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One of the major goals of the geoscience community is to develop an accurate 

tectonic history of North America. Understanding how our continent evolved through 

time has numerous implications for our ability to develop accurate models of the tectonic 

evolution of continents – how they form, deform, and break. The interactions of 

deformation, metamorphism, and plutonism, three fundamental geological processes at 

work throughout the evolution of continents, record information that can be used to better 

understand the mechanisms and events that have shaped our continent. This dissertation 

employs metamorphic petrology, structural geology, geochemistry and 

geothermobarometry to interrogate the interactions of deformation, metamorphism and 

plutonism on multiple scales across the southwest United States.  

On a microscope scale, this dissertation shows that deformation and 

metamorphism can work in a positive feedback loop, facilitated by solution mass transfer, 

to localize both deformation and metamorphism, producing areas of high strain that have 

more closely approached metamorphic equilibrium. This result informs our 

understanding of crustal behavior at mid-crustal depths during orogenesis. 

On the mountain range scale, this dissertation combines petrographic analysis, 

structural geology, geochemistry and geothermobarometry to show that metamorphism in 

the Tusas and Picuris Mountains of northern New Mexico is consistent with one 

metamorphic event following a pressure-temperature-time trajectory consistent with 

progressive loading during the formation of a fold and thrust belt. This result informs our 



 

understanding of the tectonic history of North America, and has implications for the 

petrogenesis of aluminosilicate triple-point rocks in the region. 

Finally, on a continental scale, this dissertation uses previously published 

geochronologic data to identify spatial patterns in the age of igneous bodies across the 

southwest United States. These results were used to characterize mesoproterozoic 

tectonism and develop a model for melt production of these plutons. This result informs 

not only our understanding of crustal growth and rejuvenation during orogeny, but also 

provides a comprehensive dataset and novel approach that may both be employed in 

future research.
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1. Introduction 

Research Question 

 Understanding how continents evolve through time has wide-reaching impacts. 

Developing an accurate tectonic model for the growth of a continent, such as North 

America, through time requires an understanding of both small scale details that must be 

observed on a microscopic scale, as well as broad trends and patterns that require 

observations on the continent-scale. Orogenesis, one of the major processes by which 

continents grow, is complex, with deformation, metamorphism, and plutonism all taking 

active roles in reshaping the continent. Mountain building during orogeny produces 

thickened crust, which involves significant deformation, and produces both 

metamorphism and plutonism. Thus, careful study of these aspects of orogeny can be 

used to improve our understanding of not only the mechanics of orogenesis, but also the 

tectonic history of the orogen being studied (Karlstrom and Williams, 1995). 

 Understanding the tectonic history of a region may be addressed using many 

different approaches including metamorphic petrology (e.g. Grambling 1981, 1986; 

Williams, 1991; Grambling and Dallmeyer, 1993; Karlstrom and Williams, 1996; 

Williams et al., 1999; Daniel and Pyle, 2006; Barnhart et al., 2012), determination of 

detrital provenance (e.g. Vigneresse, 2005; Jones et al., 2009, 2011; Doe et al., 2012; 

Daniel et al., in press), metamorphic geochronology (e.g. Shaw et al., 2001; Daniel and 

Pyle, 2006; Wolf et al., 2010; Aronoff et al., 2012), igneous geochronology (e.g. Silver, 

1965; Silver et al., 1977; Condie, 1981, 1982, 1986), crustal model ages (e.g. DePaolo, 

1981; Bennett and DePaolo, 1987 ), and structural geology (e.g. Karlstrom and Bowring, 
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1988, 1993; Karlstrom and Daniel, 1993; Karlstrom and Williams, 1995) among others. 

The key questions that must be addressed when characterizing orogenesis include when it 

happened, where it happened, and how it happened. The question of when may be 

addressed directly by geochronology, or indirectly by detrital provenance or cross cutting 

relationships. The question of where it happened can be addressed by geochronology, 

structural geology, geophysics, geochemistry or metamorphic petrology. The question of 

how it happened may be addressed by geochemistry, geophysics, structural geology, or 

petrology. 

 The focus of this dissertation is to use the interactions of deformation, 

metamorphism and plutonism to improve our understanding of the evolution of 

Proterozoic North America. This is accomplished by combining geochemistry, structural 

geology, petrology and geochronology on a variety of scales. On the microscopic scale, I 

use metamorphic petrology, structural geology and geochemistry to characterize the 

interactions of metamorphism and deformation during plutonic emplacement. On the 

mountain range scale, I use geochemistry, petrology, structural geology and 

geothermometry to determine the pressure-temperature-time history of the mountain belt 

and corroborate a tectonic model for orogenesis. On the continent scale, I use previously 

published geochronologic and structural data to determine the location of a tectonic 

boundary and develop a model for plutonic melt production. 

Why the southwest United States 

 The southwestern United States provides an ideal natural laboratory for learning 

how continents evolve. Composed of a Proterozoic crustal mosaic of distinct juvenile 

crustal terranes, the region preserves a uniquely complete history of the interactions of 
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deformation, metamorphism and plutonism that worked in concert during crustal growth. 

The perforation of this swath of accretionary crust by igneous plutons during orogeny 

provides a unique record of syntectonic deformation (e.g. Kirby et al., 1995; Karlstrom 

and Williams, 1995; Nyman et al., 1997). Furthermore, the region has been the subject of 

extensive research in the geologic community, providing a wealth of information that 

may be incorporated and applied to new questions and techniques (e.g. Vigneresse, 2005; 

Goodge and Vervoort, 2006). 

 Not only is this region ideal for the reasons outlined above, but also for the vast 

quantity of research that has previously been conducted in the area. Researchers have 

shown that the growth of Laurentia during the Proterozoic by lateral accretion of off-

board terranes is widely accepted as the mechanism for continental growth of North 

America (e.g. Silver, 1965, 1968; Condie, 1981, 1982, 1987; Bennett and DePaolo, 1987; 

Karlstrom and Bowring, 1988, 1993; Karlstrom and Daniel, 1993; Shaw and Karlstrom, 

1999; Aleinikoff et al., 1993; Magnani et al., 2004; Figure 1-1). These terranes accreted 

along the southern margin of Laurentia, beginning at ~2 Ga, and growing southward until 

~1 Ga. This belt of juvenile continental crust spans more than 1000 km, comprising the 

majority of the crust in the western United States. Between ~1900 and ~1200 Ma, this 

evolving crustal mosaic experienced ubiquitous plutonism, with a notable gap in 

plutonism between 1600 and 1500 Ma, and an episode of voluminous A-type, or Ferroan, 

magmatism at ~1400 Ma (Anderson, 1983; Shaw and Karlstrom, 1999; Frost and Frost, 

2011; Condie, 2012). Although this geologic history shows the impressive knowledge 

accumulated in the scientific community about Proterozoic North America, outstanding 

questions remain, and on-going controversies highlight the need for further research. 
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 Finally, the southwestern United States is an ideal natural laboratory because 

Proterozoic mid-crustal rocks, preserving a record of deformation and metamorphism 

associated with continent building orogenic events, have been brought to the surface by 

subsequent uplift with minimal overprinting of fabrics and petrologic textures. 

Furthermore, the exposure of these units is exceptional because of the rugged landscape 

and relatively arid climate. 
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Figure 1-1: A schematic map of the southwest United States showing proposed tectonic boundaries 
(modified from Shaw and Karlstrom, 1999). 
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Dissertation Outline 

 The research presented herein uses deformation, metamorphism and magmatism 

to improve our understanding of the Proterozoic assembly of North America on multiple 

scales of magnitude. Each chapter represents an individual manuscript that has been or 

will be submitted for peer-reviewed publication. The first chapter, Deformation assisted 

phase transformation: an example from the sillimanite-in isograd, Eolus batholith, 

Needle Mountains, Colorado, USA (Hunter and Andronicos, 2012), addresses the 

question of how supracrustal rocks partition deformation.  

 During plutonism, significant strain must be locally accommodated in order to 

make space for the igneous body. Furthermore, such events are associated with localized 

metamorphism, producing metamorphic contact aureoles around the intrusion. The 

interactions of this deformation and metamorphism are central to understanding how 

crustal rheology changes during plutonism and orogenesis.  

 Done on the microscopic scale, this chapter presents petrologic, microstructural 

and geochemical observations linking deformation and prograde metamorphism to strain 

localization through solution mass transfer in the metamorphic contact aureole around the 

Eolus Granite in the Needle Mountains, Colorado. Within the contact aureole of the 

Eolus Granite, outcrops of aluminous schist in the Vallecito Conglomerate locally contain 

both andalusite and sillimanite. Low strain areas contain both aluminosilicates; however, 

high strain zones, defined by shear bands of sillimanite, contain almost no andalusite. An 

isocon analysis (after Gresens, 1967; Grant, 1986) comparing high and low strain sample 

shows two key observations. First, the ratio of immobile elements between the deformed 
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and undeformed sample suggest that they have a chemically similar protolith. Second, 

this same isocon analysis suggests that the deformed sample experienced significant mass 

loss during deformation and metamorphism. Furthermore, several key petrologic 

observations lend insight into the mechanism that produced sillimanite-rich shear bands. 

The first observation is the presence of epitaxial sillimanite in muscovite (e.g. Kerrick, 

1990). The second observation is the presence of muscovite overgrowths around 

andalusite. These observations coupled with the fact that the abundance of muscovite is 

low in shear bands suggests a Carmichael (1969) type series of reactions produced a net 

reaction of sillimanite after andalusite through reactions involving the production of 

muscovite after andalusite in low strain regions, and the production of sillimanite after 

muscovite in high strain regions. To facilitate this series of reactions we recall the 

observation that significant mass was lost from the high strain sample, and suggest that 

the replacement of muscovite by sillimanite produced a solution, used to transport 

material away from high strain regions, locally producing muscovite in lower strain 

regions. Finally, we note that the fact that sillimanite is the defining mineral in shear 

bands implies that sillimanite needle aggregates localized strain during deformation, 

while at the same time continued metamorphism is localized to regions of high strain, 

facilitating further sillimanite growth, essentially a reaction softening mechanism (e.g. 

Vernon, 1987; Goergen et al., 2008). Results of this study show that deformation and 

metamorphism worked in concert, enhancing both strain localization and metamorphism 

by locally changing the whole rock chemistry through solution mass transfer. 

 Looking more macroscopically at mountain ranges in northern New Mexico, the 

second chapter of this dissertation, Metamorphic P-T paths across the Al2SiO5 triple 
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point terrane of northern New Mexico, USA: Metamorphic Constraints on Orogeny in 

Southern Laurentia, presents petrologic, textural, geochemical and microstructural 

observations in the Tusas and Picuris Mountains, in an effort to characterize the observed 

metamorphism and develop a tectonic model for the region. Understanding the nature of 

metamorphism in these mountain ranges is central to the Proterozoic tectonic history of 

the southwest United States (e.g. Grambling, 1981, 1986; Williams, 1991; Grambling and 

Dallmeyer, 1993; Karlstrom and Williams, 1996; Shaw and Karlstrom, 1999; Williams et 

al., 1999; Shaw et al., 2005; Daniel and Pyle, 2006; Barnhart et al., 2012; Aronoff et al., 

2012; Hunter et al., 2012). Having been a subject of debate for over thirty years, the 

characteristics of this metamorphism contain information about the mechanisms that 

produced it, holding key details for developing a tectonic history of the area (Grambling 

1981, 1986; Williams, 1991; Karlstrom and Williams, 1996; Daniel and Pyle, 2006; 

Grambling and Dallmeyer, 1993; Williams et al., 1999; Shaw et al., 2005; Aronoff et al., 

2012; Barnhart et al., 2012). Some researchers have proposed a poly-metamorphic 

history for the region, involving initial metamorphism at ~1.7 Ga, followed by a thermal 

excursion and metamorphic overprinting at ~1.4 Ga (e.g. Karlstrom and Williams, 1996). 

However, other researchers (e.g. Grambling, 1981; Daniel and Pyle, 2006) have proposed 

that the observed metamorphism is the result of a single metamorphic event at ~1.4 Ga.  

 In this study, we combine petrologic and textural observations, isochemical phase 

diagrams, garnet-biotite geothermometry and a compilation of mapped metamorphic 

isograds to determine the pressure-temperature-time (P/T/t) history of Proterozoic 

northern New Mexico (Figure 1-2). Results of this study show that, although all areas in 

the Picuris and Tusas Mountains experienced clockwise prograde metamorphism, the P/T 
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conditions of this metamorphism varied systematically across the region. This 

metamorphism overprints thrust faulting in the area, and metamorphic isograds reflect 

this gradient in metamorphic conditions, supporting an interpretation of this 

metamorphism as a result of a single metamorphic event. The P/T/t paths developed 

through petrographic observations and geochemical modeling are consistent with 

progressive loading during the development of a fold and thrust belt (e.g. England and 

Thompson, 1984; Beaumont et al., 2001), supporting the proposed tectonic model of 

Aronoff et al. (2012). Furthermore, these results support a metamorphic history involving 

a single episode of metamorphism, again consistent with the results of Aronoff et al. 

(2012). 
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Figure 1-2: A tracing of the reconstructed Proterozoic belt in Northern New Mexico. Aluminosilicate 
isograds are shown with heavy dashed lines. The color of these isograds is used to correlate the transition 
with related arrows on inlaid schematic PT diagrams (A, B, C). In the schematic PT diagram (A), the dark 
red arrow represents the transitions in the northern Tusas from pyrophyllite to kyanite (Williams et al., 
1999), and kyanite to andalusite. The orange arrow in (A) represents the transition in the south-central 
Tusas from kyanite to sillimanite. In the schematic PT diagram (B), the blue arrow represents the transition 
in the central Picuris from kyanite to andalusite. The green arrow represents metamorphism passing 
through the aluminosilicate triple point. In the same schematic PT diagram, the black arrow with dashed 
lines represents the PT path determined for the northern Picuris by Daniel and Pyle (2006). Finally, in the 
area of the Rio Mora uplift in the east, the schematic PT diagram (C), the light gray arrow corresponds to 
the transition from kyanite to sillimanite, while the dark gray arrow corresponds to the second sillimanite 
isograd, producing sillimanite + potassium feldspar assemblages (Read et al., 1999). 
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 Again looking macroscopically at the entire southwestern United States, the third 

chapter of this dissertation, Tectonic implications of Proterozoic U/Pb crystallization 

ages in the southwestern United States, uses a compilation of previously published 

geochronologic data to evaluate spatial trends in pluton emplacement through time. These 

trends are assessed through the lens of the recently revised tectonic model for Proterozoic 

Laurentia that includes a ~1.4 Ga orogenic event as described in the preceding chapter. 

During the Paleo and Mesoproterozoic, the region that is now the southwestern United 

States experienced multiple pulses of magmatism – first between 1.8 and 1.7 Ga, then 

again between 1.7 and 1.6 Ga, and finally between 1.5 and 1.4 Ga. These plutons 

comprise a significant portion of the crust in the southwestern United States, regionally 

making up 20-30% of the crust by volume (Anderson, 1983). Interestingly many of these 

plutons that are between 1.4 and 1.5 Ga in age have been categorized as A-type based on 

their chemistry (Loiselle and Wones, 1979; Anderson, 1983; Anderson and Bender 1989; 

Eby, 1990; Gonzales, 1997; Smith et al., 1999; Goodenough et al., 2000; Dall’Agnol and 

Oliveira, 2007). Although generation of A-type melt is usually linked to secondary 

differentiation from basaltic melt and production in extensional settings, structural 

evidence shows significant evidence for a contractional tectonic regime during their 

emplacement (Nyman et al., 1994; Kirby et al., 1995; Duebendorfer and Christensen, 

1995; Karlstrom and Williams, 1995; Nyman et al., 1997; Ferguson et al., 2004). While 

multiple models have been proposed to explain these seemingly contradictory lines of 

evidence, the origins of these ~1.4 Ga A-type plutons remains controversial. 
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 In this chapter, we combine previously published geochronologic studies to 

estimate the northern extent of the orogenic event described in chapter 2. Furthermore, 

we compile previously published U/Pb zircon crystallization ages from across Arizona, 

New Mexico and Colorado to and evaluate spatial trends of ages within this dataset 

relative to the orogenic event (Figure 1-3). Two groups of plutons are readily apparent 

within the dataset: an older group of ages over 1600 Ma, and a younger group of data, 

with ages under 1500 Ma. Looking specifically at the older group of ages, a trend of 

decreasing age to the southeast is present; however, we identify two populations, whose 

linear regressions have similar slopes, but are separated by an offset in their y-intercept, 

or age. This break between these two populations is identified to be at 15 km southeast of 

the orogeny, and is interpreted as a zone of localized shortening along the northern extent 

of the orogenic belt.  

 Focusing on the plutons under 1500 Ma, it is clear that there is a clustering in 

ages: one set between 1400 and 1500 Ma, and a younger set, separated by a ~25 Ma gap 

in age that spans a large range in ages. The set of ages between 1400 and 1500 Ma 

decreases in age to the northwest with a very shallow slope relative to the orogeny. 

Compositionally, these plutons are predominately A-type. Although numerous 

mechanisms have been proposed to explain production of these melts, rapid burial, 

required by new detrital zircon (Jones et al., 2011; Doe et al., 2012; Daniel et al., in 

press) and Lu/Hf garnet dating (Aronoff et al., 2012; Hunter et al., 2012) evidence, and 

crustal thickening, consistent with the recent identification of an regional orogenic event, 

suggest that this A-type magmatic event is the result of crustal thickening and thermal 

relaxation (e.g. Thompson, 1999). 
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Figure 1-3: A schematic map of the southwestern United States. Shown dashed in black is our estimated 
location of the Picuris Orogeny as constrained by ~1.4 Ga basins and ~1.4 Ga metamorphism. Circles 
represent Proterozoic plutons with reported U/Pb zircon crystallization ages, where gray scale of each 
sample corresponds to the age of that pluton with darker colors representing younger ages.  
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Dissertation Conclusions 

 This dissertation provides insight into orogenic processes, and the orogenic 

history of the southwest United States through studies of deformation, metamorphism and 

magmatism. The three studies described herein cover a vast spectrum of scales – from 

micrometers to thousands of kilometers – impacting to our current understanding of 

crustal deformation, the tectonic evolution of North America, and methodologies for 

approaching continent-scale questions with existing data.  

 On the microscopic scale, I show that deformation and metamorphism can work 

together in a feedback loop to localize both processes and locally helping the reaction 

volume approach metamorphic equilibrium. Furthermore, I show that this process can 

produce significant volume loss and that it is facilitated by solution mass transfer. This 

study informs our understanding of how strain can be localized during prograde 

metamorphism related, and more generally, how the crust can behave and deform during 

orogenesis. 

 On the Mountain range scale, I show that metamorphism in the Tusas and Picuris 

Mountains followed clockwise pressure-temperature-time paths and that metamorphic 

isograds across this region record a continue gradient in P/T conditions. I assert that the 

characteristics of this metamorphism are consistent with a single, progressive 

metamorphic event and that the trajectory of metamorphism across both the Tusas and 

Picuris Mountains is consistent with progressive loading in a fold and thrust belt. This 

study is significant for several reasons. First, along with the work of Aronoff et al. (2012) 

and Daniel et al., (2012, in press), these results help to clarify the tectonic history of the 

region by showing that only one orogenic event, at ~1.4 Ga (Aronoff et al., 2012; Daniel 
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et al., 2012, in press), occurred in the study area. Second, this study is significant because 

it shows that triple point assemblages within the study (e.g. Holdaway, 1978; Grambling, 

1981; Holdaway and Goodge, 1990) are the result of this same single metamorphic event, 

and locally represent equilibrium triple point assemblages. 

