Exact Counting is as Easy as
Approximate Counting

Jin-yi Caift
Lane A. Hemachandrat

TR 86-761
June 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

t Research supported by a Sage Fellowship and NSF grant DCR-8301766.
t Research supported by a Fannie and John Hertz Foundation Fellowship and NSF grant DCR-
8301766.

Exact Counting is as Easy as
Approximate Counting

Jin-yi Cait
Lane A. Hemachandrat

TR 86-761
June 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

t Research supported by a Sage Fellowship and NSF grant DCR-8301766.
t Research supported by a Fannie and John Hertz Foundation Fellowship and NSF grant DCR-
8301766.

Exact Counting is as Easy as Approximate Counting

Jin-yi Cas* Lane A. Hemachandrat

Department of Computer Science
Cornell University
Ithaca, NY 14853

Abstract

We show that exact counting and approximate counting are polynomially

equivalent. That is,
P#P — PApprox#P

where #P is a function that computes the number of solutions to a given
Boolean formula f (denoted by || f]|), and Approx#P computes a short lsst
that contains || f||.

It follows that if there is a good polynomial time approximator for #P
(i.e., one where the list has at most O(|f|'~¢) elements), then P = NP = P#F
and probabilistic polynomial time equals polynomial time. Thus we have

strong evidence that #P can not be easily approximated.

1 Prelude

Suppose a demon comes into your office and says, “I have here a polynomial time ma-
chine. Give it a Boolean formula and it will print the number of satisfying assignments
the formula has.” Enraged, you reply, “Your claim implies P=NP, false and foul fiend.
Return to your infernal home.” Her deception discovered, the embarrassed demon (who
knows that P # NP) leaves you in a cloud of smoke.

However, she returns the next day and says, “I got the last bug out of that polynomial

time machine. Give it a formula and it will now print out a short list of numbers, one of

*Research supported by a Sage Fellowship and NSF grant DCR-8301766.
tResearch supported by a Fannie and John Hertz Foundation Fellowship and NSF grant DCR-8301766.

which is the number of satisfying assignments the formula has.” You are intrigued. Just
what is this demon offering? You suddenly remember reading this paper. Without the
slightest hesitation you reply, “Your claim still implies P=NP, dishonest demon. Return
to the abyss, and trouble me no more.” Your soul secure, you return to the search for a

proof that P # NP.

2 Introduction

#P is the class of functions that count the accepting paths of some NP machine [Val79b].
These functions can count the number of cliques of a given size, compute the per-
manent of a matrix and solve many other interesting counting versions of NP prob-
lems [Val79b,Val79a]. P#P is the class of languages computable by polynomial time
machines endowed with the power of counting.

#P questions seem hard. Though they can be answered by brute force in PSPACE,
it is not known if they are in the polynomial hierarchy. Currently known structural
relations are that P#F D AP and, with an oracle, P#P 5 £f U 17 [Ang80]. The
apparent difficulty of #P problems motivated our research on the approximation of #P.

#P is usually approximated by considering #SAT. Cook’s reduction [Coo71,HU79]
from NP machines to formulas is easily shown parsimonious [Sim77,Val79b]. Thus #SAT,
the function mapping from Boolean formulas to their numbers of solutions (e.g., #SAT(
z1 V z2) = 3), is a canonical hardest #P function. We speak interchangeably of approx-
imating #P and #SAT, as #SAT can be approximated iff #P can.

Stockmeyer [Sto85] has analyzed the complexity of r(-)-bracketing #SAT in the sense
of bracketing the value within a multiplicative factor: finding a function g so that:

L < 050 < 17150
He shows that in A% we can (1 + €| f|~9)-bracket #SAT. Note that for formulas with
many solutions, this bound is weak — the size of the set of possible values it predicts
may be exponentially large. [Sto85] also shows that there is a relativized world where

for no constant k can #SAT be k-bracketed even with a A% function.

The lower bounds of [Sto85] do not prove that #SAT is hard to approximate. They
only show that computer scientists lamentably lack the mathematical tools needed
to determine whether #SAT is easy to approximate. In this paper, we present a
more aggressive approximation that reduces the number of possible values of ||f]| to
a polynomial sized set, and show that the existence of such approximators implies
P = NP = PP = P#P. Thus we may believe that #SAT s hard to approximate
with at least the certainty with which we believe P # NP —a belief we fervently
hold from intuition and evidence wholly independent of the arcane theory of relativiza-

tion [CH86,HH86b).

A function A is said to s(-)-approzimate #SAT if A(f) is a polynomial sized list of
at most s(|f|) integers in which || f|| appears. If A can be computed in polynomial time,
we call it an s(-)-P-approzimator for #SAT. For example, a 4-P-approximator given
z; V z2 V zs might reply {0,1,4, 7}.

