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ABSTRACT 

 

Plug-in electric vehicles (EVs) offer great potential in reducing local air pollution and 

carbon emissions and in alleviating dependency on fossil fuel. However, there are 

significant barriers to the diffusion process of this new technology. The EV market 

features indirect network effects (or the chicken-and-egg problem) in that consumers 

may be reluctant to adopt EVs with the lack of public charging stations while investors 

are less willing to build charging stations when the installed base of EVs is small. 

Indirect network effects could amplify shocks whether negative or positive through 

feedback loops and therefore could slow down or speed up the diffusion process. 

Using a data set of quarterly EV sales in 353 metro areas from 2011 to 2013, this 

paper provides the first empirical analysis on the importance of indirect network 

effects in this market:  a 10% increase in the number of charging stations would 

increase the EV sales by 10.8% while a 10% growth in the EV stock would lead to a 

5.8% increase in the number of charging stations.  Our simulation results find that the 

current federal tax credits of up to $7,500 have contributed to 48.5% of the EV sales 

during 2011-2013, with indirect network effect explaining 42% of that sales increase. 

The total tax credit of $1.05 billion given out during these three years brought about 

$0.23 billion in long-term environmental benefits, while a policy of equal-size 

spending but subsidizing charging station building would be several times more 

effective.  
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 CHAPTER 1: INTRODUCTION  

 

 

The U.S. transportation sector contributes to nearly 30% of total U.S. 

greenhouse gas emissions, over half of total carbon monoxide and nitrogen oxides 

emissions, and about a quarter of total hydrocarbons emissions in recent years. It also 

accounts for about three-quarters of U.S. petroleum consumption. Plug-in electric 

vehicles (EVs) offer great potential in reducing air pollution and strengthening energy 

security. EVs can be recharged from an external source of electricity and the electricity 

stored in the rechargeable battery packs drives the wheels. There are currently two types 

of EVs: battery electric vehicles (BEVs) which run exclusively on high-capacity 

batteries (e.g., Nissan LEAF), and plug-in hybrid vehicles (PHEVs) which use batteries 

to power an electric motor and use another fuel (gasoline or diesel) to power a 

combustion engine (e.g., Chevrolet Volt). BEVs and PHEVs, if operated under all-

electric mode, produce zero tailpipe emissions. The electricity used in EVs is produced 

from domestic coal, natural gas, nuclear and other renewable energies. The 

environmental benefit could be especially large if the electricity comes from renewable 

sources.  

The mass-market EVs were (re-)introduced into the U.S. market in late 2010.1 

The monthly sales of EVs have increased from 345 in December 2010 to 9,790 in 

December 2013 (source: Hybridcars.com and Baum & Associates) (Figure 1.1). The 

sales have been concentrated in large urban centers (Panel (a) in Figure 1.2). Despite 

                                                
1 From 1996 to 1998, GM introduced over 1000 (first-generation) EVs (EV1) in California, mostly 

made available through leases. In 2003, GM crushed their EVs upon the expiration of the leases. 
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the rapid growth, the market share of electric cars is still relatively small: the total EV 

sales only made up 0.62% of the total new vehicle sales in 2013 (source: 

Hybridcars.com and Baum & Associates). In the 2011 State of the Union address, 

President Obama set up a goal of one million EVs by 2015 and based on the market 

development so far, the goal is unlikely to be achieved. As a new technology, EVs face 

several significant barriers to wider adoption including the high purchase cost, limited 

driving range and long charging time, and the lack of charging infrastructure.  

EVs are more expensive than their conventional gasoline vehicle counterparts. 

The manufacturer’s suggested retail prices (MSRP) for the 2014 model of Nissan Leaf 

and Chevrolet Volt are $28,980 and $34,185, respectively, while the average price for 

a comparable conventional vehicle (e.g., Nissan Sentra, Chevrolet Cruze, Ford Focus 

and Honda Civic) is between $16,000 and $18,000. To reduce the price gap between 

EVs and their gasoline counterparts, the Energy Improvement and Extension Act of 

2008, and later the American Clean Energy and Security Act of 2009 grant tax credit 

for new qualified EVs. The minimum credit is $2,500 and the credit may be up to 

$7,500, based on each vehicle’s battery capacity and the gross vehicle weight rating.  

Moreover, several states have established additional state-level incentives to further 

promote EV adoption such as tax exemptions and rebates for EVs and non-monetary 

incentives such as HOV lane access, toll reduction and free parking.  

The other notable barrier of EV adoption is consumers’ concerns over the 

driving range and charging time. BEVs have a shorter range per charge than 

conventional vehicles have per tank of gas, contributing to consumer anxiety of running 

out of electricity before reaching a charging station. Auto manufacturers usually target 
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a range of 100 miles on a fully charged battery. Nissan LEAF, the most popular BEV 

in the U.S. has an EPA-rated range of 84 miles on a fully charged battery in 2014.  

Chevrolet Volt has an all-electric range of 38 miles, beyond which it will operate under 

gasoline mode. This range is sufficient for daily household vehicle trips but may not be 

enough for longer distance travels. In addition, it takes much longer to charge EVs than 

to fill up gasoline vehicles. A BEV may not be able to get fully charged overnight if just 

using a regular 120 Volt electric plug (it takes 21 hours for Nissan LEAF to get fully 

charged) (source: Hybridcars.com 2014 Nissan Leaf Overview). To get faster charging, 

BEV drivers either need to install a charging station at home or go to public charging 

stations. Unlike BEVs, PHEV batteries can be charged not only by an outside electric 

power source, but by the internal combustion engine as well. Having the second source 

of power may alleviate range anxiety but the shorter electric range limits the fuel cost 

savings from an EV. 