 On the largest scale, I show that it is possible to identify the location of tectonic 

boundaries and characterize the nature of plutonism on a regional scale by analyzing 

trends in compiled, previously published geochronologic data. In my study, I use 

previously published detrital zircon (Jones et al., 2011; Doe et al., 2012; Daniel et al., in 

press) and Lu/Hf garnet (Aronoff et al., 2012) geochronology studies to estimate the 

northern extent of the Picuris Orogeny across New Mexico, Colorado and Arizona. I then 

compile Proterozoic igneous U/Pb zircon crystallization ages from Arizona, New Mexico 

and Colorado, and measure the distance between each sample and the estimated northern 

extent of the orogeny. Through this exercise, I identify a zone of shortening that 

coincides with the northern extent of the orogenic belt as inferred from detrital zircon and 

Lu/Hf garnet age data, and show that 1400-1500 Ma plutons in the region were emplaced 

relatively contemporaneously across the region. From these results, we propose a model 

for their melt production that invokes thermal relaxation of over thickened crust to 

introduce the heat necessary to yield the A-type chemistries observed in the ~1.4 Ga 

magmatic event. 

 In summary, this dissertation highlights the importance and utility of studying the 

interactions of deformation, metamorphism and plutonism with three studies on varying 

scale. Each study described herein uses different approach; however, the results of all of 
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these studies impact our understanding of the evolution of North America and the 

orogenic process. 
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2. Deformation assisted phase transformation: an 

example from the sillimanite-in isograd, Eolus 

batholith, Needle Mountains, Colorado, USA 

 

Abstract 

 The Paleoproterozoic Vallecito conglomerate of the Needle Mountains, Colorado, 

experienced deformation and metamorphism during emplacement of the ~1.4 Ga Eolus 

batholith, producing a contact aureole defined by sillimanite near the pluton, andalusite 

and sillimanite together ~2 km from the pluton, and andalusite alone at greater distance. 

In the andalusite-sillimanite zone, sillimanite rich layers, poor in andalusite, define shear 

bands. In contrast, regions between shear bands contain abundant andalusite and 

sillimanite. A deformed sample is enriched in immobile elements, with an estimated 

major element mass loss of 43% relative to a weakly deformed sample. Modal and 

compositional variation between deformed and undeformed regions indicates that mass 

transfer was central to shear band development. This process changed the composition of 

the deformed sample, facilitated the localization of deformation, catalyzed 

metamorphism and allowed the assemblage to more rapidly approach equilibrium than 

weakly deformed assemblages. 
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Introduction 

Understanding the feedbacks between deformation and metamorphism is central 

to understanding high temperature deformation in the middle crust. Although these 

interactions have been studied in both the laboratory and in nature (e.g. Goergen et al., 

2008; Williams, 1999), the relationships remain complex and our understanding is far 

from complete. This paper describes two samples of aluminous schist, exploring how 

localization of deformation and metamorphism worked in concert to drive metamorphism 

toward completion. The samples were collected in a zone of coexisting andalusite and 

sillimanite along the sillimanite-in isograd within the contact aureole of the Eolus 

batholith in the Needle Mountains, Colorado. They contain identical mineral assemblages 

but distinct deformation textures associated with the metamorphic reactions producing 

sillimanite. The sillimanite growth fostered strain localization, producing feedback 

between deformation and metamorphism. These processes were facilitated by removal of 

mass from high strain regions, allowing metamorphism in shear bands to more readily 

reach equilibrium.  

 

Geologic Background 

 The Needle Mountains of southwestern Colorado include Paleoproterozoic 

metaigneous and metasedimentary units, and Paleoproterozoic and Mesoproterozoic 

plutonic bodies (Barker, 1969; Harris et al., 1987; Tewksbury, 1985; Gibson, 1990) 

(Figure 2-1). The unit of interest in this study is the metasedimentary Vallecito 

conglomerate, composed of interbedded layers of fine-grained quartzite, pebble to cobble 
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conglomerates, and narrow layers of aluminous schists (Barker, 1969). Centimeter to 

decimeter scale sedimentary bedding structures are preserved. The Vallecito 

conglomerate is younger than 1.706 Ga based on detrital zircon data (Jones et al., 2009) 

and is older than the ~1.435 Ga Eolus granite (Gonzales et al., 1996). After deposition, 

the Vallecito conglomerate experienced polyphase deformation, regional greenschist 

facies metamorphism and subsequent contact metamorphism during emplacement of the 

Eolus batholith (Barker, 1969; Tewksbury, 1989; Harris, 1990). 

 The Eolus granite consists of two exposures separated by ~10 km of metavolcanic 

and metasedimentary rocks, including the sample locality. Both exposures of the Eolus 

granite are surrounded by contact aureoles (Barker, 1969). Previously, workers studied 

the metamorphic aureole surrounding the Eolus granite (Gonzales et al., 1996; Noel, 

2002; Dean, 2004; Wu, 2006), estimating the pressure during emplacement to be 3-4 

kbars. These aureoles have metamorphic field gradients that begin in greenschist facies at 

distances of 10 kilometers from the pluton and reach upper amphibolite facies near the 

pluton (Wu, 2006; Figure 2-1). 
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Figure 2-1: Simplified geologic map of the Needle Mountains, Colorado adapted from Barker (1969). The 
location of both samples is starred. The metamorphic isograds are compiled from Noel (2002), Dean (2004) 
and Wu (2006), and this study.
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Field relationships 

Oriented samples were collected from a layer of aluminous schist within the 

Vallecito conglomerate, in a zone of coexisting andalusite and sillimanite along the 

sillimanite-in isograd. Here, upright beds dip 81ºS and strike 116º, roughly parallel to the 

strike of the plutonic contact. Bedding was not folded at the outcrop scale; however, 

nearby outcrops contain steeply plunging to subvertical upright and steeply inclined 

folds. Additionally, the unit is folded into a map-scale, upright, gently plunging, north-

south trending anticline, although microstructural evidence of this folding is locally 

overprinted by deformation associated with the pluton emplacement. 

 C-type shear bands (Berthé et al., 1979), ~0.1 to 2cm in width and several meters 

in length are common within the studied outcrop. The shear bands form two populations 

based on their dips: moderately northeast, and steeply southwest. Both groups strike 

~116º, parallel to the strike of bedding and the contact with the Eolus granite. This fact, 

and the observation that the shear bands are composed of metamorphic minerals 

associated with the contact aureole, suggest syn-emplacement formation of the shear 

bands. 

 The two samples (Figure 2-2), collected from one outcrop, are aluminous schists 

with mm scale andalusite prophyroblasts and fibrolitic sillimanite mats (Figure 2-3). The 

mineral assemblage of both samples includes muscovite, quartz, sillimanite, andalusite, 

chloritoid, chlorite, rutile, ilmenite, paragonite and magnetite. Andalusite and sillimanite 

are inferred to have formed during contact metamorphism because their isograds parallel 
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the contact with the granite. Minerals in the samples that may be vestiges of preceding 

regional metamorphism include chlorite, chloritoid and paragonite.  



 7

 

 

 

Figure 2-2: Scanned images of the polished surfaces of the weakly deformed (A) and deformed (B) 
samples. Thin sections for each sample were cut from the surfaces shown. In (A), bedding is defined by 
compositional variation oriented roughly N-S in this image and is gently folded. Bedding in (B) is also 
defined by compositional variation oriented roughly E-W in this image; however, bedding planes in (B) are 
sheared and crenulated. Sillimanite rich shear bands may be identified in hand sample by their deep red 
color and their orientation parallel to bedding. As viewed here, shearing in (B) is dextral.
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Figure 2-3: Photomicrographs of thin sections from deformed and weakly deformed samples. (A) 
Muscovite surrounding a poikilitic andalusite grain in the weakly deformed sample. Based on their shared 
extinction orientation, the andalusite grains are interpreted to be relics of one larger grain. (B) Mats of 
sillimanite forming triangular patterns within muscovite grains, interpreted to result from epitaxial 
replacement of octahedral layers in muscovite by sillimanite (Kerrick, 1990). (C) Lozenge-shaped quartz 
with undulose extinction and andalusite inclusions in a shear band of the deformed sample. Sillimanite 
needles help to define a foliation parallel to the lozenge-shaped quartz. (D) Coexisting andalusite and 
sillimanite in the weakly deformed sample, highlighting the lack of grain shape preferred orientation in the 
sample. 
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Although both samples contain identical mineral assemblages, one sample is 

deformed and contains two shear bands in thin section, whereas the other shows little 

evidence of deformation (Figure 2-4). Sillimanite needles in both shear bands curve into 

the high strain regions, implying progressive deformation during sillimanite growth. 

Based on their appearance in thin section of the deformed sample, the lower shear band 

involved lower strain.  

Rose diagrams were created to compare the fabrics in the deformed and weakly 

deformed samples. In the less deformed sample, sillimanite defines a weak foliation 

parallel to bedding, seen best in the rose diagram (Figure 2-3 and Figure 2-4). In the 

deformed sample, sillimanite defines two strong preferred orientations: in shear band 

cores, sillimanite is subparallel to bedding. In areas between the shear bands, sillimanite 

is at a high angle to bedding (Figure 2-4). 

Comparing the rose diagrams of the deformed and weakly deformed samples 

shows that the fabrics are not relict bedding. In the weakly deformed sample, sillimanite 

has a weak preferred orientation that varies around bedding. In contrast, sillimanite in the 

deformed sample has a preferred orientation that varies systematically with respect to the 

shear bands, showing that variation in strain controls sillimanite orientation (Figure 2-4). 

However, bedding may have controlled shear band nucleation because they are sub-

parallel to bedding. 

The mode of minerals also varies across shear bands. Cores of the shear bands are 

characterized by aligned aggregates of fibrolitic sillimanite, elongate quartz, and oxides. 
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Andalusite occurs only as inclusions in quartz. Between shear bands, the foliation is 

defined by muscovite, fibrolitic sillimanite, abundant andalusite and oxides (Figure 2-4). 
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Figure 2-4: Scans of the thin sections from the weakly deformed and deformed samples. Also shown are 
rose diagrams illustrating sillimanite needle orientations measured relative to bedding for the weakly 
deformed sample and relative to shear bands for the deformed sample. Each rose petal represents 10 
degrees. (A) A scan of the thin section of the weakly deformed sample. Sillimanite mats may be identified 
in this image as the tabular, opaque objects that are roughly 0.5 mm in length. Bedding is horizontal in this 
image. (B) A scan of the thin section of the deformed sample. Shear sense is sinistral in this view. Several 
key features are apparent, including the following: the oxide rich layer, defined by the band of opaque 
mineral grains; shear bands cored by sillimanite mats; and low strain domains, defined by coexisting 
andalusite, sillimanite and quartz. Two shear bands are visible in this thin section. The upper shear band 
records significantly more strain than the lower shear band. Sillimanite fibers form C-S type shear bands 
(Berthé et al., 1979; Passchier and Trouw, 2005), where the C surface shear zones are at a low angle of 
~10º to the bedding surface and S surfaces are at 30º to C surfaces. Bedding runs left-to-right in this image. 
Oxide rich layers show an asymmetric crenulation cleavage which verges in the direction of shear. The 
black box indicates the region covered in X-ray element mapping of Figure 2-6. (C) A rose diagram for the 
weakly deformed sample showing orientation of sillimanite mats. (D) – (F) Rose diagrams showing 
sillimanite needle orientations for different regions of the deformed sample: (D) high strain regions (E) low 
strain regions, and (F) the entire sample. 
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Geochemistry 

 Comparing the whole rock composition of the samples allows compositional 

changes resulting from deformation and metamorphism to be evaluated. The samples 

were not collected from the same bed; however, they were collected two meters apart, 

and have identical mineral assemblages, suggesting compositionally similar protoliths.  

 Two approaches – concentration ratio diagrams and isocon diagrams – were used 

to assess compositional variation between samples. The concentration ratio diagram 

(Figure 2-5) shows the magnitude of compositional variation between samples. It is 

evident that immobile elements were passively concentrated in the deformed sample 

whereas major elements were depleted in the deformed sample relative to the weakly 

deformed sample.  

The isocon diagram estimates the mass gained or lost during metamorphism 

relative to unaltered rock (Figure 2-5). For this method to be valid, the two samples must 

initially have the same composition. As discussed above, we suggest that the two samples 

roughly meet this criterion, although it is clear from their thin sections (Figure 2-3) that 

there is some variation between them. Ti, La and Ce were chosen as immobile elements 

for this exercise because these elements, generally considered immobile, have the same 

ratio between the deformed and weakly deformed samples, (Figure 2-5), suggesting that 

the concentrations of these elements has only varied passively and does not reflect 

compositional variation between the protoliths. Zr was not chosen because it may have 

been subject to bias by differences in the amount of zircon between the samples. 

Similarly, Al was not chosen because it falls along a line below the 1:1 line with most 

other major elements, suggesting that it, too, was mobile during fluid-present 
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metamorphism (e.g. Glen, 1979; Vernon, 1979). Using Ti, La and Ce as immobile 

elements, the deformed sample is depleted in most major elements by ~43%. The fact 

that most major elements fall along one line suggests systematic removal of elements and 

is evidence that the compositional differences between the samples does not reflect initial 

bulk composition variation. 
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Figure 2-5: (A) A concentration ratio diagram of major elements and REEs (After Ague, 2003). The y-axis 
is the ratio of concentrations in weight percent of the deformed sample to the weakly deformed sample. Ti, 
La and Ce are inferred to have been immobile during metamorphism because these three refractory 
elements have the same concentration ratio in the deformed and weakly deformed samples. The dashed line 
represents the line of zero mass change based on the constant ratio between these immobile elements. (B) 
An isocon diagram, following the procedure of Grant (1986), provides a graphical estimate of gains and 
losses during metasomatic alteration (After Gresens, 1967). Scaling factors for each element are given in 
parentheses. Assuming the deformed and weakly deformed samples had the same protoliths chemically, Ti, 
La and Ce may be used as immobile elements to estimate the elements gained and lost in the deformed 
sample. The immobile isocon is marked by the dashed black line and has a slope of 1.8. Elements that fall 
above the isocon were concentrated in the deformed sample, while elements falling below the line were 
depleted. Most major elements fall along the gray line, with a slope of 0.5. 
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Mineral Chemistry 

  X-ray maps highlight a change in composition, observed in the K map, between 

low and high strain regions in the deformed sample (Figure 2-6). Shear bands are 

characterized by lower amounts of K than low strain areas, although the lower shear 

band, interpreted as lower strain than the upper shear band, still has a small amount of K. 

In the Na map (Figure 2-6), muscovite appears faint with patchy areas rich in Na along 

the rim. Due to their patchy appearance and presence mainly along rims, this paragonitic 

component is interpreted as developed during retrograde metamorphism. Representative 

compositions for muscovite and other minerals in the deformed and weakly deformed 

samples are presented in Error! Reference source not found. and Table 2-2. 

 The Al X-ray map and thin section showcase a change in mineral mode between 

high and low strain regions of the deformed sample, in contrast with the weakly 

deformed sample, where there is no modal variation across the thin section. In the X-ray 

maps, the highest Al concentrations are aluminosilicates: andalusite grains are rounded, 

whereas sillimanite is fibrous. High strain regions contain fibrolitic sillimanite with 

andalusite occurring only as inclusions in quartz, whereas low strain regions contain both 

aluminosilicates. At first glance, the modal abundance of aluminosilicates appears to 

increase in high strain regions of the X-ray map. However, although the cores of the 

shear bands have high concentrations of Al, the boundaries of the shear bands are 

enriched in quartz. 
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Figure 2-6: Wavelength dispersive scanning (WDS) X-ray element intensity maps for the region outlined 
by the black box in Figure 2-4. 1024 by 1024 pixel WDS X-ray maps were collected with a fixed beam 
using an accelerating voltage of 20 KeV, 200 nA beam current, an 8 micron beam diameter, a dwell time of 
25 msec, and a 12 by 12 micron pixel size. Color corresponds to the concentration of the element measured, 
with warm colors indicating higher concentrations. Dashed white lines represent the boundaries of high 
strain regions. (A) An X-ray map of Al. Pinks and reds correspond to aluminosilicates – fibrous shapes are 
sillimanite while rounded shapes are andalusite. (B) An X-ray map of K. Here, warm colors correspond to 
muscovite. Note the absence of muscovite in high strain regions, with the exception of a few grains in the 
lower strain shear band. (C) An X-ray map of Na. Blue is muscovite, while yellow is paragonite. (D) An X-
ray map of Fe. Bright colors correspond to oxide grains. 
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Metamorphic Reactions 

 Observing the difference in mineral textures and distributions between deformed 

and weakly deformed samples is critical to understanding the interactions of deformation 

and metamorphism. Andalusite and sillimanite occur throughout both samples; however, 

in the deformed sample, the andalusite to sillimanite transition has progressed to different 

degrees of completion in shear bands and non-shear band areas as described above. 

Furthermore, because of the close proximity of the samples, the variation in degree of 

conversion of andalusite to sillimanite cannot be the result of P/T differences. 

 Metamorphic textures demonstrate that the andalusite-sillimanite phase transition 

was accommodated through a series of reactions (Figure 2-3; e.g. Carmichael, 1969; 

Glen, 1979; Vernon, 1987a). In the weakly deformed sample, andalusite inclusions in 

muscovite grains share a common extinction angle. This shared crystallographic 

orientation is interpreted as evidence that muscovite replaced andalusite grains (Figure 

2-3). Elsewhere in the sample, sillimanite forms triangular mats within grains of 

muscovite, representing epitaxial growth of sillimanite on muscovite, which indicates 

replacement of muscovite by sillimanite (Figure 2-3; Chinner, 1961; Kerrick, 1990). 

These observations are consistent with a cycle where muscovite replaces andalusite and 

sillimanite replaces muscovite (e.g. Carmichael, 1969; Kwak, 1971) with minor 

production of oxides from Fe3+ in andalusite. Similar reaction textures have been 

observed in both samples. 

 Isochemical phase diagrams were calculated to constrain the P/T conditions 

during deformation and metamorphism (Figure 2-7). Phase diagrams were calculated 

using Theriak-Domino (de Capitani and Petrakakis, 2010) assuming oxygen fugacity 
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buffered by hematite-magnetite and using XRF whole rock compositions for each sample 

(Table 2-3). The P/T conditions of metamorphism are constrained by the peak 

assemblage stability field (Figure 2-7), limiting pressures to 4.1-4.5 kbar and 

temperatures to 550º-570º C. The absence of feldspar, which should be present in small 

amounts according to the phase diagram, may be explained in several ways. The database 

used (Holland and Powell, 1998) may imperfectly describe mixing of possible elements 

in the minerals. For instance, Na, Ca and Fe occur in higher concentrations in muscovite 

than predicted by the phase diagram calculations. Alternatively, the patchy rims of 

paragonite on muscovite imply late growth that may signify the decomposition of albite 

during retrogression. 
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Figure 2-7: An isochemical phase diagram showing the equilibrium mineral assemblages over a range of 
pressures and temperatures for the deformed sample. The field highlighted in gray is the inferred peak 
mineral assemblage. The diagram was created using Theriak and Domino software suite (de Capitani and 
Petrakakis, 2010) using whole rock chemistry determined by X-ray fluorescence (Table 2-3). The internally 
consistent database of Holland and Powell (1998), including solution models of Mahar et al. (1997), 
Holland et al. (1998), Coggin and Holland (2002), Baldwin et al. (2005) and White et al. (2007) were used. 
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Discussion 

 Comparison of the deformed and weakly deformed samples yields several 

important observations. First, the transformation from andalusite to sillimanite involved a 

series of reactions where andalusite was replaced by muscovite and sillimanite replaced 

muscovite. Second, the mode of sillimanite is higher in shear bands and is uniform in the 

weakly deformed sample. Third, the change in composition, as reflected by X-ray maps, 

the concentration ratio diagram and the isocon diagram, suggests depletion of most major 

elements from the deformed sample. Fourth, most major elements fall along a line with a 

slope of 0.5 on the isocon diagram, implying mass loss during deformation. 

