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Abstract 

Properties are well known for analysis of variance estimators of 

variance components obtained from balanced data under assumptions either 

of normality or of zero kurtosis. We show here that even with non-zero 

kurtosis, these estimators still have uniformly minimum variance among 

all unbiased, translation invariant, quadratic estimators. 

Examples of balanced data models with succinct matrix represen-

tations are given. An algorithm is presented for deriving from XX' the --
matrix M = I - XX+, where X is the incidence matrix for the fixed effects -+ and X denotes its Moore-Penrose inverse. The algorithm involves only 

the Kronecker product operation and requires no explicit calculation of 

generalized inverses. 

l. Introduction 

Variance components estimators obtained from balanced data (having equal 

numbers of observations in the subclasses) by equating analysis of variance mean 

squares to their expected values are known as ANOVA (analysis of variance) esti-

mators. Seely [1971] proposes a comprehensive theory for optimality properties 
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of ANOVA estimators, introducing the notion of a quadratic subspace of symmetric 

matrices. For ANOVA models with balanced data:~his results show that the ANOVA 

estimators are the same as MINQUE [Rao, 1971] and are UMVUIQ (~iformly ~nimum 

variance unbiased location-invariant ~uadratic) when fourth moments are the same 

as under normality, i.e., 

ANOVA = UMVUIQ, under zero kurtosis . (1.1) 

Our main result is that for ANOVA models with balanced data the uniformly minimum 

variance property extends beyond normality and zero kurtosis to distributions with 

non-zero kurtosis: 

AN OVA UMVUIQ, under arbitrary kurtosis . (1.2) 

This extends partial results earlier obtained by Hsu [1938, p. 100] and Atiqullah 

[1962, p. 85] for the residual error variance in fixed effects models, by Graybill 

[1954], Graybill and Wortham [1956], and Graybill and Hultquist [1961, Theorem 7] 

for random effects models satisfying certain assumptions, and by Tan [1979] for 

nested classifications with random models. 

A special case of the zero kurtosis of (1.1) is the assumption of normality. 

Under this assumption, restriction to quadratic estimators is irrelevant: 

ANOVA = UMVUI, under normality • (1.3) 

In this case, restricted maximum likelihood (REML) estimators (e.g., see 

Patterson and Thompson [1971], Corbeil and Searle [1976] and Searle [l979a]) also 

coincide with UNVUI estimators (see Anderson [1978] and Pukelsheim and Styan [1979]), 

so that 

ANOVA = REML, under normality , (1.4) 

as noted by Harville [1977, p. 325]. 
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Section 2 starts with several examples of ANOVA models with balanced data 

and discusses succinct matrix representation of them. For calculating 

M =I- X(X'X)-X', where X is the incidence matrix for the fixed effects, this 
,.. ... f/11# ,. 

representation provides (in Section 3) an algorithm that does not explicitly need 

any generalized inverse (X'X)- of X'X; this leads to a detailed knowledge of the ,. ,.,. ........ 
structure of M necessary to establish (1.2). Section 3 also discusses translation 

invariance, and in Section 4 we review the normal and zero-kurtosis case. And the 

condition of Hsu's and Atiqullah's results, that a certain matrix have equal 

diagonal elements, is reflected by a scalar invariance in our proof of (1.2) in 

Section 5. 

Not only is our result more general than results presently available but our 

method of proof differs from that of earlier proofs, which explicitly involve 

calculating the variance that is to be minimized. Rather, we embed the problem 

in a general linear model for variance components and then view it as a special 

case of the question "When is least-squares estimation also minimum variance?". 

This approach is essentially due to Seely [1970] and has also been applied to 

similar problems by Drygas [1980], Kleffe [1977] and Brown [1978]. 

2. Notation and Examples 

2.1. The general linear model 

A representation of the general linear model that includes fixed and random 

effects is 

c 
y =X~+ Zu =X~+ ~ Z.u. 

- - . r-1-l. 1.= 

(2.1) 

where y is an N X 1 vector of observations, ~ is a vector of p parameters, X is - -
a known N X p incidence matrix, u. is a vector of q. random effects and Z. is a 

-1. 1. -1. 

known N X q. incidence matrix, with u = E being the vector of residual error 
1. _c 
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terms and ~c = ~N· Partitioned as rows of sub-matrices and sub-vectors, respec­

tively, Z = [z.} and u' = fu~}, the means, variances and covariances of the 
,... ....,.l ..... I'Wl 

u.-vectors are defined by E(u.) 
-l -l 

= 0, var(u.) = E(u~u~) = d:I. and cov(u.,u:) = 
... l ... .t-l :t-qi ... l -J 

E(u.u~) = 0 fori f j = 1, ···, c. 
-l-J -

With these definitions, the dispersion 

(variance-covariance) matrix of y is 

c 
v = r: d:v. 
... . l l-l 

l= 

with v. = z.z~ 
... l ... l-l 

(2.2) 