Given the limited battery capacity and driving range, consumers are reluctant to 

adopt EVs if the availability of public charging stations are scarce. Despite the rapid 

growth in the last few years, there are only less than 9,000 public charging stations in 

the U.S. (Figure 1.1), compared to over 120,000 gasoline stations. The diffusion of EVs 

should benefit from a wider distribution of charging infrastructure, which would reduce 

range anxiety and allow PHEVs to operate more under the all-electric mode to save 

gasoline. The Department of Energy and some state governments have provided 

significant funding to expand the network of charging stations to address this concern.  
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Figure 1.1 National EV sales and public charging stations 

 

Nevertheless, private investors have less incentive to build charging stations if 

the size of the EV fleet and the market potential are small. The inter-dependence 

between the two sides of the market (EVs and charging stations) can be characterized 

as indirect network effects: the benefit of adoption/investment on one side of the market 

increases with the network size of the other side of the market. The inter-dependence 

could partly explain the similarity in the spatial pattern of EV stock and charging 

stations depicted in Panels (a) and (b) in Figure 1.2. While indirect network effects could 

exacerbate the negative impacts of the barriers on any side of the market (such as the 

high purchase cost) and slow down the diffusion problem, they could also amplify the 

positive shocks through feedback loops and hence speed up the diffusion.  
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Panel (a) Installed base of EVs per million people 

 

 

Panel (b) Public charging stations per million people 

 

 

Figure 1.2 Spatial distributions of EVs and public charging stations  

Source: HIS Automotive and DOE Alternative Fuel Data Center (4th quarter of 2013) 

 

The main purpose of this study is to: (1) use econometric methods and real-world 

data to quantify indirect network effects in the EV market, and (2) evaluate the 

effectiveness of the current federal tax credit policy as well as alternative policy designs. 
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Our empirical analysis confirms that consumer adoption would benefit from a larger 

network of charging stations and that a larger installed base of EVs would lead to more 

investment in charging infrastructure. The federal tax credit policy has been an 

important driver behind consumer adoption of EVs. Nevertheless, model simulations 

show that the effectiveness of government spending could have been greatly enhanced 

if the funding had been used to build charging stations instead due to strong indirect 

network effects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

15 

CHAPTER 2: LITERATURE REVIEW 

 

 

Our study is related to previous work on indirect network effects that dates back to early 

theoretic papers such as Rohlfs (1974), Katz and Shapiro (1985) and Farrell and Saloner 

(1985). Empirical study on indirect network effects has been seen in recent industrial 

organization literature, much of which focuses on the markets that can be characterized 

by classic software and hardware paradigm, including Gandal, Kende, and Rob (2010)’s 

study of CD titles and CD players, and Nair, Chintagunta, and Dube (2003)’s study of 

PDAs and compatible software. Many studies analyze the indirect network effects in 

the video game industry and assess the importance of the network effects in the game 

system competition including Clements and Ohashi (2005) and Corts and Lederman 

(2009) who investigate the indirect network effects in the U.S. video game market. 

These two studies both use static formulation to estimate the hardware demand and 

software supply sides and employ instrumental variable estimation to solve the 

endogeneity issue. Dube, Hitsh, and Chintagunta (2010) develop a dynamic model that 

captures the indirect network effects in a hardware and software market to measure the 

increases in a firm’s market share dominance caused by indirect network effects.  Lee 

(2013) estimates a dynamic model of both consumer demand for hardware and software 

products, and software company demand for hardware platforms to measure the impact 

of vertically integrated and exclusive software on industry structure and competition in 

the U.S. video game market between 2000 and 2005. Zhou (2013) develops a dynamic 

structural model of the video game market to study the launch failure of a game system 
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and shows that a failed platform could have survived if it had priced properly during its 

launch stage.  

The indirect network effects have also been studied in markets that are not 

usually characterized by canonical hardware and software paradigm such as Rysman’s 

study of network effects in the market for Yellow Pages directories (2004) and payment 

cards (2007). Corts (2010) extends the study of network effects to the clean fuel vehicle 

industry by examining the effect of the installed base of FFVs on E85 availability 

especially the impact of government fleet adoption of FFVs, but his study estimates only 

one side of the network effects due to data constraint.  

Our study contributes to the literature by providing a first step empirical analysis 

of the indirect network effects existing in the electric vehicle industry. Our study focuses 

on the static formulation by estimating both the consumer vehicle adoption and the 

charging station supply sides separately and using instrumental variable method to deal 

with the endogeneity concern.  
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CHAPTER 3: METHODOLOGY 

 

3.1 Data 

Our sample includes 353 Metropolitan Statistical Areas (MSAs) and the study period 

is 2011-2013. The EV sales in these 353 MSAs account for 83% of the national EV 

sales. The sales data include 17 EV models: 10 BEVs and 7 PHEVs. Due to different 

introduction schedules, there were two vehicle models in our 2011 data: Nissan LEAF 

and Chevrolet Volt. The 2012 data include four more vehicle models: Ford Focus EV, 

Mitsubishi i-MiEV, Fisker Karma, and Toyota Prius Plug-in. The 2013 data include 

11 additional models: Honda Accord Plug-in, Ford C-Max Energi, Cadillac ELR, 

Honda Fit EV, Fiat 500E, Smart ForTwo Electric Drive, Tesla Model S, Porsche 

Panamera, Toyota RAV4, Chevrolet Spark EV, and Ford Transit Connect EV.  Data 

on quarterly vehicle sales of each EV model in each MSA is purchased from IHS 

Automotive. We select the 353 MSAs for which observations are available in all three 

years. Data on the number of publicly accessible charging stations is collected from 

the Alternative Fuel Data Center (AFDC) of the Department of Energy. By matching 

the ZIP code of each charging station to an MSA and using the station open date 

(which was provided in the off-line version of their data base), we obtain the data set 

of the total number of public charging stations available in each quarter for each MSA. 

