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Abstract

.Computer architecture design requires careful attention to the balance between the com-
plexity of code scheduling problems and the cost and feasibility of building a machine. In
this paper, we show that recently developed software pipelining algorithms produce opti-
mal or near-optimal code for a large class of loops when the target architecture is a clean
pipelined parallel machine. The important feature of these machines is the absence of struc-
tural hazards. We argue that the robustness of the scheduling algorithms and relatively
simple hardware make these machines realistic and cost-effective. To illustrate the delicate
balance between architecture and scheduling complexity, we show that scheduling with struc-
tural hazards is NP-hard, and that there are machines with simple structural hazards for

which vectorization and the software pipelining techniques generate poor code.
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1 Introduction

The generation of high-quality code for sequential and parallel machines is a challenging
task. While much progress has been made towards this goal, generating optimal or provably
close to optimal code for these machines has proven elusive. This is largely due to the
intrinsic complexity of the problems involved, many of which are NP-Complete[Garey and
Johnson 1979]. The inability to generate optimal code for all but the most idealized—and
largely unrealistic—machine models has, in turn, negatively influenced the hardware design
of machines: idiosyncratic designs and structural hazards are all too common. These, in turn,
have compounded the difficulty of code generation. In principle, hardware hazards can be
virtually eliminated, but there has been no real motivation to incur the extra expense since
no code scheduling technique could produce provably optimal results for a reasonably general
class of programs.

In this paper we show that the problem of generating optimal code for a pipelined machine
with structural hazards is NP-Complete. We then investigate the applicability of a recently
proposed loop scheduling technique [Aiken and Nicolau 1988a,b] to the problem of pipeline
scheduling. The original technique produces idealized parallel schedules® which run in optimal
time on a machine with enough processors to accommodate the schedule. The results we
present in this paper investigate the applicability and limitations of these idealized schedules,
when mapped to a machine with a single pipeline. We prove that for a large class of loops, the
idealized schedules can be adapted to produce optimal code for hazard-free single or multiple
processors. Furthermore, we show that even in cases where optimal machine schedules are
not achievable, the optimality of the idealized schedule leads to a tight bound on the overall
performance and good empirical performance. If structural hazards are introduced, we show
that the schedule may be suboptimal even when an optimal schedule exists for hazard-free
machines. However, we show that in such cases, an optimal fixed-size schedule for the loop—
i.e., one whose size is not a function of the number of iterations in the loop—is not obtainable
in general.

Finally, we present some empirical results based on the Livermore Loops indicative of the

A parallel schedule is a static specification of a correctness-preserving partial order on operations. Each

level in the schedule corresponds to a set of operations that can execute simultaneously.



empirical performance of our techniques for hazard free pipelined machines. These results
are directly relevant to VLIW’s [Fisher and O’Donnell 1984], pipelined machines, microcode

engines, and in general to synchronous and synchronization-masking machines.

2 Optimal Scheduling of Operations for a Single Pipeline

The problem of scheduling operations for pipelined machines is closely related to classical
problems in job-shop scheduling. For most real machines, there is at least one shared resource
that cannot be accessed simultaneously by more than one operation —for example, memory (if
there is no interleaving) or memory banks (if there is interleaving). We show that generating
optimal code for a pipelined machine with such resource conflicts is NP-complete. The input
to the problem is a constraint graph: a graph where nodes represent operations and edges
represent dependencies between operations. Edges are labeled with integers, representing
operation latencies. Directed edges represent data dependencies: if (u,v) is a directed edge
labeled by integer i, then operation u must be scheduled before operation v and at least i
operations (possibly noops) must be scheduled between u and v. Undirected edges represent
resource constraints; if (u, v) is an undirected edge labeled by the integer i, then operations u
and v can be scheduled in any order but must be separated by at least i operations. If u and
v are nodes and (u,v) is an edge labeled i, we say that the length of the interlock between u
and v due to edge (u,v) is 1.

Definition: The code reorganization problem for a single pipeline is the following:

Input: a constraint graph.