Each vector of random effects, u., 
... l 

has elements u. 1 , ···, u. which are 
l lqi 

assumed to be independent, all with the 

E(u~ .) = (Y. + 3)cr~, 
lJ l l 

same coefficient of kurtosis Y.: 
l 

for j = 1, q_. • 
l 

(2.3) 

In saying "zero kurtosis" in (1.1), we mean Y 1 = • · · = Y c = 0. This occurs, for 

example, when each u. follows a normal distribution. Non-zero kurtosis in this 
... l 

context was first considered by Hsu [1938], so that (2.1) and (2.3) are called 

Hsu's model by Pukelsheim [1977]. 

2.2. ANOVA models with balanced data 

Searle and Henderson [1979] develop properties of V, for balanced data, from 

noting that each Z.Z! of (2.2) can be expressed as a Kronecker product of I- and 
,..l...l 

J-matrices where, in general, I is the a X a identity matrix, and J is the a X a 
... a ... a 

matrix with every element unity. Similarly, X and each Z. of (2.1) can be 
- ... l 

expressed in terms of Kronecker products of !-matrices and 1-vectors where 1 is 
... a 

the a X 1 vector with every element unity. Then J = 1 1'. We also define the 
...a ... a...a 

symmetric idempotent (projection) matrices J = J /a and K = I - J . Products ... a ... a ... a ... a ... a 

of J , J and K commute, and K J = K J = 0. For ® being the Kronecker product ... a ... a ... a ... a...a ... a...a ... 

operator, the equality T ® T = T holds for T representing I, 1, J or J but ... a ... n ... an 

not K: 

K =K®K +K®J +J®K fK®K. ... an ... a ... n ... a ... n ... a ... n ... a ... n (2. 4) 
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The reader will recognize that K is a special case of the projection matrix ... a 

associated with the general incidence matrix X of the model (2.1): 

M =I I (2.5) -
where (X'X)- is a generalized inverse of X'X, and X+ is the Moore-Penrose inverse --
of X (e.g., Searle [1971, p. 20]). M is symmetric, idempotent and, for given X, 

invariant to the choice of (X'X)-, and MX = 0 • ... -
2.3. Examples: three-way classifications 

Numerous examples could be considered; we offer three that illustrate a 

variety of features. In each of them, ~ is a general mean and E-terms are random 

errors with zero mean and dispersion matrix Other terms are defined as 

random or fixed. Variances are denoted by a2 with subscript corresponding to the 

term concerned. The subscript ranges are i = 1, ···, a, j = 1, ···, b, k = 1, 

• · • , c and Z = 1, • • • , n. 

(1) A mixed effects model 

Consider a 3-way classification with two of the three possible first-order 

interactions and without the second-order interaction: 

y .. kn =~+ex.+~. +Yk+ (ex~) .. + (SY).k+E .. kn. lJ ~ l J lJ J lJ ~ 

With ex's, ~'s, and (ex~)'s fixed, but y's and (SY)'s random: 

I I I 

X = [1 0 1b 0 1 0 1 ; I 0 1b 0 1 0 1 : 1 0 Ib 0 1 0 1 : I 0 Ib 0 1 0 1 ] ... a ... ...c ... n , .... a ... ...c ... n , ... a .... ....c ... n , ... a ... ...c ... n 

~1 = 1 ® lb ® I ® 1 , ... a ... ...c ... n z2 = 1 0 Ib 0 I 0 1 , 
... ...a ... ...c ... n 

Z = I -3 ... abcn 
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(2) A fixed effects model with a nested factor 

Consider the case of having Yjk 1 S nested within the ~j 1 s: 

Y •• ,~n lJLUt = f..L + a. + ~. + (a~) .. + y .k + (o:y) . . k + €. ·kn • ]_ J lJ J lJ lJ ~ 

The X matrix is 

I I I 

X = [1 ® 1b ® 1 ® 1 : I ® ... 1b ® ... 1c ® 1 : 1 ® Ib ® 1 ® 1 : ... a ... ...c ... n 1 ... a ... n 1 ... a ... ...c ... n 1 

I I 

I ®L ®1 ®1 :1 ®Ib®I ®1 :I ®Ib®I ®1] . ... a ~ ... c ... n 1 ... a ... ...c ... n 1 ... a ... ...c ... n 

(3) A fixed effects model with a nested factor and a missing interaction 

Now consider having 5 .. k 1 S nested within (a., ~.)cells but with the (a~) .. lJ ]_ J lJ 

interactions absent: 