Data of all state-level incentive policies for both electric vehicles and charging stations 

are also collected from AFDC. Only monetary incentives such as tax credits and 

rebates are included in our analysis. Table 3.1 presents summary statistics of the 

variables used in our regression analysis.  
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Table 3.1 Data Summary Statistics 

 

Variables  Mean Std.dev 

 

Panel (a): vehicle demand equation 

Log (sales of a EV model) 1.13 1.22 

Log (gasoline prices)  1.26 0.07 

Log (retail price-tax incentives) 10.30 0.43 

Log (No. of charging stations) 1.91 1.47 

Log(No. of stores)*log(nation stations) 39.01 10.39 

Log(EV Project) 0.19 0.97 

Number of observations                                                         14626 

 

Panel (b): Charging station equation   

Log (No. of charging stations)  1.25 1.25 

Log (No. of EV installed base) 2.82 1.89 

Current gasoline prices 3.49 0.27 

Gasoline price last year 3.25 0.39 

Gasoline price two years ago 2.78 0.59 

Gasoline price three years ago 2.78 0.58 

Charging station tax credit (%) 4.54 14.70 

Public funding or grants 0.33 0.47 

Log(No. of stores)*log(nation stations) 34.57 9.29 

Number of observations 4236  

 

 

 

3.2 EV Demand Regression 

Using a panel dataset of quarterly EV sales by vehicle model and the number of 

charging stations for 353 Metropolitan Statistical Areas (MSAs) from 2011 to 2013, we 

conduct regression analysis to empirically quantify the relationship between the 

availability of charging stations and EV sales. To describe the empirical demand model 

of EVs, let k index an EV model such as Nissan Leaf and Chevrolet Volt, m index a 

market (MSA), and t index a year-quarter. We estimate the following equation: 
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(1) ln⁡(𝑞𝑘𝑚𝑡 + 1) = 𝛽0 + 𝛽1𝑙𝑛(𝑁𝑚𝑡 + 1) + 𝛽2ln⁡(𝑀𝑆𝑅𝑃𝑘𝑡 − 𝑑𝑘𝑚𝑡) + 𝛽3ln𝑃𝑔𝑎𝑠𝑚𝑡 +
𝛽4ln⁡(𝐸𝑉𝑃𝑚𝑡 + 1) + 𝑇𝑡 + 𝛿𝑘 + 𝜑𝑚 + 𝜀𝑘𝑚𝑡     

 

where 𝑞𝑘𝑚𝑡is the sales a EV model k in market m and year-quarter t. 𝑁𝑚𝑡 denotes the 

total number of public charging stations that have been built in the MSA by the end of 

a given quarter. We use the number of charging stations instead of the total number of 

charging outlets to represent the availability of charging infrastructure but the 

qualitative findings remain if we use the number of chargers. 𝑙𝑛(𝑁𝑚𝑡 + 1) captures the 

effect of charging stations on electric vehicle purchases and the log form allows the 

incremental effect of charging stations to taper off in a MSA with a large number of 

stations. The addition of 1 in⁡𝑙𝑛(𝑁𝑚𝑡 + 1)  is used to include markets that do not have 

any charging stations built by quarter t and our results are robust to excluding these 

markets and using  𝑙𝑛(𝑁𝑚𝑡)  instead. The price effect is captured by ln⁡(𝑀𝑆𝑅𝑃𝑘𝑡 −

𝑑𝑘𝑚𝑡)  where 𝑀𝑆𝑅𝑃𝑘𝑡  is the manufacturer’s suggested retail price of a model and 

𝑑𝑘𝑚𝑡 ⁡denotes subsidies (tax credits and tax rebates at both federal and state levels) for 

purchasing the vehicle model.  ln𝑃𝑔𝑎𝑠𝑚𝑡⁡captures the effect of quarterly gasoline prices.  

ln⁡(𝐸𝑉𝑃𝑚𝑡 + 1) denotes the log number of residential charging stations built by the EV 

Project 2 . Year-quarter fixed effects 𝑇𝑡 control for time effects for electric vehicle 

purchases that are common to all the markets, e.g., a national demand shock for all EVs. 

Vehicle model fixed effects 𝛿𝑘 control for time-invariant product attributes associated 

with a specific vehicle model that affect consumer preference, such as comfort and 

                                                
2 The EV Project, is managed by ECOtality North America and supported by the U.S. Department of 

Energy with a total budget of over $230 million to deploy level-2 residential and commercial charging 

stations in the U.S.  
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brand loyalty. Market fixed effects 𝜑𝑚  control for time-invariant MSA specific 

preference for EVs such as stronger environmental awareness. 𝜀𝑘𝑚𝑡 is the unobserved 

demand shocks that are time-varying and market-specific (for example, unobserved 

local government subsidy for purchasing EVs or market-specific promotions for a 

vehicle model that vary over time).  

Although we include a rich set of control variables, the charging station variable 

could still be endogenous due to simultaneity: EV purchases and charging station 

investment decisions in the current period are simultaneously determined. The time-

varying and market-specific demand shocks that we do not observe would also affect 

charging station investment decisions. In this case, we cannot interpret the coefficient 

estimate on the charging station variable as the causal effect. 

To deal with the endogeneity concern, we employ an IV strategy for estimation 

and a valid instrument needs to be correlated with the number of charging stations in an 

MSA (the endogenous variable) but not correlated with the unobserved shocks to EV 

demand (the error term). We use as an IV the interaction term of the number of grocery 

stores and supermarkets in an MSA with the number of charging stations in all MSAs 

lagged for one quarter. Grocery stores and supermarkets could be good sites for public 

charging stations because EV drivers can charge their vehicles while shopping and these 

sites could also be good for publicizing EVs. Nissan is playing an active role in placing 

charging stations in popular grocery store locations. Kroger, the country's largest 

grocery store owner, has partnered with ECOtality Inc. to install about 300 charging 

stations in their store locations across the country. Our data shows that the number of 

grocery stores in an MSA is positively correlated with the number of charging stations. 
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However, the number of grocery stores does not vary with time in our sample period 

and it is therefore absorbed by the MSA fixed effects. To introduce temporal variation, 

we multiply it with the lagged number of charging stations that have been built in all 

MSAs in each quarter, which captures the national-level trend in charging station 

investments due to aggregate shocks such as cost changes over time and federal 

incentive programs. As shown in the first-stage results in Table 4.2, these shocks have 

larger impacts on charging station investments in areas with more potential good sites 

such as grocery stores and supermarkets. In addition, this instrument should satisfy the 

exclusion condition because the number of grocery stores and supermarkets is unlikely 

to directly affect EV sales. The lagged number of charging stations in all MSAs is pre-

determined to the current period and is unlikely to be correlated with the unobserved 

shocks to the current sales of a specific EV brand in an MSA.  

