreasing number of bits is utilized,

scaling with respect to network size does not change.

We also observe that MSE expression for the variable rate consensus in (3.29) is an

upper bound for the MSE performance of the variable rate consensus in (3.23) under

the same initial conditions. The statement is clear if one notes that β > ω2
2 and initial

noise variance (υ(0)) is a function of the rate, the network size and the trace of the initial

node correlation function.
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Figure 3.6: MSE (dB) vs sum of the quantization rates for different β over
1000 iterations.

3.4.2 Rate Allocation

In this section, we focus on the numerical solutions of (3.30) and infer some

intuition about the optimal distributions of the quantization rates in the MSE

sense. For a 2-D regular graph of 64 nodes, connectivity radius 0.25 and initial

observations uncorrelated (i.e., σi(0) = σj(0), ∀ {i, j}), the total number of bits

spent over one thousand iterations versus the final MSE is given in Fig. 3.6. For

each MSE-β pair, the algorithm is initialized with a quantization rate 5 ≤ R(0) ≤

20 and R(t) is calculated by (3.30) for a given 0.70 ≤ β ≤ 0.95. We note that such

a family of β satisfies β > maxj ω
2
j . We observe that given a total number of bits

to be spent, one can achieve a lower MSE by utilizing a larger β. Fig. 3.7 shows

quantization rates over iterations for, β = 0.95, β = 0.90 and β = 0.85 such

that the total number of bits spent is fixed, i.e.,
∑200

t=0 R(t) ≃ 225. For β = 0.95,

the algorithm starts with 20 bits per node and slowly converges to 0.0050 bits
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Figure 3.7: MSE (dB) vs sum of the quantization rates for different β.

per node. On the other hand, for β = 0.90, the algorithm initializes with 19.2

bits per node, stays under the β = 0.95 curve initially, then crosses the curve

and follows a similar behavior converging to 0.047. The β = 0.85 curve starts at

18.2 bits per node and converges to 0.091 slower than both 0.90 and 0.95 curves.

The MSE performances of these schemes are different, i.e., −76dB, −74dB and

−70.4dB respectively, since as we noted in Fig. 3.6, a larger β results in a better

MSE performance for a fixed number of total bits spent.

Compiling the theoretical and numerical results, we note that a slower de-

crease in the noise variances will result in a smaller MSE when the total number

of quantization bit to be spent is fixed. In other words, transmitting more bits

in the beginning and decreasing transmission cost gradually results in a better

performance.
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3.5 Discussions

In this study, we have studied rate constrained average consensus problem un-

der both fixed and variable rate quantization rate scenarios. We have focused on

simple predictive coding scenario where at time instant t, nodes transmit only

the innovation with respect to previous state value. In the case of fixed rate

quantization, we have presented a closed form MSE expression and correspond-

ing upper bounds in terms of the network connectivity, quantization rate and

initial node correlation. We have also derived asymptotic behavior of the quan-

tization rate in a scenario where quantization rates are variable and consensus

with finite MSE is achieved. In a special case where the quantization rates are

chosen such that quantization noises decrease like a geometric series, we have

determined the rate regions where asymptotic quantization rate vanishes such

that sum-rate and MSE is bounded.
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CHAPTER 4

BROADCAST GOSSIPING ALGORITHM

4.1 Motivation and Related Work

As it was discussed in Chapter 1, geographic-type gossiping improves upon the

convergence speed of the standard gossip by increasing the diversity of pair-

wise exchanges. However, the problem of packet loss is exacerbated by the

requirement that messages must be sent on long routes, creating congestion is-

sues. Moreover, it does not mitigate the major bottleneck associated with the

fact that the messages between two peers need to be routed and exchanged to

perform two updates. Finally, successfully setting up a two-way route exacer-

bates the problem by requiring information about the location of the nodes in

the network.

The wireless medium has the advantage of being inherently broadcast and,

at the cost of one transmission, one can reach several terminals. Our objec-

tive in this chapter is to analyze a broadcasting-based gossip algorithm that en-

ables all nodes in range to perform an update by exploiting the wireless medium,

and thereby avoiding the need of complex routing and problematic pairwise

exchange operations.

4.1.1 Summary of Main Contributions

To overcome the drawbacks of the standard packet based gossip algorithms, we

study a broadcast based gossiping algorithm for wireless sensor networks. In
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the studied algorithm, a node in the network wakes up uniformly at random

according to the asynchronous time model and broadcasts its value. This value

is successfully received by the nodes in the predefined radius of the broadcast-

ing node, i.e., connectivity radius. The nodes that have received the broadcasted

value update their own state value and the remaining nodes sustain their value.

It is shown here that by iterating this procedure, this type of gossiping algo-

rithm is capable of achieving consensus over the network with probability one.

We also show that the random consensus value is, in expectation, equal to the

desired value, i.e., the average of initial node measurements. Because the sum

of the node state values is not preserved at each iteration, the broadcast gossip-

ing algorithm converges to a value that is in the neighborhood of the desired

average.

The question that motivates this chapter is investigating if it is possible to

avoid the partner selection process altogether, analyzing a broadcast communi-

cation protocol where each random transmission triggers an update by all nodes

within range, without a mechanism of reply in place to maintain the network

average. We initiated this study in [9]. Fagnani and Zampieri have concur-

rently studied the convergence to consensus characteristics of general random-

ized algorithms which do not necessarily converge to the initial average (such

as asymmetric gossip, broadcast gossip and packet-drop gossip) [38]. In par-

ticular, the authors have shown that random consensus algorithms in general

achieve probabilistic consensus, and discussed their mean squared error char-

acteristics (Proposition 4.4 and Corollary 3.2). In this chapter, we provide an

in depth study of broadcast gossip algorithms’ speed of convergence and mean

squared error characteristics. Our results also address the choice of the mixing

parameter and its effect on both the mean square error and the convergence rate,
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which provides insight for implementation.

More specifically, we provide theoretical and simulation results on the mean

square error and communication cost performance of the broadcast gossip al-

gorithm. Moreover, we study the effect of the so called mixing parameter on

the convergence rate and limiting mean square error through theoretical results

and numerical experiments. In addition, we derive the optimal mixing param-

eter when approached from the convergence rate perspective. Although the

convergence time of our algorithm is commensurate with the standard pairwise

gossip algorithms, we present simulations showing that for more modest net-

work sizes our algorithm converges to consensus faster than other algorithms

based on pairwise averages or routing.

4.1.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 4.2 introduces

the average consensus problem and the graph and time models adopted in this

study. The studied broadcast gossip algorithm is introduced in Section 4.3 and

its convergence characteristics are studied in Section 4.4. In Section 4.5 we de-

rive the optimal mixing parameter considering the worst-case convergence rate

and analyze the effects of various network parameters on the optimal value.

The MSE characterization and communication complexity analysis are given in

Section 4.6 along with the convergence rate expression. Finally, we conclude

with some discussion and future directions in Section 4.7.
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4.2 Graph and Time Models

In the following, we briefly discuss the graph and time models adopted in this

chapter. Then, we describe briefly the distributed average consensus problem.

4.2.1 Graph Model

We model our wireless sensor network as a random geometric graph G(N,R),

where the N sensor locations are chosen uniformly and independently in a unit

square area, and each pair of nodes is connected if their Euclidean distance is

smaller than some transmission radius R named connectivity radius [41]. For our

analysis, we assume that a communication within this transmission radius al-

ways succeeds. It is well known that in order to have a fully connected network

asymptotically while minimizing interference, the connectivity radius R has to

scale like Θ(
√

log(N)/N) [41, 20]. The N–node topology of G(N,R) is repre-

sented by the N × N adjacency matrix Φ, where for i ̸= j, Φij = 1 if nodes i

and j are in their neighborhood, and Φij = 0, otherwise. Moreover, we define

Ni = {j ∈ {1, 2, . . . , N} : Φij ̸= 0} and D as a diagonal matrix with entries

Dii = Ni. Finally, the Laplacian of a graph is defined as L = D − Φ.

4.2.2 Time Model

We use the asynchronous time model, which is well–matched to the distributed

nature of sensor networks [20, 34]. In this model, each sensor node is assumed

to have a clock which ticks independently according to a rate µ Poisson process.
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Consequently, the inter-tick times are exponentially distributed and indepen-

dent across nodes and over time. This process is equivalent to a single clock

whose ticking times form a Poisson process of rate Nµ. Let Zt be the the arrival

times of this global process. In expectation, there are approximately Nµ clock

ticks per unit of absolute time but we will always measure time in number of

ticks of this (virtual) global clock. We therefore think of time as discretized with

the interval [Zt;Zt+1) corresponds to the t–th timeslot. We can adjust time units

relative to the communication time so that only one broadcast event occurs in

the network at each time slot with high probability.

4.2.3 Average Consensus

At time slot t ≥ 0, each node i = 1, 2, . . . , N has an estimate xi(t) of the global

average, and we use x(t) to denote the N -vector of these estimates. The ultimate

goal is to use the minimal amount of communication to drive the estimate x(t)

as close as possible to the average vector x(0)1, where 1 is the vector of all 1’s

and

x̄(0) =
1

N

N∑
i=1

xi(0) . (4.1)

Because our algorithms are randomized, the quantity x(t) for t > 0 is a random

vector even though we assume x(0) is deterministic.

4.3 Broadcast Based Gossiping

Informally, the asynchronous broadcast gossip algorithm is described as fol-

lows. Suppose node i’s clock is the t-th that ticked. Then, node i broadcasts
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its own state value which is received by all neighboring nodes within distance

R from it. Once the broadcasted value is received, the neighboring nodes set

their values equal to the (weighted) average of their current value and the value

broadcasted by the node i. Formally, node i activates and the following events

occur:

• Node i broadcasts wirelessly its current state value, xi(t).

• The broadcasted value is successfully received by the nodes that are within

the radius R.

• All nodes in the set of node i’s neighbors Ni receive the broadcasted value

xi(t), and update their state values according to the following equation:

xk(t+ 1) = γxk(t) + (1− γ)xi(t), ∀k ∈ Ni (4.2)

with γ ∈ (0, 1) denoting the mixing parameter.

• The remaining nodes in the network, including i, update their state values

as

xk(t+ 1) = xk(t), ∀k ̸∈ Ni. (4.3)

This procedure takes place at every clock tick.

Let x(t) denote the vector of values at the end of the t-th ticking event. Then,

x(t+ 1) = W (t)x(t) (4.4)
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where the random matrix W (t), with probability 1/N is (assuming that the i–th

clock ticks)

W
(i)
jk =



1 j ̸∈ Ni, k = j

γ j ∈ Ni, k = j

1− γ j ∈ Ni, k = i

0 elsewhere

(4.5)

where W (i) denotes the weight matrix corresponding to the case where node i’s

clock ticks.

The following lemma discusses two important properties of the weight ma-

trices.

Lemma 16 The weight matrices {W (i) : i = 1, 2, . . . , N} satisfy the following:

(i) 1 is a right eigenvector of all W (i), i.e., W (i)1 = 1, ∀i.

(ii) 1 is not a left eigenvector of any W (i), i.e., 1TW (i) ̸= 1T , ∀i.

Proof Let us consider the first claim. It suffices to show that all rows of all W (i)

matrices sum to unity. We have

N∑
k=1

W
(i)
jk = 1{j ∈ Ni}(γ + (1− γ)) + 1{j ̸∈ Ni}1 = 1 , (4.6)

where 1{·} is the indicator function. Thus, the proof of first item is complete.

We now turn to the second claim. Note that

N∑
j=1

W
(i)
jk = 1 + (1− γ)|Ni|, for k = i . (4.7)

Since R is chosen to make the graph connected, we have |Ni| ≥ 1, which implies

that
∑N

j=1 W
(i)
jk |k=i > 1. This in turn shows that for all i there exists at least one
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column, namely the k = i column, with sum different than one, which implies

that 1TW (i) ̸= 1T for all i.

The above Lemma reveals that c1 for some c ∈ R is a fixed point of the broad-

casting gossip algorithm, so W (i)c1 = c1 for all i. If the algorithm converges to

a consensus, the network will not leave the consensus state. However, it also

shows that the sum (and therefore the average) of the vector of node values is

not preserved at each step.

Suppose node k is transmitting at time t. It is easy to check that the discrep-

ancy between the sum at the next and current time-slots is nonzero whenever

xk(t) ̸= |Nk|−1
∑

i∈Nk
xi(t). Suppose, that xk(t) is closer to the maximum of its

neighbors than the minimum, or |xk(t)−mini∈Nk
xi(t)| > |xk(t)−maxi∈Nk

xi(t)|).

Then the sum difference between time-slots is bounded:∣∣∣∣∣
N∑
i=1

(xi(t+ 1)− xi(t))

∣∣∣∣∣ ≤ (1− γ)|Nk|
∣∣∣∣xk(t)−min

i∈Nk

xi(t)

∣∣∣∣ . (4.8)

Clearly, the difference between the states sum at consecutive iterations is small

if the node state values are close to each other.

Let us denote the mean of i.i.d. W (t) as E{W (t)} = W . The following lemma

gives some properties of the average weight matrix that would prove useful for

the remainder of the chapter. Of note is that the following is a specific case of

the general weight matrix given [38].

Lemma 17 The average weight matrix W is given by

W = I − 1− γ

N
diag{Φ1}+ 1− γ

N
Φ (4.9)

and, for all γ, satisfies the following equation:

W1 = 1, 1TW = 1T , ρ(W − J) < 1 , (4.10)
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where ρ(·) denotes the spectral radius of its argument and J = (N)−111T .

Proof See Appendix C.1.

The Lemma shows that, unlike the individual weight matrices, 1 is both a

left and right eigenvector of the average weight matrix. Moreover, the spectral

radius of the weight matrix is less than unity, a property that will prove to be

useful throughout the rest of the chapter.

4.4 Convergence of Broadcast Gossiping

In this section, we will study the convergence of the asynchronous broadcast

gossip algorithms considering a slightly more general setting, where the con-

sensus algorithm is governed by a product of identically distributed random

matrices with the only restriction that each matrix is stochastic but not doubly

stochastic. Of note is that the almost sure convergence result shown in this sec-

tion, i.e., Theorem 2, is focused on and specific to broadcast gossip algorithms

and is a special cases of the almost sure convergence result presented in [38].

4.4.1 Convergence in the Expectation

We consider the convergence in expectation of the broadcasting gossip algo-

rithm. The next result reveals that, although the sum is not preserved per itera-

tion, it is preserved in expectation. We consider the initial state as deterministic,

and hence all expectations are averaging the mixing matrices only.
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Proposition 1 The limiting random vector obtained through broadcast gossip itera-

tions (if it exists) is, in expectation, equal to the average of initial node measurements,

i.e.,

E
{
lim
t→∞

x(t)
}
=

1

N
11Tx(0). (4.11)

Proof By the Lebesgue dominated convergence theorem [23], we have

E
{
lim
t→∞

x(t)
}
= lim

t→∞
E {x(t)} . (4.12)

Moreover, since the matrices W (t) are i.i.d., we have

lim
t→∞

E{x(t+ 1)} = lim
t→∞

W tx(0) . (4.13)

Thus it suffices to prove that limt→∞W t = (N)−111T . From [92], we know that

this statement will hold if W1 = 1, 1TW = 1T , and ρ(W − J) < 1. Since

Lemma 17 indicates that these conditions are satisfied, the proof is complete.

The proposition indicates that the expectation of the limiting random vector

of the broadcasting gossip algorithm, given a certain initial state vector, is equal

to the vector whose entries are equal to average of such initial state.

4.4.2 Convergence in the Second Moment

To study the convergence of the algorithm, we analyze the convergence of the

vector β(t) defined as the vector of deviations of the components of x(t) from

their average at the tth iteration. This can be expressed in component form as

βi(t) = xi(t)− x̄(t), or as

β(t) = x(t)− Jx(t) = (I − J)x(t). (4.14)
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Let λi(A) denote the ith largest eigenvalue of a matrix A. In the following, we

present a sufficient condition guaranteeing the convergence of the expectation

of the deviation vector norm to zero.

Lemma 18 The expectation of the norm of the deviation vector of the broadcast gossip,

i.e., E{∥β(t)∥22}, converges to zero if

λ1(E{W (t)T (I − J)W (t)}) < 1 , (4.15)

where I denotes the identity matrix.

Proof Utilizing the properties of W (t) matrices, we find that the deviation vec-

tor β(t) obeys the following recursion with probability one:

β(t+ 1) = (W (t)− JW (t))β(t). (4.16)

Note that this iteration is different from the one tracking the distance to ini-

tial node measurements average in gossip-based algorithms which preserve the

sum, and this difference impacts all our proof methodologies.

Let Y (t) = (W (t) − JW (t)) so that β(t + 1) = Y (t)β(t). Now, taking the

expected norm of β(t + 1) given β(t) and using the fact that ∥u∥22 = uTu for

u ∈ RN , yields

E{∥β(t+ 1)∥22 | β(t)} = β(t)TE{Y (t)TY (t)}β(t) (4.17)

≤ λ1(E{Y (t)TY (t)}) · ∥β(t)∥22 , (4.18)

where the last line follows from the fact that all Y (t)TY (t) matrices are sym-

metric and the Rayleigh–Ritz theorem [44]. Then, repeatedly conditioning and

using the linear iteration obtained above, we have,

E{∥β(t)∥22} ≤ λt
1(E{Y (t)TY (t)}) · ∥β(0)∥22 . (4.19)
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Thus, now one can see that limt→∞ E{∥β(t)∥22} = 0 if λ1(E{Y (t)TY (t)}) < 1.

Algebraic manipulations reduce this sufficient condition to the one stated in the

Lemma.

It is important to emphasize that the Lemma 18 gives a sufficient condition

for any consensus protocol that does not preserve network sum. Moreover, note

that the condition λ1(E{W (t)T (I − J)W (t)}) < 1 is different than the conver-

gence condition obtained for the standard pairwise gossip algorithms where

one only need to have λ2(E{W (t)}) < 1 to ensure the second–order conver-

gence to the initial node measurements average [20, 34]. Note, however, that

the sufficiency condition derived for the broadcast gossip algorithms reduces to

the one for average-preserving gossip algorithms when 1TW (i) = 1T , ∀i.

In the following, we show that the broadcasting gossip algorithm satisfies

the sufficiency condition required achieve consensus in the second moment.

Proposition 2 The broadcast gossip algorithms satisfies the fact that λ1(E{W (t)T (I−

J)W (t))} < 1.

Proof First, note that the eigenvalue of interest is the maximum eigenvalue

of expectation over positive semidefinite matrices since (W (i))T (I − J)W (i) =

((I − J)W (i))T ((I − J)W (i)). This indicates that λ1(E{W (t)T (I − J)W (t)}) ≥ 0.

Moreover, let W ′ = E{W (t)TW (t)} and W ′′ = E{W (t)TJW (t)}, and observe the

following

λ1(W
′ −W ′′) = max

||u||22=1
uTW ′u− uTW ′′u (4.20)

where the above follows from the variational definition of eigenvalues (Note

that W ′ − W ′′ is a symmetric matrix). Recall that max||u||22 u
TW ′u = 1 for u =
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u1 = 1/
√
N1 which is the eigenvector corresponding to the unit eigenvalue. Of

note is that for all {u : u ∈ RN , ||u||22 = 1, u ̸= u1}, we have uTW ′u < 1 which

implies that λ1(E{W (t)T (I−J)W (t)}) < 1 since uTW ′′u ≥ 0 for all u ∈ RN (Note

that the expectation is taken over positive semidefinite matrices). Thus, the task

reduces to show that for u = u1, we still have λ1(W
′ − W ′′) < 1. For u = u1,

equation (4.20) reduces to

uT
1W

′u1 − uT
1W

′′u1 = 1− uT
1W

′′u1 < 1 (4.21)

where the last inequality follows from the fact that uT
1W

′′u1 > 0 since all en-

tries of the W ′′′ matrix is nonnegative (note that the expectation is taken over

nonnegative entry matrices). Thus, uTW ′u − uTW ′
Ju < 1 for all {u : u ∈

RN , ||u||22 = 1}, indicating that max||u||22=1 u
TW ′u − uTW ′′u < 1, which, in turn,

yields λ1(E{W (t)T (I − J)W (t)}) < 1.

4.4.3 Almost Sure Convergence to Consensus

Given the results of Section 4.4.1 and 4.4.2, we are now in the position of stating

our main result.

Theorem 2 The broadcast gossip algorithm converges to a consensus almost surely.

That is,

Pr
{
lim
t→∞

x(t) = c1
}
= 1 (4.22)

for some random variable c ∈ R where

E{c} =
1

N
1Tx(0). (4.23)
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Proof See Appendix C.2.

The theorem indicates that the broadcasting gossip algorithms achieve con-

sensus with probability one, and the consensus value is, in expectation, equal to

the desired value, i.e., average of initial nodes measurements.

4.5 Optimal Mixing Parameter

The sufficient condition in Lemma 18 depends on λ1(E{W (t)T (I − J)W (t)}),

which is the rate of convergence of an upper bound for the mean square devi-

ation. Minimizing this parameter is a meaningful criterion of optimality when

trying to approach convergence rapidly. In this section, we derive the optimal

mixing parameter defined in (4.2) by minimizing λ1(E{W (t)T (I−J)W (t)}) with

respect to the mixing parameter in the broadcast gossip algorithm. At the same

time, this allows to study the effect of the graph connectivity and network size

on the optimal mixing parameter. The following Lemma gives formulae which

will be useful in the remaining analysis of the broadcast gossip algorithm.

Lemma 19 The following two formulas hold:

(i) Let W ′ ∆
= E{W (t)TW (t)}, then

W ′ = I − 2γ(1− γ)

N
(D − Φ) . (4.24)

(ii) Let W ′′ ∆
= E{W (t)TJW (t)}, then

W ′′ =
(1− γ)2

N2
(D − Φ)2 + J (4.25)

where D = diag(Φ1) is the diagonal matrix of node degrees.
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Proof See Appendix C.3.

Note that λ1(E{W (t)T (I − J)W (t)}) = λ1(W
′ −W ′′) and recall that λ1(W

′ −

W ′′) gives the worst-case convergence characteristic of the broadcast gossip al-

gorithms, Lemma 18. Now, consider the matrix W ′ − W ′′ which, after using

Lemma 19, reduces to:

W ′ −W ′′ = I − J − 2γ(1− γ)

N
(D − Φ)− (1− γ)2

N2
(D − Φ)2 . (4.26)

First note that the vector 1 is an eigenvector of W ′ − W ′′ with eigenvalue 0.

The vector 1 corresponds to the only nonzero eigenvalue of the matrix J and

the only zero eigenvalue for the Laplacian matrix L = D − Φ. Therefore the

eigenvectors of W ′ − W ′′ are exactly the eigenvectors of D − Φ, and the k-th

eigenvalue of W −W ′′ for k = 1, 2, . . . N − 1 is:

λk(W −W ′′) = 1− 2γ(1− γ)

N
λN−k(L)−

(1− γ)2

N2
λN−k(L)

2 (4.27)

Thus, the eigenvalue of interest can now be written as:

λ1(W
′ −W ′′) = 1− 2γ(1− γ)

N
λN−1(L)−

(1− γ)2

N2
λN−1(L)

2 (4.28)

where L = D − Φ denotes the Laplacian matrix of the graph. Of note is that

λN−1(L) is referred as the algebraic connectivity of the graph [7].

In the following, we investigate the effect of the mixing parameter on the

eigenvalue of interest which, as seen by Lemma 18, bounds the rate of conver-

gence of the broadcast gossip algorithms.

Corollary 3 Let us introduce λ1(W
′−W ′′; γ) to show the dependency of the eigenvalue

of interest to the mixing parameter γ. Then the following statements hold:

(i) λ1(W
′ −W ′′; γ) is convex in γ.
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(ii) The optimal mixing parameter, minimizing a worst-case convergence rate, is

given by

γ∗ =
N − λN−1(L)

2N − λN−1(L)
. (4.29)

Proof Let us first consider convexity of λ1(W
′ − W ′′; γ) of w.r.t. to γ. One can

show that the first and second derivatives of λ1(W
′ −W ′′; γ) are given by

∂λ1(W
′ −W ′′; γ)

∂γ
= γ

(
4

N
λN−1(L)−

2

N2
λN−1(L

2)

)
− 2

N
λN−1(L)+

2

N2
λN−1(L

2) ,

(4.30)

and
∂2λ1(W

′ −W ′′; γ)

∂γ2
=

4

N
λN−1(L)−

2

N2
λN−1(L

2) , (4.31)

respectively. Recall that λ1(W
′−W ′′; γ) is convex in γ if ∂2λ1(W

′−W ′′; γ)/∂γ2 ≥

0 for γ ∈ (0, 1). Moreover, the eigenvalues of the Laplacian are non-negative

indicating that λN−1(L) ≥ 0 and λN−1(L
2) = λ2

N−1(L). Then, from (4.31), it

is easy to see that, ∂2λN−1(L)/∂γ
2 ≥ 0 if 0 ≤ λN−1(L) ≤ 2N . But recall that

λ(L) ≤ min{2maxi |Ni|, N}.