The matrix X is 

I I I 

X = [_1a ® ... 1b ® ... 1c ® ... 1n :
1 

... Ia ® ... 1b ® ... 1c ® 1 : 1 ® Ib ® 1 ® 1 : I ® Ib ® I ® 1 ] ... ...n 1 ... a ... ...c ... n 1 ... a ... ...c ... n 

2.4. Comments on a general m-way classification model with balanced data 

Suppose we write a general m-way classification model as 

where e. represents in turn f..L, a, ~' Y, ···, (a~), (av), ···, 
-J 

m 
y = ~ G .e. 
... . I ... J ... J J= 
appropriate 

+ € 

to any 

particular model. Then evidently G. is a Kronecker product of m + l matrices 
-J 

each of which is either an I-matrix or a 1-vector. To be more specific, suppose 

Nl' ···, Nm are the numbers of levels of them (main or nested) effects a, ~' Y, 

···, and n is the number of observations in each of the smallest subclasses. Then 

G. can be written, similar to Seifert [l979, p. 238], as 
-J 

where, for r = l, m the matrix F equals L_ if the r 1 th effect is 
' ' ... N ~ r r 

(2.6) 
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represented in e. and equals ~N otherwise. Thus, in example (1), the (t3Y) 's are 
-J r 

represented by ~6 for which G6 = 1 ® Ib ® I ® 1 . In all models the Kronecker 
,. ... a ..., ,.,.c ..... n 

:product of all 1 's (which is a 1-vector) appears as ~l for f.L; and the Kronecker ... 
product of all I's (itself an I) corresponds to the error term E. -

The distinction between interaction effects and nested effects in this des-

cription is that a term which, from the nature of its G could be either, is an 

interaction if and only if all the corresponding main effects are present (whether 

they are effects due to crossed classifications, as is usual, or to nested classi-

fications); otherwise it is a nested effect. This is evident, for instance, for 

the G-matrix 1 ® Ib ® I ® 1 which in example (1) is associated with the (~) 
,. ...,a ..., ,..,..c ,..,n 

interaction terms. In contrast, if the Yk's were omitted from example (1) the 

effect in question would be nested within the ~.'s, as in example 2 of Seifert 
J 

[1979]. 

The classifying of an effect as fixed or random determines whether its G. 
-J 

becomes, in terms of the general linear model y =X~ + ~Z.u. in (2.1), a sub-
,.. ,.,...... -.J.....l 

matrix of X or is a z.. For a e. representing fixed effects, G. becomes a sub-
... l -J ... J 

matrix of~' whereas for a e . representing random effects its G. becomes a Z .. 
... J -J ... l 

In any case, the product G .G'. appears as a term either in XX' or in V = z::~z.z:, 
-J ... J l...J....l 

and from (2. 6) is a Kronecker product of I's and J's. Indeed, both XX' and -
V = ~~Z.Z~ are sums of G.G~ matrices, as dealt with by Searle and Henderson [1979]. 

l...l...l ... J ... J 

3. Translation Invariance 

Estimation of variance components is usually confined to estimators that are 

based on quadratic functions of the observation vector y of the form y'Ay with A --
being symmetric. Since the ANOVA table is set up after an initial least squares 

fit for ~' ANOVA estimators of variance components have the property of depending -
on the observations y only through the residual statistic My = y - X(X'X)-X'y. 
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Seely [1971, p. 717] points out that My is a maximal translation-invariant sta--
tistic, whence every estimator for variance components which depends on y only 

through My is called a (translation) invariant estimator. 

The invariance requirement plays an ambiguous role in the theory. For a 

variance component estimator y'Ay there are at least three situations when in-... ...._ 

variance arises automatically: (i) When A is non-negative definite, then un-

biasedness necessitates invariance (see Atiqullah [1962, Lemma 2]). (ii) When 

the variance of y'Ay is assumed not to depend on ~' then this necessitates in-
~ ~~ ~ 

variance (see Hsu [1938, page 95] and Drygas [1972]). (iii) When Seely's [1971, 

p. 715] set of assumptions for the existence of a uniformly minimum variance un-

biased estimator are satisfied, then that estimator is invariant. There are, 

however, instances when invariance does not arise automatically. In these cases 

the invariance requirement means a genuine restriction from the larger class of 

all unbiased quadratic estimators to the proper subclass of those estimators 

which, in addition, are invariant. 