 

3.3 Charging Stations Regression 

We specify the number of public charging stations available in each MSA in each 

quarter as a function of the installed base of EVs (new and old), state-level tax credits 

for charging stations (measured in percentage of the cost) and other control variables, 

while controlling for time fixed effects and MSA fixed effects. The empirical model of 

new charging station investment is described by the following equation: 

(2) ln(𝑁𝑚𝑡 + 1) = 𝛾0 + 𝛾1 ln(𝑄𝑚𝑡
𝐸𝑉 + 1) + 𝛾2𝑇𝐶𝑚𝑡 + 𝛾3(𝑙𝑛𝐺𝑚 ∗ 𝑙𝑛𝑇𝑁𝑡−1) + 𝛾4𝑓𝑚𝑡 

+𝑇𝑡 + 𝜑𝑚+𝜍𝑚𝑡, 

 

where⁡𝑁𝑚𝑡denotes the total number of public charging stations that have been built in 
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market m by quarter t and 𝑄𝑚𝑡
𝐸𝑉 ⁡denotes the installed base of  EVs by the end of year-

quarter t.  The addition of 1 in  ln(𝑁𝑚𝑡 + 1) and⁡ln⁡(𝑄𝑚𝑡
𝐸𝑉 + 1)  is performed in order to 

include markets that do not have any new charging stations built or any electric vehicles 

purchased by quarter t. In this station supply equation, the effect of installed EV base 

on charging station investment is captured by ln(𝑄𝑚𝑡
𝐸𝑉 + 1).  𝑇𝐶𝑚𝑡 denotes the tax credit 

given to charging station investors and it is measured as the percentage of the building 

cost that is covered by the tax credit, and 𝑙𝑛𝐺𝑚 ∗ 𝑙𝑛𝑇𝑁𝑡−1 is the interaction term of 

number of grocery stores in a MSA with the logged number of charging stations in all 

MSAs (the instrument in the EV demand equation). 𝑓𝑚𝑡 ⁡is a dummy variable indicating 

whether there exists public grants or funding for the building of charging infrastructure. 

𝑇𝑡 denotes year-quarter dummies that control for time effects common to all the MSAs.  

Market fixed effects 𝜑𝑚 control for time-invariant and MSA-specific preferences for 

charging stations. 𝜍𝑚𝑡  is the unobserved shock to charging station investment, for 

instance, the unobserved local policies to support the charging station building.   

The installed base of EVs, ln(𝑄𝑚𝑡
𝐸𝑉 + 1)  could be endogenous in that local 

policies could be set in response to EV demand shocks. We instrument for this variable 

with a set of current and past gasoline price variables.3 The fuel cost savings from 

driving EVs depend on the price difference between gasoline and electricity, which 

varies across locations. In MSAs with higher gasoline prices, consumers may have a 

stronger incentive to purchase EVs. Because the installed base of EVs is the cumulative 

                                                
3 Quarterly gasoline price data for each MSA is obtained from Cost of Living Index, produced by the 

Council for Community and Economic Research (C2ER), which provides measure of living cost 

differences among urban areas. The gasoline prices for missing MSAs are estimated using the average 

price of the other cities in the same state.  



 

23 

sales of EVs, we include gasoline prices in the current quarter as well as annual gasoline 

prices in the past three years as instruments. For example, for the installed base of EVs 

in the 2nd quarter in 2013, we use the quarterly gasoline price in the 2nd quarter in 2013, 

the average gasoline price in 2012, the average gasoline price in 2011, and the average 

gasoline price in 2010 as instrumental variables. These gasoline price variables should 

affect the installed base but are unlikely to be directly correlated with investment 

decisions (i.e., other than through the installed base). Table 4.4 provides the first stage 

regression results using this set of instruments. The gasoline price variables are all 

positive and jointly significant.  
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CHAPTER 4: ESTIMATION RESULTS 

 

4.1 EV Demand Regression Results 

Table 4.1 Columns (a) to (d) report the ordinary least squares (OLS) estimation 

results for five different specifications where we add more control variables in Columns 

(a) to (d) successively. Column (a) only includes the four explanatory variables of 

interest. Column (b) adds in year-quarter fixed effects to control for time trends that are 

common to all EV models in all MSAs such as a national-level shift in consumer 

awareness of this technology. Column (c) further adds vehicle model fixed effects to 

control for time-invariant product attributes such as quality and brand loyalty associated 

with a specific vehicle model that affect consumer preference. Column (d) further 

includes MSA fixed effects to control for time-invariant differences across MSAs such 

as dealer network or a MSA’s specific preference for green products (Kahn and Vaughn, 

2009).  

All the four OLS regression models consistently provide a positive and 

statistically significant coefficient on the availability of charging stations (ranging from 

0.352 to 0.546) and a negative and statistically significant coefficient on the purchase 

price (ranging from -0.288 to -1.351). The coefficient estimates for gasoline prices are 

all positive, although not statistically significant in some specifications (ranging from 

0.271 to 2.291). The coefficient estimates for the EV Project home charging stations are 

all positive, but only statistically significant when controlling for MSA fixed effects, 

ranging from 0.012 to 0.044. All the coefficient estimates can be interpreted as 

elasticities due to the log-log specification. Going from Columns (c) to (d) where MSA 
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fixed effects are included, the EV demand function changes from being inelastic with 

an price elasticity of -0.753 to being elastic with a price elasticity of -1.351.  

Column (e) implements an instrument variable (IV) strategy. The IV results 

show that a 10% increase in charging stations would result in a 10.8% increase in the 

EV sales, which is higher than all the OLS estimates. This suggests that the number of 

charging stations is negatively correlated with the unobserved shocks to EV demand, 

leading to downward bias in OLS. One example of unobserved shocks is local EV 

incentives that local governments provide to compensate for the lack of public charging 

stations. Another example is the home charging incentives from local electric utilities. 

Many local utilities offer a rebate for installing a home charging station and a discounted 

rate for home EV charging as part of the demand-side management program. Local 

governments often partner with local utilities to provide more generous home charging 

incentives when there is a lack of private investment in public charging stations. 

