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Abstract 
The wide applicability of Gibbs sampling has increased the use of 

more complex hierarchical models. In such situations, to perform a 
Bayesian analysis an experimenter may be faced with the task of spec­
ifying values for hyperparameters in the deeper levels of a hierarchy. 
Such specifications can be difficult, as intuition tends to break down. 
A typical remedy is to estimate these hyperparameters, and proceed 
as if they were exactly specified. We examine the impact of this, and 
investigate the properties, and resulting inference, from a Gibbs sam­
pling algorithm used in this manner. We also detail a computational 
algorithm that, with little additional effort, can produce all of the 
required estimates. 
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1 Introduction 

Computation using the Gibbs sampler (Geman and Geman 1984. Gelfand 
and Smith 1990) has made estimation in complex hierarchical models not 
only feasible, but almost routine. A consequence of this is that, to do a 
Bayesian analysis, an experimenter may be asked to specify values for hy­
perparameters. A difficulty arises here in that such values may be difficult 
to specify, defying not only intuition, but also any obvious connection to the 
problem at hand. 

One consequence of this difficulty with hyperparameters is that they tend 
to be ignored. There is some basis for this, as there is a certain "robustness" 
to specification of parameters that lie deeper in a hierarchy (Goel and De­
Groot 1981). However, there is not a universal robustness and, especially if 
the hyperparameter is estimated, it could be important to assess the actual 
sensitivity of the inference to the specification of the hyperparameter. 

As an example, a veterinarian was interested in modeling occurrences of 
clinical mastitis in dairy herds. If ()i i = 1, 2, · · · ,p, is the mean rate of 
occurrence of clinical mastitis in herd i, and Xi = is the observed number 
occurrences of mastitis in herd i, a hierarchical model is 

(1) 
Poisson ( ()iti) 

Gamma (a,/3) 
j3 "' Gamma (a, b) 

where ti is the known size of herd i. A typical goal of the analysis it to 
estimate the posterior distribution of ()i· To do so requires specification 
of not only the prior parameter a, but also of the hyperparameters a and 
b. Although an experimenter may have some idea of a reasonable value 
for a (although specifying a can be a challenge), it is almost certain that 
specification of a and b will be guesswork. 

The veterinarian was not willing to specify these values for f3, and we 
were asked to estimate them. Such a procedure seems common, especially 
in Gibbs sampling implementations. For example, consider the approach 
of Gelfand and Smith (1990) in their seminal paper. In analyzing the oft 
analyzed ''pump-failure data" (Gaver and O'Muircheartaigh 1987), which is 
modeled with the hierarchy (1) defining xi =number of failures, ti =known 
time to failure, Gelfand and Smith set a= .1, b = 1, and estimated a from 
the data. They did not address the effect of estimating a. 
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Figure 1: Posterior density for the mean rate of clinical mastitis infection in a 
herd, and envelope of density functions corresponding to a 90% (asymptotic) 
confidence cube on a, b, and a . 
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Figure 1 shows the results of the analysis that we propose. The poste­
rior distribution is calculated using estimated values of the hyperparameters. 
Along with this posterior density, we also depict an envelope of densities cor­
responding to the values of the hyperparameters that lie in a 90% confidence 
cube. This confidence cube is constructed using likelihood methods, and is 
valid (asymptotically) with respect to the marginal distribution of the data. 
Moreover, a picture similar to this can be constructed for various ranges of 
the hyperparameters. This would give a good idea of the effect that the value 
of the hyperparameter had on the resulting posterior density, and thus iden­
tify the importance of the hyperparameter in the overall inference. Details 
are given in Section 5. 

The actual model that we are fitting is, in fact, an empirical Bayes model 
in the spirit of Morris (1983) and Efron (1996). Moreover, the EM/Gibbs 
algorithm that we describe in Section 4 can be adapted to the set-up of 
Efron (1996). To overcome some of the difficulty in calculating marginal 
MLEs, Efron considered models based on the exponential family. Using the 
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EM/Gibbs algorithm described here, the applicability of Efron's models can 
be expanded. Moreover, in contrast to the comments of Gelfand (1996), 
with our new algorithm, it may be the case that the empirical Bayes model 
is now easier to fit than a hierarchical model. We discuss this point further 
in Section 6. 