A quadratic estimator y'Ay is invariant, if and only if it remains unaltered 

when y is replaced by y - Xo for every o, and for this, a necessary and sufficient 

condition is AX= 0 (see Rao [1971, p. 267]). Since it is easily verified that 

AX = 0 if and only if A = MAM, it follows that y'Ay is invariant if and only if ....... 
it has the form y'MAMy. A general form of M in ANOVA models with balanced data ... __ 
can be derived by first writing _r __ as the Kronecker product~- ®···®IN ®I 

:N ~1 ... m ... n 

and replacing each !N by ~N + ~ . 
r r r 

m+l 
This gives !N as a sum of 2 terms. Each 

term is a Kronecker product of J's and K's and hence a projection matrix. The 

product of any two of these terms is null because it involves the product of a J 

and a K which is null, and so the representation thus obtained corresponds to the 

orthogonal partitioning traditional to the ANOVA of balanced data. As a conse-

quence, M is a sum of Kronecker products of I's, J's and K's. This is the -
property of M required in Section 5 for our proof concerning non-zero kurtosis. 
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For certain ANOVA models with balanced data we suggest the following algor-

ithm for deriving M of (2.5) without having to calculate a generalized inverse 

(X'X)- or the Moore-Penrose inverse X+. First recall that X'X is a sum of terms -- -
G.G~ that, from (2.6) are each Kronecker products of I's and J's, as described 
-J-J -
at the end of Section 2. Then the algorithm is as follows. 

(i) 

(ii) 

In G.G~ corresponding to each main effect or interaction factor, re­
-J-J 

place each !N by !N , and each !N by~. 
r r r r 

In G.G~ corresponding to a factor (represented bye.) nested in some 
-J-J -J 

other (main effect or interaction) factor which is specifically rep-

resented in the model as ~k for k r j, proceed as in (i) except leave 

unchanged all those I's for the factors within which e. is nested. 
-J 

+ + Then XX is the sum of the changed G.G~ terms, and M = I- XX . 
-J-J 

We use the examples of Section 2 to illustrate the algorithm. For example 

(1), 

XX'= J 0Jb0J 0J +I 0Jb0J 0J + J 0Ib0J 0J +I 0Ib0J 0J ........ ...a ... ...c ... n ... a .... ...c ... n ,..a ... ...c ,..n ... a .... ,..c ... n 

and the algorithm converts this to 

XX+= ... Ja0 ... J.b0 ... Jc0 ... Jn + K 0Jb0J 0J + J 0K 0J 0J + K 0K 0J 0J ... a .... ...c -n ... a ;;.o ... c ... n ... a ;;.o ... c ... n 

= ( J + K ) 0 ( Jb + K. ) 0 J 0 J = I 0 J ... a ... a .... ~b ... c ,..n ,..ab ... en 

Example (2) has the Y-factor nested within the ~-factor. Keeping this in mind, 

the algorithm converts 

XX' = J 0 Jb 0 J 0 J + I 0 Jb 0 J 0 J + J 0 Ib 0 J 0 J ........ ...a ... ...c ... n ... a .... ,..c ... n ... a .... ...c ... n 

+I 0Ib0J 0J +J 0Ib0I 0J +I 0Ib0I 0J ... a .... ,..c ,..n ... a ... ,..c ... n ... a ... ...c ... n 

into 
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+K ®K ®J ®J +J ®Ib®K ®J +K ®Ib®K ®J ... a .;;.o ... c ... n ... a ... ...c ... n ... a ... ...c ... n 

=I ® J ... abc ... n 

Example (3) is not covered by the algorithm because the o .. k effects are 
lJ 

nested within the (a., $.)-cells for which the model contains no specific (inter­
l J 

action) effects. The latter are needed in the model in order for part (ii) of 

the algorithm to be effective; if (as) .. effects were part of the model they would 
lJ 

act as ~k of the algorithm. The inability of the algorithm to deal with a model 

of this nature is of no consequence because models with factors nested within 

factors that are represented in the model in less than a fully parameterized 

manner are unlikely to be met with in practice. 

The algorithm utilizes structural features inherent in any model, arising 

out of its statistical meaning: e.g., interactions cannot be fixed effects if 

their associated main effects are random, nor can fixed effects be nested within 

random effects. Formalization of these features and rigorous proof of the algor-

ithm would, as Cornfield and Tukey [1956] so rightly say in a situation of similar 

repetitive algebraic complexity, involve "systematic algebra [which] can take us 

deep into the forest of notation. But the detailed manipulation will, sooner or 

later, blot out any understanding we may have started with." 

