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Abstract

We have developed an highly efficient and scalable electronic structure code for
parallel computers using message passing. The algorithm takes advantage of the
natural parallelism in quantum chemistry problems to obtain very high performance
even on a large number of processors. Most of the terms which scale cubically with
respect to the number of atoms have been eliminated allowing the treatment of very
large systems. It uses one of the most precise versions of Density Functional Theory,
namely Self-Interaction Corrected Density Functional Theory.



1 Density Functional Theory

The laws of Quantum Mechanics describe matter such as atoms, molecules and solids on
a microscopic level. These laws are therefore not only the central laws of chemistry, but
also of many fields of physics, materials sciences and biology. Their solution is numerically
very expensive. Rather crude approximations based on classical mechanics are therefore
frequently used to get a rough understanding of the structure of molecular systems. These
classical force fields cannot describe such important phenomena as the breaking of bonds.
There is therefore a enormous interest to develop accurate computational methods, that
use the correct quantum mechanical equations. The quantum mechanical calculation
of systems containing more than a 100 atoms on vector supercomputers has only very
recently become possible, both by algorithmic advances [1, 4] and hardware progress.
The treatment of even larger systems will only be possible on massively parallel machines
because both of memory and speed requirements.

Among the many methods for electronic structure calculations (i.e. the solution of the
equations of Quantum Mechanics), Density Functional theory (DFT) [2] is one of the most
popular one. It is at the same time highly accurate and faster than traditional quantum
chemistry methods such as Hartree Fock (HF) theory. Recently, a lot of interest focused
on improving the standard Local Density Approximation (LDA) of density functional
theory. Gradient corrected DFT is one such scheme. Very encouraging results have been
reported that demonstrate accuracy comparable to good quantum chemistry methods.
Gradient corrected schemes cancel most of the non-physical self-interactions of the LDA
approximation, which are responsible for most of its deficiencies with respect to accuracy.

Another approach to improve upon LDA is to introduce the self-interaction corrections
[3] (SIC) directly. This leads to a numerically more complicated scheme since now each
electron orbital feels a different potential. Therefore, it is no longer possible to view
the electronic structure problem as an eigenvalue problem in a external potential that
has to satisfy a self-consistency condition. Using a preconditioned gradient minimization
approach [4], with an DIIS convergence accelerator [5], we are able to find the electronic
ground state in a number of iterations not much larger than the number of iterations
necessary in ordinary LDA theory. Plane waves are used as basis set in this calculation.
This necessitates pseudo-potentials to eliminate the highly localized electronic core states,
that are impossible to describe by a reasonable number of plane waves.

2 General Outline of the Computational Tasks

An electronic structure program of this type consists of a fairly large number of subtasks
performing different calculations that vary widely with respect to their computational
needs (e.g., memory bandwidth or floating point performance). Since the IBM Power
2 architecture is well balanced it is possible to obtain very good performance on all
these subtasks. Several new algorithmic techniques were developed, that reformulate the



computational subtasks in such a way as to obtain very high performance on modern RISC
architectures such as the RS/6000 Power 2 architecture. Details will be given in the next
section. In this section we will discuss the general outline of the main computational
tasks.

The program is based on the orbital parallel paradigm, i.e. each processor calculates
one or several localized orbitals. Physical interactions between the orbitals lead to inter-
processor communication. The two basic interactions involved are related to the fact
that the orbitals repel each other electrostatically and that they have to be mutually
orthogonal to satisfy the Pauli exclusion principle. Since the calculation of one localized
orbital and its potential takes most of the CPU time, this parallelization scheme leads to
rather modest communication requirements and high parallel performance.

The electrostatic potential acting on a given orbital is obtained by Fast Fourier Trans-
form (FFT) techniques. The charge density giving rise to this potential is obtained by
summing over the charge densities of all the other orbitals in the system. In practice,
this is effectuated by doing first a global inter-processor reduction sum over all the or-
bitals using the MPT ALLREDUCE routine and then subtracting the charge density of
the orbital on which the potential is acting. If one uses FFT techniques to solve Poisson’s
equation the total charge (i.e. electronic plus ionic charge) has to be zero. Due to the
electrostatic self-interaction correction, this is not the case. Therefore, one has to add
a localized neutralizing charge distribution, that is analytically representable, and whose
electrostatic potential is known analytically as well. The simplest charge-potential pair
satisfying these requirements is a Gaussian charge distribution that gives rise to a po-
tential of the form M, where er f is the error function. The centre of the Gaussian
charge distribution is chosen to coincide with the centre of the localized orbitals in order
to preserve conservation of crystal momentum in periodic structures. The calculations of
the exchange correlation potential in the SIC-LDA scheme requires again the total elec-
tronic density and the individual orbital densities for evaluating the exchange correlation
self-interaction correction. Most of the published exchange correlation potential forms
contain many special functions such as logarithms and square roots, that are very slow to
calculate. We used a new rational functional form, that is an order of magnitude faster
to evaluate than these other forms.

