AN INTERKUPT BASED ORGANIZATION FOF
MANAGEMENT INFORMATION SYSTEMS

Howard lee Morgan

Technical Report
- No, 69-33
March 1965

Departaent of Computer Sciencs
Cornell University
Ithaca, New York 14250

AN INTERRUPT BASED ORGANIZATION FOR
*
MANAGEMENT INFORMATION SYSTEMS

Howard Lee Morgan
Lornell Universityl
‘Mazrch 1969

Abstract: A programming structure, language constructs, and
gupervisory system organization are proposed for the design
and coding of large shared data base systems. The bases for
this organization are a generalized interrupt structure and the

‘newly introduced concept of "file tagging,” which is the process
of associating program structures and interrupt generating con-
ditions with items in the data base. An algorithm for resolving
conflicts which érise in scheduliag the interrupt processing
Toutines is presented. DPL, a programming language and super-
wisory systém in which these concepts are impleménted, is used

to 1llustrate the new orgaﬁization-which is proposed for manage-

-ment information systems.

CR categories: 4.32 (Supervisory systems, multiprogramming),

3.51 (Managemcnt data processing: education aﬁd research),

4,22 (Procedure and Problem oriented languages).

Keywords and phrases: management information systems, integrated

-data processing, supervisors, interrupts, monitoring systems,

supervisory systems, interrupt scheduling, parallel prosessing.

Départment of Operations Research and Department of Computer
Science, Upson Hall, Ithaca, New York 14850.

Research supported in part by the National Science Foundation
under Grant GP-6827,

AN INTERRUPT BASED ORGANIZATION FOR
MANAGEMENT INFORMATION svsr:us'

Howard Lea Morgan

Cornell Untvonny1

1. fatroduction

Large scale integrated information systems, of which mdnage-
seat inforsation systems are & special case, are coming inmto
videspread use, This paper presents an ot(lnt:ltioﬁ which will
aid 1in the design and programming of such systems, Por the pur-
poses of this papar, & management information system may be »
thought of as composud of four parte:

1, Data base — a1} of the information which is available
to the rest of the systam,

2., Data entry and updating — programs which are used to
keep the information in the data base current.

3. 1nquiry — programs whicir utilize the data base in s
tead only manner, e.g., online inquiry systems.

4, Supervisor — program which schedules the execution of
411 other programs in the system on a “"when needed”
~basis.,

L4 sost current systems, the data base is rupresented as
& group of files, and the programs for data entry, updating
and fnquiry are written in & conventional manner, calling om someé
operating systea for input/output functions. The supervisor
functions, however, are often distributed among several of the
user's ﬁrogran-. the operating system, and even the human

operators of the system. It is to the programming of a super-

_visor that this paper 1s directed.

Dupartment of Operations Rescarch and Department of Computer
Scicnce, Upson Hall, Ithaca, New York 14850,

. Research supported in part by :ho National Science Foundation
under Grant GP=6827

2. Systems Organisation
ta a typical management information systes, the dats eatsy

and updating programs may include several fuactional groups of
progranms, cach of which may require online access to the data
base, and esch of which may interact vith any of the other
groups, For example, there may be one group of prograns to
process payroll, another for ordar emtry, another for inventory
control, and still another for genaral ledger accounting, all
as parts of a single, intcgrated systen,

The supervisor must knov what conditions require the execu
tion of each program, and nmust have some me¢ans of detecting whe
these conditions occur so that it can s¢hedule the tunning of
any needed program, An order entry, for exsaple, may reduce
stock, requiring tha inventory control prograa to be zrum, This
program may, in turm, order moré stock which may require the
purchasing program to be run, aand so on,

In the DPL system, interrupts are usad to sigal to the
supervisor the occurrence of conditions which require 2 progra:
to be executed, and the interrupt block structure discussed ina
Section 3 is used to indicate which blocks process which inter
rupts, The interrupt generating conditions are either Boolean
conditions on variables or items in ghc data base, or involve
hardvare events. _

