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As development practitioners, we face the challenge of ensuring food security in

an increasingly shock-prone world. Poor and vulnerable households are unable

to smooth their food consumption in times of drought, flood or when pests des-

troy their crops. This dissertation draws on the poverty literature and posits

resilience as a latent capacity allowing households to recover from the effects of

shocks. It presents several definitions and measurements across multiple contexts.

In particular, this thesis explores the tension between focusing on a shock-specific

response and emphasizing household well-being in a stochastic context. It analyzes

both short and long term measurements of food security in Malawi and Ethiopia,

investigating the effects of internal interventions as well as household-level char-

acteristics that may allow households to better manage risk. The first chapter

motivates the investigation in the context of eliminating hunger and expanding

our understanding of socio-ecological systems. The second chapter investigates

the causal impact of the Productive Safety Net Program (PSNP) in Ethiopia,

finding that it mitigates the effect of drought on long-term food insecurity. The

third chapter uses a novel 12 month high frequency dataset in Malawi to track

the incidence and persistence of subjective shocks. It finds that households living

in the flood plain and those with fields far from home are more resilient to the

effects of drought, while female-headed households are less resilient to the effects

of illness. It also illustrates the use of machine learning algorithms to identify



predictors of short-term food insecurity. The fourth and final chapter picks up on

the insight that households with spatially dispersed parcels may better manage

risk. Using a natural experiment from Ethiopia, it shows that land fragmentation

reduces both short and long-term food insecurity. Endowed with a diversified set

of parcel characteristics, households grow a more varied set of crops, mitigating

the effect of drought. Together, these chapters argue that reducing food insecur-

ity and improving resilience is possible. In order to avoid doing more harm than

good, external interventions must take into account households’ and communities’

existing ability to mitigate shocks.
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CHAPTER 1

INTRODUCTION

“Substantive freedoms include elementary capabilities like being able to avoid

such deprivations as starvation, undernourishment, escapable morbidity and pre-

mature mortality.”

Amartya Sen

Development as Freedom

“The belly is an ungrateful wretch, it never remembers past favors, it always

wants more tomorrow.”

Aleksandr Solzhenitsyn

One day in the Life of Ivan Denisovich

1.1 Motivation

Hunger is the ultimate obstacle to human flourishing. Chronic hunger occupies the

mind at the expense of all else, becoming a near obsession. Hunger deprives indi-

viduals of their most elementary freedom from deprivation, and its physical effects

hasten an early death. Hunger also impedes individuals’ instrumental effectiveness,

in the words of Sen (2001). These include the freedom to take advantage of op-

portunities for education, employment, social and civic participation. Specifically,

with respect to hunger, Sen continues:
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“Protective security is needed to provide a social safety net for preventing the

affected population from being reduced to abject misery, and in some cases even

starvation and death.”

Over the past half-century humanity has engaged in an unprecedented social

experiment: the elimination of global poverty and hunger in order to provide this

protective security. The United Nations Sustainable Development Goals aims to

end both hunger and poverty by 2030 (UN, 2015). These goals are ambitious but

attainable. The poverty rate has halved since 1990, assuming a poverty line of

$1.25 in 2005 PPP, and is on a downward trend approaching zero (Chandy et al.,

2013). In parallel, undernourishment at the global level has decreased from 18.6%

to 10.8% of the global population between 1991 and 2015 (FAO, 2017a). Ending

both hunger and poverty is possible, fueled by the cumulative wealth of resources,

research and effort poured into understanding and addressing these twin scourges.

Yet further progress is jeopardized by the threat climate change poses to food se-

curity. Droughts in particular threaten to become increasingly frequent and severe

over the next century (Dai, 2011). These pose particularly salient risks for the

poorest, many of whom depend on rain-fed agriculture or pastoralism to survive.

They often lack access to credit, insurance and formal safety nets that would allow

them to mitigate the impact of such shocks, making them particularly vulnerable

(Dercon, 2006). These incomplete markets hinder households’ ability to smooth

consumption over time or over states of the world. Dissaving is hard when assets

are in illiquid form, such as cattle or land (Dercon et al., 2005). Living with this un-

certainty makes households less likely to invest in lucrative but risky technologies,

perpetuating their state of poverty and creating a dynamic poverty trap (Carter

and Barrett, 2006). Households that do manage to accumulate sufficient assets

to emerge from poverty risk sliding back when they experience a shock. Instead
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they rely on informal mechanisms to manage risk, often relying on social networks

which facilitate borrowing in times of need (Fafchamps and Gubert, 2007). Yet the

persistence of chronic hunger reveals that, even when these mechanisms do exist

they are far from sufficient. Understanding and, whenever possible, strengthening

these mechanisms to smooth consumption and provide protective security is key.

In addition to its short-term consequences, shocks and the experience of hunger

have long-term adverse consequences. Children who experience malnutrition at

a young age due to drought or conflict are physically shorter and less educated

than their peers (Alderman et al., 2006). Young girls becoming mothers pass these

adverse effects on to their children, who have lower outcomes in terms of education

and income (Tafere, 2017). This has spurred interest in mechanisms to mitigate

the effect of shocks, particularly around the concept of development resilience. The

concept of resilience in development seeks to quantify the dynamic well-being of

individuals and households subject to shocks. It draws from the ecology literature,

where Holling (1973) posited resilience as an ecosystem’s ability to remain within

the boundaries of a domain of attraction. For example, vegetation will gradually

recolonize the ashes after a forest fire. Ostrom (2009) argues that human societies

can also self-organize in such a way as to maintain or restore equilibrium. As an

illustration, she documents how farmers managing irrigation works in the foothills

of Nepal and lobster fishermen in Maine operate within a complex, self-contained

socio-economic system without the need for government or market oversight. Deep

dives into the dynamics of these systems can help us better understand which in-

terventions strengthen them, and which may prove counterproductive. Elements

of this thesis explore the role that socio-ecological systems play in determining

a household’s response to shocks; in particular it demonstrates how relying on

a diversified portfolio of agro-ecological characteristics reduces risk exposure and
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improves food security outcomes.

1.2 Resilience and Food security

In order to study food security in the context of shocks, resilience and vulnerability

are useful short-hands for the concepts I seek to tackle. These both build on

existing measure of poverty dynamics by quantifying how welfare trajectories shift

in response to external stimuli. Though related, the two concepts are distinct;

resilience is not simply the inverse of vulnerability. According to Gallopin (2006):

“Vulnerability does not appear to be the opposite of resilience, because the

latter is defined in terms of state shifts between domains of attraction, while vul-

nerability refers to (or at least also refers to) structural changes in the system,

implying changes in its stability landscape.”

How to precisely define these terms remains a subject of much debate. Indeed,

comparing different definitions and the measurements they imply constitutes a

central theme of this dissertation. As a working definition the reader can think of

vulnerability as a unit’s susceptibility to shocks, and resilience as a unit’s ability

to recover from these shocks. An emergent literature has sought to differentiate

and quantify these concepts empirically. These efforts can be roughly categorized

as follows:

1. Classification and compilation of multiple indicators into a comprehensive

measure or index (Alinovi et al., 2009; Béné et al., 2012).

2. An emphasis on the capacity to recover to equilibrium after a shock (Constas

et al., 2014a; Vollenweider, 2015).
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3. A moments based approach defining resilience as a probability (Barrett and

Constas, 2014a; Cissé and Barrett, 2016).

4. A property of time-series, focusing on fluctuations and trend lines (Chavas,

2016, Smerlak and Vaitla, 2016).

Alinovi et al. (2009) build on existing insights into the factors that mitigate

the impact of shocks on food security. They identify six categories of variables

which constitute resilience, and use principal component analysis to compile an in-

dex. Though a useful first approximation, the methods suffers from two significant

drawbacks: the researcher must choose which measures to incorporate ex-ante, and

the resultant index has little intuitive interpretation. Béné et al. (2012) though

skeptical of resilience as an alternative to traditional poverty measures, propose

to evaluate interventions along two dimensions: the intensity of change (coping,

adapting or transforming), and the time horizon (reducing impact vs. address-

ing structural causes). Though they do not quantify these measures, they offer a

framework defining the purpose of a given intervention.

Constas et al. (2014a) present an attempt to consolidate efforts at quantify-

ing resilience in the context of food insecurity. They emphasize the importance

of focusing on dynamic well-being Yit in the context of shocks Zit conditional on

characteristics Xit. Yit can be a measure of assets or consumption, though in the

context of this thesis it relates directly to food security. This approach explicitly

acknowledges that the effect of mitigating factors may depend on the shock in ques-

tion. For example, characteristics affecting a household’s recovery from drought

differ from those affecting a households recovery from illness. The Constas et al.

approach allows explicit modeling of these effects, holding all else constant, by

conditioning the effect of shocks Zit on household characteristics Xit.
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As one of the first to operationalize this approach, Vollenweider (2015) uses a

distributed lag non-linear model to estimate the impact of past shocks on present

consumption. The estimated parameters allow him to project consumption traject-

ories into the future. However because the paper relies on cross-sectional data it

assumes household un-observables are orthogonal to the recovery trajectory. This

is of particular concern regarding weather shocks, as households living in different

climactic zones will certainly have adapted to the expected occurrence of shocks.

Recent work has expanded the number of empirical investigations into resi-

lience. The FAO uses principal component analysis to capture the variation in

various elements of a households capacity to cope with shocks, and compiles it

into a latent resilience index for Mali and Uganda (d’Errico and Pietrelli, 2017;

d’Errico and Di Giuseppe, 2018). It finds this to be highly correlated with fluctu-

ations in a household’s food security outcomes. Smith and Frankenberger (2018)

interact specific shocks with measures of households resilience capacities. Draw-

ing from the literature, they classify these capacities into absorptive, adaptive,

and transformative. Absorptive capacities seek to mitigate the impact of shocks

and include the availability of assets and savings. Adaptive capacities spread risk

by diversifying livelihoods and relying on social safety nets. Finally transformat-

ive capacities seek to change the underlying dynamics, for example by improving

governance, improving access to markets or empowering women.

In an attempt to recover the complexity of households’ response to shocks, Bar-

rett and Constas (2014a) focus on the distribution of well-being outcomes condi-

tional on observable characteristics. The emphasis on stochastic dynamics presents

resilience as a latent parameter of the probability distribution of well-being. In a

follow-up paper, Cissé and Barrett (2016) propose estimating resilience as the con-
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ditional mean and conditional variance of a household well-being indicator (e.g.

assets) and, by positing a known distribution, constructing the conditional prob-

ability p(X,Z) that this indicator will be above a given threshold. A particularly

elegant feature of this measure is that it can be disaggregated to the household

level or aggregated up to reflect the resilience of particularly communities, regions

or countries. Unlike Constas et al. (2014a) this approach does not condition the

effect of shocks on household characteristics. In that sense, the measure confounds

the effect of a shock on well-being and the response capacity, which we may want

to distinguish.

Finally, some authors have rejected the emphasis on equilibrium and focused

instead on time-trend trajectories. Smerlak and Vaitla (2016) look at long term

trends in country-level caloric availability. Instead of positing a threshold or equi-

librium level of food adequacy, they consider a country resilient if its long-term

food insecurity trend is non-negative and any shocks experienced do not persist

over time. In parallel Chavas (2016) uses a threshold quantile auto-regressive

model and defines a resilient system as one where the first unit roots |λ| > 1 given

a particularly negative sequence of shocks (in the bottom quantile of yields) but

returns to a more stable |λ| < 1 when yields are at or above average. Here the

well-being trajectory is the focus and shocks are implicit.