 Textural observations in thin section showed that the transformation from 

andalusite to sillimanite was not a simple phase change. Instead, the net reaction of 

andalusite to sillimanite was facilitated by growth of muscovite at the expense of 

andalusite and growth of sillimanite at the expense of muscovite. In the weakly deformed 

sample, these reactions occurred uniformly; however, in the deformed sample, X-ray 

mapping showed that muscovite replacement by sillimanite occurred preferentially in 

high strain regions, forming shear bands.  

 Noting that the mode of sillimanite increases and the mode of andalusite 

decreases in shear bands is of fundamental importance. This observation implies that 

sillimanite aggregates localize strain, while, at the same time, deformation enhances the 

metamorphic reaction facilitating sillimanite growth. Localization of strain to locations of 

sillimanite growth (e.g. Vernon, 1987b; Goergen et al., 2008), implies that reaction 

softening played a role in the development of the shear bands. 
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 The isocon diagram provides further insight into the processes governing 

deformation and metamorphism in the samples. The isocon diagram shows that the mass 

lost from the deformed sample is approximately 43%. This result is consistent with the 

removal of material via solution mass transport as hydrous minerals were removed from 

shear bands. 

 Finally, a mechanism is necessary to remove the major elements from high strain 

regions. Given that the contact aureole is a site of dehydration reactions and that the 

Eolus granite may have produced fluids, we suggest that the removal of these elements 

may have involved base leaching and solution mass transfer (e.g. Vernon, 1979; Vernon 

et al., 1987). 

  

Conclusions  

 The purpose of this study was to understand what caused the transition from 

andalusite to sillimanite to be nearer completion in shear bands than in weakly deformed 

regions of the studied outcrop. Results showed an example of reaction softening where 

deformation interacted with metamorphic reactions in a positive feedback loop to 

enhance strain localization while accelerating reactions, similar to the process suggested 

by Whitmeyer and Wintsch (2005). The localization of deformation and metamorphism 

was facilitated by solution mass transfer, removing major elements. Textural evidence 

shows that the transition from andalusite to sillimanite was a series of reactions. These 

reactions occurred at 4.1-4.5 kbar and 550º-570º C according to the stability field of the 

peak assemblage in the isochemical section (Figure 2-7). Although textural observation 

confirms that the same metamorphic reactions occurred in both samples, strain 
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localization correlates with an increase in the amount of sillimanite. These results suggest 

that mineral assemblages in high strain zones that developed during prograde 

metamorphism may more closely reflect peak metamorphic conditions because 

deformation serves to catalyze metamorphic reactions (e.g. Goergen et al., 2008).  
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Tables: 

 

 Muscovite Andalusite Chrloitoid Paragonite
Oxide Wt% 

 SiO2  45.31 36.61 25.34 46.12
 TiO2  0.71 0.14 0.07 0.1
 Al2O3  34.54 60.71 39.61 39.09
 FeO  3.09 2.04 26.28 0.8
 MnO  0 0 0.7 0
 MgO  0.21 0.01 0.27 0.01
 CaO  0.02 0.01 0 0.06
 Na2O  1.44 0.01 0.01 6.29
 K2O  8.43 0.01 0.01 1.4
 Total  93.75 99.54 92.29 93.87

Ions per formula unit 
Si 6.14 1 2.12 6
Ti 0.07 0 0 0.01
Al 5.51 1.96 3.9 5.99
Fe 0.35 0.05 1.83 0.09
Mn 0 0 0.05 0
Mg 0.04 0 0.03 0
Ca 0 0 0 0.01
Na 0.38 0 0 1.58
K 1.46 0 0 0.23
O,OH  
in 
Formula 22 5 12 22

Table 2-1: Microprobe analyses and structural formulas of minerals in the deformed sample. The beam 
conditions used to collect data were 20 KeV, 20 nA and a 5 micron beam. The analyses were conducted at 
Cornell University. A minimum of ten analyses were averaged for each mineral to produce an average 
mineral composition for the sample. Chlorite and sillimanite were too fine grained to produce acceptable 
analyses. Sillimanite fibers were assumed to be pure Al2SiO5. 
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 Muscovite Andalusite Chloritoid Paragonite
Oxide Wt% 

 SiO2  46.06 36.11 28.56 46.61
 TiO2  0.91 0.06 0.22 0.21
 Al2O3  35.24 61.13 32.56 39.55
 FeO  4.8 1.29 30.82 2.2
 MnO  0.03 0.01 0.52 0.02
 MgO  0.28 0.03 0.89 0.05
 CaO  0.03 0.04 0.01 0.04
 Na2O  1.61 0.02 0.13 6.48
 K2O  7.18 0.01 0.37 1.28
 Total  96.14 98.7 94.08 96.44

Ions per formula unit 
Si 6.09 0.99 2.02 5.94
Ti 0.09 0 0 0.01
Al 5.49 1.98 3.94 6.06
Fe 0.53 0.03 1.98 0.09
Mn 0 0 0.06 0
Mg 0.06 0 0.02 0
Ca 0 0 0 0.01
Na 0.41 0 0 1.56
K 1.21 0 0 0.24
O,OH in 
Formula 22 5 12 22
Table 2-2: Microprobe analyses and structural formulas of minerals in the weakly deformed sample. The 
beam conditions used to collect data were 20 KeV, 20 nA and a 5 micron beam. The analyses were 
conducted at Cornell University. A minimum of ten analyses were averaged for each mineral to produce an 
average mineral composition for the sample. Chlorite and sillimanite were too fine grained to produce 
acceptable analyses. Sillimanite fibers were assumed to be pure Al2SiO5. 
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Weakly 
Deformed 
Sample 

Deformed 
Sample 

 SiO2  58.82  70.46  
 TiO2  1.51  2.63  
 Al2O3  31.18  15.41  
 FeOtot 5.18  5.94  
 MnO  0.01  0.01  
 MgO  0.07  0.04  
 CaO  0.07  0.04  
 Na2O  0.35  0.14  
 K2O  0.75  0.44  
 P2O5  0.12  0.14  
 Sum 98.05  95.23  
LOI 1.45 2.46 
 Ni 20  10 
 Cr 142  89 
 Sc 29  26 
 V 53  55 
 Ba 329  156 
 Rb 29  13 
 Sr 424  242 
 Zr 547  3054 
 Y 92  142 
 Nb 37.6 50.1 
 Ga 44  20 
 Cu 6  2 
 Zn 5  3 
 Pb 34  28 
 La 119  204 
 Ce 250  437 
 Th 35  125 
 Nd 114  158 
 U 14  19 

Table 2-3: XRF analysis, conducted at Washington State University, of both deformed and weakly 
deformed samples. Major elements are shown as non-normalized weight percents. Trace elements 
are presented as non-normalized ppm
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3. Metamorphic P-T paths across the Al2SiO5 triple point 

terrane of northern New Mexico, USA: Metamorphic 

Constraints on Orogeny in Southern Laurentia 

 

Abstract 

 

 Proterozoic rocks in northern New Mexico record amphibolite facies 

metamorphism and are world-renowned for locales containing all three 

aluminosilicates. The metamorphic history of these rocks is controversial, with 

multiple tectonic histories proposed to explain their petrogenesis. Here we present 

petrologic and microstructural observations that demonstrate that different parts 

of the study area evolved along distinct P-T paths that locally culminated in 

metamorphic conditions near the Al2SiO5 triple point.  

 Through this study, we show that Proterozoic metamorphism in this region 

is characterized by clockwise P-T paths and amphibolite grade metamorphism. 

The relative timing of metamorphism and deformation varies across the field area; 

however, a compilation of aluminosilicate isograds shows an uninterrupted 

variation in metamorphic isograds that overprints ductile deformation structures. 

Derived pressure-temperature-time paths match the thermal trajectories of 

numerical models for collisional orogens. Our results suggest that rocks were 

brought from upper-crustal to mid-crustal levels by contractional deformation, 
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with resulting peak metamorphic conditions being diachronous across the triple 

point terrane. These features are most consistent with a model where crustal 

thickening and heat advection from plutons drives metamorphism. Based on these 

lines of evidence, we suggest that the triple-point assemblages are the product of a 

single orogenic event occurring between 1460 and 1400 Ma.  

 

Introduction 

 

 The world famous aluminosilicate triple-point assemblages found in 

northern New Mexico have been the subject of extensive study (e.g. Holdaway, 

1978; Grambling, 1981; Grambling and Williams, 1985; Holdaway and Goodge, 

1990; Karlstrom and Williams, 1996; Williams et al., 1999; Larson and Sharp, 

2003; Daniel and Pyle, 2006). Understanding the petrogenesis of these rocks is of 

interest for several reasons: the aluminosilicates provide key constraints on the 

pressure and temperature (P/T) path and tectonic history of the region, central to 

understanding the growth of southwestern North America; and phase-relation 

independent estimates of P/T at the time of the formation of these assemblages 

can be used as a natural-check for experimentally and theoretically based 

estimates of the aluminosilicate triple point if the aluminosilicates represent 

equilibrium mineral assemblages (e.g. Grambling, 1981; Pattison, 1992). 

 Multiple competing tectonic models have been proposed to explain 

metamorphism in northern New Mexico. One model, proposed by Karlstrom and 

Williams (1996), involves initial metamorphism during an orogenic event 
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between 1700 and 1600 Ma and reactivation during a circa1400 Ma 

metamorphism, plutonism and intracontinental tectonism (e.g. Karlstrom et al., 

1997, 2004; Pedrick et al., 1998; Williams et al., 1999; Read et al., 1999; Shaw et 

al., 2001; McCoy et al., 2005). However, recent geocrhonologic work, including 

dating of metamorphic monazite (Daniel and Pyle, 2006), detrital zircon in 

supracrustal metamorphic rocks (Jones et al., 2011), and Lu/Hf garnet growth 

ages (Aronoff et al., 2012) have produced evidence contradicting accepted 

tectonic models of Paleoproterozoic accretion followed by overprinting 

metamorphism at ~1400 Ma. In-situ dating by ion microprobe of monazite 

inclusions in kyanite from the Picuris Mountains of northern New Mexico yielded 

no evidence for metamorphism prior to 1440 Ma (Daniel and Pyle, 2006). 

Similarly, detrital zircon studies from the same supracrustal metamorphic units 

found a population of 1460 Ma zircons (Jones et al., 2011), implying that these 

supracrustal rocks were at the surface of the earth as late as 1460 Ma. These 

observations have lead to the suggestion that a previously unrecognized orogenic 

event in northern New Mexico, termed the Picuris Orogeny (Daniel and Jones, 

2012), produced the metamorphism recorded in the Picuris Mountains. Aronoff et 

al. (2012) found similar ages for garnet growth in both the Tusas and Picuris 

Mountains, which they use to suggest that this ~1400 Ma orogenic event affected 

both mountain ranges. 

 In order to clarify the petrogenesis of these unique assemblages, we 

combine petrologic and microstructural observations, isochemical phase diagram 

modeling and a regional compilation of aluminosilicate isograds across the 
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reconstructed orogen. Through this approach, we develop pressure-temperature-

time (P/T/t) trajectories of metamorphism across the orogenic belt. These results 

are compared to thermal models to develop a tectonic history for the region 

during orogenesis. This tectonic model is then compared with map patterns of 

aluminosilicate isograds to fully characterize metamorphism and explain the 

petrogenesis of triple-point assemblages. 

 Results of this study show that regional amphibolite facies metamorphism 

in northern New Mexico followed a clockwise P-T-t path, around the 

aluminosilicate triple point. Although the character of the path is consistent across 

the Tusas and Picuris Mountains, the peak pressures and temperatures reached 

vary across the field study area. The nature of the P-T-t path is consistent with 

progressive loading during thrusting (e.g. Daniel et al., 2003; England and 

Thompson, 1984; Beaumont et al., 2001). These results are not consistent with 

previously proposed long-lived polymetamophic history. Instead, we suggest a 

single metamorphic event produced the aluminosilicate triple-point assemblages, 

and is an expression of the recently proposed Picuris Orogeny (Daniel et al., 

2012) in both the Picuris and Tusas Mountains of northern New Mexico. 

 

Geologic Background 

 The focus of this study is on the Tusas and Picuris Mountains of northern 

New Mexico. Paleo-reconstructions removing Laramide-aged right lateral strike 

slip deformation show that these two mountain ranges were laterally continuous 

prior to faulting (Karlstrom and Daniel, 1993; Cather et al., 2006; Jones et al., 
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2011) (Figure 3-1). 

 The key stratigraphic units in our study area are supracrustal metavolcanic 

and metasedimentary rocks divided into two groups: the Vadito and the Hondo. 

The Vadito group lays in unconformable or tectonic contact with calcalkaline and 

greenstone basement rocks and is inferred to be older than the Hondo based on 

mapping of transitional rocks between the groups by Bauer et al. (2005) in the 

eastern Picuris Mountains. For a detailed description of the stratigraphy of the 

Vadito and Hondo groups in the Picuris and Tusas Mountains, see Bauer et al. 

(2005), Jones et al., (2011), Bauer and Williams, (1989), Mawer et al., (1990) and 

Soegaard and Eriksson (1986). Samples were collected in both the Tusas and 

Picuris Mountains from pelitic schists within the Vadito Group, as well as in the 

Rinconada Schist, and Ortega Formation in the Hondo Group (see Figure 3-1 for 

locations). 

 Three generations of fabrics (S1, S2, and S3) have been documented (see 

Williams et al., 1999; Daniel and Pyle, 2006; Barnhart et al., 2012) across the 

Tusas and Picuris Mountains. The orientation of the dominant fabric across the 

orogenic belt varies, with no evidence for over printing fabrics in some places, 

and near complete transposition in others. For detailed structural analysis, see 

Williams (1991, 1994), Bishop (1997), Williams et al. (1999), Daniel and Pyle 

(2006), Barnhart et al. (2012). 

 Previous field mapping (e.g. Williams, 1991; Lombardi, 1997) has 

identified a south dipping, east-west striking fault separating the southern Tusas 

from the central Tusas, which these workers have mapped as being roughly 



 37

parallel with F2 axial surfaces. In a tectonic model proposed by Williams et al. 

(1999), this fault is produced by north-vergent thrusting. 
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Figure 3-1: A simplified geologic map of the Proterozoic Orogenic belt with post-Proterozoic deformation 
removed (after Karlstrom and Daniel, 1993; Cather et al., 2006; Jones et al., 2011) is shown with sample 
locations. Aluminosilicate isograds are shown with heavy dashed lines (After Grambling, 1979, 1981; Read 
et al., 1999, Holdaway, 1978; Price, 1997; Daniel and Pyle, 2006). Location of study area shown in inset in 
the lower left. 
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 All of the supracrustal units in the Hondo, Vadito and Marqueñas 

experienced amphibolite grade metamorphism, although the timing and cause of 

this metamorphism remain the subject of study (e.g. Holdaway, 1978; Grambling, 

1979, 1981; Karlstrom and Williams, 1996; Williams et al., 1999; Shaw et al., 

2005; Daniel and Pyle, 2006; Barnhart et al., 2012; Aronoff et al., 2012). The 

timing of regional metamorphism was inferred by mapping of Ar/Ar cooling ages 

(Shaw et al., 2005). Based on this mapping, regional high-grade metamorphism 

affected the central and southern Tusas Mountains, Picuris Mountains, Cimarron 

and Taos Range, Sangre de Cristo and the Wet Mountains (Shaw et al., 2005) at 

1400 Ma. Shaw et al. (2005) inferred that this metamorphic event was caused by 

heat advected by plutons in an intracontinetal tectonic setting.  

Triple-point assemblages, described by Grambling and Williams (1985) 

and Grambling (1979, 1981), are present in the Picuris Mountains and Truchas 

Mountains. Peak P/T conditions for these assemblages were reported by 

Holdaway and Goodge (1990) ~530ºC and 4 kbar based on Grt-Bt 

geothermometry and aluminosilicate phase equilibria. Aluminosilicate isograds, 

compiled from Williams (1991), Read et al. (1999), Grambling (1981) and 

Grambling and Williams (1985), are shown in Figure 3-1. When overlaid on the 

reconstructed Proterozoic mountain belt (Karlstrom and Daniel, 1993; Cather et 

al., 2006; Jones et al., 2011), the isograds match up well across mountain ranges 

(see Figure 3-1).  

 Multiple models have been proposed to explain the metamorphism. The 

first model, by Karlstrom and Williams (1996), evokes a double loop to explain 
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the observed metamorphism. In this model, the authors suggests a 

pressure/temperature/time (P/T/t) path of metamorphism that follows a clockwise 

loop around the aluminosilicate triple point between ~1700 Ma and ~1600 Ma, 

followed by isobaric cooling at mid-crustal depths and an isobaric thermal 

excursion at 1400 Ma. The magnitude of the loop depends on the location. The 

P/T/t loop is based on observed metamorphic reaction textures, phase 

relationships and inclusion relationships (e.g. Williams et al., 1991; Karlstrom 

and Williams, 1996; Williams et al., 1999). The timing of this loop is based the 

timing of similar events in Arizona, correlated by similar fabrics and deformation 

textures and is contemporaneous with geochronologic constraints on the age of 

this deformation provided by other workers (e.g. Bauer and Williams, 1994). The 

second portion of this model, the thermal excursion at 1400 Ma, is based on the 

observation of ubiquitous ca. 1400 Ma igneous activity. This observation led 

Karlstrom and Williams to suggest that initial amphibolite facies metamorphism 

occurred at ca. 1700 Ma, and was later partially overprinted during plutonism at 

1400 Ma. Two subsequent studies found evidence supporting this model. First, 

Shaw et al. (2005) compiled Ar/Ar cooling ages, showing that Proterozoic 

cooling ages show varying degrees of partial resetting, with biotite ages clustering 

tightly around 1400 Ma, muscovite ages showing a ~200 Ma spread and 

hornblende ages ranging from 1700 to 1400 Ma. Also supporting this model, 

Larson and Sharp (2003) found that oxygen isotopes of the aluminosilicates in 

triple point rocks at Turchas peak are not in isotopic equilibrium among all three 

aluminosilicates, implying that it is unlikely that the triple-point assemblage is an 
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equilibrium assemblage. 

  The tectonic model proposed by Daniel and Pyle (2006) is based on 

observations from the northern Picuris Mountains, and contrasts sharply with the 

model of Karlstrom and Williams (1996). Although both models involve a 

clockwise metamorphic trajectory that loops around the aluminosilicate triple 

point, Daniel and Pyle (2006) suggest that metamorphism involved a single loop 

at ca. 1400 Ma and did not involve a subsequent thermal excursion. This P/T/t 

trajectory was constructed based on reaction textures combined with ion 

microprobe U/Pb monazite ages. The timing of deformation relative to 

metamorphism was determined by careful microstructural observation and 

comparison of these observations with petrologic textures. Near concordant to 

concordant U/Pb ages from monazite range from 1434 +/-12 Ma to 1390 +/-20 

Ma, consistent with Mesoproterozoic amphibolite facies metamorphism.  

Methods 

 Mineral compositions and X-ray element intensity maps used for 

geothermobarometry were collected using a JEOL 8900 electron microprobe at Cornell 

University. X-ray maps were made using an accelerating voltage of 15 KeV, a beam 

diameter of 5 µm, and a beam current of 200 nA. A stationary beam was used with a 

dwell time of 20 ms and the stage was moved beneath the beam to make these maps. 

Mineral analyses were conducted using an accelerating voltage of 15 KeV, a probe 

current of 20 nA, and a beam diameter of 10 µm for micas and 2 µm for other minerals. 