Output: a sequence of operations i, i3,..., with a minimum number of noops such that

1. if noops are deleted from the sequence, the result is a topological sort of the graph

obtained by deleting undirected edges from the constraint graph
2. any two operations are separated at least by the length of the interlock between them

Theorem 1: The code reorganization problem is NP-complete.
Proof: We show that the following NP-complete resource constrained job-shop problem is

reducible to the code reorganization problem. Given:



1. two processors
a set of jobs each taking one time unit for completion
a resource R that can be accessed by at most one job at each time step

an arbitrary DAG representing the precedence constraints between jobs

A I

a deadline D.

~ Question: Is there a legal schedule for the jobs that meets the deadline?
This problem is known to be NP-complete [Ullman 1975]. To solve this problem, we
can construct a code reorganization problem by adding the following nodes and edges to the
precedence graph:

1. label all edges in the precedence graph by “1”.
2. if u and v are jobs that require the resource, add an undirected edge (u,v) labeled “1”
3. add a chain of D nodes, called the serializer chain, in which edges are labeled “2”.

4. add a start node s and edges labeled “0” from the start node to each node in the
precedence graph without any ancestors, and an edge labeled “2” from the start node
to the first node in the serializer chain.

Figure 1 shows an example of this construction.

If there is a schedule for the job-shop problem that meets the deadline, then the result of
the code reorganization must look like the schedule shown in Figure 1(b), where n,, n,, etc.
represent nodes from the job-shop problem or noops. The solution for the job-shop problem

can then be constructed as follows

processor stepl step2...
pl n n3

p2 ny ny

This must be a legal schedule for the job-shop problem since

1. precedence constraints between jobs are respected; if (u,v) is a directed edge, note that

u and v cannot be scheduled in the same time step.

2. two jobs that use the resource cannot be scheduled in the same time step; if (u,v) is

an undirected edge, u and v cannot be scheduled in the same time step.
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(a) Construction of Code Reorganization Problem from Job-shop Problem
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(b) Optimal Schedule for Code Reorganization Problem

Figure 1: Constructing a Code-reorganization Problem from the Job-shop problem



Therefore, the specified resource constrained job-shop problem is reducible to the code
reorganization problem. If the optimal solution to the code reorganization problem has
the form shown, the schedule for the job-shop problem can be read off; otherwise, there is
no schedule for the job-shop problem that meets the given deadline. Therefore, the code
reorganization problem is NP-complete. O

This result would not have been disappointing until recently, since software techniques
for code scheduling did not usually produce provably optimal code even within idealized
models [Fisher etal 1984], and even when they did, it was these results were not directly
relevant at the machine instruction level. Recently however, techniques have emerged that
produce absolute time-optimal parallel schedules for loop execution on clean multiple pipeline
machines subject to the data-dependencies of the loop and the availability of enough resources
(i.e., pipelines) to accommodate the schedule.

The most general technique, Perfect Pipelining, combines the benefits of fine-grain paral-
lelism (can exploit irregular forms of parallelism) with the pipelining of iterations of coarser
methods [Cytron 1986]. Perfect Pipelining uses incremental unwinding and successive appli-
cations of parallelization (compaction) transformations (e.g., Percolation Scheduling [Nicolau
1984b)), to detect a pattern in the code—which in practice emerges after a small amount of
unwinding. The loop body can then be replaced by this pattern yielding a schedule for the
loop. It can be shown that given enough resources, and subject to the given compaction
transformations, the resulting loop will yield the best (optimal) running time, (i.e., further
unwinding and compaction of the loop cannot yield better speedups). In particular, the run-
ning time of the new loop is identical to what might be obtained by full unwinding of the
loop and full fine-grain parallelization, if such unwinding is feasible. This is important, since
in practice loops can (or should) seldom be fully unwound at compile-time. These results
hold even in the presence of conditional jumps and multicycle operations.