Each of the approaches above entails certain trade-offs, some of them determ-

ined by data availability and others by the nature of the hypothesis to be tested. In

my thesis, I draw principally from Constas et al. (2014) and Barrett and Constas

(2014), though with elements of Smerlak and Vaitla (2016) informing my work on

high frequency data. This tension between focusing on a shock-specific response

and emphasizing household well-being in a stochastic context is a leitmotiv of my
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thesis. I also explore how different data sets can inform our analysis, including

year-on-year panel data, high frequency data and data augmented with geophys-

ical characteristics. From a methodological perspective, I seek to infer causality in

a non-experimental context using a variety of econometric tools, and demonstrate

how new machine learning techniques can be used for predictive purposes.

1.2.1 Temporal Dimension of Resilience

A particularly important component of resilience analysis is the temporal factor

(Constas et al., 2014a). Given the consensus that resilience is a latent capacity to

withstand and recover from shocks, it is important to consider over what timespan

that recovery is allowed to occur, or not occur. For example, does a household

recover from drought as soon as the next rain comes? Or do the detrimental effects

on human capital imply that it may take years for it to fully recover? As discussed

earlier, if experienced at a critical developmental age, these effects may even prove

permanent over an individual’s life cycle (Alinovi et al., 2009). A more prosaic

example is the illness or death of one’s family member. Though the immediate

effects on household livelihood may be brief and measure in months, such an event

can traumatize an individual for life.

This thesis considers the temporal factor by attempting to measure the impact

of shocks and resilience over different timespans. Chapter 2 looks at household’s

experience of hunger over a decade and finds the effects of drought to persist across

the years. Chapter 3 takes a single year and observes the shifts in households

subjective shock persistence, as well as short term persistence. Chapter 4 seeks to

capture a mechanism for mitigating shocks endowed to a household decades ago.

As the different approaches reveal, different measures may be appropriate. Some of
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these are fast moving, like the perception of shocks or the Coping Strategy Index,

which measures food stress over the past week and can shift quickly. Others are

more slow moving by design: Months Hungry measures the experience of hunger

over an entire year. A comparative approach such as the one undertaken in chapter

4 can therefore prove illustrative of the differing sensitivities.

Furthermore, consider seasonality. The existence of a recurrent hungry season

is an unfortunate empirical reality for many households living at or near subsist-

ence, as they wait for their crop to mature while their stores dwindle. Datasets

like the World Bank’s Living Standards and Measurements Survey acknowledge

seasonality with separate planting and harvest modules. Chapter 3 is particularly

illustrative in this respect. One of the most important insights from monthly meas-

ures of subjective shocks is how they vary intra-annually. Crop disease may seem

insignificant to a household when seeds are sown, but become a vitally urgent mat-

ter as its effects on the ripening harvest are revealed. Any analysis of shocks based

on inter rather than intra-annual data must implicitly assume that the incidence of

a shock varies linearly year on year. As the chapter explores, this may significantly

under-estimate the importance of that shock to a household’s well-being.

1.3 Outline

In my dissertation, I apply econometrics and machine learning tools to the ana-

lysis of food security and resilience using longitudinal household data collected in

Ethiopia and Malawi. A complementary logic links the three papers:

• Chapter 2 uses instrumental variable analysis to evaluates a country-level

cash transfer program over an eight-year window. In addition to demonstrat-
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ing the program’s effect in mitigating hunger due to drought, it provides a

proof of concept for evaluating the impact of an intervention on long-term

food insecurity.

• Chapter 3 takes a deep dive into a single district in rural Malawi over a

12-month window, measuring subjective shocks and short-term food insec-

urity. It explores multiple analytical approaches to trace these dynamics,

estimating an auto-regressive model, using a Blundell Bond estimator and

harnessing machine learning algorithms. Among other results, it finds that

having distant fields is an important determinant of household’s ability to

recover from drought.

• Chapter 4 expands on this spatial diversification narrative in greater depth

in the context of Ethiopia. It harnesses land redistribution as an exogenous

source of land fragmentation, and explores the impact of fragmentation on

both short and long-term food insecurity.

In my second chapter I assess the impact of a social protection program,

Ethiopia’s Productive Safety Net Program (PSNP), on the longer-term impacts

of drought on household food security. The chapter finds that reported drought

shocks reduce the number of months a household considers itself food secure and

that these impacts persist for up to four years after the drought has ended. Using

an instrumental variable approach, the results suggest that receipt of payments

reduced the initial impact of drought shocks by 62 percent and eliminates their

adverse impact on food security within two years. This impact is largest for pro-

gram beneficiaries with little or no land. Results are robust to using an objective

measure of drought derived from satellite data.

My third chapter harnesses monthly household data collected in Malawi to
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understand vulnerable households’ food insecurity dynamics and their ability to

cope with shocks. I worked with an NGO, Catholic Relief Services (CRS), in

implementing a 12-round household survey using smartphones. I estimate an auto-

regressive model to track households’ experience of subjective shocks over time.

I find that households with spatially dispersed fields are less likely to experience

the adverse effects of drought, while female-headed households are more likely to

experience the adverse effects of a family member falling ill. Using a Blundell-Bond

estimator, I find that differences in land farmed, gender of household head, and

having spatially dispersed fields lead to shifts in the distribution of expected well-

being outcomes. Finally, I harness machine learning techniques to predict future

well-being. I find that zones of crisis are concentrated in specific geographic areas,

making targeting all the more important.

My fourth chapter assesses the relationship between land fragmentation and

food insecurity. Households are not passive in the face of shocks. There is an older

literature on the role of land fragmentation as a risk-coping mechanism, but much

of this literature failed to advance largely because of endogeneity and related data

issues. This chapter uses a natural experiment in Ethiopia, where land redistribu-

tion under the communist regime split land into fragmented parcels, and a ban on

land sales restricted any subsequent endogenous reallocation. Using a wide set of

land fragmentation indicators, it shows that these consistently cause a decrease in

household food insecurity. The chapter expands upon this mechanism by showing

that land fragmentation allows households to buffer the effects of drought, and

that households with diverse parcel characteristics and crop types experience less

food insecurity.

The sum of these chapters provides an exploratory investigation into methods
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to measure and mitigate food insecurity in a shock prone world. It compares

and seeks to reconcile different conceptual approaches around risk, vulnerability

and resilience. It demonstrates how questions raised by these conceptual clashes

can be addressed through a toolkit combining novel data and rigorous analytical

techniques. Though it demonstrates the potential benefits of external intervention,

these papers also highlight the rich set of mechanisms households and communities

employ to manage risk, and cautions against taking these mechanisms for granted.

In seeking to tailor these questions to pressing matters of policy, it is my sincere

hope that this thesis informs researchers, practitioners and policymakers working

to eliminate world hunger.
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CHAPTER 2

SHOCKS, SOCIAL PROTECTION AND RESILIENCE: EVIDENCE

FROM ETHIOPIA

2.1 Introduction

The malign effect of shocks has long been a concern within economics. One long

running strand of work, the consumption smoothing literature, has focused on

whether these events result in transitory welfare losses (Carter et al., 2007; Dercon

et al., 2005; Zimmerman and Carter, 2003). A second such strand, the vulnerability

literature, examines what type of households are unable to smooth consumption

(Dercon, 2006). The third and more recent strand of work examines whether these

shocks have long term adverse consequences (Alderman et al., 2006; Barrett and

Santos, 2014; Hoddinott and Kinsey, 2001; Mancini and Yang, 2009). Increasingly,

this third strand centers around the concept of resilience. While resilience as a

concept has its earliest roots in engineering, it is used most extensively in ecology

and psychology. In ecology, Holling (1973) introduced the term, describing it as the

amount of disturbance a system can absorb before shifting into an alternative state

(Walker et al., 2006). Other writers have focused on the speed of return to a pre-

existing equilibrium following a perturbation or shock (Perrings, 2006). Around the

same time, psychologists also began exploring the notion of resilience (Garmezy,

1974). In development, interest in resilience has arisen out of concern over the

cumulative effect of humanitarian crises caused by climatic events and political

instability. Viewed as a strategic approach to deal with the range of unpredictable

risks that undermine efforts to reduce poverty and improve food security, resilience

has emerged as a key concept for policy and program development (Béné et al.,
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2012; Constas et al., 2014b; Walsh-Dilley et al., 2016). Hoddinott (2014) writes,

”resilience focuses attention on the idea that short-term shocks are malign not

just because of their immediate effects but also because of their adverse long-term

consequences”.

Academic work on resilience has focused heavily on definition and measure-

ment. There are a plethora of definitions (Barrett and Constas, 2014a; Béné et

al., 2012; Constas et al., 2014a). Early efforts to measure resilience, which include

constructing a multi-dimensional index, are based on ex ante assessment of charac-

teristics associated with resilience (Alinovi et al., 2009). Rather than assume that

the determinants of resilience are known, subsequent approaches seek to estimate

these determinants empirically. Barrett and Constas, 2014a propose estimating a

stochastic distribution in wellbeing outcomes such as consumption and food se-

curity (Barrett and Constas, 2014a). Using a moments based approach, Cisse and

Barrett (2016) measure resilience ex-ante as the distribution of expected welfare

over time . While this approach has desirable properties, it does not map recovery

trajectories in response to specific shocks, which may be important in the con-

text of impact evaluation (Constas et al., 2014a). An alternative approach uses

cross-sectional household data to estimate vulnerability and resilience separately

(Vollenweider, 2015). Specifically, it uses a distributed lag non-linear model to

estimate the lagged impact of past shocks on present consumption, and assuming

the past is a good predictor of the future, then uses these to project consumption

trajectories into the future.

Building on the insight of Barrett and Constas (2014) that resilience is a ca-

pacity, the contribution of our article is an assessment of how a social protection

intervention shifts the relationship between shocks and outcomes. The setting is
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Ethiopia, and the intervention is the Productive Safety Net Program (PSNP), one

of the largest social protection programs in sub-Saharan Africa. Using longitud-

inal household data, we find that it takes households four years to recover from

a drought shock. However, PSNP payments reduce vulnerability and increase re-

silience. At average payment levels, the PSNP reduces the post-drought drop in

food security by 62 percent and eliminates the adverse impact of drought on food

security within two years.

To address concerns regarding the subjectivity of our shock variable, we run ro-

bustness check using the Standard Precipitation Evapo-transpiration Index. Com-

puted using remote sensing data, it is widely considered an objective measure of

drought. We matched it to our observations and found the results to be consistent

with the above in sign, significance and magnitude.

2.2 Ethiopias Productive Safety Net Program

The catalyst for Ethiopias Productive Safety Net Program was a major drought in

2002-03 that resulted in more than 13 million people being left reliant on emergency

food aid. While this assistance was successful in preventing outright starvation, it

left untouched the underlying vulnerability of many Ethiopians to rainfall shocks.

In response, the Government of Ethiopia, in consultation with major international

donors including the UKs Department for International Development, USAID and

the World Bank, developed a new intervention, the Productive Safety Net Pro-

gram (PSNP). Implementation of the PSNP began in January 2005. Operating

in eight regions, the PSNP continues to provide benefits to approximately eight

million people with a budget of approximately 500 million dollars per year. Dur-
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ing preparatory work associated with the inception phase of the PSNP, discussions

were held about the desirability of randomizing access to the program in order to

evaluate its impact. The Government of Ethiopia rejected this idea.