Natural and synthetic mineral standards were used for calibration.  
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 Geothermobarometry was conducted using two internally consistent software 

packages: Thermocalc (Holland and Powell, 1998) and winTWQ (Berman, 1988). Rim 

temperatures were obtained by pairing garnet rim compositions with minerals 

immediately in contact with the garnet, and core temperatures were obtained by pairing 

garnet core compositions with inclusions. 

 Whole rock chemistry of each sample, presented in Table 1 and used in the 

construction of isochemical phase diagrams, was determined by X-ray fluorescence 

(XRF) analysis of a powdered portion of each sample. These analyses were conducted at 

Washington State University. 

 Isochemical phase diagrams were created with the Theriak-Domino software suite 

(de Capitani and Petrekakhis, 2010). The whole rock chemistry presented in Table 1 was 

used as the input for construction of these sections. Internally consistent databases of 

Holland and Powell (1998) and Berman (1988) were used. In keeping with the findings 

of Holdaway (1978), a reduced water activity of 0.7 was used for isochemical phase 

diagrams created for staurolite bearing samples in the vicinity of aluminosilicate and 

chloritoid bearing samples  

Results 

Isograds and Field Gradients 

 We have compiled aluminosilicate isograds from previous studies (e.g. 

Grambling, 1981; Grambling and Williams, 1985; Williams, 1991; Read et al., 

1999) (see Figure 3-1). From this exercise, several interesting details become 

apparent. First, metamorphic isograds over much of the region have shallow dips, 
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cross-cutting deformation fabrics and major shear zones implying peak 

metamorphism outlasted deformation. Second, there is a field gradient preserved 

by the aluminosilicate isograds across the orogenic belt. The resulting map pattern 

is strongly controlled by topography, implying that the isograds formed with 

shallowly dipping isotherms (Grambling, 1981). In the northern Tusas Mountains, 

Al2SiO5 is absent, and pyrophyllite occurs, implying temperatures below ~420ºC 

(Williams, 1991). Kyanite is the first Al2SiO5 mineral to occur up-grade of 

pyrophyllite, and locally andalusite is present and texturally after kyanite. This is 

consistent with an increase in temperature to over ~450ºC at pressures below the 

Al2SiO5 triple point. Throughout most of the central Tusas Mountains kyanite is 

the stable polymorph. In the southern Tusas Mountains, sillimanite occurs and is 

texturally late with respect to kyanite (Barnhart et al., 2012), indicating P/T 

conditions above the Al2SiO5 triple-point. Temperatures vary across the southern 

Tusas, but K-feldspar in the presence of sillimanite is not reported, implying 

temperatures below about 625ºC. 

 In the Picuris Mountains the distribution of Al2SiO5 Polymorphs is distinct 

form the Tusas. In the northernmost Picuris Mountains sillimanite is inferred to be 

the stable Al2SiO5 polymorph, and is texturally after kyanite. In a narrow band in 

the northern Picuris Mountains the rocks locally contain all three Al2SiO5 

polymorphs (Holdaway and Goodge, 1991; Daniel and Pyle, 2006). Textures in 

these rocks indicate a sequence from kyanite to sillimanite, with andalusite being 

the texturally latest polymorph of Al2SiO5 (Daniel and Pyle, 2006). Daniel and 

Pyle (2006) inferred that these rocks experienced a clockwise P-T path at 
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temperatures slightly above the triple point with about 1 kbar of decompression. 

Immediately south of the region where all three polymorphs occur, kyanite is 

inferred to be the stable polymorph, although sillimanite is reported with kyanite 

in at least two localities. Further to the south andalusite occurs with inclusions of 

kyanite, and in the most southern parts of the Picuris Mountains andalusite occurs 

alone, with the exception of sillimanite adjacent to the 1.4 Ga Penasco granite. 

These features suggest that in the Picuris Mountains, the northern part of the 

range records the highest pressures at, or slightly above the Al2SiO5 triple point. 

Pressure decreases to the south to conditions within the andalusite stability field 

found in the southern parts of the range.  

Further to the east the isograds are continuous with exposures in the 

Turchas Mountains in the restored configuration (Figure 3-1). In both the Truchas 

and Rio Mora areas, the distribution of the Al2SiO5 polymorphs is inferred to be a 

function of elevation (Grambling 1981; Williams and Grambling, 1990). 

Sillimanite occurs at the lowest elevations, and kyanite at the highest. Where 

present, andalusite occurs at intermediate elevations. Grambling (1981) showed 

that this distribution of minerals is consistent with nearly horizontal isotherms and 

isobars, with slightly higher pressures occurring towards the north within the 

Turchas Range.  

Farther to the east, proceeding from Rio Mora to the Rincon Mountains, 

migmatitic gneiss is present, and the assemblage sillimanite + K-feldspar is 

widespread. Hercynite is locally reported, and the rocks are inferred to have 

undergone partial melting. Read et al. (1999) inferred P-T conditions of ~650ºC 
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and 4-6 kbar for this region, making this the highest grade portion of the Al2SiO5 

triple point terrane.  

 Although the map pattern of aluminosilicate isograds is informative on its 

own, understanding the metamorphic history that produced these isograds is 

critical to developing a meaningful tectonic history. To determine the P/T/t 

trajectory of metamorphism in the Tusas and Picuris Mountains, samples, whose 

mineralogies are presented in Table 2, were collected from across metamorphic 

zones. 

Petrology 

Central Tusas Mountains 

In the Vadito of the central Tusas Mountains, both garnet-bearing 

micaceous schists and kyanite rich quartzites are present (see Table 2). Within 

kyanite bearing quartzite, pseudomorphs of pyrophyllite were identified by 

Simmons et al. (2011), suggesting that kyanite grew at a relatively low 

metamorphic grade. Mineralogically, these rocks locally contain muscovite-

kyanite-chloritoid consistent with temperatures below ~570ºC. Associated with 

the kyanite quartzite is a thin coarse grained staurolite bearing quartzite (Schreyer 

and Chinner, 1966) which contains quartz-staurolite-biotite-muscovite and 

chlorite, with the chlorite forming at the expense of biotite. It is likely that the 

staurolite-rich rocks formed a reaction such as kyanite + chloritoid = staurolite + 

quartz (Schreyer and Chinner, 1966). Oxygen isotope data constrains the peak 

temperature for this region to be between 530 and 580ºC (Simmons et al., 2011). 
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 A garnet bearing sample (11TU-4B) was collected from pelitic schist 

stratigraphically several meters below the Big Rock Conglomerate. This schist 

varies from less than one meter to tens of meters in thickness. Felsic metavolcanic 

rocks occur on both sides of the schists (Williams et al., 1999; Simmons et al., 

2011). X-ray maps and compositional profiles (Figure 3-2, Figure 3-3) show 

typical growth zoning patterns for garnets in sample 11TU-4B, with the exception 

of Ca, whose content in garnets here shows an irregular, patchy zonation. 

Chernoff and Carlson (1997) suggest that such irregular Ca zoning is not a 

reflection of a rock-wide event, but rather a reflection of the local extent of a 

reaction in the vicinity of the growing garnet. 
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Figure 3-2: Electron microprobe X-ray element intensity maps for sample 11TU-4B in the Tusas 
Mountains. Color corresponds to the element concentration, with warm colors corresponding to higher 
concentrations. Transect line A-A’ represents the quantitative line scan shown in Figure 3-3. 
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Figure 3-3: A compositional profile across a garnet from sample 11TU-4B. Note bell shaped zoning 
profile with high Mn concentrations in the core, decreasing the rim. X-ray maps for the same garnet are 
shown in Figure 3-2. 
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In this sample, segregated quartz and mica rich domains define the 

dominant S2 foliation. An earlier fabric, almost entirely overprinted by the S2 

fabric, is preserved in microlithons (Figure 3-4a) and is interpreted to represent 

the earliest fabric (S1). The S2 fabric is crenulated by a third fabric (S3), which is 

defined by spaced kink bands and microfolds (Figure 3-4a). 

 Several key textures and phase relationships constrain the P/T conditions in the 

Big Rock area. One such texture is the presence of zoisite in sample 11TU-4B both as 

inclusions in garnet and in the matrix. Another important texture in sample 11TU-4B is 

the presence of unfoliated splays of margarite surrounding garnets (Figure 3-4b). These 

textures indicate the peak mineral assemblage in the schists includes garnet + muscovite 

+ biotite + quartz +/- ilmenite +/- hematite +/- staurolite. Locally, the presence of kyanite 

and staurolite in the absence of sillimanite limits the maximum temperature in the area, 

and implies a minimum pressure of 5.5 kbar and a maximum temperature bounded by the 

kyanite-sillimanite phase transition (Figure 3-5). Similarly, the presence of kyanite + 

chloritoid assemblages in the area provides a maximum constraint on the temperature of 

~570ºC (Figure 3-5). 
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Figure 3-4: Photomicrographs from the Picuris and Tusas Mountains showing key petrographic textures 
and microstructural relationships. A) A cross polarized light photomicrograph of a sample from the central 
Tusas Mountains showing a pseudomorph of chlorite after garnet. Matrix foliation runs from top to bottom 
in the image, and is defined by elongate Q and M domains. B) A plain polarized photomicrograph from the 
central Tusas Mountains. The dominant fabric, running from lower left to upper right is defined by quartz 
and mica rich layers. At the center of the image, garnet is surrounded by an undeformed halo of margarite. 
C) A plain polarized photomicrograph of garnet surrounded by a halo of sillimanite in a matrix of quartz, 
biotite and muscovite from the southern Tusas Mountains. The dominant foliation, S3, is defined here by 
the orientation of sillimanite needles in the halo. Preserved within the garnet are inclusions of quartz 
recording an earlier foliation at a high angle to S3. D) A plain polarized photomicrograph from the southern 
Tusas Mountains. Here, garnet, in the upper left, is separated from staurolite, in the lower left, by 
interfingering biotite and muscovite. Note that staurolite is replacing muscovite and the garnet is rimmed 
by biotite. E) A cross-polarized photomicrograph of garnet in a matrix of quartz and biotite from the Picuris 
Mountains. Matrix foliation, identified as S1, runs left to right in this photomicrograph. Inclusions within 
the garnet show no discernable orientation. Matrix fabric bends around the garnet. F) A cross-polarized 
photomicrograph of a sample collected from the Hondo syncline area, central Picuris Mountains. The 
image shows kyanite included by a large poikilitic andalusite grain in a matrix of quartz, chloritoid and 
muscovite. G) A plain polarized photomicrograph from the central Picuris Mountains. This image shows 
garnets included in staurolite grains in a matrix of quartz, biotite, muscovite and chlorite. In this same 
image, chlorite is part of the dominant fabric (S1), which is overprinted by late biotite. 
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Figure 3-5: A petrogenetic grid of key reactions in the central Tusas Mountains in the Big Rock area. The 
Holdaway (1978) triple point is marked by an “H”, while the Pattison (1992) triple point is marked with a 
“P”. Dashed gray lines are temperature estimates from kyanite-quartz oxygen isotope thermometry for the 
kyanite quartzites (Simons et al., 2011). The dashed arrows represent the P/T paths determined for the 
southern Tusas Mountains at Cerro Colorado by Barnhart et al. (2012). The solid black arrow indicates the 
presence of staurolite after chloritoid in the Big Rock area (Rao & Johannes, 1979). The solid gray arrows 
represent the P/T paths in the Big Rock area as constrained by both isochemical phase diagram (see Figure 
3-6) and reaction textures interpreted on this petrogenetic gird. 
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 Comparison of the observed textures against a isochemical phase diagram for 

sample 11TU-4B is useful in explaining the textures described above as well as the P/T/t 

trajectory of metamorphism in the area. The presence of zoisite in 11TU-4B as inclusions 

in garnet as well as in the matrix of the sample provides a potential garnet growing 

reaction of chloritoid + zoisite + quartz = garnet + muscovite + H2O in the presence of 

biotite and ilmenite as seen in the isochemical phase diagram (Figure 3-6). Comparing 

the isochemical phase diagram with the halos of margarite around garnet, we can infer 

that these halos represent the breakdown of biotite and garnet to form margarite and 

muscovite. The lack of foliation in this reaction texture implies that this is a late, post-D3 

decompression reaction. The textures described here indicate the peak mineral 

assemblage in the schists includes garnet + muscovite + biotite + quartz +/- ilmenite +/- 

hematite +/- staurolite. This peak assemblage is consistent with isochemical phase 

diagram P/T conditions of pressures above 6.2 kbar and temperatures between ~500 and 

550ºC (Figure 3-6). 

 Unfortunately, from these exercises no good constraints on maximum 

pressure can be derived, although the presence of kyanite and staurolite in the 

region provides a lower bound of 4.2 kbar. The peak assemblage of 11TU-4B as 

described above, including garnet, quartz, muscovite, biotite and staurolite, is 

stable above 6.2 kbar (Figure 6). An identifiable retrograde assemblage in sample 

11TU-4B includes garnet, quartz, ilmenite, chlorite, muscovite and margarite. 

After peak metamorphism, margarite was produced during post-D3 retrograde 

metamorphism. The exact path of this retrograde metamorphism is obscured by 

textural ambiguity; however, regardless of the path between peak and post-peak 
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assemblages, these two assemblages require decompression of at least 1 kbar and 

a decrease in temperature of 50º C (Figure 3-6).  
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Figure 3-6: An isochemical phase diagram for sample 11TU-4B from the central Tusas Mountains. The P-
T path is inferred to begin in the region 12 based on zoisite inclusions in garnet. The peak equilibrium 
assemblage is shaded in gray, region 19. Margarite rims on garnet and lack of feldspar in the samples 
indicate decompression from region 19 to region 7, with the path ending in region 10 where chlorite 
appears in the assemblage (hashed pattern). The path of metamorphism is shown with a solid gray line. 
Dashed red lines represent estimates of temperature in the vicinity of the collected sample as determined by 
Simmons et al. (2012) based on Oxygen isotope exchange between quartz and kyanite. 
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Southern Tusas Mountains 

The dominant lithology at Cerro Colorado is the red-weathering 

metarhyolite of the Vadito group, which cores an east-west trending anticline. 

Samples collected from the Vadito group at Cerro Colorado contain a mineral 

assemblage of garnet – quartz – plagioclase – biotite – muscovite – staurolite – 

tourmaline +/- sillimanite, ilmenite and hematite (see Table 2). 

Garnet bearing samples were collected from different stratigraphic levels 

of the metarhyolite in the Cerro Colorado area: garnet-staurolite schist (11TU-

10C) was collected from high topography, and garnet-sillimanite schist (11TU-

9C) was collected from roughly 200 m below. Fabrics in the area are variably 

defined, but are locally dominated by S2, a roughly southwest-northeast striking 

fabric that dips moderately to the south. Where notable, S3, a generally 

subvertical, east-west striking crenulation, is defined by oriented clots of 

sillimanite (Figure 3-4c). 

 In the Cerro Colorado area, there are several key textures and phase relationships 

that help to define the local P/T path. First, pseudomorphs of sillimanite after kyanite 

imply that the phase transition from kyanite to sillimanite occurred above the 

aluminosilicate triple-point. Barnhart et al. (2012) identified two key reaction textures 

that place important constraints on the P/T path of metamorphism in the southern Tusas 

Mountains at Cerro Colorado. Both reactions record decompression at temperatures 

between 550 and 610º C. The first reaction texture is halos of sillimanite around garnet 

representing the breakdown of garnet in the presence of muscovite to form sillimanite 
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and biotite (Figure 3-4c). The second reaction texture is garnet surrounded by a halo of 

inter-fingering biotite, muscovite and staurolite (Figure 3-4d) representing the 

breakdown of garnet in the presence of muscovite to form staurolite and biotite. These 

reactions both occur in samples in the southern Tusas Mountains, but at different crustal 

levels (see Barnhart et al., 2012). Based on these observations, we infer that the peak 

assemblage in these samples includes garnet + quartz + biotite + muscovite + plag + 

tourmaline + staurolite + hematite. The presence of tourmaline in both 11TU-9C and 

11TU-10C prevent construction of meaningful isochemical phase diagrams to 

corroborate P/T estimates. 

 As described by Barnhart et al. (2012), the P/T/t loop in the Cerro 

Colorado area loop begins in the kyanite stability field, crosses the staurolite-in 

reaction and enters the sillimanite stability field (Figure 3-5). This prograde 

metamorphism is then followed by decompression in the sillimanite stability field 

is recorded by two garnet breakdown reactions, producing staurolite and 

sillimanite (Barnhart et al., 2012; see Figure 3-5).  

Picuris Mountains 

 The mineralogy and metamorphism in the Picuris Mountains has been the subject 

of much study (e.g. Montgomery, 1953; Long, 1974; Holdaway, 1978; Bell, 1985; 

Grambling and Williams, 1985; Bauer, 1988, 1993; Holdaway and Goodge, 1990; Bauer 

and Kelson, 1997; Williams et al., 1999; Daniel and Pyle, 2006). One reason for this is 

that it has been suggested that the northern Picuris Mountains contain triple-point mineral 

assemblages (Grambling and Williams, 1985; Holdaway and Goodge, 1990; Daniel and 

Pyle, 2006). The metamorphic P/T conditions in the area for these assemblages, based on 
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aluminosilicate phase relationships and garnet-biotite geothermometry, have been 

estimated to be roughly 525º C and 4.1 kbar (Grambling and Williams, 1985; Holdaway 

and Goodge, 1990; Daniel and Pyle, 2006). 

 In the central Picuris Mountains, garnet-bearing schists in both he Hondo and 

Vadito groups and aluminosilicate-bearing quartzites in the Hondo group are present. 

Mineralogically, these schists contain garnet + quartz + biotite + chlorite + muscovite + 

staurolite + ilmenite, whereas quartzites contain quartz + muscovite + aluminosilicate +/- 

chloritoid. Holdaway (1978) used experimentally derived equilibria to estimate the 

conditions of metamorphism at 3.7 kbar and ~530ºC. Furthermore, through his study, 

Holdaway (1978) showed that the juxtaposition of chloritoid bearing assemblages with 

staurolite bearing assemblages requires that the partial pressure of water in the staurolite 

samples be 0.88 or less in order to have chloritoid and staurolite bearing rocks 

interbedded. 

 In the central Picuris Mountains, samples were collected from both the 

Hondo and Vadito groups. The sample collected from the Hondo near Copper 

Hill, 11PIC-3, has a mineral assemblage of garnet – quartz – biotite – chlorite – 

muscovite – staurolite – ilmenite. X-ray mapping and compositional profiles 

(Figure 3-7, Figure 3-8) for 11PIC-3 show typical compositional growth patterns 

(e.g. Hollister, 1966), with the exception of Ca content, which shows irregular, 

patchy zoning with relatively small variation. Based on the findings of Chernoff 

and Carlson (1997), we suggest that this irregular zoning does not reflection a 

rock-wide event. This sample was collected in the vicinity of two plutons: the 

1673 Ma Rana pluton and the ~1435 Ma Peñasco pluton. Locally, andalusite is 
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the stable aluminosilicate, although it is not present in the sampled schist of 

11PIC-3. Sillimanite also occurs in the contact aureole of the Peñasco pluton. 

Another set of samples, ET-3 and ET-4 were collected from the Ortega Formation 

in the vicinity of the Hondo syncline. These samples are aluminum-rich quartzites 

with an assemblage of andalusite, kyanite, quartz, muscovite and chloritoid. 