The second technique, Optimal Loop Parallelization (OPT), deals with loops contain-
ing no conditionals, or in which conditionals are removed [Allen and Kennedy 1983] (or the
probability of paths execution is predictable). For such loops, OPT, which is a refinement
of perfect pipelining, achieves an even stronger result. We can show that given any paral-

lelization transformations that preserve the original data-dependencies, our transformation



achieves equal or better running time for the final loop. In other words, OPT not only yields
the best running time for the loop with respect to unwinding and the particular parallelizing
transformations used, but true time optimality with respect to any possible dependency-
preserving transformations®. OPT relies on the fact that only a small number of iterations
ever need to be examined to determine a pattern which yields an optimal running-time sched-
ule for the loop. These results hold in the presence of multicycle operations. The justification
of these claims and the details of the algorithm are given in[Aiken and Nicolau 1988b]. For
the purpose of this paper we only need to understand how OPT works. OPT incrementally
unwinds the loop, allowing operations to be scheduled as early as possible in the schedule,
subject only to data-dependencies and latencies®. Thus operations are scheduled at the ear-
liest possible time they could be issued at runtime, if a synchronous multiprocessor were
available. In [Aiken and Nicolau 1988b], it is shown that a repeating, fixed size pattern is
gualranteed to emerge after a small amount of such unwinding and compaction, if the original
data-dependencies of the loop are not allowed to drastically change throughout the process.
Further unwinding and compaction beyond this point cannot improve parallelism, and thus
replacing the loop body with this pattern will yield an optimal execution schedule for the
given loop. Of course, a prologue and an epilogue including some start-up and wind-down
code may be required; this code is extracted automatically as part of the algorithm. Other
details such as the loop overhead can be handled with either hardware or software. The
software approach has been discussed in detail in [Aiken and Nicolau 1988b], while some
hardware mechanisms which would be relevant have been implemented and are discussed in
[Cydrome 1987; Ebcioglu 1987].

In the remainder of the paper, we concentrate on OPT, since it produces absolute time-
optimality for the loops it applies to. The arguments apply equally to PP, but then we need

to take into account that the optimality is only with respect to the particular transformations

?Dependency changes (e-g., due to renaming) can be allowed in this context, even if done dynamically as

part of the parallelization process.
3We are essentially performing a topological sort, creating a partial ordering of the operations; operations

that are placed at the same level in the schedule are therefore independent of each other and can be executed
in parallel. Given a synchronous parallel processor with enough resources, such a schedule could run “as is”,

with each level or slice of the schedule issuing each cycle
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Figure 2: Sample OPT scheduling

used. An illustration of the effects of OPT and the optimal schedule produced for the given
loop is found in Figure 2. This example is taken from [Cytron 1984], where a heuristic
schedule is developed for the same loop. For simplicity, and in keeping with the original
example, latencies of operations in this example are assumed to be one cycle. As mentioned
earlier, OPT can deal with realistic operation latencies.

When taking into account true operation latencies the notion of optimality derived from
OPT/PP is realistic, in the sense that a schedule produced by OPT or PP could be run
“as is” on a synchronous parallel machine (e.g., Trace-28 [Multiflow 1987]), with enough
resources. Still, in practice, resources are often not available to allow the direct execution
of the optimal schedule, and thus a mapping phase that adapts the optimal schedule to the
actual hardware is needed. The more idiosyncratic the hardware (e.g., structural hazards,
non-uniform pipes), the harder this mapping becomes. In this context, it is natural to ask
what the relevance of the optimal schedules is for practically feasible machines. In this light,
the result of Theorem 1 is discouraging.

