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ABSTRACT 

This paper shows how the direct sum operation can be utilizeu in obtaining 

from initial fractional factorial designs for two separate symmetrical factorials, 

a fractional factorial design for the corresponding asymmetric factorial. 

l. INTRODUCTION 

In design theory there are well known algebraic operatiC'ns ·which lead to new 

designs when we start out from a set of initial designs. One of these operations, 

namely the direct product (or Kronecker product) operation, was utilized by 

Chakravarti (1956] to produce certain types of fractional factorial designs for the 

asymmetrical factorial. The designs developed by him throughthis method did not 

relate to arbitrary initial fractional factorial designs. These initial designs 

specifically arose from the existence of orthogonal arrays, which were much earlier 

shown to be quite useful in factorial design theory by Rao [1947]. 
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To illustrate the direct product method we reproduce the following example, 

which follows immediately from theorem l of Chakravarti's [1956] paper. The or

thogonal arrays D~ and n; below are orthogonal main effect plans in N1 = 4 and 

N2 = 9 treatment combinations for the 23 and 34 factorials respectively. 

D~" 
l 

0 0 0 

l l 0 

l 0 l 

0 l l 

0 0 0 0 

n* 
2 

l l 2 0 2 2 l 0 

0 l l 2 l 2 0 2 

0 2 2 l 2 0 2 2 

l 0 l l 2 l 0 l 

The direct product design D~ ®D; in N1N2 = 36 treatment combinations provides 

orthogonal estimates of not only the main effects but also of the two factor inter

action of one 2-level factor with one 3-level factor for the 23 X 34 factorial. 

0 0 0 0 0 0 0 

l l 0 0 0 0 0 

1 0 l 0 0 0 0 

0 l l 0 0 0 0 

n* ® D* l 2 

0 0 0 0 l l 2 

1 l 0 0 l l 2 

1 0 l 0 l l 2 

0 l l 0 1 l 2 

0 0 0 2 2 l 0 

l l 0 2 2 l 0 ....... 
l 0 l 2 2 l 0 

0 l l 2 2 l 0 

Besides the above designs there is a need to spell out the details of the 

direct product method for arbitrary initial designs and given arbitrary parameters 

under various assumptions on the total parametric vector. Such initial designs 

would encompass resolution III, IV and V designs. In some settings (especially 

when the orthogonality conditions are dropped) the resultant direct product design 

might be uneconomical from the viewpoint of number of treatment combinations. Thus, 

in the previous example, if main effects are the only ones of interest, it is clear 

that 36 treatment combinations are too many for estimation purposes. This is so 
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because for the_22 X 32 w~ need only 7 treatment combinations to estimate the main 

effects n~n-orthogonally under the assumption that all interactions are zero. If 

it is desirable to .have an estimate of the variance then clearly the number of 

observations should at least e4ual 8. 

To obtain economical fractions we can resort to a different operation alto-

gether, e.g. we can compose two initial designs using the direct sum operation. 

Before taking a formal approach consider the main effect design D1 and D2 consisting 

of N1 = 4 and N2 ~ 6 treatment combinations for the k~1 = 22 and k~ ~ 32 factorials 

respectively: 

Dl 

1 0 

0 l 

l 1 

1 1 

D2 

0 0 

2 2 

1 0 

1 2 

0 1 

2 1 

It is easily verified, that the design D1 3 D2 below 

1 0 
I 

I 

0 l I l 0 

1 1 
; A2 

1 0 ' 
' I 

1 1 I where Al ~ 1 0 and 
-----'--·~-- ' I 

:o 
I 

0 1 0 
I 

Al 
12 2 l 0 
' I 
:1 0 1 0 
I 
I 

11 2 
I 

~0 1 
1 

:2 1 

2 0 

2 0 

A2 = 2 0 

2 0 
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is a non-singular main effect plan in N1 + N2 = 4 + 6 = 10 runs for the k~1 X k~ e 
~ 22 x 32 asymmetrical factorial. The operation involved in producing this design 

is clearly a direct sum type of operation, which we will call compactly ~ 

composition. It is clear that the crucial part in using this method is the speci-

fication of the matrices A1 and A2 . The choice of these will depend on what kind 

of properties one wishes to impose on the resulting design, given certain proper-

ties on the initial designs. 

In the next section we explore this new method in more detail and show how 

it always produces a design for an asymmetrical factorial k~1 X ki' given the 

initial designs for the k~1 and k~2 factorials. 