The goals of the PSNP are twofold: eliminate the food gap, the number of

months the household cannot satisfy its food needs; and prevent distress sales,

that is to stabilize household asset holdings (GFDRE, 2009). The PSNP is a tar-

geted intervention. It does not operate everywhere in Ethiopia; rather, it is focused

on woredas which historically have been drought-prone recipients of food aid. 1

Within woredas, households are selected using a process that combines both ad-

ministrative and community mechanisms. Administrative mechanisms include the

provision of a specified number of clients that can be included within a specific ad-

ministrative area (woreda, kebele), guidance found in the PSNPs Program Imple-

mentation Manual (PIM) on targeting criteria to be used at the community level,

and oversight to ensure transparency and accuracy. Household selection is carried

out via community (kebele) targeting, particularly the identification of clients by

community Food Security Task Forces (FSTFs). The PIM specifies that house-

holds who are targeted should fall into the following categories: be community

members; have faced continuous food shortages in the last three years; be acutely

food-insecure due to a shock resulting in the severe loss of assets; lack adequate

family support and other means of social protection and support; level of household

assets (land, livestock, land quality); income from agricultural and nonagricultural

activities; and households perceived to be vulnerable, such as female-headed house-

holds and elderly households or households with chronically-ill members (GFDRE,

2010).

Payments are provided in the form of food and cash. Particularly in the early

1A woreda is equivalent to a county or district. A kebele is equivalent to a sub-district.
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years of PSNP implementation, there were difficulties in ensuring these payments

were regular and complete. This was a particular problem for food payments; see

Berhane et al (2011, 2013, 2015) and Gilligan et al (2007, 2009). Most beneficiaries

receive these payments for undertaking labor intensive public works. These works

are intended to improve economic productivity; they include road construction and

maintenance, land rehabilitation, small scale water harvesting and irrigation works

and well construction. This work is undertaken between January and June each

year, the dry season in much of Ethiopia. There are variations in the amount of

work done across woredas, reflecting woreda and regional decisions made about the

type of public works to be undertaken, the labor intensity of that work and random

factors such as delays in obtaining materials and obtaining access to complement-

ary capital equipment; again see see Berhane et al (2014, 2015) and Gilligan et al

(2007, 2009) . A smaller number, approximately 15 percent of the caseload, re-

ceives payments without having to work. This component, called Direct Support,

is targeted largely to households unable to supply labor such as those consisting

of elderly persons or those with disabilities (Coll-Black et al., 2012).

2.3 Empirical Specification

Figure 2.1 provides a visual means of conceptualizing resilience as a recovery tra-

jectory. The horizontal axis is time. The vertical axis is a welfare outcome of

interest to a policymaker. Given the objectives of the PSNP, we put household

food security on the vertical axis. We represent the pre-shock path of food security

for household Q by the chord HH-Q. A shock occurs which causes food security to

fall. The magnitude of this initial drop can be thought of as capturing the house-

holds vulnerability to shocks. Gradually, food security recovers, reaching pre-shock
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levels at time period T. The length of time it takes to recover from the shock can

be thought of as a measure of resilience. Now consider a second household, R.

It shares a similar pre-shock food security trajectory with household Q. However,

when the shock occurs, household R is a beneficiary of a social protection inter-

vention. This reduces the magnitude of the initial shock and shortens the recovery

period. The goal of our empirical work is to estimate these trajectories.

In this figure we focus on a consumption measure rather than assets. One reason

for doing so is that consumption is a welfare measure; assets matter to the extent

that they affect consumption but they do not intrinsically contribute to welfare.

Second, as Zimmerman and Carter (2003) and Hoddinott (2006) note, selling assets

in response to shocks today risks permanently lowering future consumption and

in fact a much older literature that focused on household behavior under famine

conditions made this point explicitly: to sell off the meagre assets a household

possessed under dire circumstances is to invite future destitution Corbett, 1988.

Consequently, a focus on assets might obscure the true impact of the shock on

household welfare. A third reason is more practical. Some PSNP beneficiaries

are destitute. If these households are unable to borrow, a reasonable assumption

in rural Ethiopia, a shock has no effect on asset holdings because these holdings

are already at zero Bernard and Spielman, 2009. An asset based outcome would

require us to either drop such households or assume that they were unaffected by

a shock because we observed no change in their outcome metric. An empirical

representation of Figure 2.1 for household Q is given by equation (1):

Yit = α +
t−L
∑

l=t

βlShockil + γXit + ǫit (2.1)

Yit is the outcome of interest, here a measure of household food security. The

shock experienced by the household is denoted as Shockil. Representing shocks
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in this way allows us to map the recovery trajectories within a household up to

L periods after they experience a given shock, controlling for subsequent shocks.

Absent a shock, food security is a function of Xit, a set of household level controls.

In Figure 2.1, the pre-shock measure of food security reflects Xit and α. The βs

capture the impact of the shock. The coefficient on βl when l = t captures the

immediate effect of the shock. The coefficient on l when βl = t-L indicates whether

a household is still experiencing adverse consequences to its welfare from a shock

experienced in period t-L. So for example, βt−2 is the lagged impact on current

welfare of a shock experienced two years previously. Rejecting the null of β̂t = 0

for l ∈ [t = 1; t = L] is strong evidence of the persistence of a shocks impacts.

Estimating (1) allows us to plot that households recovery trajectory, and therefore

its resilience.

Now consider household R, the beneficiary of the social protection intervention.

This household is a participant in the PSNP; further, we assume that the benefits

of participation rise monotonically with the amount of payments it receives from

the program. With this in mind, we introduce two new terms into equation (1):

Treatil; and Treatil ∗ Shockil. We write this as:

Yit = α +
t−L
∑

l=t

[β1lShockil + β2lTreatil + β3lTreatil ∗ Shockil] + ǫit (2.2)

We can infer the effect of payments as follows: β2l is the effect of the treatment

on the household food security absent any shock. We expect β2l to be positive.

β3l is the main coefficient of interest, as it allows us to evaluate the programs

effect on household vulnerability and resilience. In the short term, when l=t,

it measures whether payments mitigate household vulnerability. A positive and

significant coefficient would suggest that treatment decreased vulnerability. In the

long term, when l = t-L we can plot the recovery trajectory of treated beneficiaries.
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A positive coefficient here reflects a more rapid recovery trajectory, indicating

increased household resilience. However, we face an endogeneity problem. In

section 2, we explained that the PSNP is a targeted intervention. This targeting,

on both food security outcomes as well as characteristics correlated with food

security, implies that the payment levels received by beneficiary households might

well be correlated with the disturbance term in (2), yielding biased parameter

estimates. Some of this correlation can be accounted for by estimating a household

fixed effects model that also includes time-varying household characteristics:

Yit =
t−L
∑

l=t

[β1lSil + β2lTil + β3lTil ∗ Sil] + γXit + µi + ǫit (2.3)

Here, for brevity, we have substituted S for Shocks and T for Treatment. Under

the assumption that after controlling for µi and Xit , E(T, ǫit) = 0 and E(T ∗

Shocks, ǫit) = 0, equation (3) yields unbiased estimates of β1l,β2l, and β3l. Our

initial estimates are based on this specification.

2.4 Data

The data requirements for equation (3) are significant. We need a dataset with

the following characteristics:

1. Longitudinal household data to allow for household fixed effects estimation.

2. A consistently measured outcome variable.

3. Shocks occurring within the data collection time-frame with both cross-

sectional and temporal variation.

4. Data on payment levels with sufficient exogenous variation to identify pro-

gram impacts.
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2.4.1 Data Collection

A feature of the PSNP is the bi-annual collection of longitudinal data on bene-

ficiaries and non-beneficiaries, five survey rounds over a nine year period. The

first survey, in 2006, used a two stage clustered sampling approach. Across the

four regions where the PSNP operated (Amhara, Oromiya, SNNP and Tigray), 68

woredas (districts) were randomly selected using probability proportional to size

(PPS) sampling based on estimated numbers of beneficiaries. Within each selected

woreda, a random sample of two or three kebeles (depending on the region) was

selected. Beneficiary lists were used to select randomly 17 PSNP households and

lists of non-beneficiaries were used to select an additional eight yielding a sample

of 25 households per kebele. Additional rounds were collected in 2008, 2010, 2012

and 2014.

These surveys have a number of strengths. Data are collected at approximately

the same time (June and July) in each round and so our results are not confounded

by differences in survey timing across years. Questions pertaining to household

food security, program participation and shocks are identical across all rounds as

are a rich set of control variables. Both PSNP participants and non-participants are

selected within the same geographic localities meaning, inter alia, they are exposed

to the same shocks and share the same time invariant and time varying locality

characteristics. Attrition is low, approximately two percent per year. Much of this

attrition is due to kebeles being dropped where the PSNP ceased operating. Work

investigating whether potential differences in attrition rates can be attributed to

differences in baseline characteristics shows that being a program beneficiary was

not correlated with the probability of attrition. Older and smaller households were

slightly more likely to attrite than other household types, but the impact of these
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characteristics on attrition was small (Berhane et al., 2013; Berhane et al., 2011).

2.4.2 Welfare Variable: Months Food Secure

The primary goal of the PSNP was to reduce the food gap. This was measured by

asking survey participants to report the number of months, out of the preceding

12 months, that they had problems satisfying the food needs of the household with

a month where the household had problems satisfying food needs being defined as

one where the household experienced hunger for five or more days. We convert this

to Months Food Secure by starting with 12 months and subtracting the number

of months when households reported having problems satisfying their food needs.

This somewhat non-standard measure has two advantages. First, the Government

of Ethiopia uses this to assess the impact of the PSNP.2. Second, it allows us

to measure food-security over a 12 month period. This contrasts with measures

such as caloric acquisition or food expenditures that are typically reported over

a shorter period such as seven or 14 days. Such measures are more sensitive to

seasonality and other factors leading to short term fluctuations, which might mask

our attempts to measure long run impacts.

Figure 2.2 shows how Months Food Securee has evolved over the nine years

covered by the PSNP surveys. In general, food security improves with the distri-

bution shifting rightwards over time. The proportion of households experiencing

no reported hunger (Months Food Secure=12) increases from 34.9% to 48.4%.

However, notice that this trend is not linear; reported Months Food Secure

deteriorate in the 2010 round, when the proportion of fully food secure household

2The super goal of the PSNP is the elimination of the food gap where the food gap is defined
as 12 months food secure
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dropped to 29.7%. We know from rainfall data that Ethiopia experienced a severe

drought in 2009. This deterioration is an example of drop shown in Figure 2.1; the

question which arises is whether access to the PSNP mitigated the effect of such

a shock and whether it sped recovery from it.

2.4.3 Shock data

The survey instrument collects information on self-reported shocks. Specifically,

households were asked: We would like to learn about shocks in the last two years.

Has this household been affected by a serious shockan event that led to a serious

reduction in your asset holdings, caused your household income to fall substantially

or resulted in a significant reduction in consumption? We would like to learn more

about the worst shocks in the last 2 years. This was followed by 17 questions on

different types of shocks that households might have experienced divided into three

broad categories: Covariate climatic shocks, including drought, floods, frost and

pest incidence; Covariate economic shocks, including lack of access to inputs and

price shocks affecting either inputs or outputs; and Idiosyncratic shocks, such as

death, disease or divorce affecting a family member.

