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Degenerative disc disease and its associated spinal disorders are a leading 

cause of disability in the United States and around the world.  Currently a number of 

treatments exist, but they are mostly palliative in nature and fail to restore function to 

the spine.  The field of tissue engineering provides the opportunity to create treatments 

that will replace the diseased tissue with new tissue and that can not only relieve the 

symptoms of the patient, but can also restore function.  This dissertation focuses on 

the development of a composite tissue-engineered intervertebral disc (TE-IVD) that 

can be used to replace the diseased intervertebral disc (IVD) in the spine. 

 TE-IVDs were developed with circumferentially aligned collagen fibrils and 

cells in the annulus fibrosus (AF) region of the IVD by contracting cell-seeded 

collagen gels around a cell-seeded alginate gel nucleus pulposus (NP).  Altering the 

original collagen concentration and cell seeding density was able to regulate the final 

AF composition and collagen alignment in the TE-IVD. Using the tunable AF region 

of the TE-IVD, the effects of altering the AF composition and architecture on TE-IVD 

tissue development were studied both in vitro and in the native disc space.  It was 

determined that changes in the AF composition led to altered pressurization of the TE-

IVD under load and this change in mechanics regulated the in vivo tissue 

development.  These in vivo studies were the first to demonstrate that tissue-



 

engineered total disc replacement (TE-TDR) could produce an integrated and 

mechanically functional IVD-like tissue in the native disc space. 

Despite the enthusiasm for TE-TDR, this is the first body of work that 

demonstrated a TE-IVD could replace and restore function to the spine when 

implanted into the disc space.  Furthermore, the field has largely focused on the 

collagen organization of the AF in TE-IVD design, but this dissertation presents AF 

hydraulic permeability as a key design parameter due to its ability to regulate proper 

tissue development in the native disc space.  Overall, this work represents a 

benchmark in TE-IVD research and pushes TE-TDR towards the clinic. 
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CHAPTER 1 

INTRODUCTION 

 

DEGENERATIVE DISC DISEASE 

Intervertebral disc (IVD) degeneration is a leading cause of disability in the 

developed world, with approximately 65 million people in the United States alone 

suffering from prolonged back pain (1). Although, a direct connection between pain and 

IVD degeneration is not always evident, the vast majority of chronic spine ailments 

involve some amount of disc degeneration.  Moreover, by age 50, more than 85% of the 

population will have some evidence of this disease.   

Degenerative disc disease can lead to a number of pathological conditions that 

can cause pain and discomfort.  Due to the proximity of the IVD to the nerve roots, 

protruding disc material can impinge the local nerve roots causing radiculopathy (2).  In 

addition, peripheral sensitization and neoinnervation of the nerve fibers located in the 

outer lamellae of the annulus fibrosus (AF) and endplate can result in pain due to disc 

degeneration, and altered mechanical stimuli (3). Furthermore, disc degeneration and 

herniation are associated with inflammation and immune response that can lead to 

neuritis and increased sensitivity in the nerves (4).  Finally, alterations in the AF and 

nucleus pulposus (NP) composition and structure lead to hypermobility in the spine that 

can result in greater inflammation and stimulation of the sensitized nerves.  One of the 

difficulties of treating pain resulting from the IVD is the complex interactions between 

the inflammation, innervation, hypermobilitiy, and stenosis observed in IVD pathology.  

These interactions are currently an active area of investigation, as they are not fully 

understood to date. 
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The cost of treatment of degenerative disc diseases and its associated symptoms 

is estimated to be in excess of $50 billion per year in the United States.  Due to the 

prominence of this disorder, a number of materials are currently being used for the 

treatment of degenerative disc disease (Table 1).  Because the primary presentation of 

these disorders is pain, surgical treatments are primarily palliative, with less, if any, 

focus on restoring function to the diseased tissue. 

Table 1.1 Current Treatments for Degenerative Disc Disease 

 

CURRENT TREATMENTS 

 

Spinal Fusion 

 One of the most common surgical treatments is partial or complete discectomy, 

in which the IVD is removed in an attempt to eliminate the source of the pain, whether 

the pain is caused by the impingement of the nerve root or discogenic in origin.  In the 

case of complete discectomy, the spine must be stabilized through the fusion of the 

vertebral bodies.  This allows the pain-inducing disc to be removed, but results in the 

loss of mobility at the operated motion segment.  As a result, it is necessary for the 

remaining motion segments to provide the required flexibility to the spine.  In addition, 

it is essential to maintain the anatomy of the spine to protect the integrity of the 
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integrated nervous system.  This includes the disc space height that was originally 

maintained by the IVD.   

This is accomplished by implanting autologous bone grafts, cadaveric allografts, 

or bone graft substitutes in the disc space in combination with rods, screws, plates, or 

cages.  The hardware is designed to provide stabilization to the spine while the grafts are 

implanted to promote bone formation between the vertebral bodies during fusion.  An 

optimal material used for spinal fusion will have an osteoconductive scaffold that 

promotes the ingrowth of bone, osteogenic capabilities that provide cells to the fusion 

site, and osteoinductive factors that promote the differentiation of progenitor cells into 

osteoblast cells.  The materials currently used all have at least one of these properties 

and multiple materials are being combined to maximize these properties in many cases. 

 

Bone Grafts  

 Bone grafts were the first material choice in promoting a fusion between the 

vertebral bodies (5).  They provide the exact material that is desired in the disc space 

and in the case of autografts are osteogenic, osteoconductive, and osteoinductive.  As a 

result, the material could be harvested from the patient and implanted in the disc space 

to promote fusion between the vertebral bodies while maintaining the disc space height 

formally maintained by the IVD.  The two types of bone grafts available are autografts 

and allografts. 

Autografts are obtained from the patient’s own bone and are usually obtained 

from the iliac crest of the pelvis. Autografts provide the highest likelihood of fusion due 

to the presence of bone, osteoblasts, and bone morphogenetic proteins (BMPs).  

However, autografts can result in donor site morbidity and chronic pain at the harvest 

site (6, 7).  In contrast, allografts are obtained from a human source other than the 

patient.  This bone is acquired from tissue banks and circumvents the issues of donor 
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site pain and morbidity but introduce the possibility of disease transmission.  When used 

alone, allografts tend to underperform autografts in producing a successful fusion (8-

11).  This is likely due to the lack of osetogenic cells and minimal osteoinductive factors 

contained in the allograft despite its osteoconductive scaffold.  The allografts cells are 

purposefully removed during processing to reduce the likelihood of an immune response 

caused by the foreign cells.  Recently, in an attempt to increase the likelihood of fusion, 

adult stem cells are being investigated as a possible way to overcome the lack of living 

cells in allografts (12).   

 

Synthetic Bone Grafts 

 Autografts and allografts are both limited in supply since they require a donor 

and donor site.  Synthetic bone grafts, on the other hand, could mimic the properties of 

bone and provide a material to promote fusion while circumventing the problems of 

autograft/allograft supply, donor site morbidity, donor site pain, and disease 

transmission.  Bone has both an organic (collagen type I) and inorganic (hydroxyapatite) 

component.  Synthetic bone grafts attempt to mimic the compositional content of the 

bone, usually the inorganic component, to provide a biodegradable osteoconductive 

scaffold to promote fusion.  This involves producing calcium containing crystalline 

solids with porosity similar to that of bone that will promote bone ingrowth.  

 A number of synthetic materials designed to mimic the properties of bone, 

including various ceramics, are being investigated for use in fusion procedures.  These 

materials are osteoconductive but, similar to allografts, do not contain cells.  For this 

reason, they are often used in combination with autografts as bone graft extenders.  The 

most commonly used materials are coralline hydroxyapatite, !-tricalcium phosphate, 

and calcium sulfate (13-15).  The use of these materials as an extender allows for less 
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autograft material to be harvested, thus decreasing the risk of donor site morbidity and 

pain. 

 

Demineralized Bone Matrix 

 While allografts and synthetic bone grafts provide an osteoconductive scaffold, 

they fail to provide substantial osteoinductive proteins to stimulate bone growth.  The 

combination of both osteoconductive and osteoinductive properties similar to that 

found in autografts can further promote fusion beyond what an osteoconductive 

scaffold can produce alone. 

 Used as a bone graft extender, demineralized bone matrix is obtained by 

removing the mineralized component of allograft bone by acid extraction.  The 

resulting matrix is predominantly type I collagen in addition to various growth factors 

including BMPs.  As a result, demineralized bone matrix is both osteoconductive and 

osteoinductive.  However, the mechanical stiffness of demineralized bone matrix are 

much lower than that of bone and must be used in combination with a material that 

can provide the necessary structural strength when implanted. For this reason, the 

material is used primarily as a bone graft extender to introduce the osteoconductive 

proteins into the disc space. 

 

Growth Factors and Gene Therapy 

 Both autografts and demineralized bone matrix have osteoinductive proteins 

and demonstrate the ability of these proteins to stimulate bone growth.  As a result, it 

is advantageous to develop techniques that allow these osteoconductive proteins to be 

utilized for spinal fusion in combination with techniques other than autografts and 

demineralized bone matrix.  In addition, recombinant production of growth factors 
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enables greater control of the types and concentrations of growth factors delivered to 

the fusion site. 

 A number of growth factors including BMPs have been shown to be 

osteoinductive.  As a result, the use of recombinant forms of these proteins has been 

combined with osteoconductive materials to be utilized in spinal fusion surgeries.  

Human trials have shown increased success over autografts when using either rhBMP-

2 or rhBMP-7 in combination with a number of carrier matrices including collagen 

sponges, collagen type I powder, allograft bone, and ceramic granules (16-20).  

Overall, this provides a technique that is both osteoconductive and osteoinductive 

without requiring autograft harvesting.   

One of the drawbacks of rhBMPs is their soluble nature and high doses need to 

be inserted in the carrier matrix to be effective over a sustained period of time.  As a 

result, the associated cost of this type of procedure is quite high.  One possible 

solution is to utilize gene therapy to introduce the osteoinductive BMPs to the fusion 

site.  Such a technique allows sustained production of the BMPs at the fusion site 

without having to insert large amounts of rhBMP into the carrier.  Currently, a number 

of animal studies are being performed to test the efficacy of such strategies and 

investigate the safety concerns related to gene therapy (21-23). 

 

Motion Preservation 

 Despite the common use of spinal fusion for the treatment of various spinal 

complications, the procedure produces a number of deleterious consequences.  First 

the fusion of the vertebral body results in a loss of motion at the fused site and often 

leads to adjacent level degeneration thought to be caused by the altered mechanical 

loading at the adjacent levels (24, 25).  For this reason, a number of devices have been 

designed to preserve the motion of the IVD at the operated level. 
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Total Disc Replacement 

 Similar to what is performed in the knee and hip, the first attempts to preserve 

motion as an alternative to fusing the vertebral bodies were total disc replacement 

strategies.  In this procedure the entire disc is removed and replaced by an artificial 

joint containing an articulating surface designed to provide motion to the joint 

segment.  The devices reaching clinical trial have contained either two metal alloy 

endplates with an ultra high molecular weight polyethylene-articulating surface 

(Charité® and ProDisc®) or have a metal on metal design (Prestige®, Flexicore®, 

and Kineflex®).  Currently, the Charité®, ProDisc®, and Prestige® have received 

FDA approval.  Relatively short-term data indicates that these devices have been 

successful in reducing adjacent level degeneration (26, 27); however, it is unclear 

whether this will be true in the long term.  Furthermore, it appears that these discs may 

suffer from polyethylene wear (28, 29), which could lead to osteolysis, dislodgement, 

and failure of the device.  As a result, further investigation will need to be carried out 

to understand the long-term efficacy of the total disc replacement strategy. 

 

Dynamic Stabilization 

 In addition to total disc replacement, a new class of devices is currently being 

investigated for treatment of spinal disorders.  These devices are designed to provide 

controlled motion at the disc level without replacing the entire disc.  The devices 

attach to the posterior elements of the spine and are composed of some combination of 

screws, cords, spacers, flexible rods, and flexible screws.  One example of such a 

system is the Dyneses" system, which has received FDA approval as an adjunct to 

spinal fusion surgeries but is not approved as a stand-alone device, although clinical 

trials are underway.  The Dyneses" system is made of pedical screws, surgical 
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polyurethane spacers, and polyethylene cords.  This combination of parts is designed 

to maintain motion in a controlled manner that will decrease pain but allow motion 

similar to that of the healthy motion segment.  Many similar devices can be imagined 

and quite a few are currently under investigation for the treatment of spinal disorders 

(30, 31). 

 

IVD Transplantation 

 In addition to using hardware to maintain motion and stability in the diseased 

spine, a novel technique of transplanting cadaveric IVDs is being investigated.  The 

hypothesis behind this procedure is that the transplanted healthy native tissue will 

most accurately restore the complex function of the IVD to the spine while relieving 

the pain and circumventing the issues associated with using traditional 

metal/polyethylene materials.  In this method, segments of the boney vertebral bodies 

are left on either end of the IVD in order to promote integration of the transplanted 

disc into the motion segment.  The low vascularity of the IVD reduces the risk of 

tissue rejection and allows the procedure to be performed without immunosuppressant 

drugs. 

 IVD transplantation was originally investigated in canine (32-34) and primate 

(35, 36) animal models and has now been tested in a small number of human patients 

(37).  Animal models showed that the transplanted discs were able to successfully 

integrate with the native tissue by 6 months and form functional motion segments after 

an initial 2-4 months period of hypermobility.  Despite forming functional motion 

segments, a loss of water and proteoglycans were observed in allografts from 6 to 24 

months.  In addition, nucleus cells had an irregular shape and mitochondrial swelling 

at 24 months compatible with degeneration.  These findings indicate that the 

transplanted IVDs are capable of integrating and forming functional motion segments; 
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however, they show signs of degeneration over time after implantation.  Immune 

response was localized to the boney interfaces (36).  Human trials in five patients have 

been met with success as patients show no signs of significant pain at a 5-year follow-

up (37).  Radiologically, patients showed minimal disc height loss and a normal range 

of motion. 

 Overall, the animal models and early clinical results on IVD transplantation are 

promising.  However, it will be important to carry out studies in a larger cohort of 

patients and investigate the long-term survival of the transplants.  In addition, despite 

the apparent success of the procedure, IVD transplantation suffers from limited donor 

tissue, issues of size matching, and possible disease transmission.  As a result, 

regenerative techniques are also being investigated for IVD tissue replacement. 

 

Field Research Directions 

 Despite the development of total disc replacements and dynamic stabilization 

devices, it remains unclear what the long-term success these devices will have in 

reducing adjacent segment degeneration.  While these devices are promising, it is 

likely that these devices will suffer from long-term failure modes (wear, fatigue, and 

loosening via osteolysis) similar to that of other traditional knee and hip 

polymer/metal implants (38).  For these reasons, accelular and cellular tissue-based 

approaches that mimic the native IVD extracellular matrix (ECM) composition and 

architecture may be advantageous. The cellular component would allow the tissue to 

be remodeled and repaired over the life of the tissue while the ECM component could 

more accurately mimic the native intervertebral disc function than a metal-polymer 

implant. A tissue-based approach could create a treatment that could mimic this 

function, maintain mobility, and not suffer from the effects of wear, fatigue, and 
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osteolysis.  For this reason, the investigation of tissue-based approaches for the 

treatment of spinal disorders is actively being pursued. 

 

IVD STRUCTURE AND FUNCTION 

 

 In order to understand the material design criteria involved in IVD repair, one 

must first be familiar with the complex structure and function of the native IVD.  

Grossly, the IVD is a composite tissue containing an outer annulus fibrosus, an inner 

nucleus pulposus, and the cartilage endplates (39). Each of these regions is distinct in 

composition, as well as organization, and work in concert to provide the mechanical 

function of the IVD (Figure 1.1).   

 

Figure 1.1 Intervertebral disc structure. (A.) IVD located in spine between vertebral 

bodies with the cauda equina (lumbar) or spinal cord (thoracic and cervical) running 

through the spinal canal. Nerve roots exit from the spinal canal through the 

intervertebral foramina. (B.) The IVD composed of the unorganized inner nucleus 
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pulposus and outer highly organized annulus fibrosus.  The annulus fibrosus is 

composed of lamellae and alternating collagen fibril alignment (± 28°) between each 

adjacent lamella. 

The nucleus pulposus is an isotropic, unstructured, gelatinous material that is 

enclosed by the highly structured annulus fibrosus fibrocartilage on the side and the 

hyaline cartilage endplates on the end of the vertebrae (Figure 1b).  The encapsulation 

of the gelatinous nucleus pulposus by the annulus fibrosus allows the IVD to be both 

strong in compression while also withstanding complex tensile and shear forces in the 

annulus fibrosus.  Upon compression, the nucleus pulposus is pressurized as the 

annulus fibrosus resists the radial expansion of the nucleus pulposus.  It is this 

pressurization that gives the IVD its high compressive stiffness (40).  In addition, 

during the bending and torsional movements of the spine, the complex collagen 

architecture of the AF bears the tensile loads (41).  It is this elegant function that one 

hopes to restore when selecting materials for IVD repair, and for this reason, it is 

advantageous to understand the material components and architecture that accomplish 

this naturally. 

 

Extracellular Matrix 

Overall, the key components of the IVD are water, collagens, proteoglycans, 

elastin, and cells with varying amounts and types located in the distinct IVD regions 

(42-47).  The IVD is extremely hydrated with the annulus fibrosus and nucleus 

pulposus having a water content of approximately 65% and 80% of wet weight 

respectively (46).  In the annulus fibrosus collagens make up 70% of the dry weight 

with 84% of that being collagen type I and 14% collagen type II at the outer annulus 

fibrosus (42).  In contrast, collagens only make up 20% of the dry weight of the NP 
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with 80% of that being collagen type II.  Proteoglycans follow the opposite trend with 

the percentage starting low in the annulus fibrosus and increasing until reaching 50% 

of the dry weight in the nucleus pulposus (43). 

Of these proteoglycans, the negatively charged large aggregating 

proteoglycans, aggrecan and versican are found in the intervertebral disc with 

members of the small leucine rich proteoglycan family (decorin, biglycan, lumican, 

and fibromodulin) also being present (48, 49).  It is the negative charge of aggrecan 

that produces an affinity for water in the IVD via osmotic swelling and Donnan 

equilibrium.  As a result, the high proteoglycan to collagen ratio produces the 

gelatinous nature of the nucleus pulposus and the high collagen content and structural 

organization of collagen gives rise to the fibrous nature of the AF. 

Finally, elastin is found in both the nucleus pulposus and annulus fibrosus (47).  

The fibers are located predominately between the annulus fibrosus lamellae but are 

also found parallel to the collagen fibrils within the lamellae. 

 

Organization 

 The degree of organization observed within the nucleus pulposus and annulus 

fibrosus is dramatically different.  The NP has an unorganized collagen type II matrix 

dispersed within the proteoglycan rich tissue.  This unorganized state leads to the 

isotropic nature of the NP and its capacity for significant swelling when liberated from 

the surrounding AF.  In contrast, the AF has a very organized collagen type I fiber 

structure.  The AF is macroscopically segmented into lamellae surrounding the NP 

core.  In each lamella, the collagen fibrils are highly aligned at an angle of ± 28° to the 

transverse plane and this angle increases to 44° in the inner AF (50, 51), with the angle 

alternating in each successive lamella (Figure 1b).  As a result, this organization leads 

to anisotropic mechanical properties and creates a tissue that is good at resisting the 



 

26 

tensile loads observed in torsion and bending as well as withstanding the hoop stresses 

that occur during compression.  Overall, this tissue produces a unique set of 

mechanical properties in compression, extension-flexion, torsion, and bending that 

tissue based approaches of repair will need to recreate to restore function to the 

diseased or injured IVD. 

 

IVD PRESERVATION, REPAIR, AND REGENERATION 

 

By any measure, tissue based IVD repair and tissue engineering is a relatively 

new field. Extracting broad trends from published data is quite challenging even with 

the small number of studies to date (approximately 50 peer-reviewed manuscripts), 

since there is relatively little consistency in the cell types and materials used.  The 

approaches can be broken down into NP, AF, and total disc repair. 

 

Nuclear Replacement 

 The idea of nuclear replacement has received the most attention. This approach 

relies on the idea that replacing the herniated or diseased disc material will maintain or 

restore disc height and function to the spine.  By replacing the NP, the disc height 

could be restored and the AF fibers are placed back into tension, similar to that of a 

healthy disc.  This type of intervention requires a healthy AF and, as a result, would be 

a solution to an earlier stage of disease than used in spinal fusion and total disc 

replacement (52).  Currently, clinically available products are material based but 

research is being conducted on creating tissue engineered material/cell solutions 

(Table 2). 
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Table 1.2 – Nuclear replacement strategies 

 

 Acellular 

Early attempts at nucleus replacement focused on acellular materials to restore 

disc height. The first attempt at nucleus replacement was conducted in 1955 by David 

Cleveland, in which he replaced the NP after discectomy with methylmethacrylate 

(53).  Acceular strategies continue to be investigated today and are at various stages of 

clinical evaluation.  

 

Cellular 

 Creating tissue-based strategies with a cellular component creates a tissue that 

can mature and repair over the life of the implant.  As a result, this dramatically 

increases the theoretical limit for how long the treatment can be effective.  The key to 

the successful development of a tissue based strategy is in the proper selection of the 

material, cell source, and signaling. The NP has been a prime target for this type of 

therapy due to the isotropic (unorganized) structure of the tissue, which eliminates the 

need to worry about complex tissue architecture during tissue development.  Overall, 
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the goal is to produce a tissue that is gelatinous in nature with high proteoglycan 

content and unorganized type II collagen fibrils. 

 The choice of an animal source for IVD cells is challenging, as the time at 

which the cell population of the NP changes from notochordal to chondrocytic varies 

with species (54).  Regardless of species chosen, it appears to be critical to ensure that 

cells are obtained from skeletally mature animals.  To date, cells from 7 species have 

been investigated for use in IVD regeneration, including murine (55), lapine (56), 

porcine (57), ovine (58, 59), canine (60), bovine (60), and human (61).  It is highly 

likely that human cell sources will be required for clinical use; however, obtaining 

cells from the human IVD tissue may be difficult due to the diseased state of the 

tissue.  As a result, the use of mesenchymal stem cells (MSC) is being investigated.  In 

fact, MSCs have been shown to take on a NP-like phenotype both in vitro and after 

being injected into NP tissue (62, 63) making them a suitable candidate for tissue 

based NP replacement. 

 Disc degeneration results in decreased cell density in the NP and reduced 

cellular activity.  As a result, one of the proposed treatments for NP degeneration is to 

simply inject cells into the NP without scaffolding material to promote de novo tissue 

formation in the NP of the degenerated disc.  NP cells (64), NP cells co-cultured with 

MSCs (65), MSCs (66), chondrocytes (67), and AF cells co-cultured with MSCs (68) 

have all been investigated for NP injection.  In general, cells were able to produce 

proteoglycan rich matrix in the NP and delay degeneration in disc degeneration 

models.  In a human trial, IVD cells were cultured and injected back into the NP after 

microdiscectomy surgery (69).  Patients receiving the treatment showed decreased 

pain at 2 years compared to those receiving no injection of cells after 

microdiscectomy.  These data indicate that injecting cells into the NP may be able to 
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delay degeneration in the IVD and be used as an adjunct to microdiscectomy to 

improve clinical outcomes. 

 While cell injection alone has shown potential to delay degeneration and 

promote de novo tissue formation, the use of a scaffolding material cells provides the 

additional ability to repressurize the NP by injecting the scaffold/cell material into the 

disc space.  The isotropic gelatinous nature of the NP makes hydrogels a prime 

material candidate for NP tissue engineering.  However, unlike acellular NP 

replacement, these materials must be deliverable in a noncytotoxic manner eliminating 

a number of hydrogels used in intradiscal implants. Wide ranges of scaffold materials 

have been used as substrates for cell culture.  In general, NP cells have been cultured 

in hydrogels, with alginate (57-60) and gelatin (55) accounting for more than half of 

the studies published. Both materials appear to be well suited to maintaining NP cell 

phenotype and enabling proteoglycan synthesis, although significant accumulation of 

proteoglycan and collagen was not observed uniformly.  Additional materials being 

utilized have been type II collagen (70), hyaluranon composites (71), calcium 

polyphosphate substrate (72), type I atelocollagen (66), and chitosan (73). 

 While a large portion of this work has been done in vitro, a number of studies 

are available investigating the effectiveness of cell/material nuclear replacement in 

vivo.  These studies have been conducted in different animal models, lapine (64), 

canine (74), and murine (55). The results of these in vivo studies have been promising 

showing a delay in degeneration, restoration of disc height, and significant 

proteoglcyan rich ECM. In addition to the animal studies, interim results of a human 

randomized trial have been reported. In this study, autologous NP cells derived from 

therapeutic discectomy were cultured and delivered 12 weeks after discectomy in 

patients with chronic back pain (75). Their data suggests MR imaging improvement 

consistent with increased proteoglycan matrix within the NP and a reduction in low 
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back pain at 2 years when compared to controls.  As a result, NP replacement may be 

a powerful adjunct to discectomy.  However, it is important to note that this treatment 

must be conducted at an early enough stage that a functional AF is in place.  Later 

stages of degeneration are unlikely to be treated by NP replacement alone. 

 

Annular Repair 

 Due to the nature of disc herniation and the resulting disruption in the AF, it is 

necessary for the AF to be repaired to return proper mechanical function to the disc.  

In addition, the herniated region of the AF can allow the remaining NP or NP 

replacement to reherniate through the disruption.  This can happen in up to 15% of 

patients after discectomy (76-78), and unfortunately, the AF has a limited healing 

capacity and will only produce a thin biomechanicaly inferior tissue without 

intervention (79).  For this reason, it is a significant and relevant challenge to produce 

surgical treatments to repair the AF upon herniation. 

Table 1.3. Annular repair strategies 
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Acellular 

 The earliest attempts to repair the disrupted AF involved suturing the AF to 

provide both a barrier to rehernation and to promote healing.  Unfortunately, few 

studies have been performed to study the effectiveness of suturing.  In one of the few 

studies available, no significant increase in healing strength was observed as a result 

of direct annular repair (80).  In addition to suturing, a number of additional implants 

designed to close and act as barriers are being developed.  These devices include 

sutures with anchors (81), meshes (82), and collagen PMMA injections (83).  

However, currently there are few data to determine the effectiveness of these devices 

and they continue to suffer from the poor intrinsic healing of the AF, as they do not 

directly promote healing.  For this reason, tissue-based approaches are also being 

investigated to promote a functional healing in the defect in addition to simply closing 

it. 

 

Cellular 

 The goal of introducing cells into an annular defect is to promote the 

production of a functional tissue in the defect to both inhibit NP reherniation, as well 

as restore the mechanical properties of the AF.  The creation of a functional 

engineered AF tissue is more difficult to produce than the NP due to its highly 

organized architecture and anisotropic mechanical properties. The tissue must not only 
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contain the proper amounts of ECM, but they must also be organized properly to 

restore the mechanical function to the AF. The key organizational structures of 

importance are the high degree of alignment, the angle of alignment, and the 

alternating directions of alignment between lamellae.  However, it must be noted that 

currently it is unknown to what degree this organization needs to be recreated to 

successfully reduce the number of cases of reherniation and slow the progression of 

the disease state. 

 Cell selection for AF repair requires the selection of a cell that can produce a 

highly organized type I collagen ECM. The most likely candidates for use in AF repair 

strategies are the AF cells themselves or MSCs.  However, once again autologous AF 

cells suffer from the diseased state of the tissue and diseased state of the resulting cells 

(84).  In addition, the availability of autologous AF cells varies greatly between 

patients and will likely require in vitro culture to expand to an adequate number of 

cells.  These shortcomings may limit the effectiveness of these cells for clinical 

treatments.  In comparison, MSC cells provide a more reliable cell source but are not 

without their own difficulties.  Early work showed that MSCs differentiate into an NP-

like phenotype and not an AF phenotype when cultured in hydrogels (63, 85).  

Nevertheless, the proper combination of scaffold and cell signaling may still be 

elucidated that promotes an AF phenotype from MSCs.  In fact, more recent work has 

shown that when MSCs are placed on electrospun nano-fibrous scaffolds the cells take 

up a more AF like phenotype (86, 87).  This may indicate scaffold selection as a key 

determiner of MSC phenotype and make proper material selection vital in producing a 

successful tissue based approach to AF repair. 