However, this does not mean that the idealized schedules are not useful. A given optimal
schedule could be run “as is” on machines with enough parallelism to support it. In particular,
loops that yield only small degrees of parallelism—and thus have optimal schedules requiring

relatively few resources—can be accommodated directly on even small parallel /pipelined



engines, with a guarantee of optimal running-time. In fact, optimality is most important for
such loops, since the parallelism they yield is small to begin with, and any degradation in
performance—due to poor heuristic scheduling—is proportionately more significant. Even for
loops with optimal schedules requiring more resources than the actual machine can provide,
the (idealized) OPT schedule is a good starting point for a heuristic mapping, and serves
as a yardstick by which to measure the final heuristic schedule. Furthermore, Theorem 1
does not preclude optimal scheduling for machines with clean (i.e., hazard-free) hardware. In
the remainder of the paper we explore these issues in the context of clean machines. Such
machines are quite realistic, in the sense that the hardware for the basic CPU can be built at
reasonable cost. Whether the hardware overhead involved is less or more than that typically
tolerated in existing machines for other reasons (e.g., interlock detection), is an open question.
While memory bank conflicts can also be seen as a hazard, they too can (through aggressive

interleaving and latency masking techniques) be arbitrarily reduced.

3 Loops without Loop-Carried-Dependencies

An important class of loops is recurrence-free loops. Such loops—or loops that can be trans-
formed into this form—are amenable to vectorization and account for a significant fraction
of code encountered in practice— 50% — 70% according to some estimates [Hack 1986]. No
loop-carried dependencies (lcd’s) exist in such loops, each statement in the loop can be vec-
torized, or (equivalently) potentially all iterations of the loop could be executed in parallel, as
in a DOALL loop [Cytron 1984]. Unfortunately, depending on the details of the architecture
available, neither of these methods, by themselves, guarantees time-optimal execution.
Executing recurrence-free loops as vector statements requires special hardware, both to
decode and support the execution of the vector statements, and to allow chaining of the
vector operations. If resource constraints exist, the order in which the vector statements
appear and thus the order in which they are issued at runtime may affect the overall running
time of the loop. In fact, the optimal issue order may even require the issue of the statements
in the loop body in an interleaved fashion, not corresponding to any ordering of the vector
statements. On the other hand, vectorization often produces optimal code, assuming memory-

to-memory operations, chaining, and a clean pipelined machine. A comparison between the



techniques we propose and vectorization would thus have to include a careful analysis of the
hardware support required by each of the techniques, and their range of applicability. Such
a comparison is beyond the scope of this paper, which deals with the applicability of OPT
idealized schedules to realistic machines.

Similarly, the DOALL mechanism doesn’t necessarily yield an optimal schedule. If enough
processors are available to execute all loop iterations (including any fine-grain parallelism
inside the iterations) in parallel, then time optimality is trivially ensured. However, in any
practical machine, the parallel execution of a limited number of iterations does not necessarily
yield an overall optimal execution, given the resources at hand. The feasibility of scheduling
the operations inside the iterations optimally is an open problem, believed to be NP-hard.

OPT has the same problem as the DOALL approach. However, we can circumvent the
problem by utilizing some of the parallelism available in the loop to improve utilization
for the realistic machine, rather than (superfluously) increasing parallelism in the idealized
schedule. By doing this methodically, we can generate optimal code for a given realizable
clean machine. The following theorems formalize this result. We assume that dependencies
are fixed, determined by a disambiguation system [Banerjee 1979; Nicolau 1982a; Wolfe 1982
]. The results can be extended to allow useful transformations such as incremental renaming,
which may modify the dependency graph.

Lemma 1: Given a loop without lcd’s, and restricting OPT scheduling so that
Vop € iteration;, scheduledcycle(op) > 1,

(i-e., iterations are staggered by one cycle), then the resulting schedule produced by OPT for
the loop body is 1 cycle long, regardless of operation latencies and data-dependencies.

Proof: OPT normally schedules operations for earliest possible execution, subject to data-
dependencies and operations latency. (Note that we are not yet considering limited resources.)

In general, Oy, the set of operations scheduled at cycle k is given by:
Ok = {oplk = Maz(a, scheduledcycle(op')+latency(op'), ..., scheduledeycle(op”)+latency(op"))}

where op’, ...op" are all the data-dependency predecessors of operation op. The value of a is
the minimum schedule cycle for an operation in iteration i, and thus according to the lemma

a = 1 for op € iteration;.