A common implementation of the hierarchy (1) is to estimate some subset 
of a, a, and b (and specify the remaining ones), and calculate 1r( (}i lx, &, a, b) 
from the Gibbs sampler. Strictly speaking, this is not a Bayesian analysis, as 
the posterior distribution will depend on estimated hyperparameters. In fact, 
this is a "classical empirical Bayes" case (see, for example, Morris 1983) where 
we need to account for the variation due to the estimated hyperparameters. 
We proceed as follows. Conditional on the values of the hyperparameters, 
we are content to use a Bayesian posterior distribution. However, at the 
hyperparameter level, we will use maximum likelihood theory to assess the 
errors, and then use these errors to understand how precise our estimated 
posterior distribution is. We are thus using a frequentist error calculation to 
assess the accuracy of a Bayesian inference, which is much in the spirit of a 
robust Bayes analysis. Our main concern is with the properties of such an 
estimated procedure. 

Bayesian inference based on data-dependent priors is not new, and can 
be traced back to, at least, to the robust Bayes formulation of Berger (1984), 
although one could argue that the nonparametric empirical Bayes formula­
tion of Robbins (1964, 1983) is also a case of this. (However, Robbins was 
not directly concerned with a Bayesian inference, rather with a minimax 
property.) In addition to the previously mention parametric empirical Bayes 
formulation of Morris (1983) (see also Carlin and Louis 1996), other recent 
uses of data-dependent priors include O'Hagan (1995), Berger and Perrichi 
(1996) and Shively, Kohn and Wood (1997). This last paper is similar in 
spirit to our approach, but does not go into as much detail on assessment of 
the effect of hyperparameter error. 

The remainder of the paper is organized as follows. In Section 2 we 
develop the data-driven Gibbs sampler, and illustrate it with a "toy example" 
that we will repeat throughout. (The purpose of this example is to illustrate 
the working of the procedure in a simple situation.) Section 3 looks at some 
theoretical properties of the estimated posterior distribution, and gives a 
convergence result (with the proof in the Appendix). Section 4 goes into 
detail on the implementation in real problems. Here we show that with very 
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little overhead, the entire data-driven Gibbs sampler can be implemented 
using little more than the calculations of the original Gibbs sampler. In 
Section 5 we apply the data-driven Gibbs sampler to the data described in 
the introduction, and Section 6 contains a discussion. 

2 The Data-Driven Gibbs Sampler 

The Gibbs sampler has found many of its applications in hierarchical mod­
els. We begin by defining a "generic hierarchy'', from which we develop the 
Gibbs sampler and its data-driven version. Let X have sampling distribution 
f(xiO, 'if;), where 0 is a parameter of interest and 'if; is a nuisance parameter. 
We observe p independent copies of X, each with its own parameter 0. We 
then model the Oi with a common prior distribution, whose parameters may, 
in turn, have a prior distribution. This all results in what has come to be 
known as a conditionally independent hierarchical model (Kass and Steffey 
1989) 

(2) 
Xi "' f(xiOi, 'if;) i = 1, 2, · · · ,p 

oi "' 1r(OIA, '1/.J) 

A "' g(AI'l/J). 

Although we model A as a common parameter (the simple empirical Bayes 
case), neither A nor 'if; need be scalars. 

In a typical application of the Gibbs sampler, where we assume that 'if; is 
specified, based on the observations Xp = (x1 , · · ·, Xp) we would set up the 
iterations 

(3) o<HI) "' 7r(OI:xp,'if;,A<i)) 
A(Hl) "' g(AI:xp, '1/J, o<HI)) 

for j = 1, ... , M, to produce estimates of the marginal posteriors 

n(OI:xp, 'if;) and g(AIXp, 'if;). 

If the experimenter is unable, or unwilling, to specify 'if;, an alternative is to 
first estimate 'if; with -J;P and run the data-driven Gibbs sampler iterations 
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(} "' 1r(Oixp, {/;p, .A) 

A "' g(-AIXp, {/;p, 0). 

The Gibbs sampler works as usual, that is, as in (3), and, for example, 
produces the estimated posterior distribution 

(4) 

Our fundamental concern is to understand in what sense we can consider 
1r(OIXp, {/;p) to be an estimate of 1r(OixP, '1/J). 

Toy Example. To illustrate these points, we look at the following stylized 
situation, in which there is no Gibbs sampling. Suppose we observe Xp = Xp 

= (x1,· · · ,xp) where 

(5) xi "' .N(oi, 1) 
(}i "' .N(O, T 2 ) 

where T 2 is unknown. Consider estimation of (}1 (the other (}is are similar). 
The desired posterior distribution is 

If we now try to estimate T 2 with f 2 , an obvious candidate estimator is the 
MLE from the marginal likelihood 

(6) 

We then compute b = ;.2 /(1 + ;.2), and estimate the posterior distribution 
with .N(bx11 b). How valid are the inferences that can be drawn from this 
estimated posterior distribution? II 
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3 Convergence of the Posterior 

The classic results on consistency of Bayes estimators date back to Doob 
(1948), and are given a rigorous treatment by Schwartz (1965) and Diaconis 
and Freedman (1986); see also Schervisch (1995, Section 7.4.1). The basic 
theme of these results is that as the amount of data increases without bound, 
the posterior distribution tends to a point mass at the true value of (). In 
the situation that we are considering, these results are not exactly what we 
want, as our situation is closer to an empirical Bayes model. The results 
of Datta (1991) are more in the spirit of the present model, but again are 
not exactly applicable. However, the structure that we assume, especially the 
underlying likelihood estimation, allows a fairly straightforward development 
of the needed theory. 

Starting from the generic hierarchy (2), the posterior distributions of in­
terest are1r(Orl:xp,'¢), for r = 1, ... ,p. The Gibbs sampler estimates this with 
the average of the conditional densities. With an estimated hyperparameter 
-0p, the MLE of 'If) under the marginal distribution m(:xpl'¢), the development 
in the Appendix gives conditions under which 

(7) 

in probability. More precisely, for a compact set A, we have that 

in probability. 
We note that, in some sense, the Gibbs sampler is an irrelevant concern. 

Apply the triangle inequality to the integrand in (8) to see that 

I ~ t 1r( ()i lxp, -0P, A (j)) - 1r( ()i l:xp, '¢)I < 
j=l 

(9) 

1 ~ A ( ") A I M L..1r(OilxP, 'lf)p, A 3 )- 1r(OilxP, 'lf)p)l 
j=l 

+ l1r(OiiXp, -0P)- 1r(Oilxp, '¢)1 

The first term on the right side of (9) only involves the estimated -0P. Here 
we are running the Gibbs sampler with this estimated value, which has no 
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effect on the numerical properties of the Gibbs algorithm. So, as long as we 
are using an ergodic Markov chain, we can be sure that this term converges 
to zero. The second term is of more concern, as its convergence is governed 
by the probabilistic structure of the problem. Conditions for its convergence 
are detailed in the Appendix. 

4 Implementation 

The results of the previous section give us some assurance that the inferences 
we draw from the estimated posterior will be reasonable. Since we are using 
maximum likelihood methods to estimate '1/J, and we are basing our inferences 
on the marginal distribution of X 1 , ... , Xp, we have available the "machin­
ery" of likelihood to help us make these inferences. However, before getting 
to this point, we first address a point that, in practice, could be a problem. 

To use a marginal MLE to estimate the hyperparameter '1/J requires com­
putation of the marginal likelihood function. Referring back to (6), such a 
calculation could require a high-dimensional integration. Although we can 
do the calculation in the toy example, it is unlikely that such calculations 
can be done in practice. Moreover, we note that one of the strengths of the 
Gibbs sampler is that it avoids having to use high-dimensional integration to 
compute marginals, so it is counterproductive to re-introduce such a calcu­
lation. Fortunately, for the structure induced by the Gibbs sampler, and for 
calculation of a marginal MLE, there is an EM algorithm that is virtually 
automatic to implement. 

For the generic hierarchy (2), notice that the marginal likelihood for 'ljJ 
can be written as 

(10) L('l/Jix) = L('l/Jix, fJ, A). 
?r(fJ,Aix,'lj;) 

where L('I/Jix, fJ, A) is the conditional likelihood of 'ljJ and 1r(fJ, Alx, '1/J) is the 
posterior distribution of (9, A) given '1/J. This expression for L('I/Jix) leads to 
the EM identity 

log L('I/Jix) E[log L( '1/Jix) l'¢0] 

E[log L('l/Jix, fJ, A)l'l/Jo]- E[log 1r(fJ, Alx, '1/J)I'l/Jo] 

where the expectation is taken with respect to 1r(fJ, Alx, ¢0 ). 
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Return to the Toy Example. In the toy example the conditional likelihood of 
T 2 is 

We then get 7r(8lx, f 2 ) from the EM iterations 

where the expectation is taken with respect to N(b(k)x, b(k) I), and b(k) = 
T 2(kl /(1 + T 2(kl). Of course, the conditional likelihood function for T 2 is 
merely the product of the densities in the hierarchy, making its calculation 
easy. 

Rather than actually computing the above expectation, we will instead 
use the Monte Carlo version of the EM algorithm , which has iterations 

2(k+l) 1 ~ 2 ( ") 
T = argmaXr-2 M .L....log L(T lx, 8 3 ), 

j=l 

where we generate a sample 8(l)' ... '8(M) from N(b(k)x, b(k) I). 

In the generic hierarchy (2) we have the Monte Carlo EM iterations 

(11) '1/J(k+l) = argmax1/l ~ t log L('I/Jix, 9U), >.(j)). 
j=l 

II 

As noted, calculation of the conditional likelihood on the right side is straight­
forward. However, what makes this EM algorithm automatic is that the ex­
pectation is taken with respect to the distribution 1r(8, .Aix, 'ljJ(k)), which is 
exactly the output from the original Gibbs sampler. That is, if we specify 
that '1/J = 'ljJ(k), the original Gibbs sampler produces a sample from the dis­
tribution that we want. So we have the following algorithm to produce the 
data-driven Gibbs sampler posterior estimate 

Algorithm. For the generic hierarchy (2) 

1. Set k = 0 and initialize 'ljJ(O) 

2. Generate a sample (8(j), >.(j)), j = 1, ... , M from the Gibbs sampler 
which iterates on 1r(8lx, >., '1/J(k)) and 7r(.Aix, 8, 'ljJ(k)) 
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3. Update 'lj;(k) with the Monte Carlo EM iteration (11) and return to step 
2 of the algorithm. 

4. At convergence of 'lj;(k) to the marginal MLE {/;P, produce a final Gibbs 
sample from 1r(8lx, .A, {/;p) and 1r(.Aix, 8, {/;p) 

The final Gibbs sample can then be used to construct posterior estimates 
such as (4). We can, therefore, produce the data-driven Gibbs sample merely 
by looping on the original Gibbs sampler, and no integrations are required 
for calculation of the marginal likelihood estimates. The only additional 
computation is the maximization in the EM algorithm. 

5 Practice 

To illustrate the use of the algorithm of Section 4, we will first look at the 
model used by Gelfand and Smith (1990) to analyze the pump failure data. 
Starting from the hierarchy (1), they assumed that a = .1 and b = 1, and 
that a was unknown. This yields the Gibbs sampler 

(12) 
(}i lx, a, ,B "' Gamma( xi + a, [ti + 1 I ,Bt 1) 

,Bix, a, 8 "' IG(pa +a, [L (}i + 1/bt1 ) 

where Gamma( a, ,B) is the gamma distribution and IG(a, b) is the inverted 
gamma distribution. We then have the conditional likelihood function 

and marginal likelihood function L(alx) = L(alx,8,,8)/7r(8,,Bix,a). 
The Algorithm of Section 4 is: 

1. Set k = 0 and initialize &(0). 

2. Update &(k) ----t &(k+l) by 

&(k+l) = argmaxa ~ f: log L( alx, 8(j), ,B(j)) 
j=l 
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3. For j = 1, ... , M, generate from the Gibbs sampler (12) 

(J(j) rv 7r(0Jx, a(k), fJ(j-l)) 

fJ(j) rv 7r(/3Jx, a(k)' (J(j)) 

and return to step 2. 

4. On convergence of aCk) ~ a, generate 

and estimate 

O(j) rv 7r(OJx,a,f3Ci-l)) 

f3(j) rv 7r(f3Jx, a, (J(j)) 

1 M . 
~ M L 7r(OJx, a, f30)) 

j=l 
7r(0Jx, a) 

1 M . 
7r(f3Jx, a) ~ M L 7r(f3Jx, a, (JCJ)) 

j=l 

which are consistent estimates of7r(OJx,a) and 7r(f3Jx,a). 

Note, once again, that with the exception of the maximization step, only the 
calculations of the original Gibbs sampler are needed. 

In addition to calculating the values of the hyperparameters, the EM 
algorithm brings along methodology for calculating the standard errors of 
these estimates (see, for example, Tanner 1996, Section 4.4). The advantage 
to this is that along with the estimated posterior distribution, we can also 
display the envelope of posterior densities corresponding to a range of the 
hyperparameter. Figure 2 displays an estimated posterior along with an en­
velope of posterior densities corresponding to a 90% (asymptotic) confidence 
interval on the hyperparameter. 

As an aside, we have also found that for smaller problems (like this one) 
some computer algebra programs can actually calculate 

[)2 

- f)a2 log L(aJx) -~ t, ::,, log L {a lx, IJ(i), !'l(j)) 

+ ~ t, ::.2 log 1r ( IJW, l'i(JJ lx, a). 
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Figure 2: Posterior density for mean time to failure of a nuclear pump, and 
envelope of density functions corresponding to a 90% (asymptotic) confidence 
interval on the hyperparameter n. 
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This again makes calculation quite simple, and the EM standard error ap­
proximations do not have to be used. 

To further illustrate our methodology, and perhaps to make the pump 
failure analysis even more realistic, we now reanalyze the data with the hier­
archy (1), but now assume that the three hyperparameters a, b, and n are all 
unknown. The methodology remains the same, and we still run the original 
Gibbs sampler (12), but now we use the conditional likelihood 

e-B;[t;+l/,6;] [O·tY;+a-1 e-1/b,B; 

L(nlx, 8, ,6) ex If r(n),Bf:;+1 r(a)ba 

and marginal likelihood L(n, a, blx) = L(n, a, blx, 8, ,B)/7r(8,,Bix, n, a, b). The 
algorithm is as before, but we now update 

(&(k) a,(k) f/k)) ~ (QCk+1) a,(k+1) f}k+1)) 
' ' ' ' . 

Figure 3 shows an estimated posterior density from this analysis, along with 
a 90% envelope of posterior density functions. Here we used a Bonferroni 
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inequality to construct a simultaneous 90% (asymptotic) confidence cube on 
a, b, and a. 

Figure 3: Posterior density for mean time to failure of a nuclear pump, and 
envelope of density functions corresponding to a 90% (asymptotic) confidence 
cube on a, b, and a. 

The analysis of the clinical mastitis data, shown in Figure 1, is done with 
virtually the identical Gibbs sampler as this one. 

6 Discussion 

The methodology discussed here, which is empirical Bayes in nature, leads 
naturally to an inference that is a combination of Bayesian and frequentist 
inference. For example, Figure 3 can be seen as a Bayesian posterior density 
with a frequentist confidence set around it. Although some might find this 
unsettling, it merely reflects the inference that can be done. That is, for 
the parameters that can be modeled with a prior distribution, a posterior 
distribution is calculated. For those parameters without a prior distribution, 
frequentist inference (through likelihood) becomes the only option. Onere-
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suiting inference is a range of Bayes posterior distributions, where the range 
reflects the frequentist uncertainty in the hyperparameter. Such an inference 
is in the spirit of a robust Bayes analysis (Berger 1990, 1994; Wasserman 
1990) 

The actual implementation of the methodology, and the inference, is al­
most automatic, and uses only the standard tools of the Gibbs sampler. With 
a generic hierarchy such as (2), the deepest point in the hierarchy is the point 
where the inference shifts from Bayesian to frequentist. That is, as we go 
down the hierarchy, every parameter has a prior until we get to 1./J. So the 
inference on 1./J is frequentist, here based on likelihood. The method and al­
gorithm of Section 4 details the EM/Gibbs sampler that results in consistent 
estimates of posterior distributions and asymptotically valid confidence sets. 
These confidence sets also provide a graphical means of assessing the effect 
of hyperparameter estimation, providing an easy way to assess sensitivity. 

From a graph such as Figure 3, one can also attach a Bayesian inference 
to the envelope of densities. For example, for a fixed value of 'ljJ = (a, a, b), 
we can construct a credible region for (), C'I/J. If we choose C'I/J so that 
P(O E C'I/J\1./J, x) = 1- /'1, and 'ljJ varies in a set S, a Bayesian inference from 
this setup is 

where 7r('l/J!x) is the posterior distribution of '1/J. Moreover, if we assume that 
there is some "probability matching" prior for '1/J, and if we construct an 
approximate 1 - /'2 confidence set for 'ljJ using the likelihood methodology, we 
then have the approximation 

P(() E C'I/J, 'ljJ E S\x) ~ (1- /'1)(1 - /'z). 

Alternatively, one can use Laplace approximations to obtain approximations 
to these probabilities. 

One other point about implementation needs mentioning, a point that is 
also noted by Booth and Hobert (1998). To implement the Monte Carlo EM 
algorithm of Section 4, there is no need to re-run the Gibbs sampler at each 
update of the EM sequence. This is because the Monte Carlo expected log 
likelihood can be recalculated using importance sampling. To see this, recall 
the Monte Carlo EM iteration (11). In the calculation of the average log 
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likelihood at the kth step of the sequence, we generated a sample ( 0~), .A~)), 
j = 1, ... , M from rr(O, .Aix, '1/'(k)). (Here we use a subscript k for clarity.) If 
instead of having a sample for this distribution, suppose that we continually 
reuse the first generated sample (O~j), A~J)), j = 1, ... , M from 1r(O, .Aix, '¢(0)). 

We then have the importance sampling approximation 

~ i: log L( '¢ lx, 0~), .A~)) 
j=l 

(13) 
1 M (O(j) A (j) I .t.(k)) 

~ -'"'lo L('lf'lx o(j) .A?/))'lf 0 .' 0 . X,<p • 
M~ g ' o' 7r(O(J) _A(J)Ix .t.(o)) 

J=l 0 ' 0 ' If/ 

One difficulty remains in using (13), in that in the Gibbs sampler we do not 
know the form of 1r(O, .Aix, '¢). However, from (10), we see that 1r(O, .Aix, '¢) = 
L('lf'lx, 0, .A)/ L('lf'lx), where L('lf'lx, 0, .A) is merely the product of the original 
densities in the hierarchy. But most importantly, L('lf'lx) plays no role in the 
maximization of (13) as it only enters through '¢(0) and '1/J(k). Hence in the 
maximization of the EM sequence we use 

(14) 

This strategy can be refined to use periodic updates of the (0, .A) sample, 
which should improve the approximation in (14). 

An obvious alternative to the model considered here is the full Bayesian 
hierarchical model with a ''fiat" or other "noninformative" prior on the hy­
perparameter. For example, in the generic hierarchy (2), we can adopt the 
approach of George, Makov, and Smith (1993, 1994). Starting from the con­
ditional likelihood L('lf'lx, 0, .A) = f(xiO, '¢ )rr(OI.A, '1/')g(.AI'¢), normalize L as 
L* = f L d'¢. Then use the Gibbs sampler 

(15) 

o<HI) "' rr(Oix,'¢U),_ACJ)) 
_A(J+l) rv g(.Aix, '¢, oCJ+I)) 
'1/'(J+l) "' L*('lf'lx, o<HI)' _A(J+l)) 

to produce the marginal posterior densities 1r(Oix) and g(.Aix). 
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There are a number of complications with this approach that make it less 
appealing than the EM/Gibbs approach. Firstly, L* = f L d'lj; may not be 
finite. (This can, of course, be fixed by instead calculating f L h('lj;)d'lj; for 
some prior h, but then the effect on the inference from such a prior need 
be assessed.) Secondly, generation of samples in (15) can be quite difficult, 
even if a prior his used. Thirdly, the consistency results of Section 3 may 
not apply here, so the frequentist interpretation is less clear. (Choosing h to 
be a "probability matching" prior, as Efron (1996) suggests, could alleviate 
this, but the computational difficulties still remain. 

Various other refinements remain to be explored for this methodology. 
Other than applying these methods to other MCMC schemes, two interesting 
paths are ( i) exploring the effect of other estimates of the hyperparameters, 
especially robust estimates, and (ii) exploring the effect of optimizing (or in 
some other way varying) the shape of the hyperparameter confidence set. 

A Appendix 

We will work with the generic hierarchy 

(16) 

Xi rv f(xiOi, 'lj;) i = 1, 2, · · · ,p 

oi rv 7r(OI.A, '1/1) 
.A I'V g(.AI'Ij;). 

For unknown 'lj;, the Gibbs sampling estimate of the posterior 7r(Okl:xp, 'lj;) 
is }j L~1 7r(Okl:xp, {/;p, ,ACi>). We are concerned with the limiting behavior of 
this estimate asp---+ oo. 

First, we need to be a bit more formal and, for fixed r, define ~-r) = 

(xb ... ,Xr-l,Xr+l, ... ,xp)· This notation makes it clear that when we con­
sider the posterior distribution for Or, it is conditional on Xr. The convergence 
of the Gibbs sampling estimate depends on the properties of the Markov chain 
produced, in particular we need the chain to be ergodic (see Tierney 1994, 
Section 3.2 or Robert and Casella 1999, Section 7.1.3). We then can now 
state the following theorem. 

Theorem A.l Suppose that {/;pis a consistent estimator of'lj; with respect to 
the marginal distribution of X, m(xl'lj;), that 1!'( Br lxn ~ -r), 'lj;) is a continuous 
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function of '1/J, and that the Gibbs sampler produces an ergodic Markov chain. 
Then, under the marginal distribution m( ·1'1./J), for each r and compact A, as 
p -7 oo, 

in probability. 

Proof First write, by the triangle inequality, 

1 ~ (() I (-r) .7, ,(j)) (0 I (-r) .!,) M L...J 7r r Xr, xp '<pp, /\ - 7r r Xr, :xp ' <p 

j=l 

(17) < 1 ~ (() I (-r) .7, ,(j)) (0 I (-r) .7, ) - M L...J 7r r Xr, xp '<pp, /\ - 7r r Xr, xp '<pp 

j=l 

+ 17r(OriXr,~-r),~p) -7r(OriXr,~-r),~p)l 

Consider the first term on the right side of (17), which only concerns conver­
gence of the Markov chain for fixed ~p· As the integration is over a compact 
set A, ergodicity of the Markov Chain implies that given E > 0, for each p 
we can choose the number of Monte Carlo iterations Mp to make the integral 
over A less than c. Thus we only need concentrate on the second term. 

Under the marginal distribution, since ~P is a consistent estimator of '1/J, 
the continuity of 7r implies that 7r(Orlxr, x1-r), ~p) -+ 7r(Orlxr, x1-r), ~p) for 
each fixed Or, and the compactness of A completes the proof. D 

There are two ways that the result of Theorem A.1 can be strengthened. 
First, the convergence can be strengthened to almost everywhere conver­
gence. To do so requires additional requirements on the marginal distribu­
tion m, requirements that are typically satisfied in practice (see Schervisch 
1995, Section 7.3.2). The other strengthening of the theorem is to remove 
the requirement of compactness of A. This requires additional requirements 
on both the marginal and conditional densities. To deal with the second 
term in (17), removal of compactness would necessitate a tail condition on 
1r(Orlxr, x1-r), '1./J), which should typically not be a problem in practice. Deal­
ing with the first term seems a bit more problematic. Strengthening the 
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Markov chain requirement to geometric ergodicity still leaves a gap, as the 
bounding function must be integrable with respect to the marginal distribu­
tion m, and this is neither automatic nor easy to check. (Requiring uniform 
ergodicity would do, but Gibbs chains rarely satisfy this condition.) The 
other route is to require tightness (see Billingsley 1995, Section 25) of the 
family of distributions ili:~1 7r(8rlxn ~-r), ~P' >.(j)). This seems the more 
promising route. 
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