The results from these regressions imply that the increased availability of public 

charging stations has a statistically and economically significant impact on EV adoption 

decisions. This indicates that even if EV drivers can charge vehicles at home, better 

access to charging facilities elsewhere is still an important demand factor by, for 

example, alleviating range anxiety. In addition, higher gasoline prices, higher home 

charging subsidies and lower purchase costs would also help consumer EV adoption. 

Based on the parameter estimates on charging stations and purchase price variables, a 

back-of-the-envelope calculation shows that the demand effect from having one more 

charging station (the sample average is 9.9) is equivalent to a reduction of EV price by 

$2,120 (the average price is $33,127). 
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Table 4.1 EV demand equation 

Variables OLS (a) OLS (b) OLS (c) OLS (d)   IV (e) 

Log (No. of charging stations) 

 

0.399*** 

(0.017) 

0.411*** 

(0.017) 

0.546*** 

(0.021) 

0.352*** 

(0.037) 

1.076*** 

(0.107) 

Log (gasoline price) 

 

0.999*** 

(0.215) 

1.170*** 

(0.316) 

2.291*** 

(0.363) 

0.301 

(0.194) 

0.161 

(0.207) 

Log (retail price - tax 

incentives) 

 

Log(EV Project) 

-0.290*** 

(0.030) 

0.044 

(0.028) 

-0.288*** 

(0.029) 

0.032 

(0.027) 

-0.753*** 

(0.183) 

0.012 

(0.025) 

-1.351*** 

(0.140) 

0.027** 

(0.012) 

-1.198*** 

(0.128) 

0.044*** 

(0.010) 

Year-quarter fixed effects No Yes Yes Yes Yes 

Vehicle model fixed effects No No Yes Yes Yes 

MSA fixed effects No No No Yes Yes 

Note:  the number of observations is 14626. The dependent variable is the logarithm of quarterly 

sales of an EV model in a MSA. All standard errors are clustered at the MSA level. *Significant at 

10%, **significant at 5%, ***significant at 1%.  
 

 

 

 

Table 4.2 First stage results for EV demand equation 

 

 

 

 

 

 

 

 

Note: the number of observations is 14626. Standard errors are clustered at MSA 

level. *Significant at 10%, **significant at 5%, ***significant at 1%. 

 

Variables Log(No. of public 

charging stations) 

Ln(No. of stores)*ln(national stations) 

 

log (retail price-tax incentives) 

0.189*** 

(0.018) 

-0.185*** 

 (0.051) 

Log(gasoline price) 

 

Ln(EV project) 

0.168 

(0.117) 

-0.025*** 

(0.009) 

Year-quarter fixed effects Yes 

Vehicle model fixed effects Yes 

MSA fixed effects Yes 
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4.2 Charging Station Regression Results 

Columns (a) to (c) in Table 4.3 report the OLS regression results for the charging station 

equation. In Column (a), only the four explanatory variables of interest are included. 

Column (b) includes year-quarter fixed effects to control for time trends that are 

common to all MSAs such as federal subsidies for building charging stations that occur 

during a specific period of time. Column (c) further includes MSA fixed effects to 

control for time-invariant MSA-level baseline differences in charging station 

investment. For example, some MSAs may be “greener” than others and invest more on 

alternative fuel infrastructure. Similarly, MSAs with a higher population density and 

limited private installment of charging stations may have more public charging stations.  

All three OLS regressions find a positive and statistically significant coefficient 

for the installed EV base. In Column (d), we implement an IV strategy using current 

and past gasoline prices. The IV results show that a 10% increase in EV fleet size would 

results in a 5.8% increase in charging stations. The IV coefficient estimate is higher than 

the OLS estimate, suggesting that the installed base of EVs is negatively related to the 

unobserved shocks to charging station investment, leading to downward bias in OLS. 

An example of the unobserved shocks is the unobserved local policies: policy makers 

may design policies to support charging station investment to counteract negative EV 

demand shocks.  

The results in Column (d) show that tax credits and the availability of public 

funding for charging stations have positive but statistically insignificant coefficients. 

Tax credits for charging stations are mainly for private installations while our dependent 

variable is public charging stations. The interaction term of grocery stores with lagged 
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number of stations in all MSAs has a positive and statistically significant coefficient, 

consistent with our argument for using it as a relevant instrument in the EV demand 

equation.  
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Table 4.3 Charging station equation 

 

Variables OLS (a) OLS (b) OLS (c) IV (d) 

Log(No. of EV installed base) 

 

Charging station tax credit (%) 

0.374*** 

(0.025) 

-0.005*** 

(0.002) 

0.540*** 

(0.028) 

-0.003* 

(0.002) 

0.136*** 

(0.029) 

0.003 

(0.013) 

0.579*** 

(0.172) 

0.011 

(0.014) 

Public funding or grants 

 

Log(grocers)*log(national 

stations) 

0.099* 

(0.060) 

0.042*** 

(0.005) 

0.077 

(0.057) 

0.030*** 

(0.005) 

0.007 

(0.048) 

0.183*** 

(0.017) 

0.085 

(0.055) 

0.105*** 

(0.033) 

Year-quarter fixed effects 

MSA fixed effects 

No 

No 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Note:  the number of observations is 4236. The dependent variable is the logarithm of 

total number of publicly accessible charging stations in a MSA in a given quarter. All 
standard errors are clustered at the MSA level. *Significant at 10%, **significant at 5%, 

***significant at 1%.  

 

 

Table 4.4 First stage results for charging station equation 

 

Variables Log(No. of EV stock) 

Ln(Current gasoline price) 

 

Ln(Gasoline price last year) 

0.396* 

(0.228) 

3.283*** 

(0.833) 

Ln(Gasoline price two years ago) 2.286*** 

(0.656) 

Ln(Gasoline price three year ago) 

 

Ln(No. of stores)*ln(national stations) 

 

Charging station tax credit (%) 

 

Public funding or grants 

3.376*** 

(0.819) 

0.167*** 

(0.018) 

-0.018 

(0.016) 

-0.193*** 

(0.058) 