10



For example, all operations in iteration one with no dependency predecessors are scheduled
in cycle one, and these same operations from iteration two are scheduled in cycle two (rather
than one), effectively delaying all operations in iteration two by one cycle with respect to
those same operations in iteration one; in the absence of lcd’s, no dependency interference
between iterations exists, and thus nothing else can further influence the scheduling of the
operations.

Assume that the last operation(s) in iteration one is scheduled in cycle j. Since j iterations
are scheduled to start at one cycle intervals between cycle one and j, it follows that versions
of all operations in the loop body (albeit from different iterations) are scheduled in cycle j.
Thus cycle j contains the O; set of iteration one, the O;_; set of iteration two, and so on.
After cycle j, the schedule doesn’t gain further parallelism, since each iteration only contains
J slices. Thus in cycle j + 1, set O; of iteration two, set O;_1 of iteration three, etc, are
prelsent, containing the same operations as the corresponding sets in cycle j . It is easy to see
that as long as new iterations are available, this pattern repeats. Thus the pattern (schedule)
by which OPT would replace the loop body is that derived from a single cycle j. O

We note that there exists a direct linear-time algorithm for computing the OPT sched-

ule for recurrence-free loops[Aiken and Nicolau 1988b]. An illustration is given in Figure 3a,b.

Theorem 2: Given a one cycle pattern as in Lemma 1, an optimal schedule for a 1-
pipeline clean machine can be obtained efficiently.
Proof:
Te operations of the pattern can be issued (possibly with longest latency first to guarantee
optimality including additive constants due to “wind-down/start-up” code encountered at
the beginning and end of the loop) one per cycle, guaranteeing optimality. Note that this is
possible since the operations in the pattern have no dependencies on one another, and that
since latencies were already taken into account in deriving the schedule for the loop body,
any operation from the next iteration can start immediately after any operation from the
current iteration. Thus by linearizing the parallel loop body, (useful) operations are issued
every cycle, and overall latency is minimized. This mapping yields optimal execution time of

the loop for a one pipeline clean machine. O

11
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Figure 3: Generating optimal schedules for loops w/o lcd’s.

An example is shown in Figure 3c.
Corrolary: The algorithm in Theorem 2 can be extended to generate optimal schedules
for a k-pipe clean machine (i.e., a machine that issue (any) k-operations per cycle).
Proof:
Let n be the number of operations in the pattern obtained by the modification of OPT in
Lemma 1. If n is a multiple of k, then essentially the same approach as in Theorem 2 works:
partition the operations in the pattern into groups of k, and let that be the loop body.
Successive patterns need not be delayed due to this reordering, and thus the machine is kept
running at full utilization and issuing the same operations as in the original code.
If n is not a multiple of k, find /, the smallest integer for which n * [ is a multiple of k. Since

n is the number of operations in one iteration, modifying the restriction in Lemma 1 to:
Vop € iteration;, scheduledcycle(op) > |i/(1+1)] + 1

creates a pattern with n x [ which, as we have seen, can be scheduled optimally. O

12



4 Loop-carried Dependencies

When loop-carried dependencies are present, there is less flexibility in manipulating the sched-
ules obtained by OPT to achieve resource-constrained optimal schedules. In particular, the
idealized optimal schedules may span multiple cycles, some of which may contain no opera-
tions. Empty cycles, or noops result from operation latencies, and thus cannot be removed
from the schedule. If the target machine has enough parallelism to accommodate the schedule
(i-e., if the largest number of operations that occur in any one cycle of the schedule is less than
or equal to the number of operations that the processor can issue in parallel) then the sched-
ule is still optimal for the given machine. Data-dependencies may allow some operations to
occur in different places in the schedule without lengthening it and thus such operations may
be rearranged to minimize resource requirements while preserving optimality. If this process
suffices to bring the resource requirements within what is available in the given machine, we
have a mapping to the actual hardware that guarantees optimal running time for the loop.
If however the idealized schedule produced by OPT cannot, even with the above “tricks”, be
made to fit the resources available without lengthening the schedule, optimality cannot be
guaranteed. This situation is illustrated in Figure 2. The initial schedule produced by OPT in
the figure requires seven processors to execute “as is”. However, a reasonable compiler could
determine that operation Q has no dependents and thus can be delayed without lengthening
the schedule. Note that this last schedule is optimal and fits on a 6-pipe clean machine. The
various situations that may occur and their impact on the optimality of the realistic schedules
produced are summarized in the following theorems. The term transformed schedule refers to
any modifications we may perform on the optimal schedule—to limit resource requirements