Traditionally, pseudo-potentials are applied in Fourier space rather than real space
[citereal. This leads first to large cubically scaling terms (that prevent one from cal-
culating very large atomic systems) and second to large memory requirements. In our
approach, we have implemented a new pseudopotential with optimal properties for real
space implementation [7]. The computational load due to this form of pseudopotential
scales only quadratically with the molecular system size. Also, since it has a very simple
analytical form, it can be evaluated on the fly (i.e. it is recalculated every time it is
needed) and has therefore very small memory requirements. This is essential in bringing
down the memory requirements for large runs.

The kinetic energy of each orbital is calculated in Fourier space, where the kinetic



energy operator is a diagonal matrix. In this part FFTs are thus again involved. Full
advantage is taken of the fact that the orbitals are real (leading to real-to-complex FFT)
and of the fact that in the initial stages of the FFT most of the Fourier coefficients are
7Zero.

Several new techniques are utilized for the orthogonalization of the orbitals. For a
symmetric Lowdin orthogonalization, one needs the overlap matrix between the occu-
pied orbitals. Optimal load balancing can be obtained only if each processor calculates
some fraction of each element of this overlap matrix S. This computation requires a data
structure that is entirely different from the basic orbital parallel data structure. We have
developed a data transformation, consisting of two data transpositions. One of them is
an on-processor transposition, whereas the second one is a global inter-processor trans-
position handled by a single call to the all-to-all MPI routine. The sequence of these two
transformation reorders the data in the required way. The calculation of the matrix $~1/2
is done by a fixed point iteration, allowing full parallelization of this part as well. This
orthogonalization part is the only part that leads to cubically scaling terms. In addition
it also leads to some quadratically growing communication terms. Because it is fully par-
allelized the cubic computational part is negligible even for 500 atom systems. However
the quadratic communication part becomes the major bottleneck of the program for large
systems as will be discussed below. In principle this bottleneck could easily be removed
by taking advantage of the sparsity of the overlap matrix in big systems. Reducing the
scaling would however introduce additional overhead for medium size systems which are
usually dealt with in production runs and was therefore not done.

3 Detailed description of the main subroutines

3.1 Fast Fourier routines

Fast Fourier Transformations have a large ratio of load /stores to floating point operations.
On RISC processors, FFT performance is usually limited by the speed at which data can
be fed into the CPU. We have therefore implemented a data access pattern [9] that
leads to mainly stride one data access and long inner loops. A feature that turns out to
be very useful to boost the performance of FFT’s is the RS6000/POWER 2 quadruple
load /store instruction that can load/store two double precision numbers within one cycle.
Since each of the two fixed point units can issue this instruction simultaneously, one can
actually load or store 4 double precision numbers within one cycle. In addition, we use
an FFT kernel which has an optimal balance of multiplications and additions [10] and
runs therefore virtually at peak speed in cases where the data is available from cache.
Under these circumstances, our kernel is actually slightly faster than the kernel of the
FFT’s in the highly optimized IBM ESSL library. To get this high performance we again
take advantage of a special RS/6000 instruction, namely the Floating point Multiply Add
(FMA) instruction. This instruction calculates an expression of the type x = a x b+ ¢



with a repeat frequency of one cycle and the result is available after one additional latency
cycle.

3.2 Calculation of the exchange correlation potential

The exchange correlation functional is given by
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where r, & p~'/% and the coefficients a and b are given in reference [7] . The calculation of
rs from the charge density p is numerically much more expensive than the evaluation of
the rational function. Unfortunately, the calculation of r; can not be avoided, since only
a rational function of ry gives a correct asymptotic behaviour of 1/rs at low densities.
To speed up this part of the calculation, we compute r, by a Newton iteration of the
equation r? = 1/p. We take advantage of the fact that the exchange correlation potential
is not needed to full machine precision. We also make use of the smooth variation of the
charge density on the grid which ensures that the solution of the Newton iteration on one
grid point is a very good initial guess for the Newton iteration of the next grid point.
Using all these tricks, the calculation of ry is speeded up by a factor of 3 compared to
a straightforward evaluation of p~'/3. Because of the Newton iteration divisions are an
important part in the calculation of the exchange correlation potential. They need 14 to
15 cycles to execute on the RS/6000 architecture. This part runs virtually at the highest
possible speed for the combination of division and FMA’s found in this section of the
code.