4. Estimation Under Zero Kurtosis 

Minimum variance properties of analysis of variance (ANOVA) estimators of 

variance components from balanced data are summarized in (1.1). The variances 
c 

of these estimators do, of course, depend on var(y) = V = E ~V. of (2.2). More 
- ,.. i=l l-l 

than that, existence of UMVUQ estimators of the ~'s comes from V and the V. 's 
l ... l 

having a certain structure. When the kurtosis is zero, as defined following (2.3), 



- 11 -

it is sufficient that the structure for the V. 's be that they form a quadratic 
,..l 

subspace of symmetric matrices, as defined by Seely [1971]. To be precise, let 

c 
B = { L: t. v-I tl, ... ' t E II.} ' (4. 1) 

i=l l-l c 

c 
2: t.V. of the V. 's, for 

. 1 l-l ... l 
l= 

be the set of all matrices that are linear combinations 

the t. 's being any real scalars. 
l 

Then B is defined by Seely [1971] as a quadratic 

subspace of symmetric matrices when every member B of B has BF also in B. 

Seely's [1971, p. 715] results on uniform minimum variance unbiased esti-

mation are established on the basis of two assumptions: 

(a) that B is a quadratic subspace of symmetric matrices, 

and 

(b) that matrices H. exist such that V.X = XH. for i = 1, 
.... l ... l- -l 

' c . 

These assumptions certainly hold in a fixed effects model, as in Atiqullah [1962], 

wherein the only ~ matrix is ;N· They also hold for the random effects model in 

Theorem 7 of Graybill and Hultquist [1961], since their requirement that an 

analysis of variance exist leads to Seely's assumption (a), while their assumption 

(iv) is Seely's assumption (b). Since Seely [1971, p. 717] shows that his assump-

tions (a) and (b) necessitate translation-invariance of the resulting estimator, 

neither Atiqullah [1962] nor Graybill and Hultquist [1961] need a restriction to 

invariant quadratic estimates. 

In general, however, an ANOVA model with balanced data does not necessarily 

satisfy Seely's assumption (a) for the same kind of reasons that Seely's [1971, 

p. 719] example of the balanced incomplete block design does not, and as further 

evidenced in example 1 of Kleffe and Pincus [1974, p. 53]. Another demonstration 

that B is not always a quadratic subspace is given by Searle and Henderson [1979] 

for the 2-way crossed classification where both the inverse V-l and ~ include 

a term in ~N whereas~ itself does not. But the ~i's of V, together with ~N do 
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form a quadratic subspace and V is a member of it. Indeed, there are typically 

two distinct situations: 

(l) For some models (e.g., crossed classification models having no nested 

factors), the V. do not define a quadratic subspace. This is because, 
-J_ 

by the crossed nature of the factors, there is a product of two v. 's 
-J_ 

that yields ~N' and ~N has to be included in B. 

(2) For other models (e.g., completely nested models, and mixed models 

having random factors that are, within thernEelves, effectively nested) 

the V. 's define a quadratic subspace and no product V.V. yields JN' and 
-J. -1-J -

so there is no need to include ~N' 

In contrast to V = var(y) consider the variance of MY from which the trans-- -
lation invariant quadratic form y'MAMy of Section 3 is formed: --

var (MY) = MVM - -
c 

= ~ ~MV.M 
i=l J.-1-

The analogous form of B for matrices MV.M is then 
...... 1-

(4. 2) 

(4. 3) 

Concerning eM! Theorem 6 of Kleffe and Pincus [1974, p. 52] shows that in any 

linear model the quadratic subspace property that is not always evident in V is 

needed only of eM. For balanced data this is always the case, i.e., eM defines 

a quadratic subspace, resulting from the fact that M and the V.'s are all linear 
... J. 

combinations of Kronecker products of I' s, ~' s and K' s. No matrix such as ;!N 

ever has to be included with the MV.M's. This is so because MJ. is null. [Note 
-J.... -N 

that the analogue of Seely's assumption (b) is trivially satisfied, since MY has -
expectation zero.] 
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Theorems l and 3 of Seely [1971] assert that for balanced data with zero 

kurtosis there exists an unbiased invariant quadratic estimator of the variance 

components which has uniformly minimum variance in its class (UMVUIQ). Under 

normality this estimator retains the UMV property among all unbiased invariant 

estimators, whether they are quadratic or not (UMVUI). We now show that this 

estimator also coincides with the ANOVA estimator, thus justifying (l.l) and (1.3). 

4.2. The derived, dispersion-mean model 

The general linear model for y is y =X~+ Zu of (2.1). ForM of (2.5) the -
model for My is My = MZu. Seely [1970, 1971], Puk.elsheim [1976, 1977, 1979], -- -
Brown [1978, 1979] and Anderson [1978, 1979] show how this model for My can be 

converted into a linear model for a2. To this end we set out some notation. 

For a matrix A we denote by vecA the vector formed by stacking the columns 

of A one under the other to form a single column vector. Its history, properties, 

and uses in statistics are extensively reviewed in Henderson and Searle [1979]. 