Some of the items which are needed to evaluste the inter-
rupt generating conditions may be inm.the out-of-core part of ¢t

data base. DPL uses a mathod called “file tagging,” discussed

-3 -

4a Section & to handle this case. The implications of the inter~-
rupt structure together with file tagging is a new, parallel

organization for management informetion systems,

3. lInterrupts

The growth in the use of interrupt mechanisms in computer
hardvare technology has paralloled the growth in sophistication
of the softvare technology associated with monitor or operating
systems, Interruptes were first used to provide a conveunient
s¢ans for the hardware to inform the monitor that certain events
bhad occurred, e.8., completion of an I/0 aevent llf. The second
stage in the use of fnterrupts on the class of monitored events
broadened to include what vere essentially software errors, 0.8,y
division by zero or attempts to execute illegal operation codes
(3], When the third goneration of computers was fantroduced,
vith plans for still more comprehensive operating systems, a
third stage in the use of interrupts was initiated [8,12]), Thise
third stage added a new class of events which could cause inter~
supts to be generated, namely, the execution of s special fnstruec
tion, the "supervisor call,” The IBM 360 series slso allowed
many more of the software error (program check) interrupts than
di1d earlier computers,

Until the third stage in the use of interrupts bc;nn.'
essentislly all interrupt processing routines were part of the
sonitor systes, snd wvere fnacccnltblc to the programmer vhq
vas not vriting in sssembly level langusge, With the increased

sophistication provided inm third generstion hardwvare and esoftware

- & -

the PL/I lenguege dosignors were able to allov the programmer

to define his own interrupt processing routines for most of the
conditions which the 360 hardvare monitors, and some additionsl
conditions which were monitored by software [10], The user
writes statements of the form: ON FLOATINGDIVIDE <proecdutcuist?
This procedure is then executed whenever a floating point divide
exception occurs, These procedures, called intercupt fqnctton
modules [13] may also be entered by executing a SIGNAL stateaent,
which simulates the occurrence of an interrupt, ',

A fourth stage in the use of interrupt mechanisms {s pro-
posed here, and has been 1np1¢ne{tcd in an experinental language
celled DPL (Dats Processing Language) [7])., The programmer is
nov allowed to specify rather complex events vhose occurrence
will cauge interrupts to be generated, Thare are tvo classes
of interrupt causing events which are folt to be most useful
in designing management information systems, These are tha
device interrupt class, e.g,) the "attention” key on a teletyps,
saud the program generated interrupt, vhich occurs vhen s specifis
Boolean condition on some combination of expraessions occurs.

The programmer indicates vwhich block (subroutine) is to be

weed to process which interrupt be writing statements of the for:

PERFORM <blockname> WHEN <condition> ,

Some .xn-picc of the tvo classes of interrupts are}

PERFORM ORDER WHEN STOKLEV LE REORDER
PERFORM SERVICE WHEN TELTYP(3) INTERRUPTS ,

e 8§ o

The first dtatement would cause an interrupt to be genersted
vhesever the valus of the variable STOKLEV is less than or oiuat
to the value of the varisble REORDER, Of courss, the condition
could be far more complex and could involve any Boolaan condition
vhich could appear in an IF statement, The sacond statement
would cause an interrupt to be generated whanever the attention
key on TELTYP(3) wae depressed, and would transfer control

to the block named SERVICE.

The problems which can arise when several interzupts are
genorated as the result of s single assigoment statement are
treated in the next section, .