and/or to eliminate noops—without lengthening it.

Theorem 3 If the transformed schedule contains at least n > 1, or a multiple of n real
operations (i.e., not noops) in every cycle, then an optimal realistic schedule is achievable for
all k-pipe machines, such that (n mod k) = 0.

Proof: Immediate generalization of the mapping algorithm in the corollary to Theorem 2.
0O.

Theorem 3 implies that when no noops are present, an optimal schedule is always feasible

13
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for a 1-pipe machine. Also note that when n < k, the idealized optimal schedule can execute
as is, preserving optimality.

Mapping a schedule requiring k-pipes onto a machine with fewer pipes is a variation of
a long-standing open problem, believed to be NP-Hard. Nevertheless, even if an efficient
optimal mapping cannot be achieved, it could be argued that for very important—or small—
inner loops, a brute force approach (e.g., integer programming) would be justified if such an
optimal mapping of the schedule to the hardware would yield optimal running time for the
loop. The following theorem dashes this hope by showing that even an optimal mapping of
the schedule does not necessarily ensure overall optimal running time for the loop on a clean
machine.

Theorem 4: Given a transformed schedule (containing noops) that requires k-pipes to
guarantee optimal running-time for the loop, mapping the schedule to fewer than k pipes
may not preserve optimality even if the mapping is optimal®.

Proof: Figure 4 gives a simple example where an optimal mapping of the ideal schedule
to resources does not yield optimal execution time. The OPT schedule is shown in figure

4a. No transformations of the schedule are possible without lengthening it. Two legal and

*For the mapping to be optimal it must lead to the smallest number of cycles for the mapped schedule.

14



minimal orderings (3 cycles per iteration) for the schedule are shown in Figure 4b. However,
this does not yield an optimal running time for the loop. By considering two occurrences of
the pattern, we can derive a schedule with only two cycles per (original) iteration, as shown
in Figure 4c. Thus our conjecture that an optimal mapping of the optimal schedule yields
optimal running time for the loop is false. O

So even if we start with an optimal schedule for k-pipes and go “all out” mapping it to
fewer pipes, we lose optimality. Note that the trick we have used in the previous section to
maintain optimality does not apply here: we cannot bring in independent iterations to fill the
gaps. The schedule is optimal precisely because no further overlap (beyond what is already
given by OPT) is possible between iterations. However, as we map to fewer resources, some
operations are delayed while others are executed earlier, and the “stretched” schedule may
no longer be optimal with respect to the overall loop, as operations may now be able to cross
the boundaries between schedules, as illustrated in Figure 4.

While optimality cannot be preserved under these conditions, even with an optimal map-
ping, in practice even a simple heuristic mapping algorithm does very well. The following
theorem shows that we can guarantee a bound of two times optimal using even the most
naive mapping.

Consider a machine with k pipelined processors. A program for this machine consists of
instructions—schedule cycles—which may contain up to k operations. An instruction is full
if it has k operations.

Let L be a loop that is time-optimal, contains n instructions, and requires k' > k proces-
sors. Let k; be the number of operations in instruction i of L. For each instruction i, create
[ki/k] instructions, where |k;/k| instructions are full and the last is (potentially) partially
full. Let the resulting loop be L'.

Lemma 2: At most n instructions in L' are not full.