An important result connecting vee with Kronecker products is 

vec(ABC) = (C 1 ® A)vecB; (4.4) -
and an important matrix is IN N defined, for A of order N X N, by - ' -

(4. 5) 

as discussed in Henderson and Searle [1979, 1981], where it is called a vee permu-

tation matrix. We also need q = ~q., for q. of (2.3), and introduce the q2 X q 
J_ J_ 

matrix 

I I 

D = [e ® e 1 • • • : e ® e ] , ... q ..,1 ..,1 : I ..,q ... q 
(4. 6) 

where e. is the i 1 th column of I • 
... l ... q 
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Using these terms we then define 

y =My®My (4. 7) .... -
I I 

X = [vee(~~) r • • • :vee (MV M)] I 
I ' ,..,.,.c,..., 

(4. 8) 

~l = (~ ® ~) (~ ® ~) (!N-2 + !N,N) (~ ® ~) (4. 9) 

c 
!::. = E)d:y .I =block diagonal(~Y~ , 

i=l J. J.....qi ql 
(4.l0) 

~2 = (M ® M)(Z ® Z)D !::.D 1 (Z ® Z) I (M ® M) . 
... ,... - ,.., ,..q..,.....q - ... ,.. -

(4.ll) 

Then the derived, or dispersion-mean, model for a2 can be expressed as 

E(y) = Xa2 (4.l2) 

Ordinary least squares on (4.l2) leads, as is not hard to show, to equations 

{ tr(MV.MV .)}82 = {y'MV.Myl 
-2-J ... --~ 

(4.l3) 

fori= l, ···, c. Then, since SM of (4.3) is a quadratic subspace of symmetric 

matrices, the result of Seely [l97l] discussed in the first paragraph of this 

section shows that the estimators Q2 of (4.l3) are UMVUQ- and because they are 

also translation invariant they are thus UMVUIQ; and, under normality, they are 

UMVUI. Furthermore, because in ANOVA models with balanced data, ANOVA estimators 

have these same properties, as discussed in Section l, the estimators in (4.l3) 

are the ANOVA estimators. 

(4.l3) is also the generalized least squares solution for (4.l2) when 

~ = ~ = l (or more generally, any value whatever) and~=··· = ~-l = Yl = 

••• = y = 0. For this reason, equations (4.l3) have recently been called c 

MIVQUE-0 by Goodnight [l979] and MINQUEO by Searle [l979a,b]. 
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A necessary and sufficient condition under which ordinary least squares 

estimation oft'~ in the model E(y) =X~, var(y) =Vis the same as best linear ,. ,.,. ,... ,...,.. 

unbiased estimation is VX = XH, for some matrix H. Zyskind [1967] and Seely and -- -
Zyskind [1971] give a broad presentation of this result which, under normality, 

leads to the quadratic subspace condition of Seely [1971]. While (1.1) and (1.3) 

thus follow from Seely's [1971] general theory, the VX = XH requirement for the --
model (4.12) with zero kurtosis (i.e., with~ and ~2 null) is~~= ~l for some 

~1 . Direct verification of this may be found in Anderson [1978]. Under normality, 

Anderson [1979] also establishes (1.4), i.e., equality of REML and UMVUI, as do 

Pukelsheim and Styan [1979]. We now turn to the case where the kurtosis need not 

be zero. 

5. Estimation Under Non-zero Kurtosis 

For ANOVA models with balanced data we now verify (1.2) by exhibiting a 

matrix ~2 that satisfies 

where~ and ~2 are defined in (4.8) and (4.11). Then, since~~= ~l' we have 

(~1 + ~2 )~ = ~ for ~ = ~l + ~2, and so the condition for ordinary least squares 

estimation being the same as best linear unbiased estimation is satisfied for the 

non-zero kurtosis case. Theorem 4.5 of Pukelsheim [1977], Theorem 6 of Kleffe 

[1977] and Theorem 1.4 of Drygas [1980] point out the need for a matrix ~2; we 

substantiate this by showing its existence for the non-zero kurtosis in ANOVA 

estimation from balanced data. 

It suffices to show that for every k = 1, , c there exists some c X 1 

vector ~k such that 
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(5.2) 

We now use (4.4) and (4.ll), and also D 6D'vec(A) = vec(6 diag A) from Pukelsheim ,..q_....-q ,.. .... ,.. 