Year-quarter fixed effects Yes 

MSA fixed effects Yes 
Note: the number of observations is 4236. Standard errors are clustered at MSA level. 
*Significant at 10%, **significant at 5%, ***significant at 1%. 
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CHAPTER 5: POLICY IMPACTS 

 

5.1 Policy Simulations 

The federal government has adopted several policies to support the EV industry 

including income tax credits for EV purchase, financial support for vehicle 

manufacturers and charging infrastructure, and programs for public education about 

electric vehicles. The Congressional Budget Office (CBO) estimates that the total 

budgetary cost for those policies will be about $7.5 billion through 2017. The tax credits 

for EV buyers account for about one-fourth of the budgetary cost and are likely to have 

the greatest impact on vehicle sales (CBO, 2012). Under the tax credits policy, EVs 

purchased in or after 2010 are eligible for a federal income tax credit up to $7,500. Most 

popular EV models on the market are eligible for the full amount. The credit will expire 

once 200,000 qualified EVs have been sold by each manufacturer.  

Based on parameter estimates from IV regressions in Tables 4.1 and 4.3, we 

conduct simulations by removing the tax credit policy to examine policy effectiveness. 

The impact of the policy depends not only on the price elasticity of EV demand in the 

EV demand equation, but also on the magnitude of indirect network effects captured in 

both equations due to the feedback loops. The elimination of federal tax credits would 

reduce EV sales, which would reduce the installed base of EVs and in turn lead to fewer 

charging stations and subsequently further reduce EV sales. Our simulation results in 

Table 5.1 show that EV sales would have been 68,044 less (or 48.5% of the total sales) 

from 2011 to 2013 without the $1.05 billion worth of income tax credit to EV buyers. 

If we do not take into account the feedback loops, the sales contribution from the tax 
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credit policy would only have been 39,403 (28.1% of the total sales). This implies that 

indirect network effects have a multiplier effect of 1.7 due to the feedback loops. The 

estimate excluding the feedback loop is close to CBO’s estimate of 30% (CBO, 2012), 

which considers the price effect of the tax credit but not the role of indirect network 

effects in amplifying the policy effect. Further, their estimate is not based on 

econometric analysis of actual EV sales but previous research on the effects of similar 

tax credits on traditional hybrid vehicles, which run on gasoline and do not experience 

indirect network effects (Beresteanu and Li, 2011) (Muehlegger and Gallagher, 2011). 

DeShazo, Sheldon and Carson (2014) study the California Clean Vehicle Rebate 

Projects for EVs and find a 7% increase in EV sales from the rebate of $1,838 on 

average. Neither of these studies takes into account indirect network effects and their 

estimates likely provide the lower bounds of subsidy impacts. 

 

Table 5.1 Simulation Results of Eliminating Federal Tax Credits for EVs 

 

Year-

Quarters 

Observed  

EV Sales 

Counterfactual  

sales  

Sales  

reduction  

Percentage  

 

2011-1 1105 763 342 30.9% 

2011-2 3241 2544 697 21.5% 

2011-3 2813 1802 1011 35.9% 

2011-4 3900 2117 1783 45.7% 

2012-1 4307 1623 2684 62.3% 

2012-2 7030 2824 4206 59.8% 

2012-3 9662 4788 4874 50.4% 

2012-4 12665 6994 5671 44.8% 

2013-1 21140 10964 10176 48.1% 

2013-2 24803 13422 11381 45.9% 

2013-3 25782 13509 12273 47.6% 

2013-4 23747 10802 12945 54.5% 

Total 140195 72151 68044 48.5% 

Note: simulation results are based on EV sales data in the 353 MSAs. 
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Policy makers face a problem of optimal policy design in that the tax revenue 

can be used to subsidize one or both sides of the market. We conduct simulations under 

two counterfactual policies with the same budget of $1.05 billion: subsidy to charging 

stations investment only, and subsidy to both EV purchase and charging station 

investment. The results from the three policy simulations including the existing tax 

credit policy are presented in Table 5.2. We assume the policy period from 2011 to 2013 

(i.e., no subsidy available after that). The existing tax credit policy (policy 1) has led to 

68,044 more EVs from 2011 to 2013, amounting to $15,453 for one additional EV. The 

policy effect will continue to exist until the feedback loops die out in 2058.4 The total 

sales contribution from this policy in the long-term would be 235,121, amounting to 

$4,472 per policy-induced EV purchase.  

If instead, the government had spent the $1.05 billion evenly in each quarter 

during 2011-2013 on installing charging stations in all MSAs 5  (proportional to 

population), EV sales would have increased by 371,199 during these three years (policy 

2). The cumulative sales effect of this policy until year 2058 would be 1,195,235, 

amounting to a unit cost of only $880, only 20% of the unit cost under the existing 

policy.  

The last policy design (policy 3) provides $4,500 tax credit on EV purchase and 

uses the remaining funding ($182.5 million) to build charging stations. This policy 

                                                
4 We assume the public charging stations and the installed base of EV drivers keep increasing at a rate 

that was observed in the 4the quarter of 2013.  
5 The cost of an EV charging unit is between $800 and $3000, and the installation fee per site is from 

$3000 to $15000 per site. On average, there are 3.6 charging units per charging station (ETEC and 

DOE, 2013). We use the average values and assume the equipment cost of $1900 for each unit and the 

installation fee of $9000. Thus, the total cost of installing a charging station of an average size is: 

$15,840. This estimate does not include the cost of siting and should be considered as a lower bound. 
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would have led to an increase of 120,742 EVs during 2011 to 2013. The cumulative 

sales effect till 2058 would be 477,637. As a result, the cost per policy-induced EV 

would be $2,201.  