Section 3 introduces our proof techniques in a simple setting. If #SAT has a k-P-
approximator then P = NP. Section 4 extends this result to show that if Approx#P is
a function n®-approximating #SAT, a < 1, then p#P = pAprrox#P Thys approximate
counting and exact counting are polynomially equivalent.

These results demonstrate that efficiently approximating #P brings on the apoca-
lypse — P = NP. Thus we have strong structural evidence that #P can not be approxi-

mated.

3 A Simple Proof that P=NP

The proofs of this section and Section 4 have the same architecture. Using a technique
for combining formulas so that their individual numbers of solutions can be deciphered
from that of the combined formula, we repeatedly expand and prune a formula tree. Here
we keep the tree constantly thin. Section 4 allows trees that are polynomially bushy.
This section shows that if #SAT can be k-approximated then P = NP. First, we

state a lemma about combining formulas. Lemma 3.1 says we can easily combine many

small formulas into a single larger formula. This big formula has the property that, given
its number of solutions, we can quickly determine the number of solutions of each of the

small formulas.

Lemma 8.1 There are polynomial time functions combiner and decoder such that for

any Boolean formulas f and g, combiner(f, g) 1s a Boolean formula and decoder(|| com-

biner(f,g)ll prints || 1], llgll-

Proof Sketch Let f = f(z1,..., zn) and g = g(y1,.-., Ym), Where z1,..., Zn,

Y1, - .-, Um are distinct. Let z and z' be two new Boolean variables. Then
h=(fA2)V(EZAZ A---AznAgAZ')

is the desired combination, since ||h]| = || f]|2™*! + ||g]| and |lg]| < 2™. QED

We can easily extend this technique to combine more than two formulas. For example,
to combine three formulas f(zy,...,21), 9(y1,---, ¥m), h(z1,..., za), our combining

formula would be,
h=(A)V{zAa A Aun[@r)V (2 Ay A A um ARAZ")]}.
Now we show that if #SAT has a k—~P-approximator then P = NP.
Theorem 3.2 If #SAT can be k-P-approzimated then P = NP.

Proof Say we are given a formula F(zy, ..., z,) and we would like to know if F € SAT.
We substitute variables one at a time so that we always have a set S of at most k partial

assignments satisfying:

(x) F € SAT < there is a satisfying assignment consistent with a partial

assignment in S.

Each stage assigns a new variable and has three steps. Initially, S consists of the

empty assignment.

Stage s:
1. EXPAND TREE: For each partial assignment in S, assign the variable z; both

true and false (Figure 1A). Applying these assignments to F', we have at most 2k

formulas of which, if ' € SAT, at least one is satisfiable.

2. COMBINE FORMULAS and RUN APPROXIMATOR: Combine the 2k formulas
into a single super-formula as described in Lemma 3.1. Run our k-P-approximator
on that super-formula. The approximator prints k guesses for the number of solu-
tions of the super-formula. For example, in Figure 1B (where k = 3) the first guess
says that the four little formulas in our super-formula have, respectively, 7,0, 3,

and 3 solutions.

3. PRUNE THE TREE: If these k guesses are all zero vectors then the formula is
unsatisfiable. Otherwise, we can choose a set T of at most k columns so that each
nonzero row of our guess matrix (Figure 1B) has a nonzero in a column in T. For
example, we let T = {p| a row of the guess matrix has its first nonzero entry in
column p}.

Now we prune by setting S to the partial assignments corresponding to the columns
in T (there are at most k). Suppose F' € SAT. Then by the inductive hypothesis
one of the predecessors is satisfiable. Thus by our choice of T' the true guess has a
nonzero in some column of T. We have assigned another variable and maintained
invariant (*).
End of Stage i.
At the final stage all variables are assigned and we just have to look at our set of k

complete assignments to F' and see if any of them satisfies . We know by () that F is

satisfiable if and only if one of these assignments satisfies F'. QED

4 Main Result

This section demonstrates that approximate and exact counting are polynomially equiv-

alent. We dramatically strengthen the result of the previous section. From a weaker

assumption we draw a stronger conclusion.

Theorem 4.1 If Approx#P s an n®-approzsmator for #SAT, a < 1, then

P#P - pApprox#P'

Corollary 4.2 If #SAT can be n®-P-approrsmated, a < 1, then P = p#P,

Since P#F = PPP [Gil77,Sim75], where PP is probabilistic polynomial time, the exis-
tence of good approximators for #SAT also implies that probabilistic and deterministic

polynomial time are equivalent.
Corollary 4.8 If #SAT can be n®*-P-approzsmated, a < 1, then P = PP.

