ORTHOGONAL SERIES 1 BALANCED INCOMPLETE BLOCK DESIGNS

A FURTHER NOTE

Joiner, J. R. and Federer, W. T.

BU-452-M

February, 1973

ABSTRACT

The incidence matrix of the orthogonal Series 1 Balanced Incomplete Block Design has parameters

$$v=n^2$$
 $b=n(n+1)$ $r=n+1$ $k=n$ $\lambda=1$.

The existence of n-l orthogonal latin squares of order n is sufficient to construct this design.

This paper utilizes a latin square, L_0 , of order $n=p^s$, p a prime, constructed by an automorphism of order $t=p^s$ -lacting on the elements of the Galois Field, $GF(p^s)$, to construct the incidence matrix mentioned above. It is shown that L_0 induces n permutation matrices of order $n \times n$, $P_1=I,P_2,P_3,\cdots,P_r$, which taken together with the matrices T_i of order $n \times n$ composed of 1's in the i^{th} column and 0 elsewhere can be put in the following form:

$$N = \begin{bmatrix} T_1 & P_1 & P_1 & \cdots & P_1 & P_1 \\ T_2 & P_{j_2,1} & P_{j_3,2} & \cdots & P_{j_2,n-1} & P_1 \\ T_3 & P_{j_3,1} & P_{j_3,2} & \cdots & P_{j_3,n-1} & P_1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ T_{n-1} & P_{j_{n-1,2}} & P_{j_{n-1,2}} & \cdots & P_{j_{n-2,n-1}} & P_1 \end{bmatrix}$$

with the result that NN' = nI + J . The choice of $P_{j_1, \frac{1}{k}}$ depends on the automorphism.

An example with $n=3^2$ is given.

ORTHOGONAL SERIES 1 BALANCED INCOMPLETE BLOCK DESIGNS

A FURTHER NOTE

Joiner, J. R. and Federer, W. T.

BU-452-M

February, 1973

INTRODUCTION

Federer and Raghavarao (1972) constructed an OS1 Balanced Incomplete Block design as follows: Let T_i be an n x n matrix with 1's in the ith column and 0's elsewhere for $i=1,2,\cdots,n$. Let P_0,P_1,\cdots,P_{n-1} be n matrices of order n x n obtained by cyclic permutation of the identity matrix of order n. When n is a prime number,

$$N = \begin{bmatrix} T_1 & P_0 & P_1 & P_2 & \cdots & P_{n-1} \\ T_2 & P_1 & P_3 & P_5 & \cdots & P_{n-1} \\ T_3 & P_2 & P_5 & P_8 & \cdots & P_{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ T_n & P_{n-1} & P_{n-1} & P_{n-1} & \cdots & P_{n-1} \end{bmatrix}$$

and is the incidence matrix of the BIB design with parameters

$$v=n^2$$
, $b=n(n+1)$, $r=(n+1)$, $k=n$, and $\lambda=1$

In an addendum it was shown that the use of transversals of a latin square of order 4 along with proper choice of the subscripts of the P_i 's would make a similar construction for $n=2^2$.

Paper Number BU-452-M in the Mimeograph Series of the Biometric Unit, Cornell University.

This paper presents a construction for $n=3^2$, a relationship between n permutation matrices induced by a latin square of order n constructed by the group automorphism technique, and a method of viewing the square as a multiplication table of the permutation matrices. This represents an extension of results by Hedayat and Federer (1969). Lastly, a proof is given to show that a construction is possible for any $n=p^s$ for p a prime number.

The 3² Construction

The construction of 3² starts with the following square from page 63 of Fisher and Yates (1948).

1	2	3	4	5	6	7	8	9
3	1	2	6	4	5	9	7	8
2	3	1	5	6	4	8	9	7
7	8	9	1	2	3	4	5	6
9	7	8	.3.	1	2	6	4	5
8	9	7	2	3	1	5	6	4
4	5	6	7	8	9	1	2	3
6	4	5	9	7	8	3	1	2
5	6	4	8	9	7	2	3	1

Nine permutation matrices P_1 =I, P_2 ,..., P_9 are formed by inserting a 1 in P_i where i appears in the above square. These matrices form a group under matrix multiplication and their multiplication table is represented by the above square using the first column and row as headings. The arrangement which forms the incidence matrix of a BIB is

since N N' is of the desired form, 9I + J. The second to the ninth columns of the above matrix correspond to the first columns of the 8 orthogonal squares for a latin square of order 9 as given in Fisher and Yates (1948) with the column of T's and P_1 added.