Proof: If an instruction in L is not full, then it contributes one partially full instruction to
L'. Similarly, if an instruction in L has more than k operations, it contributes at most one
partially full instruction to L’. So the total number of instructions in L’ that are not full is
at most n. O

Let Ty, be the running time of loop L', and let Ty, be the running time of loop L. Let

15



Loop | Original Code : Limited Processors
: Mflops | 1 proc Mflops | 2 procs Mflops
LL1 L9 31-50 57-100
LL2 8 © 20-35 40-60
LL3 T 16-20 20-23
LL4 -6 16 20
LLs 6 i 12-15 15-16
LLé .8 6-16 6-20
LL7 20 36-51 71-99
LLs8 . 11 40-55 80-110
LL9 17 35-49 68-97
LL10 . 10 18-25 36-48
LL11 4 . 4-9 4-11
LL12 © 4 13-20 27-40
LL13 ' 4 C11-12 22-24
LL14 (avg) ' 4 14-18 25-31
Average 8 19-28 35-50
Harmonic Mean | 7 13-20 18-33

Table 1: Livermore Loops Results

T, be the optimal running time of loop L rescheduled to run on a machine with k pipelined
Processors.

Theorem 5: T, /T, < 2
Proof: Let n’ be the number of instructions in L’. Clearly T, < T,. If n’ < 2n then
T /Tp < 2 and the theorem holds. Assume n’ > 2n. By Lemma 2, at least half the

instructions of L' are full, implying Ty, /T, < 2. O

5 Experimental Results

The factor of two bound in the previous section is based on a very naive mapping algorithm
that makes no effort to eliminate noops in the schedule or to overlap successive patterns.
overlap any successive schedules (iterations). A practical algorithm could certainly do more.
Even with the naive scheduling algorithm however, a realistic clean machine does very well
indeed, as illustrated by the results in Table 1.

We have implemented our scheduling algorithm, taking into account instruction latencies
and processor limitations. Table 1 shows performance measurements for fourteen Livermore
Loops [McMahon 1983]. The results are divided into two sections. Column two gives the

flop rate of the original code on one pipelined processor, without statement reordering. It is

16



included for reference. Columns three to four give the flop rate of the schedules computed by
our algorithm for limited resources of one and two pipelined clean machines, respectively. The
schedules were obtained by using the naive (worst-case) mapping algorithm described previ-
ously, and thus are lower bounds on the performance achievable with a reasonable mapping
algorithm.

The speedups achieved may depend on the hardware and the extent to which the original
code is optimized. For example, autoincrements issued as part of load instructions® and some
sequential-code optimizations (such as removing redundant loads across iterations [Callahan
etal 1987]) improve the speedups. To reflect this, some entries in Table 1 give a range.
Standard compiler optimizations and the simplest addressing hardware achieve the lower
number, while the optimization and hardware mentioned above achieve the higher number.
The figure given for the original code is the better of the two approaches. For instance, in
LLé, redundant load removal greatly improved the performance of the original code.

The flop rate for the original code is computed using the pipelining strategy of the Cray-1:
instructions are issued in order as quickly as possible, subject to data dependencies. Even
for a single processor, the improvement using our scheduling algorithm is dramatic. Half of
the loops triple in performance when the additional optimization and hardware are assumed.

Interestingly enough, if a second pipeline is added and the in-order issue strategy of the
Cray-1 is used, the original code runs only about 10% faster than that given in column two,
so the relative speedup using our algorithm is much greater. Further increases in the number
of pipelines available increases the performance obtained by our algorithm even further. The
average number of processors required to directly execute the OPT schedules for these loops
is twenty-two, and the average performance is 530 M flops.

These results are computed statically from the patterns generated by our algorithm.
The effects of the preloop and postloop are not included, thus these results represent the
asymptotic speedup for many iterations of the loop. Note, however, that the execution time

is optimal for any number of loop iterations.