Consider next the second claim of the corollary. The optimal γ is clearly

given by

γ∗ = argmin
γ

λ1(W
′ −W ′′; γ) . (4.32)

which, since λ1(W
′ −W ′′; γ) is convex, is simply found by setting (4.30) to zero

and solving it for γ.

Interestingly, the above Corollary indicates that the optimal mixing parame-

ter depends on the graph for finite N . For large N we have the following result,

whose proof is trivial.
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Corollary 4 For graphs such that λN−1(L) = Θ(f(N)) for some function f(·), with

limN→∞ f(N)/N = 0, the optimal mixing parameter is given by

lim
N→∞

γ∗ =
1

2
. (4.33)

Hence, for large enough N and standard radius connectivity considerations

for random geometric graphs (e.g., R = Θ(
√

logN/N) and λN−1(L) = Θ(logN)),

the eigenvalue λ1(W
′−W ′′) increases as |γ−1/2| increases. Therefore the worst-

case convergence rate, characterized by λ1(W
′ − W ′′), decreases. In words, γ

values that are closer to 1/2 yield a faster worst-case convergence rate compared

to the γ values closer to its boundaries, i.e., zero and one.

In the following, we investigate the effect of the graph Laplacian on the op-

timal mixing parameter.

Corollary 5 Let us introduce γ∗(L) , γ∗ to denote the dependency of the optimal γ on

the graph Laplacian. Then, γ∗(L) is monotonically decreasing function of λN−1(L).

Proof Proof simply follows by analyzing the first derivative of the optimal mix-

ing parameter w.r.t. the parameter of interest, denoted as ∂γ∗(L)/∂λN−1(L), and

showing that ∂γ∗(L)/∂λN−1(L) < 0 for λN−1(L) ≤ min{2maxi |Ni|, N}.

Thus, the above corollary indicates that, as the graph connectivity increases,

i.e., the eigenvalues of the Laplacian increases, the optimal mixing parameter

tends to zero. This result matches the intuition. In fact, in a fully connected

graph clearly γ = 0 would result in a consensus at the first iteration.
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4.6 Performance Analysis of Broadcast Gossip Algorithms

While broadcast gossip algorithms do no preserve the network sum, they do

compute a linear combination of the network states. We can define as error the

deviation of the states from the average of the initial states and use the mean

square error as a metric to evaluate the algorithm performance. Even though

the average displacement does not give the complete probabilistic picture but

lends insight to the average MSE performance of the algorithm. Probabilistic

concentration results on a general class of such random consensus algorithms

can be found in [38] and some results reported here to make the chapter self-

contained can be derived as special cases.

This section is dedicated to the derivation of the mean-square error perfor-

mance of the broadcast gossip algorithm and to studying the mixing parameter

effect on the mean-square error performance as well as the convergence. In par-

ticular, we prove an upper bound on the discrete time (or equivalently, number

of clock ticks) required to get within ϵ of the consensus c1, c ∈ R. We also derive

an upper bound on the limiting mean-square error performance. Finally, we

examine the communication complexity of the broadcast gossip algorithms to

achieve a certain distance to consensus.

4.6.1 Mean Square Error

Since, in general, the broadcast gossip algorithm does not converge to the ini-

tial node measurements average (N)−11Tx(0), it is of interest to consider the
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distance of the consensus value to x(0). In the remaining, we use

α(t) = x(t)− Jx(0) . (4.34)

to denote the difference between the state vector at time step t and the average

of initial node measurements.

Lemma 20 Let E{∥α(t)∥22} denote the mean square error at time step t. The following

two statements hold:

(i) The mean square square error iteration obeys a recursion given as:

E{∥α(t+ 1)∥22} ≤ (1− λ2(W
′))E{∥Jα(t)∥22}+ λ2(W

′)E{∥α(t)∥22}. (4.35)

(ii) If @ c ∈ R such that x(t) = c1 almost surely, then

E{∥α(t+ 1)∥22|α(t)} < ∥α(t)∥22 . (4.36)

Proof See Appendix C.4.

The above Lemma reveals that the mean square error (MSE) conditioned on

the current state is a strictly decreasing function of time and the strict inequality

becomes equality when the nodes converge to consensus. In the following, we

consider the limiting MSE behavior of the broadcast gossip algorithms.

Proposition 3 The limiting MSE of the broadcast gossip algorithms is upper bounded

by

lim
t→∞

E{∥α(t)∥22} ≤ ∥α(0)∥22
(
1− 1− λ2(W

′)

1− λ2
N−1(W − J)

)
. (4.37)

Proof See Appendix C.5.
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As in the worst-case convergence-rate case, it is of interest to characterize

the effect of the mixing parameter γ on the limiting MSE performance. This is

considered in the following Corollary.

Corollary 6 Let U∞(γ) be the upper-bound on the limiting MSE of the broadcast gos-

sip iterations, given in Proposition 3, as a function of the mixing parameter γ. Then,

the following statements hold:

(i) The boundary cases, i.e., γ → 0 and γ → 1, are given by

lim
γ→0

U∞(γ) = ||α(0)||22 (4.38)

and

lim
γ→1

U∞(γ) = ||α(0)||22
(
1− λN−2(L)

λ1(L)

)
, (4.39)

respectively.

(ii) U∞(γ) is a monotonically decreasing function of γ.

(iii) U∞(γ), for γ = γ∗, is given by

U∞(γ∗) = ||α(0)||22
(
1− C(L)

λN−2(L)

λ1(L)

)
, (4.40)

where

C(L) =
2N − 2λN−1(L)

4N − 2λN−1(L)− λ1(L)
. (4.41)

Proof See Appendix C.6.

The Corollary indicates that the limiting MSE performance of the broadcast

gossip algorithm decreases when γ is increasing. This is due to the fact that

as γ approaches zero, the broadcasting nodes create a local dominance shifting

away from the desired mean a multitude of nodes, whereas, for γ values closer

to unity, the nodes receiving the broadcasted value adjust their own state only

slightly, thereby changing minimally the network mean.
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4.6.2 Communication Cost to Achieve Consensus

Generalizing the analysis done for standard sum preserving gossip–based aver-

aging algorithms, we define the ϵ–converging time in the following.

Definition 3 Given ϵ > 0, the ϵ–converging time is the earliest time at which the

vector x(k) is ϵ close to the normalized initial deviation with probability greater than

1− ϵ:

T (N, ϵ) = sup
x(0)

inf

{
t : Pr

{
∥x(t)− Jx(t)∥2
∥x(0)− Jx(0)∥2

≥ ϵ

}
≤ ϵ

}
(4.42)

where ∥ · ∥2 denotes the l2 norm of its argument.

Before we move on to the main result of this section, we need the following

Lemma giving the order of the eigenvalue of interest.

Lemma 21 For the broadcast gossip algorithm,

1−O

(
log4N

N2

)
≤ λ1

(
E
{
W T (I − J)W

})
≤ 1− Ω

(√
logN

N5/2

)
. (4.43)

Proof See Appendix C.7.

Unfortunately, the upper and lower bounds do not coincide – they differ

(ignoring logarithmic terms) by a
√
N factor. It may be possible to tighten the

upper bound by exploiting the fact that for a communication radius slightly

larger than the threshold the random geometric graph is regular in an order

sense with degree Θ(logN) [16]. However, we do not pursue this here.

Given the convergence rate definition, we have the following rate of conver-

gence to a consensus for the broadcast based average consensus.
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Proposition 4 The ϵ–converging time of the asynchronous broadcast gossip algorithms

is bounded by

Pr

{
∥x(t)− Jx(t)∥2
∥x(0)− Jx(0)∥2

≥ ϵ

}
≤ ϵ (4.44)

where

Ω

(
N2 log ϵ−1

log4N

)
= T (N, ϵ) = O

(
N5/2 log ϵ−1

√
logN

)
. (4.45)

Proof At this stage of development, we just have to put the pieces together.

Given the Definition 3 and the results of [20], using the Markov inequality and

noting that:

0.5 log ϵ−1

log λ−1
1 (E{W (t)T (I − J)W (t)})

≤ T (N, ϵ) ≤ 3 log ϵ−1

log λ−1
1 (E{W (t)T (I − J)W (t)})

.

(4.46)

Now, we have upper and lower bounds on λ1 of the form 1− α, so

Ω

(
log ϵ−1

1/2(1− λ1)

)
= T (N, ϵ) = O

(
log ϵ−1

1− λ1

)
. (4.47)

Substituting the bounds in Lemma 21 yields the result.

Moreover, note that if we set ϵ = 1/Nα in the above equation, then we ob-

tain T (N, 1/Nα) = Ω(N2/ log3 N). Since the number of transmissions per it-

eration is one in the broadcast gossip algorithms, this result matches also the

communication complexity1. One can observe that broadcast gossip algorithms

improve upon randomized gossip algorithms (Θ(N2 logN)), but appears to be

worse than the geographic gossip which has communication complexity in the

order of O(N3/2
√
logN). As we will see very shortly through numerical exam-

ples, broadcast gossip significantly outperforms both algorithms for practical
1Note that larger connectivity radius implies, at the expense of larger broadcasting power,

smaller λ1

(
E
{
WT (I − J)W

})
and, in turn, better convergence rate.
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network sizes. This is interesting, because it illustrate how the constraint of

maintaining the sum of the states constant does come with some performance

penalty as well.

4.6.3 Performance Analysis: Numerical Examples

In the following, as in [33], we compare the number of radio transmissions to

achieve a certain distance from consensus of broadcast gossiping. We choose

γ = 1/2, since this value is the optimal value in terms of convergence speed and

provides a trade-off for the MSE. To simulate the random geometric graph, we

consider nodes that are uniformly distributed over a unit square. Their initial

values are initialized as uniformly distributed random values with unit vari-

ance and zero mean. The connectivity radius is chosen as R =
√

log(N)/N . Of

note is that each iteration requires one, two and the number of hops many radio

transmissions, respectively, for broadcast, standard and geographic gossiping.

The plots show the standard gossip algorithm [20], geographic gossip algo-

rithm [33], and the broadcast gossip algorithm. Figure 4.1 (a–c) depict per-node

variance versus the number of radio transmissions for different network sizes

(each data point is an ensemble average of 25 trials). Recall that the transmis-

sions per iterations of randomized, geographic and broadcast gossip algorithms

are, respectively equal to two, to the number of hops and to one. The simula-

tion results suggest that broadcast gossiping reaches consensus faster than both

competing protocols for an equal communication cost (cost that does not ac-

count for the extra complexity of routing two ways in geographic gossiping

protocol). Indeed, this comparison is not entirely fair since the methods in [20]
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and [33] do meet an extra constraint; the comparison is useful since it high-

lights the non negligible penalty in speed that results from the extra constraint

of maintaing the sum of states constant.

In Fig. 4.2 (a–c), we initialize the node values with zero except one in a single

node following [33]. This is a field where computing the average over the net-

work is a harder task than the one considered before as in the previous case all

the nodes are somewhat closer to the average. However, in this case, the infor-

mation of the node containing the spike value needs to diffuse over the whole

network. The network simulation setup is the same as above. The plot again

illustrate the faster diffusion of consensus in broadcast gossiping compared to

geographic and randomized gossiping protocols.

Next, we consider the MSE performance of the broadcast gossip algorithm

versus the number of iterations and compare them to those of randomized and

geographic gossip algorithms. Recall that the MSE of randomized and geo-

graphic gossip algorithms is zero in the limit, whereas the MSE of the broadcast

algorithm saturates to a non-zero value as the algorithm converges to a con-

sensus. The random geometric graph is simulated exactly as specified for the

previous comparisons.

Figure 4.3 depicts the MSE performance of the randomized, geographic and

broadcast gossip algorithms versus the number of radio transmissions (two, num-

ber of hops many and one per iteration for randomized, geographic and broad-

cast gossip) for N = {500}, respectively. An interesting observation is that,

for a reasonable number of radio transmissions, the MSE performance of the

broadcast gossip algorithm is better than the randomized and geographic algo-

rithms. However, as the number of radio transmissions increase, the random-
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Figure 4.1: Number of radio transmissions required to achieve a given
distance (per node variance) from the consensus for N ∈
{50, 100, 500} with initial node values uniformly distributed.
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Figure 4.2: Number of radio transmissions required to achieve a given
distance (per node variance) from the consensus for N ∈
{50, 100, 500} with initial node values zero except one in a sin-
gle node.
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Figure 4.3: The MSE performance of the randomized, geographic and
broadcast gossip algorithms with respect to the number of ra-
dio transmissions for N = 500 with initial node values uni-
formly distributed.

ized and geographic gossip, outperforms the broadcasting one, as they tend to

zero whereas the performance of the broadcast gossip saturates to a non-zero

value. Of note is that, the cross-over point where the randomized and geo-

graphic gossip starts to outperform the broadcast gossip increases with increas-

ing number of nodes in the network.

These simulations results corroborate the theoretical analysis since they indi-

cate that the MSE strictly decreases as long as consensus is not achieved. They

also show that the faster convergence of broadcast gossip can be exploited to

approximate quickly the desired average. In applications that are severely con-

strained in communication cost broadcast consensus may represent a good prac-

tical alternative to the competing methods that preserve the sum of the states.
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Figure 4.4: The MSE and Variance performances of the broadcast gossip
algorithms with respect to γ for N = 500 with initial node val-
ues uniformly distributed.

In Figure 4.4, we simulate the MSE and the speed of convergence perfor-

mances of the algorithm with respect to the parameter γ for N = 500. Of note

is that the simulation results are normalized by the largest corresponding out-

put. Parallel to our theoretical findings in Corollary 6, the MSE of the algorithm

monotonically decreases with increasing γ. Moreover, as Corollary 3 suggests,

we observe that per-node variance is convex in γ, i.e., the mixing parameter2.

On the other hand, the theory suggests that the optimal mixing parameter γ (al-

though smaller then) is in the neighborhood of 0.5 where the simulation results

indicate that the optimal γ is around 0.3. We note that the theoretical results

correspond to the optimization of an upper bound, therefore the value of the

practical optimal γ may differ from the theoretical one presented here.

2It is of interest to note that similar trade-off between the convergence rate and MSE perfor-
mance (larger (smaller) convergence rate yields a larger (smaller) MSE) is also observed in the
agreement problems with transmission noise case [51].
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4.7 Discussions

In this chapter we used the inherent broadcast nature of the wireless medium

to present a simple “one-way” protocol that has good performance in simula-

tions of networks with a modest number of nodes. The protocol simplifies the

implementation of random gossiping compared to methods that require a pair-

wise node exchange. We presented the conditions on the weights matrices that

would guarantee convergence to a consensus, and showed that the broadcast

gossip algorithm achieves consensus with probability one. Moreover, the ran-

dom consensus value is, in expectation, equal to the average of the initial node

states. Although the network sum is not preserved at each broadcasting time-

slot, we provided theoretical and simulation results on the mean square error

performance in approximating such average. Finally, we presented theoretical

and numerical examples evaluating and comparing the communication cost of

gossiping algorithms required to achieve a given distance to consensus.

Even though the broadcast gossip algorithm shows promise in terms of con-

vergence rate and MSE performance, the appropriate distributed averaging al-

gorithm, e.g., randomized, geographic or broadcast, with the appropriate tuning

parameters, depends ultimately on the application at hand which determines

the relative importance of the implementation simplicity, convergence rate, MSE

performance, or cap on the number of radio transmissions. Networks operat-

ing under adverse conditions may be prone to packet losses, node failures, and

other events that may render pairwise exchange protocols and long-haul rout-

ing infeasible. Our analysis and method becomes particularly useful in these

situations.
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CHAPTER 5

COMPUTING ALONG THE ROUTES WITH GOSSIPING

5.1 Motivation and Related Work

A fundamental problem in networks is the transportation and distribution of

information from one part of the network to another [2, 92, 58, 59]. We focus on

a special network computation problem, where a group of destination nodes is

interested in a function that can be decomposed as a sum of functions of local

variables stored by another set of source-nodes. We refer to this problem as

the Computing Along Routes (CAR) problem. This particular problem has a

wide range of applications including aggregation queries, distributed detection,

content distribution, decentralized traffic monitoring, distributed control and

coordination [107, 65, 76, 92].

We focus on the case where the set of source nodes and the set of destina-

tion nodes are disjoint, and hence our case does not include average consensus

gossiping [92] as a special case. This particular assumption has strong practical

appeal since, in many cases, the nodes which are responsible for collecting the

data and the nodes that are designated to process these data are disjoint and

geographically separated. For instance, in the problem of distributed detection,

only the fusion centers are interested in the outcome of the sensor decisions. In

the case of content distribution, the entity who is interested in the data does not

necessarily have access to any part of it before the distribution occurs. In the

case of the leader-follower coordination problem [49], several nodes are to fol-

low a group of leaders, and the source and destination sets are clearly disjoint.
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One solution to the problem we posed is to unicast between each

pair of source-destination nodes via the shortest path joining source and

destination[32]. After receiving all the information, each destination node can

compute the desired function independently. Except in very special cases, this

strategy is inefficient since the exact same information flows in the network sev-

eral times, and it is unreliable since it is severely affected by link failures. The

second approach is multicasting the information, having a single source node

transmitting at a time to all destinations, thereby allowing the computation of

the sought results independently [29]. Thanks to network coding [2],[35],[57],

multicasting can be done using the links efficiently. However, this decomposi-

tion of the problem is agnostic to the fact that the nodes do not want the data

themselves, but an aggregate result.

In fact, the problem considered in this chapter is closely related to the data

aggregation and routing problems studied in the computer science literature,

where spatially distributed data is to be collected by a fusion center, utilizing

data aggregation and in-network processing techniques [107, 37, 70, 25, 4]. The

similarity is obvious if one observes that solutions to the so called duplicate-

sensitive data aggregation problem (see e.g. [70]) can be generalized to find

codes that solve our problem. Duplicate-sensitive data aggregation refers to the

case where destinations seek a single copy of data from each source. In the case

of a single source and multiple destinations, the duplicate-sensitive aggrega-

tion problem has been studied extensively, proposing energy efficient schemes

based on spanning trees[64, 96], and algorithms that are robust to link/node

failures [70]. In the case of multiple source and multiple destinations, solutions

have been proposed including hierarchical structures and minimizing routes

costs [4, 45, 25]. These methodologies are not viable for solving the CAR prob-
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lem, because one would need to explicitly consider duplicating the data of all

sources at the destinations. Moreover, it falls short of explaining the relationship

between type of topologies and the feasible queries and it does not incorporate

feedback.

Observing the fact that the problem has two parts, i.e., the computation of

the function and the routing of the information required, we are proposing a

joint strategy where the computation of the desired function is achieved along

the routes via gossiping. Our approach incorporates feedback since gossiping

based protocols are iterative, thus nodes continuously exchange their values

and create a feedback effect. We focus on separable functions, i.e., function

whose synopsis can be written as
∑

i fi(xi), where the index i is over the set

of nodes. Without loss of generality, we will consider the scenarios where the

function of interest is simply the average, since any other separable function can

be calculated by initializing the source nodes’ values with states fi(xi).

As said above (see also Section 5.6), there are algorithms that result in par-

tially directed solutions for the CAR problem. However, one of the main inter-

ests of this chapter is exploring the value of feedback.

Feedback is the trademark of Average Consensus Gossiping (ACG) protocols,

which are considered attractive in wireless sensor applications because the com-

munications among nodes are limited to their immediate neighbors, they are

easily mapped into stationary asynchronous policies, while the network topol-

ogy can be dynamically switching. In ACG protocols each node in the network

is both a source and a destination [92],[8],[100],[17]. An ACG protocol can di-

rectly be applied to our problem: in fact, non-source nodes could set their initial

values to zero, and via ACG the network would converge to a fraction of the
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average of the source nodes. When the destination nodes know the number of

source nodes and also the network size, the true average can be calculated by

rescaling the ACG result. However, this approach has two main drawbacks: 1)

Since the desired information has to be distributed to the whole network, the

convergence will be slower, 2) Every node will have access to the average at the

end of the algorithm, and this is a major weakness since it does not preserve

secrecy.

We note that a setup resembling more to our problem is considered in [55],

where the authors have applied the gossiping algorithm to solve a sensor local-

ization problem, assuming that each node in the network wants to compute a

linear combination of the anchor (source) nodes, to determine their exact loca-

tions. Unfortunately, this analysis can not be utilized to solve our problem since

all of the non-source nodes are destinations, and destination nodes are not nec-

essarily interested in the same function of the source nodes. A significant work

is also due to Mosk-Aoyama et.al. who have considered distributed computa-

tion of separable functions as well as information dissemination on arbitrary

networks [68, 69]. Morever, Benezit et.al. have studied average consensus prob-

lem via randomized path averaging to achieve increased convergence rates [17].

However, our problem differs from these models in the sense that source and

destination sets are disjoint, and there may exist intermediate nodes which are

neither sources nor destinations.

In summary, we are proposing a gossiping based algorithm for jointly rout-

ing and calculating the desired function at the destinations. The innovative as-

pect of this procedure is that it incorporates feedback, unlike similar problems

that consider a unidirectional flow of data. On the other hand, it does not nec-
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essarily distribute the desired value to the whole network which makes our

scheme more secure and flexible.

5.1.1 Chapter Organization

We formulate our problem in Section 5.2. In Section 5.3, we introduce necessary

and sufficient conditions for the existence of solutions to the prosed problem.

In Section 5.4.1, we investigate spectral properties of feasible codes and show

what classes of code structures leads to feasible solutions. In Section 5.4.2, we

introduce reductions of the network topology which can be employed to sim-

plify the design problem without loss of generality. By focusing on stochastic

codes, we provide necessary conditions on the topology for the feasibility and

discuss some infeasible cases in Section 5.5. We introduce a formulation for so

called partially directed solution in Section 5.6, and discuss the complexity and

communication cost of the algorithm in Section 5.7. We compare the perfor-

mance of our solution with the existing solutions in Section 5.8, and provide a

simple extension to the asynchronous update scheme in Section 5.9. Finally, we

conclude our chapter in Section 5.10.

5.2 Problem Formulation

In this chapter, we consider a connected network (N,E) with N nodes and the

corresponding edge set E which consists of ordered node pairs (i, j). Given the

edge (i, j), i is the tail and j is the head of the edge. We define the neighbor set

of node i as Ni , {j ∈ {1, 2, . . . , N} : (j, i) ∈ E}.
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We consider the following problem setup: Each node in the network has

an initial scalar measurement denoted by xi(0) ∈ R where i ∈ {1, . . . , N}. Let

S , {1, 2, . . . , N}. There is a set of nodes (destination nodes), denoted as SD ⊆ S,

which are interested in the average of a set of nodes (source nodes), denoted as

SS ⊆ S. We note that SS ∩ SD = ∅, i.e., a source node cannot be a destina-

tion node. We restrict our attention to a synchronous gossiping protocol, with

constant update weights:

xi(t+ 1) = Wiixi(t) +
∑
j∈Ni

Wijxj(t), i ∈ S, (5.1)

where t is the discrete time index, Wij is the link weight corresponding to the

edge (j, i). We note that if j ̸∈ Ni, then Wij = 0. At each discrete time instant,

each node updates its value as a linear combination of its own value and its

neighbors values. This type of analysis is usually the first step to investigate

more flexible asynchronous solutions [20]. If we define an N×N matrix W such

that [W ]ij = Wij and x(t) = [x1(t), x2(t), . . . , xN(t)]
T , then (5.1) can be written in

the matrix form as:

x(t+ 1) = Wx(t) = W t+1x(0). (5.2)

Parallel to the network coding literature, we refer to the matrix W as the code

that we are interested in designing. The equation above implies that:

lim
t→∞

x(t) = lim
t→∞

W tx(0) = W∞x(0)

where W∞ , limt→∞W t (assuming that limt→∞W t exists). One way to solve our

problem is assigning zeros as initial state values for non-source nodes, and run-

ning an average consensus algorithm on the network. The consensus value will

be a rescaled version of the source nodes’ average; thus, to determine the de-

sired function, the destination nodes have to multiply the consensus value by a
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scaling factor. For this approach, any code W that solves the average consensus

can be employed [88, 20, 100, 11]. This approach has two major disadvantages:

First, since the whole network has to converge to a consensus, the converge will

be slow which will require more resources, i.e., energy, time (c.f. Section 5.8).

Second, at the end of the algorithm, every node will have access to the average,

and this is a major weakness in the case of secret communications.