The Matrices as a Group

Let L_O be a latin square of order $n=p^S$, p a prime number, which was constructed by an automorphism, A, of order $t=p^S-1$. Using the Galois Field $GF(p^S)$, such an automorphism is known to exist, and L_O can have the following construction for x an element of $GF(p^S)$:

$$L_{0} = \begin{bmatrix} 0 & A(x) & A^{2}(x) & A^{3}(x) & A^{t}(x) \\ A(x) & A(x)*A(x) & A(x)*A^{2}(x) & A(x)*A^{3}(x) & \cdots & A(x)*A^{t}(x) \\ A^{2}(x) & A^{2}(x)*A(x) & A^{2}(x)*A^{2}(x) & A^{2}(x)*A^{3}(x) & \cdots & A^{2}(x)*A^{t}(x) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ A^{t}(x) & A^{t}(x)*A(x) & A^{t}(x)*A^{2}(x) & A^{t}(x)*A^{3}(x) & \cdots & A^{t}(x)*A^{t}(x) \end{bmatrix}$$

O is the identity element of the addition table and * is the additive operation on

 $GF(p^S)$. Obviously L_O can be regarded as an addition table for $0,A(x),\cdots,A^t(x)$ under * . Permute the rows of L_O to M_O such that 0 is on the diagonal and form the set $P = \{P_O = I, P_1, \cdots, P_{n-1}\}$ where P_i is formed by putting a 1 in the locations in P_i where $A^i(x)$ appears in M_O ; P_O represents 0 in this manner.

Theorem 1: The set P forms a group under matrix multiplication and M_O (or L_O) represents the multiplication table of this group with * interpreted as matrix multiplication and O as the identity for multiplication.

P is closed because if one multiplies P_m by P_r , the resulting 1 in (say) the (i,j) location represents the product of 1's in the locations in P_r and P_m where in M_O ,

$$A^{i}(x) * A^{k}(x) = A^{r}(x)$$

$$A^{\ell}(x) * A^{j}(x) = A^{m}(x)$$

 $A^k(x)$ is in the k^{th} column and $A^k(x)$ must be in the k^{th} row; hence, since M_0 has O's on the diagonal, $A^k(x)$ and $A^k(x)$ are inverses under * . From the preceding

$$A^{i}(x)*A^{k}(x)*A^{l}(x)*A^{j}(x) = A^{i}(x)*A^{j}(x) = A^{r}(x)*A^{m}(x) = Constant$$
.

This shows closure of P and the use of M_O as its multiplication table.

The inverse of P_i is its transpose. Suppose that P_i has a 1 in (k,j). Since only the rows of M_O were permuted, the entry in M_O corresponding to (k,j) in P_1 is

$$A^{k}(x)*A^{j}(x) = A^{i}(x) ,$$

and its transpose is

$$A^{S}(x)*A^{M}(x) = A^{\ell}(x) .$$

But $A^{j}(x)$ and $A^{s}(x)$ are in the jth column and row respectively and hence are inverses. Likewise, $A^{k}(x)$ and $A^{m}(x)$ are in the same row and column; therefore,

$$A^{k}(x)*A^{j}(x)*A^{s}(x)*A^{m}(x) = 0 = A^{i}(x)*A^{k}(x)$$
.

This shows that $A^{\ell}(x)$ is the inverse of $A^{i}(x)$ under * and that $P_{i}^{!} = P_{\ell}^{}$. This completes the proof, since associativity obviously holds. The conditions of the theorem are not necessary but are compatible with the purpose of this paper.

Construction of the Incidence Matrix N

The elements of the automorphism A form a group under a composition of mappings. We form a t \times t matrix, M whose i th column is the result of $A^{i}(A^{j}(x))$ where $A^{j}(x)$ is the entry in the successive rows in the first column of M_{O} , j=1,2,...,t.

$$M = \begin{bmatrix} A^{j_1}(A^{k_1}(s)) & A^{j_2}(A^{k_1}(x)) & \dots & A^{j_t}(A^{k_1}(x)) \\ A^{j_1}(A^{k_2}(x)) & A^{j_2}(A^{k_2}(x)) & \dots & A^{j_t}(A^{k_2}(x)) \\ \vdots & \vdots & & \vdots & \vdots \\ A^{j_1}(A^{k_t}(x)) & A^{j_2}(A^{k_t}(x)) & \dots & A^{j_t}(A^{k_t}(x)) \end{bmatrix}$$

where $j_i=1,2,\cdots$, t for $i=1,2,\cdots$, t and k_i^i ranges over the same values. Note that the 0 entry in the top of the first column of M_0 is not used.