Andalusite grains overgrow kyanite and appear in equilibrium with chloritoid, 

muscovite and quartz.  
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Figure 3-7: Electron microprobe X-ray element intensity maps for a garnet in the Picuris Mountains. Color 
corresponds to the amount of the measured element present, with warm colors corresponding to higher 
concentrations. Transect line A-A’ represents the quantitative line scan shown in Figure 3-8. 
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Figure 3-8: A compositional garnet profile across a garnet from sample 11PIC-3. X-ray maps for the same 
garnet are shown in Figure 3-7. 
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 Limited evidence of deformation is recorded in the samples collected in 

the central Picuris. Although three generations of fabrics have been reported in 

the region (e.g. Daniel and Pyle, 2006), the dominant fabric observed in our 

samples from the central Picuris Mountains is defined by a matrix of aligned 

micas, representing S1 (Figure 3-4e). Little evidence is present for S2 or S3 in 

these samples, other than the deflection of the fabric around garnets, implying a 

post-fabric and post-garnet growth episode of deformation. 

 In the central Picuris Mountains, several key reaction textures and phase 

relationships lend insight into the path of metamorphism. The first important 

texture is found in sample ET-3, collected from the Ortega formation near the 

Hondo snycline, where poikilitic andalusite grains preserve inclusions of kyanite 

(Figure 3-4f). This texture definitively shows that, locally, kyanite was the 

earliest aluminosilicate. Several textures are critical to identifying the peak 

assemblage of sample 11PIC-3. First, the presence of staurolite in sample 11PIC-

3 implies that the sample crossed the staurolite-in reaction where staurolite and 

biotite are grown at the expense of chlorite and garnet in the presence of 

muscovite (Figure 3-9). Second, garnet cored by quartz and chlorite, provides 

evidence that one garnet forming reaction involved the breakdown of chlorite in 

the presence of quartz. Based on these textural observations, the inferred peak 

assemblage of sample 11PIC-3 includes garnet, quartz, biotite, muscovite, 

staurolite and ilmenite. A texture from another sample, 11PIC-3C, collected from 

the same outcrop, also bears an important texture, where garnets are present as 



 63

inclusions in staurolite (Figure 3-4g), implying that garnet growth occurred prior 

to staurolite growth and was likely involved in staurolite growth. In this same 

sample, chlorite is present as a fabric forming mineral, and is overgrown by 

biotite. This texture is indicative of a reaction such as chlorite and garnet 

producing staurolite and biotite.  
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Figure 3-9: A summary of important reactions across the Picuris Mountains. Arrow 1 refers to a texture 
observed in the Ortega Quartzite near Hondo syncline, which preserves andalusite overgrowing kyanite in 
the presence of chloritoid. Arrow 2 refers to a texture observed in the central Picuris, where garnets are 
overgrown by staurolite and biotite. Shown with the heavily weighted gray arrow is the P/T path for the 
northern Picuris determined by Daniel and Pyle (2006) for rocks with all three aluminosilicates. Shown in 
dark gray is the P/T path determined by reaction textures in the central Picuris. Finally, in light gray is the 
P/T path reported by Williams et al. (1999) for the southern Picuris. Reactions curves are taken from 
Pattison (1992) and Pattison et al. (2002). The ctd reaction assumes an oxidation state at the hematite-
magnetite buffer. The aluminosilicate triple point of Holdaway (1971) is shown with a dashed line.
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 In the northern Picuris Mountains, the presence of andalusite after 

sillimanite after kyanite provides the constraint that prograde metamorphism 

passed above the triple point (Daniel and Pyle, 2006). It is of note that the 

retrograde portion of paths in both the Tusas Mountains and Northern Picuris 

Mountains passes near the aluminosilicate triple-point and begin at vastly 

different crustal depths: as deep as 20 km in the central Tusas Mountains and as 

shallow as 12 km depth in the Picuris Mountains. 

 Comparison of the observed textures in sample 11PIC-3 with an isochemical 

phase diagram made for the sample is again useful in explaining the textures described 

above as well as the P/T/t trajectory of metamorphism in the central Picuris Mountains. 

The peak assemblage as determined above is stable over a range of pressures from ~3 to 

7 kbar, and a range of temperatures from ~490 to 560ºC (Figure 3-10). However, 

because andalusite is the stable aluminosilicate, this P/T range is tightly constrained to a 

range of pressures between ~3 to 3.5 kbar and a temperature range between ~490 and 

520ºC (Figure 3-10). 
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Figure 3-10: Isochemical phase diagram for sample 11PIC-3 made using the internally consistent database 
of Berman (1988) and a water activity of 0.7 (after Holdaway, 1978). The peak equilibrium assemblage is 
shaded in gray. Peak temperature for the garnet rim was calculated using winTWQ (Berman, 1988), shown 
with a dashed black line. Mineral compositions used for this analysis are shown in Table 4. Aluminosilicate 
stability fields are shown with the heavily weighted solid line. The P/T/t loop of Daniel and Pyle (2006) is 
shown with the dark gray arrow. The equilibrium assemblage of numbered stability fields is provided in 
Table 5. 
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Discussion 

 From the work of Aronoff et al. (2012), Daniel and Pyle (2006), and Jones 

et al. (2011), it is clear that high-grade metamorphism in the Tusas and Picuris 

Mountains occurred between 1460 and 1390 Ma. The absolute timing of the onset 

of amphibolite facies metamorphism is well constrained through multiple 

geocrhonologic dating techniques including the dating of metamorphic monazite 

(Daniel and Pyle, 2006), detrital zircons associated with pre-metamorphism 

sedimentary deposition (Jones et al., 2011), and dating of garnet growth (Aronoff 

et al., 2012). However, the tectonic environment which produced this 

metamorphism has remained enigmatic. 

 By combining the petrologic and isochemical phase diagram observations 

in both the Tusas and Picuris Mountains, we show that metamorphism in both the 

Tusas and Picuris Mountains followed clockwise P/T/t trajectories. In the Big 

Rock area of the central Tusas Mountains, metamorphism remained in the kyanite 

stability field, locally crossing into stability field of staurolite + kyanite reaching 

pressure of ~6.5 kbar and temperatures of at most ~570ºC (Figure 3-5). Further to 

the south in the Tusas Mountains at Cerro Colorado, Barnhart et al. (2012) show 

that metamorphism reached higher temperatures of ~610ºC at pressures of 

between ~4 to 6 kbar, crossing into the sillimanite stability field before 

decompressing with the breakdown of garnet (Figure 3-5). Moving to the south 

and east, we show that the P/T/t trajectory in the southern Picuris Mountains 
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reached peak metamorphism at P/T conditions of ~4 kbar and at most 550ºC.  

 The work in this paper supports the hypothesis put forward by Aronoff et al. 

(2012) and much of Williams et al. (1999). The clockwise P/T/t trajectories determined 

by the combination of petrogenetic grid and isochemical phase diagrams is consistent 

with the models of the thermal history of a fold and thrust belt during progressive loading 

and burial (e.g. England et al., 1984; Beaumont et al., 2001). This result is in keeping 

with north-vergent thrusting during orogenesis, as proposed by Williams et al. (1999) and 

Aronoff et al. (2012).  

 As other works have asserted, regional amphibolite facies metamorphism is 

associated with the orogenic event that formed the observed thrust faults, with garnet 

growth occurring variably between D1 and D3 fabric forming events (e.g. Williams et al., 

1999; Aronoff et al., 2012). The duration of this metamorphism has been limited to 

between ~1450 and 1400 Ma based on Lu/Hf garnet growth ages (Aronoff et al., 2012). 

Several observations about the distribution of aluminosilicate isograds help to further 

refine our understanding of the timing of deformation relative to metamorphism. First, 

the compilation of mapped metamorphic isograds presented here for both mountain 

ranges after the removal of post-Proterozoic deformation (Karlstrom and Daniel, 1993; 

Cather et al., 2006; Jones et al., 2011) shows that metamorphic isograds overprint fault 

boundaries (Figure 3-1). The trajectory of metamorphism in each region is different; 

however, these continuous isograds suggest that metamorphism did not conclude until 

after thrusting ceased. Second, the gently dipping nature of these isograds suggests, as 

Grambling (1981) pointed out, that isotherms were shallowly dipping, which implies that 

these tectonic blocks reached a local thermal equilibrium. Finally, the metamorphic 
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isograds show a map-scale gradient in P/T conditions. In the northern Tusas, textures 

record increasing temperatures across the pyrophyllite to kyanite and kyanite to 

andalusite isograds (Figure 3-11; Williams et al., 1999). Moving southward in the Tusas 

Mountains, the kyanite to sillimanite transition is crossed, indicating an increase in both 

pressure and temperature to the south (Figure 3-11). In the northern Picuris, 

aluminosilicate phase relationships record a P/T loop that passes above the 

aluminosilicate triple point (Figure 3-11; Daniel and Pyle, 2006). Directly south of this 

region, metamorphic conditions that pass through the triple point, as inferred by 

Grambling (1981) based on assemblages that contain all three aluminosilicates (Figure 

3-11). Moving south from here in the Picuris, metamorphism passes below the triple 

point, going from kyanite to andalusite at pressures lower than those inferred in the 

northern Picuris. Continuing eastward, into the Rio Mora uplift and Rincon Range, 

crossing from the kyanite to sillimanite stability field represents metamorphism at 

pressures above the aluminosilicate triple point, with peak metamorphism crossing the 

second sillimanite isograd, locally producing migmitites (Figure 3-11; Read et al., 1999). 

One other isograd must be noted: the northeast-southwest striking isograd between the 

Picuris and Rio Mora areas, where sillimanite is to the northwest and kyanite is to the 

southeast. Although this appears to be contradictory to other isograds on the map, it can 

be explained by topography: lower topographic levels experienced higher pressures, the 

kyanite stability field, while higher topographic levels experienced lower pressures, 

where sillimanite would be stable. 
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Figure 3-11: A tracing of the reconstructed Proterozoic belt in Northern New Mexico. Aluminosilicate 
isograds are shown with heavy dashed lines. The color of these isograds is used to correlate the transition 
with related arrows on inlaid schematic PT diagrams (A, B, C). In the schematic PT diagram (A), the dark 
red arrow represents the transitions in the northern Tusas from pyrophyllite to kyanite (Williams et al., 
1999), and kyanite to andalusite. The orange arrow in (A) represents the transition in the south-central 
Tusas from kyanite to sillimanite. In the schematic PT diagram (B), the blue arrow represents the transition 
in the central Picuris from kyanite to andalusite. The green arrow represents metamorphism passing 
through the aluminosilicate triple point. In the same schematic PT diagram, the black arrow with dashed 
lines represents the PT path determined for the northern Picuris by Daniel and Pyle (2006). Finally, in the 
area of the Rio Mora uplift in the east, the schematic PT diagram (C), the light gray arrow corresponds to 
the transition from kyanite to sillimanite, while the dark gray arrow corresponds to the second sillimanite 
isograd, producing sillimanite + potassium feldspar assemblages (Read et al., 1999).
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 The gradient in metamorphic grade described above shows a continuous variation 

in pressure and temperature conditions across the reconstructed orogenic belt. The 

mapped isograds are relatively flat lying (Grambling 1981), and they also overprint 

Proterozoic deformation associated with the metamorphic event. Furthermore, P/T/ t 

loops for each region, summarized in Figure 3-12 show the same P/T/t trajectory, 

characteristic of progressive loading during the formation of a fold and thrust belt 

(England et al., 1984; Beaumont et al., 2001). These observations strongly support the 

tectonic model proposed for this orogenic belt by Aronoff et al. (2012). 



 72

 

Figure 3-12: Left - A summary of all P/T/t curves from the central Tusas Mountains (blue), the southern 
Tusas Mountains (after Barnhart et al., 2012; red), the southern Picuris (after Williams et al., 1999; black), 
the central Picuris (Gray), and the northern Picuris (after Daniel and Pyle, 2006; green). Right - An outline 
of the Tusas and Picuris Mountain exposures with subsequent strike-slip deformation removed (after 
Karlstrom and Daniel, 1993; Cather et al., 2006; Jones et al., 2011). Here, sample locations are shown with 
yellow stars. Colored regions correspond to the color of the P/T/t path shown on the left. 
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Conclusions 

 Understanding the metamorphic history in the Tusas and Picuris 

Mountains is critical to the tectonic history of North America. In this paper, we 

present results that show that metamorphism in both the Tusas and the Picuris 

Mountains followed clockwise metamorphic trajectories consistent with a 

progressively loaded fold and thrust belt. Furthermore, we show that the variation 

in metamorphic grade moving from northwest to southeast in the orogenic belt is 

consistent with progressive north-vergent thrusting. Moving northward, tectonic 

blocks were uplifted from increasing depths, left to cool at the same crustal level 

after reaching peak metamorphic conditions. Compiled aluminosilicate isograds 

across the orogenic belt further emphasize the P/T gradient between east and 

west, supporting a petrogenesis based in a single metamorphic event. 

 Although several outstanding questions remain, such as the origin of the 

elevated geotherm in the region, our results are significant. Clockwise P/T/t paths 

throughout the orogenic belt highlight that this regional metamorphism is 

consistent with a single, contractional orogenic event. Furthermore, unbroken 

metamorphic isograds support the assertion that this metamorphism was 

associated exclusively with a single orogenic event. Finally, these results show 

that the triple point terranes found therein represent a single progressive 

metamorphic event. 
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Tables: 

 

 11PIC-3 11TU-4B 
 SiO2  64.35  60.76  
 TiO2  0.810 0.544 
 Al2O3  14.05  19.22  
 FeOtot 14.95  7.55  
 MnO  2.205 0.138 
 MgO  1.57  2.15  
 CaO  0.18  0.41  
 Na2O  0.14  0.48  
 K2O  1.29  5.25  
 Sum 99.55847 96.49939 
LOI (%) -0.04  3.13  

Table 3-1: XRF analysis, conducted at Washington State University, of both deformed and weakly 
deformed samples. Major elements are shown as non-normalized weight per cents. 
 

  grt qtz plag bt chl ctd musc marg staur sill and ky tourm epidote
11TU4-
B X X   X X   X X X         X 
11TU9-
C X X X X     X   X X     X   
11TU-
10C X X X X     X   X X     X   
11PIC-3 X X   X X   X   X           
ET-4   X       X X       X X     
ET-3   X       X X       X X     

Table 3-2: A list of minerals present in samples collected in the Tusas and Picuris Mountains. 
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Numb
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1 X X X X X  X X X        
2 X X X X X  X  X X       
3 X X X X X  X  X        
4 X X X  X  X  X  X      
5 X X X  X  X  X   X     
6 X X X  X  X  X     X   
7  X X  X  X  X     X X  
8  X X  X  X  X      X X 
9  X X X X  X  X      X X 

10  X X X X  X  X      X  
11 X X X X X  X  X      X  
12  X X X X  X  X X       
13  X X X X  X X X        
14  X X X X X X X X        
15  X X X X X X  X X       
16  X X X X  X  X X      X 
17  X X  X  X  X X      X 
18  X X  X  X  X       X 
19  X X  X  X  X     X   
20  X X  X  X  X    X    
21 X X X  X  X  X    X    

Table 3-3: Minerals present in each equilibrium assemblage field for the isochemical phase diagram of 
sample 11TU-4B (see Figure 3-6). 
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  11PIC-3 
  Grt Musc Chl Biot Staur 
  Rim Core     

 Na2O  0.05 0.06 1.17 0.1 0.23 0.04 
 MgO  2.59 1.98 0.46 14.08 9.79 1.49 
 MnO  6.11 6.39 0.01 0.15 0.08 0.26 
 CaO  0.21 0.68 0.03 0.04 0.04 0 
 SiO2  37.5 38.25 46.9 24.76 35.68 29.77 
 Al2O3  21.45 20.74 34.76 23.61 19.49 52.32 
 FeOtot  34.4 33.72 0.67 25.03 18.91 13.27 
 K2O  0.01 0.02 9.2 0.07 8.72 0.01 

W
ei

gh
t P

er
ce

nt
 

 TiO2  0.02 0.07 0.27 0.08 1.53 0.45 
  Total  102.34 101.91 93.47 87.93 94.47 97.61 
O in 
unit  
formula  12 12 22 28 22 48 

 Na2O  0.01 0.01 0.3 0.04 0.07 0.02 
 MgO  0.31 0.23 0.09 4.4 2.22 0.64 
 MnO  0.41 0.43 0 0.03 0.01 0.07 
 CaO  0.02 0.06 0 0.01 0.01 0 
 SiO2  2.98 3.05 6.29 5.19 5.44 8.49 
 Al2O3  2.01 1.95 5.51 5.83 3.5 17.92 
 FeO  2.29 2.25 0.08 4.39 2.41 3.22 
 K2O  0 0 1.58 0.02 1.69 0 C

at
io

ns
 in

 u
ni

t f
or

m
ul

a 

 TiO2  0 0 0.03 0.01 0.17 0.1 
Table 3-4: Microprobe WDS mineral analyses and structural formulas for samples 11TU-8A, 11TU-4B, 
and 11PIC-3. Analyses for matrix minerals are presented here. Analyses were conducted on a JEOL8900 
microprobe at Cornell University using an accelerating voltage of 15 KeV, a probe current of 20 nA, and a 
beam diameter of 10 µm for micas and 2 µm for other minerals. A minimum of 10 analyses were averaged 
for each mineral to produce an average mineral composition for the sample. 
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Number Grt Musc Parag Chl Ctd Rt Qtz Ilm Bt Staur Crd Plag 
1 X X X X X X X      
2 X X X X X  X X     
3 X X  X X  X X X    
4 X X   X  X X X    
5 X X  X   X X  X   
6 X X     X  X  X  
7 X X     X  X  X X 
8 X X  X X X X      

Table 3-5: Minerals present in each equilibrium assemblage field for the isochemical phase diagram of 
sample 11PIC-3 (see Figure 3-10).
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4. Tectonic implications of Proterozoic U/Pb 

crystallization ages in the southwestern United States 

 

Abstract 

 The recent identification of the ~1.4 Ga Picuris Orogeny in northern New Mexico 

requires a reexamination and reinterpretation of pre-existing geochronolgical data. Here, 

we present a compilation of previously published U/Pb concordia zircon ages from across 

the southwest United States. Using this dataset, we evaluate spatial trends in the 

distribution of plutonic ages within the reference frame of the Picuris Orogeny. An 

estimate of the geographic location and extent of the Picuris Orogeny is made using a 

combination of detrital zircon ages, Lu/Hf garnet geochronology, and Ar/Ar cooling ages. 

The detrital zircon ages identified regions that experienced deposition and subsequent 

burial prior to ~1.45 Ga, whereas garnet ages and Ar cooling ages identified regions that 

experienced high grade metamorphism at ~1.4 Ga. Using this estimated location for the 

orogeny, the spatial distribution of U/Pb zircon ages is reevaluated. 

 Results of this study show several important characteristics of Proterozoic 

plutonism in the southwest US. First, as has been previously documented, there is a ~100 

Ma gap in plutonism between 1600 and 1500 Ma in the region. Second, the dataset of 

ages over 1600 Ma shows that plutons young from northwest to the southeast, consistent 

with magamatism during the Yavapai and Mazatzal orogenies. Analysis of this trend 

shows a discontinuity in the trend that coincides with the southern edge of the Yavapai-
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Mazatzal transition zone. This offset results in two populations, each with a similar 

relationship between age and location, but with the population of data to the southeast of 

the orogeny having a regression intercept that is 9 Ma younger than the population to the 

northwest. Third, the data set of ages between 1400 and 1500 Ma shows a spatial trend in 

plutonic age where age increases to the southeast. 

 The implication of these spatial trends in plutonic age across the southwest have 

bearing on our understanding of the Proterozoic tectonic history of the southwest, and the 

origins of the enigmatic ~1.4 Ga A-type magmatic episode. First, the trends recorded by 

plutons over 1600 Ma are indicative of arc migration, consistent with previously reported 

rates for slab roll back. Second, the discontinuity in this trend that coincides with the 

northwestern extent of the Picuris Orogeny may record localized shortening along the 

margin of the orogen. Third, the trend in pluton ages between 1400 and 1500 Ma is not 

consistent with arc migration; instead, plutonism occurred relatively contemporaneously 

across the region, yielding a trend with a very shallow slope. The A-type chemical 

composition of these plutons, reports of crustal contamination in some locales, as well as 

new evidence for crustal thickening during the Picuris Orogeny, is consistent with melt 

production by crustal over-thickening followed by thermal relaxation and crustal melting. 