Monitoring for these intecrrupts is performed through soft-
ware by the DPL systeam, but conceivably this could be done by
some fora of microprogrammed hardware or firmware (9], The new
SIMSCRIPT 2 programning language includes a feature called
"sonitored variables” which could be used to implement a soft-
vare checking structure, but has been designed with simulation

"1n mtnd (3],

A similar generalized interrupt structure vas proposed ia
some early work on the BCL language, developed in England, but
was not carried through into implementation, probably because
of the problems which acrise in scheduling these interrupt

blocks for exaecution [1].,

3,1, Interrupt Block Schaduling
The execution of a PERFORM,,.WHEN statement causes the

systea to watch for the condition mentioned in the WHEN clause

aidd, vhen that condition bacomes true, to cace‘to the faterrupt
Siock named {n the statement. This {is the prograa controlled
{aterrupt feature of DPL.

When & PERFORM,..WHEN 18 cxccntid. the pair cooposed of
the interrupt block name and the condition (dcnoted as the
(b,¢) pair) is placed on the “pending block"” 1list (PB 11st).
At the same time, a flag is set in the main symsbol table for all
variables which are used in the condition, PFor example, 1if the

statement
PERFORM BLKC WHEN I-J+3=K

wers exututed, the patr (BLKC,1-J+43eK) would be placad oa
the P3 1ist and the variables 1 , J , and K each would have
a flag set in the syabol table,

The execution of a CANCEL,.,WHEN statemant would recove th(
pair designated in the CANCEL statement from tha PB 1ist. 1f
the indicated pair is not on the PB list, sn error message is
generated,

Whenever a statement which can assign a value to a variabl
1s executed, e@,g., LET, READ, PERFORM,..FOR, the syabol table
entry for that variable 1s examined, If that variable 1is flagg
as being involved in somé condition which is on the PB 1lisc,
that condition is svaluated, along with any other conditions onm
the PB 1ist in which that variablc is involved. If any of the
conditions ﬁavo the value "true”, the correspoanding (b.e)A patl
1s placed on the "to be exacuted" 1list (TBE 1ist), and removed

fron the PB liet,

N

) The actual checking of conditions and generation of inter-
Tupts takes place upon the conpletion of the statement which
performed the assignment. If s statement performs multiple
assignnents, e.g,, READ X, Y , the evaluation of the affected
conditions reflects all of the sssigaments. This {e comparable
to the doctrine on most machines that interrupts may only be
accepted bdetveen finstructions, At the level at yhieh the DPL
progrannmer vrites, & DPL statement is equivalent to a machine
iastruction,

Hote that the condition is checked only on store operations
snd 1s oot checked at the time the PERFORM...WHEN 1is executed
snd the (b,c) pair ie added to the PB 1list, This 4¢ similar
to the coovention followed in some computer systems, namely:

The execution of an interrupt enable command does not enadble the .
interrupts until after the cxecuéion of the inetruction following
the interrupt enable instruction [11). The reason for doing

this in DPL {9 stimple, It allows the last statement in an
foterrupt block to be & PERFORM,,.WHEN which will put the (b,e)
pair for that block back on the PB 1list, Presumably, if the
condition were checked upon execution of tho PERFORM,, .WHEN
etatenent, the condition would be true and s nesting probles
would arise,

If there is only one (b,c) pair on the TBE 1list sfter
sn auli;nucnt statenont has deon executed, and the interrupt
bdlock named in it does not fssus -any !IRIORH...vlll-l;ato-on;o.
the Viock e perforusd snd control i¢ returned §o the statement

following the assignment statcment, When there is more than

one pair on the list, however, or some of the interrupt blocks
issue PERFORM,..WHEN statements, thus adding pairs to the PB

11et wvhile an interrupt dlock {is executing, the situation becomes
quite complicated, The following exanples may help to {llustrate
eome of the problems which can arise, and vill be used to show
the rationale for the scheduling algorithm which was chosen.

1, Suppose the PB 1list contains the two entries
(Bl, X LE 5) and (B2, X LE 10) . The statement:
LET X=4 1e¢ executed, Which block should be executed
first?

2, Suppose the PB list contains the twvo entries (31,x=2)
and (B4, X=2) , Suppose further that executfion of
block B3 will not change the value of X » but execu-
tion of B4 will set X to 3 before exiting, Againm,
vhich block should be executed first?