 A number of scaffolds with a wide range of properties have been investigated 

for AF tissue engineering.  Early work used scaffolds seeded with AF cells that lacked 

the structure necessary to promote collagen alignment and organization.  These 
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scaffolds included collagen type I/hyaluronan (71), type I atellocollagen (88), alginate 

(56), type I collagen/GAG (89), collagen sponges (90), collagen gels (90), fibrin gels 

(90), PGA/PLA (58), chitosan (91), and electrospun PLLA (87).  These constructs in 

general allowed for significant production of proteoglycans and collagen but the ECM 

development was still substantially lower than native values of ECM.  In addition, no 

collagen organization was observed in these scaffolds.   

Recently, focus has turned to culturing cells on scaffolds that promote tissue 

organization and alignment in the hopes that an engineered AF tissue can be created 

that mimics the complex anisotropic function of the AF.  This has been accomplished 

through the creation and use of aligned fibrous scaffolds.  To date it has been achieved 

naturally with the use of small intestine submucosa (92), with the self assembly of 

contracted collagen gels (93), and with the aligned electrospinning of PCL (86).  Each 

of these techniques has advantages and disadvantages for treating AF defects. 

The small intestine submucosa (SIS) is obtained by processing small intestine 

to remove the mucosa layer.  This results in a construct that contains oriented collagen 

fibers, proteoglycans, and trapped growth factors.  This is ideal due to the similarity of 

the SIS ECM composition (aligned collagen and proteoglycans) and structure to the 

native AF.  In addition, the trapped growth factors can be released and promote tissue 

development at the site of implantation. SIS has been investigated for the repair of a 

number of tissues previously, including blood vessels, bladder defects, rotator cuffs, 

knee ligaments, and meniscus.  The use of SIS for annular repair is relatively new but 

has shown promise in a sheep model by repairing AF defects and returning partial 

function to the IVD (94). 

Contracting collagen gels while controlling the boundary conditions has been 

shown to create aligned collagen fibrils and has been investigated for the repair of a 

number of tissues, including blood vessels, tendon, ligament, and cardiac tissue (95-



 

34 

98).  The advantages of the technique are the production of aligned collagen 

architecture and aligned cells that are seeded throughout the tissue.  However, 

contracted collagen gel tissues have notoriously week mechanical properties in 

contrast to the native AF (95).  At early time points after implantation it may be 

difficult for an implanted collagen gel to withstand the mechanical loading imposed 

upon the aligned collagen gel.  Conversely, the collagen nature of the scaffold may 

promote earlier integration of the tissue with the native AF and the high permeability 

of the collagen gel may promote the transport of nutrients into the developing tissue.  

This increased transport in the developing tissue may be especially important in the 

low nutrient environment present in the IVD and allow the tissue to mature into an 

integrated mechanically functional tissue after implantation. 

Electrospinning allows scaffolds to be produced that have fibers of similar size 

to that of the collagen fibrils found in the AF.  In addition, electrospinning can 

incorporate fiber alignment into the scaffold and has been used to create engineered 

tissues that contain lamellae with alternating ±30° fiber orientation (86). These 

electrospun tissue structures developed tensile properties similar to that of native AF 

and showed promise for use in AF tissue engineering.  However, the electrospinning 

process is not without its challenges.  One of those challenges is the migration of cells 

into the electrospun scaffolds.  Often, cells will fail to migrate to the center of the 

scaffold and will result in reduced tissue development at the center.  Currently, a 

number of techniques are being studied to address these issues including the 

combination of composite electrospun materials that have differing degradation rates 

to encourage migration of cells into the scaffold (99).  In addition, a big question is 

how these organized fibrils will integrate with the endplate and vertebral bodies once 

implanted.  Without integration and anchoring of the fiber structure, the fiber 

architecture will not be engaged and will fail to provide the mechanical function they 
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are designed for.  Further work is being conducted in the field to better understand 

how these electrospun scaffolds will integrate with the native tissue. 

As can be seen, the amount of work done in the field of AF tissue engineering 

is limited and much of it has been in vitro.  It will be important in the future direction 

of AF tissue engineering to understand how these strategies respond in vivo to the 

demands of AF defects.  The major questions are centered on the ability of the repair 

strategies to confine the NP, the ability to restore pressurization capability to the IVD, 

and the ability to restore proper functioning to the AF in tension.  Clearly, if these 

capabilities can be restored, it will have a profound effect on the clinical treatment of 

disc herniation. 

 

Total Disc Replacement 

 A similarity exists between the IVD and an air filled tire, the tire being 

represented by the NP and the steel-belt reinforced rubber being represented by the 

AF.  Furthermore, this similarity can be extended to the repair of the IVD as well.  In 

certain situations, it will be advantageous to refill the air of the tire (nuclear 

replacement); in other situations, one may be able to patch a hole in the tire (AF 

repair); and finally, there are times when the entire tire must be replaced (total disc 

replacement).  It is the final situation, in which the hernation or degeneration of the AF 

is so advanced that a sole NP or AF approach cannot be effective.  For this reason that 

total disc replacement is currently being investigated.  

Non-biological total disc replacement has been recently introduced into clinical 

practice in the US with the FDA approval of the previously discussed Charité device 

in 2004.  The idea of a tissue-based composite disc, which is the focus of this 

disseration, was introduced with publication of the first tissue engineered composite 

disc around the same time (58).  The idea that the entire IVD can be replaced by a 
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tissue-engineered structure is an ambitious one due to the complex structure of the 

IVD; however, the early studies showed promising ECM and mechanical properties 

with a PLA/PGA/alginate composite.  There are four major design criteria in 

developing a tissue-engineered total disc replacement (TE-TDR): (1) to design a disc 

that can withstand the complex mechanical loading once implanted, (2) to recreate the 

mechanical function of the IVD, (3) to integrate with native tissues, and (4) to survive 

and develop in the nutrient deprived disc space.  These design criteria are complex and 

are even competing.  The development of a mechanically stiff disc designed to 

withstand the complex loading will likely have low permeability properties and may 

make it difficult to get sufficient nutrient transport throughout the disc in the low 

nutrient disc environment.  Conversely, a highly permeable disc that can provide 

better nutrient transport will be less stiff and may have trouble withstanding the 

mechanical loads.  Currently, it is unknown what the proper balance of these 

competing properties will be in a successful TE-TDR or even if a viable TE-TDR is 

possible in the native disc space. 

 

Research Objective 

 In order to better understand the efficacy of TE-IVD at restoring function to 

the spine, this dissertation sought to develop a novel tissue engineered IVD and 

studied both the in vitro and in vivo development of these constructs.  Overall, this 

body of work represents both a milestone in the reproduction of the native AF 

architecture in TE-IVD and is the first to study the development of TE-IVD in the 

native disc space.  The overriding hypothesis is that TE-IVD can be implanted into the 

native disc space and develop an integrated cartilaginous tissue that reproduces 

mechanical function in the spine.  In addition, it is hypothesized that the AF ECM 

architecture and composition will play a key role in the ECM development both in 
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vitro and in vivo.   To address these hypotheses, the first aim focused on producing a 

TE-IVD with controllable AF composition in both collagen density and collagen 

architecture.  The second aim developed an image-guided technique to produce TE-

IVD in the proper size and shape for implantation into the native disc space.  In order 

to study the efficacy of replacing the native disc with a TE-IVD, the third aim 

implanted TE-IVD in the native disc space of an athymic rat for 6 months and 

investigated the ECM development, integration, and mechanical properties of the 

motion segment.  Finally, the fourth aim studied the effects of AF composition on in 

vitro and in vivo development by altering the AF composition and examining its 

effects in vitro and in vivo after 6 months of implantation. 

 

Specific Aim 1 (Chapter 2) 

Production of a novel TE-IVD with controllable AF composition in both collagen 

density and collagen architecture. 

 

 Effects of boundary conditions and original collagen density were studied in 

contracting collagen gels seeded with ovine AF cells.  Resulting collagen and cellular 

architecture were observed using second harmonic generation microscopy (SHG) and 

two-photon excited fluorescence microscopy.  Collagen gels with a collagen 

concentration of 1 mg/ml or 2.5 mg/ml were either contracted as annular gels around a 

polyethylene disk or contracted as an intact disk for 3 days.  Data indicated that 

decreasing the collagen concentration led to increased contraction, as well as greater 

circumferential collagen alignment in the annular disk gels.  Intact disk gels resulted in 

no alignment of the collagen fibrils after 3 days of contraction.  Technique was used to 

produce TE-IVD with circumferentially aligned collagen fibrils by contracting annular 

collagen gels seeded with ovine AF cells around 3%  (w/v) alginate seeded with ovine 
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NP cells for 2 weeks.  Study demonstrated that a TE-IVD could be constructed and the 

AF composition and architecture controlled by altering the original collagen density. 

 

Specific Aim 2 (Chapter 3) 

Develop an image-guided technique to produce TE-IVD in the proper size and shape 

for implantation into the native disc space. 

 

 Geometric data of the athymic rat L4/L5 disc space was obtained using 

common imaging modalities MRI and !CT.  T2 weighted MRI was used to obtain NP 

dimensions, while !CT was used to obtain the outer boundaries of the IVD.  By 

combining this data, the native disc dimensions were obtained.  NP dimensions were 

used to design injection mold of the NP and NP was created using 3% alginate and 25 

x 106 cells/ml.  TE-IVDs were fabricated by contracting 1 mg/ml collagen gel seeded 

with 1 x 106 cells/ml around alginate NP for 2 weeks.  Data demonstrated technique 

produced accurate  model from the imaging, and accurate TE-IVDs from the model.  

Five TE-IVDs were implanted in the L4/L5 disc space for 4 months to demonstrate 

implantation suitability.  At 4 months the discs produced cartilaginous tissue in the 

disc space, while 3 of 5 discs fully or partially maintained disc space height.  This data 

is the first to demonstrate that TE-IVD could be implanted and produce cartilaginous 

tissue in the disc space. 

 

Specific Aim 3 (Chapter 4) 

Study the efficacy of replacing the native disc with a TE-IVD by investigating the 

ECM development, integration, and mechanical properties of the motion segment after 

6 months of implantation. 
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TE-IVDs were constructed for the athymic caudal 3/4 disc space using the image-

guided fabrication method developed in aim 3.  TE-IVD was implanted into the native 

disc space following removal of the native disc and maintained for either 6 weeks or 6 

months.  Engineered tissue development was analyzed using histological staining, 

quantitative biochemistry, 7T MRI, and axial mechanical testing of the motion 

segments.  Data demonstrated that TE-IVD was able to maintain a majority of disc 

space height, integrate into the native disc space, produce native level ECM, and 

reproduce the axial mechanical function of the native motion segment after 6 months 

of implantation.  This was the first study to demonstrate the feasibility of replacing a 

native disc with a TE-IVD in the native disc space by demonstrating the ability of the 

engineered tissue to closely mimic the properties of the native IVD after 6 months of 

implantation. 

 

Specific Aim 4 (Chapter 5) 

Study the effects of AF composition on in vitro and in vivo development by altering 

the AF composition and examining its effects in vitro and in vivo after 6 months of 

implantation. 

  

Six groups of TE-IVDs were constructed by altering the original collagen 

concentration and cell seeding density of the AF during fabrication.  AF composition 

and architecture were analyzed using SHG and TPEF imaging.  In vitro mechanical 

function of TE-IVD groups was determined in unconfined compression by measuring 

the equilibrium modulus, instantaneous modulus, and hydraulic permeability.  Two 

groups were selected for implantation into the native disc space and maintained for 6 

months.  Engineered tissue was studied with histological staining, quantitative 

biochemistry, and axial mechanical testing of the motion segments.  In vitro data 
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indicated that changing the AF composition altered the pressurization of the TE-IVD 

under loading and was likely related to the changes in AF hydraulic permeability 

observed between groups. Furthermore, altering the AF composition pushed the TE-

IVD towards a more IVD like phenotype in the disc space.  In fact, tuning the AF 

produced an engineered tissue that had no statistically significant differences in 

proteoglycan and collagen in the AF or NP after 6 months of implantation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

41 

CHAPTER 2 

Specific Aim 1 

Self-Assembly of Aligned Tissue Engineered Annulus Fibrosus and IVD 

Composite via Collagen Gel Contraction* 

Abstract 

Many cartilaginous tissues such as intervertebral (IVD) disc display 

heterogeneous collagen microstructure that results in mechanical anisotropy.  These 

structures are responsible for mechanical function of the tissue and regulate cellular 

interactions and metabolic responses of cells embedded within these tissues.  Using 

collagen gels seeded with ovine annulus fibrosus cells, constructs of varying structure 

and heterogeneity were created to mimic the circumferential alignment of the IVD.  

Alignment was induced within gels by contracting annular gels around an inner 

boundary using both a polyethylene center and alginate center to create a composite 

engineered IVD.  Collagen alignment and heterogeneity were measured using second 

harmonic generation microscopy.  Decreasing initial collagen density from 2.5 mg/ml 

to 1 mg/ml produced greater contraction of constructs, resulting in gels that were 55% 

and 6.2% of the original area after culture, respectively. As a result, more alignment 

occurred in annular shaped 1 mg/ml gels compared to 2.5 mg/ml gels (p<.05). This 

alignment was also produced in a composite engineered IVD with alginate nucleus 

pulposus.  The resulting collagen alignment could promote further aligned collagen 

development necessary for the creation of a mechanically functional tissue engineered 

IVD. 

 

__________________________ 

* This chapter was recently published: Bowles, R.D., Williams, R.M., Zipfel, W.R., and Bonassar, L.J. 

Self-assembly of aligned tissue-engineered annulus fibrosus and intervertebral disc composite via 

collagen gel contraction. Tissue engineering 16, 1339, 2010. 
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Introduction 

Lower back pain is one of the leading causes of disability in the United States 

with estimated indirect and direct annual costs ranging from $20 to $100 billion (100).  

Lower back pain (LBP) is frequently associated with diseased or injured intervertebral 

disc (IVD) (101-104). The IVD has two distinct regions, the annulus fibrosus (AF) and 

nucleus pulposus (NP) that are biochemically, mechanically, and cellularly distinct 

and work in concert to provide mechanical function (43, 105-107).  The NP is 

primarily responsible for providing the IVD with its compressive properties while the 

AF provides the shear and tensile properties and containment of the NP (40).  The NP 

extracellular matrix is unaligned and composed primarily of type II collagen and 

proteoglycans. In contrast, the AF is highly organized and predominantly composed of 

type I collagen and proteoglycans (42-45, 108-110).  This highly organized aligned 

collagen fibril architecture provides the IVD with many of its complex anisotropic 

shear and tensile mechanical properties (111).  It is the complex architecture of the 

IVD that is responsible for providing mobility to the spine while handling the hoop, 

torsional, and bending stresses imposed upon it during motion of the spine. 

 Current treatments for degenerative disc disease include spinal body fusions, 

partial discectomies, nucleus pulposus replacements, and total disc replacements (1).  

Spinal body fusions and partial discectomies focus on alleviating the symptoms of 

LBP but do not focus on maintaining function of the spine and the IVD.  Furthermore, 

spinal body fusions often result in degeneration and damage to the adjacent disc levels 

due to the altered biomechanics (112).  Replacing degenerated nuclear material holds 

promise for treating IVD disease, but can only be applied when the AF tissue is 

healthy. 

Synthetic total disc replacements are used to completely replace the diseased 

IVD tissue and maintain the function of motion segments (113-116).  However, the 
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long-term performance of these implants and their effects on the adjacent disc levels 

are unknown.  Further, wear and fatigue that likely will occur in synthetic discs 

present additional complications for clinical use.  As a result, recent efforts have 

focused on using tissue engineering strategies that can replace diseased IVD tissue to 

treat LBP. 

 Efforts to develop a tissue engineered IVD have focused largely on generating 

NP tissue, with fewer studies focusing on the AF (65, 67, 70, 117, 118).  The NP is an 

ideal target for tissue engineering due to the isotropic nature and gel-like structure.  

However, because IVD disease and injury are often not limited to the NP, developing 

an implant that also focused on the AF is likely necessary for a variety of applications.  

A number of scaffolds have been suggested for AF tissue engineering including 

porous silk scaffolds (119), an alginate/chitosan hybrid (120), demineralized bone 

matrix (121), electrospun PCL fibers (122, 123), hyaluronic acid-nanofibrous scaffold 

(87), collagen/GAG scaffolds (124), and PGA mesh (58, 59). Mizuno et al. developed 

a composite structure of both the AF and NP (58, 59), but these structures had limited 

collagen organization in the AF.  To date, few studies have attempted to address the 

aligned and anisotropic nature of the AF:  the first used electrospun nanofibrous 

scaffolds with aligned PCL fibers (122, 123); while the second used a wet-spinning 

and lyophilization technique to create an aligned alginate/chitosan scaffold (120).   In 

contrast, this work will attempt to create such collagen alignment using biological self-

assembly that can be employed in an engineered composite IVD containing both AF 

and NP.   

 In efforts to engineer other types of tissue, aligned collagen fibril architectures 

have been generated by contracting collagen gels under a variety of boundary 

conditions (125-127). Costa et al. (128) used this technique to create circumferentially 

aligned fibrils by imposing an annular outer boundary on contracting collagen gels 



 

44 

seeded with human-dermal fibroblasts.  The use of an inner mandrel has also been 

shown to produce aligned structures in tissue engineered blood vessels (98).  The 

current study extends this work to create and regulate circumferential fibril alignment 

in tissue-engineered AF using cell-induced contraction of collagen gels around inner 

mandrels.  While the native AF has a multilamellar cross-ply organization of the 

collagen fibrils, the larger circumferential organization is responsible for resisting the 

hoop stresses experienced during compression. For this reason this study has focused 

on creating circumferential alignment utilizing AF cells. The specific objectives of this 

study were to examine the influence of boundary geometry and construct composition 

on the development of collagen architecture induced by AF-cell driven gel contraction 

using second harmonic generation (SHG) and two-photon excited fluorescence 

(TPEF) microscopy (129-131) to image cell and collagen alignment. As a result, the 

purpose of this work was to demonstrate the feasibility of this technique and develop 

an understanding of the resulting collagen alignment that could be applied in future 

work to create mature engineered IVD. 

 

Materials and Methods 

Cell Preparation.  The cell preparation techniques were based on previously described 

techniques (59).  Sixteen IVDs were dissected out of the lumbar spine region of four 

adult skeletally mature (~14 month old) Finn/Dorset cross male sheep (Cornell 

University Sheep Program, Ithaca, NY) and washed in phosphate-buffered saline 

(PBS) solution (Dulbecco's Phosphate Buffered Saline, Gibco BRL, Grand Island, 

NY).  The AF region of the discs was separated from the NP and dissected into small 

pieces that were digested in 200 ml of 0.3% w/v collagenase type II (Cappel 

Worthington Biochemicals, Malvern, PA) at 37° C for 9 hours.  Digested tissue was 

filtered through a 100 µm nylon mesh (BD Biosciences, Bedford, MA) and 



 

45 

centrifuged at 936 x g for 7 minutes.  The cells were washed 3 times in PBS, counted, 

and seeded at a density of 2500 cells/cm2 in culture flasks with Ham's F-12 media 

(Gibco BRL, Grand Island, NY) containing 10% fetal bovine serum (Gemini Bio 

Products, Sacramento, CA), ascorbic acid (25 µg/ml), penicillin (100 IU/ml), 

streptomycin (100 µg/ml), and amphotericin B (250 ng/ml).  Cells were cultured to 

confluence at 37° C , 5% CO2 atmosphere, normoxia, pH of 7.2, and 300 mOsm.  

Following culture, cells were removed from T-150 flasks with 0.05% trypsin (Gibco).  

Cell viability and number were counted with a hemocytometer and trypan blue vital 

dye.  Cells were then diluted to the appropriate concentrations and seeded in collagen 

gels. 

 

Collagen Solution Preparation.  Collagen type I was obtained from rat tails using 

established protocols (Pel-Freez Biologicals, Rogers, AZ) (132).  Briefly, tendons 

were dissected from rat tails and transferred to a solution of dilute acetic acid (.1%) at 

a volume of 80 ml per gram of tendon at 4° C for 48 hours.  The solution was 

centrifuged at 9000 rpm and the supernatant was transferred and centrifuged a second 

time to remove the unsolubilized collagen, blood, and muscle tissue.  The solution was 

then subjected to the BCA assay (Pierce, Rockford, IL) to determine the collagen 

concentration of the resulting solution.  The stock solution was stored at 4° C until 

needed.   

 

Collagen Construct Fabrication.  Prior to producing gels, tissue culture plates were 

incubated with a 2% BSA solution at 37° C for one hour to prevent construct adhesion 

to tissue culture plates upon gelation.  The stock collagen solution was mixed with the 

appropriate volumes of 1 N NaOH, 1X PBS, and 10X PBS to return the pH to 7.0, 

maintain 300 mOsm, and produce the appropriate collagen concentrations for the 
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study (133).  This solution was immediately mixed at a 1:1 ratio with the cell/media 

solution and pipetted into the appropriate tissue culture plate and allowed to gel for 30 

minutes at 37° C.  After the constructs had gelled, they were floated with 2 ml of the 

previously described media. 

 

Collagen Disk and Annular Constructs.  A total of 70 collagen disk constructs were 

created by pipetting 1 ml of collagen-cell solution into a 24 well tissue culture plate 

and allowing it to gel. Collagen annular constructs were created by pipetting 1 ml of 

the collagen-cell solution into a 12 well tissue culture plate with a 1 cm in diameter 

porous polyethylene disk at the center to yield an annular shaped collagen ring 

surrounding the polyethylene.  Porous disk was selected to encourage gel to remain 

around disk when floated with media.   Two groups were made for both constructs 

shapes with final collagen concentrations of 2.5 mg/ml and 1 mg/ml and a final cell 

concentration of 1 x 106 cells/ml.  The discs were floated with 1 ml of media for the 

disk constructs and 2ml of media for annular constructs in each well to maintain 

similar degree of floating in wells during culture.  Seven constructs per group were 

used for LIVE/DEAD cell viability assay (Invitrogen, Carlsbad, CA) immediately 

after construction.  In addition, constructs were cultured for 3 days and allowed to 

contract freely with 7 constructs per group being harvested at 0, 1, 2, and 3 days.  At 

each time point, constructs were digitally photographed to quantify construct area, 

then fixed with phosphate-buffered formalin for 48 hours, with sections of each 

sample being utilized for second harmonic generation microscopy analysis of collagen 

fibril orientation and histology. 

 

Composite Discs.  Alginate hydrogel NP was produced by mixing 3% (w/v) alginate 

seeded with 25 x 106 cells/ml with 2% CaSO4 at 2:1 ratio and injected between glass 
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plates to produce 2 mm thick alginate sheet.  1.5 mm biopsy punch was shaped into 

NP shape dimensions obtained from rat lumbar discs and NP was punched out of 

sheet.  Alginate NP was subsequently placed in center of 24 well plate and .405 ml of 

2 mg/ml collagen solution was pipetted around alginate NP to produce 2 mm thick 

collagen ring surrounding 2 mm thick NP.  A total of 21 composite discs were made 

and seven constructs were used for LIVE/DEAD cell viability assay (Invitrogen, 

Carlsbad, CA) immediately after construction.  Gels were then floated with 1 ml of 

media and allowed to culture for zero and two weeks with 7 discs being harvested at 

each time point and processed in similar manner to annular and disk constructs. 

 

Digital Imaging.  All constructs were imaged with a digital camera (Canon Powershot 

G5) and quantitatively analyzed for surface area using the Image J software (NIH, 

Bethesda, MD) immediately following harvest on 0, 1, 2, and 3 days. 

 

Second harmonic generation and two-photon excited fluorescence microscopy.  

Procedures of simultaneous second harmonic generation (SHG) microscopy of 

collagen type I fibrils and two-photon excited fluorescence (TPEF) microscopy of 

cells were based on those described previously (129, 131).  SHG and TPEF images 

were obtained using a custom built multi-photon microscope with a Ti:Sapphire mode-

locked laser providing 100 fs pulses at 80 MHz tuned to a wavelength of 780 nm.  

Images were acquired using a BioRad 1024 laser scanner coupled to an Olympus 1X-

70 inverted microscope.  Incident light was focused on the sample using either a 40x 

or 20x objective.  Samples were loaded onto the microscope so that fibrils aligned in 

the circumferential direction of the constructs were in the 90° direction according to a 

specified coordinate system (Fig. 2.1).  TPEF and back-propagating second harmonic 

signals were collected and separated by a dichroic filter into two 
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Figure 2.1.  Overview of gel culture and imaging methods.  Annulus and disk gels were contracted over three days before being 

segmented for imaging.  Images were obtained from the outer(o), middle(m), and inner(i) regions of each gel, as defined here.  

Coordinates were defined in reference to the imaged gel segments. 
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photomultiplier tubes (PMTs).  One PMT collected the epi-SHG at 360-410 nm 

produced by the collagen type I fibrils while the other PMT collected TPEF signal at 

420-500 nm produced by the cells (primarily NADH).  For both annular and disk 

constructs, SHG images were obtained to study the collagen fibril orientation 

throughout contraction.  Z-series were collected with a 20x/0.7 NA water immersion 

objective to a depth of 80 µm (9 images at 10 µm intervals) at the outer, middle, and 

inner regions of the gels.  The images were obtained for four samples for each time 

point and construct type. Images were also taken at higher resolution with an Olympus 

40x/1.3 NA oil objective to observe fibril and cellular interactions. 

 

 

Image Analysis.  Collagen fibril orientation was calculated from SHG images with a 

custom MATLAB code based on a previously described technique (116).  This 

technique has been applied to SEM, histological, and confocal images and is applied 

to SHG images in this paper (134-137).  The algorithm relies on the fast fourier 

transform of the SHG images (Fig. 2.2a).  The program summed the intensity of the 

FFT along lines at 5° increments from 0 - 180° (Fig. 2.2b) via the coordinate system 

described (Fig 2.1). The angular distribution of summed intensities was calculated, 

representing the relative orientation of the fibrils within the image (Fig. 2.2c).  From 

this histogram, the mode was calculated, which represents the angle of maximum 

alignment, and using equation (1) an alignment index (AI) was calculated.  
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Figure 2.2. Collagen fiber alignment quantification. (A) SHG microscopy image. (B) Fourier transform of image (contrast 

adjusted).  Fourier amplitude components (FFT image intensities) were summed up along angles at 5º increments from 0-180º and 

represented as an arrow and !.  (C) Summation of amplitudes resulted in a histogram of the image intensities along each 5º 

increment and from this histogram the mode was calculated and the alignment index was calculated according to equation 1.
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AI ranges from 1 (unaligned) to 4.5 (complete alignment of fibers).  Together the AI 

provides the degree of alignment observed while the mode angle provides the 

direction of alignment. 

 

 

Histological Analysis. One sample at each time point was fixed for 24 hours with 10% 

phosphate-buffered formalin.  The specimens were embedded within paraffin and 

serial sections of 5 µm were cut and stained with hematoxylin and eosin (H&E) for 

comparison to SHG and TPEF images. 

 

Statistical Analysis.  All statistical analysis was performed using three-factor ANOVA 

and Bonferroni post hoc test.  The AI parameter was tested for the effect of time in 

culture (0, 1, 2, and 3 days), region of gel (outside, middle, and inside), and density of 

gel (1 mg/ml and 2.5 mg/ml). 

 

Results 

Contraction 

Macro scale 

The disk and annular constructs followed a similar contraction profile (Fig. 2.3).  The 

2.5 mg/ml disks contracted to 75±2.1 % of the original area by Day 3 compared to a 

contraction of 55±4.1 % of the original area for the 2.5 mg/ml annular gels on Day 3.  

The 1 mg/ml disks contracted to 15±1.1 % of original area while 1 mg/ml annular gels 

contracted to 6.2±1.4 % by Day 3.  The 1 mg/ml gels contracted very quickly from 

Day 0 to Day 1 and approached steady state, compared to the slower and more steady 
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Figure 2.3.  Contraction of disk and annular gels represented as a percent of the constructs original surface area.  Data presented as 

means ± standard deviations for n = 7. (* = p < .05)
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contraction seen in the 2.5 mg/ml gels over the 3 days.  Neither the disks nor the 

annular constructs showed a change in thickness over the 3 days of contraction.  In 

addition, constructs showed no difference (p<.05) between groups in viability after 

construction with a mean viability of all groups of 92±2%. 

Micro scale 

Collagen distribution inside the constructs changed markedly during the contraction 

process (Fig. 2.4a).  At Day 0, collagen was distributed uniformly throughout the 

sample.  Over the course of 3 days, the distribution became more heterogeneous in the 

disks, with more collagen evident in the pericellular region surrounding AF cells.  This 

effect occurred at both concentrations, but was more pronounced in 1.0 mg/ml gels.  