Figure 2.3 shows the five most frequently reported shocks by survey round.

Drought is by far the most frequently reported shock. In every survey round, at

least 20 percent of respondents reported being affected by drought in the two years

preceding the survey with this figure rising to nearly 80 percent in the 2010 round.

Given their frequency we focus on drought. In our estimates below, Drought is

defined as equaling one if a household reports experiencing a drought shock in the

two years prior to the survey.
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2.4.4 Treatment: PSNP Payments

All survey rounds collected self-reported information on payments received by

PSNP beneficiaries from participation in Public Works and from Direct Support.

Specifically, for each survey round we know the total amount of payments that the

household received in the nine months preceding the survey. These nine months

overlap with the 12 months recall period for the food gap. We use these data to

construct our measure of treatment, PSNP Payment, the value of the payment

received.

Payments are received either as cash or in-kind (usually wheat or maize). In-

kind payments are valued using data on local market prices. To account for in-

flation, which at times was substantial over the period covered by these surveys,

we follow the methods outlined in Berhane, Hirvonen, and Hoddinott (2015). We

construct a cereal price index, a weighted average of prices of the 6 main cereals

(maize, teff, barley, wheat, sorghum and millet) in a given community in a given

year. We weigh them by the consumption shares of each cereal type, collected at

the household level and aggregated up to the community. Our price index thus

captures both temporal and cross-sectional differences in price levels. We then de-

flate nominal payments using 2014 as a benchmark. PSNP Payment is expressed

in 100 birr increments with each increment equivalent to about 5 USD in 2014.3

Table 2.1 reports these payments by region and year.

3Because this is expressed in real terms, these figures may differ from previous articles such
as Berhane et al (2014) .
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2.4.5 Additional controls

In addition to household fixed effects, we control for household land ownership,

education as a proxy for human capital, and the age, size and gender composition

of household. Some of these variables, such as household size, are correlated with

household food security. Their inclusion improves the precision of our parameter

estimates. Others, such as land ownership, are correlated with both household food

security and the likelihood of receiving PSNP payments. Descriptive statistics for

these control variables in two round, 2006 and 2014, are shown in Table 2.2.

2.5 Results

We begin by estimating equation (1) . While this does not include the impact of

the PSNP, it allows us a first look at how reported drought shocks affects household

food security. Results are shown in Table 2.3. Column (1) reports the contempor-

aneous effect of drought with columns (2), (3) incorporating additional lags in the

drought variable to reflect long term effects.4 Table 2.3 shows that drought reduces

food security and that it has persistent effects. Given our definition of shocks, each

lag is equivalent to two years. Column (3), for example, indicates that Drought

reduces Months Food Secure by 1.56 months initially. Two years after the drought

occurs, Months Food Secure is still reduced by 0.55 months and four years after

the drought, Months Food Secure is reduced by 0.35 months. We illustrate this in

Figure 2.4.

We can construct a version of Figure 2.1 by taking the results from column (3),

4We test and reject unit roots for our lagged variables. For robustness we ran the above spe-
cification with a Prais-Winsten feasible generalized least squares estimator and got qualitatively
equivalent coefficients, of the same sign and significant.
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and plotting them along with their 95% confidence intervals. We take the constant

as representing a baseline level of 10.25 months food secure for a representative

household. Assuming the household suffers from drought, its level of food security

can be computed as β̂0 + β̂drought ≈ 10.25 − 1.56 = 8.69 months food secure. To

infer the effects of the drought two years after it ends we compute β̂0+ β̂L.drought ≈

10.25 − 0.55 = 9.7 months food secure. Up to four years after the drought ends

the household is still less food secure than it would have been otherwise.

2.5.1 Ordinary least squares estimates

Next, we estimate equation (3), using an Ordinary Least Squares (OLS) estimator

with fixed effects. The results are reported in Table 2.4. Looking at the coefficients

on the interaction terms in column (3), we again see that Drought reduces Months

Food Secure. The interaction terms between Drought and PSNP Payment is pos-

itive, indicating that the PSNP offsets some of the impact of drought. However,

the magnitude of this effect is small; at mean payment levels, payments reduce the

effect of the drought by 0.1 months.

2.5.2 Instrumental variables estimates

Results in Table 2.4 control for household fixed effects and the time varying house-

hold characteristics. This removes much of the potential correlation between the

disturbance term and PSNP treatment but possibly not all. To address this, we

need instrumental variables that are correlated with payments but not correlated

with household food security.
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Furthermore, to address concerns that kebele level program implementation

is correlated with beneficiary household un-observables, we use these exogenous

variables to construct a Hausman Instrument Hausman, 1994. We aggregate the

characteristics at the woreda level and take the average, excluding own-kebele

characteristics:

OtherZkt =

∑|W |
i=1 Ziwk −

∑|K|
i=1 Ziwk

|W | − |K| (2.4)

Where W is the set of observations in a given woreda, and K the set of observa-

tions in a kebele. This reflects underlying trends in program implementation at the

woreda level that would affect the kebele, but excludes potential correlation with

kebele level un-observables, which may be correlated with individual outcomes.

Our description of the PSNP in section 2 suggests the following candidates for

exogenous instrumental variables:

1. Public Work Months : The total number of months in which public works were

undertaken. An increase in the number of months when the PSNP employed

beneficiaries in the woreda as a whole could be positively correlated with

payments at the household level if it reflects greater resource availability

overall. However, because our Hausman instrument explicitly excludes own

kebeles, it is possible that an increased allocation elsewhere in the woreda

would imply decreased resource availability in the households kebele, leading

to a negative correlation. The mean number of months of public works is

5.4.

2. Cash Payments : An indicator variable equaling one if a payment was made

in cash. Analysis of PSNP payment processes showed that cash payments

were made in a more complete and timely fashion than payments made in-

kind; see Berhane et al (2011, 2013). However, in years of high inflation,
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food payments were more likely to retain their purchasing power, suggesting

that the cash payment reduces the real value of payments Berhane et al.,

2015. This indicator has a mean of 0.84.

3. Cash Payments * Distance to Town: An indicator variable constructed as the

interaction between the cash payment dummy described above and distance

to the nearest town. As Berhane et al (2011, 2013, 2015) show, distances

beneficiaries must travel to payment sites can be large, particularly for food

payments. Cash payments may overcome, to some extent, the difficulties that

more remotely located households might have in receiving the payments. In

other words, we expect that the cash payments increase in the likelihood of

household receiving payments and that this correlation gets stronger the more

remotely located the household is. We proxy remoteness with distance from

the center of the kebele to the nearest town. The mean of this interaction

term is 12.9.

Table 2.5 shows the correlations between these instruments and payments received

by PSNP households. (Note that the sample size is larger than that reported in

other tables because we include lagged treatment variables.) Note that we create

instruments for our endogenous interaction term by interacting the instrument

with the exogenous variable drought.

Table 2.5 shows a negative correlation between village level payment and own

payments. Though seemingly counter-intuitive, recall that this is a Hausman in-

strument at the woreda level, explicitly excluding payments from the households

own kebele. Hence the negative correlation suggests that given a fixed budget, an

increase in public works provided to other kebeles reduces the amount of work (and

therefore payments) to the own kebele. Receiving payments in cash is positively
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correlated with level of payments, possibly due to the reasons described above.

Our interaction between cash payment and distance is also positively correlated,

suggesting that cash helps overcome remoteness to a certain extent.

Table 2.6 reports the results of estimating equation (3) using the Hausman IV

approach with a system GMM estimator. Standard errors are clustered at the

kebele level. We present three estimates: column (1) reports findings with no lags;

column (2) reports a two year lag structure while column (3) gives the results with

a four year lag structure. Noting that the coefficients on the initial drought shocks

and the interaction term between the initial drought shock and PSNP payments

are similar across all three columns, we focus on column (3).

As we saw earlier, Drought reduces Months Food Secure and the magnitude of

their effect is large. Using column (3), a household reporting a drought shock in

the previous 12 months saw its months food secure fall by 4.55 months. PSNP

Payment offsets much but not all of this initial shock. Recall that mean payments

are approximately 500 birr per year and that in Table 2.6, payments are reported in

100 birr increments. This means that for the average beneficiary, PSNP payments

offset 2.8 months of the drought shock a 62 percent reduction in vulnerability.5

There is a lagged effect of drought; in column (3), this is a reduction of 2.1 months

in food security two years after the drought ended. However, at the mean level

of payments, this is nearly completely offset by PSNP payments (5 multiplied by

0.36 = 1.8). By contrast, households not receiving any PSNP payments do not

benefit from this mitigation and suffer the full effect of the drought. They do not

return to their pre-drought level of food security until four years after the drought

ended (column (3)). Figure 2.5 graphs these trajectories for PNSP households

receiving mean levels of payments and non-PSNP households. Table 2.6 and figure

5(500birr/100) = 5, 5 ∗ 0.56 = 2.8)
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2.5 convey the core findings of the article.

The magnitude of the coefficients on PSNP Payment and the interaction term

increases substantially relative to our OLS fixed effects specification. This suggests

that while our OLS specification controlled for both household fixed effects and

some time varying household characteristics that were correlated with program

targeting criteria, they did not control for other unobservable factors that were

correlated with both payments and the extent of food insecurity. Using both the

OLS and IV estimates, we constructed a Hausman test. This rejected the null

hypothesis that the OLS estimates were unbiased. We constructed a Hansen J

test. P values are reported at the bottom of Table 2.6; these show that we do not

reject the null hypothesis of the validity of our instruments.

Results in Table 2.6 assume that the impact of shocks, and of the PSNP, is

the same across all households. This may not be true. For example, relatively

wealthier PSNP households may be better able to consumption smooth in the

face of shocks, something our estimates do not take into account. We consider

heterogeneous effects across four household characteristics: land holdings; baseline

(2006) food security; baseline (2006) livestock holdings; and household heads grade

attainment.6

We disaggregate our sample into two groups: households with land holdings

less than or equal to one hectare, and households with more than one hectare of

land.7 Results are shown in Table 2.7. Column (1) is the aggregate result, column

(2) restricts results to households with 1 ha of land or less and column (3) restricts

6We use baseline values for these because subsequent values may be affected by both drought
and payments received from the PSNP.

7An alternative approach would be to split the sample into two groups of equal size. However,
because a large fraction of the sample reported operating exactly one hectare of land, this was
not feasible.
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results to households with more than 1 ha of land. Drought has a larger effect on

households with smaller land holdings. But for these poorer households, PSNP

Payment has a relatively larger offsetting effect, implying that these payments

have a particularly powerful effect on enhancing the resilience of poor households.

This is seen clearly when we use the results from Table 8 to graph the food security

trajectories of PSNP and non-PSNP households, disaggregating by land holdings.

Households with more than one hectare of land suffer a smaller reduction in food

security and recover more quickly compared to households with one hectare or

less. Among households with less than one hectare of land, the PSNP cushions

the initial effects of drought shocks and permits a faster recovery from them. The

dis-aggregated results are illustrated in figure 2.6.