Introduction 

 The tectonic evolution of a continent is the result of complex interactions between 

deformation, metamorphism, plutonism and sedimentation. Understanding how these 

processes work to shape an evolving continent is a central goal of the geologic 

community. In the case of North America, it has been generally accepted that between 2 
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and 1 Ga, continental growth involved lateral accretion of juvenile island arcs to the 

southern margin of Laurentia, producing a swath of crust stretching roughly 1000 km 

across strike (Karlstrom et al., 2004 and references therein). Accretion began in the north 

with the Trans-Hudson and Penokean orogenies between 1.9 and 1.8 Ga (Hoffman, 

1989), followed by subsequent accretion, including the Yavapai orogeny from 1.8 to 1.7 

Ga and the Mazatzal orogeny from 1.7 to 1.6 Ga (Figure 4-1; Silver et al., 1977; Van 

Schmus and Bickford, 1981; Nelson and DePaolo, 1985; Bennett and DePaolo, 1987; 

Van Schmus et al., 1987, 1993; Karlstrom and Bowring, 1993; Magnani et al., 2004). 

Punctuating these periods of continental growth are periods of voluminous plutonism 

during the Paleoproterozoic and Mesoproterozoic (Figure 4-2). 
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Figure 4-1: A schematic map of the southwest United States showing the traditionally accepted tectonic 
boundaries after Shaw and Karlstrom (1999), beginning with the Mojave in the northwest between 2.0 and 
1.8 Ga, and ending with the Grenville between 1.3 and 1.0 Ga. Heavy black lines represent deformation 
fronts between terranes. 
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Figure 4-2: A schematic geologic map of the southwest US. Plutons are shown in grayscale, with darker 
colors corresponding to younger plutons. 
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 In the Four Corners region of the southwestern United States, distinct Paleo- and 

Mesoproterozic magmatic events are separated by a ~100 Ma period of magmatic 

quiescence between 1600 and 1500 Ma. The Mesoproterozic plutons perforate the 

southwest United States, comprising as much as 20 to 30% of the exposed basement in 

the region (Anderson, 1983), and have largely been viewed as a single magmatic event 

stretching from 1480 Ma to 1350 Ma. Understanding the origins of the Mesoproterozic 

plutons and their relation to the tectonic evolution of Laurentia is central to developing a 

model for continental growth and rejuvenation. The origin of the Mesoproterozic suite of 

plutons remains enigmatic. Geochemical studies infer a hot spot or extensional tectonic 

setting (e.g. Loiselle and Wones, 1979; Anderson, 1983; Frost and Frost, 2011). In 

contrast, structural studies have inferred a compressional stress field, with varying, but 

locally intense deformation associated with 1.4 Ga plutons (e.g. Nyman et al., 1994; 

Kirby et al., 1995; Duebendorfer and Christensen, 1995; Karlstrom and Williams, 1995; 

Nyman et al., 1997; Ferguson et al., 2004). 

 Recently, the tectonic history of Proterozoic Laurentia was revised with the 

identification of the Picuris Orogeny (referred to as PO throughout the remainder of this 

chapter) in northern New Mexico at 1.4 Ga (Daniel and Pyle, 2006; Daniel and Jones, 

2012; Aronoff et al., 2012; Daniel et al., in press). The timing of this newly recognized 

orogenic event was constrained using detrital zircon, monazite and Lu/Hf garnet 

geochronology. This newly identified tectonic event is a previously unrecognized 

contractional tectonic event in southwestern North America. In this paper, we revisit 

previously published geochronologic datasets with this new geologic context. Analysis of 

the spatial distribution of dated plutons shows two significant trends in ages with respect 
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to the orientation of the Picuris Orogeny. Using the results of this analysis in combination 

with published detrital zircon and Ar/Ar cooling age studies, we constrain the location of 

the Picuris Orogeny and further describe the nature of the orogenic event. Furthermore, 

we use this new tectonic setting and trends observed in Mesoproterozic plutons to further 

the discussion of the origin of these igneous bodies, proposing an alternative model for 

their melt generation. 

Geologic Background 

Traditional tectonic evolution of Proterozoic North America 

 The accepted model for the growth of Laurentia during the Proterozoic involves 

repeated accretion of off-board terranes to the southern margin of the Archean Wyoming 

craton. Sm-Nd isotopic studies of these terranes have shown that they are first generation, 

mantle-derived juvenile crustal additions (e.g. Nelson and De Paolo, 1985). Accretion 

began with the Mojave province, followed by the Yavapai between 1.8 and 1.7 Ga and 

the Mazatzal between 1.7 and 1.6 Ga. After 500 Ma of relative quiescence, a final stage 

of accretion along the southern margin of this continent occurred during the Grenville 

orogeny. This long-lived period of continental growth produced a ~1000 km wide swath 

of juvenile crust stretching from Wyoming to Mexico (Karlstrom et al., 2004 and 

references therein). Mesoproterozic Plutons are viewed as being intraplate, possibly 

related to convergence along the proto-Grenville plate margin. There, chemistry of the 

plutons and lack of obvious chemical or age trends has made their genesis enigmatic. 
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Recent identification of the Picuris Orogeny 

 Although the tectonic history described above has generally been accept, details 

remain controversial. For over thirty years, the tectonic history of the Four Corners 

region between 1.7 and 1.4 Ga has been disputed. In northern New Mexico and southern 

Colorado, wide-spread regional amphibolite facies metamorphism has been explained by 

competing tectonic models (e.g. Grambling, 1981; Karlstrom and Williams, 

1996;Williams et al., 1999; Daniel and Pyle, 2006; Aronoff et al., 2012; Hunter et al., 

2012). One of the most widely cited tectonic models was proposed by Karlstrom and 

Williams (1996). In northern New Mexico, most deformation and metamorphism 

occurred during the Mazatzal orogeney between ~1.7 and 1.6 Ga. Rocks of northern New 

Mexico then cooled to a steady state geotherm and remained in the mid-crust. The region 

was then reheated during emplacement of ca. 1.4 Ga plutons. Deformation associated 

with Mesoproterozic plutons is attributed to far field stresses affecting the thermally 

softened aureoles of the plutons. In contrast, Daniel and Pyle (2006) showed that in the 

Picuris Mountains of northern New Mexico there is only evidence for only one 

metamorphic event between 1440 and 1390 Ma, based on monazite geochronology. This 

was a view point championed earlier by Grambling (1981) and Grambling and Dallmeyer 

(1993), although these authors favored late orogenic extension for the tectonic setting.   

 The evidence for the contrary model, the Picuris Orogeny, is outlined here.  First, 

40Ar/39Ar ages from northern New Mexico have ages younger than 1.4 Ga (e.g. 

Grambling and Dallmeyer, 1993). In a comprehensive study of Ar cooling ages, Shaw et 

al., 2005 showed that most of northern New Mexico and part of southeastern Colorado 
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experienced temperatures over 500 o C until ~1.4 Ga. Shaw et al., 2005 argued that this 

amphibolite facies metamorphic event was due to heat advection by 1.4 Ga plutons.  

Second, metamorphic monazite ages indicate metamorphic mineral growth in the 

amphibolite facies between 1430 and 1400 Ma (Pedrick et al., 1998; Daniel and Pyle, 

2006; Shaw et al., 2005). In an integrated microstructural and geochronologic study, 

Daniel and Pyle (2006) dated monazite inclusions Al2SiO5 polymorphs from the northern 

Picuris Mountains. In this study, the authors showed that the earliest aluminosilicate, 

lineated kyanite, contained monazite inclusions with concordant U/Pb ages of 1434 +/- 

12 Ma. They also reported concordant and near concordant monazite ages that extended 

to 1390 +/- 20 Ma. They argued that these ages were consistent with a single 

metamorphic event between 1434 Ma and 1390 Ma in the Picuris Mountains.    

Third, Jones et al. (2011) analyzed detrital zircons and found that deposition of 

the Marquenas conglomerate in the southern Picuris Mountains of northern New Mexico 

occurred until 1460 Ma based on statically significant populations detrital zircon. This 

requires that the Marquenas formation was being supplied with detritus at the surface of 

the earth as late as ~1460 Ma. A similar detrital zircon study published by Doe et al. 

(2012) showed that the Yankee Joe and Black Jack basins of Arizona also experienced 

sedimentation until ~1450 Ma. Daniel et al. (in press) have extended this work, showing 

that the Piedra Lumbre schist and Pilar Phyllite both have protolith ages younger than 

1480 Ma, again requiring sedimentation of metamorphic protoliths just prior to 

metamorphism.  
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Fourth and finally, Aronoff et al. (2012) used Lu/Hf isotopic dating of garnet to 

constrain the timing of the onset of metamorphism in both the Picuris and Tusas 

Mountains to have occurred after 1456 Ma. This is a particularly significant result 

because these garnet ages overlap detrital zircon ages, requiring metamorphism to have 

occurred with a few millions years of deposition of the Marquenas formation.  Daniel et 

al., (in press) argued based on these lines of evidence that northern New Mexico 

experienced major contractional deformation between 1460 and 1400, and termed this the 

Picuris Orogeny. 

Plutonism in the Mesoproterozoic 

 Overlapping in time with the Picuris Orogeny, ubiquitous plutonism was 

occurring, eventually contributing an estimated 20% to 30% of the crust across the region 

(Anderson, 1983). Plutons in the Four Corners region have crystallization ages spanning 

from older than 1900 Ma, down to 1100 Ma and younger. However, three periods of 

particularly voluminous plutonism occurred between 1800 and 1700 Ma, again between 

1700 and 1600 Ma, and again between 1500 and 1400 Ma. Furthermore, the chemistry of 

plutons from the third, younger pulse of magmatism is largely A-type (Loiselle and 

Wones, 1979; Anderson, 1983), or Ferroan (Frost and Frost, 2011) granites, which are 

traditionally associated with rifting and extensional settings. However, structures in and 

around 1500 to 1400 Ma plutons have been documented as showing contractional or 

transpressional fabrics (e.g. Kirby et al., 1994; Nyman et al., 1994; Karlstrom and 

Williams, 1995; Nyman et al., 1997; Amato et al., 2011). These contradicting lines of 

evidence have led to significant controversy over the origins of this massive pulse of 

magmatism. Further complicating the picture, A-type plutonism spanning from 1500 to 
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1350 Ma has been documented from California, through the US, into Labrador 

(Anderson, 1983). 

 Explanations for the conflicting chemical and structural characteristics of these 

plutons have produced numerous possible models of their origins (e.g. Anderson, 1983; 

Clemens et al., 1986; Foley et al., 1987; Landenberger and Collins, 1996; Anderson and 

Bender 1989; Frost and Frost, 1997; Duchesne et al., 1999; Vigneresse, 2005). These 

explanations have ranged from delamination of over thickened crust (e.g. Thompson, 

1999), to thermal instability and an inverse plume below a super continent (e.g. 

Vigneresse, 2005). Previously, no spatial trends have been identified to lend insight into 

how these plutons fit into the evolutionary story of Laurentia (Anderson, 1983). Although 

a significant amount of work and body of knowledge exists regarding these plutons, how 

they relate to the tectonic history of Laurentia remains largely ambiguous, particularly in 

light of a contemporaneous orogenic event at ~1.4 Ga. 

Methods 

 In order to evaluate the spatial distribution of plutons through time across the 

southwest United States, we plot reported U/Pb zircon crystallization ages, omitting 

inherited components and xenolithic samples, on a map of the southwest United States 

(Figure 4-2). The data, including the location, age, error, and lithology is presented in 

Appendix 1. For the references used to construct the database, see Appendix 2.  

 We plotted the U/Pb crystallization ages against distance from the southern extent 

of the Yavapai-Mazatzal transition zone as defined by Karlstrom and Daniel (1993). The 

southern extent of the transition zone coincides well with the distribution of 
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Mesoproterozic basins identified by detrital zircon studies, 40Ar/39Ar cooling age data, 

and distribution of Lu/Hf garnet ages indicate that the PO affected regions to the south 

and east of this boundary (Figure 4-3). The northern extent of the PO is best defined in 

northern New Mexico and southern Colorado, and is constrained in Arizona only by the 

Yankee Joe-Black Jack basins, which require sedimentation, burial and metamorphism 

post 1450 Ma (Doe et al., 2012).    

 The across-strike distance between each sample and the samples age was plotted 

by minimizing the distance between each point and the reference line using the haversine 

distance, calculated using Python (see Appendix 3 for code). The margin is slightly 

curvilinear, so for the purposes of simplifying the computing process, it was 

approximated as a series of linear segments. The minimum distance to each of these 

segments was calculated for each point, and from these, the global minimum distance to 

the deformation front was selected for each sample. 

 Regression lines for the data were determined using the Regression function in the 

data analysis package of Microsoft Excel. A P-value of 0.05 was used as a test of 

statistical significance, with P-values less than or equal to 0.05 being statistically 

significant. Pearson Correlation Coefficients (PCC) were also used in order to evaluate 

the probability that X, in this case distance, and Y, in this case age, are related. A PCC 

value of +/-0.5 or greater is considered a strong correlation between variables, with +/-0.4 

being moderately strong (Rodgers and Nicewander, 1988; Buda and Jarynowski, 2010). 

A p value (referred to as a PCCp) for each PCC is also calculated, and represents the 

statistical significance of the correlation, with values between 0.05 and 0 being 

statistically significant (Rodgers and Nicewander, 1988; Buda and Jarynowski, 2010). 
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Error was not accounted for in this statistical analysis because such a study would require 

a rigorous statistical methodology that is beyond the scope of this dissertation. 
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Figure 4-3: A schematic map of the southwest US showing constraints used to identify the approximate 
boundary of the Picuris Orogeny. Shaded in gray are Proterozoic basins (after Jones et al., 2011; Doe et al., 
2012), with light gray representing basins over 1.6 Ga in age, and dark gray representing basins of ages 
between 1.4 and 1.45 Ga. The area shaded with a stippled pattern is inferred to have experienced 
temperatures over 500 C at 1.4 Ga based on Ar/Ar cooling ages (Shaw et al., 1999). Finally, circles colored 
with gray scale represent Lu/Hf garnet ages, with darker colors corresponding to older ages. The dashed 
line is the boundary separating basins over 1.6 Ga, and garnet ages over 1.6 Ga from younger ages, and is 
the estimated location of the Picuris Orogeny. 
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Results 

Older Plutons 

 There are two distinct groups of zircon crystallization ages: igneous bodies older 

than 1600 Ma, and igneous bodies younger than 1500 Ma. These groups are separated by 

a ~100 Ma magmatic gap (Figure 4-4). Fitting a linear regression to the older dataset 

yields a slope of -0.17 Ma/km and an intercept of 1708 km (Figure 4-5). Although there 

is clearly a correlation between age and distance from the PO in this older dataset, it is 

not necessarily the case that these data represent a single trend. Visual inspection of this 

distribution suggests that there may be two distinct populations within this distribution. 

One population defined by ages at distances less than ~0 (i.e. to the northwest) from the 

PO is characterized by a distribution of ages that is uniform above and below the trend 

line. In contrast, at distances greater than ~0 km, there are significantly fewer ages older 

than the regression line, with the vast majority of ages below the regression line (Figure 

4-6). 
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Figure 4-4: A scatter plot showing age [Ma] on the y-axis and distance from the PO [km] on the x-axis for 
378 plutons in the southwest US. Negative distances are to the north and west, and positive distances to the 
south and east. 
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Figure 4-5: A scatter plot showing age [Ma] on the y-axis and distance from the PO [km] on the x-axis for 
plutons of ages over 1600 Ma. Shown dashed in black is the linear regression of the data set, with a slope of 
-0.17 Ma/km and an intercept of 1708 Ma. Negative distances are to the north and west, and positive 
distances to the south and east. 
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Figure 4-6: A scatter plot showing age [Ma] on the y-axis and distance from the PO [km] on the x-axis for 
plutons of ages over 1600 Ma. Shown dashed in black is the linear regression of the data set, with a slope of 
-0.17 Ma/km and an intercept of 1708 Ma. Negative distances are to the north and west, and positive 
distances to the south and east. 
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 In order to test whether or not two distinct trends are present within the dataset, 

we divided the data into two groups: one to the northwest of the potential break in the 

regression line, which will be called population 1 throughout the remainder of the paper, 

and one to the southeast of the regression line, which will be called population 2 

throughout the remainder of the paper. In map view, population one corresponds to all 

ages that are to the northwest of the PO, whereas population 2 corresponds to all samples 

that are to the south east of the PO. We then evaluated the statistical significance of the 

two resulting populations. Without knowing the exact location of the break in the 

regression, we analyzed a range of possible values to locate the boundary between the 

two populations. The cutoff within the dataset of coupled ages and distances from the PO 

was shifted in increments of 5 km between -20 and 20 km (Figure 4-7; Table 1). Linear 

regressions were then run on the resulting pairs of populations. The slopes, intercepts, p-

values and standard errors for these regressions are shown in Table 1. P-values for the 

slopes and intercepts of population 2 indicate that this trend is significant regardless of 

the location of the cutoff. In contrast, P-values for the slopes of population 1 never reach 

significance, while the P-value for the intercept is significant regardless of the cutoff 

location. This unconstrained slope is due to the increasingly large spread in age versus 

distance to the northwest. However, we suggest that these are in fact two distinct trends if 

a cutoff of 15 km is chosen for several reasons. First, the slopes of the two populations 

are not within error. Second, the P-values drop precipitously at a cutoff distance of -5 km. 

Third, the intercepts of the two populations are statistically unique. Finally, these 

observations corroborate a visual assessment of the location of the break between 

populations. Based on these assertions, we identify an approximate cutoff location 
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between the two populations at 15 km. Dividing the dataset of ages and distances from 

the PO into two populations at the cutoff distance of 15 km, population 1 has a slope of -

0.09+/-0.05 Ma/km and a y-intercept of 1716+/-5 Ma, whereas population 2 has a slope 

of -0.17+/-0.02 Ma/km and a y-intercept of 1706+/-5 Ma (Figure 4-8). 
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Figure 4-7: A scatter plot showing age [Ma] on the y-axis and distance from the PO [km] on the x-axis for 
plutons of ages over 1600 Ma. The gray box represents the region of interest across which a potential break 
in trend was identified. 
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Figure 4-8: A scatter plot showing age [Ma] on the y-axis and distance from the PO [km] on the x-axis for 
plutons of ages over 1600 Ma. The dashed black line marks the break in plutonism at 15 km. The solid 
black lines represent the linear regressions for pluton populations one , at distances less than 15 km, and 
two, at distances greater than 15 km from the orogeny. The slope for the regression of population one is -
0.09+/-0.05 Ma/km and the intercept is 1716+/-5 km. The shaded gray regions correspond to the envelope 
of error on each regression. 
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Younger Plutons 

 Looking at the younger dataset, it is clear that there are clusters of ages divided by 

a ~25 Ma gap in age, with plutons between 1400 and 1500 Ma trending younger to the 

southeast, and plutons younger than 1400 Ma showing a large spread in age (Figure 4-9). 