Theorem 2: The vector $t' = (A^{j_1}(A^k j(x)) * A^{j_1}(A^{k_m}(X)), A^{j_2}(A^k j(x)) * A^{j_2}(A^{k_m}(x)), \dots, A^{j_t}(A^k j(x)) * A^{j_t}(A^{k_m}(x)))$ contains the distinct elements $A^1(x), A^2(x), \dots, A^t(x)$ in some order, for any choice of k,m, k in .

Suppose that

$$A^{j_1}(A^{k_j}(x))*A^{j_1}(A^{k_m}(x)) = A^{j_s}(A^{k_j}(x))*A^{j_s}(A^{k_m}(x))$$

Since A is a homomorphism,

$$A^{j_{\mathfrak{s}}}(A^{k_{\mathfrak{s}}}(x) * A^{k_{\mathfrak{m}}}(x)) = A^{j_{\mathfrak{s}}}(A^{k_{\mathfrak{s}}}(x) * A^{k_{\mathfrak{m}}}(x))$$

or

$$A^{j_i}(x) = A^{j_s}(x)$$

which contradicts the assumption that A is of order t .

Since P_i and $A^i(x)$ have the same multiplication table setting $P = A^{j_i}(A^{k_m}(x))$ for each entry in M forms a matrix M with the same properties as M . Specifically the products of any two rows of M result in the t distinct products, P_1, P_2, \cdots, P_t and the sum of these is J - I.

Theorem 3:

$$\mathbf{N} = \begin{bmatrix}
\mathbf{T}_1 & \mathbf{P}_0 & \mathbf{P}_0 & \cdots & \mathbf{P}_0 \\
\mathbf{T}_2 & & & \mathbf{P}_0 \\
\vdots & \vdots & \mathbf{M}^* & \vdots & \vdots \\
\mathbf{T}_n & & & \mathbf{P}_0
\end{bmatrix}$$
n X n

is the incidence matrix of a BIB design, that is, NN' = nI + J.

Lemma: If row i of M* contains P_{j1},P_{j2},...,P_{jt} in that order then there is a row in M* containing P'_{j1},P'_{j2},...,P'_{jt} in the same order.

The proof of the lemma depends upon the properties of A . P_{j_1} in M^* corresponds to $A^S(A^t(x)) = A^{j_1}(x)$ in M . There is a row in the same column of M as P_{j_1} where $A^S(A^m(x)) = A^u(x)$ is the inverse under * of $A^{j_1}(x)$. This means that

$$A^{s}(A^{t}(x)) * A^{s}(A^{m}(x)) = A^{s}(A^{t}(x) * A^{s}(x)) = 0$$

which implies that

(1)
$$A^{t}(x) * A^{m}(x) = 0$$
.

Since (1) holds across the entirety of the two rows in question, $A^{\mathbf{j_i}}(x)$ in row i is inverse to every element in the row where $A^{\mathbf{j_i}}(x)$ has its inverse equal to $A^{\mathbf{u}}(x)$.

To return to the proof of the theorem, note that the diagonal elements of NN'

are of the form $\left(T_{\mathbf{i}}T_{\mathbf{i}}^{\mathbf{i}}=J\right)+\left(\sum_{k=1}^{\underline{t}}P_{\mathbf{j}_{k}}P_{\mathbf{j}_{k}}^{\mathbf{i}}=nI\right)=J+nI$. On the off-diagonal

one has the sum of 3 items:

a.
$$T_i T_j' = 0$$

b.
$$P_{j_1}P_{k_1}^i + P_{j_2}P_{k_2}^i + \cdots + P_{j_t}P_{k_t}^i$$

but the lemma shows that this is just the product of two rows of M^* and hence is equal to J - I .

c.
$$P_0P_0' = I$$

The sum of quantities in a, b, c is J. This completes the proof of theorem 3.

References

- 1. Federer, W. T. and Raghavarao, D. [1972]. A note on the construction of orthogonal series 1. Mimeo No. BU-434-M in the Biometrics Unit Series, Cornell University.
- 2. Fisher, R. A. and Yates, F. [1948]. <u>Statistical Tables for Biological</u>, <u>Agricultural and Medical Research</u> (1st edition 1938), 3rd edition, Hafner Publishing Co., <u>Inc.</u>, N. Y.
- 3. Hedayat, A. and Federer, W. T. [1969]. An application of group theory to the existence and nonexistence of orthogonal latin squares. Biometrika 56: 547-551.