3¢ 1Io this example the PBD list consists of the single
entry (B5, X=3) , end the first two statements in 3S

are:
PERFORM B6 WHEN Xw2
LET X=2
Should the execution of BS contioue after these two
statements are executed, or should B6 be entered !
after execution of the LET statecent? B

Some of the problems arise from interaction of ons intcr-
Tupt block with the conditions on the P3 11st, and others u;loc
from intéractions between the rznroiu...wn:u statements, vhich
may not all be consistent with each other. The execution of
one block when more than one has been placed om the TOE 1ist may

change the condition vhich ceused other .Plocks to be placed on

the TBE 1ist, Purthermots, the ordering of the execution of
the blocks on the TBE 1ist may affaect the number of blocks vhich
can be exccuted as a result of a single assignment statement,

The criteria used in developing the algorithm which schedules
the execution of interrupt blocks werat

1, When an interrupt block is enteraed for execution, the
associated condition must be true, (This may have been
assumed wvhen the block was written,)

2, A unique ordering for the execution of tho blocks nust
be guaranteed,

3. When several pending blocks are schedulad as the result
of a single assignment statement, the execution of any
one of these blocks should ba transparent to all of the
other blocks, 1.e,, each block may be writton as 1if it
vill be the only block executed when an assignment {s
performed.,

4, MNestéd interrupts should ba treated with lower priority
than those interrupts which are genarated as 4 result
of the initial store opecration,

S. As far as possible, as many of the blocks which are
initially placed on the TBE 1ist should be executed,

6. The algorithms should be asware of any conflict situa-
tions which {t cannot handle, and should report thase
to the progranmer.

Algoritha A, presented below, meets 21l of these criteria

and {¢ the one used in DPL to scheduls interrupt blocks.

.‘.’ 1,
Step 2,

.t.’ s .

lic} 4,

Step 3,

Step 6,

-io.

ALGORITHM A -

Label a1l (b,c) paire on the TBE 1iet as lavel 1.

S8elect from the TBE 1ist all interrupt dlocks whose
execution will not change any of the conditions asso-
eiated with blocks on the TBE 1ist, That is, select
those blocks which make read only accesses to variable
vhich are involved in condicions om the TBE 1list,
Exccute the sclected blocks in any order and remove
from the TBE 1list,

Note 13+ 1If any nevw interrupts are genarated during

the exccution of any of the blocks exscutcd 1n Step 2,
add the new (b,c) pairs to the TBE 1ist and mark the
new blocks as level 2, Also remove these blocks from
the PB 1list,

Note 2: 1If any PERFORM,.,WHEN statemcnts are issued

by any of the blocks executed, add the (b,c) pairs
to the “reschedule” 14182, and not to the P 1istc.

Test the condition, ¢ , for the next (b,c) - pair
marked as level 1 on the TBE 1ist, If ¢ 4s true, go
to Step 4, 1f ¢ 4s false, go to Step 3, 1If the end
of the TBE 1iat has been reached, go to Step S,

Execute the selected block and remove the associated
(b,e) peir from the TBE 1ist, MNotes 1 and 2 abova
apply to this execution, When execution is completed,
go to Step 3,

Flag all blocks remaining on thae TBE 1ist at level as
“in conflict,” and remove thcse patirs from the TBE
1ist, placing the pairs on the "reschedule" 1ist, 1f

. the TBE 1ist is now expty, go to Step 6, 1If not, go

to Step 1,

Add the (b,c) pairs on the "reschedule" 1ist to the
PB list and delete the "reschedule" 1list, Return
control to the main program at the point where the
first interrupt occurred,

