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Abstract

This note concerns the computation of the Cholesky factorization of
a symmetric and positive definite matrix on a systolic array. We use the
special properties of the matrix to simplify the algorithm and the

corresponding architecture given by Kung and Leiserson.
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l. Introduction

In (3] Kung and Leiserson present a systolic architecture for computing
the LU-factorization of a square matrix by Gaussian elimination without
pivoting. They remark that their architecture is applicable to matrices
that are symmetric and positive definite. In this note we show how one
may use these special matrix properties to simplify their presentation.

We shall discuss both the Cholesky factorization and its square-root-free

variant.

The QR factorization of matrices which are not necessarily positive

definite may also be performed on a systolic array, as shown in [l, 2].

2. Architectures

The Cholesky factorization of a symmetric and positive definite matrix

A, viz. A = LLT , may be evaluated according to the following

recurrences. We access only the lower triangular elements of A and so

i>3.
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We use the same idea as [3] to pipeline these recurrences on a hex-—
connected processor array. It is assumed that A 1is a band matrix. We
present a global view of this pipelined computation in Figure 2 for a
heptadiagonal matrix. The processor array is constructed as follows. The
hexagonal processors below the upper boundary are the standard type inner
product step processors (cf. Figure 1(a) and [3]). The processor at the
top, denoted by a half-circle, computes the square root of its input and
passes (i) the result northwards and (ii) the reciprocal of the result in
the southwest direction (cf. Figure 1(c)). The other processors on the
upper boundary are again inner product step processors, but they have been
rotated clockwise by 120 degrees. The operations performed by the
pentagonal processors on the right side boundary are depicted in Figure
1(b). All the remarks made in [3] are applicable to this architecture,
but the number of processors required is almost halved because we take
advantage of symmetry. The bottleneck of this array is the top processor

which computes a square root and a reciprocal.
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Figure 1.

Operations of the
processors.



A processor array

Figure 2.

for pipelining the

Cholesky factorization
of a heptadiagonal

matrix.
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Figure 3.

Four steps during the
Cholesky factorization
shown in Figure 2.



(c)

(d)

i?
It

{4\ \\\.\ (/
/eSl \\ %f R ‘?’/'\\‘\~\‘ »
T o \\\ ! Y (fss> ‘ i
\\ w /KT\._Q:*_)/ S\

0, & { i 0
¥ * / T\ \
\ L | ¢ ) j

Figure 3 (contd)



It is therefore worthwhile to avoid the square roots. We give here

the recurrences (where 1 > j ) for computing the LDL -factorization

of A:
a4
1] 1] ,
a(lf) - a(k) £, if 1> 3,
(k+1) ij ik ik
FO]’.‘ k = 1,2,..._‘]"1, aij =
(k) _ (k)2 ,-1 - 4
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A corresponding systolic architecture can be constructed. The principal
ideas are illustrated in Figures 4-6. The price we pay is a slightly
higher communication requirement between processors along the right

boundary (compare Figures 2 and 5).
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Figure 4. Operations of the
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(d) C x B Figure 4 (contd)
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Figure 5. A processor array for
pipelining the
LDLT-factorization of
a heptadiagonal matrix.
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Figure 6. Four steps during the
LDLT-factorization
shown in Figure 5.
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