 

 

 

 

 

Table 5.2 Comparison of the existing tax credit policy with two alternative policies 

 

 

Total government spending 

Sales increase 

from $7500 tax 

credit (policy 1) 

$1.05 billion 

Sales increase 

from alternative 

(policy 2) 

$1.05 billion 

Sales increase 

from alternative 

(policy 3) 

$1.05 billion 

2011-1 342 8954 1820 

2011-2 697 13981 3100 

2011-3 1011 14802 3671 

2011-4 1783 20583 5418 

2012-1 2684 21036 6309 

2012-2 4206 27597 8739 

2012-3 4874 28171 9226 

2012-4 5671 29844 10059 

2013-1 10176 51266 17276 

2013-2 11381 51624 17968 

2013-3 12273 51748 18437 

2013-4 12945 51593 18719 

Sales increase in 3 years 68,044 371,199 120,742 

Total increase long-term 235,121 1,195,235 477,637 

Total increase in 10 years 196,846 1,090,335 420,857 

Government spending per EV $4,472 $880 $2,201 

Note: the vehicle increase is calculated based on comparing with the no subsidy policy scenario 

(eliminating $7500 tax credits). Policy 2 uses the same budget to build charging stations evenly 
in each quarter in all metro areas weighted by population. Policy 3 decreases the tax credit to 

$4,500 and uses the remaining budget to build charging stations. Total increase includes 

vehicle sales increase during the policy effective period (till 2058) and the increase in future 
years are discounted to year 2011 by a 5% discount rate. 
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As depicted in Figure 5.1, the second policy that only subsidizes charging station 

investment demonstrates a dominant advantage in stimulating EV sales. The $1.05 

billion government spending on the tax credits during the three years can install about 

66,380 charging stations. This is more than half of the total number of gasoline stations 

in the country and almost eight times of the current total number of charging stations in 

the whole country. This large amount of public charging stations should dramatically 

alleviate or even eliminate range anxiety for potential EV buyers. The third policy, 

which gives $3,000 less tax credit than policy 1 and uses the remaining budget to install 

charging stations, also increases the EV sales more than the existing policy. Simulation 

results of both policy 2 and policy 3 indicate that building charging stations is a more 

effective way to boost EV sales in the EV launch stage. Although our model is static in 

nature and does not incorporate consumer preference heterogeneity, our simulation 

results make intuitive sense. In reality, early adopters of EVs are likely to be less price-

sensitive (reflected in our estimates of small price elasticity). They may also have a 

longer commute (hence buying EVs to reduce fuel costs) and therefore the availability 

of charging stations could be more important.   
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Note: Each data point represents quarterly EV sales increase due to the corresponding 

policy. 

 

Figure 5.1 Comparison of Federal Tax Credits with Two Alternative Policies 

 

Government agencies often employ the income tax credit policy to encourage 

the adoption of energy-efficient products such as hybrid vehicles and home appliances. 

The cost-effectiveness of this policy can be greatly hindered by inefficient targeting: a 

large portion of the funding could end up going to those who would adopt the new 

technology anyway (i.e., non-marginal consumers). In a market with strong indirect 

network effects as in the EV industry, subsidizing the complements (charging stations) 

could boost the adoption of the technology at a much faster pace.  

The long-run simulations are based on the assumption that the driving range of 

EVs keeps at the current level. However, as the technology progress, the EV driving 

range is very likely to increase, weakening indirect network effects. In addition, the 

effect of the charging stations on EV demand may diminish faster than what our 
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estimates suggest when the number of EVs is above a certain level. This would also 

weaken indirect network effects. As a robustness check, Table 5.2 also provides the 10-

year results from the three policies and policy 2 still shows a dominant advantage.  

 

5.2 Environmental Benefits of EV Adoption 

Conventional internal combustion engines emit multiple harmful pollutants 

including hydrocarbons (HC), nitrogen oxides (NOx), carbon monoxide (CO), sulfur 

dioxide (SO2), greenhouse gases and other toxics. Parry, Walls, and Harrington (2007) 

estimate the external costs (health and environmental damages) from pollution and 

energy security to be 2.9 cents/mile. BEVs and PHEVs under electric mode do not 

produce on-road tailpipe emissions, but how much local pollutions and greenhouse gas 

emissions can be reduced by replacing conventional vehicles with EVs depend on the 

way that the electricity to power the vehicles is generated because the air pollutant 

emissions are shifted from on-road transportation to the power generating locations. In 

regions that depend heavily on coal or oil for electricity generation, EVs may not 

demonstrate an environmental advantage over gasoline vehicles. Zivin, Kotchen and 

Mansur (forthcoming) estimate marginal emissions of electricity demand that vary by 

location and time of the day and they find that charging EVs in some regions (the upper 

Midwest) during the recommended off-peak hours of midnight to 4 am even generates 

more emissions than the average conventional gasoline vehicle on the road.  
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To assess the environmental benefits of the EV subsidy policies, we match each 

MSA with the corresponding eGrid subregion’s6 electricity fuel mix to estimate the 

external cost savings from replacing one EV with one convention vehicle. To assess the 

external cost savings from replacing gasoline cars with EVs, we need to compare the 

external costs per mile for gasoline vehicles with the external costs per mile for EVs. 

Since both conventional vehicles and EVs contribute to congestion and on-road 

accidents, we only compare external costs from local pollution, greenhouse gas 

emissions and oil dependency. Table 5.3 lists parameter values that are drawn from the 

literature to supplement our estimate of the external cost savings from EVs. The external 

cost per mile driven for BEVs is calculated as the external cost of electricity generation 

(per kWh) multiplied by the fuel economy of BEVs (kWh per mile). The external cost 

per mile driven for PHEVs is calculated as the weighted sum of the external cost per 

mile under the electric model and the gasoline mode. We assume the share of electric 

mode among vehicle miles traveled to be 70% (AFDC, 2014). 

 

 

 

 

 

 

 

                                                
6 eGrid subregions are defined by US Environmental Protection Agency using the transmission, 

distribution and utility service territories of power plants and do not follow geographic state boundaries. 