[1977, p. 326], where diagA is the diagonal matrix with diagonal elements being -
those of A. The left-hand side of (5.2) then becomes 

~2 vee(~~) = (~ ® ~) (~ ® ~)~q~~~vec (~·~~) 

= (~®~)(~®~)vee£~ diag(~·~~)} 

Now suppose there exist numbers Alk' , X.ck such that 

Then 

c 
G);,-~ =A, say. 
i=l l qi ... 

c 
w_2 vec(~1~M) = vec(MZ6AZ'M) =vee 2: cr':y.;,.,~MZ.Z~M = Zh_ , 

-"'- -...... ... . l 1 1 1...._ ... 1 ... 1... ... .;:.!c l= 

(5.3) 

(5.4) 

(5.5) 

cr4 y;, )'. This establishes (5.2), and therefore (5.l). 
' c c ck 

Thus for (5.5) to hold, it remains to exhibit numbers ;,ik satisfying (5.4). 

To this end define 

>.. 1. J.k = z ~ .MZ,~z,:Mz . . ... lJ ...... n-r.-... lJ 
(5. 6) 

= z! . (I - x:;t)z,~Zk' (I - XX +)z .. 
... lJ ... -- --"- ... ...... ...lJ 

(5. 7) 

We show that >.. •• k does not depend on j. Partition Z. into its columns z .. , for 
lJ ... l -lJ 

j = l, ... ' q .• 
l 

First observe from Section 2.4 that any Z. is a Kronecker product (KP) of 
... l 

I's and 1 's of the form (2.6). Hence, through partitioning the I's into their 

columns, denoted as e-vectors, each -
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z . . is a KP of e 1 s and 1 1 s 
-~J -

(5. 9) 

Along with this, we also have from (2.10) and the algorithm in Section 3.1 that 

~~k is a KP of I 1 s and ~~s (5.10) 

and 

XX+ is a sum of KP 1 s of I 1 s, J 1 s and K1 s • (5.11) - -
All KP 1 s in (5.9), (5.10) and (5.11) are conformable, whereupon each term in 

(5. 8) is a KP. We use e. to represent the dependence on j of an e referred to 
-J 

in (5.9). Then any position t in the KP that is a term of (5.8) is a scalar that 

has, for some matrix St' one of the following forms: 

~j~j = j 1 th diagonal element of ~t, 

or 

e~Q.1 = j 1 th row sum of _o. , 
-J.:t- ~ 

(5.12) 

or 

1 1 Q, 1 
--t: 

= sum of all elements in Q,t • 

Therefore each term in (5.8) is a product of scalars like (5.12), where 3t is 

either the matrix in position t of ~~k or is a product of matrices in position t 

+ of ~~k and :X:::X:: • Hence, from (5.10) and (5.11) and using Section 2.2, 

St is either an !' ~' ~ or K • (5.13) 

Hence, from (5.13), the scalars in (5.12) are all independent of j and so this is 

also true of each term in (5. 8), and thus of A.. "k itself. 
~J 

Acknowledgments 

Multi-authorship is sometimes a cause for scepticism; but in this case it is 

very genuine. The four of us came together through the generosity of sponsors of 



- 18 -

"Variance Components and Animal Breeding: A Conference in Honor of C. R. 

Henderson" held at Cornell University, Ithaca, New York, July 1979. We grate-

fully acknowledge this opportunity to have worked together at and following the 

Conference. We also benefited from discussions with Justus Seely, and from de-

tailed remarks from a referee. 

References 

Anderson, R. D. [1978]. Studies on the estimation of variance components. Ph.D. 
Thesis, Animal Science Department, Cornell University. 

Anderson, R. D. [1979]. Estimating variance components from balanced data: 
Optimum properties of REML solutions and MIVQUE estimators. Proceedings of 
Variance Components and Animal Breeding: A Conference in Honor of C. R. 
Henderson, 205-215. Animal Science Department, Cornell-university.-

Atiqullah, M. [1962]. The estimation of residual variance in quadratically 
balanced least-squares problems and the robustness of the F-test. Biometrika, 
49, 83-91. 

Brown, K. G. [1978]. Estimation of variance components using residuals. J. Amer. 
Statist. Assoc., 73, 141-146. 

Brown, K. G. [1979]. Estimation of variance components using residuals: Some 
empirical evidence. Proceedings of Variance Components and Animal Breeding: 
A Conference in Honor of C. ~· Henderson, 139-154. Animal Science Department, 
Cornell Universi~ ---

Corbeil, R. R. and Searle, S. R. [1976]. Restricted maximum likelihood (REML) 
estimation of variance components in the mixed model. Technometrics, 18, 
31-38. 

Cornfield, J. and Tukey, J. W. [1956]. Average values of mean squares in fac­
torials. Ann. Math. Statist., 27, 907-949. 

Drygas, H. [1972]. The estimation of residual variance in regression analysis. 
Math. Qperationsforsch.~. Statist., 3, 373-388. 