The approach which we pursue here is to design a W that produces the de-

sired computation irrespective of what x(0) is, and distributes the value to the

destinations only. Since, we are only interested in calculating the average of the

nodes values in SS at all j ∈ SD, we have the following inherent constraints on

W∞:

W∞
jk =

 |SS|−1 k ∈ SS

0 k ̸∈ SS

, ∀j ∈ SD. (5.3)

In other words, the entries of the limiting weight matrix should be chosen such

that destination nodes multiply source nodes’ values by |SS|−1 (for averaging),

and multiply non-source nodes’ values by 0. Therefore, the rows of W∞ corre-

sponding to destination nodes should have |SS|−1 for the source node columns,

and 0 otherwise.

Let us denote the structure above, imposed by sets SD and SS , as F (SD,SS),

and as F (E), the structure imposed by the network connectivity, i.e., Wij = 0 if

(i, j) ̸∈ E. We denote a code W , which satisfies (5.3), as an Average Value Transfer

(AVT) solution to the problem of computing along routes (CAR). The following

definitions are in order:

Definition 4 A code W is a feasible AVT solution for CAR on a given network (N,E)

and source-destination sets (SD,SS), if and only if W ∈ F (E) and W∞ ∈ F (SD,SS)
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with W∞ < ∞.

Definition 5 CAR is AVT infeasible, if there does not exist any AVT solution.

We note that < denotes elementwise strict inequality. In the rest of the chapter,

unless stated otherwise, we will omit the word AVT and refer to Definition 4

as the solution and 5 as the feasibility condition. Therefore, our (in)feasibility

definition considers only AVT solutions.

In the rest of the chapter, we limit ourselves to codes in the set of nonnegative

matrices, i.e., W ≥ 0 and ≥ represents elementwise inequality, in analogy with

the ACG policies [20]. In the following section, we will introduce necessary and

sufficient conditions for a W matrix to be an AVT solution for the CAR problem.

5.3 Necessary and Sufficient Conditions on Feasible Codes

In the following, we first give necessary conditions on feasible W and W∞ in

addition to the structure given in (5.3). We will then use the resulting equations

to introduce necessary and sufficient feasibility conditions.

We first partition N sensors in the network into three disjoint classes: M

sensors that belong to the source nodes set, K sensors that belong to the desti-

nation nodes set, and L sensors that belong to neither source nodes nor destina-

tion nodes (called intermediate nodes). In other words, |SS| = M , |SD| = K and

L = N−M−K where |.| denotes the cardinality of the set which is its argument.

Without loss of generality, we index the set of source nodes as {1, . . . ,M}, the

set of destination nodes as {M + 1, . . . ,M +K}, and the set intermediate nodes
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as {M +K + 1, . . . , N}. At this point, we can partition the N ×N matrix W as:

W =


A D G

B E H

C F P

 (5.4)

such that A ∈ RM×M , E ∈ RK×K and P ∈ RL×L. Assuming that limt→∞W t

exists, we denote this limit as W∞ and its partitions using the superscript ′, i.e.,

A′, D′, G′, etc. Since the set SD is only interested in the average of the set SS , then

B′ = 1/|SS|11T and E ′ = H ′ = 0 by (5.3). We note that 1 is the all ones vector

of the appropriate dimensions. This inherent structure results in the following

necessary constraints on W and W ′:

Lemma 22 Given a network F (E) and the sets SS and SD, if W ≥ 0 is a feasible

solution to CAR, then:

(1) D′ = G′ = 0,

(2) D = G = 0,

(3) 1TA = 1T .

Proof The proof of the lemma is given in Appendix D.1.

Lemma 22 shows that the information flow between the sources and the rest

of the network must be one-way, i.e., from the sources to the network. Such a

finding is not surprising since the network is only interested in the average of

the source nodes, and the average will be biased if the sources mix their state

values with values from the non-source nodes, whose initial states are arbitrary.

Lemma 22 also shows that the row sums of the matrix A are all equal to 1. Since
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the matrix A governs the communication among the source nodes, the sum of

the source values must remain constant through the iterations. This result is also

intuitive since, otherwise, the average of the source nodes would change and W

would not be a solution for the problem. The fact that the flow from the source

nodes to the rest of the network is directional, has important consequences on

what designs are feasible, as we will see next.

In light of Lemma 22, we will focus on the network codes which have the

structure:

W =


A 0 0

B E H

C G P

 .

At this point, for mathematical brevity, we repartition the W matrix in four

super-blocks recycling the previous symbols as follows:

W =

 A 0

B D

 where B =

 B

C

 , D =

 E H

G P

 . (5.5)

Of note is that, the new B ∈ RN−M×M and D ∈ RN−M×N−M . Similarly, we can

partition the state vector x(t):

s(t) = [x1(t), . . . , xM(t)]T , r(t) = [xM+1(t), . . . , xN(t)]
T .

We note that s(t) represents the evolution of the source states while r(t) repre-

sents the behavior of the rest of the network including the destination nodes.

Similarly, the matrix A governs the communication among the source nodes,

and the matrix D determines the communication structure among the rest of

nodes. B instead governs the flow from the sources to the rest of the network.
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We expand the general form of the update in (5.1) using (5.5) as:

s(t+ 1) = As(t),

r(t+ 1) = Bs(t) +Dr(t).

The equations above can be rewritten in terms of the initial conditions as:

s(t+ 1) = At+1s(0),

r(t+ 1) = Dt+1r(0) +
t∑

l=0

Dt−lBAls(0).

The linear system of equations in a compact form is:

x(t+ 1) =

 s(t+ 1)

r(t+ 1)

 = W t+1x(0) =

 At+1 0∑t
l=0 D

t−lBAl Dt+1


 s(0)

r(0)

 .

(5.6)

At this point, we can state the main theorem of the chapter which introduces

the necessary and sufficient conditions on the feasible network codes W ≥ 0:

Theorem 3 Given a network F (E) and the sets SS and SD, a W ≥ 0 matrix of the

form (5.5) is an AVT solution to the CAR problem if and only if:

(1) W is in the form of:

W =

 A 0

B D

 , (5.7)

where A ∈ RM×M , D ∈ RN−M×N−M and M = |SS|,

(2) limt→∞W t exists and is finite,

(3) limt→∞ [Dt+1]1:K = 0,

(4) limt→∞
[∑t

l=0 D
t−lBAl

]
1:K

= 1
M
11T ,
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where [.]1:K denotes the first K rows of its argument, and K = |SD|.

Proof While sufficiency follows from (5.6) and the problem definition given

in Section 5.2, these conditions are necessary because of Lemma 22 and equa-

tion (5.6).

In the following, we show that one can simplify the fourth constraint in The-

orem 3 by exchanging the powers of A with its limit, i.e., the evolution of the

source states does not affect the feasibility of the solution.

Lemma 23 Assuming that conditions (1)− (3) in Theorem 3 hold, then condition (4)

holds if and only if

lim
t→∞

[
t∑

l=0

Dt−lBA∞

]
1:K

=
1

M
11T , (5.8)

where A∞ = limt→∞At.

Proof The proof is given in Appendix D.2.

Lemma 23 shows that if there exists a limiting matrix A∞ which satisfies the

constraint in (5.8), then any A matrix such that limt→∞At = A∞, satisfies the

fourth constraint in Theorem 3. Therefore, given the underlying connectivity,

one can assume that A has already converged to its limit A∞, and then seek a

solution for partitions B and D. Unfortunately, even under this simplification,

designing a feasible W is difficult, since the fourth constraint in Theorem 3 is

non-convex with respect to the elements of the partitions D, B and A∞, and

also consists of all non-negative powers of D. Moreover, it is not clear from

Theorem 3 what kind of topologies do or do not have solutions for the CAR

problem we posed.
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In the following sections, we will both try to simplify the design of an

AVT code and determine topologies where the CAR problem is known to be

(in)feasible.

5.4 Spectral Analysis and Topology Reductions

5.4.1 Spectral Analysis of Feasible Codes

We start our discussion by introducing some necessary definitions. Motivated

by the theory of Markov Chains, we say that node i has access to node j, if for

some integer t, W t
ij > 0. Two nodes i and j, which have access to the other,

are said to be communicating. Since communication is an equivalence relation,

the set of nodes which communicate forms a class. A class which consists of

only source nodes is called a source class. In the following, we also introduce the

graph theoretic definition of a source class.

Definition 6 A set of source nodes forms a source class if and only if the sub-graph

consisting of these source nodes only is irreducible, and including any other source

nodes results in a reducible sub-graph.

We note that two definitions are equivalent. At this point, we are ready to intro-

duce our first condition on the rank of W∞.

Lemma 24 Given a feasible W which satisfies Theorem 3, the following holds true:

# of source classes ≤ rank(W∞) ≤ # of classes.

Proof The proof is given in Appendix D.3.
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Let’s denote rank(W∞) as rW∞ and U as the set of linearly independent columns

of W∞, implying that |U| = rW∞ . If we denote elements of U as ui, 1 ≤ i ≤ rW∞ ,

then W,W∞ satisfy:

Wui = W∞ui = ui, ∀ i ∈ {1, . . . , rW∞} . (5.9)

In other words, the linearly independent columns of the limiting matrix are the

dominant eigenvectors of W matrix, i.e., the eigenvectors corresponding to the

eigenvalue one. Therefore, understanding the column structure of the limiting

matrix is crucial to determine the spectral properties of a feasible W and vice

versa.

We first note that each source class SC will be represented by a single domi-

nant eigenvector ui in U , which is equal to [W∞]i ∀i ∈ SC, where [.]i denotes the

i-th column of its argument. We note that W∞
ki is the weight of node i at node

k, in the limit. For a given source node i, if W∞
ki > 0, then node k has access

to the weighted value of node i. It is clear that if k is a destination node, then

W∞
ki = 1/M , where M is the number of source nodes. The argument follows

from Theorem 3, since W is feasible.

Let’s assume that rW∞ is strictly greater than the number of source classes.

Therefore, there exists at least one class C which is not a source class and

ρ(WC) = 1, where WC is the sub-matrix of rows and columns of W that cor-

respond to the set C. If this is the case, the columns of W∞ corresponding to

the elements of the class must have some non-zero values. Thus, there exists

at least one i ∈ C, where W∞
ki > 0 ∀k ∈ C. In other words, some of the nodes

in the network will have access to the weighted values of the nodes in class C

in the limit. However, these nodes cannot be utilized in calculating the average

of the source nodes at the destinations. In other words, if there exists a node
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k which has access to a non-source class C in the limit, the destination nodes

cannot have access to the node k in limit, since otherwise the third condition in

Theorem 3 would not hold. We will summarize result of the discussion above

by the following remark:

Remark 12 For a feasible code W and a non-source class C, if ρ(WC) = 1, then re-

moving class C from the network does not change the feasibility of the AVT algorithm.

Another way to interpret this condition is the following: If an AVT solution

exists for a given scenario, then there exists at least one feasible solution un-

der the extra constraint that there is no non-source class whose corresponding

sub-matrix has spectral radius one. In other words, one can pose the extra con-

straint that all of the non-source classes have sub-matrices with spectral radii

strictly less than 1, and such constraint does not change the feasibility of the

problem. We also note that since sub-matrices corresponding to the non-source

classes are also sub-matrices of the partition D of W (since D governs com-

munications among non-source nodes), the eigenvalues of non-source classes

are also the eigenvalues of D. Therefore, the extra constraint that we posed on

non-source classes is equivalent to ρ(D) < 1. At this point, we would like to

discuss the physical significance of ρ(D) < 1. We first note that ρ(D) < 1 im-

plies limt→∞Dt = 0. Moreover, as we have mentioned above, the partition D

governs the communication among non-source nodes. Therefore, in this partic-

ular case, non-source nodes will have zero information about themselves in the

limit. Such a result is not surprising since none of these nodes are interested

in the values of non-source nodes. On the contrary, a subset of these nodes

(destination nodes) are interested in the average of the source nodes, while the

intermediate nodes do not aim at receiving anything at all. We summarize our
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result in the following lemma:

Lemma 25 There exists a feasible code W which satisfies Theorem 3 if and only if there

exists a W ⋆ which satisfies both Theorem 3 and ρ(D) < 1.

While adding one more constraint to Theorem 3 may seem like increasing the

complexity of an already difficult problem, we observe the following: A feasible

W has to satisfy rW∞ linear equations of the form (5.9). Moreover, ρ(D) < 1 im-

plies that the rank of W∞ will be equal to its lower bound given in Lemma 24.

This, in return, implicitly shows that a feasible code W has to satisfy fewer

equality constraints.

Moreover, since ρ(D) < 1, limt→∞Dt = 0, thus the third condition in Theo-

rem 3 is automatically satisfied. The condition in Lemma 23 becomes:[
lim
t→∞

t∑
l=0

Dt−lBA∞

]
1:K

=
[
[I −D]−1BA∞]

1:K
=

1

M
11T ,

where I is the identity matrix with appropriate dimensions. Therefore, the

fourth condition in Theorem 3 is also simplified.

At this point, we will introduce our last condition on the number of source

classes in the network:

Lemma 26 Consider a CAR problem with the sets SS,SD, a network F (E), and a code

W with ρ(D) < 1. If W is a feasible solution, then the following must hold:

# of source classes ≤ 1 +N −K − rank(B).

Proof The proof is given in Appendix D.4.

We note that K is the number of destination nodes and the matrix partition B

governs the communication between source nodes and the rest of the network.

118



S1 S2

D1 D2

Figure 5.1: An infeasible scenario with two sources and two destinations.

Lemma 26 shows that if a network code W is feasible, then the number of source

classes and the rank of the partition B have to balance out each other, i.e., their

sum has to be less than or equal to 1 + N − K. Therefore, network topologies

which do not satisfy Lemma 26 will be infeasible. In the following, we will

illustrate our point with an example. Fig. 5.1 shows a network with two sources

and two destinations. Each source node forms a source class by itself, therefore

there are two source classes in the network. By Lemma 26, the partition B of W

has to satisfy: rank(B) ≤ 1. But, the rank of B can be set to one if and only if

one of the two links going from the sources to the destinations is removed. This

is not possible since one of the sources will be unconnected to the destinations.

Therefore, there does not exists any feasible AVT code for this network.

In the following sections, we will propose several claims under the assump-

tion that ρ(D) < 1. In light of Lemma 25, such statements do not change the

generality of the claims, since our assumptions do not change feasibility of AVT

codes for a given problem.
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S1 S2 S1 S2

Network 1 Network 2

Figure 5.2: Two networks corresponding to the same underlying connec-
tivity but two different network codes, W1 and W2.

5.4.2 Reduction of Topology to Study Feasibility

In this section, we will introduce methods to perform topology reduction, while

leaving the feasibility of AVT codes unchanged, by utilizing our discussions

in Sections 5.3 and 5.4.1. In return, we will simplify our design problem and

develop tools with which we can determine, by inspection, the topologies for

which AVT codes are (in)feasible.

In Definition 6, we have given the definition of source class for a given code

W . However, for a given network F (E) and source set SS , source classes are not

unique, i.e., one may change the structure of the source classes by changing the

entries of W . An example is given in Fig. 5.2. Both networks have the same un-

derlying connectivity F (E). The first network is induced by a W which assigns

non-zero weights to the links between source nodes. Thus, two source nodes

form a single source class. On the other hand, the second network corresponds

to a W which assigns zero weights to the links between source nodes. Since

these nodes cannot communicate, each forms a source class by itself.
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In Section 5.4.1, we have also argued that the rank of W∞ is closely related

with the complexity of the problem and, under ρ(D) < 1, the rank is equal

to the number of source classes in the network. Then, one can also argue that

for CAR, one should cluster source nodes as much as possible, thus reduce the

complexity of the problem. The definition of the minimal source class follows:

Definition 7 For a given network and source set, the minimal source class is such that

the total number of source classes is minimized.

This is the case where all of the existing links between source nodes are assigned

non-zero weights. The number of source classes in the minimal class can be

obtained by removing all but the source nodes from the network F (E), and

counting the irreducible sub-graphs that remain.

Next, we will prove that focusing on the minimal class does not change the

feasibility of the problem, hence we will conclude that, combined with the de-

sign advantages given above, one can focus on minimal source class codes.

Lemma 27 Consider a problem F (SS,SD) and a network F (E). If the problem is

feasible, then there exists at least one solution W which utilizes the minimum source

class.

Proof The proof is given in Appendix D.5.

The key point of the proof is that activating links among sources without chang-

ing an existing solution does not affect the feasibility of AVT codes. From

Lemma 27, the first topology reduction is in order:

Reduction 1 Use the minimal source class and utilize average consensus algorithm

within each class.
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We note that utilizing average consensus algorithm within each class does not

affect the feasibility of our problem. Such an observation follows from the fact

that for a given feasible W , source node i must have equal information about

the source nodes in its class, i.e., W∞
ij = αi, ∀j ∈ SC⋆ , where SC⋆ is the class

to which node i belongs. This observation is due to Lemma 22 and since each

source class converges to a rank one matrix (c.f. Appendix D.3). Therefore one

can construct a feasible W ⋆ where each class utilizes an average consensus algo-

rithm, by employing an ACG algorithm among the sources and rescaling some

of the entries of the partition B of W matrix, keeping the partition D unchanged.

As a result of this reduction, each node in a given source class converges to

the average of the initial source nodes in that particular class.

Reduction 2 Treat each source class as a single node whose value is equal to the average

of the source nodes in that particular class. Connect all non-source nodes, which are

adjacent to the source nodes in the class, to this single node.

We note that the second reduction does not change the feasibility of the AVT

code due to Lemma 23.

Reductions 1-2 combined with ρ(D) < 1 simplify our design problem signif-

icantly, with respect to the conditions given in Theorem 3, without changing the

feasibility of the problem.

5.5 A Necessary Condition On the Topology

In this section, we focus on AVT codes which satisfies W1 = 1 as well as The-

orem 3. Since such condition combined with non-negativity, implies that W is
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a stochastic matrix, we will refer these codes as stochastic codes. In return, we

will provide a non-algebraic necessary condition for the existence of a feasible

solution, which is easy to interpret. At the end of the section, we will discuss

topologies which are known to have no feasible solutions.

Before introducing the main result of the section, we would like to empha-

size the close relationship between stochastic AVT codes and non-homogenous

random walks on graphs with absorbing states. A stochastic AVT code W rep-

resents the transition matrix of a Markov Chain M whose state space consists of

the nodes in the network (N,E). The structure of the chain (locations of possi-

ble non-zero transition probabilities) is defined by the underlying connectivity

F (E), i.e., Wij is the probability of jumping from state i to state j in a single

step. Moreover, due to the structure of W in (5.7), each source class forms an

absorbing class by itself. For a given non-source node i and a source class SC⋆ ,

the quantity
∑

j∈SC⋆
W∞

ij will be equal to the probability that the chain is ab-

sorbed by the source class SC⋆ given the fact that M has been initialized at node

i [5]. Moreover, for a given source node i ∈ SC⋆ , the quantity W∞
ij /
∑

j∈SC⋆
W∞

ij

is the frequency that the chain visits node i given the fact that M has been ini-

tialized at node j and it has been absorbed by the source class SC⋆ [5]. Given the

discussion above, we conclude the following:

Remark 13 Constructing a stochastic AVT code is equivalent to designing a transition

probability matrix W for a Markov chain {M(t)}∞t=0 on graph (N,E) with state space

S, where each source class forms an absorbing class. Moreover, for each destination node

j ∈ SD and each source class SC⋆ , absorbtion probabilities should be chosen such that:

P (M(∞) ∈ SC⋆ |M(0) = j) =
|SC⋆|
M

,
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where P (.) the probability of its argument. Moreover, for each source node k ∈ SC⋆ ,

P (M(∞) ∈ k| (M(∞) ∈ SC⋆|M(0) = j)) =
1

|SC⋆ |
,

where M ∈ k denotes the event that M is in the state k in the limit, i.e, t → ∞.

Unfortunately, the formulation given above does not simplify our design prob-

lem, since constructing transition probability matrices for complex chains with

given stationary distributions is an open problem in the literature. However,

we believe that pointing out the equivalence relation is necessary as it brings a

different perspective to the AVT problem. Moreover, we will make use of the

equivalence in the proof of the following lemma:

Lemma 28 Consider a network F (E) and the sets SS and SD. Partition the network

into two disjoint sets (P, P c) such that there exists at least one source class-destination

pair in both sides of the network. For a given partition, we denote the links going from

one set to the other set as cut edges, i.e, an edge (i, j) is a cut edge if i ∈ P and j ∈ P c,

or j ∈ P and i ∈ P c. If there exists a feasible stochastic code, then there exits at least

two (cut) edges between P and P c for all such partitions.

Proof Proof of the lemma is given in Appendix D.6.

Unlike the results we have proposed in the previous sections, Lemma 28 gives

us a topology based method to detect infeasible cases. We note that the condi-

tion given in the lemma has to be satisfied by a network where stochastic AVT

codes are feasible, besides the connectivity constraint that we imposed. There-

fore, one can conclude that the connectivity assumption is not sufficient for the

existence of a solution under stochastic codes. At this point, we remind our
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S1 D1 S2D2

Figure 5.3: Line network topology. S and D denotes source nodes and
destinations nodes respectively.

readers that the connectivity assumption is a sufficient condition for the exis-

tence of an ACG solution [92]. Thus, we conclude that demands on stochastic

AVT codes are stricter than the ones for the consensus problems.

We would like to note that, as stated in the hypothesis, the conditions in

Lemma 28 is valid for the cases where there are at least two source classes in the

network. For the scenarios where there is only one source class, Lemma 28 is

not valid.

In the following, we will give examples of infeasible network topologies for

CAR under stochastic AVT codes. We will be considering nontrivial CAR in-

stances with more than one source and destination nodes.

(1) Line network topology: A line network topology is given in Fig. 5.3. The

vertical line shows a cut where both partitions have one source-destination

pair. By Lemma 28, such a network does not have a solution for CAR, since

the cut shown in the figure has a single cut edge.

(2) Mesh network topology with a bottleneck link: The network is shown in

Fig. 5.4. It does not have a solution, since there is a single cut edge for the

given partition.
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S1

D1

S2

D2

Figure 5.4: Mesh network topology. S and D denotes source nodes and
destinations nodes respectively.

5.6 Construction of partially directed AVT solutions

As we have discussed in the preceding sections, it is difficult to construct fea-

sible AVT codes due to the non-linearity of the constraints in Theorem 3. For

this reason, we have proposed several simplifications, which do not affect the

feasibility of an AVT code in Sections 5.4.1 and 5.4.2. While these simplifications

are valuable in determining whether AVT codes are feasible or infeasible, they

did not lead to a constructive way for designing AVT solutions.

In the following, we will formulate an integer programming problem whose

solution will be utilized to construct so called partially directed AVT solutions.

These solutions belong to a subset of the AVT solutions given in Theorem 3. We

first introduce the definition of a partially directed AVT solution:

Definition 8 Consider a network F (E) and the sets SS and SD. A code W is a par-

tially directed AVT solution, if it satisfies Theorem 3 and each link on the network,

except the links among the source nodes, can be utilized only in one direction, i.e.,

WijWji = 0, ∀ i, j ̸∈ SS .
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It should be clear from Definition 8 why these codes are called partially directed

solutions, i.e., communication is directed only among the non-source nodes. Be-

fore proposing our construction, we will introduce some necessary definitions.

Since the communications among source nodes are bidirectional, we can em-

ploy Reduction 2 in Section 5.4.2 and assume that each source class has already

converged to the average value of its members. We enumerate the source classes

(arbitrarily ordered) and we define the set of source classes as SC . We also de-

fine E ′ ⊂ E which contains all edges except the edges among the source nodes.

For any given U ⊂ N , we define a set of edges E(U) = {(i, j) ∈ E ′|i, j ∈ U}. In

other words, E(U) is the set of edges whose end points belong to the set U .

In the following lemma, we introduce our method to construct partially di-

rected AVT codes:

Lemma 29 Consider a network F (E) and the sets SS and SD. For k ∈ SC and l ∈ SD,

we define a variable bkli as:

bkli =


1, if i = k,

−1, if i = l,

0, otherwise.

Consider the following integer programming formulation:

miminize max
k∈SC ,l∈SD

∑
(i,j)∈E′

zklij , (5.10)

subject to
∑

j|(i,j)∈E′

zklij −
∑

j|(j,i)∈E′

zklji = bkli i ∈ {SC ∪ {M + 1, . . . , N}} , k ∈ SC , l ∈ SD,

(5.11)

zklij ≤ uij, (i, j) ∈ E ′, k ∈ SC , l ∈ SD, (5.12)

uij + uji ≤ 1, (i, j) ∈ E ′, (5.13)
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∑
(i,j)∈E(U)

uij ≤ |U | − 1, U ⊂ N,U ̸= ∅, (5.14)

zklij ∈ {0, 1}, (i, j) ∈ E ′, k ∈ SC , l ∈ SD. (5.15)

If the integer program given above has a solution, namely, z⋆klij , (i, j) ∈ E ′, k ∈ SC , l ∈

SD, we define ykij as follows:

ykij =

 1, if
∑

l∈SD
z⋆klij ≥ 1,

0, otherwise.