Next we disaggregate by initial (2006) household food security; specifically we

disaggregate the sample based on whether the household had food security above

or below the mean level for the region it resided in. Results are shown in Table

8. Column (1) is the aggregate result, column (2) restricts results to household

below the mean level of Months Food Secure in 2006, and column (3) restricts

them to households above the mean. Results are similar to those found for the

land disaggregation. Households that initially are more food insecure experience

a greater reduction in food security following a drought shock compared to more

food secure households. However, among these initially food insecure households,

recovery from drought is faster when they receive PSNP payments.

We disaggregate by initial (2006) livestock holdings; specifically we disaggregate

the sample based on whether the household had livestock holdings above or below

the mean level for the region it resided in. We also disaggregated by whether the

household head had any formal schooling. In both instances, we find no differences
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in treatment effects across these disaggregations. Results are available on request.

2.6 Robustness Checks

We consider five potential concerns regarding our results: measuring drought

through the use of self-reported shocks, sample composition, the presence of other

interventions, alternative estimators, and accounting for time effects.

2.6.1 Self-reported versus measured shocks

Our results are based on household self-reports of drought shocks. To the extent

that these capture a households perception of what has occurred rather than what

actually occurred, they may contain measurement error. Reverse causality is an-

other possibility. Beneficiaries may mistakenly believe that receiving payments is

conditional on experiencing a shock and so report that these have occurred even

when they did not. All these possibilities will result in biased parameter estimates.

We can address these by replacing our self-reported shocks with measured

shocks. To do so, we obtained geo-spatial climate data, specifically the Stand-

ardized Precipitation-Evapotranspiration Index (SPEI). SPEI was developed as

a multi-dimensional measure of drought incorporating the effects of variations in

precipitation and temperature. It combines two widely accepted measures, the

Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Index

(SPI). It is available from 1901 to 2013 with a 0.5 degrees spatial resolution and

monthly frequency.
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SPEI, based on the water balance equation, measures wetness as positive values

and dryness as negative values, incorporating prior precipitation, moisture supply,

runoff and evapo-transpiration. It is a relative probability index sensitive to times-

cale. Intuitively, what constitutes an episode of drought or flooding depends on

the pre-existing agro-ecological context. This determines what is ’enough water,

and the lag between the arrival of water inputs as rain, runoff or snow-melt, to its

availability for watering crops or livestock. This comparison between actual and

historical can be made over different timescales allowing the user to distinguish

between hydrological, environmental, and other droughts. We used a 12 month

timescale, capturing variations in drought conditions over the past year, reasoning

that this was the scale that most affected households in our sample as well as being

most comparable to our self-reported drought measure. Since the available SPEI

datasets are at the global level, we extracted observations for Ethiopia using its

geo-coordinates. SPEI data were matched to individual woredas GIS coordinates

using inverse distance weighting.

Figure 2.7 illustrates SPEI in Ethiopia by region. Values less than zero indic-

ate drought conditions, a cursory comparison with Figure 2.3 suggests that these

measured drought shocks correspond with the frequency of self-reported shocks;

most notably in 2009.

Using these SPEI data, we run the same IV specification as in table 2.6, using

the same set of lags for previous droughts but replacing our binary variable for

self-reported drought with a new independent binary variable SPEI, that equals

one if the average of 12 months prior SPEI was less than zero. When we do so,

the results in table A.1 are similar to those reported in Table 2.6.
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2.6.2 Sample Composition

Our sample includes households in the Amhara region of Ethiopia. Some of these

households received PSNP payments through funding provided by the US govern-

ment. These payments were all in the form of in-kind payments. Given our IV

strategy, we wondered if their inclusion affected our results. As a robustness check,

we excluded these households and re-ran the IV model used to estimate equation

(3). Doing so gave similar results (see Table A.2).

As noted in section 2, some PSNP beneficiaries, those with no able bodied mem-

bers, such as widows, orphans and disabled individuals unable to perform public

works, unconditional payments called Direct Support. Their payments might be

unaffected by one of our instruments, the number of months when public works

employment was provided. As a robustness check, we also excluded these house-

holds and re-ran the IV model used to estimate equation (3). Doing so gave similar

results (see Table A.3).

2.6.3 Other Interventions

Suppose that in addition to the PSNP, there was another intervention operating

in the woredas in our sample and that it had a similar beneficiary profile. If this

were the case, we might incorrectly ascribe the impact of such a program to the

PSNP.

There is only one such program that fits this description. Initially, the PSNP

was complemented by a series of food security activities called the Other Food

Security Program (OFSP) (Berhane et al, 2014). The OFSP aimed to increase
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incomes through the provision of credit for activities that would improve crop

and livestock production. Problems with its implementation led to a re-design;

the replacement program, the Household Asset Building Program (HABP), had a

greater emphasis on technical assistance. Both the OFSP and HABP were intended

to assist a subset of PSNP beneficiaries. As a robustness check, we re-estimated

equation (3) including as an additional control, participation in the OFSP/HABP.

Doing so had no substantive effect on our estimates (see Table A.4).

2.6.4 Alternative estimators

Our dependent variable is a discrete count variable, taking on integer values from

0 to 12. As a robustness check we estimated equation (3) using a household

fixed effects instrumental variable Poisson maximum likelihood estimator. Poisson

household fixed effect results are presented in table A.5 and instrumental variable

poisson household fixed effect results in table A.6. Because we use a non-linear

estimator, in order to recover the average marginal effect we must multiply the

coefficients by the sample average of the outcome variable. The results are consist-

ent with the results reported in Table 2.6 in sign, magnitude and significance. For

example, using the model specification with two lags, the marginal effect of the

interaction term PSNP payment by drought in past year is 0.39 which is statistic-

ally indistinguishable from the equivalent coefficient reported in Table 2.6, column

(3).
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2.6.5 Accounting for time effects

Results such as those shown in Figure 2.2 suggest that we should be concerned

about controlling for time (secular) trends. Doing so, however, is not without its

own problems; in particular there is a high correlation between reported drought

shocks and some of our survey years, most notably 2010, making it infeasible to

include survey round dummies. We note that we control for some of the effects of

secular change; for example our price deflator ensures that the effect of inflation

on payments is taken into account. At the household level, our inclusion of the

age of the household head will also capture some of these secular trends.

Yet, despite all this, one might be concerned about time trend effects. A further

way of addressing this is to detrend our dependent variable. As a robustness check,

we did so, subtracting the predicted outcome from the time trend alone.8 The

results are available in table A.7 and are consistent with our principle results in

sign, significance and magnitude.

2.7 Conclusion

The malign effect of shocks has long been a concern within economics, partly

because they result in transitory welfare losses and partly because they may have

persistent effects. In development discourse, this latter concern has spurred interest

in the concept of resilience and how public interventions such as social safety nets

can enhance resilience. However, operationalizing these ideas has been constrained

by their daunting data requirements which include: (1) Longitudinal household

8Specifically, we regressed Yit = γ0 + θt + ǫit and generated the predicted variable Ŷ Trend
t .

Y detrend
it = Yit − Ŷ Trend

t
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data to allow for household fixed effects estimation; (2) A consistently measured

outcome variable; (3) Measured shocks that occur within the data collection time-

frame with both cross-sectional and temporal variation; and (4) Data on payment

levels with sufficient exogenous variation to identify program impacts.

Within this context, we assess the impact of a social protection program,

Ethiopias Productive Safety Net Program, on the longer term impacts of drought

on household food security. Surveys conduced over multiple years satisfy these

data requirements. We find that drought shocks reduce the number of months a

household considers itself food secure and that these impacts persist for up to four

years after the drought has ended. Using a Hausman instrumental variable estim-

ator, we find that receipt of PSNP payments reduced the initial impact of drought

shocks by 62 percent and eliminates their adverse impact on food security within

two years. In this way, the PSNP strengthens the resilience of its beneficiaries

against adverse shocks. This impact is largest for PSNP beneficiaries with little

or no land. Our results are robust to how shocks are measured, changes in sample

composition, the presence of other interventions and the estimator used. If this

findings can be replicated with other programs in other settings, they suggest that

social protection interventions are a mechanism for mitigating the adverse effects

of climatic shocks.
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Tables

Table 2.1: Mean PSNP Payment Received, by year and region

Round
Region 2006 2008 2010 2012 2014 Total

Tigray 6.16 3.84 4.66 8.06 5.70 5.63
(10.30) (7.42) (8.63) (12.69) (11.44) (10.30)

Amhara 2.34 0.79 1.36 5.06 3.36 2.62
(4.65) (2.33) (6.04 ) (10.06) (8.15) (7.20)

Oromiya 5.84 2.88 2.06 10.59 7.29 5.61
(9.89) (5.41) (5.26) (19.93) (16.48) (12.87)

SNNP 4.72 3.78 6.18 7.47 5.24 5.44
(7.55) (6.35) (11.21) (12.23) (11.20) (9.97)

Total 4.81 2.33 3.04 7.03 4.88 4.38
(8.56) (5.27) (7.94) (13.34) (11.37) (9.83)

Note: Real price index adjusted values, reported in 100 birr increments.

Standard deviation in parentheses
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Table 2.2: Selected HH Characteristics, by Round and PSNP Status

(a) First Round (2006)

PSNP Beneficiary Non-PSNP Beneficiary p value
Land (ha) 1.28 1.17 0.00
Age of Household Head (years) 44.39 45.98 0.00
Education of Household Head (years) 0.54 0.47 0.04
Household Head is Male 0.78 0.74 0.01
Number of Males 0-6 0.59 0.61 0.42
Number of Females 0-6 0.58 0.61 0.27
Number of Males 7-15 0.67 0.70 0.37
Number of Females 7-15 0.63 0.67 0.22
Number of Males 16-60 1.08 1.02 0.02
Number of Females 16-60 1.14 1.15 0.73
Number of Males ¿60 0.12 0.13 0.40
Number of Females ¿60 0.09 0.12 0.02

(b) Last Round (2014)

PSNP Beneficiary Non-PSNP Beneficiary p value
Land (ha) 1.18 0.96 0.00
Age of Household Head (years) 49.70 51.82 0.00
Education of Household Head (years) 0.57 0.41 0.00
Household Head is Male 0.79 0.61 0.00
Number of Males 0-6 0.51 0.42 0.00
Number of Females 0-6 0.50 0.42 0.00
Number of Males 7-15 0.92 0.76 0.00
Number of Females 7-15 0.83 0.77 0.09
Number of Males 16-60 1.23 1.05 0.00
Number of Females 16-60 1.27 1.22 0.07
Number of Males ¿60 0.17 0.16 0.29
Number of Females ¿60 0.11 0.19 0.00
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Table 2.3: Impact of Drought on Months Food Secure by Lagged
Drought

(1) (2) (3)
Drought in past year -1.314∗∗∗ -1.409∗∗∗ -1.563∗∗∗

(0.092) (0.094) (0.10)

Drought 2 years ago -0.372∗∗∗ -0.550∗∗∗

(0.079) (0.092)

Drought 4 years ago -0.349∗∗∗

(0.094)

constant 10.01∗∗∗ 10.13∗∗∗ 10.28∗∗∗

(0.030) (0.039) (0.057)
N 8005 8005 8005

Note: Coefficients correspond to Droughtt, Droughtt−1 and Droughtt−2 in eqn (1),

respectively. N restricted to 2010, 2012 and 2014 due to double lag structure.