- 11 -

It is instructive to examine the performance of this
slgoritho on the exawples given above, In example 1, the pair
vhich had been placed on the 1list first would be executed first,
In the oc;ond exanple, the slgorithm would first execute block
B3, vhich desires only to read the value of X , and then would
execute B4, B3 might, for exasnple, be printing an exception
teport while B4 might actually take action on tho exceptional
condition, Io exanple 3, the nev (b,c) pair would not be
placed on the PB list until BS vas exited, theredby eliminating
the nesting problen,

Step 5 4n Algorithme A, vhich flags contlic;c in sccordance
vith criterion 6, is s vather important festure of DPL's handling
of fnterrupt blocks. If there is more than one programmer at
vork designing and prograaning parte of s large system, ambi-
guities in the description of the responsas of the systenm wlli
often arise, The slgorithm actually tries to cope with these
sabiguities, and only aftar ell means of coping with the ambi-
guity have failed will it give up. Another example of this type
of algoritha has recently appeared in the context of decision
tables [4]. This bears & close relation of DPL's problems since
the entire program controlled interrupt structure may be thought

of as an asynchronous decision table processor,

4, Yile Tegging
When & data base is shared smong several users, one must
be careful to sssure that when & user is s0difying pesrt of the

data base, he §s veally vorking on am element of this dats base,

-12 -

and not a copy of this element, For exsaple, if two parallel
processors each try to fetch an element, sdd 1 to it, and store
it back at the gsame tim2, the result will be original value plus
1, and not plus 2 es is requized, The DPL system takes pains to
keep track of the current location of all elements of the data
base, so that when & condition is evaluated, all values used in
the evaluation are current, This may sometincs require access
to secondary storage, If a file containing & value of a variabl
which 1is on the PB 1ist {s closed, file tagging will take plae ,

When s file 1s tagged, tha conditions on the PB list which
contain elements of that file, along with the sssociated {interry
processing blocks, sre attached to the file, {.e., pointers
to thess items are added to the file, 'Hhcu that file 1s next
opened for sccess, either by the user vho tagged the file or any
other, any conditions which are attached to the file are added
to the current PB list, The initial user has, so to speak,
put his tags on the file specifying conditfons on some elenents
of the file and, if those conditions should become true, sppro- .
priate processing action, -

Several successive programmers may all put their tags ou';.{
file, the effect being cumulative, Whenever the file ie opened,
81l of the sssociated conditions are added to the current uacx.‘
P 1list, Of course, sny tag may be removed from s file by ‘
opening it, fsouing & CANCEL, sad closing it,

One previous attempt to connect programs snd files vas made

by Lomdardi [6]). His attempt wae bdased en static decision table

."u

logic and vaé more sulted to production control tham for use s
8 bullding bdlock for mansgement information systens,

Vhen saveral different programmers wish to share the date
base, vhich 1s the normal case, certain naming conventions muet
be follovod by thase programmers so that the scheduling mechanism
¢8n vork proparly. These conventions could be eliminated in o

"production system, but would leave thae system opan tg aore srrors
than can occur when the conventions are in force. They insure
that any field of a filec will aluays be given the same name by

all programs accessing that field,

S. A _New Organization for Management Information Systcnms

The use of the file tagging and program controlled inter-
tupe featurcs asllows & new organization for management systems,
Rather than the four parts mentioned at the start of this paper,
the management information system would consist of two parts;

& tagged data base and a supcrvisor program, The contrast be-
tveen this form of organization and current methods of organizing
systens 1is shown graphically in Figure 1, The new organization
is closely related to parallel processing while the old reflects
years of sequential processing experience.