This time period corresponds to the Picuris Orogeny, as constrained by Monazite, Lu/Hf 

garnet and detrital zircon geochronology (Daniel and Pyle, 2006; Aronoff et al., 2012; 

Jones et al., 2011; Doe et al., 2012; Daniel et al., in press). Furthermore, plutons of this 

age are largely of A-type chemistry (e.g. Anderson, 1983). Spatially, plutons of ages 

between 1400 and 1500 Ma have a slope of 0.05 Ma/km and an intercept of 1434 Ma 

when plotted against their distance from the PO. This trend has a PCC of 0.47 and a 

PCCp of 2.6x10-5, implying a moderately strong, statistically significant correlation 

between distance from the PO and age of the pluton.  
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Figure 4-9: A scatter plot showing age [Ma] on the y-axis and distance from the PO [km] on the x-axis for 
78 264 plutons of ages between 1400 and 1500 Ma. Shown dashed in black is the linear regression of the 
data set, with a slope of 0.05 Ma/km and an intercept of 1434 Ma. 
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Discussion 

Spatial Trends 

 By plotting igneous U/Pb zircon crystallization ages against their distance from a 

reference line, we can determine the rate at which magmatism progressed toward or away 

from that line. In the case populations 1 and 2 of the U/Pb ages over 1600 Ma, the slopes 

determined by linear regression correspond to rates of motion of 11 km/Ma and 6 km/Ma 

respectively. The lack of statistical significance for the slope of population one 

underscores the observation that plutonism to the northwest becomes more spatially 

diffuse. For this reason, we do not make any assertions explicitly relying on the change in 

trajectory of these trends across the PO. However, in aggregate, these rates correspond to 

a movement of ~6-11 cm/year, broadly consistent with arc migration, and possibly 

associated slab rollback (e.g. Copley et al., 2010; Sobel et al., 2013). Here, it is important 

to note that the width of this volcanic arc cannot be estimated by measuring how far apart 

igneous bodies of any given age are on the plots of age and distance herein (e.g. Figure 

4-6). The PO does not perfectly reflect the geometry of the orogeny, and thus by 

projecting all of the ages and corresponding distances onto a single axis, all errors in the 

geometry are integrated into the figure, giving the appearance of an impossibly wide arc. 

 Although the change in slope between the two trends cannot be proven 

statistically, the difference between the two intercepts is statistically more robust. This 

break in volcanism is 15 km southeast of the PO line and corresponds to a discontinuity 

of ~9 Ma in the migration of the continental arc along the southern margin of Laurentia. 

This break in volcanism roughly coincides with the location of the orogeny as initially 
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identified by the spatial extent of 1.4 Ga basins and 1.4 Ga metamorphism (Figure 4-3). 

Furthermore, this discontinuity defined by the break in volcanism can readily be 

explained as a localized shortening along the margin of the orogenic belt. Assuming 

horizontal shortening and that this shortening remains largely un-tilted by subsequent 

events, the break in volcanism corresponds to a localized crustal shortening of ~54-99 km 

based on the slopes of the trend lines. The assumptions stated in the previous sentence are 

supported by the vertical orientation of deformation fabrics reported in locations such as 

the Picuris and Tusas Mountains (e.g. Grambling, 1979; Williams, 1990; Williams et al., 

1999; Daniel and Pyle, 2006; Aronoff et al., 2012). These fabrics have been constrained 

by cross-cutting relationships and Lu/Hf geochronology to be associated with ~1.4 Ga 

tectonism (e.g. Aronoff et al., 2012; Hunter et al., 2012). 

 In contrast with the trends observed in the dataset of older plutons, there is no 

observable discontinuity in the spatial distribution of plutons between of ages between 

1400 and 1500 Ma. Based on their U/Pb concordia zircon crystallization ages and Lu/Hf 

garnet geochronology ages (Aronoff et al., 2012), these plutons were being emplaced 

contemporaneously with the amphibolite facies metamorphism that was used to identify 

the Picuris Orogeny. The spatial trend in these ages was moderately strong, as shown by 

the Pearson coefficient of 0.45, and corresponds to a rate of progressive northwest 

directed motion of ~20 km/Ma. The contemporaneous nature of this igneous and 

orogenic activity suggests an intimate link between the plutonism and orogeny in this 

case. 
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Evaluating the Pluton – Orogeny Relationship 

 In explaining this link between the Picuris Orogeny and A-type pluton ages, two 

observations must be explained. First, these plutons are primarily A-type in composition 

and are not traditionally thought to be associated with mountain building. Second, in 

aggregate, the slope of the trend of this dataset is within error of zero Ma/km. 

 The A-type composition of many ~1.4 Ga plutons in the region is well 

documented (e.g. Loiselle and Wones, 1979; Anderson, 1983; Anderson and Bender 

1989; Eby, 1990; Gonzales, 1997; Smith et al., 1999; Goodenough et al., 2000; 

Dall’Agnol and Oliveira, 2007); however, a consensus on their origin remains elusive. 

Such melts are high in Fe/(Fe+Mg), high in total K as well as K/(K/Na), and are also high 

in incompatible trace elements and low in trace elements compatible with feldspars and 

mafic silicates (Frost and Frost, 2011). Geochemical models of melt production aiming to 

explain such chemical characteristics have shown that such compositions cannot simply 

be achieved by partial melting of the mantle (e.g. Loiselle and Wones, 1979; Collins et 

al., 1982; Anderson, 1983; Creaser et al., 1991; Skjerlie and Johnston, 1993; Frost and 

Frost, 1997). 

 Ultimately, the goal is to understand what tectonic processes drove the production 

of these plutons. From the new observations presented herein, as well as the recent 

identification of the Picuris Orogeny, we can contribute several additional pieces of 

information toward this goal. First, the model proposed by Vigneressee (2005) is 

contradicted by two observations. In the model proposed by Vigneressee (2005), the 

addition of heat to the lower crust requires that this metamorphism occurred at ~1700 

Ma, followed by 300 Ma residence at midcrustal levels. The first observation that 
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contradicts this model is that the sediments in basins associated with the PO received 

sedimentary input as late as 1460 Ma and subsequently experienced rapid burial and 

metamorphism. Second, the finding that metamorphism in the region occurred between 

1456 and 1399 Ma (Aronoff et al., 2012) requires that these rocks did not experience 

temperatures the metamorphic conditions for garnet growth until 1456 Ma.  

 Second, the slope of the trend reported above in this dataset is slightly negative 

and within error of zero. This suggests either a rapid northwest-ward progression of 

plutonism or contemporaneous plutonism across the area of interest. This 

contemporaneous plutonism producing A-type plutonic compositions requires a 

significant heat input to produce melt from the lower crust can be acquired by over 

thickened crust experiencing thermal relaxation (e.g. Thompson, 1999), a conclusion 

supported by the rapid burial and metamorphism of ~1.4 Ga basins associated with the 

PO.  

Summary and Conclusions 

 Examination of plutonism across the southwest United States with the newly 

developed tectonic context of the Picuris Orogeny lends insight into multiple facets of the 

tectonic history of Proterozoic North America. Here, we identify an approximate regional 

extent and orientation for the Picuris Orogeny using a combination of multiple previously 

published geochronologic studies. We then use this line as a datum to evaluate spatial 

trends in the age of Proterozoic plutons. From this exercise, there are several prominent 

results. First, plutonic ages, divided into two datasets by a gap in age between 1500 and 

1600 Ma, show trends relating age to distance from the orogeny. In the older dataset, 
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plutons increase in age to the northwest, while in the younger dataset, plutons decrease in 

age to the northwest. Further analysis of the older dataset suggests a break in the trend at 

15 km southeast from the line of the Picuris Orogeny. 

 From these results, we make several conclusions. First, the distribution of plutons 

in the older dataset preserves evidence for arc migration during the accretion of the 

Mazatzal terrane at a rate of 5-10 cm/year and further suggests that this arc migration is 

broadly consistent with rates associated with slab rollback. Second, a break in the trend 

observed in this older dataset occurs at 15 km southwest of the estimated northern most 

extent of the Picuris Orogeny. This break in the trend is interpreted as localized 

shortening of crust within the orogeny. However, the shallow slope of this trend is within 

error of zero, implying that this episode of plutonism occurred relatively rapidly across 

the entire region. This observation, combined with recent geochronologic evidence 

disproving any long-lived midcrustal residence for this crustal material helps to further 

the debate over the origins of these chemically unique plutons. Here, we suggest that 

active tectonism, over thickening of the crust and thermal relaxation is a viable 

mechanism by which the heat and subsequent melting of the lower crust could be 

produced, ultimately leading to the emplacement of these enigmatic A-type plutons. 
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Tables 

 
 Population 2 
Break 
Location -20 -15 -10 -5 0 5 10 15 20 
Intercept 1706 1706 1705 1710 1708 1708 1707 1706 1706 
Error 3.99 4.01 4.43 4.4 4.42 4.7 4.8 5 5 
P ~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0 
Slope -0.17 -0.17 -0.16 -0.18 -0.18 -0.17 -0.17 -0.17 -0.17 
Error 0.2 0.02 0.02 0.023 0.02 0.02 0.02 0.02 0.02 
P ~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0 
 Population 1 
Intercept 1720 1720 1720 1714 1716 1715 1716 1716 1716 
Error 6.3 6.2 5.7 5.6 5.6 5.3 5.2 5 5 
P ~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0 
Slope -0.05 -0.05 -0.06 -0.1 -0.09 -0.09 -0.09 -0.09 -0.09 
Error 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 
P 0.43 0.36 0.31 0.09 0.11 0.09 0.1 0.09 0.09 
Table 4-1: A table of the statistical properties of the regressions of populations 1 and two within the older 
dataset of pluton age and pluton distance from the PO when the break between populations is moved to the 
break location. 
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Appendix 1 

Ref Age Rock Type Latitude Longitude
1 1448 Granite 39.57 -105.63
2 1730 Rhyolite 38.56 -107.00
3 1735 Rhyolite 34.88 -114.08
3 1694 Two mica granite 34.88 -114.08
3 1690 Granite 36.97 -114.03
3 1682 Monzogranite 36.97 -114.03
3 1727 Dacite 35.29 -113.63
3 1713 Granite 35.29 -113.63
3 1730 Granodiorite 35.29 -113.63
4 1786 Metavolcanic 37.51 -107.54
4 1801 Metavolcanic 37.51 -107.54
4 1754 Twilight Gneiss 37.62 -107.80
4 1759 Twilight Gneiss 37.62 -107.80
4 1771 Twilight Gneiss 37.62 -107.80
4 1757 Twilight Gneiss 37.62 -107.80
4 1766 Twilight Gneiss 37.62 -107.80
4 1772 Twilight Gneiss 37.62 -107.80
4 1716 Grantie 37.66 -107.68
4 1731 Granite 37.51 -107.79
4 1695 Granite 37.47 -107.80
4 1695 Granite 37.46 -107.79
4 1435 Gabbro 37.58 -107.79
4 1481 Granite 37.50 -107.61
4 1435 Granite 37.50 -107.61
4 1438 Granite 37.50 -107.61
4 1442 Granite 37.50 -107.61
5 1736 Dacite 35.46 -114.13
5 1768 Granite 35.55 -114.10
5 1737 Granite 35.48 -114.13
5 1719 Granite 35.43 -114.14
5 1721 Granite 35.43 -114.14
5 1683 Granite 35.43 -114.03
6 1735 Quartz Diorite 40.50 -106.83
6 1720 Quartz Monzonite 40.50 -106.00
6 1672 Quartz Monzonite 40.00 -105.25
6 1670 Quartz Monzonite 40.00 -105.25
6 1669 Quartz-feldspar Gneiss 39.75 -105.25
6 1700 Rhyolite 35.25 -106.17
6 1750 Granodiorite 35.25 -106.08
6 1669 Unknown 39.00 -107.00
6 1672 Unknown 39.00 -107.00
7 1404 Granite 34.83 -114.00
8 1750 Porphyroclastic gneiss 36.09 -112.04

8 1741 
Quartzofeldspathic schist and 
gneiss 36.05 -111.97

8 1840 Quartz Diorite 36.23 -112.42
8 1741 granodiorite 36.09 -112.04
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8 1737 Granite 36.05 -112.00
8 1730 Granodiorite 36.11 -112.15
8 1717 Amphibolite 36.19 -112.31
8 1717 Granodiorite 36.14 -112.26
8 1713 Quartz Diorite 36.10 -112.14
8 1698 Two mica granite 36.09 -112.06
8 1697 Pegmatite 36.24 -112.38
8 1685 Two mica granite 36.05 -111.98
8 1680 Granite 36.04 -111.94
8 1662 two mica granite 36.10 -112.09
9 1430 Pegmatite 38.46 -105.51
9 1436 Amphibolite 37.92 -105.17
9 1435 Granite 37.92 -105.17
9 1749 Granite 37.92 -105.17