Then, a feasible partially directed AVT code can be constructed as follows:

Wji =



∑
k∈SC

|SC(k)|ykij∑
l∈Nj

∑
k∈SC

|SC(k)|yklj
, if

∑
l∈Nj

∑
k∈SC

|SC(k)|yklj ̸= 0 and (i, j) ∈ E ′,

1
|Nj |+1

, if i, j ∈ SS and i ∈ Nj, or j ∈ SS and i = j,

0, otherwise,

(5.16)

where SCk
is the set of nodes which belongs to the k-th source class.

Proof The proof is given in Appendix D.7.

The integer programming formulation given in the lemma is a directed multi-

commodity flow problem with acyclicity constraint [18]. In particular, one can

map the variable bkli to the net inflow at node i of data with origin k and desti-

nation l. The value of the net inflow is positive at the sources, negative at the

destinations, and zero otherwise. The variable zklij indicates the amount of infor-

mation with origin k and destination l that flows through link (i, j). ykij is equal

to one if there exists at least one flow on (i, j) that is originated from source class

k.

We note that the constraint given in (5.11) guarantees the flow is preserved at

each node, i.e., the total inflow to a given node is equal to the total outflow from
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this node. Moreover, uij is a binary variable and equal to one if there exists at

least one flow which utilizes the link (i, j) (5.12). Otherwise, it is equal to zero.

Hence, (5.13) is the one-way flow constraint. Finally, (5.14) guarantees the flows

are acyclic. The objective function of the problem is the maximum of number of

paths between all source-destination pairs, thus the problem is minimizing the

convergence time of the directed part of the algorithm.

An example is given in Fig. 5.5. There are 4 source nodes with 3 source

classes and 2 destination nodes. In Fig. 5.5(a), red, blue and green arrows repre-

sent flows from source classes to the destination nodes. The corresponding link

weights are shown in Fig. 5.5(b). We note that the weight of the link connecting

the flows from nodes 1 and 2 to the central hub is twice as much as the link

weights of the other flows. This is because the number of source nodes in that

particular flow is twice as much as the size of nodes in other flows.

We would like to conclude the section with the following observation: Ex-

istence of a partially directed AVT solution is a sufficient condition for the ex-

istence of an AVT solution, since partially directed AVT solutions also satisfy

Theorem 3. On the other hand, the reverse argument may not always be true,

i.e., existence of an AVT solution does not imply the existence of a partially di-

rected AVT solution. Remarkably, we were not able to find a counter example;

we conjecture that the condition is both necessary and sufficient.

We also note that directed solutions are less robust to link/node failures

while undirected solutions are more robust due to the presence of feedback. For

instance, if a link on the path between a source-destination pair fails in a par-

tially directed solution, the destination node will receive no information about

that particular source . In the case of undirected solution, instead destination
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(a) Optimal flows.

S2 S3

D1 D2

S4

S1

(b) Corresponding link weights.

Figure 5.5: A directed solution. S and D represents source and destination
nodes respectively.
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nodes may not converge to the desired average, but still have partial informa-

tion about the source.

5.7 Complexity and Communication cost of AVT codes

In this section, we will first briefly discuss the complexity of constructing AVT

codes. We, then, analyze the communication cost (number of message ex-

changes) of AVT codes on random geometric graphs.

5.7.1 Complexity

The problem formulation given in Theorem 3 is non-convex, thus closed form

solutions do not exists in general. On the other hand, existing numerical meth-

ods for systems of nonlinear equations can be utilized to determine feasible

solutions for a given problem [31]. We note that, while these methods per-

form fairly well in practice, convergence to a true solution is not guaranteed

(because of possible singular Jacobians through the iterations, a wrong initial-

ization point, etc). On the other hand, the partially directed AVT solution is an

integer programming formulation, thus is guaranteed to converge to a feasible

point (if such point exists). However, the formulation is NP complete in most

cases [18], thus convergence to a feasible solution can be very slow. Since both

numerical methods for nonlinear systems and the multicommodity formulation

are fundamental questions in their own domains, they are out of the scope of

this study.
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5.7.2 Communication cost

In the case of undirected AVT codes, convergence rates and communication

costs for the CAR problem are difficult to characterize. For this reason, we focus

on the partially directed codes and derive corresponding communication cost.

We remind that the partial AVT solutions has two time scales in terms of con-

vergence: 1) The time it takes for each source class converge to the average, 2)

The finite time that it takes for the directed flow from sources to destination to

converge.

A 2-D geometric random graph G2(N, r) consists of N nodes which are uni-

formly distributed on a unit torus, and two nodes i and j are said to be con-

nected when d(i, j) ≤ r, where d(., .) denotes the Euclidean distance of its argu-

ments. 2-D random geometric graphs are of particular interest since they have

been widely used as simplified models for wireless network topologies and fo-

cusing on these graphs makes it possible to compare our algorithm with regular

average consensus algorithms in terms of communication cost [42, 19].

For r = w1(
√

log(N)/N), it has been shown that the graph is connected with

high probability2(w.h.p.)[42], thus we focus on this regime. Moreover, in that

particular regime, the underlying graph is regular with w.h.p., i.e., each node

has Θ(Nr2) neighbors[19, 17]. Therefore, the diameter of the underlying net-

work, i.e., the longest shortest path, can be bounded as Θ(r−2).

We will assume that each source class utilizes the average consensus protocol

with constant edge weights[92]. For a given random graph with N nodes and

1w(.) denotes asymptotic dominatination, Θ(.) denotes asymptotic lower and upper bound
and, O(.) denotes asymptotic upper bound, where the asymptotics are with respect to N .

2with probability at least 1− 1/N2
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radius r = w(
√

log(N)/N), the communication cost of the average consensus

protocol is Θ(N r−2)[19, 92]. In that particular setting, the communication cost

is NTc, where Tc is the convergence time of the algorithm and it is defined as:

Tc = −

(
log sup

x(0) ̸=x̄

lim
t→∞

(
||x(t)− x̄||2
||x(0)− x̄||2

))−1

,

where x̄ = 1
N

∑N
i=1 xi(0). In words, the convergence time Tc gives the (asymp-

totic) number of steps for the error to decrease by the factor 1/e, and NTc is the

total number of message exchanges required for that to happen.

Similarly, for a given CAR problem with source set SS , and corresponding

source classes SC =
{
SSC1 ,SSC2 , . . . ,S|SC|

}
, communication complexity for all

classes to converge to their own averages (by 1/e) is equal to:

C = Θ

 |SC|∑
i=1

|SSCi
| r−2

 = Θ
(
M r−2

)
,

where each class runs the average consensus algorithm independently. More-

over, once the source classes converge to the average, the algorithm needs,

O(r−2) more steps for each class to distribute the source information to each

destination. We note that Θ(r−2) is equal to the diameter of the underlying net-

work. Therefore, the algorithm needs, O(|SC|Kr−2) message exchanges to dis-

tribute the information to the destination. We note that as |SC| and K increases,

the paths between source-destination pairs will intersect more and more, thus

the bound will become looser.

The communication cost of the algorithm is equal to:

CAV T = Θ(M r−2) +O(|SC|K r−2) = O([M + |SC|K] r−2) (5.17)

Please note that, in our case, the convergence time is defined as:

TAV T = −

(
log sup

xD(0) ̸=x̄S

lim
t→∞

(
||xD(t)− x̄S ||2
||xD(0)− x̄S ||2

))−1

,
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where xS and xD are the states of source and destination nodes respectively.

If we were to solve our problem via regular average consensus algorithm as

we have discussed in Section 5.2, the communication cost is Θ(N r−2). When,

the number of sources, source classes and destination nodes are small, i.e.,

M,SC, K ≪ N , the bound in (5.17) is smaller than O(N r−2). We note that this is

the regime where (5.17) is tight, thus, we expect that partial AVT solutions will

be N/[M + |SC|K] more efficient than regular average consensus solutions. In

the case that SC, K ≪ N , our bound is still tight, and AVT will be N/M more

efficient. For the regimes where |SC|, K are large, our bound in (5.17) becomes

loose. While it is true that the complexity of the partial AVT solutions will in-

crease, the true complexity is expected to be sub-linear in |SC| and K.

5.8 Simulations

In this section, we will simulate the behavior of the directed AVT solutions on

random graphs, and compare their performances with regular average consen-

sus solutions. Due to the construction complexity of the undirected AVT for-

mulations, they will not be included in our simulations. We first simulate the

communication complexity of the directed AVT solutions with respect to the

number of source nodes M . To keep the simulation setup as simple as possible,

we fix the number of source classes and destinations nodes as one. We choose

N = 100 and r =
√
2 log(N)/N . For each value of M , we determine a connected

subgraph of the network, and run the average consensus algorithm with con-

stant edge weights [92]. We determine the communication cost as the number of

messages required for the error to decrease by the factor 1/e. We then calculate
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Figure 5.6: The communication costs of directed AVT.
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the number of hops from the source class to the destination node, and add this

value to determine the total cost. We generate 100 random geometric graphs

for each M , and also averaged our results over 100 random initial node values.

Moreover, for each of these initial conditions, we simulate the communication

cost of the regular average consensus algorithm, i.e., nodes calculate the average

of the whole network. In Fig.5.6(a), we plot the ratio of the communication costs

of the regular average consensus and the directed AVT algorithms. As we have

mentioned in Section 5.7, AVT requires M/N < 1 communication exchanges

with respect to the regular average consensus algorithm. The regime is linear

with respect to M when M ≤ N/2, and becomes logarithmic for M = Θ(N).

In the second part, we simulate the communication complexity of the di-

rected AVT solutions with respect to the number of source classes |SC|. We

once again fix the number of destinations as one. We choose N = 100 and

r =
√

log(N)/N . For each value of |SC|, we pick |SC| isolated nodes (in the

sense that none of them are neighbors). We then solve the IP programming for-

mulation given in Section 5.6. We, once again, average our results over 100 ran-

dom graphs. In Fig. 5.6(b), we plot the communication complexity versus the

number of source classes. As we have discussed in Section 5.7, the cost increase

linearly as the number of source classes increases for |SC| ≪ N .

5.9 Extension to Dynamic Networks

In this section, we extend our model into the case where the underlying net-

work is dynamic. One way to integrate the dynamical structure into gossip-

ing algorithms is to consider an asynchronous policy, i.e., nodes wake up at
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random times and perform random updates. Unlike average consensus algo-

rithms, extension of the AVT codes into asynchronous policies is not straight-

forward. However, by considering the fact that non-source nodes simply mix

and forward the values of the source nodes in the partially directed policies,

we propose an asynchronous policy where source nodes keep averaging and

non-source nodes keep swapping. Mathematically speaking, we assume that a

single node i ∈ V is chosen at each discrete time instant t ≥ 0 with probability

1/N . The chosen node i selects one of its neighbors uniformly. Then, one of the

following arguments hold:

(1) If i, j ∈ S, they simply average their values, i.e., xi(t + 1) = xj(t + 1) =

0.5xi(t) + 0.5xj(t).

(2) If i, j ̸∈ S , they swap values, i.e., xi(t+ 1) = xj(t), xj(t+ 1) = xi(t).

(3) If i ∈ S, j ̸∈ S, they calculate a weighted average of their values, i.e.,

xi(t+ 1) = xj(t+ 1) = (1− γ)xi(t) + γxj(t), γ ∈ [0, 1).

(4) If j ∈ S, i ̸∈ S, they calculate a weighted average of their values, i.e.,

xi(t+ 1) = xj(t+ 1) = (1− γ)xj(t) + γxi(t), γ ∈ [0, 1).

We note that for γ > 0, the average of source nodes will be biased since a given

source node i will hear from one of its non-source neighbors j. Since such a

setup violates the first constraint in Theorem 3, one can not expect destination

nodes to converge to the desired average. In the following, we will show that

for γ > 0, the network will reach to a consensus in expectation.

Lemma 30 For a connected network G(V , E) and the asynchronous policy defined

above, for γ ∈ (0, 1), the network will reach to a consensus in L1, i.e.

lim
t→∞

E{x(t)} = α1. (5.18)
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Proof We first note that in the asynchronous case, the network will follow the

update rule:

x(t+ 1) = W (t)x(t),

where the structure of W (t) depends on the chosen node and its neighbor. For

instance, if node i and j are the active ones at time t ≥ 0, and if i, j ∈ S , then:

W (t) = W
(ij)
kl =


0.5 if (k, l) = (i, j) or (k, l) = (j, i)

1 if k = l and k ̸= i, j

0 otherwise

(5.19)

We note that W (ij) denotes the matrix corresponding to the case where nodes

i and j are active. One can construct W (ij) matrices for each of the four cases

given above in a similar way. At this point, we define the average matrix W as:

W =
1

N

N∑
i=1

1

|Ni|
∑
j∈Ni

W (ij). (5.20)

W is the average of all possible W (ij) over all nodes in the network and their

corresponding neighborhoods. 1/N is due to the fact that at each discrete time

instant a node i is chosen with probability 1/N , and node i chooses one of its

neighbors uniformly randomly, i.e., with probability 1/|Ni|. Since W (ij)1 = 1

for all possible (i, j) pairs, W is a stochastic matrix. Moreover, since G(V , E) is

connected, the average matrix W is irreducible. We also note that diagonals of

W are all non-zero.

The expected value of x(t), t ≥ can be written as:

lim
t→∞

E {x(t)} = lim
t→∞

E

{
t∏

k=0

W (k)x(0)

}
(5.21)

= lim
t→∞

E

{
t∏

k=0

W (k)

}
x(0) = lim

t→∞
W tx(0), (5.22)
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where the last equality follows from the fact that node selection is i.i.d at each

discrete index t and W is given in (5.20). Since W is stochastic, irreducible, and

has non-zero diagonals, limt→∞W t converges to an agreement matrix [44], i.e.,

β11T for some β ∈ R. Thus, our result follows.

As we have mentioned, unfortunately, convergence to the true average is not

guaranteed unless a very specific chain of wake ups are realized. One way to

overcome this difficulty is to set γ = 0. In this case, source nodes will not hear

from the rest of the network, thus the first constraint in Theorem 3 will not be

violated.

Lemma 31 Given a connected network G(V , E) and the asynchronous policy defined

above, γ = 0, if for each source cluster-destination pair, there exists at least one path in

between them which does not go through another source cluster, then, the node values

will have a unique stationary distribution: Given there exists |SC | source clusters in the

network, and denoting their means as {αi}|SC |
i=1 respectively, for a given node j ̸∈ S:

lim
t→∞

P (xj(t) = αi) > 0 ∀i ∈ SC , (5.23)∑
i∈SC

P (xj(t) = αi) = 1. (5.24)

Proof Without loss of generality, we will assume that each source cluster con-

sists of a single source node and each non-source node has been initialized with

one of the source clusters’ value. Due to the fact that nodes are chosen in an

i.i.d. fashion at each iteration, the network states {x(t)}∞t=0 forms a homogenous

Markov Chain M. In other words, given x(t), x(t+ 1) and x(t− 1) are indepen-

dent. We denote the set of source clusters as SC . The state space of the chain

M has |SC |N−SC elements, since each non-source nodes can assume SC distinct
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values (due to swapping), and source cluster do not change their values at all

(since γ = 0).

We denote the probability transition matrix of M as PM. Without loss of

generality, let’s assume that the chain has non-empty set of inessential states

(it may be an empty set depending on the topology). Therefore, by potentially

reordering the state space of M, we can partition PM as:

PM =

 P1 0

R Q

 , (5.25)

such that limk→∞Qk = 0. We note that Q matrix represents the transition prob-

abilities in between nonessential states. The set of indices corresponding to P1

are the set of essential states. We will denote these indices as M1. In the fol-

lowing, we will prove that the set of essential states forms a single class, i.e., if

y, z ∈ M1, then y ↔ z. Note that both y and z correspond to an N -dimensional

state vector in our model. Let’s denote these state vectors as xy and xz. Let’s

define the set D = {m : |[xy]m ̸= [xz]m}, i.e., the set of indices that are different in

the configurations xy and xz.

For a given m ∈ D, choose one of the source clusters with value [xy]m or

[xz]m and determine a path from this particular cluster to m which does not go

through any other source clusters. This has to be true, since otherwise, at least

one of y and z will be inessential. Then, consider the following chain of events:

The first non-source node on the path is chosen with 1/N probability and it

selects the source node, and performs the update. Then, the second non-source

node is chosen and it selects the first non-source node, so on. It should be clear

that this particular event has non-zero probability for state vectors xy and xz.

We repeat this particular argument number of nodes on the path times. At this
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point, all of the nodes on the path including the node m have values which are

equal to the value of the chosen source cluster. Therefore, for a given m ∈ D,

this particular event will transform xy and xz into xy′ and xz′ respectively, where

D′ = {m : |[xy′ ]m ̸= [xz′ ]m} is a strict subset of D. If we apply the argument above

for each m ∈ D sequentially, then xy and xz will be transformed into xy⋆ = xz⋆ .

We note that since y is an essential state and y → y⋆, then y⋆ is also an essen-

tial state, i.e., y ↔ y⋆. By the same way, one can show that z ↔ z⋆. Finally, since

y⋆ = z⋆ and essentiality is transitive, y ↔ z.

At this point, we have already shown that the chain M has a single essential

class. Moreover, the essential class is aperiodic since there exists at least one

aperiodic essential state, i.e., each non-source equals to the same source node’s

value.

The following lemma is due to Seneta [84]:

Lemma 32 Let M a Markov chain which has a single aperiodic essential class. Given

its probability matrix PM in the canonical form as in (5.25), define the stationary distri-

bution to the primitive submatrix P1 of PM as v′1. Let v′ = (v′1, 0
′) be an 1×N vector.

Then as k → ∞:

P k
M → 1v′, (5.26)

where v′ is the unique stationary distribution corresponding to the chain M and 1 is

the all ones vector.

Since our M has a single aperiodic essential class, we can utilize the lemma

above and prove that a stationary distribution exists and such a distribution is

unique for our model.
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Finally, we need to show that for each destination node j, there exists a set

of essential states {yi}SC
i=1 where [xyi ]j = αi, for all i ∈ SC . In other words, the

probability that a given destination node j being equal to a given source cluster

i’s value is non-zero. To see this, we only need to remind our readers that, by

the hypothesis, for each destination node-source cluster pair, there exists at least

one path which does not go through any other source clusters. Thus, we can

find a chain of events that will change destination nodes values to a particular

source cluster’s value. This concludes our proof.

We note that if there is a single source cluster, the destination nodes will con-

verge to that particular value. On the other hand, if there exists more than

one source cluster, then, the network will have a unique stationary distribution

which is independent of the initial values of non-source nodes. Moreover, each

non-source node will keep switching its value forever, but, the support of the

values it can switch is finite, and indeed these values are equal to the averages

of each source cluster by (5.23)-(5.24). Therefore, in the long run, destination

nodes start observing |SC | distinct values, each of which are the averages of in-

dividual source clusters. Assuming all of the clusters have the same size, true

average can be calculated by taking average of these observed quantities.

Finally, we would like to note the effect of the mixing parameter γ. As γ in-

creases, the averages of distinct source clusters will mix faster due to increased

information flow between the classes through the non-source nodes. But, the

bias from the true average will also increase as γ increases. Thus, there is a

clear trade-off between convergence speed and bias with respect to the γ pa-

rameter. At this point, we will leave the analysis of the convergence speed of

the algorithm for both γ > 0 and γ = 0 as a future work, as well as the ana-
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lytical characterization of the trade off and the complete characterization of the

probabilities given in (5.23).

To justify our claims, we have simulated the proposed algorithm on ran-

dom graphs. We have generated 100 geometric random graphs with N = 50

and connectivity radius
√

2 logN/N . Three source nodes and three destination

nodes are chosen randomly. For each graph, the algorithm is run for 5 × 105

steps. In Fig. 5.7(a), we plot the trade-off in between convergence speed/bias

and the mixing parameter γ. As we have discussed above, the higher γ is, the

faster network reaches an agreement. On the other hand, as γ increases, the bias

from the initial mean of the source nodes increases. To validate Lemma 31, we

have chosen γ = 0. Three source nodes are chosen such that all the assump-

tions in the lemma holds. Source nodes are given the values of {−1}, {0, }, {1}

respectively. Fig. 5.7(b)-5.7(c) shows the histogram of the two destination nodes

in the long run. As we can see from these plots, destination nodes’ values only

fluctuates between source nodes’ values.

5.10 Discussions

In this chapter, we studied the distributed computation problem, where a set of

destination nodes are interested in the average of another set of source nodes.

Utilizing gossiping protocols for the information exchange, we provided nec-

essary and sufficient conditions on the feasibility of AVT codes. Moreover, we

showed that the feasibility of the problem only depends on the asymptotic be-

havior of the source states and is independent of the evolution of these states.

We analyzed the spectral properties of feasible codes, and proposed several sim-
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plifications which reduce the complexity of the problem without affecting the

feasibility. By focusing on stochastic updates, we provided necessary condition

on the feasibility that are easy to interpret, and then discussed some known

infeasible scenarios. Since the feasible region of AVT codes are non-convex,

we introduce so called partially directed AVT solutions, and provided integer

programming formulation for constructing such solutions. We analyzed the

complexity and communication cost of the algorithm and compared the perfor-

mance of our algorithm with existing solutions. Finally, we provided a simple

extension to the asynchronous update scenario which can be implemented on

dynamical network structures.
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CHAPTER 6

OPINION DIFFUSION IN SOCIAL NETWORKS VIA GOSSIPING

6.1 Introduction

6.1.1 Motivation and Related Work

A social network can be defined as a group of people which are connected with

some sort of ties [36]. These ties include friendship, kinship, and economic re-

lationships. Social network are an integral of our social and economic lives. For

instance, these networks play a major role in the transmission of information

about recently introduced products and they are important for all kinds of trad-

ing activities. Moreover, they determine how diseases spread, how much and

what we learn, what kind of music we prefer and whether we hear about cer-

tain job opportunities or not. They even affect our political opinions and how

we vote.

In this chapter, we will study how individuals’ opinions diffuse in a given

social network. Diffusions through social networks, in general, have been stud-

ied to some extent in the literature. One of the earliest diffusion models has been

introduced by Bass in [15]. While a mathematical model for new product diffu-

sion has been discussed in this particular study, the model itself did not capture

the dependence on the structure of the underlying social network. The spread

of disease through a network has been originally discussed in [14, 54] under

susceptible, infected, susceptible (SIS) and susceptible, infected, removed (SIR) mod-

els respectively. In both SIS and SIR models, the diffusion is explained through
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the process of infected agents infecting their susceptible neighbors with certain

probabilities. Diffusion has also been discussed under social learning partic-

ulary with Bayesian and Observational Learning theory. In this type of work,

individuals observe actions of their immediate neighbors (actions of individuals

are functions of their beliefs on the true parameter θ) as well as noisy observa-

tions of θ. Following these observations, they update their beliefs by Bayesian

update rules. A detailed discussion about these models can be found in [46].

Opinion diffusion has been studied under imitation and social influence

models. The seminal work on this particular area is due to DeGroot [30] where

opinions of individuals are modeled as probabilities that might be thought of

the probability that a given statement is true. The interaction patters are cap-

tured through near neighbor based linear updates. We note that the updates of

the DeGroot model has the exact the same as the synchronous average consen-

sus updates. Moreover, Kleinberg et.al. have considered a collection of proba-

bilistic and game theoretic models for capturing opinion and new product diffu-

sion in social networks [56]. Finally, in their recent work, Acemoglu et.al. have

studied an extension of the DeGroot model where updates are asynchronous

and certain individuals are spreading misinformation by not updating their

own beliefs [1].

In this work, we will focus on opinion diffusion through social networks

and propose a gossiping based model where individuals randomly meet with

their neighbors and probabilistically update their opinions. Our work can be

classified under imitation and social influence modeling. However, unlike the

Degroot and misinformation models, we assume that individuals’ opinions are

discrete rather than continuous variables and there exists so called stubborn
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individuals who do not change their decisions. Therefore, unlike the models

in [30, 1, 56], individuals’ opinion do not converge to a particular constant, on

the contrary, the opinions keep flipping in the long run. This, in return, will

help us to capture correlations among the opinions of different individuals as

well as the variations in the collective opinion of the society. We note that unlike

Bayesian learning and observation models, we do not assume that there is a true

parameter which the society is interested in capturing. We are interested in the

propagation of opinions on a certain subject.