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

40



Table 2.4: Impact of Drought and PSNP Payment on Months Food

Secure, Household Fixed Effects

(1) (2) (3)
PSNP Payment 0.008 0.011∗ 0.012∗∗

(0.005) (0.005) (0.005)

Drought in past year -1.300∗∗∗ -1.352∗∗∗ -1.507∗∗∗

(0.240) (0.260) (0.252)

PSNP Payment * Drought in past year 0.017∗∗ 0.022∗∗∗ 0.020∗∗

(0.007) (0.008) (0.009)

PSNP Payment 2 years ago 0.017∗∗∗ 0.018∗∗∗

(0.006) (0.007)

Drought 2 years ago -0.282 -0.464∗

(0.230) (0.251)

PSNP Payment * Drought 2 years ago 0.011 0.007
(0.009) (0.013)

PSNP Payment 4 years ago 0.005
(0.008)

Drought 4 years ago -0.315
(0.221)

PSNP Payment * Drought 4 years ago -0.017
(0.016)

N 8005 8005 8005

Note: Coefficients correspond to eqn (3), where Sit is the incidence of drought and Tit is the PSNP
payment received. N restricted to 2010, 2012 and 2014 due to double lag structure. Standard
errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.5: Instrument Relevance: First Stage Regressions for Endogenous
Variables

(1) (2)
PSNP Payments PSNP Payments * Drought

Public Work Months -0.013∗∗∗

(0.004)

Cash Payments 0.210∗∗∗

(0.066)

Cash Payments * Distance to Town 0.002∗∗∗

(0.000)

Public Work Months * Drought 0.507∗∗∗

(0.160)

Cash Payments * Drought 2.260∗∗

(1.116)

Cash Payments * Distance to Town -0.040∗∗∗

* Drought (0.010)
N 15604 15604
F-Statistic 34.255 6.470

Note: Use entire sample to instrument the set of endogenous variables. Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.6: Impact of Drought and PSNP Payment on Months Food

Secure, Instrumental Variables and Fixed Effects

(1) (2) (3)
PSNP Payment 0.019 0.048∗∗ 0.077∗∗∗

(0.034) (0.023) (0.022)

Drought in past year -4.097∗∗∗ -3.693∗∗∗ -4.548∗∗∗

(1.359) (0.376) (0.617)

PSNP Payment * Drought in past year 0.489∗∗ 0.542∗∗∗ 0.560∗∗∗

(0.222) (0.112) (0.135)

PSNP Payment 2 years ago 0.102 0.024
(0.088) (0.058)

Drought 2 years ago -1.500∗ -2.064∗∗∗

(0.802) (0.495)

PSNP Payment * Drought 2 years ago 0.359∗ 0.358∗∗∗

(0.194) (0.120)

PSNP Payment 4 years ago 0.111
(0.077)

Drought 4 years ago -0.741
(0.632)

PSNP Payment * Drought 4 years ago -0.060
(0.159)

N 8005 8005 8005
Hansen J-Test 0.906 0.529 0.500

Note: Eqn(3) Instrumented. N restricted to 2010, 2012 and 2014 due to double lagged structure.

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.7: Impact of Drought and PSNP Payment on Months Food Se-

cure, Instrumental Variables and Fixed Effects, Disaggregated by Land
Area Operated

(1) (2) (3)
All Greater than 1 HA 1 HA or less

PSNP Payment 0.077∗∗∗ 0.160∗∗∗ 0.033
(0.022) (0.037) (0.027)

Drought in past year -4.548∗∗∗ -2.026∗∗∗ -6.490∗∗∗

(0.617) (0.592) (1.176)

PSNP Payment * Drought in past year 0.560∗∗∗ 0.198 0.939∗∗∗

(0.135) (0.124) (0.188)

PSNP Payment 2 years ago 0.024 0.201∗∗ -0.055
(0.058) (0.085) (0.067)

Drought 2 years ago -2.064∗∗∗ -0.229 -2.817∗∗∗

(0.495) (0.735) (0.685)

PSNP Payment * Drought 2 years ago 0.358∗∗∗ 0.109 0.514∗∗∗

(0.120) (0.160) (0.149)

PSNP Payment 4 years ago 0.111 0.111 0.025
(0.077) (0.070) (0.063)

Drought 4 years ago -0.741 -0.394 -2.783∗∗

(0.632) (0.383) (1.177)

PSNP Payment * Drought 4 years ago -0.060 -0.110 0.546∗

(0.159) (0.124) (0.285)
N 8005 2077 5928

Note: N restricted to 2010, 2012 and 2014 due to double lagged structure. Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.8: Impact of Drought and PSNP Payment on Months Food

Secure, IV, Disaggregated by 2006 Months Food Secure

(1) (2) (3)
All Above Mean Below Mean

PSNP Payment 0.077∗∗∗ 0.001 0.152∗∗∗

(0.022) (0.028) (0.045)

Drought in past year -4.548∗∗∗ -5.375∗∗∗ -3.542∗∗∗

(0.617) (0.653) (1.126)

PSNP Payment * Drought in past year 0.560∗∗∗ 0.739∗∗∗ 0.369∗∗

(0.135) (0.160) (0.153)

PSNP Payment 2 years ago 0.024 -0.186∗∗∗ 0.126∗

(0.058) (0.065) (0.073)

Drought 2 years ago -2.064∗∗∗ -3.768∗∗∗ -1.051∗

(0.495) (0.674) (0.565)

PSNP Payment * Drought 2 years ago 0.358∗∗∗ 0.746∗∗∗ 0.178∗

(0.120) (0.150) (0.104)

PSNP Payment 4 years ago 0.111 0.016 0.303∗∗

(0.077) (0.076) (0.145)

Drought 4 years ago -0.741 -2.199∗∗∗ 1.494
(0.632) (0.655) (1.032)

PSNP Payment * Drought 4 years ago -0.060 0.271 -0.455∗∗

(0.159) (0.172) (0.202)
N 8005 4296 3709

Note: N restricted to 2010, 2012 and 2014 due to double lagged structure. Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figures

Figure 2.1: Food security and resilience over time
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Figure 2.2: Distribution of months food secure, by round
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Figure 2.3: Percent households reporting selected shocks in two years prior to
survey round, by round
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Figure 2.4: Recovery trajectory from drought
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Figure 2.5: PSNP and non-PSNP recovery trajectories
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Figure 2.6: Recovery trajectories, disaggregated by land ownership
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Figure 2.7: Standardized Precipitation Evapotranspiration Index (SPEI), by region
and year
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CHAPTER 3

RESILIENCE AND THE DYNAMICS OF FOOD INSECURITY,

EVIDENCE FROM MALAWI

3.1 Introduction

In the last 20 years, the literature has shifted from viewing poverty as static to

seeking to understand its dynamic nature (Carter and Barrett, 2006). This in-

cludes acknowledging the high level of stochastic risk poor households face as

their income and assets fluctuate. Their livelihoods are particularly vulnerable

to weather shocks, since they often rely on subsistence agriculture or pastoralism

(Dercon, 2006). Faced with limited access to credit, insurance, and liquid assets,

these vulnerable households struggle to smooth consumption (Carter et al., 2007;

Zimmerman and Carter, 2003). This leads to both transitory and long-term wel-

fare losses, as they are forced to forgo investments and sometimes cut down on

critical food intake (Barrett and Santos, 2014; Hoddinott and Kinsey, 2001). In

order to help understand such adverse consequences in an uncertain environment,

(Barrett and Constas, 2014b) argue that the concept of resilience seeks to quantify

how stochastic well-being trajectories shift over time.

The literature on resilience spans many fields, including ecology, engineering

and psychology. Holling (1973) characterized it as an ecological system’s ability

to remain or return to a dynamic equilibrium in the face of recurring shocks.

Engineers view it as a physical system’s ability to “mitigate hazards” (Tierney

and Bruneau, 2007). Psychologists view it as ‘adaptation to adversity’ (Lee et al.,

2013). In development, interest in resilience has arisen out of concern over the

cumulative effect of humanitarian emergencies. It has emerged as a key concept
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in dealing with the range of risks undermining efforts to reduce poverty and food

insecurity, (Béné et al., 2012; Walsh-Dilley et al., 2016).

One methodological approach looks at resilience as the perceived persistence of

specific shocks. Constas et al. (2014b) present an attempt to consolidate efforts at

quantifying resilience in the context of food insecurity. They emphasize the import-

ance of focusing on dynamic well-being Yit in the context of shocks Zit conditional

on characteristics Xit. Yit can be a measure of assets, consumption, or food se-

curity. This approach explicitly acknowledges that the effect of mitigating factors

may depend on the shock in question. Trying to operationalize this approach,

Vollenweider (2015) uses a distributed lag non-linear model to estimate the lagged

impact of past shocks on present consumption, and projects consumption traject-

ories into the future. The paper assumes household unobservables are orthogonal

to the recovery trajectory. This is of particular concern regarding weather shocks,

as households living in different climactic zones will certainly have adapted to the

expected occurrence of shocks.

Barrett and Constas (2014b) frame the concept of development resilience as

changes in the distribution of well-being. Heuristically, households make consump-

tion and investment decisions according to their expected well-being trajectories,

subject to stochastic shocks. At certain points along this trajectory it may prove

optimal not to forfeit current consumption by investing in asset accumulation,

choosing instead to remain at a permanently lower level of well-being, a ‘poverty

trap’ (Carter and Barrett, 2006). Barrett and Constas therefore define resilience

as “the capacity over time of a person, household or other aggregate unit to avoid

poverty in the face of various stressors and in the wake of myriad shocks.” Resili-

ence is presented conceptually as the set of possible realizations of future well-being.
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The emphasis on stochastic dynamics allows us to think of resilience as a function

of the probability distribution of well-being.

In a followup paper, Cissé and Barrett (2016) propose estimating resilience as

the conditional mean and conditional variance of a household well-being indicator

(e.g. assets) and, by positing a known distribution, constructing the conditional

probability p̂(X,Z) that this indicator will be above a given threshold. The third

stage regression p̂(x, z) = βX+γZ estimates the effect of household covariates Xit

and shocks Yit on this probability, labeled ‘resilience’. An elegant feature of this

measure is that it can be disaggregated to the household level or aggregated up

to reflect the resilience of particularly communities, regions or countries. However

its approach does not distinguish between shocks and household characteristics,

confounding the direct effect of a shock on well-being and the latent response

capacity, which we may want to distinguish. It also does not allow for households

to be resilient to certain shocks but not others.

One can also think of resilience as a predictor of future food insecurity. This ap-

proach draws inspiration from an emerging interdisciplinary literature, which seeks

to improve the accuracy of targeted social programs when lacking comprehensive

data on income and consumption. This Proxy Means Testing (PMT) uses easily

identifiable indicators, such as asset ownership, as proxies for poverty. However

such PMT-based formulas, while good at excluding the non-poor, tend to miss

many qualifying households. Brown et al. (2016) show that a typical PMT-based

formula applied to data from nine African countries can predict less than half of

the extreme poor. Attempts to improve targeting accuracy have sought to harness

geo-spatial data and advances in machine learning. McBride and Nichols (2015)

present evidence that applying machine learning algorithms to PMT development
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can substantially improve the out-of-sample performance of these targeting tools.

Rather than predicting poverty, we will draw from this methodological approach

to predict food insecurity.