3.3 Electrostatic mono-pole correction

As mentioned above, the mono-pole correction requires the addition of a neutralizing
Gaussian charge density to the total charge density and subtracting a M potential
from the solution obtained by the FFT techniques. A direct evaluation of a Gaussian and
error function on all the grid points is extremely expensive. We therefore approximate
both of them by a Chebychev expansion of order 50, which gives close to machine precision
accuracy for the values of r encountered in the computational problem. We schedule the
calculation of both special functions such that only one evaluation of the Chebychev
recursion is needed to evaluate both of them. For the determination of the centre of
mass of each localized orbital, we multiply the orbital charge density by a smooth cutoff
function, that is also related to an error function. This function is also expanded in a
Chebychev polynomial of degree 50. Because the pipeline of the RS6000 architecture
is very shallow (just 2 cycles for a FMA), it is not difficult to avoid dependencies in the
Chebychev recursion by some modest loop unrolling and this part runs practically at peak

speed as well.
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Figure 1: Speedup of this electronic structure code for a 64 atom Silicon system on a IBM
SP2. The solid line is the measured speedup, the dashed line the ideal speedup.

3.4 Communication subroutines

In addition to the IBM MPL message passing library, two other highly efficient imple-
mentations of message passing libraries are available on the the SP2 series, namely the
public domain PVM library and the recently adopted new message passing standard MPI.
Because MPI offers the largest choice of collective message passing routines and because
MPI implementations are now available on most parallel computers we used MPI in this
work. Because we used an intrinsically parallel algorithm [8], it turned out that the three
basic communication steps could be done by just using two high level MPI subroutines,
namely ALLREDUCE for the calculation of the charge density and the build up of the
overlap matrix and ALLTOALL for the orbital rotations. As a result, the mapping of the
physical methods into a parallel algorithm was natural and straightforward.

In large applications containing several hundred atoms that we run on a regular basis
on a 512 node SP2 in Cornell, the minimum number of processors is usually dictated by
memory requirements. Strong scalability can therefore only be demonstrated for small
systems. For the case of a 64 atom Silicon system this is shown in Figure 1.

Since one SP2 node is a very powerful number crunching engine, that can calculate one
or a few orbitals in very little time (a few minutes), weak scalability is more important in
practical applications, where one wants to treat big systems. The communication require-
ments per node for the transposition and charge reduction sum grow slightly faster than
linear (like Nlogz(N), where N is the size of the system). Since the computational load
grows in the same way the fraction of the total time going into these two communication
parts is nearly constant (Table 1) leading to a perfect weak scaling behaviour. It has to
be pointed out that this excellent scaling behaviour of the ALLTOALL routine is directly



related to the topology of the High-Performance Switch. SP2’s omega-network allows si-
multaneous communications from each node to any other processor. As mentioned above,
the communication part to build up the overlap matrix grows however faster than all
the other parts in the present implementation and causes deviations from the otherwise
perfect weak scaling behaviour for very large systems.

Table 1: Fraction of the total elapsed time that goes into communication for several
systems containing varying numbers of Silicon (Si) atoms on configurations containing
between 64 and 256 processors.

64 procs, 128 Si | 128 procs, 256 Si | 256 procs, 512 Si
orbital rotation .04 .03 .03
reduction sum charge density .07 .07 .07
reduction sum overlap matrix .09 14 31

4 Conclusions

We have developed a scalable and highly optimized electronic structure program, that al-
lows highly accurate calculations for large systems using the fundamental laws of Quantum
Mechanics. The SP2 parallel computer turned out to be the most appropriate platform for
these calculations. Running at roughly half its theoretical peak speed, one processor can
rapidly calculate a few orbitals belonging to one atom. By simultaneously increasing the
number of atoms and the number of processors we can scale up these calculations to several
hundred atoms. For large runs with up to 256 processors, the fraction of communication
from the transposition and reduction sums remains nearly constant. It is to expected,
that the combination of large parallel supercomputers and efficient algorithms adapted
to these architectures will make significant contributions to many fields of science and
engineering. This application to electronic structure of materials using Self-Interaction
corrected Density Functional Theory is a powerful example.
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