6.1.2 Chapter Organization

The remainder of this chapter is organized as follows. In Section 6.2, we will in-

troduce our diffusion model as well as discussing mathematical tools on which

we will rely. We derive the mean and the variance of the society’s collective

opinion in Section 6.3, and discuss how to choose stubborn agents’ location in

an optimal way in Section 6.4. Finally, we provide end of chapter discussions in

Section 6.5.

6.2 The Voter Model and the Dual Approach

6.2.1 The Binary Voter Model with Stubborn Agents

We consider a network G(V , E) where V is the set of vertices and E is the set of

undirected edges. The underlying network can be deterministic or random. We

define the neighbor set of node i ∈ V as Ni = {j|(i, j) ∈ E}. We note that due
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to undirected nature of the edges, j ∈ Ni if and only if i ∈ Nj . The adjacency

matrix A ∈ {0, 1}N×N of a graph G is a binary matrix, where [A]ij = 1 whenever

(i, j) ∈ E . The degree matrix D of the graph G is a diagonal matrix whose i-th di-

agonal element is equal to |Ni|. Finally, λk(.) denotes the k-th largest eigenvalue

(in magnitude) of its argument.

The state of the binary voter model at time t ≥ 0 is given by a function

x(t) : V → S |V|, where S the set of possible types (colors, opinions). Due to

its binary nature, there are only two possible types, i.e., S = {0, 1}. We note

that one can generalize our model to the case where there exist more than two

possible type. However, the binary voter model covers several interesting case

and the extension to the latter case will be straightforward. Each voter, i ∈ V ,

wakes up according to a rate 1 Poisson process independently, chooses one of

its neighbors according to a probability distribution pi and adapts the decision

of the chosen neighbor. Initial node types x(0) can be either deterministic or

random.

We will further assume that there exists two disjoint sets of stubborn agents,

i.e., V0,V1 ⊂ V , where:

xi(t) =

 0 ∀t ≥ 0, if i ∈ V0

1 ∀t ≥ 0, if i ∈ V1.
(6.1)

In words, so called stubborn nodes do not adapt the decisions of their neighbors

and always keep their initial opinions. We call this model as the Binary voter

model with stubborn nodes. Our aim to understand the effects of the stubborn

nodes (locations, number of stubborn agents, network structure, etc.) on the

opinions of the society and individuals.

The following assumptions are in order:
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A1) The number of nodes in the network |V| = N is finite.

A2) The underlying topology G is strongly connected, i.e., there exists a path

(not necessarily single hop) between any given node pairs.

A3) pi is the uniform distribution on Ni, i.e., node i chooses its neighbors uni-

formly.

We note that A2 simply means that every individual in the network can reach

every other individual by a path. We note that this path may not necessarily be

a single hop. A3 shows that each node is uniformly influenced by its neighbors.

6.2.2 Effects of Stubborn Agents: From Consensus to Disagree-

ment

In the classical binary voter model where there exists no stubborn agents, Al-

dous et.al. have shown that, under the assumptions A1 − A3, the node states

x(t) converge to a complete consensus in the limit [6]. Mathematically speaking,

lim
t→∞

P (xi(t) ̸= xj(t)) = 0 ∀i, j ∈ V . (6.2)

Even a stronger result has been introduced by Liggett where he has relaxed the

”finiteness” assumption on the network size. In particular, he has shown that

the classical voter model converges to a complete consensus on d = 1 and d = 2

dimensional infinite lattices [61, 43, 27]. For d ≥ 3, he has argued that the system

x(t) approaches a non-trivial equilibrium where the individual state values are

neither independent nor fully correlated with each other.

In our model, i.e., under the existence of stubborn agents, the system can

not reach to a consensus on any network. We note that stubborn nodes do not
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change their opinions, and since there are two types of stubborn nodes with

opposite opinions, consensus can not be achieved. At this point, a natural ques-

tion to ask is whether a stationary distribution exists or not? In the following, we

will show that under the assumptions A1−A3 not only a stationary distribution

exists but also such a distribution is unique.

Theorem 4 Under the assumptions A1−A3, the voter model with stubborn agents has

a stationary distribution which is unique. Mathematically speaking, for given stubborn

sets V0,V1:

x(t)
D−→ x⋆, for some random variable x⋆, (6.3)

where D−→ denotes weak convergence.

Proof We first note that since the node wake-up times are Poisson random vari-

ables, the voter model operates in continuous time scale. On the other hand, we

can use a discrete index k to identify the sequence of updating events in the

network and track the evolution of the states with respect to this index. That is,

k = 1 corresponds to the first update in the network, k = 2 to the second, and so

on. Of note is that each of these discrete indexes corresponds to a time interval

[τk, τk+1), where τk is the arrival time of the k-th update in the network. In the

rest of the proof, we slightly bend our notation and denote x(τk) by x(k).

We can characterize the behavior of x(k) by a homogenous Markov Chain

M with the state space SM. Each state of the chain is an N dimensional vector,

where each dimension represents the value of a particular node in V . We note

that the Markovian property of the chain follows from the fact that x(k+1) and

x(k − 1) are independent conditioned on x(k)1. Moreover, the cardinality of the

1Each node wakes up according to the Poisson processes with rate 1 independently.
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state space SM is 2N−|V0∪V1|, since stubborn agents do not change their decisions

and non-stubborn agents can only take two possible values, i.e., 0 or 1.

We denote the probability transition matrix of M as PM. Without loss of

generality, let’s assume that the chain has non-empty set of inessential states.

Therefore, by potentially reordering the state space of M, we can partition PM

as:

PM =

 P1 0

R Q

 , (6.4)

such that limk→∞Qk = 0. We note that Q matrix represents the transition proba-

bilities in between nonessential states. The set of indices corresponding to P1 are

the set of essential states. We will denote these indices as M1. In the following,

we will prove that the set of essential states forms a single class, i.e., if y, z ∈ M1,

then y ↔ z. Note that both y and z correspond to an N -dimensional state vector

in the binary voter model. Let’s denote these state vectors as xy and xz. Let’s

define the set D = {m : |[xy]m ̸= [xz]m}, i.e., the set of indices that are different

in the configurations xy and xz. We first note that for each m ∈ D, there has to

exist a path from node m to at least one of the agents in the set V0 that does not

go through V1, and vice versa. We note that if this were not true, then at least

one of xy, xz would be an inessential state.

For a given m ∈ D, determine a path from V1 to node m ∈ V which does

not go through V0. Then, consider the following chain of events: The first non-

stubborn node along the path chooses a stubborn node in V1 and adopts its

decision, the second non-stubborn node chooses the first non-stubborn node

and adopts its decision, so on. It should be clear that this particular event has

non-zero probability for state vectors xy and xz. Therefore, for a given m ∈ D,
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this particular event will transform xy and xz into xy′ and xz′ respectively, where

D′ = {m : |[xy′ ]m ̸= [xz′ ]m} is a strict subset of D. If we apply the argument above

for each m ∈ D sequentially, then xy and xz will be transformed into xy⋆ = xz⋆ .

We note that since y is an essential state and y → y⋆, then y⋆ is also an essen-

tial state, i.e., y ↔ y⋆. By the same way, one can show that z ↔ z⋆. Finally, since

y⋆ = z⋆ and essentiality is transitive, y ↔ z.

At this point, we have already shown that the chain M has a single essen-

tial class. Moreover, each of these essential states is aperiodic since there is a

nonzero probability that a stubborn node will wake up, and thus the chain will

stay in the same state.

The following lemma is due to Seneta [84]:

Lemma 33 Let M a Markov chain which has a single aperiodic essential class. Given

its probability matrix PM in the canonical form as in (6.4), define the stationary distri-

bution to the primitive submatrix P1 of PM as v′1. Let v′ = (v′1, 0
′) be an 1×N vector.

Then as k → ∞:

P k
M → 1v′, (6.5)

where v′ is the unique stationary distribution corresponding to the chain M and 1 is

the all ones vector.

Finally, since our M has a single aperiodic essential class, we can utilize the

lemma above and prove that a stationary distribution exists and such a distri-

bution is unique for our model.

We note that the unique stationary distribution is a function of the underly-

ing graph G and the stubborn sets V0,V1, and is independent of the initial opin-
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ions of the non-stubborn agents. This, in return, implies that the initial opinions

of the non-stubborn agents does not have any effect on the collective opinion of

the society in the long run.

In the following, we will try to characterize some of the properties of the

stationary distribution of the system. But, first, we will introduce the dual ap-

proach for the voter model with stubborn agent on which we will rely on heavily

for future analysis.

6.2.3 The Dual Approach for the Voter Model with Stubborn

Nodes

One of the major approaches in the analysis of the original voter model is so

called the dual approach, where the voting problem is being mapped into coalesc-

ing random walks on the graph G. We note that the dual approach for the original

voter model (without stubborn agents) has been introduced in [61, 43]. Reader

may refer those references for detailed discussions and proofs of the duality. In

the following, we will first summarize the results for the original voter model

for the sake of completeness and, then introduce the dual process for our model.

The Dual Approach for the Original Voter Model

We start our discussion by introducing the definition of coalescing random walks.

In the coalescing random walks process, there is a single particle at each vertex

of the graph G at time t = 0. These particles perform independent continuous

random walks on the graph, i.e., each particle jumps to one of its neighbors in-
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dependently according to a rate 1 Poisson process. When two or more particles

meet on a vertex, they coalesce and form a single particle. Thereafter, these

particles perform a single random walk on G, possible colliding with other par-

ticles.

In the following, we will discuss that coalescing random walks are closely

related to the behavior of the original voter model. The idea is based on the

following: for each vertex i ∈ V and time T ≥ 0, one can define a dual process

{yTi (s) : 0 ≤ s ≤ T}, which traces the origin of the opinion at node i at time

T ≥ 0. The primal and the dual processes will have the property:

xi(T ) = xyTi (T−s)(s). (6.6)

In other words, the origin of the opinion at node i at time T ≥ 0, is equal to the

opinion at node yTi (T − s) at time s. We note that yTi (0) = i, and the process

{yTi (T − s) : 0 ≤ s ≤ T} will jump according to the arrival times of the primal

process x(t). For instance, if t1 ≤ T is the last time before (and including) T that

node i has copied one of its neighbors decision (say neighbor j), then yTi will

jump to the neighbor j at time T − t1. A sample update path is given in Fig. 6.1.

In this example, the x-axis denotes different nodes in the network, and the y-axis

denotes continuous time interval. Whenever a node copies its neighbor’s deci-

sion, it will be denoted by an arrow from the node itself to its neighbor. As we

have discussed above, node i has copied node j’s decision at time t1, and there

is a corresponding arrow in the figure. We note that one can track the origin of

the node i’s decision at time T by following arrows backwards in time, i.e., by

the dual process. In our example, node i’s decision at time T is node k’s initial

decision. We note that since each node copies one of its neighbors decision ac-

cording to a rate 1 Poisson process, the dual process is also a rate 1 random walk.

Moreover, if we want to track the origins of opinions at more than one location,
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Figure 6.1: A sample update path for the voter algorithm. x-axis denotes
node index and y-axis denotes continuous time index.

i.e., at B ⊂ V , then we can define an independent dual process for each element

i ∈ B. The crucial point is that if two or more dual processes reside at the same

location at the same time, they will collide and move together, since the origin

of the decision at that point and time will be exactly the same for both processes.

We note that this process is the exact same process as a coalescing random walk.

Therefore, the dual process for the original voter model is a coalescing random

walks with rate 1.

The Dual Approach for the Voter Model with Stubborn Agents

In our case, where there exists stubborn nodes with fixed decisions, we can still

define a dual process in terms of coalescing random walks with slight modifi-

cation: In the dual processes yTi (T − s), the stubborn nodes will be absorbing

states. In other words, when a dual particle hits one of the stubborn nodes

i ∈ V0 ∪ V1, it will stay in that particular node. Mathematically speaking, if
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yTi (T − s⋆) = j|j ∈ V0 ∪ V1 for some s⋆ ≤ T , then yTi (T − s) = j ∀s⋆ ≤ s ≤ T .

Such an observation is intuitive since if we track down the opinion of node i

at time T via particle jumps over the neighbors, and if such a sample path hits

one of the stubborn agents, the process will be stuck on that particular stubborn

node since stubborn nodes do not change their decisions, thus the particle can

not jump to any other node in the network. Therefore, the dual process for the

voter model with stubborn agents is simply the coalescing random walk with

absorbing states V0,V1.

6.3 Characterization of the Average Opinion: Mean and Vari-

ance

One way to understand the stationary distribution of the agent opinions is to

characterize society’s average opinion, i.e.,

x̄(t) =
1

N

∑
i∈V

xi(t). (6.7)

While such a measure does not uniquely define opinion of each individual, it

measures the collective opinion of the society which is, in some cases, more

important than individual opinions (for instance political elections). We first

introduce the following result:

Corollary 7 The average opinion of the society has a unique stationary distribution

under the assumptions A1− A3.

The corollary simply follows from Theorem 4. Unfortunately, characterizing the

stationary distribution of x̄(t) is very difficult since the support of the distribu-

tion can have up to 2N distinct values. As identifying this distribution is an
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ongoing research, we will, in the following, characterize the mean and the vari-

ance of limt→∞ x̄(t). While the first two moments of the distribution does not

characterize it uniquely, we will still have some measure of what is the expected

dominant opinion and its variance.

6.3.1 Expected Value of the Average Opinion

In this section, we will characterize the expected value of the average opinion in

the network in the long run (stationary distribution). If we take the expectation

and limit of both sides in (6.7)

lim
t→∞

E {x̄(t)} = lim
t→∞

1

N
E

{∑
i∈V

xi(t)

}
, (6.8)

=
1

N

∑
i∈V

lim
t→∞

E {xi(t)} (6.9)

where the second equality follows from the assumption that the individual lim-

its exists. The following lemma not only shows that the individual limits exist

(thus the assumption is true) but also characterizes limt→∞ E {xi(t)} in terms of

the absorbtion probabilities of a random walk over the graph G which has been

initialized at node i.

Lemma 34 Given a connected network G(V , E) with stubborn agent sets V0 and V1,

define a regular random walk on G where the stubborn sets form two distinct absorbing

classes. Then the expected value of the opinion of node i in the limit is equal to the

probability that the random walk is absorbed by the set V1 given that the walk has been

started at node i.

Proof Without of loss of generality, we assume that {1, . . . , |V0|} nodes are stub-

born agents with opinion zero and {|V0|+ 1, . . . , |V0|+ |V1|} nodes are stubborn

158



agents with opinion one. Similar to the proof of Theorem 4, we will slightly

bend our notation and denote x(τk) by x(k), where τk is the time when k-th

update is performed in the network.

We first note that for any k ≥ 1 and i ̸∈ {V0 ∪ V1},

E{xi(k)|x(k − 1), . . . , x(0)} = P (xi(k) = 1|x(k − 1), . . . , x(0)) , (6.10)

=
∑

s∈{0,1}

P (xi(k) = 1|Bi(k) = s, x(k − 1))P (Bi(k) = s) ,

(6.11)

=
N − 1

N
xi(k − 1) +

1

N

1

|Ni|
∑
j∈Ni

xj(k − 1), (6.12)

where Bi(k) is the indicator of the event that node i performs an update at the

discrete iteration k. (6.10) follows from the fact that xi(k) is a Bernoulli random

variable, (6.11) is since {x(k)}∞k=0 forms a Markov Chain and Poisson arrivals

are independent from node values, and (6.12) follows from the fact that Poisson

arrivals are i.i.d and nodes choose their neighbors uniformly. Moreover, since

stubborn nodes do not update their beliefs, for any k ≥ 1 and i ∈ {V0 ∪ V1}, the

following holds true,

xi(k) = xi(k − 1). (6.13)

Combining (6.12) and (6.13), the formulation given above can be written in the

matrix form as:

E{x(k)|x(k − 1), . . . , x(0)} = Tx(k − 1), (6.14)

where stochastic matrix T has the structure:

T =

 IA 0

C D

 , (6.15)
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and IA denotes (|V0|+ |V1|})× (|V0|+ |V1|}) identity matrix. Moreover, the par-

titions C and D will be in the form of:

[C]ij =


1

N |Ni+|V0|+|V1||
if j ∈ V0 ∪ V1 ∩Ni+|V0|+|V1|,

0 otherwise.
(6.16)

[D]ij =


N−1
N

if i = j

1
N |Ni+|V0|+|V1||

if j ∈ V0 ∪ V1 ∩Ni+|V0|+|V1|,

0 otherwise.

. (6.17)

We note that the structure given above directly follows from (6.10)-(6.12), and

|V0|+ |V1| shift in the indices is due to the fact that the first |V0|+ |V1| nodes are

stubborn.

By taking expectations over the past state values, we obtain:

E{x(k)} = T kx(0). (6.18)

By taking the limit over k:

lim
k→∞

E{x(k)} = lim
k→∞

T kx(k), (6.19)

lim
k→∞

T k =

 IA 0(∑k
l=1 D

k
)
C Dk

 =

 IA 0

(IB −D)−1C 0

 , (6.20)

where IB is the (N − |V0| − |V1|}) × (N − |V0| − |V1|}) identity matrix. We note

that limk→∞ T k exists since T is stochastic, and ρ(D) < 1. Then, limk→∞Dk = 0

and (IB −D)−1 exist. Therefore, (6.19) and (6.20) are well-defined.

At this point, we focus on the probability transition matrix T̃ of the regular

random walk with absorbing classes V0 and V1 on graph G. In other words, for a

given state i ∈ V \{V0∪V1}, process will uniformly jump to one of i’s neighbors

on graph G, and if i is an absorbing state, the process will stay at i forever. Thus,
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T̃ will be in the form:

T̃ =

 ĨA 0

C̃ D̃

 , (6.21)

where C̃ and D̃ will have the following structure:

[C̃]ij =


1

|Ni+|V0|+|V1||
if j ∈ V0 ∪ V1 ∩Ni+|V0|+|V1|,

0 otherwise.
(6.22)

[D̃]ij =


1

|Ni+|V0|+|V1||
if j ∈ V0 ∪ V1 ∩Ni+|V0|+|V1|,

0 otherwise.
. (6.23)

Since G is connected and N < ∞, limk→∞ T̃ k exists [84], and non-zero columns

of this particular matrix corresponds to the absorbtion probabilities [84]. In the

following, we will show that limk→∞ T k = limk→∞ T̃ k.

Parallel to our arguments above, limk→∞ T̃ k will have the same structure as

in (6.20) in terms of ĨA, C̃ and D̃ . Moreover, we note that the following relations

hold between T and T̃ :

IA = ĨA, C =
1

N
C̃, D =

1

N
D̃ +

N − 1

N
IB.

Therefore,

(IB −D)−1C = (IB − 1

N
D̃ − N − 1

N
IB)

−1 1

N
C̃ (6.24)

= (
1

N
IB − 1

N
D̃)−1 1

C
C̃ = (IB − D̃)−1C̃. (6.25)

Thus, due to the structure given in (6.20), limk→∞ T k = limk→∞ T̃ k.

By noting the fact that:

xi(0) =

 0, if i ∈ {1, . . . , |V0|}

1, if i ∈ {|V0|+ 1, . . . , |V0|+ |V1|}.
(6.26)
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one can observe that,

lim
k→∞

E{xi(k)} =
∑
j∈V1

[ lim
k→∞

T k]ij. (6.27)

Since we have already proved that non-zero columns of limk→∞ T̃ k are the

absorbtion probabilities of the random walk and limk→∞ T k = limk→∞ T̃ k, (6.27)

is the probability that the regular random walk is absorbed by the class V1 given

that the walk has been initialized at node i.

We note that the random walk introduced in the lemma is over the graph G,

thus the cardinality of the state space of the walk is just N . Moreover, the lemma

shows the clear relationship between the location of the stubborn agents and

the expected opinion of a given node i. For a given graph G, and sets V1,V0, the

absorbtion probabilities defined in Lemma 34 are straightforward to calculate.

At this point, the following corollary in order:

Corollary 8 The expected value of the average node opinion in the limit is equal to:

lim
t→∞

E {x̄(t)} =
1

N

∑
i∈V

pi, (6.28)

where pi is the probability that the random walk defined in Lemma 34 is absorbed by the

class V1 given that the walk has been started at node i.

At this point, we note that there is a simple relationship between expected

value of the average opinion on G and the random walk on G through the ab-

sorbtion probabilities pi.
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6.3.2 Variance of the Average Opinion

If we calculate the variance of the average opinion and take the limit as t → ∞:

lim
t→∞

σ(x̄(t)) =
1

N2

∑
i∈V

∑
j∈V

lim
t→∞

(E {xi(t)xj(t)} − E {xi(t)}E {xj(t)}) (6.29)

=
1

N2

∑
i∈V

∑
j∈V

(
lim
t→∞

E {xi(t)xj(t)} − lim
t→∞

E {xi(t)}E {xj(t)}
)

(6.30)

where σ(.) denotes the variance of its argument, and the second equality follows

from the fact that individual limits exists. We first note that limt→∞ E {xi(t)}

exists and equal to pi, ∀i ∈ V by Lemma 34. In the following we will show

that limt→∞ E {xi(t)xj(t)}, ∀i, j ∈ V (thus the assumption given above is indeed

true), and we will also characterize that particular term.

We note that since xi(t) ∈ {0, 1} ∀i ∈ V , t ≥ 0, xi(t) is a binary random

variable. For this reason,

lim
t→∞

E {xi(t)xj(t)} = lim
t→∞

P (xi(t) = xj(t) = 1). (6.31)

Therefore, this particular term is equal to the probability that node i’s and node

j’s opinions are both equal to one in the limit. Due to the potential high corre-

lation between node i’s and node j’s values (due to the attractive nature of the

algorithm), one cannot estimate limt→∞ P (xi(t) = xj(t) = 1) in terms of individ-

ual expectations. In the following, we will completely characterize these terms

by using the dual approach.

As we have discussed in Section 6.2.3 and (6.6), for a given node pair i, j,

lim
t→∞

(xi(t), xj(t)) = lim
t→∞

(xyti(t−s)(s), xytj(t−s)(s)),

where s ∈ R+∪{0}, and {yti(t− s), ytj(t− s)} is the dual coalescing random walk

on G which has been initialized at node i and node j. We note that by choosing
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s = 0 and taking probabilities of each side,

lim
t→∞

P (xi(t) = xj(t) = 1) = lim
t→∞

P (xyti(t)
(0) = 1, xytj(t)

(0) = 1), (6.32)

In other words, by using our discussion in Section 6.2.3, the probability that

node i and node j’s opinions are both equal to one is equal to that the coalescing

random walk initiated at node i and node j is absorbed by a stubborn node with

opinion one.

To calculate such probability, we first construct a graph G ′(V ′, E ′), where V ′ =

{(i, j)|i, j ∈ V}. We denote each element of V ′ as lij where the subscript (i, j)

corresponds to the pairs in the original graph G. We note that the cardinality of

the set V ′ is N2. Moreover, there exists an edge between two nodes lij and lmn,

if one of the followings hold:

• i = m, and there exists an edge between nodes j and n in the original

graph G, i.e., (j, n) ∈ E .

• j = n, and there exists an edge between nodes i and m in the original

graph G, i.e., (i,m) ∈ E .

On this particular graph G ′, we will define a biased random walk Z ′(k) as fol-

lows: For all k ≥ 0,

P (Z ′(k + 1) = lmn|Z ′(k) = lij)
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=



1
2|Ni| if i ̸= j, n = j,m ∈ Ni, i ̸∈ {V0 ∪ V1} ,
1

2|Nj | if i ̸= j,m = i, n ∈ Nj, j ̸∈ {V0 ∪ V1} ,
1
2

if i ̸= j,m = i, n = j, i ∈ {V1 ∪ V0} , j ̸∈ {V1 ∪ V0} ,
1
2

if i ̸= j,m = i, n = j, j ∈ {V1 ∪ V0} , i ̸∈ {V1 ∪ V0} ,
1

|Ni| if m = n, i = j,m ∈ Ni,

1 if m = i, n = j, (n,m) ∈ {V1 ∪ V0} ,

0 otherwise.

We note that the index k is a discrete index. The biased random walk is the

equivalent to the coalescing walks limt→∞{yti(t), ytj(t)}. To see this, we observe

that the transition probabilities of the process Z ′(k) is the simple average2 of the

transition rates of the individual processes (yti(t), ytj(t)). Therefore, a jump in the

process Z ′(k) corresponds to a jump in the original coalescing walk (yti(t), y
t
j(t)).

We also note that whenever both i, j are stubborn states or i, j ∈ V0 ∪V1, lij is an

absorbing state. This, in return, implies that once (yti(t), y
t
j(t)) is hits absorbing

states, then the walk will terminate.