Drygas, H. [1980]. Hsu's theorem in variance component models. Mathematical 
Statistics, Banach Center Publications, 6, FWN - Polish Scientific Publishers, 
Warsaw. 

Goodnight, J. H. [1979]. New features in GLM and VARCOMP. Proceedings, Fourth 
Annual SAS Users' Group International Conference, SAS Institute, Raleigh, 
North Carolina. 

Graybill, F. A. [1954]. On quadratic estimates of variance components. Ann. 
Math. Statist., 25, 367-372. 



- 19 -

Graybill, F. A. and Hultquist, R. A. [1961]. Theorems concerning Eisenhart's 
Model II. Ann. Math. Statist., 32, 261-269. 

Graybill, F. A. and Wortham, A. W. [1956]. A note on uniformly best unbiased 
estimators for variance components. J. Amer. Statist. Assoc., 51, 266-268. 

Harville, D. A. [1977]. Maximum likelihood approaches to variance component 
estimation and related problems. ~· Amer. Statist. Assoc., 72, 320-340. 

Henderson, H. V. and Searle, S. R. [1979]. Vee and vech operators, with some 
uses in Jacobians and multivariate statistics. Canadian~· of Statist., 7, 
65-81. 

Henderson, H. v. and Searle, S. R. [1981]. The vee-permutation matrix, the vee 
operator and Kronecker products: A review. Linear and Multilinear Algebra, 
9, 271-288. 

Hsu, P. L. [1938]. On the best unbiased quadratic estimate of the variance. 
Statist. Res. Mem., 2, 91-lo4. 

Kleffe, J. [1977]. 
linear models. 

Invariant methods for estimating variance components in mixed 
Math. Operationsforsch. Statist. Ser. Statist., 8, 233-250. 

Kleffe, J. and Pincus, R. [1974]. Bayes and best quadratic unbiased estimators 
for parameters of the covariance matrix in a normal linear model. Math. 
Operationsforch. ~· Statist., 5, 43-67. 

Patterson, H. D. and Thompson, R. [1971]. Recovery of inter-block information 
when block sizes are unequal. Biometrika, 58, 545-554. 

Pukelsheim, F. [1976]. Estimating variance components in linear models. J. Multi­
variate Anal., 6, 626-629. 

Pukelsheim, F. [1977]. On Hsu's model in regression analysis. Math. Operationsforsch. 
Statist. Ser. Statist., 8, 323-331. 

Pukelsheim, F. [1979]. Classes of linear models. Proceedings of Variance Components 
and Animal Breeding: A Conference in Honor of C. R. Henderson, 69-83. Animal 
Science Department, Cornell University. 

Pukelsheim, F. and Styan, G. P. H. [1979]. Nonnegative definiteness of the esti­
mated dispersion matrix in a multivariate linear model. Bull. Acad. Polon. 
Sci. Ser. Sci. Math., :XXVII, 327-330. -- -- --

Rao, C. R. [1971]. Estimation of variance and covariance components - MINQUE 
theory. ~· Multivariate Anal., 1, 257-275. 

Searle, S. R. [1971]. Linear Models. John Wiley and Sons, New York. 

Searle, S. R. [1979a]. Notes on variance component estimation: A detailed account 
of maximum likelihood and kindred methodology. Paper BU-673-M in the Biometrics 
Unit, Cornell University. 



- 20 -

Searle, S. R. [l979b]. Maximum likelihood and minimum variance estimators of 
variance components. Proceedings of Variance Components and Animal Breeding: 
A Conference in Honor of ~· g. Henderson, 59-68. Animal Science Department, 
Cornell University. 

Searle, S. R. and Henderson, H. V. [1979]. Dispersion matrices for variance com­
ponents models. ~· Amer. Statist. Assoc., 74, 465-470. 

Seely, J. [1970]. 
mixed model. 

Linear spaces and unbiased estimation - application to the 
Ann. Math. Statist., 41, 1735-1748. 

Seely, J. [1971]. Quadratic subspaces and completeness. Ann. Math. Statist., 
42, 710-721. 

Seely, J. and Zyskind, G. [1971]. Linear spaces and minimum variance unbiased 
estimation. Ann. Math. Statist., 42, 691-703. 

Seifert, B. [1979]. Optimal testing for fixed effects in general balanced mixed 
classification models. Math. Operationsforsch. Statist. Ser. Statist., 10, 
237-256. 

Tan, Waiyuan [1979]. On the quadratic estimation of covariance matrices in MANOVA 
random effect models. Statistica, 38, 449-458. 

Zyskind, G. [1967]. On canonical forms, non-negative covariance matrices and 
best and simple least squares linear estimators in linear models. Ann. Math. 
Statist., 38, 1092-1109. 