Further, in regions where cells were in tight proximity, collagen fibers were 

rearranged to form larger bundles on lines between cells (Fig. 2.4b).  On a larger 

length scale, this collagen rearrangement resulted in the development of 

circumferential collagen fibril and cellular alignment within the annular gels (Fig. 2.5) 

 

Fibril Orientation 

Collagen disks showed little change in fibril alignment over the 3 days of contraction 

for both the 1mg/ml and 2.5 mg/ml disks, as indicated by AI values that ranged from 

1.2-1.3 over 3 days (data not shown).  In contrast to the disk constructs, the annular 

constructs showed a large degree of fibril alignment in all regions of the constructs 

over the 3 days of contraction (Fig 2.6).  The AI of the 1.0 mg/ml annular construct 

increased from <1.3 at Day 0 to 1.6 at Day 1, and remained at ~1.6 for Day 2 and 3.  

No significant differences were noticed between regions of the constructs on the same 

day when the data was analyzed based on region.   

In 2.5 mg/ml gels AI increased slowly and more steadily over the 3 days of 

contraction, changing from ~1.3 on Day 1 to 1.4 by Day 3 (p<.05 compared to Day 0).  
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Figure 2.4. SHG-TPEF images (A.) from inside region during contraction of 1 mg/ml and 2.5 mg/ml collagen disk constructs over 

3 days (B.) and magnified image showing aligned fibers between cells on Day 3 of contraction in 2.5 mg/ml collagen disks (blue - 

collagen, green - cell). 
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Figure 2.5. SHG-TPEF images from inside region during contraction of 1 mg/ml and 2.5 mg/ml collagen annular constructs over 3 

days.  
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Figure 2.6. SHG alignment data for collagen annular gels with (A.) AI broken down 

by day and gel concentration (n = 21), (B.) AI further broken down by region of gel 

(n=7) (O - outside, M-middle, I - inside), and mode angle broken down by day, 

concentration, and region of gel for (C.) 1 mg/ml (n=4) and (D.) 2.5 mg/ml gels (n=7).  

Data presented as means and standard deviations. (# = p < .05 compared to day 0) (* = 

p < .05 for indicated groups) 
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In contrast to the 1 mg/ml annular gels, the 2.5 mg/ml gels showed regional 

heterogeneity, with the middle regions less aligned compared to the inner and outer 

regions over days 1, 2, and 3 (3 way ANOVA, p<.05).  The 1 mg/ml gels showed 

significant increases (p<.05) in fibril alignment compared to the 2.5 mg/ml gels at Day 

1, Day 2, and Day 3.  With time, mode angles progressed toward 90° and distributions 

became narrower indicating a direction of alignment in the circumferential direction 

(Fig. 2.6 c,d).  These trends were present for both 1.0 and 2.5 mg/ml gels, but were 

more pronounced for 1.0 mg/ml gels.  Overall, the data indicates a circumferential 

alignment of collagen fibrils resulting from annular gel contraction around a 

polyethylene core. 

 

Cellular Orientation 

Disk gels showed no global alignment of cells over the 3 days of contraction despite 

showing some evidence of cellular elongation (Fig. 2.7).  However, annular gels 

showed cellular elongation and circumferential alignment of the cells over the 3 days. 

The cells developed a spindle-shaped morphology elongated between and parallel to 

the collagen fibrils similar to the morphology and alignment observed in the IVD. 

 

Composite Discs 

Composite discs formed in size and shape of rat lumbar IVD.  Collagen gel AF 

analogue seeded with AF cells contracted around alginate NP analogue seeded with 

NP cells.  Collagen fibrils produced AI of 1.57 ± .06 in the circumferential direction 

(Fig. 2.8). 
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Figure 2.7. Hematoxylin and eosin staining and TPEF cellular imaging of 1 mg/ml 

disk gels and annular gels at Day 0 and 3 of contraction from inside region of gel. 
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Figure 2.8.  (A.)  Composite disc before contraction with alginate NP in center of well and collagen solution poured around alginate 

NP. (B.)  Composite disc after 2 weeks of culture with collagen gel contracted around alginate NP forming tissue engineered 

composite IVD. (C.)  SHG alignment  data measured across entirety of contracted collagen gel thickness indicating high degree of 

collagen alignment in circumferential direction at day 14. 
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Discussion 

The broad goal of this work is to develop a method for self-assembly of an 

aligned IVD AF construct from seeded collagen gels that can be employed in an 

engineered IVD composite.  This study focuses on remodeling of collagen gels by AF 

cells and the creation of annular constructs with circumferentially aligned fibrils.  

Previous efforts to make IVD tissue engineered constructs have focused mainly on 

developing the compressive properties of the tissue with less focus on the 

development of an aligned collagen fibril and cellular architecture in the AF region to 

provide the necessary tensile and shear properties.  Some work has demonstrated the 

creation of aligned IVD cells in microgrooves (138) and created tissue engineered 

scaffolds with aligned nanoscale fiber orientation for use in AF tissue engineering 

applications (122, 123).  However, to date none of these methods have yielded a 

composite IVD with aligned collagen fibrils and AF cells around an engineered NP. 

In this study, the cellular and fibril architecture were controlled by the 

boundary conditions imposed on contracting collagen gels.  This study demonstrates 

that over the 3 days of culture, a steady increase of circumferential alignment was 

observed in both the 2.5 mg/ml and 1 mg/ml gels (Fig. 2.7) with a fixed inner 

boundary.  The increased alignment observed in the 1 mg/ml annular gel compared to 

the 2.5 mg/ml annular gel is likely due to the increased contraction observed in the 1 

mg/ml annular gel (6.2±1.4 % of original area) compared to the 2.5 mg/ml annular gel 

(55±4.1 % of original area).  The increase in alignment was consistent with the profile 

of the contraction curves of the two concentrations of gels in the annular gels.  

Furthermore, similar alignment was observed in a composite construct with a 

circumferentially aligned collagen AF contracted around an alginate NP (Fig. 2.8).  In 

contrast to the annular gels and composite, minimal alignment was observed in the 

disk gels at 3 days.  The ability to create an unaligned disk structure in combination 
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with the aligned annular gels may be useful in studying the effects of collagen 

architecture on tissue development in future studies.  Overall, this technique enables 

control of the degree and heterogeniety of alignment through the original collagen 

concentrations of the gels and boundary conditions. 

Similar techniques have been employed in other tissues to create aligned 

collagen fibril structures.  Costa et. al. (128) used an analogous technique to create 

aligned collagen fibrils in engineered heart tissue, while Stegemann et al. (98) 

incorporated this technique in engineered blood vessels.  Wagenseil et al. (139) 

showed that circumferential alignment developed by fibroblast populated gels resulted 

in mechanical anisotropy. Schneider et al. (140) demonstrated the ability of annulus 

fibrosus cells to contract collagen/GAG scaffolds. The results of the current study 

show the ability to use these techniques to create an annular construct with both 

circumferentially aligned collagen fibrils and aligned AF cells after 3 days of 

contraction. 

While the main goal of this study was to create collagen alignment in the AF 

region, it is likely that the cell alignment and shape may be of great importance.  In 

order to produce a mechanically functional tissue from a collagen gel, long-term 

culture is likely needed.  Fibroblasts are known to increase collagen type I expression 

when maintained in an aligned spindle shape as compared to a randomly oriented 

structure and is further enhanced with the application of a tensile stimulation (141).  

The spindle shaped circumferential cellular alignment (Fig. 2.7) may be advantageous 

for the future development of the ECM in long-term culture, as well as for priming AF 

cells for mechanical stimulation. 

The use of SHG-TPEF microscopy enabled the simultaneous study of collagen 

architecture and cell morphology.  More collagen was observed in the pericellular 

region of the cells in the disk constructs over the three days of contraction and was 
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greater in the 1 mg/ml gels than in the 2.5 mg/ml gels.  The increased concentration of 

collagen within these pericellular regions could result from newly synthesized 

collagen, as suggested by Torkian et al. (142), or from pulling of collagen fibrils into 

the pericellular region by cells.  The observed similar profiles of the gel contraction 

and the development of the increased pericellular collagen between the two 

concentrations of gels along with the relatively short culture time suggest a contraction 

mechanism over a collagen production mechanism.  The varying collagen architecture 

suggests that while tissue-scale variables, such as total collagen concentration, 

regulate mechanical properties, it is also important to characterize the microscale 

collagen architecture that may also yield insight into the process of tissue assembly.   

The SHG-TPEF images also showed a cell-fibril-cell interaction.  As the gels 

contracted, fibrils were aligned between adjacent cells in the disk and annular gels 

(Fig. 2.5).  The alignment of collagen networks between two cellular islands seeded in 

collagen gels has been proposed in model and experimentally observed by Ohsumi et 

al. (143) but can be seen here in the SHG images occurring between individual cells. 

This provides a possible mechanism for the alignment of fibrils observed within the 

annular gels.  Fibrils first become stretched between the cells and as the cells pull and 

contract around the fixed inner core the strained fibrils between cells will be 

predominately oriented in the circumferential direction due to the imposed physical 

boundary and circumferential tensile stresses.  This would not result in aligned fibrils 

in unbounded disks as no boundaries have been applied and the cells will contract 

isotropically. Furthermore, this data suggests the possibility that cell patterning could 

be employed in collagen gels to further control the resulting collagen architecture of 

contracted collagen gels in the future. 

Despite the advancements presented in this paper and observed in the field, the 

creation of a clinically applicable tissue engineered IVD faces a number of challenges.  
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One significant challenge is the creation of a disc with sufficient mechanical 

properties to replace the native IVD.  Because mechanical properties are tied to the 

presence of adequate amounts of collagen and proteoglycan, this requires significant 

metabolic activity in an environment with low oxygen and high osmolarity (144, 145).  

In addition to mechanical concerns, an engineered IVD will need to integrate with the 

native tissue when implanted, and survive in the native disc space environment upon 

implantation. Despite these challenges the techniques described here for producing an 

aligned AF represent an important step toward making a functional composite IVD. 

Furthermore, collagen alignment in the native AF is not only circumferential in 

direction, but also at an alternating angle of ±28° between adjacent lamellae and 

increasing to 44° at the inner AF (50, 51).  Achieving this alternating pattern of 

alignment remains a persistent challenge in IVD tissue engineering with 

electrospinning being proposed as a possible solution (123).  However, the current 

technique enables generation of the dominant circumferential alignment of the 

collagen fibrils/cells in a composite engineered IVD and provides techniques that in 

future work may provide this further complexity in structure.  Furthermore, the ability 

to deposit successive layers of collagen gels may enable the generation of constructs 

with multiple lamellae.  As a result, contracting collagen gels provides a powerful tool 

to create the complex structure of the AF and warrants further investigation.
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CHAPTER 3 

Specific Aim 2 

Image-Based Tissue Engineering of a Total Intervertebral Disc Replacement for 

Restoration of Function to the Rat Lumbar Spine* 

Abstract 

Non-biological total disc replacement is currently being used for the treatment 

of intervertebral disc (IVD) disease and injury, but these implants are prone to 

mechanical wear, tear, and possible dislodgement.  Recently, tissue engineered total 

disc replacement (TE-TDR) has been investigated as a possible alternative to more 

fully replicate the native IVD properties.  However, the performance of TE-TDRs has 

not been studied in the native disc space.  In this study, magnetic resonance imaging 

(MRI) and microcomputed tomography (!CT) imaging of the rat spine were used to 

design a collagen (annulus fibrosus)/alginate (nucleus pulposus) TE-TDR to a high 

degree of geometric accuracy with less than 10% difference between the TE-TDR and 

the native disc dimensions. Image-Based TE-TDR implants were then inserted into the 

athymic rats’ (n=5) L4/L5 disc space and maintained for 16 weeks.  Disc space was 

fully or partially maintained in three of five of the animals and proteoglycan and 

collagen histology staining was similar in composition to the native disc. In addition, 

good integration was observed between the TE-TDR and the vertebral bodies, as well 

as remnant native IVD tissue.  Overall, this study provides evidence that TE-TDR 

strategies may yield a clinically viable treatment for diseased or injured IVD. 

 

 

 

 

 

_____________________ 

* This chapter is currently in press:  Bowles, R.D., Gebhard, H.G., Dyke, J.P., Ballon, D.J., Tomasino, 
A.T., Cunningham, M.E., Hartl, R., and Bonassar, L.J. Image-Based Tissue Engineering of a Total 

Intervertebral Disc Replacement for Restoration of Function to the Rat Lumbar Spine. NMR in 

Biomedicine, In Press. 
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Introduction 

Back pain is one of the leading physical conditions for which patients see their 

doctors. One cause commonly associated with back pain is a diseased or injured 

intervertebral disc (IVD) (101-104).  In patients who have failed non-operative 

treatment, surgery, including discectomy, spinal fusion, or total disc replacement, may 

be indicated. In 2004, discectomy procedures in the United States encompassed a total 

cost of $11.25 billion and spinal fusion surgeries a cost of $16.9 billion (146).  Spinal 

fusion procedures are performed frequently and relieve pain; however, they often 

result in a loss of mobility and the possible development of adjacent level disease 

(ALD). 

For this reason, non-biological total disc replacement (NB-TDR) technologies 

have emerged that are designed to retain mobility in the motion segment and reduce 

the occurrence of ALD.  While there currently is a lack of long-term information from 

these studies, short-term data indicate that NB-TDR may be more successful in 

reducing the occurrence of ALD than fusion surgery (26, 27); however, NB-TDR is 

subject to mechanical failure, dislodgement, and polyethylene wear.  Such wear debris 

may lead to osteolysis, as shown in several studies involving hip and knee 

replacements (28, 29).  Consequently, tissue-engineered total disc replacement (TE-

TDR) has been developed with the potential to restore function to the motion segment 

(58, 59, 87, 93).  Despite the interest in TE-TDR, no work has been performed to 

understand how TE-TDR would perform in an actual in vivo disc space. 

 A major challenge in developing a TE-TDR is the complex composite structure 

of the IVD, which contains an inner nucleus pulposus (NP) and the surrounding 

lamellar annulus fibrosus (AF).  The NP is an isotropic-gelatinous tissue 

predominantly made up of proteoglycans and collagen type II.  In contrast, the AF is a 

highly anisotropic tissue primarily made up of collagen type I and proteoglycans (42, 
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44, 45, 108-110).  The AF is macroscopically organized into concentric lamellae. The 

collagen fibrils within each lamellae are highly organized and aligned at an alternating 

±28 ° angle in each adjacent concentric lamellae (50, 51).  The IVD is integrated to the 

vertebral bodies by the cartilage endplate and directly by AF collagen bundles at the 

outer AF (39).  This complex structure in the IVD is key to the mechanical functioning 

of the IVD (40) and creating this structure has been the focus in a number of IVD 

tissue engineering studies (58, 120, 121, 138, 147).  However, much is assumed and 

little is understood about how these structures will develop, be maintained, and 

integrate in vivo.  This type of information is vital in developing design criteria for the 

future construction of TE-TDRs. 

A number of techniques and materials have been proposed in creating TE-

TDRs including contracted collagen/alginate (147), electrospun PLLA/Hylauronic 

acid (87), and PLA/PGA/alginate (58, 59) composites.  In addition, a number of 

studies have focused on strategies to engineer AF and NP that could be incorporated 

into a TE-TDR (67, 86, 118-121).  The present work focuses on using the contracted 

collagen/alginate technique to produce a composite TE-TDR with a circumferentially 

aligned collagen AF and a cell-seeded alginate NP region (147).  This technique 

combined with image-based construction of the molds and controlled contraction of 

the AF can produce an anatomically shaped TE-TDR that can be implanted in vivo. 

 One key to producing TE-TDRs that can be utilized clinically is the 

reproduction of the correct anatomical shape and size for each patient.  Recently, MRI 

and µCT have been used for guiding the design of a tissue engineered meniscus and 

bone (148-152) and could be employed in designing a TE-TDR.  CT and µCT can 

image the vertebral bodies and provide the outer boundary information of the IVD by 

examining the surface of the vertebral body (153), as well as provide information on 

the thickness of the disc space.  In addition, a T2 weighted MR image can provide 
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information on the NP shape and dimensions (154).  Combining these imaging 

techniques can produce a model of the native IVD that can be used to create a TE-

TDR.  Such a technique would be applicable in the clinical setting and could produce 

TE-TDRs tailored to the patient. 

 Currently, many studies have focused largely on the in vitro evaluation of IVD 

tissue engineering strategies (58, 70, 86, 87, 118-121, 147) while a smaller subset have 

investigated the in vivo function of NP replacement strategies (65, 117).  In addition, 

Mizuno et al. (58, 59) investigated the effects of subcutaneous implantation on an 

PGA/PLA/aglinate TE-TDR, which showed promising ECM (extraceullar matrix) and 

mechanical properties compared to native IVD levels.  Despite this work, the behavior 

of TE-TDRs in the native disc space has not been investigated.  The implanted disc 

will be subjected to mechanical loading (155), limited nutrient supply (156), and will 

need to integrate with the native tissue.  As a result, a successful TE-TDR will need to 

be sufficiently stiff to withstand loading in the disc space, sufficiently permeable to 

allow nutrient transport to the developing tissue, and properly sized to fit into the disc 

space while sitting flush with the vertebral bodies to facilitate integration.  However, 

currently it is unknown, beyond speculation, what range of stiffness and permeability 

are appropriate for a TE-TDR. 

For this reason, the goal of this study was to determine the extent to which a 

composite collagen/alginate TE-TDR can maintain function of the rat lumbar spine.  

Specifically, the work produced an image-based collagen/alginate TE-TDR design 

tailored to the L4/L5 disc space of athymic rats and studied the performance of those 

discs in vivo for 16 weeks.  The in vivo performance of composite TE-TDRs was 

assessed via x-ray to monitor disc height and histology to characterize the morphology 

of newly formed tissue and integration of the implant with surrounding tissues. 
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Materials and Methods 

Magnetic Resonance Imaging.  All MRI image data were acquired using a 3.0 Tesla 

Magnetic Resonance Imaging system (GE Medical Systems, Milwaukee WI) equipped 

with 50 mT/m gradients operating at 150 mT/m/ms.  Athymic rats were anesthetized 

using 3%/2% isoflurane for induction and maintenance respectively.  A sealed 

poly(methyl 2-methylpropenoate) box with intake and exhaust ports was used for 

imaging that also contained a warming gel pack to aid in maintaining core body 

temperature.  A Hoult-Deslauriers transmit/receive radiofrequency resonator was 

designed in-house consisting of six inductively coupled, 19 mm diameter resonant 

loops arranged in a cylindrical geometry of length 35 mm with an inductively coupled 

drive loop placed at one end.  The animal was placed prone in the solenoidal coil to 

promote a natural resting alignment of the lumbar spine thereby minimizing 

compressions on the disc space.  The head and feet of the animal remained outside the 

coil while the lumbar region was aligned in the center of the imaging volume. 

A 2D axial T2-weighted fast spin echo (SE) sequence was used to visualize the 

NP region within the disc.  Acquisition parameters included a 90 ms echo time, a 5500 

ms repetition time, and an echo train length of 16 using an 8.0 cm x 6.4 cm field of 

view.  A 320 x 256 acquisition matrix with a slice thickness of 1 mm provided 0.25 

mm x 0.25 spatial resolution, and the data were zero-filled to a matrix of 512X512 for 

display. 

 

µCT  Rat spine from L3-S1 was imaged using an MS-8 Micro-CT Scanner (GE 

Healthcare, London, Ontario, Canada) at an isotropic resolution of 17!m.  Scans were 

calibrated using an air, water, and mineral standard material (SB3, Gammex, RMI).   
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Disc Dimensions and Mold Design.  µCT data were visualized in Microview (GE 

Healthcare Inc., Princeton, NJ) and converted to DICOM format.  DICOM files were 

then imported into slicOmatic v4.3 (TomoVision, Montreal, Canada) where the bony 

surfaces of the vertebral bodies were manually segmented to obtain the overall shape 

and dimensions of the L4/L5 IVD (Figure 3.1).  Segmentation resulted in point cloud 

images of the vertebral body bony surfaces, in which the dimensions contained in the 

µCT data were conserved.  Point cloud images were then converted to surface and 

solid models of the outer boundary of the IVD in Studio 4.0 (Geomagic Inc., Research 

Triangle Park, NC) with dimensions conserved.  In addition, the spacing between the 

vertebral bodies was obtained to determine the target thickness of the engineered IVD. 

MRI data were imported in DICOM format and segmented manually using 

slicOmatic v4.3 to create point cloud images of the NP.  Point cloud images were then 

converted to surface and solid models of the NP in Studio 4.0 (Geomagic Inc., 

Research Triangle Park, NC) (Figure 3.1).  By segmenting and creating surface and 

solid models with the dimensions conserved for both the MRI generated NP data and 

the µCT generated total disc measurements, the data sets were in a compatible format 

and could be combined to provide the target shape and dimensions of the IVD and 

respective AF and NP.  Data sets were combined in Studio 4.0 by placing the MRI 

generated NP model and the µCT generated total disc measurement model on the 

same plane and centering the NP model so that the AF had equal thickness on either 

side of the anterior-posterior plane and equal thickness on either side of the lateral 

plane. 

In concordance with the collagen contraction method of creating engineered 

IVD (147), the shape and dimensions of the NP were used to create a single injectable 

mold of the NP region of the disc (149) that was used for all animals.  Total disc 



70 

Figure 3.1 – The image-based model produced total disc dimensions from µCT using the vertebral body surface, and NP 

dimensions from T2 weighted MRI images.   



71 

dimensions, NP dimensions, and AF dimensions were measured on the AP and lateral 

plane for the native disc, the image-based model, and the engineered discs. 

 

Cell Preparation.  Isolation and preparation of AF and NP cells were conducted as 

previously described (58, 59, 147).  In brief, four IVDs were removed from the lumbar 

region of an adult skeletally mature Fin/Dorset cross male sheep (Cornell University 

Sheep Program, Ithaca, NY) and washed in phosphate buffered saline (PBS) solution 

(Dulbecco's Phosphate Buffered Saline, Gibco BRL, Grand Island, NY).  The AF and 

NP were subsequently separated by inspection and dissected into small pieces that 

were digested in 0.3% collagenase type II (Cappel Worthington Biochemicals, 

Malvern, PA), with the NP digested for six hours and the AF for nine hours. Digested 

tissue was filtered using a 100 µm nylon mesh (BD Biosciences, Bedford, MA) and 

centrifuged at 936 x g for seven minutes. The cells were seeded at a density of 2500 

cells/cm
2
 in T150 flasks with Ham's F-12 media (Gibco BRL, Grand Island, NY) 

supplemented with 10% fetal bovine serum (Gemini Bio Products, Sacramento, CA), 

25 µg/ml ascorbic acid, 100 IU/ml penicillin, 100 µg/ml streptomycin, and 250 ng/ml 

amphotericin B. Cells were cultured to confluence at 37°C, 5% CO2 atmosphere, and 

normoxia. Following culture, cells were removed from T- 150 flasks with 0.05% 

trypsin (Gibco). 

 

Engineered IVD Construction.  3% (w/v) alginate seeded with ovine nucleus pulposus 

cells (25 x 10
6
 cells/ml) was injection molded (Figure 3.2) using mold derived from 

MRI and !CT images and alginate NP was placed in the center of a 24 well plate.  

Collagen type I gel solution (1 mg/ml) made from rat-tail tendon (132), seeded with 

ovine annulus fibrosus cells at a density of 1 x 10
6
 cells/ml, was pipetted around the 

NP and allowed to gel at 37°C using established protocols (147).  Constructs were 
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Figure 3.2 – Process of making TE-TDR implants.  Image-based model used to produce injectable mold.  Cell seeded alginate NP 

(3% w/v) created and placed in center of 24 well plate and cell seeded collagen gel (1 mg/ml) contracted around NP for 2 weeks. 
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floated with F12 media supplemented with 10% FBS, 100 IU/ml penicillin, 100 µg/ml 

streptomycin, and 25 µg/ml ascorbic acid.  Media was changed every 3 days and 

constructs were cultured for 2 weeks allowing collagen gel region to contract around 

alginate NP to the dimensions derived from MRI and µCT data. 

 

Implantation.  After 2 weeks of in vitro culture, composite discs were implanted into 

the lumbar spine of athymic rats (n=5) (Figure 3.3). All animal procedures were 

performed in accordance with the guidelines of the IACUC of the Hospital for Special 

Surgery, New York, NY.  Rats were anesthetized using ketamine ('Ketaset' -- 100 

mg/ml) 80-90 mg/kg, and xylazine ('Rompun'  --  20 mg/ml)  5 mg/kg, which were 

mixed together and administered intraperitoneally.  If necessary, anesthesia was 

prolonged by administration of isoflurane via nose cone. A modified anterior approach 

described by Rousseau et. al. was used to approach the lower lumbar spine (157). A 

method was for the first time established to remove the native disc and to prepare the 

disc space for implant insertion.  The vertebral column was exposed and the native 

IVD (L4/L5) removed. Upon removal, the L4 and L5 vertebral bodies were minimally 

retracted to allow the insertion of the engineered disc into the disc space (Figure 3). 

The disc space was released to press-fit the implant in place and wound closure was 

performed in layers.  An initial dose of 0.01-0.05 mg/kg buprenorphine ('Buprenex’) 

was administered intraoperatively or immediately postoperatively prior to anesthetic 

recovery. Buprenorphine treatments were performed for two days postoperatively. 

 Upon implantation, rats were maintained for 16 weeks with lateral and 

anterior-posterior x-ray images taken of the implanted disc space immediately prior to 

surgery, immediately after surgery, and at 1, 4, 8, 12, and 16 weeks to monitor disc 

height.  At 16 weeks, rats were sacrificed and the motion segments explanted. 
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Figure 3.3 – Surgical implantation of a TE-TDR implant into the L4/5 disc space.  (A.) L4/5 motion segment exposed. (B.) Native 

disc removed via scalpel. (C.)  Vertebral bodies retracted and TE-TDR implanted into disc space.  (D.) Vertebral bodies released 

resulting in successfully implanted TE-TDR specimen.
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Histology.  Spines and bone samples were cleaned of muscle and preserved in 10% 

phosphate buffered formalin or 4% paraformaldehyde in 0.05M cacodylate buffer, pH 

7.4.  Samples were fixed at room temperature for 2 days using a rotator or rocker plate 

to agitate samples during fixation.  Following an overnight running water rinse, 

samples were decalcified in 10% EDTA in 0.05M Tris buffer, pH 7.4, until bone was 

soft and flexible.  An overnight running water rinse was conducted in a VIP tissue 

processor to paraffin.   Embedded samples were sectioned at 5 micron thickness and 

subsequently stained with safranin O for proteolycans, picrosirius red for collagen, and 

Hemotoxylin and eosin.  

 

Immunohistochemistry.  Paraffin sections were dewaxed in xylene and rehydrated to 

water by a decreasing concentration of ethyl alcohol baths.  The sections were treated 

with 3% hydrogen peroxide in PBS to reduce endogenous peroxidase activity in the 

tissues. A protein block was added to reduce the non-specific binding between 

antibody and tissue components. The antibody for collagen type II (Santa Cruz 

Biotechnology, Santa Cruz, CA) was used at a concentration of 250 ug protein per ml 

of solution.  To enhance the type II collagen localization, the sections were treated 

with 1% hyaluronidase in PBS, pH 5.5 for 30 minutes at 37° C, prior to adding the 

antibody.  After an overnight incubation in primary antibody at 4° C in a humid 

chamber, the antibody was rinsed off with PBS, and treated with a biotinylated 

antimouse IgG followed by streptavidin reagents using the Vectastain ABC Kit 

(Vector Laboratories, Burlingame, CA) according to manufacturers instructions.  The 

final reaction product was the brown deposit created by diaminobenzidine and 

hydrogen peroxide in the presence of the conjugated peroxidase.    
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Results 

A model of the native IVD was obtained from µCT and MRI imaging and 

provided the target dimensions for an engineered IVD to be implanted in the L4/L5 

disc space.  µCT provided the outer boundary and thickness of the IVD (Figure 3.1a - 

e), which measured an anterior-posterior width of 3.23 mm, a lateral width of 3.8 mm, 

and a thickness of 0.99 mm, while MRI data provided the dimensions for the NP 

region of the disc (Figure 3.4), which measured an anterior posterior width of 1.50 mm 

and a lateral width of 1.93 mm.  The combination of the NP (MRI) and total disc 

(µCT) data allowed for the dimensions of the AF to be determined with a measured 

AF width of 0.86 mm on the AP plane and 0.93 mm on the lateral plane.  The 

dimensions of the image-derived model were within 10% of the manually measured 

dimensions of the native disc (Figure 3.4).  In addition, the engineered constructs 

differed by less than 7% from those of the native disc.  Finally, the process had a high 

degree of reproducibility with the standard deviations, represented by the error bars 

(Figure 3.4), ranging from 78 - 278 !m.  These standard deviations were within 11.8% 

of the mean in all measurements. 

 Upon implantation, none of the rats showed any signs of neurological deficit 

due to the surgery and implantation.  Radiographs indicated the disc space was fully or 

partially maintained in three of five animals at the implanted level (Figure 3.5) after 16 

weeks.  Two of the discs failed rapidly with a complete collapse of the disc space and 

interbody fusion occurring by 4 weeks with one disc losing disc space constantly over 

the 16 weeks to 50% of the original disc space.  In the failed discs, posterior 

displacement of the vertebral bodies was observed (Figure 3.6, g3).  In addition, a 

direct relationship was present between the maintenance of disc height and the 

presence of an intact posterior longitudinal ligament (PLL).  In each of the animals 

with collapsed disc space the PLL had been removed during surgery but was left intact 
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Figure 3.4. Comparison of disc dimensions between the native IVD, image-based model, and engineered IVD (n = 5).  Data 

represented as means ± standard deviations for engineered IVD. Measurement planes indicated on picture of image-based model 

(red line represents anterior-posterior plane (AP) and green line represents lateral plane)  
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Figure 3.5 – X-ray image of disc space (A.) immediately following surgery and (B.) 16 weeks following implantation. (C.) Disc 

height measurements obtained over 16 weeks from 5 implanted animals. 
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Figure 3.6 – Histology for animals one, two, and three.  Gross sections (G1-3), Safranin-O (S1-3), and picrosirius red (P1-3) shown 

for all three animals.   Collagen II IHC shown for animal one (C1a) and three (C3) with magnified vertebral bone implant interface 

(C1b) displayed for animal one, as well. G1-2, S1-2, P1-2, and C1a-b show tissue development in discs that maintained disc space. 

G3, S3, P3, and C3 show fused vertebral bodies at site of implanted disc. Scale bars = 1 mm. 
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in the animals that maintained disc space. 

 Histologically, the 3 samples that maintained disc height produced tissue with 

composition reminiscent of native IVD (Figure 3.6), while those that resulted in a 

collapsed disc space produced a fusion between the vertebral bodies.  Implanted 

tissues were generally located anteriorly in the disc space with significant staining 

observed for both proteoglycans and collagen in the implanted discs at 16 weeks 

(Figure 3.6, s1-2, p1-2).  Collagen II was seen distributed throughout the implanted 

disc at 16 weeks by immunohistochemistry.  In addition, proper localization of 

proteogylcan and collagen was observed in one of the maintained disc spaces (Figure 

3.7a, c).  The NP region contained intense proteoglycan staining compared to the AF 

region of the implant while the AF region showed increased staining for collagen 

compared to the NP region.  Good integration was observed between the AF and NP 

regions of the TE-TDR (Figure 3.7a, c) and between the TE-TDR and remnant native 

IVD (Figure 3.6s1, p1). Furthermore, picrosirius red staining and polarized light 

images indicated that the AF region contained collagen organization at 16 weeks 

(Figure 3.7a, b).  Finally, in each of the animals that successfully maintained disc 

space, good integration was observed between the implanted disc and the vertebral 

bone (Figure 3.7d). 

Discussion 

 The aim of this work was to use MRI and µCT to design a natively sized 

tissue-engineered IVD and study the performance of those implants in the rat lumbar 

spine. This research provides a method for using clinically relevant imaging data to 

design implants to a high degree of geometric accuracy.  Initial characterization of 

these implants showed that the implanted TE-TDR was capable of maintaining disc 

height, integrating with the vertebral bodies, and developing in the native disc space.  
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Figure 3.7 – (A.) Picrosirius staining and (B.) polarized light of showing collagen staining and organization in AF region of disc.  

(C.)  Increased Safranin- O staining in NP region of disc.  (D.) Integration between implanted TE-TDR and vertebral body (VB) 

bone. (Scale bars = 1mm)
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 Recently, a number of studies have focused on creating composite engineered 

IVD implants containing both an AF and NP (58, 59, 87, 147).  However, little is 

known on how such total disc implants will be utilized clinically and how they will 

perform once implanted into the native disc space.  A major concern is the production 

of a construct that is the correct size and shape for the targeted disc space. One 

possible solution is to make generalized measurements and have a number of sizes 

available during implantation to find the correct fit; however, this may not be practical 

in tissue engineering due to the cellular cost of producing multiple sized constructs.  

For this reason, the present work focused on using clinically applicable imaging 

modalities to determine the necessary disc dimensions for implantation.   

Current work (149-152) has demonstrated the usefulness of µCT and MRI in 

providing shape and dimension information for bone and meniscal tissue engineering 

applications.  These imaging modalities are also appropriate for the IVD with µCT 

imaging the bone-determined boundaries of the IVD/endplate and MRI imaging the 

NP.  Utilizing these two techniques, a model of the desired IVD was successfully 

produced from the native rat disc  (Figure 3.1).  In addition, when comparing 

measurements obtained from the actual native disc and that obtained from imaging, 

the technique was shown to be quite accurate even for the relatively small rat discs 

(Figure 3.3) with the maximum deviations between measurements being 99 !m.  

While demonstrated here for the rat, this technique could be employed clinically to 

design tissue-engineered IVDs for larger animals or humans.  It should be noted, 

however, one would not want to copy a degenerated NP in a tissue-engineered 

implant.  A more likely clinical scenario would be to obtain the disc space boundaries 

using CT and design the NP within those overall boundaries using established values 

for the NP relative to the disc or obtain them from an adjacent healthy disc. 

 As in previous work, this study produced IVD composites using the collagen 



 

83 

contraction method, which resulted in an AF region with circumferentially aligned 

collagen fibrils and a cell-seeded alginate NP (147).  By controlling the NP shape and 

dimensions through injection molding (Figure 3.2), an accurate alginate NP was 

created (Figure 3.4) compared to the native NP and image-based model; however, the 

thickness of the gel was purposely oversized.   The degree of accuracy and 

repeatability is consistent with previous work by Hott et al when using alginate 

injection molding to produce tympanic membrane patches (158). The oversized 

implant was designed to be press fit into the disc space and combat slippage of the 

engineered disc from the disc space before integration.  In addition, this allowed for 

the alginate and collagen material to be flush with the vertebral ends and promote 

integration between the native and engineered tissue.  Once the NP was created, the 

collagen gel AF was contracted around the alginate NP to the AF dimensions provided 

by the image-based model. Upon completion, this technique resulted in engineered 

IVDs that were similar in dimension to that of the native IVD and image-based 

measurements (Figure 3.4).  

 Upon implantation into the rat L4/L5 disc space, three of five rats 

showed full or partial disc height maintenance at the implanted level (Figure 3.5).  The 

failure of two of the discs to maintain disc height was seen in animals in which the 

posterior supporting tissue, including the PLL, had been more aggressively removed. 

In addition, posterior displacement of the vertebral bodies was observed in the failed 

animals (Figure 3.6, g3).  It is known that posterior vertebral displacement is unlikely 

without posterior longitudinal ligament damage (159) and the presence of this failure 

mode indicates PLL involvement.  For this reason, both the relationship between 

removal of the PLL and disc height collapse and the posterior displacement of the 

vertebral bodies upon failure indicate that removal of the posterior supporting tissue 

likely provided a mechanism for the destabilization of the spine and collapse of the 
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disc space.  As a result, in future studies it will be important to avoid damaging the 

posterior ligaments during surgery.  The maintenance of disc height in the remaining 

animals shows promise for this type of implant.  This indicates that, under the proper 

conditions, a contracted collagen/alginate implant (147) can function in the basic 

capacity of maintaining disc height despite a relatively low stiffness of these discs 

when compared to the modulus of a native disc.  Current work has focused on the 

replication of the native mechanical properties as a key outcome variable in in vitro 

IVD tissue engineering (59, 86).  However, the data presented here indicates that it 

may not be necessary for clinically viable TE-TDR to fully replicate the native 

mechanical properties before implantation. As a result, this may allow for greater 

focus to be placed in the future on other properties of the TE-TDR, such as 

permeability, that would encourage nutrient transport and aid tissue formation and 

integration within the nutrient limited disc space. 

 In addition to the maintenance of disc height, the successful implants showed 

patterns of proteoglycan and collagen staining that were similar to native IVD (Figure 

3.6).   Significant proteoglycan and collagen staining was observed in the implanted 

tissue at 16 weeks (Figure 3.6, s1-2, p1-2, c1a-b) indicating a cartilaginous tissue 

being formed by the constructs within the disc space.  Furthermore, in one of the 

successful constructs the NP region showed increased proteoglycan staining and lower 

collagen staining in comparison to the AF region (Figure 3.7a, c).  And finally, 

polarized light indicated that the collagen organization in the AF was maintained after 

16 weeks.  These findings indicate that these constructs are quite capable of producing 

cartilaginous tissues in the disc space environment and promoting IVD like qualities in 

their development. 

 One event that is vital for total tissue-engineered discs to succeed in the disc 

space is the integration of the implant with the vertebral bodies.  Without this 
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occurrence it is likely the disc will not remain in the disc space over time.  This study 

observed very good integration between the implant and vertebral bodies (Figure 3.7d) 

and remnant IVD (Figure 3.6s1, p1) at 16 weeks.  This is a promising aspect of 

collagen/alginate implants and demonstrates that, given the proper conditions, total 

tissue-engineered discs can integrate with their environment and create a mechanically 

functioning motion segment.  Furthermore, not to be overlooked is the successful 

integration of the TE-TDR materials with the remnant native IVD.  The integration 

indicates that these materials may be appropriate for use in annular repair following 

discectomy and may allow for new tissue to be developed in the annular defect and 

prevent reherniation following surgery.  As a result, collagen and alginate should be 

investigated for annular repair of defects in future work. 

 While MRI and CT imaging modalities were used for the design of the 

engineered disc in this study, they could also be used to monitor engineered in vivo 

tissue maturation after implantation as well.  This would provide a powerful technique 

to monitor tissue development in human patients when directly sampling the tissue is 

not an option.  Specifically, T1!-weighted MRI correlates to the proteoglycan content 

of cartilaginous tissues and has been used to monitor the degeneration of both articular 

cartilage and the intervertebral disc in vivo (160, 161).   Furthermore, delayed 

gadolinium-enhanced MRI has been used to track the distribution of 

glycosaminoglycans, a proteoglycan component (162).  So while these methods have 

traditionally been investigated to monitor the loss of proteoglycan in degenerating 

cartilaginous tissues, it follows that they could be used to monitor the development of 

proteoglycans in an implanted engineered tissue as well, thus allowing the production 

of a key IVD component to be tracked non-invasively during tissue development.  

Furthermore, the complex organization of the AF is known to influence the 

mechanical function of the IVD.  Both quantitative T2 imaging and diffusion tensor 
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MRI have been used to investigate the collagen fibril architecture in articular cartilage 

(163, 164).  The use of similar techniques may allow the development of collagen 

organization in the AF region of engineered IVD to be monitored non-invasively.  As 

can be seen, MRI can provide not only the desired dimensions for an engineered IVD 

but in future work could also be used to assess the in vivo development as well.  

The potential exists for translating results from this study in the rat model to 

that of larger animal models.  Increasing the size of the IVD may reduce partial 

volume effects by minimizing the contribution of adjacent tissue outside the disc in the 

slice direction.  In addition, since larger animal models are studied in most cases on 

the same scanner platforms that are used clinically, translation of imaging techniques 

to humans is in principle straightforward. 

Overall, this work provides both a method of creating anatomically shaped 

IVDs with clinically relevant imaging modalities, as well as providing the first insight 

into how engineered discs perform in the native disc space.  Specifically, anatomically 

shaped engineered IVDs were seen maintaining disc height in a significant portion of 

cases, developing cartilaginous like tissue in the disc space, and integrating with the 

native bone. These results show promise that TE-TDRs can be developed in a manner 

that would be clinically applicable.  In addition, a number of challenges were exposed 

including disc containment and early implant integrity.  However, despite these 

challenges, total disc replacements show promise and further studies including larger 

animal group sizes, varying disc formulations, and augmentation techniques should be 

investigated in order to move total tissue-engineered discs closer towards potential 

clinical application. 
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CHAPTER 4 

Specific Aim 3 

Tissue-Engineered Intervertebral Disc Implants Restore Function to the Spine In 

Vivo* 

Abstracts 

Degenerative disc disease is one of the leading physical conditions for which 

patients see their doctors in the US.  The main target for this disease is the 

intervertebral disc (IVD), which frequently herniates, ruptures, or tears, often causing 

pain and limiting spinal mobility.  To date approaches for replacement of diseased 

IVD have been confined to purely mechanics devices designed to either eliminate or 

enable flexibility of the diseased motion segment.  Here we present the development 

of a living, tissue-engineered intervertebral disc composed of a gelatinous nucleus 

pulposus surrounded by an aligned collagenous annulus fibrosus.  When implanted 

into the rat spine for times up to 6 months, tissue-engineered intervertebral discs 

maintained disc space height, produced organized extracellular matrix, and integrated 

into the spine, yielding an intact motion segment with dynamic mechanical properties 

similar to that of native IVD.  These studies are the first to demonstrate the feasibility 

of engineering a functional spinal motion segment and represent a critical step in 

developing biological therapies for degenerative disc disease. 
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*This chapter is currently submitted for publication: Bowles, R.D., Gebhard, H.G., Hartl, R., and 

Bonassar, L.J. Tissue-Engineered Intervertebral Disc Implants Restore Function to the Spine In Vivo. 

Science Translational Medicine, In Review. 
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Introduction 

Among the most common physical conditions for which patients see their 

doctors are back and neck pain, which carry an estimated annual cost to society up to 

$100 billion (100).  Unfortunately, current conservative and operative treatment 

options are mostly palliative in nature and fail to restore function to the spine.  The 

most common surgical target for treatment of back and neck pain is the intervertebral 

disc (IVD), as diseased or injured IVDs are commonly associated with back and neck 

pain (101-104).  Such surgeries typically involve removing the affected IVD and 

replacing it with a mechanical device designed to either fuse the adjacent vertebrae or 

to preserve some motion.  Regardless of which approach is used, motion segment 

mobility is altered, often precipitating degeneration in adjacent motion segments. (25).  

Non-biological total disc replacement implants were developed to avoid this loss of 

motion at the operated level, and as a result, reduce the incidence of adjacent segment 

disease.  The efficacy of such implants is a matter of much debate (26, 165, 166); 

however, it is clear that non-biological total disc replacement implants suffer from 

failure modes commonly associated with traditional metal/polyethylene arthroplasty, 

such as mechanical failure, dislodgement, polyethylene wear, and associated 

osteolysis and implant loosening.  More recently, increasing attention has been turned 

towards creating tissue-engineering strategies to repair and restore function to the 

diseased or injured IVD. 

 The intervertebral disc is composed of two distinct regions, the annulus 

fibrosus (AF) and the nucleus pulposus (NP).  The NP is a gelatinous tissue with high 

proteoglycan content and type II collagen matrix that is surrounded by the AF, a 

highly organized fibrocartilage predominantly made of type I collagen and 

proteoglycans.  A number of tissue engineering strategies have focused on creating 

either the AF or NP separately (167), but much interest has recently been focused on 
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creating a composite tissue-engineered total disc replacement (TE-TDR) implant that 

contains both the AF and NP region (58, 59, 87, 93, 168).  The ultimate goal of such 

implants is to replace diseased IVDs with living tissue that would avoid the pitfalls of 

traditional metal/polyethylene arthroplasty. In addition, the TE-TDR implant could 

restore function to the spine by maintaining motion at the operated level and by 

reproducing the damping capabilities of the IVD.  The successful replication of spinal 

motion and function in human IVD allograft transplantation (37) provides reason to 

believe that a TE-TDR implant could produce similar results. 

 Despite the promise of tissue engineering approaches for IVD replacement, the 

use of such an implant to restore the structure and function of a motion segment had 

yet to be demonstrated. Here we show that our previously documented approach to 

producing TE-TDR implants with circumferentially aligned collagen fibrils in the AF 

(93), combined with image-based design techniques to reproduce precise anatomy 

(148-152) yielded implants that integrated with the rat spine, reproduced appropriate 

tissue structure, and generated a mechanically functional motion segment in the rat 

spine. 

 

Results 

Engineered IVDs reproduce native shape and composite structure over 6 months of 

implantation. 

To study the function of tissue-engineered IVD  implants, we chose to replace 

healthy IVD in the rat caudal spine.  The rat caudal spine was chosen for ease of 

surgical access, repeatability of the surgery, and the reasonable levels of stress and 

strain imposed on caudal discs (169-171).  We constructed composite TE-TDR 

implants and inserted them into the caudal 3/4 disc space of athymic rats.  Samples 

were harvested at 6 weeks and 6 months along with a separate control group 
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containing no implant (discectomy).  In addition, we hypothesized that an explanted 

native disc would contain the properties of the “ideal” engineered disc. This idea is 

supported by the success of allograft IVD transplantation (172).  As a result, an 

additional group was constructed in which the native disc had been removed and re-

implanted into the disc space. 

µCT and MRI images of the caudal 3/4 disc space were obtained and used to 

produce a TE-TDR implant with native dimensions (Figure 4.1a). µCT images 

allowed the outer boundaries of the IVD to be determined from the bony ends of the 

neighboring vertebrae and the NP dimensions from the MRI data.  Using these 

clinically relevant imaging techniques to design the engineered disc and combining 

them with the collagen contracted-AF/alginate-NP engineered disc construction we 

have previously reported on (93), we constructed anatomically shaped discs (Figure 

4.1d) that were surgically implanted into the native caudal 3/4 disc space (Figure 

4.1c).  The imaging and fabrication technique produced discs that mimicked the native 

morphology (Figure 4.1d (I., II.)).  These anatomically shaped engineered discs were 

implanted into the native disc space and maintained composite structure immediately 

after implantation (Figure 4.1d (V.)).  The postoperative MRI demonstrated increased 

hydration in the NP of the engineered disc compared to the AF, similar to the native 

disc.  At 6 months, MRI demonstrated hydrated tissue in the disc space (Figure 4.1d 

(VI.)), which had a distinct cartilaginous appearance and IVD shape upon explantation 

(Figure 4.1d (III.)) indicating de novo tissue formation in the disc space  
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Fig. 4.1.  Anatomical TE-TDR, designed from MRI and CT, survives in disc space for 

6 months. (A)  CT and MRI design procedure for obtaining TE-TDR dimensions. (B.)  

Fabrication of TE-TDR. (I.) NP dimensions used to design injection mold in CAD 

program. (II.)  Injection mold 3D printed out of ABS plastic. (III.) Cell-seeded 

alginate was injected into mold.  (IV.)  Alginate NP was removed from mold and 

placed in center of 24 well plate, where cell seeded collagen was poured around 

alginate NP.  (V.) After 2 weeks of culture, cell seeded collagen contracts around 

alginate NP to form composite TE-TDR. (C) Intra-operative images showing exposed 

caudal 3/4 disc space and implanted TE-TDR. (D)  History of TE-TDR in native disc 

space.  Intra-operative photo showing (I.) explanted native IVD sitting next to the (II.) 

TE-TDR that was implanted in its place.  (III.) TE-TDR after being implanted into 

native disc space for 6 months. (AF region marked by red A and NP region marked by 

blue N)  T2-weighted MRI of (IV.) native disc and (V.) TE-TDR immediately after 

implantation. (VI.) MRI of TE-TDR after 6 months of implantation. 
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Engineered IVD integrated well with neighboring vertebrae and produced an 

organized extracellular matrix with high levels of collagen and proteoglycan. 

 

It was hypothesized that the engineered IVD would produce an ECM in the 

native disc space that was rich in collagen and proteoglycans, similar to the native 

IVD, and would integrate with the vertebral bodies.  To test this, we performed 

histological staining for collagen and proteoglycans in the disc space, as well as 

quantitative biochemical analysis on the explanted tissue at 6 months for collagen, 

proteoglycan, and DNA (173-175).    In the discectomy group, in which the native disc 

had been removed and nothing implanted in its place, the disc space collapsed with no 

production of collagen and proteoglycans (Figure 4.2c, d).  In contrast, engineered 

discs contained abundant collagen and proteoglycan by 6 weeks and 6 months (Figure 

4.2e, f, g, h, i).  Collagen was dispersed throughout the disc tissue at both 6 weeks and 

6 months as indicated by uniform staining by picrosirius red (Figure 4.2e, g).  

Collagen type I was distributed throughout the disc uniformly while type II collagen 

was localized to the NP region (Figure 4.S1).  Proteoglycans were seen in both the AF 

and NP regions, with most abundant Alcian blue staining in the NP region, which was 

slightly smaller than the corresponding region in the native IVD (Figure 4.2b, f, h).  

Quantitative biochemical analysis confirmed the results seen in histology (Figure 

4.2i).  DNA content indicated that robust cell proliferation occurred within the disc 

space in both the engineered and re-implanted groups.  The proteoglcyan content in 

the engineered disc after 6 months was not significantly different than the 

proteoglycan content of the AF, while the engineered NP attained ~70% (p = 0.047) of 

the proteoglycan content of the native NP (Figure 4.2i).  The collagen content in the 

engineered disc space was not significantly different in the AF compared to the native 

but was significantly higher in the NP (p = 0.010).  Despite this difference, 
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Fig. 4.2. TE-TDR produces integrated tissue with IVD-like collagen and proteoglycan 

content in the native disc space.  Picrosirus red collagen staining for (A) native IVD, 

(C) discectomy group, (E) TE-TDR at 6 weeks, and (G) TE-TDR at 6 months.  Alcian 

blue proteoglycan staining for (B) native IVD, (D) discectomy group, (F) TE-TDR at 

6 weeks, and (H) TE-TDR at 6 months.  (I) Biochemical analysis of GAG 

(proteoglycans), hydroxyproline (collagen), and DNA (cells) content at 6 months for 

both the native disc (n = 6) and engineered TE-TDR (n =6) and broken down by 

region of the disc (! = p<.05 compared to native; # = p<.05 compared to all groups).  

Histology of TE-TDR and native tissue interface (VB = vertebral bodies, EP = 

endplate) at (J, K) 6 weeks and (L, M) 6 months demonstrates progressive integration 

of TE-TDR with native tissue (arrows point to small disruptions of integration at 6 

weeks, absent at 6 months).
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collectively the analysis of the ECM produced by TE-TDR indicates phenotypically 

appropriate spatial deposition of collagen and proteoglycans.  Furthermore, the 

engineered disc had similar levels of proteoglycans in the NP and collagen in the AF 

when compared to the re-implanted IVD after 6 months. 

 In addition to appropriate composition and arrangement of ECM, a critical 

requirement for a tissue engineered IVD is integration with neighboring vertebrae.   

Analysis of the implant-endplate interface by histology demonstrated progressive 

integration over 6 months of implantation.  At 6 weeks, integration was apparent, but 

small discontinuities were observed at the endplate and engineered tissue boundaries 

(Figure 4.2j, k).  At 6 months, the boundary was integrated completely with no large 

discontinuities observed at the endplate and engineered interface (Figure 4.2l, m).  

This integration suggests that the proteoglycan and collagen rich matrix produced by 

the engineered disc can function as a unit with the native spine. 

 

Engineered IVD produced functional tissue that maintained disc height and had 

similar mechanical properties to native IVD. 

 

 To determine whether tissue engineered IVD implants generated a functional 

motion segment, we analyzed the disc height and the dynamic mechanical properties 

of the motion segments.  Maintenance of vertebral spacing is a critical role of the IVD 

and is a primary clinical indicator of IVD health.  As such, maintenance of disc height 

is a critical indicator of the performance of a tissue engineered IVD.   Tissue 

engineered IVD implants maintained 88.9 ± 2.8 % of the disc height at 6 weeks and 

75.0 ± 18 % at 6 months, while the discectomy group collapsed (37.3 ± 3.6 %)  

(Figure 4.3a).  At 6 weeks and at 6 months the engineered disc was comparable to the 

re-implanted native disc at maintaining disc space (Figure 4.3a). 
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Fig. 4.3.  TE-TDR produces a mechanically functional tissue in the native disc space. 

(A)  Percentage of disc space height maintained at 6 weeks and 6 months for 

disectomy group (n = 6), re-implant group (n=6), and TE-TDR group (n=12). (B) 

Dynamic compressive mechanical properties at 6 months for TE-TDR implanted 

motion segments (n = 6) and intact native motion segments (n = 6) showing 

representative stress strain curves at 1 Hz and apparent moduli over full range of 

frequencies.  (C) Equilibrium modulus, hydraulic permeability, and % hysteresis 

(energy dissipation) for intact native motion segments (n = 6) and TE-TDR implanted 

motion segment (n = 6) (! = p<.05 compared to native). 
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The ability to properly sustain axial loads is a key function of the IVD (40).  

To investigate how the engineered discs restored this function of the spine, we 

analyzed the dynamic mechanical properties of the engineered discs 6 months after 

implantation.  Intact motion segments were tested in order to assess effects of 

integration of the IVD tissue with the endplate and vertebrae, and the mechanical 

performance of tissue engineered IVD was compared to that of native motion 

segments and of spines that received re-implanted healthy discs (Figure 4.3b, c).  The 

dynamic properties of the motion segments were assessed imposing sinusoidal strains 

of 3% amplitude over a physiologically relevant range of frequencies (.01 – 10 Hz).  

Similar viscoelastic stress strain curves were observed between the engineered, re-

implanted, and intact native motion segments (Figure 4.3b).  Motion segments with 

engineered tissue had a modulus ~30% higher than the native motion segment (p = 

0.020) over the full range of frequencies tested.  The capacity of the engineered IVD 

to dissipate mechanical energy, as indicated by the hysteresis in the stress-strain curve, 

was similar to that of the native motion segment (46% compared to 41%) (Figure 

4.3c).  The re-implanted disc showed no significant difference in apparent modulus 

compared to the native disc but dissipated significantly less energy than both the 

engineered and intact native motion segment. The ability to dissipate mechanical 

energy is a critical function of the IVD, and the lack of this function may contribute to 

adjacent segment disease seen after fusion or total disc arthroplasty.  (165, 166).  In 

this way, tissue engineered IVD may restore the energy damping capacity of the spine 

in a way that is not available with current treatment options.   

 In addition to dynamic mechanical testing, the motion segments were 

subjected to stress relaxation testing to determine the static compressive equilibrium 

modulus and the hydraulic permeability of the tissue.  The equilibrium modulus of the 

engineered disc was not significantly different from the intact native disc (Figure 4.3c) 
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or re-implanted disc, while the hydraulic permeability was slightly lower (p = 0.010) 

in the native disc.  Overall, both the dynamic and quasi-static compressive data 

indicates the engineered discs restored compressive mechanical function to the spine 

by producing a tissue with similar properties to the native IVD. 

 

Discussion 

The production of a tissue-engineered total disc replacement implant for use in 

the treatment of disc related back and neck disorders has been a recent area of 

scientific interest, but the successful creation of a functional engineered IVD in the 

native disc space had yet to be achieved (58, 59, 87, 93, 168).  The ability to replace a 

diseased IVD with a living and mechanically functional engineered IVD provides 

great promise in the treatment of spinal disease.  However, the implantation of a TE-

TDR implant into the native disc space provides a number of challenges to the disc 

that had yet to be addressed due to the lack of in vivo studies.   

The main challenges in developing and delivery of a tissue engineered IVD 

implant are thought to be: (1) generating functional tissue in the limited nutritional 

environment of the disc space (176), (b) securing the implants in the spine to ensure 

that they will integrate with the neighboring vertebrae (58, 59, 93, 168, 177), and (c) 

developing an implant that could withstand the complex mechanical loading of the 

disc space (178).  Here we demonstrated that our tissue engineered IVD implants were 

able to meet all three of these challenges by producing a collagen and proteoglycan-

rich, well-integrated, and mechanically functional tissue in the native disc space.  This 

study provides the first evidence that a tissue engineered IVD implant can replace the 

native IVD in the spine, and be used to treat spinal pathology. 

 A critical piece of enabling technology involved the use of clinically relevant 

imaging modalities, MRI and CT, to design tissue engineered IVD.  This technique 
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allowed the creation of a TE-TDR implant in the size and shape of the native IVD 

(Figure 4.1) and was integral to producing a disc that could be implanted and properly 

fit into the native disc space (Figure 4.1c).  MRI and CT were used to design the disc 

because it is easily translatable to clinical practice and makes patient specific TE-TDR 

implant design possible.  This is likely to be important for TE-TDR, as proper size 

matching was proven to be essential for IVD transplantation success (172).  Once 

implanted, the TE-TDR implant maintained its composite nature and was properly fit 

for the disc space (Figure 4.1d (V.)).  After 6 months of implantation, a hydrated tissue 

was produced within the disc space (Figure 4.1d (VI.)) that maintained the overall 

shape of the implanted TE-TDR implant and disc space (Figure 4.1d (III.)).  Our study 

is the first to demonstrate the production of an anatomically shaped disc using 

clinically relevant design techniques, which could be successfully implanted into the 

native disc space and maintained for 6 months to produce an IVD-like mechanically 

functional tissue. 

The production of proteoglycans and collagen in quantities similar to the native 

disc demonstrated that the cells not only survived in the nutrient depleted disc space 

but also successfully produced substantial de novo tissue.  In previous TE-TDR work 

performed outside of the native disc space, a proteoglycan content of only ~25% was 

obtained in vitro for both AF and NP (168) while a proteoglycan content on the order 

of the native NP and ~33% of the AF was obtained in subcutaneous implantations 

(59).  Production of collagen within these studies proved even more challenging with 

collagen being on the order of the NP but only ~5% of the native AF in the in vitro 

study and 52% of the AF and 15% of the NP in the subcutaneous implantation work.  

Overall, the previous literature demonstrated a trend indicating that other approaches 

to tissue engineering of IVD yielded tissue with collagen and proteoglycan contents 

far below that of native tissue.  Our data demonstrates that robust collagen and 
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proteoglycan were produced within our TE-TDR construct in the disc space in both 

the AF and NP.  Our study is the first to both produce a TE-TDR implant with robust 

ECM composition similar to the native IVD and to accomplish this in the native disc 

space.   

There are likely a number of contributing factors to the success of this TE-

TDR implant in producing a robust ECM in the disc space.  These factors may include 

the increased cytokine signaling likely experienced in an in vivo environment and the 

anabolic effect that mechanical stimulation, which would be present in the native disc 

space, has been shown to have on IVD cells (179, 180).  However, the disc space is 

known to have limited nutrient availability (i.e. glucose and oxygen) and poor waste 

product transport (e.g. lactate) out of the disc (156).  The high permeability of the 

collagen/alginate TE-TDR construct at implantation may increase the availability of 

nutrients throughout the engineered IVD in the disc space and promote ECM 

production.  At this time, it is unclear which of these effects, or others, are promoting 

such a robust ECM development, but it will be important in future work to further 

elucidate these mechanisms, as they will be important for the future design principles 

of TE-TDR implants. 

In addition to the ECM production, the ability of the TE-TDR implant to 

integrate with the endplates of the neighboring vertebral bodies and produce a 

functional motion segment is a key finding of this work.  This is the first study that 

demonstrates the ability of tissue engineered IVD to produce tissue that is integrated 

within the motion segment.  Of key importance is that this integrated ECM produced 

by the TE-TDR implant is mechanically functional within the motion segment.  This is 

particularly noteworthy, given the dynamic nature of the tests, which involve both 

tensile and compressive loading.  The ability of the tissue-engineered motion segment 

to sustain tensile loads demonstrates that the new tissue generated by the implants is 
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well integrated with the vertebrae.  This mechanical data is consistent with the 

histology that shows progressive integration of the implants into the spine over the 

course of 6 months. 

In summary, our data is the first to demonstrate that a tissue-engineered IVD 

can be implanted into the spine, remain in place, withstand the mechanical loads, and 

survive and produce an integrated and mechanically functional ECM similar to the 

native IVD.  These findings provide support for the development of tissue engineered 

IVD technologies and evidence that the challenges associated with nutritional 

deprivation and tissue integration can be overcome.  Translating the success of studies 

in rats to larger animal models will be a key step in moving this technology closer to 

the clinical applications.  Overall, our study demonstrates that the promising goal of 

implementation of a tissue engineered total disc replacement implant in the clinic may 

soon become a reality. 

 

Materials and Methods 

Cell Preparation.  Cell preparation was based on previously described techniques (58, 

93).  IVDs were dissected out of lumbar region of skeletally mature (~14 months) 

Finn/Dorset cross male sheep (Cornell University Sheep Program, Ithaca, NY).  

Tissue was washed in phosphate-buffered saline (PBS) (Dulbecco’s PBS; Gibco BRL, 

Grand Island, NY) and the separated into AF and NP region.  Tissue was dissected 

into small pieces and digested in 200 mL of 0.3% w/v collagenase type II at 37°C for 

9 hours for AF tissue and 6 hours for NP tissue.  Digested tissue was filtered through 

100 µm nylon mesh (BD Biosciences, Bedford, MA) and centrifuged at 936g for 7 

minutes.  Cells were counted and seeded at 2500 cells/cm2 in culture flasks with 

Ham’s F-12 media (Gibco BRL) that contained 10% fetal bovine serum, penicillin 

(Gemini Bio Products, Sacramento, CA), (100 IU/ml), streptomycin (100 µg/ml), 
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amphotericin B (250 ng/ml, and ascorbic acid (25 µg/ml).  Cells were cultured at 

37°C, 5% CO2, and normoxia to confluence with media changes every 3 days.  At 

confluence, cells were removed from flasks with 0.05% trypsin (Gibco BRL) and 

counted with a hemocytometer.  Cells were then seeded into TE-TDRs. 

 

IVD Fabrication.  T2 weighted MRI images and µCT images were obtained of caudal 

3/4 disc level (imaging specifics in imaging section).  T2 weighted MRI images were 

imported in DICOM format to slicOmatic v4.3 (TomoVision, Montreal, Canada) and 

the NP was manually segmented and converted to point cloud images of the NP.  Point 

cloud images were converted to surface and solid models in Studio 4.0 (Geomagic 

Inc., Research Triangle Park, NC).  This resulted in a model containing the dimensions 

and shape of the NP (Figure 4.1a). 

µCT images were converted to DICOM format and imported into slicOmatic 

v4.3 (TomoVision, Montreal, Canada) where the boney surfaces of the vertebral 

bodies were segmented to obtain the overall shape and dimensions of the caudal 3/4 

disc space.  The µCT derived dimensions of the disc space were then combined with 

the MRI derived NP model to obtain the target dimensions of the TE-TDR implant 

(Figure 1a). 

TE-TDR implant of target dimensions was created using contracted collagen 

(AF)/alginate (NP) technique (93).  MRI derived NP surface and solid model was 

transferred into solidworks to create injection mold of NP.  Injection mold was 3D 

printed of ABS plastic on FDM 3000 machine (Stratasys, Eden Prairie, MN). 

3% (w/v) alginate seeded with 25 x 106  NP cells/ml was injected into mold.  

Cell seeded alginate NP was then removed from molds and placed in the center of a 

well of a 24 well plate.  1 mg/ml collagen gel solution seeded with 1 x 106  AF cells/ml 

was subsequently poured and gelled around the alginate NP.  Constructs were cultured 
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for 2 weeks in previously described media while collagen gel contracted around 

aliginate NP to the proper AF dimensions. 

 

Surgery.  After 2 weeks of in vitro culture, TE-TDR constructs were implanted into 

the caudal spine of athymic rats (n=18). All animal procedures were performed in 

accordance with the guidelines of the IACUC of the Hospital for Special Surgery, 

New York, NY.  Rats were anesthetized using ketamine ('Ketaset' -- 100 mg/ml) 80-90 

mg/kg, and xylazine ('Rompun'  --  20 mg/ml)  5 mg/kg, which were mixed together 

and administered intraperitoneally.  If necessary, anesthesia was prolonged by 

administration of isoflurane via nose cone.  A method was for the first time established 

to remove the native disc and to prepare the disc space for implant insertion in the tail.  

The vertebral column was exposed and the native IVD (caudal 3/4) removed. Upon 

removal, the caudal 3 and caudal 4 vertebral bodies were minimally retracted to allow 

the insertion of the engineered disc into the disc space. The disc space was released to 

press-fit the implant in place and wound closure was performed in layers.  An initial 

dose of 0.01-0.05 mg/kg buprenorphine ('Buprenex’) was administered 

intraoperatively or immediately postoperatively prior to anesthetic recovery. 

Buprenorphine treatments were performed for two days postoperatively. 

In addition to TE-TDR implants, two control groups were studied.  The 

discectomy group followed the above procedure and removed the native disc but 

implanted nothing back into the disc space (n=6).  The re-implantation group followed 

the above procedure, removed the native IVD and then re-implanted that native IVD 

back into the disc space (n=6). 

 After implantation, rats were maintained up to 6 months.  MRI images were 

taken of all available animals at 6 weeks and 6 months and analyzed for disc height.  

In the TE-TDR group, 12 animals were sacrificed at 6 months and analyzed for 
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histology, mechanics, and biochemistry.  In addition, a smaller cohort of 6 animals 

was sacrificed at 6 weeks for histology.  The two control groups were taken out to 6 

months and analyzed for disc height. 

 

Imaging.  µCT images of rat caudal spine were obtained from caudal 3 to caudal 5 

vertebrae on a Scanco µCT 35 system (Scanco Medical, Bassersdorf, Switzerland) 

with an isotropic resolution of 30 µm. 

 MRI images were obtained on a 7.0 Tesla Bruker 70/30 Magnetic Resonance 

Imaging (Bruker Biospin, Billerica, MA) system.  Rats were anesthetized with 1.5% 

Isoflurane during imaging procedures.  A high-resolution T1-weighted flash sequence 

(resolution: 78.1 um x 58.6 um x 1mm) was obtained for disc space measurements at 6 

weeks and 6 months and a T2-weighted sequence (resolution: 104.2 um x 78.1 um x 

1mm) was obtained for implant design and at 6 weeks and 6 months post implantation.  

 

Histology.  Spines and bone samples were cleaned of muscle and preserved in 10% 

phosphate buffered formalin and were fixed at room temperature for 2 days.  

Following an overnight running water rinse, samples were decalcified in 10% EDTA 

in 0.05M Tris buffer, pH 7.4, until bone was soft and flexible.  An overnight running 

water rinse was conducted in a VIP tissue processor to paraffin.   Embedded samples 

were sectioned at 5 micron thickness and subsequently stained with alcian blue for 

proteoglycans, picrosirius red for collagen, and Hemotoxylin and eosin.  

 

Biomechanics.  TE-TDR motion segments and intact native motion segments were 

both cleaned of surrounding tissue to result in bone-disc-bone motion segments after 

euthanizing the animals at 6 months.  Prepared motion segments were mounted on 

ELF 3200 mechanical testing frame (EnduraTech; Minnetonka, MN) using modified 
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microvices (McMaster-Carr, Atlanta, Ga) (169).  Unconfined stress-relaxation tests 

were performed at 5% strain incremental steps to a total of 20% strain.  Equilibrium 

modulus and permeability were calculated by fitting resulting stresses to a poroelastic 

model (181).  In addition, motion segments were subjected to a sinusoidal dynamic 

frequency sweep from 0.01 – 10 Hz at ±3% strain around zero strain.  Apparent 

modulus and percent hysteresis were calculated from dynamic data.  All data analysis 

was performed using Matlab software. 

 

Biochemistry.  Native IVD and TE-TDR tissue were both dissected out of disc space 

using scalpel.  For the native IVD, NP and AF tissue were separated and tested 

individually.  For the TE-TDR tissue, representative NP region at center of tissue was 

removed using 2 mm biopsy punch and tested as NP and surrounding AF region was 

tested as AF.   Tissues were analyzed for GAG content using a modiefied DMMB 

assay (173), total collagen using the hydroxyproline assay (175), and DNA using the 

Hoechst dye assay (174).  All data were normalized to wet weight.  

 

Statistical Analysis.  All statistical analysis was performed using two-factor ANOVA 

and Tukey post hoc test.  Data represented as mean ± standard deviation.  P values 

<.05 considered statistically significant. 

 

Supllemental Material 

Fig. 4.S1.  Immunohistochemistry of engineered IVD tissue after 6 months. 

Fig. 4.S2.  Polarized light microscopy of collagen network in engineered IVD. 
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Fig. 4.S1.  Immunohistochemistry of engineered IVD tissue after 6 months.  Immunohistochemistry indicates that collagen type I 

was distributed uniformly throughout the disc space at 6 months while collagen type II was localized to the NP region of the 

engineered tissue.  Similar trends were observed in the native disc space, as well.  (scale bars = 1 mm) 
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Fig. 4.S2.  Polarized light microscopy of collagen network in engineered IVD.  

Polarized light microscopy image (40x) of (A.) engineered IVD after 6 months of 

implantation and (B.) native disc.  Polarized light in engineered disc indicates 

organized collagen network present in de novo tissue.  Increased polarized light in AF 

compared to NP region of disc indicates greater collagen organization is present in AF 

than NP in engineered IVD, a pattern consistent with native IVD.  Increased 

magnification polarized light microscopy images (100x) of (A.) engineered IVD and 

(B.) native IVD at vertebral body interface demonstrates both contain a continuous 

collagen network that has collagen fibers that integrate into the vertebral body.  While 

the integration in the engineered tissue is not identical to the native IVD, this 

integration of collagen fibrils allows the engineered tissue to produce a stable motion 

segment with similar axial mechanical properties to native tissue. 
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CHAPTER 5 

Specific Aim 4 

Annulus Fibrosus Composition Regulates ECM Development in Tissue 

Engineered Total Disc Replacement* 

Abstract 

Many novel tissue engineering therapies, including tissue-engineered total disc 

replacement (TE-TDR), are currently being investigated to treat orthopaedic spinal 

disorders.  However, much of the promising work in tissue engineered total disc 

replacement has been performed in vitro.  This paper studied the effects of annulus 

fibrosus composition on tissue-engineered IVD (TE-IVD) in the native disc space.  6 

groups of TE-IVDs with varying AF compositions were subjected to mechanical 

testing in vitro.  In vitro testing indicated that altered AF composition modified the 

hydraulic permeability of the AF and the subsequent pressurization of the TE-IVD 

under load. Based on the in vitro testing, 2 groups were selected and implanted into 

the athymic rat caudal disc space for 6 months.   TE-IVD with lower AF hydraulic 

permeability and increased tendency to pressurize under load developed ECM that 

better mimicked the AF and NP phenotypes in the native disc space than the TE-IVD 

with higher AF hydraulic permeability and decreased tendency to pressurize.  Both 

tissues produced mechanically functional tissues after 6 months.  By regulating in vivo 

tissue development, AF hydraulic permeability proved to be a key design factor in TE-

IVD.  Overall, this study provides continued evidence of the promise of TE-TDR. 

 

 

 

 

 

 

_________________ 

*This chapter will soon be submitted for publication:  Bowles, R.D., Gebhard, H.G., Hartl, R., and 

Bonassar, L.J. Annulus Fibrosus Composition Regulates ECM Development in Tissue Engineered Total 

Disc Replacement. Biomaterials. In Preperation 
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Introduction 

Degenerative disc disease and the associated spinal disorders are a major 

concern in healthcare.  Surgical treatments of these disorders including spinal fusion, 

discectomy, and total disc replacement have reached a total cost of $28.6 billion/year 

in the United States alone (182, 183).  Despite these efforts, many of these treatments 

are palliative in nature, fall short of providing long-term and functional relief of the 

debilitating symptoms, and have significant shortcomings.  Specifically, spinal fusion 

results in a loss of mobility and is believed to lead to adjacent segment level disease 

(25), discectomy can suffer from re-herniation (184), and total disc replacement is 

prone to traditional wear and failure modes associated with metal/polymer implants 

(29).  These shortcomings result in a need for novel intervertebral disc (IVD) 

degeneration treatments, and as a result, interest in developing tissue-engineering 

strategies for the treatment of degenerative disc disease has become prevalent. 

Much of the focus in IVD tissue engineering has been on either replacement of 

the nucleus pulposus or repair of the annulus fibrosus tissue (65, 67, 70, 86, 117-121, 

167).  However, disc degeneration is often a disease of both the AF and NP, and as a 

result, a number of groups have been investigating the creation of composite tissue-

engineered IVDs (TE-IVD) that contain both the AF and NP for use in tissue 

engineered total disc replacment (TE-TDR) (58, 59, 87, 93, 168).  This has the 

advantage of removing both the diseased AF and NP and replacing it with a new 

tissue.  Recent data from cadeveric allograft IVD transplantation indicates that 

replacing the entire IVD with a healthy IVD can be effective at treating spinal 

disorders related to the IVD (37).  Despite these promising results, transplantation 

surgeries often lack sufficient quantities of donor tissue to meet demand.  Tissue 

engineering hopes to get around this by creating TE-IVD that can be implanted 

without the need of cadeveric tissue.   
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Despite the interest in TE-IVDs and the effort to increase the complexity of the 

scaffolds, little work has been done to understand how these implants will develop in 

the native disc space.  Recently, we presented preliminary data on the first 

implantations of TE-IVD into the native disc space by implanting our contracted 

collagen gel (AF)/ alginate gel (NP) TE-IVD into both the lumbar 4/5 and caudal 3/4 

disc space of athymic rats (Chapter 3 and 4).  This work demonstrated that TE-IVD 

could be implanted into the native disc space, produce an integrated cartilaginous 

tissue, and restore axial mechanical function to the spine.  Even with these 

encouraging results, little is known on how altering the composition of the TE-IVD 

will affect its development in the disc space.  This is particularly true for the AF, 

where several approaches have been presented for scaffold composition and 

organization (58, 59, 87, 93, 168).   

We hypothesized that changes in the composition of the AF would have 

significant effects on the development of the TE-IVD in vivo by altering the 

mechanical function of the TE-IVD.  For this reason, this study altered the AF 

composition of the TE-IVD by changing the original collagen and cell seeding density 

of the AF and investigated the mechanical and structural effects of these changes on 

the TE-IVD in vitro.  Based on in vitro studies the two most promising AF 

compositions were chosen for implantation.  The in vivo TE-IVD development was 

studied in the caudal athymic rat model for 6 months and the results interpreted in 

light of the in vitro data.  Overall, this work aimed to provide an understanding of how 

AF composition affected in vivo development of TE-IVD in the hopes that the field 

could use this information to improve the design of TE-IVD for implantation into the 

native disc space. 
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Materials and Methods 

Cell Preparation.  Based on previously described techniques(58), 20 lumbar IVDs 

were dissected out of skeletally mature (~14 months) Finn/Dorset cross male sheep 

(Cornell University Sheep Program, Ithaca, NY).  Tissue was separated into nucleus 

pulposus and annulus fibrosus tissue and was dissected in to small pieces that were 

digested in 0.3% w/v collagenase for 6 hours (NP) or 9 hours (AF).  After digestion 

was complete, AF and NP cells were seeded at a density of 2500 cells/cm2 in culture 

flasks and expanded to confluence at 37 °C in Ham’s F-12 media (Gibco BRL) 

containing 10% fetal bovine serum (Gemini Bio Products, Sacramento, CA), ascorbic 

acid (25 !g/mL), penicillin (100 IU/mL), streptomycin (100 !g/mL), and 

amphotericin B (250 ng/mL). 

 

Tissue Engineered IVD Fabrication.  Six groups of tissue engineered IVD with 

varying AF formulations were fabricated (Fig. 5.1).  Injection molds of the NP were 

designed from MRI scans of rat-tail IVD, as previously described (Fig. 5.1a) (Chapter 

3) (185).  Ovine NP cells were seeded at 25 x 106 cells/mL in 3% (w/v) alginate and 

injection molded into NP molds (Fig. 5.1b).  After gelation, alginate NPs were placed 

in the center of a 24 well plate and cell seeded (1 x 106 cells/mL or 10 x 106 cells/mL) 

collagen solution (1, 2, or 3.5 mg/ml) made from rat-tail tendon (132) was pipetted 

around the alginate NP and gelled at 37°C using established protocols (Fig. 5.1 c, d) 

(93).  Constructs were then floated with 1 mL of previously described culture media 

and cultured for 2 weeks with media changed every 3 days. This allowed the collagen 

gel to contract around the alginate NP over the 2 weeks of culture. 
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Figure 5.1 – Fabrication of TE-IVD.  (A.) Injection mold of eight NPs is (B.) injection molded with cell seeded 3% alginate gel.  

(C.) Alginate NP is placed at center of 24 well plate well and cell seeded collagen solution is pipetted around and cultured for 2 

weeks while AF contracts around NP. (D.)  6 different groups of TE-IVDs were constructed with varying collagen (1.0, 2.0, or 3.5 

mg/ml) and cell seeding density (1x10
6
 cells/ml or 10x10

6
 cells/ml) 
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IN VITRO 

 

Mechanical Testing.  After two weeks of contraction, 6 samples from each group were 

subjected to mechanical testing. Stress relaxation tests (EnduraTech; Electroforce 

(ELF) 3200 System, Minnetonka, MN) were performed in unconfined compression by 

applying 2.5% incremental strain steps up to a total of 70% strain. The tissue 

engineered IVDs were designed to be implanted into the rat tail and were purposefully 

oversized axially to press fit them into place.  Upon being press fit in the native disc 

space, the discs were likely to be subjected to high strains (~50%).  For this reason, the 

high total strain of 70% was selected.  Stress relaxation load data were fit to a 

poroelastic model and the equilibrium modulus, instantaneous modulus, and hydraulic 

permeability were calculated for each group (181). 

 

SHG and TPEF Imaging.  In addition to mechanical testing, 6 samples from each 

group were imaged using simultaneous second harmonic generation and two-photon 

excited fluorescence microscopy (129, 131) to image the collagen fibrils (SHG) and 

cells (TPEF).  10 images were taken of the AF region of each group.  Collagen fibril 

images from SHG were run through a custom Matlab code, which has been previously 

described (Chapter 2) (93), to produce an alignment index for the AF region.  Briefly, 

the code takes the fast fourier transform of the image and produces a histogram of 

fibril orientation.  From this histogram, the alignment index is calculated according to 

Equation 1. 

 

 

 

(1) 
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As a result, AI will range from 1 (unaligned) to 4.5 (complete alignment of fibrils).  AI 

was calculated for all 6 groups.  For comparison, method produces an AI of ~1.67 for 

native AF.  TPEF imaging was used to observe the shape and orientation of the AF 

cells. 

 

 

IN VIVO 

 

The 1 mg/ml and 2 mg/ml AF groups, seeded with 1 x 10
6 
cells/ml, were 

implanted into the caudal spine of athymic rats due to their appropriate size, the 

collagen alignment observed in the AF, and distinct mechanical properties between the 

two groups.  

 

Surgery.  After 2 weeks of culture, constructs were implanted (n =12/group) into the 

caudal 3/4 disc space using previously described protocol (Chapter 4). All animal 

procedures were performed in accordance with the guidelines of the IACUC of the 

Hospital for Special Surgery, New York, NY.  Briefly, rats were anesthetized using 

ketamine ('Ketaset' -- 100 mg/ml) 80-90 mg/kg, and xylazine ('Rompun'  --  20 mg/ml)  

5 mg/kg, which were mixed together and administered intraperitoneally.  If necessary, 

anesthesia was prolonged by administration of isoflurane via nose cone.  The caudal 

3/4 disc space was exposed and the native disc was removed with a scalpel.  Upon 

native IVD removal, the vertebral bodies were minimally retracted and the tissue 

engineered IVD was implanted in its place.  After inserting the disc, the vertebral 

bodies were released and allowed to press fit the disc into the disc space.  Wound 
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closure was performed in layers. An initial dose of 0.01-0.05 mg/kg buprenorphine 

('Buprenex’) was administered intraoperatively or immediately postoperatively prior 

to anesthetic recovery. Buprenorphine treatments were performed for two days 

postoperatively.  Rats were maintained for 6 months, at which time the caudal 3/4 

motion segments were explanted and used for either histology (n=6) or mechanical 

testing and quantitative biochemistry (n=6). 

 

Mechanical Testing.  Motion segments were tested intact (vertebral body - IVD - 

vertebral body) according to previously described protocols (Chapter 4) and subjected 

to both a compressive stress-relaxation test and a dynamic frequency sweep.  Motion 

segments were mounted on ELF 3200 mechanical testing frame (EnduraTech; 

Minnetonka, MN) using modified microvices (McMaster-Carr, Atlanta, Ga) (Fig. 

5.6a) (169).  Compressive stress relaxation tests were performed with incremental 

strain steps of 5% up to a total of 20% strain.  Resultant load data were fit to a 

poroelastic model, and the equilibrium modulus and effective hydraulic permeability 

were calculated.  Sinusoidal dynamic frequency sweep was performed over 0.01 – 10 

Hz frequency range with amplitude of ± 3% strain around zero strain.  Apparent 

modulus was calculated at each frequency.  In addition to implant groups, intact native 

motion segments (n=6) were subjected to identical mechanical testing protocol for 

comparison. 

 

Quantitative Biochemistry.  Engineered IVD tissue (n=6) and native IVD (n=6) for 

comparison were explanted from motion segments and separated into AF and NP 

region.  Tissue was assayed for collagen content using the hydroxyproline assay (175), 

GAG content using modified DMMB assay (173), and DNA content using the 

Hoechst dye assay (174).  All data were normalized to wet weight. 
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Histology.  Spines and bone samples were cleaned of muscle and preserved in 10% 

phosphate buffered formalin and were fixed at room temperature for 2 days.  

Following an overnight running water rinse, samples were decalcified in 10% EDTA 

in 0.05M Tris buffer, pH 7.4, until bone was soft and flexible.  An overnight running 

water rinse was conducted in a VIP tissue processor to paraffin.   Embedded samples 

were sectioned at 5 micron thickness and subsequently stained with alcian blue for 

proteoglycans and picrosirius red for collagen. 

Results 

In Vitro 

Varying the collagen concentration and cellular density in the AF region of 

tissue engineered IVD during fabrication led to changes in the size of the AF and the 

architecture of the collagen fibril network (Fig. 5.1, 5.2, and 5.3).  Over 2 weeks of 

culture, contraction of the AF region followed the expected trend of increased 

contraction for lower concentration gels; however, increasing the cellular 

concentration from 1x10
6
 cells/ml to 10x10

6
 cells/ml only showed a significant 

increase in contraction in the 3.5 mg/ml groups (Fig. 5.2).  Second harmonic 

generation imaging of the collagen fibril network after contraction demonstrated a 

significant increase (p < 0.05) in circumferential alignment as the collagen 

concentration decreased in the 1x10
6
 cells/ml seeded group (Fig. 5.3), which is 

consistent with our previous findings  (Chapter 2) (93).  However, this trend was not 

present in the 10 x 10
6
 cells/ml groups, as the collagen architecture was unaligned for 

the 1, 2, and 3.5 mg/ml groups (Fig. 5.3).  In addition, the cellular morphology 

followed the same trends as collagen architecture, as indicated by the TPEF 

microscopy images.  In the 1x10
6
 cells/ml groups, cells were generally spindle shaped 

and circumferentially aligned with the collagen fibrils (Fig. 
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Figure 5.2 – Contraction of the TE-IVD AF region over 2 weeks of culture for all 6 groups. (Data presented as mean ± standard 

deviations, * = p<0.05, n =6) 
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Figure 5.3 – (A.) Alignment index of the AF for the 6 groups after 2 weeks of culture. 

(B.) SHG images of collagen in the AF of the 6 groups after 2 weeks of culture.  Note 

that after 2 weeks of culture, a dense pericellular collagen matrix has formed allowing the 

visualization of the cells in the SHG images. Data presented as mean ± standard 

deviation, n =6
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5.3b), while in the 10x10
6
 cells/ml group, cells were round in morphology with no 

alignment preference (Fig. 5.3b), and had a much higher final resulting density as 

expected.  Overall, varying the collagen concentration and cellular density led to 

significant changes in the AF in terms of both collagen network and cellular 

distribution. 

Variations in collagen concentration and cellular density not only lead to 

structural changes in the AF, but resulted in altered composite engineered IVD 

mechanics as well.  Equilibrium stress strain curves showed no significant difference 

in composite properties over full range of strain for all six groups (Fig. 5.4a, b).  

However, instantaneous stress strain curves demonstrate significant differences 

between groups at strains of 60% and above (Fig. 5.4a, b).  These high strains would 

be experienced in the oversized-implanted tissue engineered IVD.  At 60% strain, the 

2 mg/ml groups show a significant ~4 fold increase in instantaneous modulus 

compared to the 1 mg/ml groups, and a 6-10 fold increase over the equilibrium 

modulus, indicating a significant time dependant mechanical property response in the 

engineered composite IVD similar to native IVD (Fig. 5.4b).  In addition to the 

modulus, the effective hydraulic permeability was also significantly affected by 

varying the AF composition (Fig. 5.4c).  The 2 mg/ml groups showed a significant 

drop in permeability compared to the 1 mg/ml groups, and the effective hydraulic 

permeability was highly negatively correlated (r
2
 = .92) with instantaneous modulus, 

suggesting a change in AF permeability is playing a strong role in the altered 

mechanical properties between groups.  No other significant correlations were 

observed between AF properties and the instantaneous modulus. 

In vivo 

 The 1 mg/ml and 2 mg/ml collagen concentration groups containing 1x10
6
 

cells/ml were implanted into the caudal spine of the athymic rat.  These two groups 
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Figure 5.4 – In vitro mechanical testing. (A.) Mean equilibrium and instantaneous 

stress strain curves for the 1x10
6
 cells/ml groups. (B.) Equilibrium and instantaneous 

modulus for all 6 groups at 60% strain.  (C.) Effective hydraulic permeability for all 6 

groups at 60% strain. (Data presented as means and standard deviations, * = p<0.05) 
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were selected because they were properly sized, contained circumferentially aligned 

collagen fibrils in the AF, but had significantly different mechanical properties.  After 

6 months of implantation, both groups produced cartilaginous tissue within the disc 

space (Fig. 5.5); however, the regional composition of ECM in the AF and NP was 

significantly (p<0.05) different between groups.  The 1 mg/ml group produced a 

cartilaginous tissue that was homogenous across the AF and NP.  GAG levels in the 1 

mg/ml group fell within the native IVD range for GAG, but failed to show a 

significant difference between the AF and NP, despite histology demonstrating that 

some preference may exist for increased GAG in the NP.  In addition, GAG levels 

were significantly lower (p<0.05) in the NP in the engineered 1 mg/ml group when 

compared to the native NP.  Collagen levels in the 1 mg/ml group showed no 

significant difference between the AF and NP, and the engineered NP was 

significantly higher (P<0.05) in collagen compared to the native NP.  Finally, both the 

AF and NP showed a significantly increased (p<0.05) cell density compared to the 

native IVD.  The AF region had a water content of 73 ± 9 % of wet weight compared 

to the native AF water content of 61 ± 11% of wet weight. The 1 mg/ml group 

successfully produced robust and near native levels of collagen and proteoglycans, but 

the distribution of ECM failed to capture the regional variation observed in the native 

IVD.  

The 2 mg/ml implantation group produced a tissue that showed regional ECM 

deposition similar to the native IVD.  Distinct regions could be observed 

macroscopically between the AF and NP (Fig. 5.5b).  GAG levels were not 

significantly different from the native IVD in the AF or NP, demonstrating proper 

regional distribution with significantly higher (p<0.05) GAG in the NP compared to 

the AF.  Collagen levels were, also, not significantly different from the native IVD in 

the AF or NP, demonstrating proper regional distribution with significantly higher 
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Figure 5.5 – In vivo tissue development. (A.) GAG, hydroxyproline, and DNA data for 

the native IVD, 1mg/ml TE-IVD, and 2 mg/ml TE-IVD broken down by region. (B.)  

Images of explanted 1 mg/ml and 2 mg/ml TE-IVDs after 6 months of implantation. 

(C.)  Alcian blue and picrosirius red histology for the native IVD, 1mg/ml TE-IVD, 

and 2 mg/ml TE-IVD. (Data presented as means and standard deviations, Black Bars = 

p<0.05) 
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(p<0.05) collagen in the AF compared to the NP.  The AF region had a water content 

of 71 ± 13 % of wet weight compared to the native AF water content of 61 ± 11% of 

wet weight. Similar to the 1 mg/ml group, the cell content was significantly higher 

(p<0.05) in the 2 mg/ml group compared to the native IVD.  Overall, the 2 mg/ml 

group produced an ECM with striking similarity to the native IVD after 6 months of 

implantation. 

Both groups produced axial mechanical properties similar to the native intact 

motion segment after 6 months (Fig. 5.6).  The 1 mg/ml group had an equilibrium 

modulus that was slightly, but not significantly, lower than the native intact motion 

segment, while the 2 mg/ml group produced an almost identical equilibrium modulus 

that was not significantly different than the native.  The hydraulic permeability of the 

1 mg/ml group was similar but significantly higher (p<0.05) than the native intact 

motion segment while the 2 mg/ml group more accurately reproduced the hydraulic 

permeability of the intact native motion segment, which was not significantly 

different.  During sinusoidal dynamic mechanical testing, both the 1 mg/ml and 2 

mg/ml groups produced an apparent modulus ~30% higher (p<0.05) than the intact 

native motion segment over the full range of frequencies tested. 

 

Discussion 

This work demonstrates that careful selection of AF composition of a 

composite engineered IVD leads to proper ECM development when implanted into the 

native disc space.  To date a number of strategies have been investigated for use in 

creating a composite tissue-engineered IVD replacement.  Early efforts focused on the 

creation of the composite structure of the IVD (58, 59), and later efforts have focused 

on introducing aligned and organized collagen fibril architecture into the AF region 

(87, 93, 119, 168).  These advancements are likely integral to the success of a tissue- 
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Figure 5.6 – In vivo mechanical testing. (A.) TE-IVD containing motion segment loaded into mechanical testing frame. (B.)  

Equilibrium modulus and (C.) apparent modulus (.01-10 Hz) for the native IVD, 1mg/ml TE-IVD, and 2 mg/ml TE-IVD. (D.)  

Effective hydraulic permeability for the native IVD, 1mg/ml TE-IVD, and 2 mg/ml TE-IVD. . (Data presented as means and 

standard deviations, Black Bars = p<0.05)



124 

engineered total disc replacement treatment of spinal disorders; however, these studies 

have largely focused on in vitro work with little characterization of how altering the 

TE-IVD composition affects the composite disc mechanics, and how this relates to the 

success of the disc once implanted into the native disc space.   

Recently, in order to address the lack of in vivo work in the field, we reported 

that composite tissue-engineered IVD could be implanted into the native disc space 

and restore function in the rat caudal (Chapter 4) and lumbar disc space (Chapter 3) by 

producing, well integrated and mechanically functional, cartilaginous tissue.  In this 

study, we use our previously developed collagen gel (AF)/ alginate gel (NP) TE-IVD 

to investigate the effects of altering the AF region on in vitro and in vivo tissue 

development (Chapter 2) (93).  By altering the original cell seeding density and 

collagen concentration in the AF region at fabrication, we created 6 groups of 

composite engineered IVDs with similar NP regions but variable AF composition. In 

each group, significant contraction was observed over the 2 weeks of culture (Fig. 

5.2).  Lower concentrations of collagen at day 0 led to significantly increased (p<.05) 

contraction over the culture period, while increasing the cell concentration at day 0 

only led to increased contraction in the 3.5 mg/ml gels.  The resulting difference in 

TE-IVD size is important because proper sizing has proven critical for successful 

cadeveric IVD allograft transplantation (37).  In addition to changes in the final size of 

the implants, altering the collagen concentrations and cell seeding densities altered the 

collagen architecture and cellular morphology after contraction (Fig. 5.3).  The 1x106 

cells/ml groups developed a gradient of circumferential collagen fibril and cellular 

alignment consistent with previous work (Chapter 2) (93), while the 10 x 106 cells/ml 

groups produced no collagen alignment and an unaligned-rounded cellular 

morphology (Fig. 5.3).  As a result, we can control the AF size, final collagen density, 

collagen alignment, and cellular morphology in the TE-IVD by altering the original 
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collagen concentration and cell density.  Ultimately, this tunable TE-IVD provides a 

framework to study the effects of AF composition on in vitro and in vivo development. 

In vitro mechanical testing of the 6 groups demonstrated distinct time 

dependent mechanical properties between groups (Fig. 5.4).  While mechanical 

differences were not seen between the groups in the equilibrium properties, at high 

strains (! 60%) significant differences were observed in the instantaneous modulus 

between the varying collagen concentrations, with the 2 mg/ml groups producing the 

highest instantaneous modulus.  These mechanical differences are due to changes in 

the AF composition, as the NP regions of the discs were the same between groups.  

One difference in AF composition that could have resulted in the mechanical property 

variation was the observed difference in circumferential alignment between groups; 

however, no significant correlations were observed between the mechanical properties 

being measured and alignment index. This indicates that the circumferential alignment 

was not playing a significant role in the compressive mechanical properties of the 

composite engineered IVDs and is consistent with evidence that collagen alignment 

does not explain the mechanical differences in contracted collagen gels (186).  The 

mechanical property that varied most dramatically was the hydraulic permeability.  In 

fact, the hydraulic permeability was highly correlated (r2 =.92) to the instantaneous 

modulus.  This likely indicates the AF’s ability to resist water movement out of the 

engineered disc and promote pressurization was the main function of the AF in 

contributing to the time dependant mechanical properties.  This is consistent with 

Native IVD, in which AF hydraulic permeabilities change with age (187) and play a 

significant role in the mechanical properties (188).  And, as a result, the engineered 

IVDs were behaving in a similar manner to the native IVD by relying on the AF to 

resist water movement out of the disc and promote pressurization in the IVD to oppose 

compressive loads. 
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While the tunable TE-IVD provided a number of AF properties to investigate 

in the native disc space, the in vitro characterization led to the selection of two groups 

to be implanted and compared in the rat caudal spine.  The 1 mg/ml and 2 mg/ml 

groups with 1 x 106 cells/ml were selected for implantation.  These groups provided 

constructs with significantly different abilities to pressurize (i.e. instantaneous 

modulus and hydraulic permeability) while maintaining circumferentially aligned 

collagen fibrils and cells.  As a result, these groups allow the study of how tissue 

development of an engineered IVD in the native disc space is affected by its ability to 

pressurize under compressive load and how tuning of the AF plays a role in this 

phenomenon. 

After 6 months of implantation in the native disc space, both groups produced 

proteogylcan and collagen rich tissues in the disc space, but with a few key differences 

(Fig. 5.5).  Both groups contained collagen and proteoglycans at similar levels to the 

native IVD; however, the 1 mg/ml group produced tissue that was distinctly 

homogenous across the AF and NP regions of the tissue, while the 2 mg/ml group 

produced a tissue with easily identifiable AF and NP regions.  This resulted in the 2 

mg/ml TE-IVD producing a tissue that was strikingly similar to the native IVD 

regional ECM composition. This reproduction of ECM amounts is key because it 

plays a crucial role in native IVD properties (189, 190) and its reproduction will be 

necessary to reproduce the function of the native disc.  By altering the composition of 

the AF, the 2 mg/ml group resulted in a tissue that more accurately mimicked the 

native NP ECM composition after 6 months of implantation in the native disc space.   

This demonstrates the importance of the composite structure in in vivo 

development. The reason for the altered tissue development in the NP of the 2 mg/ml 

AF group compared to the 1 mg/ml AF group may lie in their differing hydraulic 

permeability and subsequent ability to pressurize. It has been shown that NP cell 
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collagen and proteoglycan metabolism is sensitive to hydrostatic pressure (179) and 

the magnitude of that pressure (191).  Regardless of the mechanism, changing the 

composition of the AF not only played a role in AF development, but also had the 

most dramatic effect on the NP development. For this reason, TE-IVD design must 

focus on the TE-IVD as a whole, and not simply as two independent design problems 

in the AF and NP. 

Both groups produced well-integrated, mechanically functional motion 

segments after 6 months of implantation (Fig. 5.6).  Both groups produced an 

equilibrium modulus that was not significantly different from the native IVD.  This is 

due to the similar concentrations of collagen and proteoglycans that each group had to 

the native IVD.  The only significant axial mechanical difference between the two 

groups was in the hydraulic permeability, with the 1 mg/ml AF group producing a 

significantly higher hydraulic permeability than the native and 2 mg/ml group motion 

segments.  This is further indication that the 2 mg/ml implantation group was able to 

better reproduce the properties of the native disc after implantation.  The dynamic 

axial mechanical properties indicate that both the 1 mg/ml and 2 mg/ml groups 

produced similar, but significantly stiffer (~30%) apparent moduli than the native 

motion segments.  The increased dynamic stiffness of the 1 mg/ml and 2 mg/ml 

groups in comparison to the native may be indicative of the lack of lamellar and ± 30º 

collagen alignment observed in the native disc.  This organization is likely to play a 

greater role in the dynamic properties than the quasi-static equilibrium modulus, 

where the ECM content will largely determine the properties. 

Overall, this data continues to build on the evidence that a tissue engineered 

IVD replacement can successfully replace the native IVD in the disc space. By tuning 

the composition of the AF in the engineered IVD replacement, one can promote the 

proper ECM development in both the AF and NP regions once implanted into the 
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native disc space.  Additional properties, such as hydraulic permeability, will need to 

be key design parameters in tissue-engineered AF, in addition to the creation of the 

complex collagen organization.  In order for the field to continue to advance towards 

the ultimate goal of replacing a diseased or injured human IVD, further in vivo animal 

studies will be necessary along with the development of more complex and relevant 

animal models. 



 

129 

CHAPTER 6 

 

Model-Based Inquiry of Ionic Bonding, Alginate Hydrogels, and Tissue 

Engineering* 

Abstract 

Due to cost and time, it is difficult to relate to students how fundamental chemical 

principles are involved in cutting edge biomedical breakthroughs being reported in the 

national media. The laboratory exercise presented here uses alginate hydrogels, a 

common material used in tissue engineering, to help students explore the relationship 

between chemical bonding and material properties while relating it to the field of 

tissue engineering. In addition, this lab is designed as a model based inquiry exercise 

to provide a better understanding of how contemporary science is practiced.  The lab is 

intended to be used as part of a 4 day curriculum on tissue engineering but can be done 

together with the supporting curriculum or separately. The cost of this exercise is quite 

inexpensive, approximately $6.00 per group, and can be performed in low resource 

laboratories, as it requires no elaborate equipment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_______________ 

*This chapter will soon be  submitted for publication:  Bowles, R.D., Saroka, J.M., Archer, S.D., and 

Bonassar, L.J. Model-Based Inquiry of Ionic Bonding, Alginate Hydrogels, and Tissue Engineering. 
Journal of Chemical Education. In Preparation 
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Preface 

I had the privilege to participate in the National Science Foundation (NSF) 

GK-12 program.  The program paired graduate students with local area high school 

teachers.  I was paired with Jamie Saroka, a Lansing High School Chemistry teacher.  

During the summer of 2010, Jamie spent 6 weeks as a visiting researcher in our lab.  It 

was my job to mentor his progress on a research project.  In addition, we developed 

curriculum that would be taught in his Chemistry classes in the Fall of 2010.  The 

program provided a great opportunity for both the graduate student and high school 

teacher to develop new skills while simultaneously contributing to science and science 

education. 

 During the summer portion of the program, Jamie worked on the lab’s collagen 

riboflavin crosslinking project.  He spent his time learning how to obtain collagen 

from rat tails, fabricating and photocrosslinking collagen gels, mechanically testing 

collagen gels, and analyzing the data using various statistical tests.  Jamie’s summer 

efforts resulted in his coauthoring of an Orthopaedic Research Society abstract.  By 

the end, Jamie had experienced the full spectrum of the contemporary science process 

all the way to presenting his findings in writing.  This experience will provide Jamie 

with a better understanding of in lab science practices that he will be able to relate to 

his students. 

 The curriculum development portion of the program provided a great 

collaborative opportunity for Jamie and myself.  I was able to use my tissue 

engineering perspective to help develop new ways to teach chemistry to students, 

while Jamie was able to use his experience as a teacher to help mold my ideas into 

feasible classroom activities.  In the end, we developed an inquiry based curriculum 

that taught ionic bonding to students through the exciting field of tissue engineering.  

This curriculum meets 11 of the national science standards and can be done for a 
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relatively low cost with very few resources.  The low cost and low resource aspect of 

the curriculum allows it to be widely applicable and provides the opportunity for 

cutting edge biotechnology to be brought into low resource classrooms. 

 The curriculum was taught to 4 high school chemistry classes in the fall of 

2010.  Overall, the students responded favorably to the curriculum and were actively 

engaged in the activities.  The students all showed an increase in comprehension of the 

scientific material (bonding) while also demonstrating a better grasp of the scientific 

process.  After teaching the curriculum, both Jamie and I felt this curriculum was 

worthy of sharing with other classrooms and it was written up for publication in the 

Journal of Chemical Education.  

 While the students learned a great deal, both Jamie and I learned from the 

experience as well.  Specifically, we both learned the value of a truly inquiry based 

approach to teaching.  The students responded uncomfortably at first to the lack of 

directions in the labs.  However, once the students began working, they were 

immediately engaged.  Many of the students even worked through the bell as they 

attempted to tackle the challenge of planning and carrying out an experiment to 

answer their scientific question.  In surveys following the curriculum, students 

commented on the need to actually think about the labs instead of just following 

directions.  In addition, an essay question designed to assess the students knowledge 

and understanding of the content indicated that the inquiry based activities allowed 

them to make better connections between technology and basic chemistry principles 

following the activity.  In the end, the students were able to obtain a deeper 

understanding of the material than just facts.  This will certainly be a teaching 

technique that I will continue to utilize as I continue my career in post-secondary 

education. 
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 Furthermore, teaching science content to high school level students pushed me 

to develop simple and effective ways to communicate my points.  In everyday 

interactions in my lab, I can communicate in a way that requires a high level of 

indoctrination in tissue engineering and biomedical engineering.  Unfortunately, this 

mode of communication will not work in communicating the principles of my field to 

the average person.  Everyday, I see more and more a need for scientists to convey 

their findings and the importance of their findings to society.  However, I often see 

these efforts fail.  I think this is both a problem of the poor general science background 

of the average person and the inability of the scientist to communicate in a simple, 

clear, and effective manner.  Through the GK-12 program I believe we have been 

working on addressing both of these shortcomings.  We have developed new 

curriculum that will hopefully engage and more effectively teach science to society 

while also teaching me, as a scientist, to communicate my points more simply and 

effectively.  This will hopefully help to make a very small dent in the dilemma of poor 

science literacy. 

 In the end, this program was a fantastic program that introduced me to a much 

greater passion for education than I knew I had while also revitalizing Jamie’s passion 

for science.  It is my hope that others will find the curriculum that we developed as a 

useful resource.   

 

Introduction 

Due to cost and time, it is difficult to relate to students how fundamental 

chemical principles are involved in cutting edge technological breakthroughs being 

reported in the national media.  This ability to relate science to technology is directly 

addressed in the national science education standards, content standard E (192).  One 

of the fields that students often find exciting and is frequently discussed in the national 
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media is tissue engineering.  This field aims to treat human disease by growing new 

tissues and organs to replace those that are diseased or injured (193).  In order for this 

to be accomplished, scientists and engineers from a broad range of disciplines come 

together to research material, cell, and signaling combinations to produce new organs 

and tissue.  Chemistry is heavily involved in all aspects of the field, but the chemical 

bonding present in the material scaffolds can be harnessed to teach students about 

bonding while relating it to a high profile technological field. 

 Alginate is a common material used as a scaffold in tissue engineering and is 

appropriate for use in the classroom due to its safety and low cost (194, 195).  

Alginate, a structural component of cell walls, is a polysaccharide obtained from 

seaweed.  This material can be maintained in solution form until mixed with a divalent 

cation (e.g. Ca++), at which point it will produce a hydrogel by forming ionic 

crosslinks (Figure 6.1a). A monovalent cation (e.g. Na+) will associate with the 

alginate but fail to form crosslinks between the alginate chains (Figure 6.1b).  The 

ability to produce crosslinked gels from solution is useful in tissue engineering 

because cells can be entrapped within this biocompatible material as it gels.  The 

encapsulated cells can then produce new tissue within the scaffold. As the scaffold 

degrades, a new healthy tissue will grow in place of the diseased or injured tissue.  

 Alginate has been used for classroom demonstrations due to the ease and 

safety with which bonding reactions can be demonstrated (194, 195).  This laboratory 

experiment continues along the lines of these demonstrations but is designed to fit into 

a 4-day curriculum on tissue engineering (see appendix) while providing the student 

with a physical representation of ionic bond formation addressing National Science 

Education Standards, content standard B (192).  However, this experiment can also be 

a stand-alone lab highlighting bonding principles. In addition, the laboratory 

experiment is designed as a model-based inquiry laboratory experiment to engage 
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Figure 6.1 – (A.) Alginate chains crosslinked by Ca++. (B.) Alginate chains associated 

with Na+ but not crosslinked. 
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students in a deeper understanding of the content of tissue engineering and introduce a 

greater comprehension of the processes of contemporary science practices (196).  This 

laboratory was originally performed in three New York State High School Regents 

Chemistry classes and can be carried out as a part of the developed tissue-engineering 

curriculum or as a stand-alone exercise. 

 

Experimental Section 

Materials.  Per group (Figure 2):  30 ml of 2% (20 mg/ml) alginate solution colored 

with blue food dye, 30 ml of 2% (20 mg/ml) CaCl2 solution colored with yellow food 

dye, 30 ml of 2% (20 mg/ml) NaCl solution colored with red food dye, eight 30 ml 

freestanding conical tubes, and 3 transfer pipettes. Total cost per group (2 to 4 

students): ~$6.00, materials are available from most K-12 science suppliers. 

 

Procedure.  Students are provided with the information that the red solution contains a 

monovalent cation, the yellow solution contains a divalent cation, and the blue 

solution is alginate.  In addition, they are provided with the generalized structure of 

alginate (similar to Fig 6.1a.) with an “x” in place of the carboxyl - group.  The 

students are told that they are going to be using the information and supplies provided 

to run an experiment to determine properties of the “x” group.  They are informed it is 

their job to develop a model of how the alginate strands will interact with the other 

solutions using the alginate structure provided above. They must design an experiment 

to test their model, collect the data from their experiment, analyze the data, make 

adjustments to their model based on the findings, and finally determine what the next 

steps would be necessary to further test their refined model. The entire exercise can be 

performed in two class periods totaling 84 minutes.  The laboratory portion can take 

approximately one 42-minute class period and the analysis, model adjustments, and 
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Figure 6.2 – Supplies necessary for each group 
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future directions another class period.  However, if time limited, the analysis, model 

adjustments, and discussion could be assigned as homework. 

 

Results and Discussion 

Most students decide to mix each possible combination of solutions to see 

what happens.  It is advantageous to the students if they develop a specific model 

before doing this experiment.  The provided alginate chain structure will help in the 

development of this model.  It is important to note that students will be hesitant that 

their model is incorrect.  This provides a great opportunity to explain to the students 

that scientific models are often wrong, and that is why the experiments are carried out 

to test each model.  The students will observe during their experimentation that the 

blue and yellow solutions form a gel when mixed, the blue and red do nothing 

observable, as do the yellow and red. The students often note a color change, but may 

have to be redirected back to the model. “Does a color change support or disprove 

your model?”  

There are two main conclusions we hope the students reach and can be lightly 

guided if need be (the less guidance the better).  The first conclusion is that the 

alginate “x” group is negatively charged. The negative charge is why the yellow and 

blue solutions gel when mixed by forming ionic bonds between the alginate chains. 

This conclusion provides a visual and tactile representation of how the formation of 

bonds can affect material properties.  Most students come to this conclusion from their 

experimentation and analysis.   

The second conclusion, based on the negative charge of alginate, is more 

advanced, but students are able to come to it if forced to think about it.  Alginate forms 

a gel with the divalent cation solution because the divalent cation provides a plus two 

charge that can form ionic bonds with two minus one charges of the “x” groups of 
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alginate and form bridges (crosslinks) between these chains of alginate (Figure 6.1a). 

On the other hand, the monovalent cation only has a plus one charge and therefore 

can’t bridge two chains of alginate (Figure 6.1b).  The question you hope they ask is, 

“why does it gel with the divalent cation but not the monovalent cation?”  Asking this 

question will start the students down the right path.  If deemed appropriate, the teacher 

can provide this information to them after they struggle with it.  Another hint that the 

teacher can provide late in this exercise is to draw the Lewis dot diagram for a divalent 

cation.  This can help them to see that there are two positive charges available to form 

a bridge between 2 strands of alginate that have negative charges. 

 These two conclusions are the most useful in relating the scaffold formation of 

tissue engineering to ionic bonding.  The student’s final model will ideally resemble 

Figure 1.  Most students will naturally move in this direction, however, this is not the 

only direction the students can go.  The important aspect is that the students develop a 

model, test it through experimentation, analyze it, adjust their model, and plan for 

future experiments.  This allows them to experience science as it is carried out every 

day in the laboratory.  It is important that the students fill out their handouts (see 

supplementary material) as they carry out their experiments.  The teacher can explain 

to them the handout is like their “lab notebook” and discuss how these notebooks are 

used in the lab to write down everything they do so they have a record of their 

experiments and thinking.   

 The laboratory exercise was extremely well received by the students after 

completing the exercise.  An anonymous survey of the students indicated that 88% of 

the students rated the exercise positively, another 8% rated it neutrally, and only 4% 

rated it negatively.  In addition, students indicated that the model-based inquiry 

approach “gave us more freedom and made us actually think instead of telling us what 

to do.”  In addition, the model-based inquiry showed them that “the step where people 
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change the model/hypothesis is overlooked so much in school”, thus demonstrating 

how this form of laboratory can promote a better understanding of contemporary 

science practices.  

  The students were assessed by providing them with an essay question after a 

traditional lecture on tissue engineering, but before the inquiry exercise.  Then the 

same essay question, presented as a follow up, was given to the students after the 

inquiry exercise (essay questions provided in supporting material).  The essays were 

scored for discussion of key tissue engineering principles, discussion of ionic bonding, 

and making connections between tissue engineering and chemical bonding.  The 

students showed no significant improvement in demonstrating a grasp of the tissue 

engineering principles measured; however, students demonstrated a significant 

improvement in understanding the relationship between chemical bonding and 

material properties with a 419% increase in class mean for this score.  In fact, 64% of 

students after the laboratory, compared to 30% beforehand, were able to make a 

connection between chemical bonding and tissue engineering in their essay.  The 

laboratory exercise did not promote any additional understanding of the basic tissue 

engineering principles after the lecture, but was extremely effective at helping students 

understand relationships between bonding, scaffolding materials, and the tissue 

engineering process. 

 

Conclusion 

Overall, this laboratory experiment provides the student with a tactile representation of 

bond formation and a connection between fundamental chemical principles and 

current technologies being developed in the cutting edge field of tissue engineering.  

In addition, this lab is designed as a model based inquiry exercise to provide a better 

understanding of how contemporary science is practiced.  The exercise can be done 
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for a very low cost, $6.00 per group, and can be performed in low resource 

laboratories, as it requires no elaborate equipment. 

 

Hazards 

Alginate, CaCl2, and NaCl pose little risk to the students; however, students should be 

expected to follow general safety guidelines and wear protective lab equipment when 

carrying out the laboratory exercise. 



141 

CHAPTER 7 

 

Conclusions 

This dissertation developed a novel TE-IVD and investigated the feasibility of using 

this technology for TE-TDR in an in vivo animal model.  A novel TE-IVD with 

tunable AF composition and architecture was developed to study in vivo TE-TDR and 

investigate the relationship of AF composition on TE-IVD development (Chapter 2). 

Using MRI and !CT, a method that is easily translatable to the clinic was developed to 

produce geometrically accurate TE-IVDs (Chapter 3). These anatomically shaped TE-

IVD composites were implanted into the native disc space for 6 months to study the 

tissue development and efficacy of TE-TDR (Chapter 4).  Finally, the effects of AF 

composition on the in vitro and subsequent in vivo tissue development was 

investigated by implanting TE-IVD with altered AF composition in the native disc 

space for 6 months (Chapter 5).  This chapter discusses the main findings of this 

dissertation and proposes future studies that can build on this body of work. 

 In chapter 2 we proposed and demonstrated the creation of a TE-IVD with 

circumferentially aligned collagen fibrils that mimicked the predominate organization 

seen in the IVD.  In addition, altering the original collagen concentration and cell 

seeding density before AF contraction allowed the architecture and composition of the 

AF to be controlled.  This ability to control the composition and architecture would 

later (Chapter 5) allow us to investigate the AF relationship to in vitro TE-IVD 

properties and development in the native disc space.  The general trend in tissue 

engineering of a composite IVD has been to increase the complexity of the AF to more 

closely mimic the architecture of the native IVD.  At the time of publication of this 

work, a TE-IVD had not been produced with any alignment in the AF region of the 

disc (58, 59, 87).  This work was the first to introduce the predominant native 
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circumferential collagen fibril alignment into a TE-IVD (93).  Since this paper was 

published, the field has continued in the direction of more closely mimicking the 

native AF architecture by producing TE-IVD with the ±30º collagen alignment pattern 

seen between adjacent lamellae in the native IVD (168). Because of the structure 

function relationship between the AF organization and AF mechanical properties (41, 

111), it is hypothesized that introducing the AF collagen organization into the TE-IVD 

will allow the engineered tissue to more closely mimic the native mechanical function.  

While a sound hypothesis, to date it is unproven how much of this organization needs 

to be introduced to effectively restore mechanical function in the native disc space. 

 It was our belief that the field was making good progress in producing TE-IVD 

that increasingly mimicked the architecture of the native IVD.  However, the target 

design principles were theoretical.  There was no in vivo data that explored how TE-

IVD would develop in the native disc space.  It was unclear whether a TE-IVD would 

survive in the native disc space, integrate with the native endplate and vertebral 

bodies, or be able to withstand the complex mechanical loading of the disc space 

environment.  In addition, as previously mentioned, it was unknown how much of the 

native architecture was needed to restore mechanical function to the motion segment 

despite the field continuing to produce TE-IVD with increasingly complex AF.  For 

these reasons, we wanted to begin pursuing answers to these questions and moved 

towards implanting TE-IVD into the native disc space. 

 In chapter 3 we used MRI and !CT to obtain geometric data from the IVD and 

disc space of our intended implantation site and used this data to guide our fabrication 

of a anatomically shaped TE-IVD.  In addition, we carried out our first pilot study of 

in vivo TE-IVD implantation into the lumbar L4/L5 disc space.  The ability to create 

anatomically shaped IVD was the first step in moving towards understanding how a 

TE-IVD responds to the native disc space environment.  This technique allowed us to 
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make discs that were properly sized and shaped for the disc space we wanted to 

implant into.  In the future, patients could receive an MRI and CT scan that would 

allow the TE-IVD to be designed specifically for their anatomy and disease state.  This 

is highly advantageous, as it has been shown that proper size matching is critical to 

cadaveric IVD allograft transplantation success (37) and will likely play a key role in 

TE-TDR success.  The anatomically shaped TE-IVD was implanted into the L4/5 disc 

space of 5 athymic rats for 4 months and demonstrated promising results.  The TE-

IVD was able to maintain the disc space fully or partially in 3 of 5 animals and 

produced integrated cartilaginous ECM in these three animals.  In the 2 animals in 

which the disc space collapsed, it was apparent that the posterior longitudinal ligament 

and supporting tissue had been cut during surgery.  The disc space collapse in these 

animals demonstrated the importance of the supporting ligament structure to the 

success of TE-IVD transplantation.  This was the first study that implanted TE-IVD 

into the native disc space and demonstrated that the TE-IVD could maintain disc space 

height and produce an integrated cartilaginous tissue in the disc space. 

 As a result of the pilot study success, a more thorough study of TE-IVD 

implantation into the native disc space was carried out in Chapter 4.  TE-IVD was 

implanted into the caudal 3/4 disc space for 6 months and histology, quantitative 

biochemistry, MRI, dynamic mechanical testing, and quasi-static mechanical testing 

were used to study the tissue development in the disc space.  The caudal model was 

chosen due to the reasonable loading observed in the disc space (169, 170) and the 

repeatability of the surgery.  The analysis demonstrated that a mechanically functional 

and well-integrated IVD like ECM developed in the disc space over 6 months.  This 

was the first study to demonstrate that TE-IVD implantation could reproduce key 

function in the native disc space.  In fact, this study directly addressed the 3 main 

concerns that had been raised in relation to TE-TDR.  (1.) The TE-IVD was able to 
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survive and produce a de novo mechanically functional tissue in the native disc space.  

(2.) The TE-IVD was able to withstand the complex mechanical loading and maintain 

the disc space.  And (3.) the TE-IVD was able to integrate with the native endplate and 

vertebral body.  Until this study, the idea of replacing a native disc with a TE-IVD was 

theoretical, but this study demonstrated that TE-TDR was viable in the native disc 

space.  This study represents a benchmark in the field and will hopefully establish in 

vivo TE-IVD studies as the standard for determining the success of TE-IVD design. 

 Upon establishing that TE-IVD could produce mechanically functional tissue 

in the disc space, it was our goal in Chapter 5 to use our tunable TE-IVD scaffold and 

in vivo animal model to elucidate essential design principles for successful TE-TDR 

transplantation.  Since much of the work in TE-IVD has been focused on the AF, we 

wanted to study the effects of altered AF composition on development of the TE-IVD 

in the native disc space.  During the in vitro phase of this chapter, it was determined 

that by altering the original collagen concentration and cell seeding density of the AF 

region that we could control the collagen alignment and hydraulic permeability of the 

AF.  In addition, we discovered that the change in AF hydraulic permeability was 

likely leading to the change in instantaneous modulus that we were observing between 

the TE-IVD groups.  As a result, we hypothesized that the altered mechanical function 

that we observed by changing the AF permeability, would lead to altered ECM 

deposition when implanted into the loaded environment of the disc space.   

To test this hypothesis, it was determined that we would implant the two TE-

IVD groups (1 mg/ml and 2 mg/ml AF collagen concentration and 1 x 106 cells/ml) 

that had similar AF collagen alignment, but varying AF hydraulic permeability and 

ability to pressurize under load.  After 6 months of implantation, we observed that the 

group with a lower hydraulic permeability and greater ability to pressurize (2 mg/ml 

AF) produced an ECM that better represented the AF and NP ECM phenotype 
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differences, with increased GAG in the NP and increased collagen in the AF.  In fact, 

this group was able to produce an ECM that was not significantly different than the 

native AF and NP.  The group with a higher hydraulic permeability and decreased 

ability to pressurize (1 mg/ml AF) produced a more homogenous tissue across the AF 

and NP, although it still produced near native levels of ECM.  As a result, we see that 

the hydraulic permeability of the AF plays a key role in the tissue development of TE-

IVD when implanted into the native disc space.  This is likely due to the ability of AF 

hydraulic permeability to regulate TE-IVD mechanical properties.  Unfortunately, to 

date hydraulic permeability of the AF has received little attention when AF design has 

been discussed.  However, our study demonstrates that AF hydraulic permeability is a 

key design parameter in developing TE-IVD for TE-TDR and should be considered 

alongside of collagen architecture. 

Overall, this dissertation presents a body of work that makes significant 

advances in the field of TE-TDR.  The key advances presented here are the 

development of the first TE-IVD with a tunable AF, the development of the first 

image guided technique to produce anatomically shaped IVD, the first implantation of 

a TE-IVD into the native disc space the first evidence that TE-IVD can restore 

function to the motion segment, and finally, the first in vivo data the indicates AF 

hydraulic permeability is a key design parameter in TE-IVD.  Each of these advances 

pushes the field of TE-TDR closer to providing a clinical treatment for disc related 

spinal disorders. 

 

Future Work 

The work presented within this dissertation lays the foundation for a number of future 

directions.  These include further advancements in TE-IVD design, further study of 
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TE-IVD design parameters utilizing the tunable TE-IVD presented here, and the 

development of increasingly complex and clinically relevant animal models. 

 The TE-IVD presented here was the first to introduce circumferentially aligned 

collagen fibrils into the AF.  However, the complexity of the native AF collagen 

architecture includes the alternating ±30º collagen alignment in each successive 

lamella.  As a result, while it has not been determined that introducing this level of 

organization is necessary for TE-TDR, it is likely advantageous to do so.  A number of 

ideas have been discussed to accomplish this goal.  First, the creation of multiple 

lamellae is quite simple using the current fabrication technique and can be 

accomplished by successively contracting collagen gel around the previously 

contracted lamella in the TE-IVD.  The more difficult part will be introducing the ±30º 

collagen alignment.  Three of the ideas discussed have been to use cell patterning 

within the gels to guide the alignment, introduce additional internal boundaries into 

the collagen while it is contracting, or introduce torsional mechanical stimulation to 

constructs during in vitro development. Any of these ideas may be able to help 

produce the complex collagen architecture. 

 The current animal model and tunable TE-IVD provide a number of directions 

for future work.  In this dissertation, the effect of AF hydraulic permeability on TE-

IVD development was investigated.  However, we also demonstrated that we could 

control collagen alignment within the AF region of the TE-IVD, as well.  With all the 

attention on collagen alignment in the field, it would be advantageous to study how 

introducing this alignment into the TE-IVD, or lack thereof, will affect the 

development in the native disc space.  Furthermore, additional variations to the TE-

IVD could be studied in the native disc space, such as multi-lamellae AF TE-IVD or 

using alternate cell sources.  Due to the lack of viable autologous AF and NP cells 

located in the degenerated disc, stem cells are likely necessary for clinical treatment.  
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It would be advantageous to investigate how using MSCs would affect the TE-IVD 

development in the native disc space in comparison to the AF and NP cells used 

within this dissertation.  Overall, each of these suggested experiments would be 

utilizing the current model system to elucidate the design parameters that are 

important for TE-TDR.  This type of experimentation is needed within the field so that 

TE-IVD design is evidence based and targeted to the native disc space. 

 Finally, with the success of the current work, it opens the door to testing TE-

TDR in more complex and clinically relevant animal models in hopes of moving 

towards a human TE-TDR implantation.  The current model provided a great 

framework for answering the key integration and development questions necessary for 

moving TE-TDR forward.  However, the model does have limitations.  The current 

model is in a healthy disc space, has smaller diffusion lengths, and may provide lower 

loading than the human IVD space.  Each of these may contribute to a greater chance 

of success in the current athymic rat-tail model than would be seen in the human disc 

space.  A degenerated disc space is likely to have inflammatory cytokines (3) and a 

less permeable endplate (176).  Both of these factors would likely be detrimental to 

tissue development.  The next step in addressing TE-TDR in a degenerated disc space 

can be done in the current athymic rat-tail.  A common model for degenerated disc 

disease is to induce the disease with an annular puncture (197), which could easily be 

done prior to carrying out the TE-TDR surgeries.  Utilizing this type of model would 

allow TE-TDR to be tested in a disc space that more closely mimics the disc space that 

would be observed in human patients.   

The smaller diffusion lengths and possible decreased loading experienced in 

the rat tail model will need to be addressed in a larger animal model.  The smaller 

diffusion lengths allow for nutrients to reach the interior regions of the developing 

tissue more easily than would be possible in the human disc space (176), while lower 
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loading may allow low stiffness TE-IVDs to succeed in situations that would not be 

possible in human TE-TDR.  It is unclear whether the nutrient transport will be an 

issue; and techniques are available, including temporary instrumentation, which would 

allow low stiffness TE-IVD to withstand larger loads while developing.  However, it is 

necessary to carry out these experiments in larger animal models so these questions 

can be addressed and answered before moving to human TE-TDR. 

 The ultimate goal of this research is to move toward implanting a TE-IVD into 

a human patient to treat disc related spinal disorders. And as can be seen, this body of 

work was both successful at moving the field towards this goal and opening up doors 

to new research questions.  It is my hope that this work will serve as a benchmark to 

the field and drive TE-IVD research towards design principles obtained from in vivo 

experimentation.
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APPENDICES 

 

Appendix A: Human IVD Cells Obtained from Partial Discectomy as a Source 

for IVD Tissue Engineering 

 

Introduction 

 This dissertation has presented a method for producing a composite TE-IVD 

that is capable of forming mechanically functional and well integrated cartilaginous 

tissue in the native disc space using an NP and AF ovine cell source.  In order for this 

to be translated into the clinic, an appropriate cell source needs to be selected that can 

be used in the TE-IVD construct. There are 3 cell sources that are likely to be used in 

human TE-TDR.  These cell sources are human AF and NP cells (93, 185, 198, 199), 

human MSCs (168), or iPSC cells.  Human AF and NP cells have the advantage of 

already being differentiated into the AF and NP phenotypes.  However, these cell 

types are likely coming from degenerated IVD and may have incurred changes in 

phenotype that make them unfit for TE-TDR.  It is unclear whether an adequate 

number of cells can be obtained from the patient or whether these cells can be 

expanded to adequate numbers for use in TE-TDR.  It was the goal of this work to 

access whether human AF and NP cells could be obtained in adequate numbers from 

partial discectomy procedures and expanded in vitro for use in TE-TDR. 

 

Methods 

 IVD tissue was obtained from the lumbar region of human patients (Age 31 – 

59) during partial discectomy procedures and separated into annulus fibrosus (AF) and 

nucleus pulposus (NP) tissue (n=5).  Procedures were performed under the guidelines 
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of Weill Cornell Medical College (IRB # 0705009162).  Tissue was weighed and a 

sample was removed to analyze cell content of tissue.  Cell content was determined 

using Hoechst DNA assay while the remaining tissue was digested in 0.3% w/v 

collagenase in Ham’s F12 media for 6 hours (AF) and 4 hours (NP). Digested tissue 

was filtered through 100 !m nylon mesh and centrifuged at 936 x g for 7 minutes to 

pellet cells. Cells were counted and the viability assessed using a hemacytometer. 

Cells were then plated at 2500 cells/cm2 on T150 culture flasks and cultured for 2 

weeks.  Pictures were taken of culture flasks every 3 days and the cells counted to 

access the doubling time of the NP and AF cells.  The same procedure was followed 

for healthy ovine AF and NP cells for comparison. 

 

Results 

 Human IVD cells were successfully obtained from partial discectomy 

procedures.  Cell viability was 93.49% ± 2.34 for IVD cells obtained from surgery.  

The mass of tissue obtained per procedure had large variations and ranged from 0.51 – 

1.56 g for AF and 0.66 – 4.17 g for the NP (Figure A.1a).   Cell density of tissues 

obtained through partial discectomy also showed relatively large variations between 

samples in both the AF and NP (Figure A.1b).  The cellular yield was similar between 

NP and AF and once again showed large variations between samples (Figure A.1c). 

The total number of cells obtained ranged from 0.75 – 3.5 million for AF and 1.75 – 

7.1 million for NP from the partial discectomy procedure (Figure A.1d).  Doubling 

times were 3.5 ± 0.7 days and 3.2 ± 0.5 days for the degenerated human AF and NP 

cells, respectively, compared to 1.38 days and 3.51 days for the healthy ovine AF and 

NP cells, respectively (Figure A.2). 
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Figure A.1. (A.) Wet mass of tissue obtained from partial discectomy for the AF and 

NP. (B.) Cell density of the AF and NP tissue obtained from partial discectomy. (C.) 

Cellular yield of the AF and NP tissue obtained from partial discectomy. (D.) Total 

number of cells obtained from the AF and NP per PD procedure. (Data represented as 

mean ± standard deviation, n =12)

A. B. 

C. D. 
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Figure A.2.  Doubling times of human AF and NP cells obtained from partial 

discectomy surgery compared to healthy ovine AF and NP cells. (Data represented as 

mean ± standard deviation) (Human, n = 12; Sheep, n =1)
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Discussion 

 Partial discectomy is shown here to be a source for expandable human IVD 

cells. However, the relatively low number of cells harvested indicates cell culture 

expansion is likely necessary to obtain a clinically relevant number of cells from 

partial discectomy procedures.   In addition, the doubling times indicate that 

degenerated AF cells have an increased doubling time compared to the healthy ovine 

AF cells used in this dissertation.  This makes expansion more difficult and may 

indicate fundamental differences between the healthy ovine AF cells and the 

degenerated human AF cells that may affect their performance in TE-IVD.  

Furthermore, the large standard deviations may make planning a TE-IVD procedure 

from partial discectomy a difficult task.  While this work indicates that cells can be 

obtained and expanded in vitro, it does not investigate the phenotype of the cells and 

their suitability for de novo tissue development in the TE-IVD.  In addition, it has been 

shown that degenerate IVD cells suffer from cellular senescence (200).  While this 

pilot data does not eliminate the possibility of using human AF and NP cells for TE-

TDR, the variability, low-cell yield, and the known issue with cellular senescence may 

indicate that partial discectomy is not a suitable cell source for human TE-IVD.  

Further work should be done to ascertain the ECM production capabilities of the 

degenerate human NP and AF cells in TE-IVD. 
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Appendix B: Mechanical Properties of Disectomized Motion Segments 

 

Introduction 

 In this dissertation we have shown that we can produce mechanically 

functional tissue in the native disc space after 6 months.  However, we have not shown 

the mechanical properties of the discectomized motion segments after 6 months.  This 

is necessary to act as a negative control for our mechanical testing setup, as well as 

demonstrate that the motion segment loses function without a TE-IVD re-implanted 

after discectomy. 

 

Methods 

 Discectomized motion segments were mechanically tested 6 months post-

surgery (n = 6).  Motion segments were explanted and were cleaned of surrounding 

tissue to result in bone-(remnant tissue)-bone motion segments after sacrificing the 

animals at 6 months.  Prepared motion segments were mounted on ELF 3200 

mechanical testing frame (EnduraTech; Minnetonka, MN) using modified microvices 

(McMaster-Carr, Atlanta, Ga) (169).  Unconfined stress-relaxation tests were 

performed at 5% strain incremental steps to a total of 20% strain based on collapsed 

disc space measurements (~.3 mm).  Equilibrium modulus and permeability were 

calculated by fitting resulting stresses to a poroelastic model (181).  In addition, 

immediately following the previous testing protocol the motion segments were 

subjected to a second stress-relaxation test, in which the segments were subjected to 

.04 mm displacement incremental steps to a total of .2 mm displacement.  The 

equilibrium stiffness of the motion segments was calculated from this second test at 

.16 mm of displacement.  Values were also calculated for intact native motion 

segments and TE-IVD implanted motion segments for comparison. 
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Results 

 Mechanical properties indicated that discectomy remnant tissue and motion 

segments were mechanically dysfunctional compared to the intact native and tissue-

engineered implanted motion segments (Figure B.1).  The discectomy motion segment 

equilibrium modulus at 15% strain was ~33% of the intact native and TE-IVD 

implanted motion segment values (Figure B.1a).  The discectomy motion segment 

hydraulic permeability at 15% strain was ~330% of the intact native and TE-IVD 

implanted motion segment values (Figure B.1b).  Finally, the discectomy motion 

segment equilibrium stiffness was ~500% of the intact native and TE-IVD implanted 

motion segment values at .16 mm of displacement (Figure B.1c). 

 

Discussion 

 This dissertation demonstrated the production of mechanically functional 

tissue in the disc space following TE-TDR.  However, small remnants of tissue 

remained in the discectomy group (Figure 4.2c, d).  It was our goal with these 

mechanical tests to investigate the mechanical properties of that remnant tissue, as 

well as determine the overall function of the motion segment in the discectomy 

groups.  These tests would allow us to verify that it was the TE-TDR that was 

responsible for restoring mechanical function to the disc space and not intrinsic 

regenerative properties of the disc space. 

 The two testing protocols were selected to elucidate the mechanical properties 

of the remnant tissue, as well as assess the overall motion segment mechanical 

function.  The first test was strain matched at 15% strain in the disc space between the 

discectomy, intact native, and TE-TDR groups.  As a result, equilibrium modulus and 

hydraulic permeability were calculated at .045 mm of displacement, which represented 
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Figure B.1. (A.) Equilibrium modulus and (B.) hydraulic permeability at 15% strain.  

(C.) Equilibrium stiffness at .16 mm of displacement. (n = 6)
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15% strain in the collapsed disc space (~.3 mm) of the discectomy motion segments.  

These values were calculated at .15 mm of displacement in the intact native and TE-

TDR motion segments, which represented 15% strain in the un-collapsed disc spaces 

(~1 mm). At these displacements and strains, the measured modulus and permeability 

are predominantly from the tissue in the disc space, due to the modulus differences 

between bone and cartilaginous tissue (169).  The second mechanical testing protocol 

was chosen to be displacement matched at .16 mm of displacement instead of strain 

matched between the three groups.  This was selected to demonstrate the effects of the 

collapsed disc space on the mechanical function of the motion segment.  In the 

uncollapsed disc space the strains would be relatively low (~16%), but in the collapsed 

disc space the strains would be reaching ~50% and should affect the stiffness of the 

motion segment. 

 Using these mechanical tests, it was demonstrated that discectomy motion 

segments were mechanically dysfunctional (Figure B.1).  At 15% strain, the modulus 

of the discectomy group was only ~33% of the native and engineered values while the 

discectomy permeability was ~3x higher than the native and engineered values. As a 

result, this data indicates that the small amount of remnant tissue left in the disc space 

has substantially decreased mechanical integrity compared to native IVD and TE-IVD 

tissue.  In addition, the increased permeability is likely due to the lack of integration 

observed in the remnant tissue compared to native and engineered IVD (Figure 4.2c, 

d).  Furthermore, the 5 fold increase in equilibrium stiffness of the discectomy group 

compared to native and TE-TDR groups demonstrated that the loss of disc space 

resulted in dramatic changes in motion segment mechanical function.  

 This data demonstrates that the remnant tissue in the disc space has 

substantially decreased mechanical integrity compared to the native and TE-TDR 

tissue, but that the loss of disc space ultimately results in a dramatic increase in 
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stiffness in the motion segment at relatively moderate displacements. Overall, this 

exhibits that mechanically functional tissue does not form in the disc space by 6 

months post discectomy surgery, and the integrated and mechanically functional tissue 

observed in the TE-TDR experiments are the result of TE-IVD implantation.   
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Appendix C: MATLAB Code for Determining Alignment in Images 

 

 

 The following code was written in MATLAB to analyze alignment in SHG 

images using an FFT.  However, the code is not limited to SHG images and can be 

used to analyze alignment in any 512 x 512 image.  The code contains the programs, 

Matrix.m, sumangle.m, and allindex.m  Matrix.m is the main program and will call 

sumangle.m and allindex.m when run.  Program currently reads in the image and can 

handle a stack of images and calculate the alignment index and mode angle for each 

image.  Theory of the technique is covered in Chapter 2 of this dissertation. 

 

**Matrix.M** 

 

clear all 

             

  

for p=1:1:1 

A = imread('Gao.tif',p); 

name1 = 'Gao.tif'; 

  

  

  

%Create Magnitude image(matrix) of FFT 

  

F=fft2(A); 
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for i=1:512 

    for j=1:512 

        M(i,j)=sqrt(real(F(i,j))^2 + imag(F(i,j))^2); %magnitude of FFT 

    end 

end 

  

rM =M*.01; 

  

  

for i = 1:256 

    for j =1:256 

        sM(i+256,j+256)=rM(i,j); 

    end 

end 

for i = 1:256 

    for j =257:512 

        sM(i+256,j-256)=rM(i,j); 

    end 

end 

for i = 257:512 

    for j =1:256 

        sM(i-256,j+256)=rM(i,j); 

    end 

end 

for i = 257:512 

    for j =257:512 
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        sM(i-256,j-256)=rM(i,j); 

    end 

end 

  

image(sM) 

  

%Contrast Image 

  

for i = 1:512 

    for j =1:512 

if (sM(i,j)<350) 

    sM(i,j) = 0; 

end 

    end 

end 

  

for i = 1:512 

    for j =1:512 

if (sM(i,j)> 350) 

    sM(i,j) = 1000; 

end 

    end 

end 

  

image(sM) 
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sumangle; %calls sumangle program 

  

allindex;  % calls allignment index program 

  

W(p,1) = I; 

W(p,2) = AI; 

  

  

  

name2= strcat(name1,'.csv'); 

  

  

  

end 

  

  

csvwrite(name2,W); 

%             end 

%         end 

%     end 
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**sumangle.m** 

 

clear H 

clear S 

  

%0 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 1; 

try 

   for n = 1:256 

        j = 256; 

            for i = 256:1:512 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 
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   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%5 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 5; 

try 

   for n = 1:256 

        j = (256 + (1-n)); 

            for i = (256-((16-a)*(1-n))):1:(266+((16-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 
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        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%10 degrees 

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

  

a = 10; 

try 

   for n = 1:256 

        j = (256 + (1-n)); 

            for i = (256-((16-a)*(1-n))):1:(261+((16-a)*(n-1))) 
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                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%15 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

  

a = 15; 

try 

   for n = 1:256 

        j = (256 + (1-n)); 
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            for i = (256-((19-a)*(1-n))):1:(259+((19-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%20 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 20; 

try 
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   for n = 1:256 

        j = (256 + (1-n)); 

            for i = (256-((23-a)*(1-n))):1:(258+((23-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%25 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  



 

169 

a = 25; 

try 

   for n = 1:256 

        j = (256 + (1-n)); 

            for i = (256-((27-a)*(1-n))):1:(257+((27-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%30 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 
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clear j 

  

a = 30; 

try 

   for n = 1:2:256 

        j = (256 + (1-n)); 

            for i = (256+((34-a)*(((n+1)/2)-1))):1:(259+((34-a)*(((n+1)/2)-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

  

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%35 degrees 

  

clear Q 



 

171 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 35; 

try 

   for n = 1:2:256 

        j = (256 + (1-n)); 

            for i = (256+((38-a)*(((n+1)/2)-1))):1:(258+((38-a)*(((n+1)/2)-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

  

  

ps1 = sum(Q); 

H(a) = sum(ps1); 
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%40 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 40; 

try 

   for n = 1:3:256 

        j = (256 + (1-n)); 

            for i = (256+((44-a)*(((n+2)/3)-1))):1:(259+((44-a)*(((n+2)/3)-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 
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ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%45 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 45; 

try 

   for n = 1:256 

        i = (256 - (1-n)); 

        j = (256 + (1-n)); 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

         

       

      

   end 
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end 

  

  

  

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%50 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 50; 

try 

   for n = 1:3:256 

        i = (256 - (1-n)); 

            for j = (256-((54-a)*(((n+2)/3)-1))):-1:(253-((54-a)*(((n+2)/3)-1))) 

                

             

                     Q(i,j)=sM(i,j); 
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        end 

       

      

   end 

end 

  

  

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%55 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 55; 

try 

   for n = 1:2:256 

        i = (256 - (1-n)); 

            for j = (256-((58-a)*(((n+1)/2)-1))):-1:(254-((58-a)*(((n+1)/2)-1))) 
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                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

  

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%60 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 60; 
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try 

   for n = 1:2:256 

        i = (256 - (1-n)); 

            for j = (256-((64-a)*(((n+1)/2)-1))):-1:(253-((64-a)*(((n+1)/2)-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

  

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%65 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 
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clear i 

clear j 

  

a = 65; 

try 

   for n = 1:256 

        i = (256 - (1-n)); 

            for j = (256+((67-a)*(1-n))):-1:(255-((67-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%70 degrees 

  

clear Q 

clear a 
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clear ps1 

clear n 

clear i 

clear j 

  

a = 70; 

try 

   for n = 1:256 

        i = (256 - (1-n)); 

            for j = (256+((73-a)*(1-n))):-1:(254-((73-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%75 degrees 
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clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

  

a = 75; 

try 

   for n = 1:256 

        i = (256 - (1-n)); 

            for j = (256+((79-a)*(1-n))):-1:(253-((79-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 
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%80 degrees 

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

  

a = 80; 

try 

   for n = 1:256 

        i = (256 - (1-n)); 

            for j = (256+((86-a)*(1-n))):-1:(251-((86-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 
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ps1 = sum(Q); 

H(a) = sum(ps1); 

  

  

%85 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 85; 

try 

   for n = 1:256 

        i = (256 - (1-n)); 

            for j = (256+((96-a)*(1-n))):-1:(246-((96-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 
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   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

  

  

  

  

%90 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 90; 

try 

   for n = 1:256 

        i = 256; 

            for j = 256:-1:1 
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                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1) 

  

%95 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 95; 

try 

   for n = 1:256 

        i = (256 + (1-n)); 

            for j = (256+((106-a)*(1-n))):-1:(246-((106-a)*(n-1))) 
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                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%100 degrees 

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

  

a = 100; 

try 

   for n = 1:256 
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        i = (256 + (1-n)); 

            for j = (256+((106-a)*(1-n))):-1:(251-((106-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%105 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 
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a = 105; 

try 

   for n = 1:256 

        i = (256 + (1-n)); 

            for j = (256+((109-a)*(1-n))):-1:(253-((109-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%110 degrees 

  

clear Q 
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clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 110; 

try 

   for n = 1:256 

        i = (256 + (1-n)); 

            for j = (256+((113-a)*(1-n))):-1:(254-((113-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%115 degrees 



 

189 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 115; 

try 

   for n = 1:256 

        i = (256 + (1-n)); 

            for j = (256+((117-a)*(1-n))):-1:(255-((117-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 
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%120 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 120; 

try 

   for n = 1:2:256 

        i = (256 + (1-n)); 

            for j = (256-((124-a)*(((n+1)/2)-1))):-1:(253-((124-a)*(((n+1)/2)-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 
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   end 

end 

  

  