At this point, by combining our discussion above and (6.31), we conclude

the following:

Lemma 35 In the limit as t, k → ∞,

lim
t→∞

E {xi(t)xj(t)} = lim
t→∞

P (xi(t) = xj(t) = 1) (6.33)

=
∑

m,n∈V1

lim
k→∞

P (Z ′(k) = lmn|Z ′(0) = lij), (6.34)

where Z ′(k) is a biased random walk whose transition probabilities are given in (6.33).

We note that by the lemma given above, we have characterized all of the terms

2The reasoning behind the averaging is that the continuous time processes (yti(t), y
t
j(t)) have

the same parameters.
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in limt→∞ σ(x̄(t)), thus completely identified variance of the average opinion in

the limit.

We would like to conclude the section with the following discussion: While

the expected value of the average opinion measures the dominant opinion in

the network, it does not measure how much variation one should expect on

the collective opinion of the society. Therefore, we believe that, our result in

Lemma 35 is highly significant since it captures the variation. Another way

to interpret the variance is in terms of the stability of the society’s collective

opinion. When the variance is small, the collective opinion will be highly stable

and the expected value will be a relatively good measure for predicting society’s

opinion. On the other hand, when the variance is high, the collective opinion

will be instable in the sense that it will oscillate, and it will hard to predict the

true value of the collective opinion.

6.4 Optimal placement of stubborn agents

In this section, we will focus on a design problem, i.e., optimal stubborn agent

replacement problem. In particular, we assume that we are given a network G

and a set of stubborn agents of type zero V0 with known locations. Given k > 0,

we would like to choose k nodes from V \ V0 which will be assigned type one

label, i.e., V1. The question of interest is: How can one determine the optimal set of

k nodes? To be able answer this question, we first need to choose a measure of

optimality. In the following, we will focus on the expected value of the average

opinion in the network. In other words, we would like to choose a set of k nodes

which will be assigned type 1 label (V1) such that
∑N

i=1 limt→∞ x̄(t) is maximized.
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In the following we will first focus on the case where k = 1, and then introduce

the general formulation.

6.4.1 A special case: k=1

In this special setting, we are allowed pick a single node as a stubborn agent of

type 1 given V , V0. We first remind our readers that since the average opinion of

a given node i is equal to the probability that the random walk is absorbed by

V1 given that the walk has been started at node i by Lemma 34. Denoting this

particular probability as pV1,i, our maximization problem can be written as:

max
m∈V\V0

∑
i∈V

pm,i. (6.35)

Therefore, we are interested in m⋆ which maximizes the formulation given

above.

Without loss of generality, we assume that {1, . . . , |V0|} nodes are stubborn

agents with type 0. Then, the probability transition matrix of the random walk

on that particular graph can be written as:

T =

 IV0 0

C D

 . (6.36)

where IV0 is |V0|×|V0| identity matrix. We note that the matrix (I−D)−1 is called

the fundamental matrix of the chain and [(I − D)−1]ij is equal to the expected

number visits to node j before absorbtion, given that it has been initiated in

node i [84]. We note that (I −D)−1 can be determined completely given V and

V0, and is independent of the specific choice of V1.
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Without loss of generality, let’s assume that we pick node |V0|+1 as a candi-

date for our maximization problem. Assigning the type 1 label to this particular

node, the transition probability matrix becomes:

T̃ =


IV0 0 0

0 1 0

C̃ c D̃

 . (6.37)

As we have discussed in the proof of Lemma 34, non-zero columns of

limk→∞(T̃ )k correspond to the absorbtion probabilities. In this case,

lim
k→∞

(T̃ )k =


IV0 0 0

0 1 0

(I − D̃)−1C̃ (I − D̃)−1c 0

 . (6.38)

It should be clear from (6.38) that the sum of the absorbtion probabilities by

node |V0|+ 1 is simply,

1 + 1′(I − D̃)−1c. (6.39)

In other words, if node i = |V0| + 1 is chosen as the stubborn agent with value

one, then the objective function in (6.35) is equal to (6.39).

At this point, we would like to emphasize the relationship between D

in (6.36) and D̃ in (6.37). Indeed,

D =

 l v′

c D̃

 (6.40)

where l is a scalar quantity, where c and v′ are column and row vectors respec-

tively. Thus, by using matrix inversion in block form, the fundamental matrix

of T which is equal to (I −D)−1 can be written as:

(I −D)−1 =

 1− l −v′

−c I − D̃


−1

=

 γ . . .

(I − D̃)−1cγ . . .

 , (6.41)
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where γ is a scalar value and is a function of l, v′, c and D. Note that the first

column sum (the column corresponding to the specific choice of type 1 agent) of

the fundamental matrix is simply γ(1 + (I − D̃)−1c). This is exactly γ times the

value in (6.39), which is the value of the objective function of the optimization

problem when node i = |V0|+ 1 is chosen.

Using the argument above, we can state that, for m ∈ V \ V0:∑
i∈V

pm,i =
1T [(I −D)−1]m−|V0|

[(I −D)−1]m−|V0|,m−|V0|
, (6.42)

where [.]m denotes the m-th row of its argument, and 1 is the all ones column

vector. This particular relation is interesting since the value of the objective

function is dependent on the elements of the (I − D)−1 matrix in (6.36) whose

structure is independent of the particular choice m. However, the m dependence

is introduced through the selecting certain rows of the matrix. For practical

purposes, the fundamental matrix of the chain can be calculated once, and an

exhaustive search can be conducted for determining optimum m. Since |V| = N ,

the search requires at most N steps.

6.4.2 The general case: k ≥ 2

For k ≥ 2, the optimization problem becomes combinatorial. While this par-

ticular case is an ongoing research, a naive way to solve the problem will be

utilizing a greedy algorithm. In other words, for a given k = K, one can solve

the problem optimization problem incrementally by adding new nodes one by

one. Then, by using sub-modular function theory, one can show that the so-

lution to the greedy algorithm can not be (1 − 1/e) worse than the optimum

solution.
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6.5 Discussions

In this chapter, we propose a model for capturing opinion propagation through

social networks. We have employed modified voter model as well as stubborn

agents to capture instability in society’s collective opinion and correlations be-

tween individuals. We have shown that under mild assumptions society’s opin-

ions converge to a unique stationary distribution and we have completely char-

acterized mean and variance of the society’s average opinion in the long run. We

have briefly posed optimal stubborn agent replacement problem and introduce

our preliminary results.
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APPENDIX A

APPENDIX OF CHAPTER 2

A.1 Proof of Lemma1

Define the mean-squared deviation from the current mean as:

δ(t) =
N∑
i=1

E{∥ zi(t)−
1T

N
z(t) ∥2}. (A.1)

Since our definition of convergence is in the mean of order 2, the nodes reach a

consensus if and only if δ(t) → 0. Define:

m(t) = z(t)− 1

N
11T z(t) = z(t)− Jz(t) = (I − J)z(t) (A.2)

m(t) is the distances of the node values from their mean. We denote covariance

matrix of m(t) as, Θ(t) = E{m(t)mT (t)}. It is obvious that δ(t) = Trace(Θ(t)).

Recursion structure of m(t) can be written as:

m(t+ 1) = (W − J)m(t) + (I − J)v(t)

where we define v(t) = ϵAw(t). Then,

Θ(t+ 1) = (W − J)Θ(t)(W − J) + (I − J)E{v(t)vT (t)}(I − J). (A.3)

The remaining of the proof follows similarly to [21], but is given here for com-

pleteness. Forward: Assume the nodes converge to a consensus. Therefore

δ(t) → 0. If δ(t) → 0, then Θ(t + 1) → 0 since the diagonal entries of a covari-

ance matrix are non-negative and [Θ(t)]ii[Θ(t)]jj ≥ [Θ(t)]2ij ∀ {i, j}.1 By equa-

1E[X2]E[Y 2] ≥ E2[XY ].
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tion (A.3):

0 = lim
t→∞

Θ(t+ 1) = lim
t→∞

[
(W − J)Θ(t)(W − J) + (I − J)E{v(t)vT (t)}(I − J)

]
= (W − J)[ lim

t→∞
Θ(t)](W − J) + (I − J)

+ (I − J)[ lim
t→∞

E{v(t)vT (t)}](I − J) (A.4)

= (I − J)[ lim
t→∞

E{v(t)vT (t)}](I − J) (A.5)

where in (A.4) we have used the fact that (W − J) and (I − J) are bounded, and

in (A.5) we have used the fact that limt→∞Θ(t) = 0. Therefore, E{v(t)vT (t)} =

ϵ2AE{w(t)wT (t)}A → 0. Since ϵ > 0, aij ≥ 0 ∀i, j ∈ {1, . . . , N}, and

E{w(t)wT (t)} is a diagonal matrix, each of the diagonal entries approaches 0,

i.e.. E{wi(t)}2 → 0.

Reverse: Assume the quantization noise at each sensor converges to 0. Thus,

E{w(t)wT (t)} → 0. In other words, given (δ > 0), ∃ a large (T > 0) such that

∀t ≥ T , E{w(t)wT (t)} < δI where I is the (N×N ) identity matrix. Given (δ > 0),

(A.3) is equal to:

Θ(t+ 1) = (W − J)(t+1)Θ(0)(W − J)(t+1)

+
t∑

j=0

(W − J)(t−j)(I − J)E{v(j)vT (j)}(I − J)(W − J)(t−j)

= (W − J)(t+1)Θ(0)(W − J)(t+1)

+
T∑

j=0

(W − J)(t−j)(I − J)E{v(j)vT (j)}(I − J)(W − J)(t−j) (A.6)

+
t∑

j=T+1

(W − J)(t−j)(I − J)E{v(j)vT (j)}(I − J)(W − J)(t−j). (A.7)

Since ρ(W − J) < 1 and T is finite for a given δ > 0, then the two terms in (A.6)

vanishes as t → ∞. By using the fact that ∀t ≥ T , E{w(t)wT (t)} < δI ;

lim
t→∞

Θ(t+ 1) < lim
t→∞

δϵ2
t∑

j=T+1

(W − J)(t−j)(I − J)AAT (I − J)(W − J)(t−j). (A.8)
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Since [(I − J)AAT (I − J)]ij is finite ∀ {i, j} and ρ(W − J) < 1, righthand side

of the above equation converges to K < ∞ where (<) denotes entry by entry

inequality. Therefore:

lim
t→∞

Θ(t+ 1) < δϵ2K. (A.9)

As δ → 0 , limt→∞Θ(t+ 1) → 0.

A.2 Calculation of E{z̃(t− l)z̃T (t−m)}

E{z̃(t− l)z̃T (t−m)} is written in terms of state and noise covariances as:

E{z̃(t− l)z̃T (t−m)} = E{z(t− l)zT (t−m)}+ E{z(t− l)wT (t−m)}

+ E{w(t− l)zT (t−m)}

+ E{w(t− l)wT (t−m)}. (A.10)

We also note that z(t) vector can be written in terms of z(t− 1− q) as follows:

z(t) = W q+1z(t− 1− q) + ϵ

q∑
j=0

W jAw(t− 1− j). (A.11)

We evaluate each term in (A.10) independently in order of appearance.

W.L.O.G., we assume that (l ≤ m). If we focus on the first term in (A.10),

by (A.11):

E{z(t−l)zT (t−m)} = Wm−lE{z(t−m)zT (t−m)}

+ ϵ
m−l−1∑
j=0

W jAE{w(t−l−1− j)zT (t−m)} (A.12)

= Wm−lE{z(t−m)zT (t−m)}. (A.13)

We note that each element of the summation term in (A.12) is zero since the

vector z(t − m) is uncorrelated with the future noise vectors. The second term
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in (A.10) is:

E{z(t− l)wT (t−m)} = E{z(t−m+ (m− l))wT (t−m)}

= Wm−lE{z(t−m)wT (t−m)}

+ ϵ

m−l−1∑
j=0

W jAE{w(t−l−1− j)wT (t−m)}

= ϵWm−l−1AE{w(t−m)wT (t−m)}.

We use the fact that z(t − m) is uncorrelated of the noise w(t − m), and noise

vectors are spatially uncorrelated. By the same token, the third term in (A.10)

is:

E{w(t− l)zT (t−m)} = 0.

The last term, which is the covariance of the error terms is zero unless l = m.

Combining each term given above, we verify the results given in Table 2.1.

A.3 Calculation of E{z(t)z̃T (t−m)}

In this section, we calculate the correlation between the state vector at time (t),

and the noise vector at time (t −m), m ≥ 1. By using the equations derived in

Appendix A.2 and setting l = 0 and m ≥ 1:

E{z(t)z̃T (t−m)} = E{z(t)
(
zT (t−m) + wT (t−m)

)
}

= WmE{z(t−m)zT (t−m)}

+ ϵWm−1AE{w(t−m)wT (t−m)}.
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APPENDIX B

APPENDIX OF CHAPTER 3

B.1 Proof of Lemma 9

We first note that by Lemma 7, the network will reach to a consensus if and

only if E{w2
i (t)} → 0 as t → ∞ ∀i ∈ V , i.e., quantization noise variances at each

sensor converges to zero. In our special case where the network has a regular

structure, we have already discussed that E{w2
i (t)} = E{w2

j (t)}, ∀i, j ∈ V , and

these quantities are also equal to υ(t) in (3.16). Therefore, the network will reach

to a consensus if and only if υ(t) approaches zero in the limit.

Without loss of generality, we assume that ω2
i > 0, ∀i ∈ V . We partition the

matrix H (3.16) as:

H =

 d bT

c U

 , (B.1)

where,

U =



ω2
2 0 . . . ω2

2

0 ω2
3

... ω2
3

0 . . . ω2
N ω2

N

CK(ω2−1)2

N22R
. . . . . .

CK
∑N

j=2(ωj−1)2

N22R


, bT =



0

0

...

1



T

, c =



0

0

...

0


, (B.2)

d = 1. (B.3)

We first note that the eigenvalues of H is the union of the eigenvalues of d and

U [44]. Moreover, the partition U is an irreducible non-negative matrix. The

following lemma is due to Horn et.al. [44].
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Lemma 36 Given a non-negative square matrix U ∈ RN×N , and a non-negative vector

z ∈ RN ≥ 0, z ̸= 0, if there exists α ≥ 0 such that:

Uz < αz,

then, the largest eigenvalue of U in magnitude is strictly less than α.

In the following, we will try to construct a z vector such that Uz < z, and thus

show that the largest eigenvalue of U (in magnitude) is strictly less than one.

We construct z as follows:

zi =


1

ω2
i+1

if i ∈ {1, . . . , N − 1}

minj∈V ′
1−ω2

j

ω4
j

if i = N,
(B.4)

where V ′ = {2, . . . , N}. With some straightforward algebra and assuming that

R > log

(
CK

maxi∈V ′(ωi − 1)2 maxi∈V ′ ω4
i

mini∈V ′ ω2
i mini∈V ′ 1− ω2

i

+ 4

)
, (B.5)

one can show that Hz < z. Therefore, by Lemma 36, all of the eigenvalues of the

partition U is strictly less than one under a mild condition on the quantization

rate R. Therefore, H matrix has a unique eigenvalue with value one and the rest

are strictly less than one (B.1).

At this point, we note that the eigenvector corresponding to the eigenvalue

one is equal to [1 0 0 . . . 0]T . Therefore, limt→∞H t has all rows equal to zeros

except the first row. Since the last row of the matrix converges to all zeros and

limt→∞ v(t) = [limt→∞H t]N+1Y (0) by (3.15), then limt→∞ v(t) = 0.

Finally, we note that if there exists an index i such that ω2
i = 0, zi can be taken

as zero, and node i can be removed from the set V ′.
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B.2 Proof Lemma 10

Without loss of generality, we will assume that ω2
i > 0,∀i ∈ V . We first note that

by (3.15),(3.16) and (3.21):

δ∞ = lim
t→∞

1

N

t−1∑
l=0

υ(t) =
1

N

[(
∞∑
t=0

H t

)
Y (0)

]
N+1

. (B.6)

A careful analysis shows that for a given t ≥ 1 and 1 ≤ j ≤ N , the j-th entry of

the last row of H t is:

[H t]N+1,j =
CK(1− ωj)

2ω
2(t−1)
j

N22R
+O

(
1

(22RN)2

)
. (B.7)

For sufficiently large N , infinite summation of the noise variances are equal to:
∞∑
t=0

υ(t) =
CK

N22R

{
N∑
j=1

(
(1− ωj)

2

∞∑
t=0

ω2t
j

)
[Y (0)]j

+

(
N∑
j=1

(1− ωj)
2

∞∑
t=0

ω2t
j + 1

)
[Y (0)]N+1

}. (B.8)

Recall that

[Y (0)]j = σj(0); [Y (0)]N+1 = v(0); v(0) =
CK

N22R

N∑
j=1

σj(0). (B.9)

One can note that the second summation term in (B.8) is (O(2−4R)) and neg-

ligible with respect to the first term (O(2−2R)) for sufficiently large R. Hence,

assuming ωj ̸= 0, ∀j ≥ 2 and using infinite geometric series equality, (B.8) re-

duces to:
∞∑
t=0

υ(t) =
CK

N22R

(
N∑
j=2

(1− ωj)
2

1− ω2
j

σj(0)

)
. (B.10)

B.3 Proof of Corollary 2

Note that σj(0) ≥ 0,∀j and h(u)/g(u) ≤ (suph(u))/g(u) for positive function g(·)

where u ∈ U with U denoting the range of u. Having these in mind, note that
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|ωj| < 1 ⇒ 1 − ω2
j > 0, ∀j ≥ 2 and observe the following set of inequalities to

arrive at the claimed bound

δ∞ =
CK

N222R

(∑
j∈V ′

(1− ωj)
2

1− ω2
j

σj(0)

)
(B.11)

<(a) 4CK

N222R

(∑
j∈V ′

1

1− ω2
j

σj(0)

)
(B.12)

≤(b) 4CK

N222R
1

1− ω2
2

∑
j∈V ′

σj(0) (B.13)

<(c) 4CK

N22R
1

1− ω2
2

max
j ̸=1

σj(0) (B.14)

where (a) and (b) follow from the fact that |ωj| < 1 ⇒ |1− ωj|2 < 4, ∀j ≥ 2, and

that ω2 ≥ |ωj|, respectively. Finally, in (c), we simply note that (N − 1)/N < 1.

B.4 Proof Lemma 11

First we characterize the second largest eigenvalue of the connectivity matrix of

a k- regular graph. Define A1 as the (0, 1) adjacency matrix of a 1 − D regular

graph with
√
N vertices where two vertices are connected if distance between

them is less than k/
√
N . Define B = I√N + A1 where I√N is the (

√
N ×

√
N )

identity matrix. The eigenvalues of B matrix can be represented as a function of

the eigenvalues of A1 matrix as:

λi(B) = λi(A1) + 1. (B.15)

We can write adjacency matrix of the two-dimensional graph with connectivity

rule k/
√
N as:

A2 = B ⊗B − I. (B.16)
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The eigenvalues of A2 are given for 1 ≤ i, j ≤
√
N :

λij(A2) = λi(B)λj(B)− 1 = (λi(A1) + 1)(λj(A1) + 1)− 1 (B.17)

=

(
1 + 2

k∑
l=1

cos(2πl i/
√
N)

)(
1 + 2

k∑
l=1

cos(2πl j/
√
N)

)
− 1. (B.18)

Given A2, the connectivity matrix of the network is equal to:

W = IN − ϵ(diag(A2)− A2). (B.19)

Then, the eigenvalues of the connectivity matrix can be written as:

λij(W ) = 1− ϵ (4k(k + 1)− λij) (B.20)

= 1− ϵ4k(k + 1) (B.21)

− ϵ

(
1 + 2

k∑
l=1

cos(2πl i/
√
N)

)(
1 + 2

k∑
l=1

cos(2πl j/
√
N)

)
+ ϵ. (B.22)

It is easy to check from the properties of cos(·) function that the above equation

attains its maximum when (i =
√
N, j =

√
N), moreover the second largest

value for (i =
√
N, j =

√
N − 1) or (i =

√
N − 1, j =

√
N). The second largest

eigenvalue, thus, is given by

λ2(W ) = 1− ϵ4k(k + 1) (B.23)

− ϵ

(
1 + 2

k∑
l=1

cos(2πl)

)(
1 + 2

k∑
l=1

cos(2πl (
√
N − 1)/

√
N)

)
+ ϵ (B.24)

= 1− ϵ

(
4k(k + 1)− (1 + 2k)

(
1 + 2

k∑
l=1

cos(2πl (
√
N − 1)/

√
N)

)
+ 1

)
(B.25)

= 1− ϵ

(
4k(k + 1)−

(
2k + 2(2k + 1)

k∑
l=1

cos
(
2πl/

√
N
)))

(B.26)

= 1− ϵ

[
2(2k + 1)

(
k +

k∑
l=1

cos
(
2πl/

√
N
))]

. (B.27)
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In the above, 4k(k + 1) is the number of neighbors for a given k ≥ 1 and 0 <

ϵ ≤ (4k(k + 1))−1. Note that for k ≪
√
N , using Taylor expansion for the cos(·)

function, we find that ω2 = 1−O(k2/N) indicating that δ∞ = O(1/k2) by (3.23).

B.5 Proof of Equation (3.30)

Without loss of generality we will assume that ω2
j > 0, j ∈ V . Using equations

(3.13) and (3.14), we express noise variances in terms of current state variances

as:

υ(t) =
CK

N22R(t)

N∑
j=2,ωj ̸=0

(ωj − 1)2

ω2
j

σj(t). (B.28)

Then, with some algebra ratio of two consecutive noise variances is:

β =
υ(t+ 1)

υ(t)
= 2−2R(t+1)

22R(t)

∑N
j=2,ωj ̸=0(ωj − 1)2σj(t)∑N
j=2,ωj ̸=0

(ωj−1)2

ω2
j

σj(t)
+

CK

N

N∑
j=2

(ωj − 1)2

 .

(B.29)

This implies that quantization rates satisfying bounded convergence follow the

non-linear recursion:

22R(t+1) =
1

β

22R(t)

∑N
j=2(ωj − 1)2σj(t)∑N
j=2

(ωj−1)2

ω2
j

σj(t)
+

CK

N

N∑
j=2

(ωj − 1)2

⇒ (B.30)

R(t+ 1) =
1

2
log

22R(t)

∑N
j=2,ωj ̸=0(ωj − 1)2σj(t)∑N
j=2,ωj ̸=0

(ωj−1)2

ω2
j

σj(k)
+

CK

N

N∑
j=2

(ωj − 1)2

 (B.31)

− 1

2
log β. (B.32)
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B.6 Proof Lemma 12

If we take the limit of both sides of (3.30):

lim
t→∞

R(t+ 1) = lim
t→∞

1
2
log

22R(t)

∑N
j=2,ωj ̸=0(ωj − 1)2σj(t)∑N
j=2,ωj ̸=0

(ωj−1)2

ω2
j

σj(t)
+

CK

N

N∑
j=2

(ωj − 1)2


(B.33)

− 1

2
log β (B.34)

=
1

2
log

 lim
t→∞

22R(t)

∑N
j=2,ωj ̸=0(ωj − 1)2σj(t)∑N
j=2,ωj ̸=0

(ωj−1)2

ω2
j

σj(t)

+
CK

N

N∑
j=2

(ωj − 1)2


(B.35)

− 1

2
log β. (B.36)

Since the rest of the terms are constants and log{.} is continuous function, we

focus on:

lim
t→∞

22R(t)

∑N
j=2,ωj ̸=0(ωj − 1)2σj(t)∑N
j=2,ωj ̸=0

(ωj−1)2

ω2
j

σj(t)

 = 2limt→∞ 2R(t) lim
t→∞

∑N
j=2,ωj ̸=0(ωj − 1)2σj(t)∑N
j=2,ωj ̸=0

(ωj−1)2

ω2
j

σj(t)
.

(B.37)

Assuming both limits exist on the left hand side of the equality, the limit of

multiplication can be written as multiplication of the limits. We denote the limit

of the rates as R⋆,i.e 2limt→∞ 2R(t) = 22R
⋆ . To calculate the second term, we make

the following observation in (3.25):

σj(t)

ω2
j

− σj(t− 1) = βt−1υ(0) ∀ ωj ̸= 0. (B.38)

Then by (B.38):

σj(t)

ω2
j

− σj(t− 1) = β

(
σj(t− 1)

ω2
j

− σj(t− 2)

)
. (B.39)

181



Therefore, state covariance matrix eigenvalues follow a second order differential

equation:

σj(t)− (β + ω2
j )σj(t− 1) + ω2

jβσj(t− 2) = 0 (B.40)

which has the following solution given (β ̸= ω2
j ∀ j ∈ {2, . . . , N})1

σj(t) = Aj(ω
2
j )

t +Bj(β)
t. (B.41)

A and B are calculated using the initial conditions:

Aj = σj(0)−
ω2
jυ(0)

β − ω2
j

Bj =
ω2
j υ(0)

β − ω2
j

. (B.42)

We note that the second term in (B.37) has two distinct cases:

K⋆ = lim
t→∞

∑N
j=2,ωj ̸=0(ωj − 1)2σj(t)∑N
j=2,ωj ̸=0

(ωj−1)2

ω2
j

σj(t)
=



∑N
j=2,ωj ̸=0(ωj−1)2Bj∑N
j=2,ωj ̸=0

(ωj−1)2

ωj=
2 Bj

β > maxj ω
2
j

maxj ω
2
j β < maxj ω

2
j


.