Resilience can be characterized using longitudinal data. Smerlak and Vaitla

(2016) look at long term time trends in country level caloric availability. Taking a

purely non-parametric approach, they consider a country resilient if its long-term

food insecurity trend is non-negative and any shocks experienced do not persist

over time. In parallel Chavas (2016) uses a threshold quantile auto-regressive

model and defines a resilient system as one where the first unit roots |λ1| > 1

given a particularly negative sequence of shocks (in the bottom quantile of yields)

but returns to a more stable |λ1| < 1 when yields are at or above average. Though

these methods are appealing in their non-parametric emphasis on time trends,

they are limited by the need for a very long time series and lack of plausible

counter-factuals. A minimum of 45-50 rounds required to identify path dynamics

is implausible given the time span of most development projects and inevitable

attrition.

This paper uses a novel 12-month dataset to map out the dynamics of shocks

and well-being in terms of food insecurity. The data was collected from a series

of sentinel sites in southern Malawi during a humanitarian emergency. Our team,

in collaboration with Catholic Relief Services (CRS), piloted the ‘Measuring In-

dicators for Resilience Analysis’ (MIRA) project: a low-burden, monthly survey

measuring food insecurity. Drawing inspiration from the literature, our paper uses

this data to explore and expand on three methodological approaches to measuring

resilience and food security:

1. An analysis of resilience as the perceived persistence of shocks
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2. An analysis of shifts in the stochastic distribution of food security over time.

3. An exercise in selecting the best predictors of future food insecurity.

Using an auto-regressive estimation model, we focus on the adverse effects of

subjective shocks and food insecurity as measured using the Coping Strategy Index.

These measures are fast moving and sensitive to aggravating or mitigating factors,

making them well suited for monthly panel data. In order to illustrate what can

be done with our data using this framework, we perform three types of analysis.

We start with an analysis estimating the persistence of subjective shocks. In

being subjective, the incidence and persistence of these shocks reflects their effects

on household well-being. For example, if two households experience the same

meteorological drought but one reports itself recovered earlier than the other, than

we can consider that household more resilient. We further test whether observed

household characteristics are correlated with the estimated persistence of specific

shocks. We find that having fields far from home and living in the flood plain

is correlated with a lower persistence of drought’s adverse effects, while female

headed households and households with a chronically ill member experience more

persistent effects of illness.

We then perform an analysis plotting the stochastic distribution of food in-

security outcomes. We use a Blundell-Bond estimator to trace households’ food

insecurity trajectories as a stochastic distribution, explicitly allowing for explanat-

ory co-variates that may shift this trajectory. We find that living in the flood plain,

having fields far from home and the gender of the household head shift the distri-

bution of CSI. We also find that though livestock seems to have little effect, the

amount of land households farm improves the distribution of expected outcomes.
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Finally, we seek to identify the best predictors of food insecurity in the immedi-

ate future. We use the Least Absolute Shrinkage and Selection Operator (LASSO),

which introduces a penalty term for additional coefficients and explicitly identi-

fies the best performing ones. We compare its performance to that of a random

forest algorithm, which runs a series of regression trees, splitting the dataset into

subsets defined by each variable. We find that the best predictors across both al-

gorithms are previous levels of food insecurity, living in a flood plain and distance

to drinking water. Mapping out our predictions and comparing them to actual

outcomes, we find with high accuracy that high levels of food insecurity are con-

centrated in small pockets, reflecting the local nature of most shocks. This can

inform geographic targeting decisions.

This paper makes the following contributions: We outline an approach for col-

lecting monthly rapid response data tailored to measuring such resilience outcomes.

We then demonstrate three different approaches for measuring resilience and the

key characteristics that drive it: the first based on subjective shock persistence, the

second on the stochastic distribution of food insecurity, and the third on predicting

future food insecurity.

The rest of the paper is organized as follows: Section II outlines our data collec-

tion strategy and summary statistics. Section III outlines how we can use transition

probabilities to describe the persistence of subjective shocks’ adverse effects. Sec-

tion IV uses a Blundell-Bond estimator to infer the projected distribution of food

insecurity as measured using the Coping Strategy Index. Section V demonstrates

our use of LASSO to infer the best predictors of future food insecurity. Section VI

concludes.
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3.2 Data

3.2.1 The MIRA project

Malawi is a landlocked country in southeastern Africa. With fertile land and an

influx of immigrants from its less stable neighbors, it has one of the highest pop-

ulation densities in the region. Eighty-four percent of its population lives in rural

areas, most of them reliant on subsistence agriculture (Bank, 2010). These factors

make it particularly vulnerable to weather related shocks. As a case in point, the

Shire river basin in southern Malawi was hit by devastating floods in January 2015,

displacing hundreds of thousands of people. With resettlement underway, a con-

sortium of development partners worked with the government to launch the United

in Building and Advancing Life Expectations (UBALE) program, a program that

serves three of the poorest and disaster-prone districts in MalawiChikwawa, Nsanje,

and Rural Blantyre. Over the course of our survey (2016-2017), southern Malawi

was severely affected by a cyclical El-Niño, which led to severe drought and wide-

spread crop failure.

Catholic Relief Services approached Cornell with a proposal to pilot a low-

burden, high frequency data collection protocol that would enable researchers and

policymakers to track household food insecurity on a monthly basis. This differed

from most ‘early warning’ systems in its panel structure, which permitted more

sophisticated analysis than repeated cross-sectional data. In particular, this data

set was to permit the development of measures specific to shocks and coping capa-

cities which CRS would use in its impact evaluation. This agreement became the

Measuring Indicators for Resilience Analysis (MIRA) project.

59



The survey was piloted in April 2016. Once finalized, a 45 minute baseline

survey containing demographic, livelihood, economic, and shock history data was

administered between May 18th and June 30th 2016. These household character-

istics were considered either time invariant or sufficiently slow moving as to remain

fixed over a year’s time. In addition to standard indicators of assets, such as land

and livestock, our pilot uncovered locally important indicators of prosperity. A

substantial minority of households who lived far from some of their fields had a

secondary ‘house,’ often a shack where they could store tools and sleep overnight

if necessary. It therefore proved a useful proxy for spatial dispersion of the house-

hold’s fields. We also wanted to control for basic demographic indicators, including

the incidence of chronic illness and disability.

The same households received monthly follow-up visits from June 2106 onwards,

every month for a year up to and including May 2017. During these visits, enu-

merators equipped with smart-phones administered a ‘rapid-response’ 5-15 minute

survey tracking the persistence of shocks and related food insecurity outcomes. Im-

portantly, the surveys retain respondents prior information, allowing for follow-up

questions that focused on the continued effects of previously reported shocks. This

case management feature allowed us to more explicitly track the persistence of ex-

perienced shocks over time.1 In order to address issues of attrition, the researchers

in partnership with CRS worked closely with community leaders to convey the

importance of the data collection exercise.2

1The open source CommCare survey application was selected for the high frequency survey
because of its case-management functionality, which allows for a dynamic survey based on pre-
vious response. Surveys saved on enumerator’s smart-phones were uploaded to the cloud every
month, making anonymous household data available in near real time to researchers for prompt
analysis.

2Tracking households month-on-month was facilitated by relying on local enumerators who
knew the community. These enumerators were incentivized by a compensation scheme which paid
them per successful survey uploaded, reducing attrition. To prevent fraud, the field supervisor
in collaboration with the researchers monitored their meta-data, including location and time of
survey.
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In June 2017 the initial data collection exercise in Chikwawa was capped with

an end-line. This 45 min survey collected the same set of questions as the baseline

in order to construct a panel dataset (see supplementary materials). Because of

the noted importance of social networks, it also included a module on family and

community ties the household had with other members of the community. It

also included a final round of high frequency data. A second round was initiated

in August 2017 encompassing the districts of Chikwawa, Nsanje and Blantyre in

southern Malawi and intended to run until July 2018.

3.2.2 Sampling

Sampling was performed using a combination of purposive and random sampling.

The purposive sampling was used to ensure variation in flooding history and risk.

The Shire river flood plain, though more prone to flooding, is also more fertile than

the higher lands surrounding it, and less prone to drought. In order to identify

this flood plain objectively, we used flood-risk data from the Dartmouth Flood

Observatory.

Within the district of Chikwawa in southern Malawi, we selected 3 traditional

authorities (TAs): Mikhwira, Ngabu, and Lundu.3 Within each TA we randomly

sampled community level administrative units, called Group Village Heads (GVH).

We stratified our sample to ensure it contained both GVHs in the flood plain and

GVHs above the floodplain. This allowed for within TA, between GVH heterogen-

eity in how households experience drought and floods. Figure 3.1 illustrates the

2015 flood-zones and sampled households.

3During the roll-out an initially selected village was dropped and replace with a village in
another TA, M’bande.
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After stratifying the GVHs in each TA into high and low flood risk categories,

two to three GHVs were randomly selected from each TA-strata for a total of

17. One to two villages were then randomly selected from each GVH and 15-25

households were randomly selected from each village. As we can see from table

3.1, the final sample was 580 households, from 31 villages, divided between high

risk flood-zones and low risk non flood-zones.

With random selection carried out at the community and household level, the

household is used as the unit of analysis.

3.2.3 Key Variables

We can classify our data into three types: household characteristics Xi, shocks Zi,t

and food insecurity Yi,t.

Our baseline includes a series of household characteristics Xi which were not

included in the high frequency survey. We included existing measures from previous

surveys for consistency, and added a few which our preliminary field work flagged

as particularly relevant. These include measures of assets, such as the amount of

land farmed, measured in hectares, and livestock owned, measured using Tropical

Livestock Units (TLU).4

Based on their geo-location, we determined whether households lived in the

flood plain as defined by the extent of the 2015 flood. As discussed earlier, we use

owning a second house as a proxy for having fields far from home, as members of

the households would need to overnight there. Followup interviews on the ground

4Tropical Livestock Units are a standardized measure used to aggregate the value of a house-
hold’s livestock, with weight equivalents for every species (Le Houérou and Hoste, 1977). We
used the following weights: cattle: 1, donkeys: 1, goats: .15, pigs: .2, chickens: .01
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revealed that these secondary houses are usually little more than shacks, with

negligible value as a standalone asset. We also collected characteristics about the

head of the household, including their age, gender and education level. Finally,

we asked if any members of the household were chronically ill or disabled.5 Table

3.2 summarizes these statistics. We use these to create sub-groups studying their

effect on shock persistence and welfare trajectories.

We also collected on reported shocks Zi,t, where we define shocks as an un-

expected event adversely affecting food insecurity.6 Households were asked about

a series of 14 subjective shocks they may have experienced, as well as their per-

ceived severity. The dynamic questionnaire then prompted any household about

previously reported shocks, asking their perceived state of recovery. As long as the

household had not recovered, the questionnaire would prompt again in subsequent

rounds. They were also asked about any new shocks experienced. A household

could therefore experience the adverse effects of several shocks at once, and exper-

ience the same type of shock again after having previously recovered.

We chose to use a subjective measure of shocks based on the premise that

households are better able to internalize the impact of the shock on their own food

insecurity. There is evidence to support that subjective measures track well with

objective measures of well-being (Oswald and Wu, 2010; Stevenson and Wolfers,

2013). While communities are exposed to similar level of objective risk, their re-

sponses and perceptions are highly heterogeneous (Barrett et al., 2001; Doss et al.,

2008). Realized shocks are also heterogeneously perceived by the community, sub-

ject to individual reference points (Hunter et al., 2013). As it reflects a household’s

5For confidentiality reasons we did not explicitly ask about HIV status. However conversations
with enumerators and local health officials suggest that ’chronically ill’ was often understood as
implicitly referring to HIV.