10 1453 Granodiorite 32.72 -108.51
10 1458 Amphibolite 32.66 -108.54
10 1471 Granodiorite 32.64 -108.55
10 1631 Gabbro 32.73 -108.70
10 1471 Granodiorite 32.72 -108.56
10 1458 Granite 32.64 -108.57
10 1460 Granite 32.64 -108.54
10 1459 Granite 32.72 -108.51
10 1453 Granite 32.49 -108.51
10 1457 Granite 32.46 -108.58
11 1447 Granodiorite 38.51 -106.33
11 1437 Granite 38.90 -106.63
11 1428 Granite 38.73 -106.76
12 1434 Unknown 39.00 -107.00
13 1741 Amphibolite 38.49 -107.21
13 1713 Granite 38.65 -107.85
13 1711 Granite 38.65 -107.85
13 1434 Granite 38.58 -107.72
13 1413 Granite 38.58 -107.72
13 1741 Amphibolite 38.33 -107.27
14 1656 Granodiorite 34.58 -106.50
14 1427 Quartz Monzonite 34.50 -106.50
15 1781 Granite 38.08 -107.05
15 1770 Rhyolite 38.10 -107.05
15 1766 Rhyolite 38.20 -107.17
15 1766 Rhyolite 38.20 -107.17
15 1759 Rhyolite 38.25 -107.17
15 1757 Granite 38.31 -107.14
15 1751 Granite 38.11 -107.03
15 1742 Rhyolite 38.30 -106.75
15 1740 Rhyolite 38.30 -106.75
15 1733 Rhyolite 38.50 -106.78
15 1730 Rhyolite 38.50 -106.92
15 1730 Quartz Diorite 38.30 -106.92
15 1721 Granite 38.42 -106.92
15 1714 Tonalite 38.30 -106.83
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15 1700 Granite 38.30 -107.02
15 1676 Granite 38.67 -106.02
15 1672 Granite 38.52 -106.00
15 1728 Dacite 38.52 -106.00
16 1685 Granite 36.05 -111.67
16 1670 Granite 36.05 -111.67
17 1693 Granite 36.55 -106.08
17 1693 Granite 36.55 -106.08
17 1631 Granite 36.55 -106.08
17 1700 Granite 36.00 -105.50
17 1693 Granite 36.00 -105.50
17 1693 Granite 36.00 -105.50
17 1633 Granite 36.00 -105.50
18 1770 Rhyolite 38.33 -107.17
18 1766 Rhyolite 38.33 -107.17
18 1766 Rhyolite 38.33 -107.17
18 1765 Rhyolite 38.25 -107.17
18 1757 Granite 38.33 -107.25
18 1751 Granite 38.30 -107.23
18 1745 Rhyolite 38.63 -106.60
18 1742 Rhyolite 38.50 -106.75
18 1740 Rhyolite 38.50 -106.75
18 1730 Quartz Diorite 38.56 -107.00
18 1728 Dacite 38.63 -105.92
18 1728 Rhyolite 38.38 -107.25
18 1713 Tonalite 38.46 -106.83
18 1713 Rhyodacite 38.50 -105.88
18 1701 Granite 38.63 -106.63
18 1676 Granite 38.38 -106.75
18 1672 Granite 38.72 -105.95
18 1668 Rhyodacite 38.49 -105.90
19 1770 Rhyolite 38.83 -106.63
19 1759 Rhyolite 38.38 -107.02
19 1733 Rhyolite 38.56 -106.83
19 1706 Granite 38.58 -105.32
19 1705 Granite 38.55 -105.45
19 1700 Granite 38.51 -106.98
19 1694 Charnokite 38.27 -105.33
19 1666 Granodiorite 38.48 -105.62
19 1665 Granodiorite 38.72 -105.25
19 1663 Leucogranite 38.55 -105.47
19 1653 Tonalite 38.22 -105.37
19 1622 Tonalite 38.21 -105.35
19 1615 Granite 34.21 -105.35
19 1486 Granite 38.00 -105.21
19 1474 Monzogranite 38.47 -105.59
19 1460 Quartz Monzonite 38.40 -105.70
19 1442 Granite 38.38 -105.27
19 1441 Granite 35.20 -105.17
19 1439 Granite 38.38 -105.25
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19 1371 Granite 38.08 -105.05
19 1362 Granite 38.10 -105.08
19 1359 Granite 38.22 -105.28
20 1720 Quartz Monzonite 36.55 -105.43
21 1694 Granite 36.63 -108.90
21 1412 Granite 37.08 -109.42
21 1691 Granite 36.63 -108.90
22 1755 Granodiorite 30.52 -106.13
22 1700 Unknown 36.12 -106.62
22 1700 Rhyolite 36.62 -106.25
22 1460 Quartz Monzonite 35.76 -106.62
22 1120 Diabase 33.52 -110.88
23 1700 Granite 36.46 -106.06
23 1693 Granite 36.59 -106.17
23 1693 Granite 36.47 -106.08
23 1751 Granodiorite 30.52 -106.13
24 1750 Quartz Diorite 36.50 -105.40
24 1741 Gabbro 36.53 -105.47
24 1730 Quartz Monzonite 36.57 -105.60
24 1699 Quartz Monzonite 36.53 -105.38
24 1679 Granodiorite 36.80 -105.55
24 1644 Quartz Monzonite 36.83 -105.39
25 1749 Quartz Diorite 37.58 -105.50
25 1745 Diorite 37.56 -105.52
25 1732 Quartz Diorite 37.51 -105.53
25 1728 Gabbro 37.51 -105.49
25 1696 Gneiss 37.82 -105.47
26 1716 Granodiorite 38.38 -107.25
26 1711 Pegmatite 38.38 -107.25
26 1434 Monzogranite 38.58 -107.75
26 1413 Pegmatite 38.58 -107.75
27 1730 Quartz Monzonite 36.11 -106.63
28 1720 Rhyolite 35.67 -105.82
28 1650 Granite 35.68 -105.78
28 1480 Granite 35.75 -105.80
29 1703 Grantie 36.30 -105.25
29 1423 Pegmatite 36.78 -105.53
29 1420 Amphibolite 36.78 -105.52
29 1380 Amphibolite 36.62 -105.52
30 1700 Granite 37.75 -107.70
31 1691 Quartz Porphyry 35.90 -105.75
32 1682 Granite 36.02 -105.45
32 1421 Migmatite 36.08 -105.38
33 1689 Granodiorite 36.39 -105.58
34 1684 Granite 36.15 -105.86
34 1674 Quartz Monzonite 36.14 -105.86
35 1680 Rhyolite 34.60 -106.45
35 1664 Rhyolite 34.12 -107.03
35 1664 Rhyolite 34.12 -107.03
35 1659 Granite 34.11 -107.05
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35 1654 Granite 34.10 -107.06
35 1648 Granite 34.10 -107.04
36 1662 Rhyolite 34.28 -106.53
36 1660 Amphibolite 34.25 -106.60
36 1658 Granite 34.25 -106.58
36 1655 Granite 34.26 -106.60
37 1660 Quartz Porphyry 35.65 -105.83
38 1658 Quartz Monzonite 34.36 -107.06
38 1658 Granite 34.36 -107.06
39 1655 Granite 32.97 -107.73
39 1445 Granite 32.32 -108.58
40 1655 Quartz Monzonite 35.17 -108.13
40 1655 Granite 35.00 -108.02
41 1650 Granite 35.70 -105.75
42 1650 Metavolcanic 32.92 -106.57
42 1630 Granite 33.05 -106.07
43 1643 Quartz Monzonite 36.88 -105.52
44 1633 Gabbro 32.68 -108.73
44 1465 Minette 32.68 -108.65
44 1461 Granite 32.68 -108.65
44 1231 Anorthosite 32.72 -108.73
44 1223 Anorthosite 32.72 -108.73
44 1220 Anorthosite 32.72 -108.73
45 1632 Quartz Monzonite 32.82 -106.51
45 1462 Granite 32.50 -106.39
45 1111 Rhyolite 31.25 -105.00
46 1437 Granite 35.08 -106.48
47 1430 Quartz Monzonite 36.38 -105.25
48 1382 Rhyolite 31.25 -105.00
48 1333 Rhyolite 31.25 -105.02
48 1325 Rhyolite 31.25 -105.02
48 1272 Rhyolite 31.25 -105.03
48 1260 Rhyolite 31.25 -105.02
48 1256 Rhyolite 31.25 -105.02
48 1251 Rhyolite 31.25 -105.02
48 1243 Rhyolite 31.25 -105.02
48 1120 Granite 31.25 -105.00
49 1380 Rhyolite 31.26 -105.00
50 1366 Gneiss 31.20 -103.50
50 1272 Gneiss 31.17 -103.50
51 1163 Amphibolite 32.42 -104.00
52 1700 Rhyolite 35.20 -106.27
52 1669 Granite 35.23 -106.25
52 1659 Granite 35.01 -106.50
52 1659 Granite 34.78 -106.42
52 1653 Granite 35.42 -106.43
52 1645 Granite 34.95 -106.43
52 1643 Granite 34.43 -106.50
52 1438 Granite 34.43 -106.48
53 1110 Alkali-feldspar granite 31.85 -106.55
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53 1078 Alkali-feldspar granite 32.75 -99.50
53 1080 Quartz Diorite 35.37 -102.30
54 1380 Quartz Monzonite 35.67 -101.75
54 1372 Quartz Monzonite 35.68 -101.77
54 1355 Quartz Monzonite 35.73 -101.80
54 1370 Granite 32.38 -103.10
54 1372 Granodiorite 36.50 -103.57
54 1369 Granite 36.50 -103.57
54 1359 Granite 35.78 -101.83
54 1363 Rhyolite 35.78 -101.83
54 1383 Granite 33.00 -101.50
54 1359 Granite 35.78 -101.83
54 1348 Granite 35.67 -101.63
54 1341 Granite 35.67 -101.63
54 1339 Quartz Syenite 35.67 -101.75
54 1320 Meta-arkose 35.10 -104.10
55 1706 Granodiorite 38.58 -105.30
55 1698 Granodiorite 35.56 -105.30
55 1436 Pegmatite 38.56 -105.30
56 1740 Unknown 34.57 -113.25
56 1720 Rhyolite 34.55 -113.25
56 1720 Granodiorite 34.55 -113.25
57 1709 Rhyolite 34.43 -113.28
57 1706 Granodiorite 34.24 -113.42
57 1696 Granite 34.27 -113.42
58 1800 Rhyolite 34.75 -112.10
58 1755 unknown 34.30 -112.59
58 1750 Granodiorite 34.28 -112.37
58 1740 Granodiorite 34.55 -112.11
58 1740 Quartz Diorite 34.53 -112.47
59 1750 Granodiorite 34.28 -112.13
59 1740 Granodiorite 34.25 -112.09
59 1699 Quartz Monzonite 34.25 -112.25
60 1720 Quartz Diorite 34.45 -113.28
61 1680 Quartz Monzonite 34.13 -112.27
62 1738 Unknown 34.13 -111.28
62 1710 unknown 34.12 -111.08
62 1700 Rhyolite 33.93 -111.50
62 1703 Rhyolite 34.25 -111.25
62 1697 Rhyolite 34.23 -111.13
63 1710 unknown 34.00 -111.33
63 1710 unknown 33.94 -111.50
63 1695 Rhyolite 33.93 -111.50
63 1695 Rhyolite 33.93 -111.50
64 1695 Rhyolite 34.12 -111.08
64 1710 Granite 34.25 -111.25
64 1630 Grantie 34.04 -110.95
65 1640 Granite 33.85 -111.50
66 1638 Monzogranite 33.18 -111.70
66 1625 Monzogranite 33.47 -111.54
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66 1633 Monzogranite 33.69 -111.50
66 1423 Granite 33.74 -111.85
66 1400 Granodiorite 33.77 -113.35
66 1400 Granite 33.79 -113.41
66 1634 Orthogneiss 33.09 -113.63
67 1328 Rhyolite 33.52 -110.89
68 1695 Monzogranite 38.05 -105.73
68 1693 Tonalite 38.05 -105.73
68 1407 Pegmatite 38.05 -105.74
68 1682 Quartz Monzonite 38.00 -105.68
68 1760 Amphibolite 37.99 -105.66
68 1425 Amphibolite 37.99 -105.66
68 1434 Quartz Monzonite 37.92 -105.50
68 1434 Pegmatite 37.92 -105.50
68 1706 Granodiorite 38.55 -105.25
68 1698 Granodiorite 38.55 -105.25
68 1430 Pegmatite 38.45 -105.52
68 1679 Granite 38.18 -105.17
68 1436 Amphibolite 37.92 -105.17
68 1435 Granite 37.92 -105.17
68 1749 Granite 37.92 -105.17
69 1718 Rhyolite 34.48 -113.28
69 1721 Rhyolite 34.48 -113.28
69 1711 Gabbro 34.46 -113.43
69 1706 Granite 34.46 -113.43
69 1696 Granite 34.56 -113.52
69 1686 Granite 34.41 -113.22
69 1677 Tonalite 34.47 -113.25
69 1410 Granite 34.45 -113.63
69 1410 Granodiorite 34.49 -113.53
69 1418 Granite 34.41 -113.25
69 1414 Granite 34.28 -113.04
69 1414 Granite 34.45 -112.98
69 1418 Granite 34.47 -113.32
70 1705 Migmatite 32.68 -108.52
70 1666 Quartz Monzonite 32.61 -106.46
70 1652 Gneiss 32.15 -107.65
70 1632 Granite 32.84 -106.57
70 1622 Gneiss 32.60 -106.47
70 1631 Metavolcanic 32.72 -108.57
71 1401 granite 34.28 -114.15
71 1700 granite gneiss 33.85 -115.68
71 1400 granite 35.02 -114.95
71 1700 biotite schist 33.62 -115.45
71 1200 syenite 33.78 -115.57
71 1750 augen gneiss 34.32 -114.32
71 1750 augen gneiss 34.67 -115.20
71 1800 augen gneiss 36.07 -117.12
71 1760 schist 34.75 -115.10
71 1700 gneiss 34.20 -114.78
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71 1450 granite 35.22 -114.60
71 1425 granite 36.25 -114.22
71 1425 granite 35.32 -114.75
71 1367 granite 35.10 -113.90
71 1367 granite 34.90 -114.00
71 1670 diorite 36.20 -112.33
71 1670 granite 36.08 -112.07
71 1760 granite gneiss 36.20 -112.45
71 1670 2-mica granite 36.10 -112.10
71 1740 granodiorite 34.55 -112.43
71 1740 gneiss 34.62 -113.22
71 1730 granodiorite 34.55 -112.13
71 1730 granodiorite 34.53 -112.13
71 1700 gneiss 34.57 -114.12
71 2400 granite 41.32 -106.75
71 1800 gneiss 41.10 -106.52
71 1800 rhyodacite 39.78 -105.33
71 1800 tholeite 39.68 -105.47
71 1800 dacite 37.63 -107.72
71 1670 granodiorite 36.93 -106.30
71 1670 granodiorite 39.95 -105.38
71 1670 granodiorite 38.42 -105.47
71 1670 granite 41.10 -106.20
71 1430 2-mica granite 40.23 -105.40
71 1415 2-mica granite 38.50 -107.00
71 1415 2-mica granite 41.23 -105.30
71 1415 granite 39.68 -105.85
71 1440 monzogranite 32.65 -110.80
71 1700 biotite gneiss 35.07 -115.37
71 1700 garnet gneiss 35.07 -115.37
71 1437 granite 35.30 -106.43
71 1360 granite 34.63 -113.15
71 1400 granite 34.60 -112.42
72 1634 Quartz Porphyry 32.23 -109.54
72 1647 Rhyolite 32.30 -109.78
72 1615 Granite 32.68 -110.04
72 1640 Granite 32.84 -110.76
72 1654 Rhyolite 32.11 -110.11
72 1643 Granodiorite 32.19 -110.22
72 1442 Granite 32.05 -110.42
72 1428 Quartz Monzonite 32.05 -110.41
72 1645 Granite 32.99 -112.52
72 1647 Granite 33.28 -112.65
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Appendix 3 
 
import matplotlib.pyplot as plt 
import mpl_toolkits.basemap as bm 
import numpy as np 
import os 
import scipy 
from scipy import stats 
import csv 
from scipy.stats.stats import pearsonr 
 
os.chdir(u'C:\\Documents and Settings\\Sander\\My Documents\\Dropbox\\age_plot') 
 
def distance_haversine(point1, point2, radius=6371e3): 
    """ calculate the haversine distance between points (lon,lat) 
    ~3m accuracy over 1km 
    distance formulas from:  
    http://www.movable-type.co.uk/scripts/latlong.html 
    """ 
    #NOTE: can probably use gdal or google earth api's as well, GE apparently uses Re=6,378,137m 
    lon1, lat1 = np.radians(point1) 
    lon2, lat2 = np.radians(point2) 
 
    dlat = lat2 - lat1 
    dlon = lon2 - lon1 
    a = np.sin(dlat/2)**2 + (np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2) 
    distance = 2 * radius * np.arctan2(np.sqrt(a), np.sqrt(1-a)) 
 
    return distance 
 
 
def distance_cyl(point1, point2, radius=6371e3): 
    """ equirectangular projection (pythogorean theorem w/ effective cartesian 
    coordinates. Fine for 'small' distances (depends also on bearing & latitude) 
    Basemap 'cyl' projection 
    """ 
    #NOTE: km2mi = 1/1.609344 
    #km2Nmi = 1/1.852 #nautical mile 
    lon1, lat1 = np.radians(point1) 
    lon2, lat2 = np.radians(point2) 
 
    x = (lon2 - lon1) * np.cos((lat1+lat2)/2) 
    y = lat2 - lat1 
 
    distance = np.hypot(x,y) * radius 
 
    return distance 
 
 
def bearing(point1, point2): 
    """ Calculate initial bearing (forward azimuth) of great circle arc 
    bearing from true North (theta=0)""" 
    lon1, lat1 = np.radians(point1) 
    lon2, lat2 = np.radians(point2) 
    dlat = lat2 - lat1 
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    dlon = lon2 - lon1 
 
    y = np.sin(dlon)*np.cos(lat2) 
    x = np.cos(lat1)*np.sin(lat2) - np.sin(lat1)*np.cos(lat2)*np.cos(dlon) 
    bearing = np.arctan2(y, x) #in radians (-pi, pi) 
 
    bearingDeg = (np.degrees(bearing) + 360) % 360 
    #NOTE back azimuth conversion backDeg = (bearing + 180) % 360 
 
    return bearingDeg 
 
 
def cross_track(start, end, point, radius=6371e3, dist='cyl'): 
    """ distance from point to great circle path (aka 'cross-track error') 
    start = p1, end = p2, point = p3 (lon,lat) degrees 
    NOTE: negative implies to the west of the line 
    """ 
    if dist=='haversine': 
        d13 = distance_haversine(start, point,radius=radius) 
    elif dist=='cyl': 
        d13 = distance_cyl(start,point,radius=radius) 
 
    theta13 = np.radians(bearing(start,point)) 
    theta12 = np.radians(bearing(start,end)) 
 
    distance = radius * np.arcsin(np.sin(d13/radius)* sin(theta13-theta12)) 
 
    return distance 
 
# Load data 
ages,errors,lats,lons = np.loadtxt('con_ages2.csv',delimiter=',',skiprows=1,unpack=True) 
 
""" 
now repeat the routine, but first build lists for age and distance separated by: 1. age (over 1500 or under 
1500) 
and 2. distance (in Arizona vs NM) 
""" 
 
ages_under_1500 = [] 
ages_over_1500 = [] 
distances_under_1500ma = [] 
distances_over_1500ma = [] 
lons_under_1500 = [] 
lons_over_1500 = [] 
lats_under_1500 = [] 
lats_over_1500 = [] 
errors_over_1500 = [] 
errors_under_1500 = [] 
 
""" 
Define points for Picuris Orogeny 
""" 
 
popt1 = (-114.0,33.0) 
popt2 = (-107,37.2) 
popt3 = (-104.5,37.8) 
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""" 
Determine distance from each portion of the Orogeny line defined above 
""" 
 
dis1_2 = [] 
dis2_3 = [] 
 
for i in range (ages.size): 
    point = (lons[i], lats [i]) 
    dis1_2.append(cross_track(popt1,popt2,point) / 1e3) 
    dis2_3.append(cross_track(popt2,popt3,point) / 1e3) 
 
dis = np.zeros_like(ages) 
 
""" 
Make array of the shortest distances from the Orogeny 
""" 
 
for i in range(size(ages)): 
    A = [] #reset A each time. Just in case. 
    A = [dis1_2[i], dis2_3[i]] 
    B = [] #reset B each time. Just in case. 
    B = [abs(dis1_2[i]), abs(dis2_3[i])] 
    for j in range(size(A)): 
        if B[j] == min(B): 
            dis[i] = A[j] 
 
""" 
Now separate out the ages by those over 1500 Ma and those under 1500 Ma 
""" 
 
ind_ov_1500 = (ages >= 1500) 
ind_un_1500 = (ages < 1500) 
distances_over_1500ma = dis[ind_ov_1500] 
distances_under_1500ma = dis[ind_un_1500] 
ages_under_1500 = ages[ind_un_1500] 
ages_over_1500 = ages[ind_ov_1500] 
lats_under_1500 = lats[ind_un_1500] 
lats_over_1500 = lats[ind_ov_1500] 
lons_under_1500 = lons[ind_un_1500] 
lons_over_1500 = lons[ind_ov_1500] 
errors_under_1500 = errors[ind_un_1500] 
errors_over_1500 = errors[ind_ov_1500] 
 
""" 
Index for ages between 1400 and 1500 Ma 
""" 
ind_bet = (ages > 1400)&(ages < 1500) 
dis_bet = dis[ind_bet] 
ages_bet = ages[ind_bet] 
lats_bet = lats[ind_bet] 
lons_bet = lons[ind_bet] 
errs_bet = errors[ind_bet] 
 
""" 
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Plot Everything 
""" 
 
""" 
All data 
""" 
#Data on US map 
plt.figure() 
LL = (min(lons)-1, min(lats)-1) 
UR = (max(lons)+1, max(lats)+1)  
bmap = bm.Basemap(projection='cyl', 
               llcrnrlat=LL[1], 
               urcrnrlat=UR[1], 
               llcrnrlon=LL[0], 
               urcrnrlon=UR[0], 
               resolution='i', 
               suppress_ticks=False) 
bmap.drawcountries(linewidth=1.5) 
bmap.drawstates() 
sc = bmap.scatter(lons,lats,c=ages,cmap=plt.cm.gray) 
bmap.colorbar(sc) 
plt.title('Plutons in SW United States with Picuris Orogeny') 
bmap.plot([popt1[0], popt2[0]], [popt1[1], popt2[1]], 'r.-', label='MZ def front 1') 
bmap.plot([popt2[0], popt3[0]], [popt2[1], popt3[1]], 'r.-', label='MZ def front 2') 
 
# plot separated ages vs distance from orogeny    
plt.figure() 
plt.plot(dis, ages,'b.') 
plt.ylabel('Age [Ma]') 
plt.xlabel('Distance from deformation Orogeny [km]') 
plt.title('All ages vs Orogeny') 
plt.grid() 
 
""" 
Ages Over 1500 
""" 
#Data on US map 
plt.figure() 
LL = (min(lons)-1, min(lats)-1) 
UR = (max(lons)+1, max(lats)+1)  
bmap = bm.Basemap(projection='cyl', 
               llcrnrlat=LL[1], 
               urcrnrlat=UR[1], 
               llcrnrlon=LL[0], 
               urcrnrlon=UR[0], 
               resolution='i', 
               suppress_ticks=False) 
bmap.drawcountries(linewidth=1.5) 
bmap.drawstates() 
sc = bmap.scatter(lons_over_1500,lats_over_1500,c=ages_over_1500,cmap=plt.cm.gray) 
bmap.colorbar(sc) 
plt.title('Plutons over 1500 Ma in SW United States with Picuris Orogeny') 
bmap.plot([popt1[0], popt2[0]], [popt1[1], popt2[1]], 'r.-', label='MZ def front 1') 
bmap.plot([popt2[0], popt3[0]], [popt2[1], popt3[1]], 'r.-', label='MZ def front 2') 
 
# plot separated ages vs distance from Orogeny 
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# distances over 1500     
plt.figure() 
plt.plot(distances_over_1500ma, ages_over_1500,'b.') 
plt.ylabel('Age [Ma]') 
plt.xlabel('Distance from deformation Orogeny [km]') 
plt.title('Ages over 1500 ma vs distance from Orogeny') 
plt.grid() 
slope_ov, intercept_ov, r_value_ov, p_value_ov, std_err_ov = 
stats.linregress(distances_over_1500ma,ages_over_1500) 
r_sq_ov_1500 = r_value_ov**2 
x1=min(distances_over_1500ma) 
x2=max(distances_over_1500ma) 
x = np.r_[x1:x2:6*1j] 
plt.plot(x,slope_ov*x + intercept_ov,'k-') 
 
""" 
Ages between 1400Ma & 1500Ma 
""" 
#Data on US map 
plt.figure() 
LL = (min(lons_bet)-1, min(lats_bet)-1) 
UR = (max(lons_bet)+1, max(lats_bet)+1)  
bmap = bm.Basemap(projection='cyl', 
               llcrnrlat=LL[1], 
               urcrnrlat=UR[1], 
               llcrnrlon=LL[0], 
               urcrnrlon=UR[0], 
               resolution='i', 
               suppress_ticks=False) 
bmap.drawcountries(linewidth=1.5) 
bmap.drawstates() 
sc = bmap.scatter(lons_bet,lats_bet,c=ages_bet,cmap=plt.cm.gray) 
bmap.colorbar(sc) 
plt.title('Plutons between 1400 and 1500 Ma in SW United States with Picuris Orogeny') 
bmap.plot([popt1[0], popt2[0]], [popt1[1], popt2[1]], 'r.-', label='PO def front 1') 
bmap.plot([popt2[0], popt3[0]], [popt2[1], popt3[1]], 'r.-', label='PO def front 2') 
 
# plot separated ages vs distance from Orogeny 
# distances under 1500     
plt.figure() 
plt.plot(dis_bet, ages_bet,'b.') 
plt.ylabel('Age [Ma]') 
plt.xlabel('Distance from deformation Orogeny [km]') 
plt.title('Ages under 1500 ma vs distance from Orogeny') 
plt.grid() 
slope_bet, intercept_bet, r_value_bet, p_value_bet, std_err_bet = stats.linregress(dis_bet,ages_bet) 
r_sq_bet = r_value_bet**2 
x1=min(dis_bet) 
x2=max(dis_bet) 
x = np.r_[x1:x2:6*1j] 
plt.plot(x,slope_bet*x + intercept_bet,'k-') 
 
# Determine the statistical significance of the relationship between the ages and distances 
ov_1500_PCC,ov_1500_PCCp = pearsonr(distances_over_1500ma,ages_over_1500) #ages over 1500 and 
distances from the PO 
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bet_1500_PCC,bet_1500_PCCp = pearsonr(dis_bet,ages_bet) #ages betwee 1500 and 1400 Ma and 
distances from the PO 
 
bet_PO = zip(dis_bet,ages_bet) 
all_PO = zip(dis, ages) 
 