Theorem 4.1 differs from Theorem 3.2 in two important ways. One is that we are
satisfied with an n®-approximator, a < 1. The more interesting point is that we conclude

P = P#P, We now discuss each of these improvements.

4.1 How to Count Solutions

The first major change is that we find out not only if a formula is satisfiable, but also
how many satisfying assignments it has. We do this with a more rigorous analysis of the

guess matrix and a refined pruning scheme.
Lemma 4.4 If #SAT can be k-P-approzimated then P = P#F.

Proof Consider the tree pruning procedure in Theorem 3.2. Here we want to keep a
set S of p (1 < p < k) leaves in the partially grown tree, such that (|| fi||, || fll, - .-, | fpll)
uniquely determine || f||, where f; is the formula obtained from f by the partial assign-
ment associated with the jth leave in S. (We will speak interchangeably of the jth leave
in S and f;.)

Again we substitute variables one at a time. Inductively, for the formulas fy,..., fp
in S, we wish to maintain at most k vectors u; (¢ =1,..., ¢, ¢ < k) of dimension p, and
integers 8y, ..., 84, such that the following conditions hold.

1° (Vi)[u; # 0],

2° (Vi # j)[ui # uj], and

8° f € SAT = (3i)[us = (lAll,---, fpll) & 8i = || fII]
Notice that when the tree has fully grown, for the formulas fy,..., fp in S it can be
easily checked whether some u; = (|| fill,- .-, || fpll). If such u; exists, it must be unique,

by condition 2°. If f € SAT we are guaranteed such a u;, and we can output || f|| = s;,
by 3°. Otherwise f is unsatisfiable and then (|| f1,..., || fpl]) = 0, and must be unequal
to any u;, by 1°, in which case we output || f|| = 0.

At heart, the proof is a double induction. Each stage has the same general structure
as before in the proof of Theorem 3.2.

Initially S consists of f and we apply our approximation on f. If the approximator
guessed all zeros, then output ||f|| = 0. Otherwise, let u;, ..., ug be all the distinct
nonzero guesses (1 < ¢ < k).

We inductively maintain 1°, 2° and 3° as we go along, and at each stage we use a
second induction for the tree pruning process.

Stage I:

1. EXPAND TREE: For each partial assignment in S, assign the variable z; both

true and false. We have r new leaves, where 2 < r = 2|S| < 2k.

2. COMBINE FORMULAS and RUN APPROXIMATOR: Combine f with the for-
mulas fy,..., fr associated with these new leaves. Let G be the resulting “super-
formula.” Run our k-approximator of G. We obtain k guesses for the number
of solutions of G. Using our decoder (see Section 4.2) we get up to k distinct
vectors, say Uy,..., Ug, 1 < ¢' < k, where U; = (v;o, vi1,..., Vi) is a guess for

AN WAl -y LA

3. PRUNE THE TREE: Let v; = (v;q,.. ., vi/).

If some v; = 0 we may discard 0;. In fact, if f € SAT then one of the formulas
in S is satisfiable, by inductive hypotheses 3° and 1°. Thus one of the new leaves
is satisfiable. Since v; = 0 can’t be a true guess if f € SAT, deleting it causes no

harm.

Secondly, for any pair #;, ¥j, if v; = v;, we can effectively delete at least one of
them. This is because ;,# 0; implies vio # vjo. Now (viy + vig, ..., Vi p—1 + Vif)
must equal one of the u’s (call it u;) associated with the formulas in S (otherwise
0; as well as 0; is clearly false by 3°). This u; must be unique by 2°; furthermore,
either v;o # 8; or vjo # 8.

If v;o # 8¢, clearly 0; is false; we may delete 9;. The same argument applies to ;.
Without loss of generality, we are left with (v1,..., 0g), ¢ < k. If ¢ = 0 then
output || f]| = 0. In fact, if f € SAT then some #; with v; # 0 must represent the
truth and must have been kept.

Let 8; = vjo, f = 1,...,¢, 1 < g < k. Note that vy,..., vy and the s;’s satisfy
conditions 1°, 2° and 3°. Let the guess matrix consist of vy, ..., vy as row vectors.
We will inductively extract at most ¢ columns of the matrix, so that the ¢ row
vectors of the submatrix also satisfy 1°, 2° and 3°.

Since 3° is automatically satisfied with any subset of columns, we need only to
maintain 1° and 2°.

To prune, initially let j; = min{j > 1|vy; # 0}. Let wy = (v;,) € Z'. Inductively,
suppose wy, ..., Wy € Z" have been constructed, h' < h < ¢, satisfying 1° and 2°.
Each w; is the projection of v; onto the h' chosen columns. Take these A’ columns
of vpyy; call this vector wpyy.