There are 26 subregions and each covers a unique areas of the country.  
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Table 5.3 Parameters in environmental benefits analysis 

 

Parameters Value Source 

PHEV electricity usage  0.36 kWh/mile AFDC (2014) 

BEV electricity usage  0.34 kWh/mile AFDC (2014) 

% of PHEV miles driven on electricity 70% AFDC (2014) 

External cost per mile for gasoline cars  2.9 cents/mile 

 

Parry et al. (2007) 

External cost of electricity from coal 8.54 cents/kWh Sundqvist & Soederholm(2002) 

External cost of electricity from oil 12.19 cents/kWh Sundqvist & Soederholm(2002) 

External cost of electricity from natural gas 3.51 cents/kWh Sundqvist & Soederholm(2002) 

External cost of electricity from nuclear 1.08 cents/kWh Sundqvist & Soederholm(2002) 

External cost of electricity from hydro 0.43 cents/kWh Sundqvist & Soederholm(2002) 

External cost of electricity from wind 0.43 cents/kWh Sundqvist & Soederholm(2002) 

External cost of electricity from solar 1.02 cents/kWh Sundqvist & Soederholm(2002) 

External cost of electricity from biomass 3.59 cents/kWh Sundqvist & Soederholm(2002) 

 

The external cost per kWh of electricity is calculated as the sum of the external 

costs of all the energy sources used in the process of power generation weighted by their 

share in the fuel mix. eGRID sub-region data on the electricity fuel mix is obtained from 

eGRID database (2010) 7 . Because different regions use different fuel mixes for 

electricity generation, the external cost of one kWh of electricity varies across regions. 

In places where the primary electricity-generating source is coal or oil, the external cost 

per kWh of electricity is relatively high and EVs may not demonstrate a big advantage 

in terms of reducing externalities. Assuming a vehicle life-time of 10 years and the 

annual vehicle miles traveled of 15,000 miles, the total life-cycle external cost savings 

from a BEV and PHEV is obtained by multiplying the external cost saving per mile with 

the total discounted life-cycle vehicle miles (at an annual discount rate of 5%). 

                                                
7 The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive source of 

data on the environmental characteristics of almost all electric power generated in the United States. It 

is maintained by U.S. Environmental Protection Agency.  

 



 

39 

 

 Figure 5.2 depicts the spatial differences in cost saving estimation across MSAs. 

The life-cycle average cost saving from replacing a gasoline vehicle with a BEV is 

$1,181 from our assessment, with a range from $442 to $1,958. The life-cycle average 

cost saving of a PHEV is $758 with a range from $210 to $1,333, assuming 70% of the 

annual PHEV miles are driven on electricity. Based on these estimates, the total life-

cycle external cost savings from the federal tax credit policy implemented between 2011 

and 2013 (policy 1) to be $0.23 billion in 2011 term. Policy 2 would generate the total 

savings in external costs of $1.11 billion and policy 3 $0.44 billion. If only considering 

the environmental benefits in the future 10 years, the total external cost savings are 

$0.20 billion, $1.03 billion and $0.40 billion respectively.  
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Panel (a) Cost saving from a BEV 

 

Panel (b) Cost saving from a PHEV 

 

Note: The external cost savings are calculated by comparing the life-cycle external cost 

of BEVs or PHEVs with gasoline vehicles and are measured in dollars.  

 

Figure 5.2 External Cost Saving from Adopting EVs 

 

Caveats are in order regarding these estimates. First, the calculations are based 

on the assumption that newly purchased EVs replace conventional gasoline vehicles. 

Therefore, the benefits would be overestimated if EVs instead replaced traditional 

hybrid vehicles. The exact substitution pattern in the automobile market especially with 
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alternative fuel vehicles is not well understood. Second, the tax credits for electric 

vehicles can generate leakage: the policy relaxes the stringency of the Corporate 

Average Fuel Economy (CAFE) Standard and therefore could induce more sales of less 

fuel-efficient vehicles. This would limit the policy effect on reducing overall gasoline 

consumption and emissions. Analysis on this issue would require a different modeling 

framework that would incorporate firm decisions. Third, our calculations assume that 

EVs and gasoline vehicles contribute to on-road congestion and accidents at the same 

level. In reality, EVs may cause more congestion or accidents than gasoline vehicles 

since drivers could drive more due to the lower fuel cost of driving (the rebound effect). 

In some states where solo drivers of EVs are allowed to use high occupancy vehicle 

lanes on major freeways, car poolers will face higher congestion costs and the welfare 

loss due to the policy could dominate any intended environmental benefits (Bento et al, 

2014).  

The overall cost-effectiveness of the policy requires more than just comparing 

the environmental benefits of the tax credit policy and government spending. There are 

additional policy goals including helping EV producers climb up the learning curve and 

reducing production costs. A rigorous analysis of the cost-effectiveness would 

necessitate consumer welfare calculation and the impact on firm profits in a market 

equilibrium model. 
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CHAPTER 6: DISCUSSION AND CONCLUSION 

 

An active governmental role to promote the EV technology can be justified by: 

(1) the external costs from gasoline consumption in the U.S. are not properly reflected 

by the gasoline tax (Parry and Small, 2005), and (2) information spillovers among 

consumers and firms are often present in the early stage of new technology diffusion 

(Stoneman and Diedern, 1994). Indirect network effects in the EV market, if they exist, 

would compound these market failures through feedback loops and would further 

strengthen the argument for government intervention.  

This study empirically quantifies indirect network effects in this market and 

evaluates the impact of the federal income tax credit for EV purchases. Our analysis 

estimates the elasticity of EV adoption with respect to charging station availability to 

be 1.08 and the elasticity of new charging station investment with respect to the installed 

base of EVs to be 0.58. These indirect network effects enhance the effectiveness of the 

tax credit policy, which has contributed to 48.5% of the EV sales during 2011 to 2013 

and will continue to exhibit a positive effect on the market for many years through 

feedback loops even if the policy had stopped in 2013.  

Our findings offer some insights for policy design to promote the EV 

technology. First, the policy to expand the charging station network (e.g., through 

subsidies) would be especially effective in the EV launch stage due to low price-

sensitivity of early adopters and strong indirect network effects from charging stations 

on EV demand. Second, the environmental benefit of replacing conventional gasoline 

vehicles with EVs critically hinges on the fuel mix of electricity generation, which 
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varies greatly across regions. The spatial variation limits one-size-fit-all policies. 

Priority should be given to regions with cleaner electricity generating fuel mixes through 

regionally targeted subsidies. 
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