(B.43)

Then by plugging (B.43) into (B.36), asymptotic rate is:

lim
t→∞

R(t) =
1

2
log

(
CK

N(β −K⋆)

N∑
j=2

(ωj − 1)2

)
. (B.44)

Moreover, (β −K⋆ > 0) is a necessary constraint since (R(t) > 0 ∀ t). Therefore

(β < maxjω
2
j ) is not a valid choice for β.

B.7 Proof of Lemma 13

To prove that R⋆ is decreasing in the region of interest, we need to show β −K⋆

is an increasing function of β. In other words, we simply show Q′(β) > 0 in this

1If β = ω2
j for some j, then the solution is simply in the form of σj(t) = Aj(ω

2
j )

t +Bjt(β)
t.
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region where Q(β) = β −K⋆. To simplify the presentation, let us introduce the

following notation:

N(β, ω) =
N∑

j=2,ωj ̸=0

(1− ωj)
2ω2

j

β − ω2
j

(B.45)

and

D(β, ω) =
N∑

j=2,ωj ̸=0

(1− ωj)
2

β − ω2
j

. (B.46)

Now, one can check that we have

Q′(β) = 1− N ′(β, ω)D(β, ω)−D′(β, ω)N(β, ω)

D2(β, ω)
(B.47)

where we denote N ′(β, ω) = ∂N(β, ω)/∂β and D′(β, ω) = ∂D(β, ω)/∂β. Since

we need to have Q′(β) > 0, consider the followings:

1− N ′(β, ω)D(β, ω)−D′(β, ω)N(β, ω)

D2(β, ω)
> 0 (B.48)

⇒D2(β, ω)−N ′(β, ω)D(β, ω) +D′(β, ω)N(β, ω)

D2(β, ω)
> 0 (B.49)

⇒D2(β, ω)−N ′(β, ω)D(β, ω) +D′(β, ω)N(β, ω) > 0 (B.50)

where the last line follows from the fact that D2(β, ω) > 0. Rearranging

the term, we see that the above is satisfied if D(β, ω)(D(β, ω) − N ′(β, ω)) >

−D′(β, ω)N(β, ω). Now consider the followings:

D(β, ω)(D(β, ω)−N ′(β, ω)) = D(β, ω)

 N∑
j=2,ωj ̸=0

(1− ωj)
2

β − ω2
j

+
N∑

j=2,ωj ̸=0

(1− ωj)
2ω2

j

(β − ω2
j )

2


(B.51)

= D(β, ω)
N∑

j=2,ωj ̸=0

(1− ωj)
2β

(β − ω2
j )

2
= −β D(β, ω)D′(β, ω).

(B.52)

Since, β > ω2
j for all j ∈ {2, . . . , N}, it is clear that:

β D(β, ω) =
N∑

j=2,ωj ̸=0

(1− ωj)
2β

β − ω2
j

>
N∑

j=2,ωj ̸=0

(1− ωj)
2ω2

j

β − ω2
j

= N(β, ω). (B.53)
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Since −D′(β, ω) > 0, it follows:

−D(β, ω)D′(β, ω) > −βN(β, ω)D′(β, ω). (B.54)

Therefore, we have Q′(β) > 0, as claimed by the Lemma.

B.8 Proof of Lemma 14

Let R(β0) = [ω2
2 + ϵ, 1 − ϵ] denote the β0 range of interest. Note that Q(β) is

defined and the limit exists for all β0 ∈ R(β0), i.e. limβ0∈R(β0)→β Q(β0) = Q(β),

thus, Q(β0) is continuous in R(β0). Moreover, Q(β0) is an increasing function in

R(β0) by Lemma 13. Hence, it suffices to find the necessary conditions to satisfy

Q(β0) < 0 for β0 = ω2 + ϵ and Q(β0) > 0 for β0 = 1 − ϵ to show that there is a β

such that ω2
2 + ϵ < β < 1− ϵ and Q(β) = 0.

Let us consider Q(β0|β0=ω2
2+ϵ) = Q(ω2

2 + ϵ), for small ϵ > 0,

Q(ω2
2 + ϵ) = ω2

2 + ϵ−K(ω)−

N∑
j=2,ωj≠0

(1− ωj)
2ω2

j

ω2
2 + ϵ− ω2

j

N∑
j=2,ωj ̸=0

(1− ωj)
2

ω2
2 + ϵ− ω2

j

. (B.55)

After some algebraic manipulations, the above reduces to

Q(ω2
2 + ϵ) =

N∑
j=2,ωj ̸=0

(1− ωj)
2

ω2
2 + ϵ− ω2

j

(ω2
2 + ϵ−K(ω)− ω2

j )

N∑
j=2,ωj ̸=0

(1− ωj)
2

ω2
2 + ϵ− ω2

j

. (B.56)

Since g(u)/h(u) < 0 ⇒ g(u) < 0 for h(u) > 0, we need

N∑
j=2,ωj ̸=0

(1− ωj)
2

ω2
2 + ϵ− ω2

j

(ω2
2 + ϵ−K(ω)− ω2

j ) < 0 ⇒ Q(ω2
2 + ϵ) < 0. (B.57)
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Note that (1− ωj)
2/(ω2

2 − ω2
j + ϵ) > 0, for all j = 2, 3, . . . , N since |ω2| > |ωj| and

|ωj| < 1 for all j = 2, 3, . . . , N . Thus, a sufficient condition for Q(ω2
2 + ϵ) < 0 is

given by

ω2
j > ω2

2 + ϵ−K(ω) ⇒ Q(ω2
2 + ϵ) < 0 (B.58)

for j = 2, 3, . . . , N . Similarly, considering Q(β0|β0=1−ϵ) = Q(1 − ϵ) and the case

Q(1 − ϵ) > 0 shows that a sufficient condition for this case, using steps similar

to above, yields

ω2
j < 1− ϵ−K(ω) ⇒ Q(1− ϵ) > 0 (B.59)

for j = 2, 3, . . . , N . Now, combining (B.58) and (B.59), and recalling that Q(β0)

is continuous in R(β0) gives the sufficient conditions to have at least one root in

R(β0) such that Q(β) = 0 where β ∈ R(β0). Since Q(β) is an increasing function

in R(β0), the root is unique.

B.9 Proof of Lemma 15

In the subsequel, we assume that β is such that limk→∞R(k) = 0. All the sum-

mation are over non-zero ωj’s, they are omitted from the summation in order

not to have a cumbersome notation. In addition, let us denote

K(k) ,
∑N

j=2(ωj − 1)2σj(k)∑N
j=2

(ωj−1)2

ω2
j

σj(k)
(B.60)

and ϵ(k) , K(k)−K⋆. Substituting σj(k) and K⋆ with their equivalent terms as

given in Appendix B.8, we obtain the following,

ϵ(k) =

∑N
j=2 A

′
j(ω

2
j )

k +B′
jβ

k∑N
j=2 A

′′
j (ω

2
j )

k +B′′
j β

k
−
∑N

j=2 B
′
j∑N

j=2 B
′′
j

(B.61)

where we denote A′
j , (ωj − 1)2Aj , B′

j , (ωj − 1)2Bj , A′′
j , (ωj − 1)2/(ω2

j )Aj

and B′′
j , (ωj − 1)2/(ω2

j )Bj . Moreover, let B′ ,
∑N

j=2 B
′
j and B′′ ,

∑N
j=2 B

′′
j . The
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above, after some algebraic manipulations, reduces to

ϵ(k) =

∑N
j=2(B

′′A′
j −B′A′′

j )(ω
2
j )

k

(B′′)2βk +
∑N

j=2 B
′′A′′

j (ω
2
j )

k
(B.62)

≤
(ω2

2)
k
∑N

j=2(B
′′A′

j −B′A′′
j )

(B′′)2βk +
∑N

j=2 B
′′A′′

j (ω
2
j )

k
(B.63)

≤
(ω2

2)
k
∑N

j=2(B
′′A′

j −B′A′′
j )

(B′′)2βk + (ω2
N)

k
∑N

j=2 B
′′A′′

j

. (B.64)

Of note is that, we assume B′′A′
j −B′A′′

j > 0 and B′′A′′
j > 0 for all j ∈ {1, . . . , N}

in (B.63). Recall that β > ω2
2 , thus, for large enough k, the second term in the

denominator is negligible. Thus, we have:

ϵ(k) ≤
(ω2

2)
k
∑N

j=2(B
′′A′

j −B′A′′
j )

(B′′)2βk
(B.65)

= C

(
ω2
2

β

)k

(B.66)

where C ,
∑N

j=2(B
′′A′

j − B′A′′
j )/(B

′′)2. Since β > ω2
2 ⇒ ω2

2/β < 1, ϵ(k) forms

a geometric series. Thus, K(k) achieves its limit K⋆, at the worst case, with a

geometric rate.

In the following,we utilize asymptotic behavior of ϵ(k) to prove the sum-rate

is finite. For notational purposes, we denote:

M(k) , 22R(k) (B.67)

L , C

N

N∑
j=2

(ωj − 1)2. (B.68)

Then, rate recursion given in (3.30) becomes:

M(k + 1) = M(k)
K(k)

β
+

L

β
(B.69)

where k ≥ 1. Since
∑∞

k=0 R(k) < ∞ if and only if Π∞
k=0M(k) < ∞, we focus on

the latter identity. It is clear that limk→∞M(k) = 1 and limk→∞K(k) = K⋆ (K⋆
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in (3.32)) for the specific value of β. We will upper bound M(k)− limk→∞M(k)

difference as follows:

M(k + 1)− lim
k→∞

M(k) = M(k)
K(k)

β
+

L

β
− 1 (B.70)

= M(1) Πk
j=1

K(j)

β
+

β −K⋆

β

(
1 +

k−2∑
j=0

Πj
i=0

K(k − i)

β

)
− 1 (B.71)

= M(1) Πk
j=1

K(j)

β
+

β −K⋆

β

(
k−2∑
j=0

(Πj
i=0

K(k − i)

β
− K⋆j+1

βj+1
) +

k−1∑
j=0

(
K⋆

β
)j

)
− 1

(B.72)

= M(1) Πk
j=1

K(j)

β
+

β −K⋆

β

1−
(

K⋆

β

)k
1− K⋆

β

+
k−2∑
j=0

(Πj
i=0

K(k − i)

β
− K⋆j+1

βj+1
)

− 1

(B.73)

= M(1) Πk
j=1

K(j)

β
+

β −K⋆

β

k−2∑
j=0

(Πj
i=0

K(k − i)

β
− K⋆j+1

βj+1
)−

(
K⋆

β

)k

(B.74)

≤ M(1) Πk
j=1

K(j)

β
+

β −K⋆

β

k−2∑
j=0

(Πj
i=0

K(k − i)

β
− K⋆j+1

βj+1
) (B.75)

≤ M(1) Πk
j=1

K(j)

β
+ η

k∑
j=1

e−k2k + ηe−k k−1/2 (B.76)

≤ M(1) Πk
j=1

K(j)

β
+ η(

e

2
)−kk + ηkek

2−k/2 (B.77)

≤ M(1)κνk + ηk(
e

2
)−k + ηkek

2−k/2 (B.78)

<
1

k
(B.79)

where η, κ some positive constants and ν ∈ (0, 1). (B.71) follows from the fact

that L = (β −K⋆)/β and recursion on M(k). In (B.72), we add and subtract a

geometric series, and we utilize the geometric sum formula in (B.73). Of note is

that K⋆/β < 1. (B.75) follows the fact that K⋆/β > 0 and, (B.76) follows since

each summation term in (B.75) is upper bounded by ηΠj
i=0ϵ(k − i)/β + η2ke−k

and ϵ(k)/β ≤ e−k for large k. In (B.78), we use the fact that K⋆/β < 1, therefore
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∃N > 0 such that K(k)/β < 1 ∀k > N . It is clear that both terms in (B.78) are

strictly less than 1/k.

Therefore, each M(k) term approaches to 1,its limit, faster than 1/k for all

k > N where N > 0 is a sufficiently large integer. It follows that Π∞
k=0M(k) is

bounded. Thus,
∑∞

k=0 R(k) < ∞ as claimed by the Lemma.
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APPENDIX C

APPENDIX OF CHAPTER 4

C.1 Proof of Lemma 17

First we note that

Wjk =
1

N

N∑
i=1

W
(i)
jk . (C.1)

Then, by (4.5), we have

Wjk =


1− |Nj |

N
+

γ|Nj |
N

k = j

1− 1−γ
N

k ∈ Nj

0 elsewhere

. (C.2)

Therefore (4.9) follows. Note that (4.9) is the representation of the weight matrix

in terms of graph Laplacian L, i.e, W = I − ηL where L = diag{Φ1} − Φ and

η = (1 − γ)/N . Since 0 < η < 1/(N − 1) for all γ ∈ (0, 1), W satisfies the

conditions given in (4.10).

C.2 Proof of Theorem 2

At this stage of development, we just need to put the pieces together. First,

we introduce a Lemma concerning convergence of random sequences that will

prove useful to prove the above theorem.

Lemma 37 [77] Consider a sequence of nonnegative random variables {V (t)}t≥0 with

E{V (0)} < ∞. Let

E{V (t+ 1)|V (t), . . . , V (1), V (0)} ≤ cV (t) (C.3)
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where 0 < c < 1. Then, V (t) almost surely converges to zero, i.e.,

Pr
{
lim
t→∞

V (t) = 0
}
= 1. (C.4)

We have almost sure convergence if E{||β(t + 1)||22|β(t), β(t − 1), . . . , β(0)} ≤

c||β(t)||22, for some 0 < c < 1 since

Pr
{
lim
t→∞

x(t) = c1
}
= Pr

{
lim
t→∞

∥β(t)∥22 = 0
}
. (C.5)

However, given β(t), we have, as can be seen in the proof of Lemma 18, that,

E{||β(t+ 1)||22|β(t), β(t− 1), . . . , β(0)} = E{||β(t+ 1)||22|β(t)}. (C.6)

From the proof of Lemma 18 and Proposition 2, we know that

E{||β(t+ 1)||22|β(t)} ≤ λ1(E{W (t)(I − J)W (t)})||β(t)||22 (C.7)

where 0 < λ1(E{W (t)(I − J)W (t)}) < 1. Thus, using the Lemma re-

garding the convergence of nonnegative random sequences, we have that

Pr {limt→∞ ∥β(t)∥22 = 0} = 1 , completing the proof.

C.3 Proof of Lemma 19

Let dj = |Nj| be the degree of node j. From the per-node weight matrices, we

obtain

{W (i)TW (i)}jk =



1 + di(1− γ)2 k = j = i

γ(1− γ) k ∈ Ni, j = i

γ2 j ∈ Ni, k = j

γ(1− γ) j ∈ Ni, k = i

1 j ̸∈ Ni, k = j

0 otherwise

, (C.8)
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where W (i) denotes the weight matrix corresponding to the case where node i’s

clock ticks. Therefore, the average is

W ′
jk =



1− dj
N
(1− (1− γ)2 − γ2) k = j

2γ(1−γ)
N

k ∈ Nj

2γ(1−γ)
N

j ∈ Nk

0 otherwise

. (C.9)

Then, (4.24) follows. As we noted before, (4.24) is the representation of W ′ in

terms of graph Laplacian D − Φ. Since 0 < 2γ(1− γ)/N < 1/N − 1 for all γ, W ′

satisfies the properties given in (4.10).

Turning now to W ′′, we first calculate

{
1TW (i)

}
j
=


1 j /∈ Ni ∪ {i}

1 + di(1− γ) j = i

γ j ∈ Ni

(C.10)

Then we find that

(
W (i) T11TW (i)

)
jk

=



1 j, k /∈ Ni ∪ {i}

(1 + di(1− γ))2 j = k = i

γ2 j, k ∈ Ni

γ j ∈ Ni, k /∈ Ni or j /∈ Ni, k ∈ Ni

γ(1 + di(1− γ)) j = i, k ∈ Ni or k = i, j ∈ Ni

1 + di(1− γ) j = i, k /∈ Ni or k = i, j /∈ Ni

(C.11)

Now we can take expectations. For each pair (j, k) we can calculate the ex-

pectation over i. Note that (Φ2)jk is the number of paths of length 2 from j to

k or alternatively the number of i which are in the neighborhood of j and k.

Consider first the case where j ̸= k.
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• There are (Φ2)jk values for i for which j, k ∈ Ni.

• There are dj + dk − 2(Φ2)jk values for which i ̸= j, k and exactly one of j

and k is in Ni if j and k are are not adjacent. There are dj + dk − 2− 2(Φ2)jk

values if j and k are adjacent.

• Note that i = j once and i = k once. Of the last two alternatives in (C.11),

we have the former if Φjk = 1 and the latter if Φjk = 0.

• If j and k are not adjacent, there are N − 2− dj − dk + (Φ2)jk values of i for

which j, k /∈ Ni ∪ {i}. If they are adjacent, there are N − dj − dk + (Φ2)jk

such values

Then we have for j ̸= k that:

N2W ′′
jk = γ2(Φ2)jk + γ(dj + dk − 2(Φ2)jk)(1− Φjk) + γ(dj + dk − 2− 2(Φ2)jk)Φjk

+ γ(2 + (1− γ)(dj + dk))Φjk + (2 + (1− γ)(dj + dk))(1− Φjk)

+ (N − 2− (dj + dk) + (Φ2)jk)(1− Φjk) + (N − dj − dk + (Φ2)jk)Φjk

=
(
(1− γ)2Φ2 +N2J − (1− γ)2(DΦ + ΦD)

)
jk

(C.12)

The matrix above has the following values on the diagonal:

(1− γ)2dj +N = (NI + (1− γ)2D)jj . (C.13)

If j = k then for 1 value of i we have i = j = k, for dj values of i we have

j, k ∈ Ni, and for N − dj − 1 values of i we have j, k /∈ Ni ∪ {i}. Thus on the

diagonal we should have

N2W ′′
jj = (1 + (1− γ)dj)

2 + γ2dj + (N − 1− dj) (C.14)

= (NI + (1− γ)2D2 + (1− γ)2D)jj . (C.15)
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So we must add the correction term (1−γ)2D2 to (C.12) to get the correct matrix:

N2E
[
W TJW

]
= (1− γ)2Φ2 +N2J − (1− γ)2(DΦ + ΦD) + (1− γ)2D2

= (1− γ)2(D − Φ)2 +N2J . (C.16)

C.4 Proof of Lemma 20

It is easy to see that α(t+1) = W (t)α(t), yielding the following recursion for the

second moment:

E{α(t+ 1)Tα(t+ 1)|α(t)} = α(t)TE{W (t)TW (t)}α(t) (C.17)

= α(t)TW ′α(t) (C.18)

= y(t)TΛy(t) , (C.19)

where we utilize the eigendecomposition of W ′ = V ΛV T and define y(t) =

V Tα(t). Given α(t), we can find y(t), so we have the following:

E{α(t+ 1)Tα(t+ 1)|α(t)} =
N∑
i=1

λi(W
′)|yi(t)|2 (C.20)

= |y1(t)|2 +
N∑
i=2

λi(W
′)|yi(t)|2 (C.21)

= (1− λ2(W
′))|y1(t)|2

+ λ2(W
′)|y1(t)|2 +

N∑
i=2

λi(W
′)|yi(t)|2 (C.22)

≤ (1− λ2(W
′))|y1(t)|2 + λ2(W

′)
N∑
i=1

|yi(t)|2 (C.23)

= (1− λ2(W
′))|y1(t)|2 + λ2(W

′)∥y(t)∥22 (C.24)

= (1− λ2(W
′))∥Jα(t)∥22 + λ2(W

′)∥α(t)∥22 , (C.25)
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where the last line follows from the facts that ∥y(t)∥22 = y(t)Ty(t) =

α(t)TV V Tα(t) = α(t)Tα(t) = ∥α(t)∥2 due to unitary decomposition and

|y1(t)|2 = |vT1 α(t)|2 = (N)−1α(t)T11Tα(t) = α(t)TJα(t) = ∥Jα(t)∥22 due to the

relation v1 = (
√
N)−11. This concludes the proof of the first item.

Let us now consider the second item. Note that J is a paracontracting matrix

with respect to ℓ2 norm since its symmetric and all its eigenvalues are in (−1, 1].

Thus, we have

Jx ̸= x ⇔ ∥Jx∥22 < ∥x∥22. (C.26)

Thus, if we can show that Jα(t) = α(t) if and only if x(t) = c1 for some c ∈ R,

we are done. If x(t) = c1, then,

Jα(t) = Jx(t)− Jx(0) = x(t)− Jx(0) = α(t) , (C.27)

where we used the facts that J2 = J and Jx(t)|x(t)=c1 = x(t). Now, if α(t) =

Jα(t), then αi(t) = (N)−1
∑N

i=1 αi(t). Thus, α(t) = α(t)1. Since

x(t) = α(t) + Jx(0) = α(t)1+ x(0)1 = (α(t) + x(0))1 , (C.28)

we are done. Therefore, the proof of the second item is complete.

C.5 Proof of Proposition 3

One can check that the following holds:

E{∥Jα(t)∥22} = E{∥α(t)∥22} − E{∥β(t)∥22}. (C.29)

Substituting the above into the claim (i) of Lemma 20, we obtain

E{∥α(t+ 1)∥22} ≤ E{∥α(t)∥22} − (1− λ2(W
′))E{∥β(t)∥22}. (C.30)
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To upper bound the above, we need to lower bound E{∥β(t)∥22} term. Utilizing

the Jensen’s inequality, we have

E{∥β(t)∥22} ≥ ∥E{β(t)}∥22 (C.31)

= ∥E{x(t)− Jx(t)}∥22 (C.32)

= ∥(W t − J)x(0)}∥22 , (C.33)

where the last line follows from Lemma 17. Moreover, utilizing the properties

of W , the above reduces to

E{∥β(t)∥22} ≥ ∥(W t − J)α(0)}∥22 (C.34)

= α(0)T (W t − J)T (W t − J)α(0) (C.35)

= α(0)T (W 2t − J)α(0) (C.36)

= α(0)T (W − J)2tα(0). (C.37)

Note that (W − J) is symmetric since W and J are symmetric. Thus, utilizing

the unitary eigendecomposition, (W −J) = UΛUT , and defining z(0) = UTα(0),

we obtain the following:

E{∥β(t)∥22} ≥ α(0)TUΛ2tUTα(0) (C.38)

= z(0)TΛ2tz(0) (C.39)

=
N∑
i=1

λ2t
i (W − J)|zi(0)|2. (C.40)

We need the following lemma before we continue the proof.

Lemma 38 All the eigenvalues of W − J except zero, is lower bounded by γ, i.e.,

λi(W − J) ≥ γ (C.41)

for all i ∈ {1, 2, . . . , N − 1}.
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Proof Note that the vector 1 is an eigenvector of W−J = I−(1−γ)/NL−J with

eigenvalue 0. The vector 1 corresponds to the only nonzero eigenvalue of the

matrix J and the only zero eigenvalue for the Laplacian matrix L. Therefore the

eigenvectors of W −J are exactly the eigenvectors of L, and the k-th eigenvalue

of W − J for k = 1, 2, . . . N − 1 is:

λk(W − J) = 1− 1− γ

N
λN−k(L) ≥ γ (C.42)

where the inequality follows from the fact that λ(L) ≤ N . Thus, the proof is

complete.

Since λ(W − J) ≥ 0 by the above lemma, λN(W − J) = 0 and zN(0) =

1Tα(0) = 0 by construction, the above reduces to

E{∥β(t)∥22} ≥
N−1∑
i=1

λ2t
i (W − J)|zi(0)|2 (C.43)

=
N∑
i=1

λ2t
i (W − J)|zi(0)|2 (C.44)

≥ λ2t
N−1(W − J)

N∑
i=1

|zi(0)|2 (C.45)

= λ2t
N−1(W − J)∥α(0)∥22. (C.46)

Substituting (C.46) into (C.30) yields

E{∥α(t+ 1)∥22} ≤ E{∥α(t)∥22} − (1− λ2(W
′))λ2t

N−1(W − J)∥α(0)∥22. (C.47)

Repeatedly utilizing the above, we obtain

E{∥α(t)∥22} ≤ ∥α(0)∥22

[
1−

(
(1− λ2(W

′))
t∑

j=0

λ2j
N−1(W − J)

)]
(C.48)

= ∥α(0)∥22
[
1−

(
(1− λ2(W

′))
1− λ2t+2

N−1(W − J)

1− λ2
N−1(W − J)

)]
, (C.49)

where the second line uses the geometric series. Now, taking the limit of the

above as t tends to infinity, we obtain the result of the proposition.
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C.6 Proof of Corollary 6

Let us first solve for the boundary cases. We consider the γ → 1 case since γ = 0

simply follows by replacing γ = 0 in the U∞(γ) expression (as is clear in the

remaininder of the proof). Thus, we have

lim
γ→1

U∞(γ) = ∥α(0)∥22 lim
γ→1

(
1− 1− λ2(W

′)

1− λ2
N−1(W − J)

)
(C.50)

= ∥α(0)∥22

(
1− lim

γ→1

2γ(1−γ)
N

λN−2(L)

1−
(
1− 1−γ

N
λ1(L)

)2
)

(C.51)

= ∥α(0)∥22

(
1− lim

γ→1

2γλN−2(L)

2λ1(L)− 1−γ
N

λ2
1(L)

)
, (C.52)

where the second line follows from the facts that λ2(W
′) = 1 − 2γ(1 −

γ)/NλN−2(L) and λN−1(W − J) = 1 − (1 − γ)/Nλ1(L) (See Appendix C.7) and

the last line follows from expanding the square. Of note is that γ = 0 follows

straight from (C.52) by replacing γ with zero. Note that for γ = 1, the limit of in-

terest reduces to, after substituting γ = 1 in the limit expression, the expression

stated in the Corollary.

Consider next the monotonicity of the upper-bound w.r.t. the mixing pa-

rameter. To prove this claim, we simply show that ∂U∞(γ)/∂γ < 0 for γ ∈ (0, 1).

Differentiating U∞(γ) w.r.t. γ and focusing on the numerator of the ∂U∞(γ)/∂γ

expression (since denominator is always positive and does not effect the sign),

after tedious algebraic steps, gives:

sgn

{
∂U∞(γ)

∂γ

}
= sgn

{
λ1(L)

N
− 2

}
. (C.53)

where sgn{·} denotes the sign operator. Since λ(L) < 2N for non-

superconnected graphs, it is easy to see that ∂U∞(γ)/∂γ < 0 for γ ∈ (0, 1).

The last claim simply follows by substituting the optimal mixing parameter
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expression into the upper bound expression.

C.7 Proof of Lemma 21

We would like to calculate the eigenvalue λ1(W
′ −W ′′). The matrix W ′ −W ′′ is

given by:

W ′ −W ′′ = I − J − 2γ(1− γ)

N
(D − Φ)− (1− γ)2

N2
(D − Φ)2 . (C.54)

First note that the vector 1 is an eigenvector of W ′ − W ′′ with eigenvalue 0.

The vector 1 corresponds to the only nonzero eigenvalue of the matrix J and

the only zero eigenvalue for the Laplacian matrix L = D − Φ. Therefore the

eigenvectors of W ′ − W ′′ are exactly the eigenvectors of D − Φ, and the k-th

eigenvalue of W −W ′′ for k = 1, 2, . . . N − 1 is:

λk(W −W ′′) = 1− 2γ(1− γ)

N
λN−k(L)−

(1− γ)2

N2
λN−k(L)

2 (C.55)

Thus to characterize λ1(W
′ − W ′′) we must characterize the second-smallest

eigenvalue of the Laplacian matrix L. The number λN−1(L) is sometimes called

the algebraic connectivity of the graph.

An upper bound on λN−1(L) will yield a lower bound on the largest eigen-

value of W ′ − W ′′. A result of Alon and Milman[7, Theorem 2.7] shows that

λN−1(L) is upper bounded by the following function of the diameter diam(G) of

the graph:

λN−1(L) ≤
8dmax

diam(G)2
log22N (C.56)

If the communication radius is chosen large enough, for the random geometric

graph with standard connectivity assumptions, dmax = Θ(logN) (see [16]). The
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diameter can be found as the number of hops to get from one corner to the

diagonally opposite corner, so it is Θ(
√

N/ logN). Thus the whole bound is:

λN−1(L) = O

(
log4N

N

)
. (C.57)

This gives the bound

λ1(W −W ′′) = 1−O

(
log4N

N2

)
. (C.58)

To upper bound λ1(W −W ′′) we need a nontrivial lower bound on λN−1(L).

A result of Mohar [67] gives this lower bound in terms of the diameter of the

graph. Mohar’s lower bound is:

λN−1(L) ≥
4

N · diam(G)
. (C.59)

Therefore

λN−1(L) = Ω

(√
logN

N3/2

)
, (C.60)

and

λ1(W −W ′′) = 1− Ω

(√
logN

N5/2

)
. (C.61)
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APPENDIX D

APPENDIX OF CHAPTER 5

D.1 Proof of Lemma 22

(1) We first note that W∞ is an idempotent matrix. Thus by using (5.3)

and (5.4):

W∞W∞ = W∞ ⇒ B′D′ = E ′ = 0.

Since B′ = 1/|SS|11T > 0 and D′ ≥ 0, the above equality holds if and only

if D′ = 0. The proof that G′ = 0 follows easily and therefore it is omitted.

(2) We first note that by the first part of the lemma, W∞ has the structure:

W∞ =


A′ 0 0

1/|SS|11T 0 0

C ′ F ′ P ′

 .

Since W∞W = W∞, then 1/|SS|11TD = 0. Since D is nonnegative, then

D = 0. Similarly, 1/|SS|11TG = 0 and G ≥ 0, thus G = 0.

(3) By noting once again W∞W = W∞, 1/|SS|11TA = 1/|SS|11T . Therefore,

1TA = 1T .

D.2 Proof of Lemma 23

We first prove that that if

lim
t→∞

[
t∑

l=0

Dt−lBAl

]
1:K

=
1

M
11T ,
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then,

lim
t→∞

[
t∑

l=0

Dt−lBA∞

]
1:K

=
1

M
11T .

Let’s denote by B′ = limt→∞
∑t

l=0 D
t−lBAl, and recall that B′ < ∞ exists by

W∞ < ∞ assumption. If we multiply both sides of the equality by A∞

B′A∞ =

(
lim
t→∞

t∑
l=0

Dt−lBAl

)
A∞

=

(
lim
t→∞

t∑
l=0

Dt−lBAlA∞

)
= lim

t→∞

t∑
l=0

Dt−lBA∞,

where the second equality follows from the fact that A∞ is a fixed matrix and

B′ < ∞ (therefore one can take A∞ inside the limit), and the third equality is

due to the fact that AlA∞ = A∞ ∀l ≥ 0. Since the column sum of A is constant

and equal to 1 (by Lemma 22) and A is a non-negative matrix, then λ = 1 is an

eigenvalue of A corresponding to eigenvector 1T [40]. Therefore, 1TA∞ = 1T .

Keeping that in mind, [B′A∞]1:K = 1/|SS|11TA∞ = 1/|SS|11T = [B′]1:K . This

concludes the first part of the proof.

Now, we show that, if limt→∞
[∑t

l=0 D
t−lBA∞]

1:K
= 1

M
11T , then

limt→∞
[∑t

l=0 D
t−lBAl

]
1:K

= 1
M
11T . Let’s denote B′ = limt→∞

∑t
l=0 D

t−lBA∞,

and B′ < ∞ exists by assumption. Then,

B′ = lim
t→∞

t∑
l=0

Dt−lBA∞

=

(
lim
t→∞

t∑
l=0

Dt−lBAlA∞

)
=

(
lim
t→∞

t∑
l=0

Dt−lBAl

)
A∞,

where the second equality follows from the fact that AlA∞ = A∞. To prove the

third equality, we first note that limt→∞
∑t

l=0 D
t−lBAl exists (although its value

may not be finite) since, each term in the expression is non-negative. Since A∞

does not have all zeros rows, each term in the matrix
(
limt→∞

∑t
l=0 D

t−lBAl
)
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is present in B′ with a strictly positive coefficient. Therefore, one may take A∞

outside of the limit. We also note that nonexistence of all zeros row in A∞ matrix

can be shown by considering the equality AA∞ = A∞.

Let’s define L′ =
(
limt→∞

∑t
l=0 D

t−lBAl
)
. Since W∞W∞ = W∞, then L′A∞+

D′L′ = L′. Noting that L′A∞ = B′ and the first K rows D′ matrix are all zeros

by the third condition of Theorem 3, the first K rows of L′ is equal to the first K

rows of B′. Therefore, limt→∞
[∑t

l=0 D
t−lBAl

]
1:K

= 1
M
11T . This concludes the

proof.

D.3 Proof of Lemma 24

We first note that the rank of a limiting matrix W∞ is equal to both the number of

eigenvalues of W that are equal to 1 and the number of eigenvalues of W∞ that

are equal to 1. Moreover, eigenvalues of W∞ are the union of the eigenvalues

of A∞ and D∞ since W∞ is in the block lower triangular form [44]. Since any

given source class SCi forms an irreducible sub-network, the largest eigenvalue

of ASCi
is equal to 1 (since column sum is equal to 1 by Lemma 22) and it is

unique in magnitude (due to irreducibility) [44]. Such an argument holds for all

source classes. Thus, the number of non-zero eigenvalues of A∞ = limt→∞At is

equal to the number of source classes. Therefore, this is a lower bound for the

rank of W∞.

To prove the upper bound, we first note that we can partition the network

into classes. Moreover, these classes are irreducible and disjoint by the defini-

tion. For a given class, the spectral radius upper bounded by 1 and the largest

eigenvalue is unique and equal to the spectral radius [44]. Therefore, W∞ can
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have at most # of classes non-zero eigenvalues.

D.4 Proof of Lemma 26

Given ρ(D) < 1, limt→∞Dt = 0 [40], and the fourth condition in the Theorem 3

simplifies to:

lim
t→∞

t∑
l=0

(
[Dl]1:KBA∞) = lim

t→∞

(
t∑

l=0

[Dl]1:K

)
BA∞

= [(I −D)−1]1:KBA∞ =
1

M
11T , (D.1)

where the third equality follows from the fact that limt→∞
∑t

l=0[D
l] = [(I−D)−1]

when ρ(D) < 1 [44]. (D.1) can be rewritten as:

R(I −D)−1BA∞ =
1

M
11T , (D.2)

where R ∈ RK×N with diagonal elements equal to one, and the rest are all equal

to zero. Since the rank of 1/M11T is one, then the rank of the multiplication

on the left hand side of the equality has to be equal to one. At this point, we

remind our readers the following well-known result regarding the rank of a

matrix multiplication:

Lemma 39 [66] If T is m×N and Q is N×p, then rank(TQ) ≥ rank(T )+rank(Q)−

N .

By noting that the ranks of R, (I − D)−1, A∞,11T are equal to K, N ,

# of source classes and 1 respectively, our result follows from (D.2).
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S1 S2 S3 S4

S5

Figure D.1: Source clustering due to W ⋆. Dashed line between S2 and S3
represents zero weight link. Cloud represents rest of the net-
work.

D.5 Proof of Lemma 27

Consider CAR F (SS,SD) and a network F (E). By hypothesis, the problem has

at least one feasible solution, namely W ⋆. If W ⋆ utilizes the minimal source class,

then the lemma is satisfied. Let us assume that W ⋆ does not utilize the minimal

class, i.e., it assigns zero weights to some of the existing links in between source

nodes. Without loss of generality, we assume that under minimal class the net-

work has only one class, and W ⋆ has two source classes since it assigns zero

weight to a link between a pair of source nodes. An example network is given

in Fig. D.1. We further assume that the source nodes have already converged to

their limiting states. We note that this assumption does not change the feasibil-

ity of the problem due to Lemma 23. Without loss of generality, we also assume

that each source’s limiting state value is the average of the initial values of the

source nodes in that particular class.
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Let there be M1 source nodes in Cluster 1 and M2 source nodes in Cluster 2

and M1 + M2 = M . Source nodes in class 1 and 2 have already converged to

1/M1

∑
i∈C1

xi(0) and 1/M2

∑
i∈C2

xi(0) respectively, where Ci is the set of nodes

in class i. Since W ⋆ is a feasible code, all of the destinations in the network

converge to the average of the all source nodes. But, this is only possible if

destination nodes have access to:

M1

M

(
1

M1

∑
i∈C1

xi(0)

)
+

M2

M

(
1

M2

∑
i∈C2

xi(0)

)
=

1

M

∑
i∈SS

xi(0), (D.3)

in the limit. At this point, we design the minimal class code W̄ from W ⋆ as

follows: We assign non-zero weights to all of the links between source nodes,

and choose these weights such that source nodes converge to the average of the

initial source values. Since all of the links in between source nodes are assigned

non-zero weight, W̄ corresponds to the minimal class. We keep B and D par-

titions of W ⋆ unchanged, utilize these in W̄ . Since, the link weights governing

the communication among non-source nodes (partition D) and also between

sources and non-source nodes (partition B) have not changed, the destination

nodes will converge to:

M1

M

(
1

M

∑
i∈SS

xi(0)

)
+

M2

M

(
1

M

∑
i∈SS

xi(0)

)
=

1

M

∑
i∈SS

xi(0). (D.4)

We note that the equation given above is very similar to (D.3). In particular,

the coefficients in front of the first and the second terms in the summations are

exactly the same. As we have mentioned above, this is true since B and D

partitions of W ⋆ remains unchanged. Moreover, the terms in the parenthesis

have changed, since each source node now has access to the global average.

Since (D.4) is equal to the average the source nodes, W̄ is a feasible minimal

class solutions and hence the lemma is proved.
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The proof can be easily generalized to the case of several source classes and

to the case where all sources do not converge to the average of the initial source

node values in that particular class, by accounting more than two terms in (D.3)-

(D.4).

D.6 Proof of Lemma 28

Consider a network F (E) and the source and destinations sets, SS and SD, re-

spectively. We partition the network into two disjoint sets (P, P c) such that there

exists at least one source class-destination pair on both sides of the network. We

consider the case where there exists at least one partition such that the num-

ber of cut edges is strictly less than two. The graphical representation of the

network is given in Fig. D.2. The curve represents the boundary between two

disjoint partitions. SS1 represents all of the sources nodes in partition P , and

D1 represents all of the destination nodes in partition P . Similarly, SS2 and D2

represents the source and destination nodes in partition P c. We note that the

number of cut edges cannot be zero since otherwise the network would be dis-

connected. Thus the number of cut edges between P and P c has to be equal to

one. We will assume that there exists a feasible W for this problem, and prove

our claim by finding a contradiction.

In the network topology given in Fig. D.2, we denote I1 and I2 as bottleneck

nodes, i.e., the edge between I1 and I2 is the only cut edge for the partition. We

index the source nodes in the network such that the first M1 source nodes are in

P and the last M2 source nodes are in P c. We note that M1 +M2 = M . We refer

to W∞
ij as the weight of the node j at node i.
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SS1

I1 I2

D1

SS2

D2

Figure D.2: A network with two partitions and a single cut edge.

Since, there is only one cut edge between partition P and P c, information

from SS2 to D1 has to flow through the edge (I2, I1). As we have discussed in

Section 5.5, W matrix is indeed a transition probability matrix for the chain M,

W∞ consists of corresponding absorbtion probabilities by the source classes. It

is clear that SS1 and SS2 are absorbing classes in our case. The probability of

being absorbed by SS2 when the chain has been initialized at state I2 is larger

than the probability of being absorbed by SS2 when the chain has been initial-

ized at state I1, since, in the latter case, the chain has to visit I2 before being

absorbed by SS2. Therefore, for all k ∈ SS2, the frequency of visiting k in the

long run starting from I2 is larger than the frequency of visiting k in the long

run starting from I1. Since these probabilities are measured by the entries of

W∞ matrix, the argument follows. Mathematically speaking, our result is:

W∞
I1,k ≤ W∞

I2,k ∀ k ∈ {M1 + 1, . . . ,M}. (D.5)

Similarly, the weight of SS1 at I1 has to be greater than or equal to the weight

of SS1 at I2, i.e.,

W∞
I2,k ≤ W∞

I1,k ∀ k ∈ {1, . . . ,M1}. (D.6)

Similarly, the weight of SS2 at D1 is less than or equal to the weight of SS2
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at I1 and, the weight of the SS1 information to D2 is less than or equal to that of

SS1 at I2. Moreover, since, W is feasible, sources’ weights at destination nodes

D1 and D2 are equal to 1/M . Combining these facts with (D.5)-(D.6):

1

M
≤ W∞

I1,k ≤ W∞
I2,k ∀ k ∈ {1, . . . ,M1}, (D.7)

1

M
≤ W∞

I2,k ≤ W∞
I1,k ∀ k ∈ {M1 + 1, . . . ,M}. (D.8)

Since W1 = 1, then W∞1 = 1:

M∑
k=1

W∞
I1,k = 1 and

M∑
k=1

W∞
I2,k = 1. (D.9)

Since all of the terms in both summations are lower bounded by 1/M , and there

are M terms in both summations, the equality in (D.9) holds if and only if

W∞
I1,k = W∞

I2,k = 1/M ∀k ∈ {1, . . .M}. Such an equality implies that I1 and

I2 also converge to the average.

This observation is particularly important for the following reason: Since we

are focusing on the limiting values of the node states, they are invariant with

respect to the transformation with respect to W matrix, i.e., WW∞ = W∞. In

particular, the weight of SS2 at node I1 has to be equal to a convex combination

of the weights of SS2 at node I1 and at I1’s neighbors. We have already shown

that the weight of SS2 at I1 and I2 (which is a neighbor of I1) are equal to 1/M .

Since all the neighbors of I1 except I2 belong to the partition P , the weight of

SS2 at each of these nodes is upper bounded by 1/M . Then the weight of SS2

at all of the neighbors of I1 has to be equal to the 1/M . Otherwise, this would

not be a stable point.

One can now focus on the neighbor set of node I1 (denoted by NI1) and ar-

gue that the neighbors of NI1 also have 1/M as the weight of node SS2 since

all of them belong to the partition P . One can utilize the argument above itera-

208



tively to show that the weight of SS2 at all of the nodes in P partition converge

to 1/M .

However, this is a contradiction since the weight of SS2 at SS1 cannot be

equal to 1/M , since since these nodes can not communicate with SS2. Therefore,

there does not exist any feasible code for such a topology.

D.7 Proof of Lemma 29

We first to note that the integer programming formulation given in the lemma

is a directed multicommodity flow problem with acyclicity constraint. In par-

ticular, one can map the variable bkli to net inflow at node i of data with origin

k and destination l. zklij indicates the amount of information with origin k and

destination l that flows through link (i, j). ykij is equal to one if there exists at

least one flow on (i, j) that is originated from source class k.

We assume that the integer programming formulation has a feasible solu-

tion. We will show that W , which is constructed as in (5.16), is a feasible AVT

solution.

We first note that for a given source node i, we assign equal weights to all of

its source neighbors and itself. Therefore, each source node in a given class will

converge to the average of the nodes in that particular class (c.f.[92]). Utilizing

Lemma 23, we can assume that source nodes have already converged to the

averages.

Moreover, W in (5.16) is stochastic by construction, therefore it has a limit.

By Theorem 3.1 of [81], the rank of W∞ is equal to the number of source classes
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in the network. Similar to our discussion in Section 5.4.1, we denote the columns

of W∞ as um, 1 ≤ m ≤ rW∞ . These columns are the eigenvectors of W corre-

sponding to the eigenvalue 1.

We will prove that m-th eigenvector um will have the following structure:

[um]j =



1
|SCm | , if j ∈ SCm ,

0, if j ∈ SS and j ̸∈ SCm ,

1∑
l∈Nj

∑
k∈SC

|SC(k)|yklj
, if

∑
l∈Nj

ymlj ̸= 0,

0, otherwise,

(D.10)

where SCm is the set of source nodes that belong to the source class m and [.]j

denotes the j-th element of its argument. If um is an eigenvector of W corre-

sponding to the eigenvalue 1, then Wum = um must hold, i.e.:

[Wum]j =
N∑
i=1

Wji[um]i ∀j ∈ {1, 2, . . . , N}.

If node j is a source node which is in the class m, then:

[Wum]j =
N∑
i=1

Wji[um]i =
1

|SCm |
∑

i∈{Nj∪j}

1

|Nj|+ 1
=

1

|SCm|
,

where the second equality follows from the fact that all of the neighbors of node

j belongs to the set SCm , and the third equality is due to the fact that each of

the incoming links has the same weight, i.e. 1/ {|Nj|+ 1}, by (5.16). Therefore,

[Wum]j = [um]j, ∀j ∈ SCm .

If j is a source node, but does not belong to the class m, then:

[Wum]j =
N∑
i=1

Wji[um]i =
∑

i∈SS\SCm

Wji[um]j +
∑

i∈S\(SS\SCm )

Wji[um]j

=
∑

i∈SS\SCm

Wji0 +
∑

i∈S\(SS\SCm )

0[um]j = 0 = [u]j,
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where \ denotes the ”set difference”. The third equality follows from the con-

struction of um in (D.10) and the fact that source nodes, which do not belong to

the source class m, cannot hear from the class m.

If j is not a source, then:

[Wum]j =
N∑
i=1

Wji[um]i =
∑

i∈SCm

Wji[um]i +
∑

i∈{SS\SCm}

Wji[um]i +
∑
i̸∈SS

Wji[um]i.

(D.11)

We note that the first term above represents the summation over the source

nodes which are in class m, the second term is the summation over the rest of the

source nodes, and the last summation is over the non-source nodes. The second

summation in (D.11) is zero, since [um]i = 0 for all source nodes i which are not

included in the source class m by the construction in (D.10). Moreover, of all the

terms in the first and the third summation, only a single term can be non-zero.

This is true due to the acyclicity constraint in (5.14). If there were two non-zero

terms in the summation, this would mean that node j has two neighbors both

of which carry information from the source class m. But, this would result in a

cycle in the flow graph. Thus, such flow would not be a feasible solution to the

integer programming formulation given in the lemma.

We first assume that there exists a non-zero term, the term is in the first

summation in (D.11) and, we denote the index of this term as i. Then by (5.16)

and (D.10):

[Wum]j =
|SCm|yijm∑

l∈Nj

∑
k∈SC

|SC(k)|yklj
1

|SCm|
=

1∑
l∈Nj

∑
k∈SC

|SC(k)|yklj
= [um]j.

Note that ymij = 1, since we assumed that there is a flow from node i to node j

which is originated from class m.
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Next, we assume that the non-zero term is in the third summation in (D.11)

and denote the index of this term as i. Then by (5.16) and (D.10):

[Wum]j =

∑
k∈SC

|SC(k)|ykij∑
l∈Nj

∑
k∈SC

|SC(k)|yklj
1∑

l∈Ni

∑
k∈SC

|SC(k)|ykli
. (D.12)

We remind the reader that if the term above is non-zero, then∑
l∈Ni

∑
k∈SC

|SC(k)|ykli =
∑

k∈SC
|SC(k)|ykij . One can think of

∑
l∈Ni

∑
k∈SC

|SC(k)|ykli

as the total number of flows from distinct classes (rescaled by the corresponding

class sizes) that are going into the node i. Moreover, if there exists at least one

flow from node i to node j, then there has to be at least one flow from node i

to node j from each distinct class whose information is present at the node i.

Otherwise, acyclicity constraint would not hold. Therefore, the equality holds.

Then, we can rewrite (D.12) as:

[Wum]j =
1∑

l∈Nj

∑
k∈SC

|SC(k)|yklj
= [um]j.

Now, we assume that all of the terms in (D.11) are zero. But due to the con-

struction of W and um, this is only possible if there is no flow that is going into

node j from source class m. If this is the case, [Wum]j = [um]j = 0. Since we

covered all possible cases, this proves that {um}rW∞
m=1 are the eigenvectors of W

corresponding to the eigenvalue 1. Moreover, due to their constructions, these

eigenvectors are linearly independent.

We construct the left eigenvectors corresponding to the eigenvalue 1 as fol-

lows:

[cm]j =

 1, if j ∈ SCm ,

0, otherwise.

Moreover, it is easy to check that cTmun = 0 if m ̸= n. Then by [74]:

lim
t→∞

W t =

rW∞∑
m=1

umc
T
m

cTmum

=

rW∞∑
m=1

umc
T
m,
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where the second equality follows form the fact that cTmum = |SCm|/|SCm | =

1 forall m. At this point, we need to observe that [um]j = 1/|SS| if j ∈ SD,

due to the integer programming formulation in the lemma and the eigenvector

construction in (D.10). This concludes the proof.
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