In the parallel system, each program is writtaen tndapcp-
dently of all others, and 1is then attached to a file. The
programaer also provides the supervisor with the PERFORM,..WHEN
statements needed to start the execution of his program, Ppor
exaople, the inventory file might be tagged with one sat of

programs by which the order emtry requests are handled and a

det of tage vhich would ensure that {aveantory control ruas wete
uade vhen the stock lavel dropped belov & preset order poiant,
In the sequentisl system, the order entry programmers would have
to work intinately with the inventory control progracmers to

ensure everyone's satisfaction,

DPL ORGANIZATION STARDARD ORGANIZATION
=== ====== r.r::':._i--_--
‘ SUPERVISOR | ') SEQUENCE MASTER PILE

o wn o wn w- - w- - = e o o

| PERFORM A WHEN conpy |
PERFORM B WHEN COND2 |

' l
Ltzasonucwuzu conD3 | | r:-!
oYY b1
rrroaro G
Al |8 ¢ I
| !
L....J' L.._l L_..! | J,_ .-1,
' f] 1 r c 1
Led Loa
b

Pigure 1. Information Systems Organization,

The supervisor programs would first open all of the files
4a the data base, thereby setting up a large PB list with all
of the conditions which must he monitored., It would then open
the remote terminale and either begin to poll thea or accept
device interrupts, Finally, the supervisor would begin the
execution of some background task,

' If ono of the terminals interrupted and requested the

program to update a particular file, that program would be

- 15 -

executed, possibly setting off a chain of exccution of othar
interrupt blocks., After procecssing wvas finished, the lyltllb
would return to its background task,

The conflict recording mechanism of Algorithm A would
indicate to a programmer when he was in conflict with some other
progracmer's requests for s file. These conflicts could then be
bandled manually between the programmers, What this amouants to

49 using the filcs as the main interface baetwveen programmers.

6. Suomary and Conclusions

An organization has been proposed for management information
systens. This organization is based on e generalized interrupt
structure and scheduler, and 8 method of asssociating programs
vith elements of the dats base, cslled filg tagging, This .
Otgauliattou is valuable for two rveasonst

1, It pakes the division between those parts of s systen
which perforam processing and those parts which scheduls
that processing clear, This may allow programmers
of varying sbilicty to be assigned to that section for
vhich they sre best sufited,

2, It allows the large number of programmetrs usually
{ovolved in writing 8 system to communicate and resolve
conflicts regarding the data base in an automated
sanncr, through the system, This may tend to reduce the
bugs which arise when this comaunicstions chd conflict

"tesolution is done manuslly,

It 1s hopad that the advent of systems which sllov easy
sicroprograsning of special functions will permit anm implementas-
tion of these idess in the construction of & resal menagement

jufornstion system.

1.

3.
6,

1.

10.
11.
132,

3.

- 16 -
REFERENCES

Hendry, D, Provisional BCL Manual, Imstitute of Computer

Sciences, London, England, 1966, ,

IBM 709 Data Processing System, IBM Manual No, A22-65136,
1959,

IBM 7040 Principles of Operation. IBM Manual No, A22-6649,
962,

Jackson, M,A, The need for fmprecision, Datamation 14
(February 1968), 143-144, -

Kiviat, P.J., Villenvevs, D,, and H, Markowits, The

—

SIMSCRIPT II Programming Language. Englevood Cliffs, N,J.:
Prentice dall, 1969,

Lombardi, L, A general business oriented languaga based

on decision expressions. Comm, ACM 7 (Pebruary 1964),
104-111,

Morzan, H.,L, DPL: A language for {nstruction in conteao-
porary data processing concepts.’ Tachnicel Report, No, 53,
Department of Opcrations Research, Cornell University,
Ithaca, lew York, 1968,

05/360: Concepts_and Facilities, IBM Manual No, C28-6535-

1965,

Opler, A, Fourth generation softvare, Datamation 13
(January 1967), 22-24,

PL/I Language Specificationg., IBM Manual WNo, C28-6571-4,

January 1965,

Small Computer Handbook., Digital Equipment Corporation,
Maynard, Maes,, 1967,

System 360 Principles of Operstion., IBM Manual No,
A22-6826-6, 1967,

Wegner, P. Programming Lan e orm [uctur
nd Machine };;3311‘;123. New York: MNcGraw I%lf Book
55'9"70 1968, -

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif

