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Abstract 

Least squares estimation of the linear regression coefficients, when the 

observed values of the dependent and independent variables have error and repeat-

ed measurements can be made on the variables. 

The regression model is 

k 

E ( yjxl, ••• xk) :::a + L i3ixi 

i=l 

and the observations are k+l-tuples 

i = 1, ••• , n 

where x .. :::x.+o .. 
PJ .P· J.lJ 

o .. ,.... Nrnl o, a2 .) 
J.lJ ~~ .£1 

..e = l, .•• ,k 
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For the case k=l, r.=r, s.=s, cr2 =cr2 ~~=~2 vi= l, .•• ,n and cr2 , T2 are 
1 1 i ' 1 

known. The following results are given 

-
a=Y -f3 X 

For more general cases, a method for estimating a, ~ and x. is given. 
1 
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Basic Formulation 

For the simplest case, we have only one independent variable. The regression 

model is 

1-vhere 

Let 

y = 0: + ~X and the observations are 

j=l ••• r .}, {Y .. 
1 1J 

i = 1, .•. , n 

X •• = X, + 0 .. o .. ~ NII~ O, a~) 1J 1 1J 1J 

Y .. = yi +11 .. 11· . ,.... NII~ O, -r~) 1J 1J 1J 

o .. and 11ij are independent and 
1J 

2 'T~ are known. a.' 1 1 

X' = ( xll' • · • 'xlr1' x21' · • • 'x2r X l' •.• , X ) n nr 2 n 
Y' = ( Yll, • · • 'Yls1' Y2l' · • · 'Y2s2 

y , ••• ,Y ) 
nl ns 

n 

x ' = ( x 1, ... , x1, 
---... ~ 

rl 

y' = (yl, .•. ,yl, 
\...._._._ ,..--.-

sl 

y 2' .•• 'y 2 
'-- s ,.,..---' 

2 

X 1 ••• 1 X 
~ n 

r--' 
n 

y , ... ,y) C n, 
s ,--..J 

n 
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z = ( ;), Z =(X) 
\Y 

v = cov( z) = ~. 
I . 2 
' • al 

'· 

• 2 .a 
n 

0 

• 2 .a 
n 

"' "' 
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0 I 
I 

The least squares solutions a, ~ are obtained by minimizing 

Since z 1 

= ( z - z) I v-1 ( z - z) 

= liZ - zll 2 _ 1 
v 

= (xI yl) = (x1 , ... , x1, · · · x , ••• , x , 
'C- r 1-- \..E_ r n.--.!1 

a+~ , ••• ,a+~x ) 
~s~ 

n 
= (o, ... ,o, ... ,o, ... ,o, a, ... ,a, ... ,a, .•. ,a) 

+ (X 1 •• • 1 X.. 1 • • • 1 X 1 • • • 1 X 1 I3Xl' • • • 1 ~x1, • • • 1 I3X 1 • .. 1 ~X ) 1 l. n n n n 

=a:w' +U' 
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z must be a linear combination of two vectors, one lies on M~ and the other on N, 

1-vhere M~ = [U; xi E R, i=l, ••• ,n, ~ E RJ, N ={au; a E RJ. Clearly, M~ and N are 

two disjoint subspaces of R2n with dimensions n and 1 respectively. 

Our goal is to minimize 1, = liZ - zJJ 2 _1 = JJZ - U - aw!J 2 _1 subject to U E Mt3, 
v v 

w = ( i} Since we can rewrite J, as 

liZ - U - awJ12 -1 
v 

1 
where (M~GJN)- is 

-1 
respect to V • 

the orthogonal completement of M~®N with inner product with 

-1 
P*(Z) is the orthogonal projection (w.r.t. V ) of Z to the· 

space (*). The minimum will be obtained, if 

(1) U + aw = PM 4N(Z) and 
~ 

(2) 
1 

IIP(M C!)N)- (Z)JI 2 _1 is minimized. 
~ v 

. ·v-1 :t..e., e. e. 
). J 

i=j 
ifj 

i, j = l, ••• ,n+l 

He need only to find (e1, e2, .•• ,en' en+l) in order to get PM~N(Z). 
~ 



where 
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It is easy to see that fori= 1, ••• ,n 

e I 

1 = (P.:..· .. :3' 
i-1 
!: r 

j=1 j 

a~ = 
1 

a., ••• ,a., 
~ ,...:-J 

r. 
1 

o, ..• ,o, ~··;!); I...-... ,-.) 
n i-1 
L: ?.: s . r. 

j=i+1 J j=1 J 

(3a., ••• ,f3a., 
L1-.. ,..--J::J ~-;3) 

s. n 
1 E s. 

j=i+l J 

Since e1, ..• ,en' w is a basis of Mf3eN, we can get en+1 by the Gram-Schmitt 

orthogonalization method 

(e.,w) 1 1 -v 

n I 

( )'Ce.,w)e.\/ 
'-' 1 1 

i=1 I 

Let di = 1 -



c. = -
J. 

then 

e' = 
n+l 
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s 1f3a. S,f3CT~ 
J.a = J. J. - ' T~ 

J. -r~r. +~f32s. 
J. J. J. J. J. 

cl, • • • 'cl, .• • 'c n' •• •' c n' dl' • • • 'dl, • • . 'd n' • • •' d n). 

11 cl' ... ,r.l, ... ,cn, ... , en ' dl' ••. ,dl, ... , dn, ••• ,dn v-1 

r. s. call 
= \ J.J. = K2 

f.: -r~r. +cr~f32 s. 
J. J. J. J. J. 

S f3CT2 
n n 



E' a1 .. . a1 0 .. ... ..... 0 t,3a1 ... t3a1 0 •.•.•.•••••• 0 

0 ..••..••• • 0 a •• • a 0 •.•••••..•• • o f3a •• • t:3a 
n n n n 

[[] ~ 

1 . 

f3a.2 1. 1 

Ti l. 

c<:! 
n 
~ 
n 

~ w 



where a~ T~ 
~ ~ --

a~ -r~r. +cr~t32 s. 
~ ~ ~ ~ ~ 

-1 
Also, PM am(Z) = U + aw = EE 'V Z 

t3 

Hence, we can get the M.L.E. for a 
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a2 a2 
i = i 

T~ -r~ri+a~t32 si 

d~ T~r;; 
~ ~ ~ --

~ 1 
In order to get the M.L.E. for t3, we have to find miniiP(M eN)- (Z)II2 _1 

t3 v 

Since, IIP(M ~)!. (Z)I! 2 _1 = IIZ11 2 _1 - IIPM GN(Z)II2 _1 so this is equivalent to 
t3 v v t3 v 

Hence, we need only to maximize Z'V-1EE'v-1z .w.r.t. t3 
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A special case 

It is too messy to calculate all these by hand. But it is quite easy to do so 

by using a computer program to get it. In order to have some results, I worked 

out the simplest case. 

When r. = r, s. = s, a~ = 
J. J. J. 

a2 a~ 
a2-r2 

= = 
J. -r2 r+a2 f!P s 

c2 c~ 
s ~ a2 

= = -
J. -r2r+a2~28 

d d. 
-r2r 

= = 
J. -r2r+a2~2s 

K2 = nrs 
-r2r+a2~2s 

EE'V-l = 1 

+ 1 
n 

a2 '1"~ ' J. 

~E:l 

= '1"2 y i = 1, ... , n 

I 
lf?Jj 



1 

Hence 

t3-r2X + 132a2Y 
1. 1. 

I t3-r2X ~ t32a2y 
j n. n. 

"'"' t3X n . 

+ 
1 
n 

a= 

"' 
= -r2r+a2s2s ( 

n( -r2 r+a2~2 s) 
!.y 
s .. 

= y - sx as expected 

1 
x. 

J. 
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/ ., 
I s@2a2 \ 

- X sa2y \ r I 

I 
2 

-t3-r2X + !.....!.y 
s 

I ) '-.... 
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" -1 -1 
To find (3, we have to maximize Z 'V EE 'V Z 

2(3X. Y. +f3X. Y. +~2g2~) + sf32X2 
~. 1. 1. ~. -r J.. rn •• 

Write f(f3) as the following fo~: 

a 1 = 2rsEX. Y. - 2nrsX Y 
i ~- J.. 

= Er2~2 X2; + nrs ~ 
a2 i cr 1. • • 

= 2rsE(x. -x )(Y. -Y ) 
• l.o •• l.o •• 
1 

f'(f3) = 
(bof32+b2)(2aof3+al) - (aof32+alf3+a2)(2bof3) 

(b (32+b )2 
0 2 

set " 
f I ((3) = 0 

2 y 
-r r:v ) • ':J} - --.L ~ s . • 1' 

- ~X y +...!:y2 } • 
n • • • • sn •• 
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Since we have two roots for f'(~) = 0, we have to find out which one maximizes 

f(~). It is too messy to compute the 2nd order derative to find this out. It is 

sufficient to find some behavior of this function which indicates the root which 

maximizes f(~). 

In our case, a0 > o, a2 > 0, b0 > o, b2 > 0. a1 can be any real number if a1 = O, 

~ = 0 not what we are interested in. Assume a1 F 0 

Also, f(~) 
ao 

= -- has a root when a1 F 0 
bo 

ao~2+al~+a2 ao 
-------= 
b ~2 +b bo 

0 2 

when ~ is a large positive number, 



f(t3 

ao 
f(t3) decreasing to 

bo 

when t3 is a large negatl. ve number, 

-f(t3) 

f(t3) 
ao 

increasing to -
bo 
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Also, since f(t3) is continuous, f(t3) looks like 

f(t3) 

Hence, the larger root of f' (t3) = 0 achieves the maximum. For the case a1 < 0 we 

can use a similar argument and then the smaller root of f'(t3) achieves the maximum. 

In both cases, we have 
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where 

For more general cases, when the regression model is 

y. =a + ~. + E. 
J. J. J. 

Nco '2.) 
€. - ' 1\ J. J. 

EJ.., o .. , 'Tl· • are independent and cr~, '1"~, >.. ~ are known 
l.J l.J J. J. J. 

Y = y, + '~'~ .. =a+~. +E. + '~'~ .. 
ij J. '~J.J J. J. 'IJ.J 

The covariance matrix V is positive definite, and 



v = 

0 

0 

-16-

0 

;. +r 
n n . 

Since V is invertable, we can still use the method given above to get the M.L.E. 

for a, ~ and xi · 

When we have more than one independent variable, the method can still be used, 

only the dimension of the vector Z' = (X1, ••. ~, Y) increases rapidly. 

A similar result was reported by c. Villegas (Ann. Math. Statist. 32, 1048-1062). 
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Illustration of some areas of application (by D. S. Robson) 

A standard method of assaying dog serum for distemper anti~)ody entails the 

use of an egg-adapted strain of distemper virus \vhich produces visible signs of 

infection in the embryonated chicken egg. A fixed dose of virus mixed with 

serial dilutions of immune dog serum can thus be inoculated into chicken eggs 

to deterraine the serum dilution level at which the given dose of virus is 

neutralized in 50 percent of the eggs. On the logarithmic scale this end-point 

is referred to as the tite£ of the serum (with respect to the fixed dose of egg

adapted virus). 

Laboratory incubation of large numl)ers of inoculated chicken eggs is both 

awkward and expensive, and a new assay technique has been developed around a 

strain of distemper virus adapted to dog kidney tissue cultured cells. A sample 

of tissue culture placed in a small hemispherical well (less than a em. diameter) 

in a plastic plate now replaces the embryonated chicken egg; when a well of 

tissue culture is inoculated v1ith a dose of serum-virus mixture and incubated 

for a few hours at controled temperature, infection of the cell culture becomes 

visibly apparent unless serum antibody v1as present in sufficient amount to 

neutralize the fixed dose of virus. The serum dilution level at which 50 per

cent of the \'7ells shovl infection is then taken as the end-point which quantifies 

the antibody level of the original serum, and on the logarithmic scale is again 

referred to as the serum titer. 

Since both the host and pathogen differ in these two systems then the same 

immune dog serum tested in the two systems will produce h1o different titers. 

Moreover, there are several sources of error variation within each system so 

that when the same serum sample is repeatedly and independently tested within 
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.· .. :' 

the same system there is variation among the resulting titers. Thus, if x is 

the true (expected value) titer of the serum in the egg system andy is the true 

titer in the tissue culture system then independent replicates of the i'th serum 

produce observations xij =xi + oij and yij = yi + ~ij • Calibration of the new 

method in terms of the old requires estimation of the regression of y on x. 

Regression problems of this type also arise in other contexts where the 

principle of repeated measurements is replaced by the more general principle 

sampling error estimation. Suppose, for example, that x and y are unknown para-

meters of a stochastic process and are identifiable with respect to a given 

experimental or sampling design, so that data are available to produce estimators 

X and Y and also estimators of the (conditional) covariance matrix 

E [ (X-x)(Y-y)jx,y J 
V= 

E r (X-x)(Y-yjx,y) "l 
..... --

If this process is observed under n different conditions with unknown 

parameter values (x.,y. ), i = l, ••• ,n, there may be interest in examining the 
1 1 

relationship between x and y. For example, suppose the process under considera-

tion is a pure death process with an annual survival rateS.= exp(-x.-y.) re-
1 1 1 

fleeting two distinct causes of death in year i. In this case the primary 

purpose of the investigation may be to examine the relationship between x and y 

when only correlated estimators (X.,Y.) of (x.,y.) are available, as when 
1 1 1 l 

(x.,y.) are estimated from tag-recapture experiments. 
1 1 