2. THE SUM COMPOSITION METHOD 

Consider the k~i factorial and suppose that the experimenter partitions the 
J. 

k~1 X l parametric vector ~i as ~i = (~i1 :~i2 ;~i3 ), where ~il is the pil X l vector 

of parameters to be estimated, Bi2 is the pi2 X l vector of parameters not of 

interest and not assumed to be zero, and, ~i3 is the (k~ 1 - pil - pi2 ) X l vector 

of parameters assumed to be zero. We assume the first element of both 811 and 821 

in respectively the k~1 and k~ factorials to be equal to the mean ~· Also, we 

limit ourselves in this paper to the most popular case, i.e. the case where 

p12 = p22 = 0. Let Di' i = 1,2, be a design consisting of Ni treatment combina

tions from the k~1 factorial such that the vector ~il is estimable. Consider the 

design 



• 

, 
-5-

where A1 is N2 X m1 and A2 is N1 X m2, and, the rows of Ai are treatment combina

tions from the k~1 factorial. We desire a choice of A1 and A2 such that the re

sulting design n1 ~ n2 provides unbiased estimates for the elements of the vector 

1311 U 1321. (Here 1311 U 1321 is a (p 11 + p 21 - 1) X 1 vector whose entires are elements 

of the union of 1311 and 132i when these are considered as sets.) Such a design 

n1 '3 n2 consisting of N1 + N2 treatment combinations to estimate p11 + p 21 - 1 

parameters is said to be obtained using the sum composition of n1 and n2 . 

We show that when A2 consists of N1 repetitions of any arbitrary treatment 

combination of the k~ factorial and A1 consists of N2 repetitions of any treatment 

combination of n1 , then n1 8) n2 is such that the rank of its design matrix is equal 

to Pu + p 21 - 1. This means that given any two non-singular designs n 1 and n2 

from the k~1 and k~ factorials respectively such that 1311 and 1321 are 

then one may always obtain a non-singular design D1 2) D2 from the k~ 

factorial such that 1311 U 1321 is estimable. 

estimable, 

X klll:3 
2 

The proof of this proposition follows by noting that the design matrix 

x:_ l:i:\ of the design n1 1) D2 is essentially of the form: -1\ ·~ Da 

1Nl ~ xnl , XA2 
- .... ---:--- ·--- _L----

' i 
I 

1Na XA1 i XDa 

where 1N is column vactor of order N. and x_ is 
1 ~ -~i 

the design matrix determined byD. 
l 

alone with respect to 13il with the element ~ deleted. If the hth treatment com-

bination of n1 is repeated in A1 , then clearly XA
1 

= ;·Na ® (h th row of ~1 ). 
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Also, if the design vector of the repeated arbitrary treatment combination in A2 ~ 

is denoted by x~, then X~ = tN1 ® xA_2 • Using row and column operations one sees 

that the matrix X_ + D is rank equivalent to the matrix: 
-1)1\:!:./ 2 

1: 0 0 0 
I 

o: 
• ; ~1 
• I 

0 0 0 

I 
• I 

0: : 0 0 0 --, -· ----.--------,---------------
0: 0 0 0: 

I : 
0 I 0 0 0 I 

I I 
I I 

• I 
• I . ' 

. . 
0; 0 0 . 

. ' 
' ' 

0' ' 

where the first row of ~1 consists entirely of O's. Hence the rank of XU18)Da 

3· REMARKS 

Hedayat and Seiden [1971] among other results on ~ composition of latin 

squares, have obtained a result which equivalently can be stated as follows: 

Under certain regularity conditions, the existence of an orthogonal resolu-

tion III plan consisting of k~ treatment combinations for 4 factors each at k1 

levels and an orthogonal resolution III plan consisting of k~ treatment combinations 

for 4 factors each at k2 levels implies the existence of an orthogonal resolution 

III plan consisting of kf + k~ + 2k1k2 points for 4 factors each at k1+k2 levels. 

This type of fraction in this higly specialized setting, falls somewhere between 

the direct product type of design and the sum composition type of design. 
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4 • FURTHER RESEARCH 

The notions of the previous section suggests the following problems: 

(a) Are there other sufficient conditions and necessary conditions on A1 

and A2 such that ~ll U ~21 is estimable? 

(b) What is the generalization of the sum composition method to the 

km1 X k~ x · · • x kmtt factorial? 1 2 

(c) How do the concepts of orthogonality and balance relate to the design 

produced by the sum composition method, given that the initial designs 

possess the properties? 

(d) How do we apply the sum composition method given that the initial designs 

are of resolution III, IV or V? 

(e) How do we guarantee optimality of the design produced by the sum 

composition given that the initial designs are optimal in some sense? 

(f) How does the permutation theory as expanded in Srivastava, Raktoe and 

Pesotan [1971] apply to the sum composition method? 

(g) How can we reduce the number of treatment combinations in the composed 

design to retain estimability of ~11 U ~21? 
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