®This does not mean dedicated hardware for executing address increments. It simply means allowing load
and increment operations to be combined into a single “macro-operation” issue, without changing the latencies
of either of the two operations or their execution. By reducing the number of operations to be issued this

approach improves the issue-rate, and thus the overall performance for some loops.
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6 Structural Hazards

Theorem 1 virtually precludes the possibility of optimal code generation for machines with
structural hazards. However, in the light of the results of the previous sections, a natural
question to consider is whether the modifications to OPT can be extended to generate optimal
code for lcd-free loops in the presence of structural hazards. Unfortunately, this is not feasible.
Figure 5 presents a counterexample.

The loop body consists of two data-independent statements, one computing a multi-
ply and the other an add. For simplicity —and to allow the computation to be somewhat
meaningful—we assume that the statements perform memory-to-memory operations on vec-
tors, the add taking two cycles to complete, the multiply three. Further, we assume a one-
pipeline machine where the only structural hazard is that an add operation and a multiply
cannot complete in the same cycle (i.e., an add cannot issue in the cycle following a multi-
ply). Under these circumstances, OPT, as modified in Lemma 1, but not taking into account
the structural hazards produces an idealized schedule in which add and multiply operations
occur concurrently. This schedule maps optimally onto a clean 1-pipe machine, with add and
multiply operations alternating. However, mapping this schedule to the target machine yields
either of the schedules of Figure 5c, which leads to a noop being issued for every add-multiply
pair. Of course, OPT can be modified to allow k iterations to fully overlap, yielding k add
and k multiply operations. With the help of a reasonable mapping algorithm, only one noop
needs to be generated, as shown in Figure 5d.) However, the optimal schedule for this loop
is to issue all the add operations before all the multiplies, which is not easily derivable from
the results of OPT. Of course, OPT does implicitly detect the fact that the operations are
vectorizable, and thus could be easily modified to generate vector statements, which would
achieve the desired result in this case. However, what is not clear is when to resort to this
approach. For example, the hazard might have been that operations using the same operator
cannot overlap (e.g., a new multiply may not start before the previous one has completed)—a
natural requirement for a machine using multiple non-pipelined functional units. In this case,
OPT generates optimal code, while vectorization does not.

The trend in architectural design is to avoid structural hazards as much as possible—a

machine with too many structural bottlenecks cannot perform at or near its peak regardless
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Figure 5: Structural Hazards

of the compiler technology used. We are arguing that the added (hardware) cost of avoiding
structural hazards is justified by the existence of software techniques capable of generating
optimal code for clean machines for large classes of loops, and provably good code for the
cases where optimality is infeasible. If some structural hazards are present, then simple
techniques such as further unwinding of the OPT schedule and compaction coupled with
reasonable mapping algorithms can minimize the impact of the hazards on the quality of the
code. This, coupled with the relative simplicity and uniformity of application of OPT /PP
makes it a good candidate even for existing pipelined and synchronous parallel machines.
In practice, most structural hazards can be dealt with in software, by simply issuing
operations in an appropriate order, interspersed with noops if necessary. Other hazards—such
as memory bank conflicts—may require a combination of software/hardware mechanisms. In
the first case, a simple bound can be derived for the mapping of our idealized schedules.
The bound for lcd-free loops and hazards requiring one cycle delay between some operations
is simply a factor of two over the clean—optimal—schedule, since at worst, all operations
are scheduled one noop apart, guaranteeing no hazards are encountered. This bound can
be trivially extended to hazards requiring more than one noop delay, with a corresponding
degradation in performance. In practice, much better schedules are achieved by taking into

account the hazards and heuristically mapping to minimize delays.
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For cases where software techniques are not sufficient to handle hazards, (e.g., for memory
contention) a fully static bound is unachievable directly. However, reasonable performance
estimates can usually be made. For example, the average probability of a bank conflict
can be estimated, and multiplied by the ensuing delay can yield the expected degradation
resulting from such hazards. This metric can in turn be used to derive an expected bound
on variation of the real machine’s running time from a clean machine’s running time. While
such variations may not be completely eliminated in any real machine, a good design can

make them arbitrarily small.
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