If wayy = w; for some 1 < i < h, then this ¢ is unique, by 2°. Also, wxy; # 0 by
1°. Now all we need to do is to distinguish w4, from w;. But since vj4; # v;, this
is easily done by choosing one more column. (Every wy, ..., wh, Wpyy is extended
one dimension.)

If wpyy # w;, for all 1 < i < h, then we only need to insure wxy; # 0. Again this
is easy since vp4y # 0.

Finally, wy, ..., wq are constructed. Set u; to w; and p to dimension(w;); S consists
of those new leaves corresponding to the p selected columns. 1°, 2° and 3° are

satisfied.

End of Stage I.
QED

4.2 Dealing With Polynomial Approximators

This section notes that we can combine many formulas into a super-formula efficiently
and can still prune so that our tree does not blow up in size. This is really just an
extension of the way, in Section 3, we went from combining two to combining three
formulas.

We briefly discuss how to proceed with an n!~¢-approximator. We maintain a poly-
nomially wide band as we prune down the tree. For any a < 1, we can maintain a
bushy tree of width N*, where ¢ is a constant depending on a. A careful analysis reveals
that, counting the cost of making all variables distinct, applying an n®-approximator to

a super-formula made from 2N* + 1 formulas each of length N produces less than N ¢

guesses.

5 Open Questions and Conclusions

We’ve seen that if #SAT can be n®*-approximated, a < 1, apocalypse results. One
wonders if n®-approximability, for arbitrary a, also has earthshaking consequences. We
present a relativized answer. The following theorem is easily proved using the relativiza-

tion techniques of [Sto85].

Theorem 5.1 There ts a relativized world sn which no A% function can, for any k,

n* —approzimate #SAT.

We conjecture that even n*~P-approximability implies P = P#P,
Our evidence on the structural consequences approximating #P shows that the fabric
of complexity theory is tightly woven. The conjecture that #P is hard to approximate

is closely tied to the ubiquitous demon of computer science— P =?NP.

Acknowledgement

We are indebted to Professor Juris Hart manis for invaluable advice and encouragement.

References

[Ang80]

[CHS6]

[Coo71]

Gil77]

[HH864a]

[HH86b]

[HU79)

[Sim75]

[Sim77]

[Sto85]

Dana Angluin. On counting problems and the polynomial-time hierarchy. The-
oretical Computer Science, 12:161-173, 1980.

Jin-yi Cai and Lane Hemachandra. The Boolean hierarchy: hardware over
NP. In Structure in Complezity Theory, pages 105-124, Springer-Verlag Lecture
Notes tn Computer Science #223, 1986.

S. A. Cook. The complexity of theorem-proving procedures. In ACM Sympo-
stum on Theory of Computation, pages 151-158, 1971.

John Gill. Computational complexity of probabilistic Turing machines. SIAM
Journal on Computing, 6(4):675-695, December 1977.

Juris Hartmanis and Lane Hemachandra. Complexity classes without ma-
chines: on complete languages for UP. In Automata, Languages, and Pro-
gramming (ICALP 1986), Springer-Verlag Lecture Notes in Computer Science,
1986. To appear.

Juris Hartmanis and Lane Hemachandra. On sparse oracles separating feasible
complexity classes. In STACS 1986: 3rd Annual Symnpossum on Theoreti-
cal Aspects of Computer Science, Springer-Verlag Lecture Notes in Computer
Science #210, 1986.

John Hopcroft and J. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

Janos Simon. On Some Central Problems in Computational Complezsty. PhD
thesis, Cornell University, Ithaca, N.Y., January 1975.

Janos Simon. On the difference between one and many. In Automata, Lan-
guages, and Programming (ICALP 1977), pages 480-491, Springer-Verlag Lec-
ture Notes stn Computer Science #52, 1977.

Larry Stockmeyer. On approximation algorithms for #P. SIAM Journal on
Computing, 14(4):849-861, November 1985.

10

[Val79a] Leslie G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189-201, 1979.

[Val79b] Leslie G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410-421, 1979.

11

F F(FITI X3:---:Xn)

TF FT FF

0 3 3

0 0 0

(o]

F(Tl Tl x3:---:xn) F(F, T, X3,...,Xn)
Figure 1A: The Tree Figure 1B: The
Guess Matrix
F

F(Tl X244 Xn) F(FI X2,-- 4 Xn)

F(Tl TI x3l"'lxn) F(Tu FI X3:---:Xn)

PRUNED
BRANCHES

Figure 1C: The Pruned Tree

12

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif