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%125 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 125; 

try 

   for n = 1:2:256 

        i = (256 + (1-n)); 

            for j = (256-((128-a)*(((n+1)/2)-1))):-1:(254-((128-a)*(((n+1)/2)-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         



 

192 

                 

        end 

       

      

   end 

end 

  

  

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%130 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 130; 

try 

   for n = 1:3:256 

        i = (256 + (1-n)); 

            for j = (256-((134-a)*(((n+2)/3)-1))):-1:(253-((134-a)*(((n+2)/3)-1))) 
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                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

  

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%135 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 135; 
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try 

   for n = 1:256 

        i = (256 + (1-n)); 

        j = (256 + (1-n)); 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

         

       

      

   end 

end 

  

  

  

  

ps1 = sum(Q); 

H(a) = sum(ps1) 

  

%140 degrees 

  

clear Q 

clear a 

clear ps1 
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clear n 

clear i 

clear j 

  

a = 140; 

try 

   for n = 1:3:256 

        j = (256 + (1-n)); 

            for i = (256-((144-a)*(((n+2)/3)-1))):-1:(253-((144-a)*(((n+2)/3)-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%145 degrees 

  

clear Q 
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clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 145; 

try 

   for n = 1:2:256 

        j = (256 + (1-n)); 

            for i = (256-((148-a)*(((n+1)/2)-1))):-1:(254-((148-a)*(((n+1)/2)-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

  

  

ps1 = sum(Q); 

H(a) = sum(ps1); 
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%150 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 150; 

try 

   for n = 1:2:256 

        j = (256 + (1-n)); 

            for i = (256-((154-a)*(((n+1)/2)-1))):-1:(253-((154-a)*(((n+1)/2)-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 
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ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%155 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 155; 

try 

   for n = 1:256 

        j = (256 + (1-n)); 

            for i = (256+((157-a)*(1-n))):-1:(255-((157-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       



 

199 

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%160 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 160; 

try 

   for n = 1:256 

        j = (256 + (1-n)); 

            for i = (256+((163-a)*(1-n))):-1:(254-((163-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 
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        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%165 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

  

a = 165; 

try 

   for n = 1:256 

        j = (256 + (1-n)); 

            for i = (256+((169-a)*(1-n))):-1:(253-((169-a)*(n-1))) 
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                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%170 degrees 

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

  

a = 170; 

try 

   for n = 1:256 

        j = (256 + (1-n)); 

            for i = (256+((176-a)*(1-n))):-1:(251-((176-a)*(n-1))) 
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                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

%175 degrees 

  

clear Q 

clear a 

clear ps1 

clear n 

clear i 

clear j 

  

a = 175; 

try 

   for n = 1:256 
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        j = (256 + (1-n)); 

            for i = (256+((186-a)*(1-n))):-1:(246-((186-a)*(n-1))) 

                

             

                     Q(i,j)=sM(i,j); 

                         

                 

        end 

       

      

   end 

end 

  

ps1 = sum(Q); 

H(a) = sum(ps1); 

  

[Z,L] = 

min([H(1),H(5),H(10),H(15),H(20),H(25),H(30),H(35),H(40),H(45),H(50),H(55),H(6

0),H(70),H(75),H(80),H(85),H(90),H(95),H(100),H(105),H(110),H(115),H(120),H(12

5),H(130),H(135),H(140),H(145),H(150),H(155),H(160),H(165),H(170),H(175)]);; 

  

for a = 1:1:175 

S(a) = H(a) - 0; 

end 

  

% for a = 1:1:1 
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%     S(a) = H(a) - Z; 

% end 

  

plot(S); 

 

**allindex.m** 

 

[C,I] = max(S); 

  

  

  

%summing within 20 degrees in both directions of maximum alligned fiber 

  

if ((I>20) && (I<160)) 

    sr = sum([S(I),S(I+5),S(I+10),S(I+15),S(I+20),S(I-5),S(I-10),S(I-15),S(I-20)]); 

  

elseif (I == 20) 

    sr = sum([S(10),S(15),S(20),S(25),S(30),S(5),S(1),S(35),S(40)]); 

elseif (I == 15) 

    sr = sum([S(10),S(15),S(20),S(25),S(30),S(35),S(5),S(1),S(175),]); 

elseif (I == 10) 

    sr = sum([S(10),S(15),S(20),S(25),S(30),S(5),S(1),S(175),S(170)]); 

elseif (I==5) 

    sr = sum([S(5),S(10),S(15),S(20),S(25),S(1),S(175),S(170),S(165)]); 

elseif (I==1) 

    sr = sum([S(1),S(5),S(10),S(15),S(20),S(175),S(170),S(165),S(160)]); 
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elseif (I==175) 

    sr = sum([S(175),S(1),S(5),S(10),S(15),S(170),S(165),S(160),S(155)]); 

elseif (I==170) 

    sr = sum([S(170),S(175),S(1),S(5),S(10),S(165),S(160),S(155),S(150)]); 

elseif (I==165) 

    sr = sum([S(170),S(175),S(1),S(5),S(145),S(165),S(160),S(155),S(150)]); 

elseif (I==160) 

    sr = sum([S(170),S(175),S(1),S(145),S(140),S(165),S(160),S(155),S(150)]); 

end 

  

sall = sum(S); 

  

fracall = (sr/sall); 

  

AI = (fracall/.22) 
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Appendix D: Curriculum Developed for GK-12 Program on Tissue Engineering 

and Ionic Bonding 

 

 This curriculum was developed for the GK-12 program and accompanies 

Chapter 6 of this dissertation. 

 

Tissue Engineering and Ionic Bonding 

Authors:  Robby Bowles and Jamie Saroka 

Date Created:  12/4/10  

Subject:  Chemistry (Bonding, Tissue Engineering) 

Level: High School 

Standards 

Teaching Standards 

A. Standard A - Teachers of science plan an inquiry-based science program for 

their students 

B. Standard B -  Encourage and model the skills of scientific inquiry, as well as 

the curiosity, openness to new ideas and data, and skepticism that characterize 

science 

C. Standard C – Teachers of science engage in ongoing assessment of their 

teaching and of student learning 

D. Standard D – Teachers of science design and manage learning environments 

that provide students with the time, space, and resources needed for learning 

science. 

E. Standard E – Teachers of science develop communities of science learners that 

reflect the intellectual rigor of scientific inquiry and the attitudes and social 

values conducive to science learning 
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Content Standards 

A. Standard A – Abilities necessary to do and understand scientific inquiry 

B. Standard B – As a result of their activities in grades 9-12, all students should 

develop an understanding of structure and properties of matter and chemical 

reactions (specifically bonding) 

C. Standard C - As a result of their activities in grades 9-12, all students should 

develop an understanding of the cell. 

D. Standard E - As a result of their activities in grades 9-12, all students should 

develop an understanding of abilities of technological design and 

understandings about science and technology  

E. Standard G - As a result of their activities in grades 9-12, all students should 

develop an understanding of science as a human endeavor. 

 

Objectives 

 

Curriculum will teach students about ionic bonding by relating it to key tissue 

engineering principles and allowing them to experience ionic bonding through an 

inquiry based laboratory using alginate gel, a common tissue-engineering scaffold. 

 

Students Will 

 

Be able to state the three main components used in Tissue Engineering 

Be able to state the advantages of tissue engineering over traditional treatments 

Be able to state why Tissue engineering is needed 

Be able to carry on an everyday conversation about tissue engineering 

Be able to define ionic bonding 
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Be able to state that ionic bond formation causes gelation of alginate  

Be able to describe how model based inquiry is carried out in laboratories 

 

Vocabulary 

 

Ionic Bond 

Tissue Engineering 

Cell 

Scaffold 

Cell Signaling  

Biomedical Engineering 

Alginate 

Gel 

Cation 

Monovalent 

Divalent 

Extracellular matrix (ECM) 

 

Materials 

 

For Each Group: 

 

Dry Activity 

-12 toothpicks 

-8 water soluble packing peanuts 

-Bucket filled with water 
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-Styrofoam ball 

-modeling clay 

 

Inquiry Activity 

- 30 ml 2% CaCl2 

- 30 ml 2% NaCl 

- 30 ml 2% alginate 

- red food coloring 

- yellow food coloring 

- blue food coloring 

- 8 30 ml free standing conical tubes 

- 3 transfer pipettes 

 

Safety 

 

Safety concerns are minimal within this lab exercise; however, students should be 

required to wear eye protection to promote proper lab safety protocol. 

 

Science Content for the Teacher: 

 

Tissue Engineering Content:  

Tissue engineering is the production of novel living tissue using three main 

essential components: cells, scaffolding, and cell signaling.  By producing these 

engineered tissues, one can implant and replace diseased or injured tissues.  The act of 

creating novel engineered tissues is advantageous for three main reasons.  First, 

traditional transplantation surgeries (e.g. kidney and heart transplants) can often have 
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dramatic effects on saving and improving the quality of life of those receiving the 

transplants.  Unfortunately, there simply are not enough transplants to go around and 

waiting lists for life saving organs are incredibly long.  In fact, every 30 seconds 

someone dies from a condition that could have been treated by tissue engineering. By 

creating and growing new tissues, the supply problem can be solved.   

Furthermore, often those receiving transplantations have to go on immune 

suppressing drugs that have some very undesirable side effects.  Tissue engineering 

provides an avenue in which the tissues can be grown with the patient’s own cells, and 

thus, will not trigger an immune response.  This eliminates the need for the patient to 

go on immunosuppressant drugs.  Finally, tissue engineering provides an advantage 

over traditional polymer/metal implants (e.g. hip and knee replacements) by producing 

living and biocompatible tissues.  Metal and polymer implants suffer from poor 

biocompatibility and mechanical failure.  Tissue engineered tissues are made up of 

materials (cells, proteins, lipids, and carbohydrates) the body is familiar with and thus 

are quite biocompatible.  The cellular component provides the advantage of having a 

self-repair mechanism that is not present in polymer/metal implants.  Thus, tissue 

engineered tissues will last longer than traditional implant materials.  Overall, it is for 

these main reasons that tissue engineering has become an active field of investigation 

in the scientific and engineering worlds.  

The students will learn the three main tools/concepts of tissue engineering and 

what their role is in tissue engineering.  The three main components of tissue 

engineering are the cells, the scaffold, and the cell signals.  Tissue engineering is the 

combination of those three components in order to create tissue to replace damaged 

tissue caused by trauma or disease.  Each of these components has a specific role in 

the artificial construct. 
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The central dogma behind tissue engineering is that cells are placed on a 

biodegradable “scaffold”.  This scaffold is usually in the shape of the tissue to be 

created.  Over time the cell will produce proteins, lipids, and carbohydrates that will 

make up the “extracellular matrix”.  This is simply the material that is surrounding the 

cells.  As the cells produce the extracellular matrix, the biodegradable scaffold will be 

degraded and the cell produced extracellular matrix will take its place resulting in a 

completely cell produced tissue with no synthetic aspects. 

The cells are what provide the tissue with the “living” component.  This allows the 

tissue to respond to trauma experienced during normal wear and tear that tissues 

undergo.  Current synthetic implants made of plastics and metals are subject to wear 

and fatigue leading to failure of the implants.  When these implants are damaged they 

cannot repair themselves.  So by creating a living implant, these tissues can respond to 

these traumas and self-repair, giving it the possibility to last longer than synthetic 

implants.  Cells also provide the tissue with their function.  For example, in cartilage 

the proteins and proteoglycans the cells produce provide the tissue with their 

mechanical properties.  In other tissue such as the pancreas, the cells produce the 

protein insulin providing the pancreas with its function.  As can be seen, the cell plays 

a vital role in the development of tissue-engineered tissues with the desired properties. 

The scaffold provides the support and shape of the tissue.  The scaffold provides a 

place for the cells to attach and develop on.  One analogy that can be used: the 

scaffold is the framework of a house.  You put up the framework for the shape of the 

house you want and then build upon that framework.  This is essentially how the cells 

utilize this framework.  A very important aspect of most scaffolds used in tissue 

engineering is that they are biodegradable. They will be broken down inside the body.  

This is important because the main goal of tissue engineering is to create a tissue with 

non-synthetic materials but with a composition of proteins, lipids and carbohydrates 
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mimicking the natural tissue.  So this original scaffold must be broken down for the 

extracellular matrix to take its place. 

The signals provide the instructions to the cells.  Once the cells are seeded in a 

scaffold they must produce the proteins that are appropriate to form the tissue desired.  

As a result, tissue engineering attempts to use signals that the cell sees in its natural 

environment.  These signals can include hormones, growth factors, and mechanical 

signals.  Tissue engineers attempt to harness these signals to control the growth and 

development of the new tissue. 

 

Chemistry Content: 

We will use one of the main tools of tissue engineering, scaffolds, to both teach the 

student about tissue engineering while also teaching them about ionic bonding.  

Alginate is a common scaffold used in cartilage tissue engineering.  Alginate is an 

anionic polysaccharide obtained from brown algae with some very favorable 

properties for tissue engineering.  (On a side note, alginate is used in a very prominent 

fast food restaurant’s shakes as a thickener.  The reason they do not call them 

milkshakes is because they do not contain milk, but contain alginate instead.  The 

students usually enjoy this anecdote.)  Often you hope to be able to trap cells within 

your scaffold.  Alginate makes this process very easy.  First off, alginate is non-

cytotoxic (i.e. does not kill cells) and cells can be encapsulated into the alginate 

without deleteriously affecting the cells.  The property of alginate that is most useful 

to the tissue engineer is its ability to gel.  A solution of alginate can be mixed with a 

Ca++ solution and a gel will be formed.  In addition, you can mix in cells before 

adding the Ca++ in order to encapsulate the cells within the scaffold.   

The key to alginate gel formation is the anionic nature of the alginate.  By adding a 

divalent cation, ionic crosslinks are formed between the chains of alginate.  As a 
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result, the solution forms a gel after crosslinking.  Of importance is the divalent nature 

of the cation.  This divalent state allows ionic bonds to form between 2 chains of 

alginate to form the crosslinks, while a monovalent cation will only form an ionic 

bond with a single chain and fail to form crosslinks (Figure D.1).  Thus, divalent 

cations produce gels when mixed with alginate and monovalent cations do not.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.1. (A.) Alginate chains crosslinked by Ca++. (B.) Alginate chains with Na+ 

but not crosslinked. 

 

We will take advantage of alginate’s ability to form gels and the different way 

alginate reacts with monovalent and divalent cations to teach students how bonding 

affects material properties and how the valence state affects this bonding.  The 
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advantage of using alginate for this activity is that it gives students a visual and tactile 

representation of bond (ionic) formation when the solution turns into a solid.  

Secondly, it allows them to begin to understand the difference between monovalent 

and divalent ions and how that affects bond formation. 

 

 

Preparation: 

 

Dry Activity:  A list of materials was provided on page 2 of this document (Figure 

D.2).  The teacher will need to distribute the materials at the appropriate number of 

workstations as well as provide the students with handout #1.  The students will be 

working through the handout during the activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.2 Dry Activity Supplies 
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Inquiry Activity:  A list of materials was provided on page 2 of this document 

(Figure D.3).  The teacher will need to mix 30 ml of alginate for each group at 2% 

(w/v) (20 mg/ml) in distilled water.  This is best done with a stir bar and magnetic 

stirring plate.  You will want to mix in the alginate slowly to avoid clumping.  

Mixing will often take over 2 hours and is usually best done overnight to ensure 

mixing before class.  After mixing, add blue food dye to alginate solution.  The 

teacher will also need to mix 30 ml of CaCl2 (2% w/v) (20 mg/ml) in distilled 

water.  The solution will be oversaturated so you will see particles in the solution.  

This is expected, students will just want to shake solution before using to evenly 

mix.  After making solution, add yellow food dye to CaCl2 solution.  Finally, 

teacher will need to mix 2% w/v (20 mg/ml) NaCl solution in distilled water.  

After mixing add red food dye to NaCl solution. 

 30 ml of each solution should be distributed in 30 ml freestanding conical 

tubes.  In addition, each group should have 5 additional freestanding 30 ml conical 

tubes.  Also, distribute 3 transfer pipettes per group.  Finally, provide students with 

Handout #2 and #3.  The students will be working through the handout during the 

activity. 

 

 

 

 

 

 

 

 



 

216 

 

Figure D.3. Inquiry activity supplies 
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Handout #1 (answers in red) 

Tissue Engineering Model 

 

                                                                         = ECM (structural protein) 

 

                                                                        = Scaffold 

 

                                                                        = Cell 

 

= Body Environment    (enzymes, 

signaling molecules, H20) 

 

1.  What three components were needed to produce the Tissue Engineered tissue? 

 a. ____________________Cells 

 b. ____________________Scaffold 

 c..____________________Cell signaling or signaling molecules is acceptable 

 

2.  What happened to the scaffold?  What implication does that have on the body it is 

implanted into? Scaffold degraded. Scaffolding needs to be biocompatible so that it 

doesn’t cause damage to the body once degraded and free inside the body. 

 

3.  What is the scaffold replaced by?  What importance do you think the cell has in this 

role? Scaffold is replaced by ECM.  The cell produces the ECM. 
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4.  What would be the advantage of having an implant made of living tissue produced 

by cells rather than a man-made material?  Answers including self-repair and 

biocompatibility are acceptable. 

 

5.  When would such an implant be required.  What types of concerns would need to 

be considered in developing such an implant?  Answers including tissue disease or 

injury when suitable replacement not available is acceptable.  Any answer that 

demonstrates that the student is thinking that the scaffold properties, type of cell, and 

type of signaling molecules are important would be acceptable. 
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Handout #2 

 

 

What We know… 
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Handout #3 

Investigation… (Tissue Engineering)! Name: __________ 

 

What do you know… 

 

Develop a model for what you think will happen when mixed… 

 

Plan an experiment to test the model… 

 

 

Data: 

 

 

 

 

Interpret the data… 

 

 

 

 

 

 

 

Does your initial model need to be modified? Do you need more testing? 
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Classroom Procedure: 

 

DAY 1 

 

Teacher should cover powerpoint slides 1-8 through the “toothpicks and tissue 

engineering” slide.  After completing slides, teacher should do “Dry Activity” 

discussed below. 

 

Dry Activity:  Teacher should briefly go over the key diagram at the top of handout 

#1.  Explaining that the toothpick alone represents extracellular matrix, the toothpick 

with packing peanut on it represents the scaffold, the Styrofoam ball represents the 

cell, and the bucket full of water represents the body environment.  The teacher will 

want to demonstrate the construction of the scaffold with cell as illustrated below in 

Figure D.4.   The students should be instructed to place the construct into the water 

and observe what happens and answer the questions on the handout accordingly.  

(What should happen is the packing peanuts will dissolve off of the toothpicks leaving 

only the toothpicks.  This represents the scaffold degrading and being replaced by 

ECM.)  At the completion of the class, if you have time, go over the handout with the 

students.  (Answers are provided in red on the handout). 
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Figure D.3.  Constructed dry activity construct with cell. 

 

 

DAY 2 

 

Teacher should cover powerpoint slides 9-16.  These slides focus on scaffolds and 

their properties.  The final slide asks “what properties do we want in a scaffold”, use 

this slide and time to engage in a discussion on what the students think would be 

important in the design of a scaffold.  Try to encourage the students to engage with 

each other on the topic. *This day is the most boring for the students since it involves 

only lecturing.  Attempt to engage the class as much as possible and feel free to adjust 

the lecture to make it as interactive as possible. 
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DAY 3 

 

Inquiry Activity:  This activity is inquiry based and limited instruction should be 

given to the students. Students are provided with the information that the red solution 

contains a monovalent cation, the yellow solution contains a divalent cation, and the 

blue solution is alginate.  In addition, they are provided with the generalized structure 

of alginate with an “x” in place of the carboxyl - group.  The students are told that they 

are going to be using the information and supplies provided to determine the 

properties of the “x” group by mixing the solutions.   

The teacher should then cover the steps of model-based inquiry to the students 

that they are too follow in their experiments.  (1.) Those steps first involve making 

observations about the solutions, which includes both visual observations and thinking 

about the information provided to them.  (2.) Then the students should develop a 

model/hypothesis for what will happen when they mix the solutions.  Force the 

students to be as specific as possible.  (3.) Once a model is developed they should 

develop an experiment to test their model and (4.) The students then carry out their 

experiment while collecting whatever data they deem appropriate.  (5.) Next they 

should interpret their data in terms of their model.  (Is it correct, wrong, need 

adjustments?)  (6.) Have them make those changes to the model and think about what 

would be next to test in their model.  The important concept here is to emphasize the 

model-based and iterative nature of science.  We make models, we test them, we 

adjust the models, we continue. 

Most students decide to mix each possible combination of solutions to see 

what happens.  It is advantageous to the students if they develop a specific model 

before doing this experiment.  The provided alginate chain structure will help in the 
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development of this model.  It is important to note that students will be hesitant that 

their model is incorrect.  This provides a great opportunity to explain to the students 

that scientific models are often wrong, and that is why the experiments are carried out 

to test each model.  The students will observe during their experimentation that the 

blue and yellow solutions form a gel when mixed, the blue and red do nothing 

observable, as do the yellow and red. The students often note a color change, but may 

have to be redirected back to the model. “Does a color change support or disprove 

your model?”  

There are two main conclusions we hope the students reach and can be lightly 

guided if need be (the less guidance the better).  The first conclusion is that the 

alginate “x” group is negatively charged. The negative charge is why the yellow and 

blue solutions gel when mixed by forming ionic bonds between the alginate chains. 

This conclusion provides a visual and tactile representation of how the formation of 

bonds can affect material properties.  Most students come to this conclusion from their 

experimentation and analysis.   

The second conclusion, based on the negative charge of alginate, is more 

advanced, but students are able to come to it if forced to think about it.  Alginate forms 

a gel with the divalent cation solution because the divalent cation provides a plus two 

charge that can form ionic bonds with two minus one charges of the “x” groups of 

alginate and form bridges (crosslinks) between these chains of alginate (Figure D.1a). 

On the other hand, the monovalent cation only has a plus one charge and therefore 

can’t bridge two chains of alginate (Figure D.1b).  The question you hope they ask is, 

“why does it gel with the divalent cation but not the monovalent cation?”  Asking this 

question will start the students down the right path.  If deemed appropriate, the teacher 

can provide this information to them after they struggle with it.  Another hint that the 

teacher can provide late in this exercise is to draw the Lewis dot diagram for a divalent 
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cation.  This can help them to see that there are two positive charges available to form 

a bridge between 2 strands of alginate that have negative charges. 

 These two conclusions are the most useful in relating the scaffold formation 

and tissue engineering to ionic bonding.  The student’s final model will ideally 

resemble figure D.1.  Most students will naturally move in this direction and the 

teacher will naturally nudge them in this direction; however, these are not the only 

directions the students can go.  The important aspect is that the students develop a 

model, test it through experimentation, analyze it, adjust their model, and plan for 

future experiments.  This allows them to experience science as it is carried out every 

day in the laboratory.  It is important that the students fill out their handouts as they 

carry out their experiments.  The teacher can explain to them the handout is like their 

“lab notebook” and discuss how these notebooks are used in the lab to write down 

everything they do so they have a record of their experiments and thinking.   

 

DAY 4 

The students should be asked to prepare and present their findings as a group to the 

class.  Explain that this is an important aspect of science in order to educate others of 

your findings. 



 

226 

 

Assessment:  

 

The following rubric can be used to assess students for each part of the inquiry 

activity. The term “expectations” here refers to the content, process and attitudinal 

goals for this activity. Evidence for understanding may be in the form of oral as well 

as written communication, both with the teacher as well as observed communication 

with other students. Specifics are listed in the table below. 

 

1= exceeds expectations  

2= meets expectations consistently  

3= meets expectations occasionally  

4= not meeting expectations 

 

 Model Experiment Analyze and adjust 

model 

Future Directions 

1     

2     

3     

4     

 

In addition, the following 2 essay assignments can be assigned to the students.  The 

first distributed after Day 1 and the second after the completion of Day 4.  When 

distributing the second essay, ask them to expand on their answer from the original 

essay in context of what they have learned. 
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Essay #1 

Name: _______________ Class: ____ Date:______ 

 

Using a minimum of 5 sentences, write about what you could do. Include how 

chemistry is involved, specifically bonding and tissue engineering… 

 

You live in a small development in a small rural school district. Your neighbor, a real 

close friend of yours, was riding her bike without a helmet. She crashed and tore off 

most of her ear. In the mêlée of emergency crews, the pieces were lost or so badly 

shredded that they could not be reattached. She will have minimal scarring on the side 

of her face, thanks to the way she hit the pavement. However, that is nothing 

compared to the embarrassment of not having an ear. Her parents know you are a 

scientist, and the family is pleading with you to help her any way you can… 

 

Essay #2  

Name: _______________ Class: ____ Date: _______ 

 

 

Using a minimum of 5 sentences, respond to your neighbor informing them about 

what you have developed in your lab. You will be able to help their daughter! Include 

how chemistry is involved, specifically bonding and tissue engineering… 

 

(***Note*** - You know much more than you did at the start of the week. Do not 

think you can write the same answer that you did for the first assignment and get full 

credit. Try to be specific in your response.) 
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Supplemental Information: 

 

Please download associated powerpoint found on the website 

www.climb.bme.cornell.edu .  The powerpoint has notes on each slide and how to 

present them. 
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Appendix E: Creation of Multi-Lamellae AF Using Contracted Collagen Gels 

 

Methods:  Polyethylene cores were placed in the center of each well of a 12 well 

plate.  Ovine AF cells were seeded at 1 x 106 cells/ml in a 1 mg/ml type I collagen gel 

that was gelled around the polyethylene core (protocol presented in Chapter 2).  

Constructs were cultured for 2 days in previously described media (Chapter 2).  After 

2 days of culture, sell seeded collagen gel was once again poured and gelled around 

the construct to produce second lamella.  Constructs were cultured for an additional 2 

days.  On day 4 of culture, sell seeded collagen gel was once again poured and gelled 

around the construct to produce third lamella.  Constructs were cultured for 2 more 

days before being photographed at day 6. 

Figure E.3 – Creation of multi-lamellae AF 

 

Results/Discussion:  Technique produced annular gel with 3 distinct lamellae (figure 

E.1).  The first and second lamellae reached equilibrium in size by day 6 after being 

cultured for 6 days and 4 days respectively.  The third lamellae had not finished 

contracting since it had only been cultured for 2 days.  Increasing the culture time 

would produce an AF with 3 equally thick lamellae.  This technique of contracting 

multiple collagen gels around an inner core can be utilized to create TE-IVD with 

multi-lamellae AF. 
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Appendix F: Regional Shear Properties of Tissue Engineered AF 

 

Materials and Methods: IVD tissue was harvested from the lumbar discs of a year 

old sheep. Annulus fibrosus cells were isolated from harvested tissues using 0.3% 

collagenase and grown in culture to passage 1 by established protocols (93). Collagen 

type I extracted from rat tail tendons was used to make 1.5 mg/ml annular gels by 

seeding AF cells at a final density of 1x106 cells/ml. Cell seeded gels were cultured in 

F12 media supplemented with 10% FBS, 100 IU/ml penicillin, 100 µg/ml 

streptomycin, and 25 µg/ml ascorbic acid for 0 to 3 days.  1 ml of solution was 

pipetted into a 6 well plate (3.5 cm OD) with inner porous polyethylene core (1 cm 

ID). Cells were dyed with CFDA dye prior to gel formation. Gels were contracted for 

0 and 1 days. Gels were imaged using SHG microscopy across width of gel and 

collagen alignment was analyzed using previously described FFT technique (Chapter 

2). Gels were then placed on specially designed shearing device mounted on a 

confocal microscope (201). 10% shear strain was applied to gels and cells were 

tracked using PIV software written in MATLAB. A map of the local displacements 

and normalized shear modulus was calculated across the width of the gel. 

 

Results: The 3.5 cm OD annular gels showed heterogeneity in the degree of 

circumferential alignment across the width of the gel after 1 day of contraction (Fig. 

F.1). Day 0 gels showed minimal alignment across the entire width, while Day 1 gels 

showed enhanced alignment primarily localized to the outer boundary. Similarly the 

modulus of Day 0 gels did not vary across the width, while Day 1 samples were 5-10 

fold higher at the inner boundary compared to the middle. 
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Figure F.1 - Alignment across width of contracted 3.5 cm OD gel and corresponding 

displacements and shear modulus across width for Day 0 and Day 1. 

 

Discussion: This data indicates profound local structural and mechanical variations in 

these gels on the scale of 500 µm. Controlling these local variations of structure and 

properties may be critical to engineering a functional IVD replacement. 
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