6We chose to exclude potentially positive shocks as the effects on food insecurity are asym-
metrical (Taylor, 1991).
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perception of a shock rather than its objective incidence, the measure is inherently

endogenous to a household’s capacity to cope. For example, a household may ex-

perience the effects of drought long after the objectively measured drought is over.

In this context, observing the trends in the incidence and persistence of a shock’s

adverse effects can inform us about trends in households’ wellbeing and coping

capacity.

Figure 3.2 shows the reported household incidence of frequently reported sub-

jective shocks across the 12 months monitored. These include drought, flooding,

illness and crop-disease. The dotted line represents the trend lines based solely on

the first and last round.

Finally we track food insecurity Yi,t, measured using the Coping Strategy Index

(CSI). The CSI is a composite weighted score of various strategies households

engage in when faced with short term food shortages (Maxwell, 1996). Coping

strategies reflect activities households may be compelled into, often due to food

insecurity, and compose the set c ∈ C. These include borrowing food, taking on

piece work for additional income, consuming less preferred foods, reducing either

the number or the size of meals and in extreme cases sending children to beg. The

survey asks the number of days in the past week a household engaged in each of

these activities, then multiplies those days by a weight wc.
7

CSI is therefore the weighted sum of days engaged in each coping strategy c:

CSI =
C
∑

c

wc ∗ daysc (3.1)

Where daysc is the number of days a household had engaged in a given coping

7We use the following weighting: Borrow food=2, Piece Work=1, consuming less preferred
foods=1, reducing meals=1, reduce size of meals=1, children begging=4. These recommended
weights are the result of extensive consultation and calibration. See Maxwell et al., 2003 for
further details.
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strategy c over the past week, and wc is the assigned severity weight.

CSI is useful for rapidly measuring food insecurity in a humanitarian context,

strongly correlated with more complex and time intensive measures of food insec-

urity (Maxwell et al., 2008). A higher CSI score indicates higher food insecurity

and therefore lower well-being. A household with a CSI of 10 may do some piece

work on the side, eat less preferred foods or limit portion size a few days a week.

A household with a CSI of 30 may do this every day, while also skipping meals and

occasionally borrowing food. A household with a CSI of 60 is engaging in all these

coping mechanisms daily, but must also send its children out to beg on occasion. A

household engaged in all coping strategies all the time has a maximum CSI score

of 70. In the context of chronic food insecurity, as in the Shire river basin, we

consider CSI a valid measure of negative wellbeing.

For illustrative purposes, we disaggregate the observed trajectory of CSI using

household characteristics. For binary variables we disaggregate the population by

type, and for continuous variables we disaggregate by whether a household is above

or below the median.

Figures 3.3 and 3.4 illustrate the non-parametric CSI trajectories disaggregated

by these observable characteristics. We immediately notice that the data collection

exercise began in the midst of a food emergency, with high levels of CSI throughout

the population. The severity of the emergency as measured using CSI abated by

the end of the year, but not equally for all groups. From Figure 3.3, there is no

significant difference in the CSI trajectory when dis-aggregated by the household

head’s age, years of education, or whether a member of the household is chronically

ill. Households headed by men are worse off at first, but the trend quickly converges

with households headed by women.
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From Figure 3.4a, households with above median Tropical Livestock Units

(TLU) experience lower levels of CSI overall, but their trends mimic those of

their neighbors who have below median TLU. We see a marginal difference for

households with above median access to land, but not economically significant.

From Figure 3.4b, households living in the flood plain recover much faster and see

their CSI drop. Having a secondary house, and therefore spatially dispersed fields,

makes one marginally less food insecure, but the trends match those of households

without a secondary house.

3.2.4 Attrition

Attrition is a recurring concern when collecting panel data. If too many obser-

vations drop out of the sample, it erodes the statistical power of our estimates.

We therefore over-sampled initially, allowing for up to 5% monthly attrition. Non-

random attrition can also be a concern. This is problematic when it leads to

correlation between our error term and our observables, leading to bias.

Table 3.3 illustrates attrition across time. Monthly attrition was 1.25 % on

average, though much higher in certain months. Between June and July logistical

friction due to a change in enumerators and data collection platform meant a

village was missed. In December, seasonal flooding washed out the roads, and an

enumerator passed away. To mitigate attrition due to these events, households

missed in a given round were still sought out for interviews in subsequent rounds,

allowing them to re-enter the sample rather than drop out entirely.

To control for potentially non-random attrition, we use a Heckman style two

step estimator (Heckman, 1979). We label an observation Missingi,t = 1 if we
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have no observation for household i in period t, and Missingi,t = 0 otherwise.

We use probit maximum likelihood to estimate whether this attrition is driven by

observable characteristics. Since this is a panel we control for time effects and

community fixed effects.8 Finally, to address concerns that we are selecting on

unobservables we use the enumerators’ unique code as an additional explanatory

variable. The exclusion restriction is valid under the assumption that the identity

of the enumerator will affect the likelihood of response but not the well-being of

the households interviewed. From Table 3.4 living in a flood plain is positively

correlated with the probability of a missing observation. We had anticipated this

discrepancy when we stratified our sample. Other coefficients become insignificant

once we control for community and enumerator fixed effects. The predicted prob-

ability of selection is used to generate a Heckman inverse Mills ratio λ̂, which we

use as control in our subsequent specifications.

Similarly to Lillard and Panis, 1998, we run the probit and use the predicted

outcome to generate the household level inverse Mills ratio λ̂. Because attrition

was driven both We include λ̂ as a control in our subsequent regressions. We must

still assume that, conditional on

3.3 Resilience as Perceived Shock Persistence

The perceived persistence of a shock’s effects is a good indicator of resilience. Take

two households experiencing the same shock in a given month; in the next month, if

one household is still experiencing the effects of the shock while the other has fully

recovered, then the latter household is more resilient. The perceived persistence of

8Since we are estimate a probit we cannot use a household fixed effect, see Wooldridge, 2010
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a shock’s effects is therefore a good indicator. The greater the shock’s persistence,

the lower the household’s resilience to that particular shock.

With 12 rounds we can look at how persistent shocks’ effects are over time. We

estimate a linear probability model with discrete states of the world. This allows us

to generate Markov Transition Matrices mapping the probability of experiencing

a shock’s adverse effects and the probability of those effects persisting, for each

month and every shock experienced. We then regress these predicted persistence

probabilities against observed characteristics.

We posit two states Zs
i,t ∈ {0, 1}, reflecting whether household i is experiencing

the adverse effects of a subjective shock s ∈ S in period t. Using the questionnaire’s

dynamic nature, respondents were prompted on the persistent effects of previously

reported shocks if Zs
i,t−1 = 1. If households reported a full recovery, then Zs

i,t = 0.

If a household reported not yet recovering from the given shock, then the shock’s

effects persisted and Zs
i,t = 1. In the next round households were prompted about

the effects of ongoing shocks, as well as whether they experienced new ones. In both

cases, positive responses meant Zs
i,t+1 = 1. As an illustration Table 3.5 shows the

correlation between prevalent shocks and food security. As an inherently subjective

measure, tracking household’s perception of shocks allows us to approximate how

that shock affects a household’s well-being. Households could therefore experience

multiple shocks at once and fluctuate in and out of experiencing a given shock over

time.
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3.3.1 Specification

Given these two states, experiencing and not experiencing shock s, the probability

of passing from state k to state j is a Markov process:

Pr(Zs
t = j|Zs

t−1 = k) = pkj (3.2)

Where k, j ∈ {0, 1}.

To estimate shock persistence, we use an auto-regressive (AR) linear probability

model with one lag.9

Zs
i,t = γ0 + γs1Z

s
i,t−1 + γ′st (Z

s
i,t−1 ∗ δt) + δt + µs

i + ǫi,t (3.3)

where γs1 conditions the perceived shock s on previously experiencing shock s, γ′st

allows this persistence to vary by round, δt is a monthly time fixed effect and µs
i

is a household fixed effect. With a linear probability model, the coefficients have

an intuitive interpretation: ps0,1 = γs0 + δt is the probability of experiencing the

adverse effects of a given shock, conditional on not experiencing them previously.

p1,1 = γs0 + γs1 + γ′st + δt is the probability a shock’s adverse effects will persist into

the next period. γst and δt allow for a non-stationary process since the transition

probability can change over time.10

We can present our estimated coefficients as a Markov Transition matrix:

9Our results are robust to additional lags.
10To avoid collinearity we must set one of the time fixed effects to equal 0. This is arbitrary

but then becomes the month of reference for the other δt terms.
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Zs
i,t = 0 Zs

i,t = 1

Zs
i,t−1 = 0 ps0,0 = 1− (γs0 + δt) ps0,1 = γs0 + δt

(Probability of not experiencing (Probability of experiencing new

new shock s, given shock s was shock s, given shock s was not

not experienced previously) experienced previously)

Zs
i,t−1 = 1 ps1,0 = 1− (γs0 + γs1 + γ′st + δt) ps1,1 = γs0 + γs1 + γ′st + δt

(Probability of shock s not (Probability of shock s

persisting, given shock s persisting, given shock s

was experienced previously) was experienced previously)

Our key parameters of interest are ps1,1, the probability of shock s persisting,

and ps1,0 the probability of recovering from shock s. We can think of ps1,0 as resilience

to shock s. ps0,1 is the probability of shock s occurring when it hasn’t occurred

before. Since it is a subjective measure, we can also think of ps0,1 as vulnerability

to shock s.

3.3.2 Estimating Shock Persistence

We estimate equation (3), the persistence of shocks over time. We take the four

most frequent shocks: S = {drought, flooding, crop disease illness} and regress

them against their own values, lagged by one month. Table 3.6 uses a least squares

regression controlling for household and time fixed effects, with errors clustered at
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the Group Village Head (GVH) level. For succinctness we only report γ̂s0 and γ̂s1

for a given shock s. As discussed earlier, since we allow the coefficients to vary

over time these reported estimates offer only a snapshot, determined by which time

dummy we set as point of reference. Here we set it as May 2017, our last round.11

Our data also allows us to explore whether multiple shocks interact and

whether those effects exacerbate or mitigate one another. Table 3.7 estimates (3)

but includes lags of the other most prevalent shocks. The only significant cross

correlation is that experiencing flooding makes it more likely to experience crop

disease in the subsequent round.

With four shocks and 11 rounds12, we can construct a total of 44 transition

matrices. For illustrative purposes we choose three periods of reference aligned with

the agricultural calendar: November (round 6), when planting begins; February

(round 9), the height of the hungry season; and May (round 12), when the harvest

comes in (Malcomb et al., 2014). Tables 3.8, 3.9, 3.10 and 3.11 present these

transition matrices across months for our four shocks of interest.

Recall that p̂s1,1 = γ̂s0+γ̂
s
1+γ̂

s
t +δt is the persistence of shock s, the probability

that a household continues experiencing its adverse effects one month later. As

an illustration, from Table 3.8a, the probability of the effects of drought persisting

in November is 88.5%. Households only had a 11.5% chance of recovering from

the effects of drought in the next month, which we consider an indicator of low

resilience. This does not change much over the subsequent six months, as the

probability of a drought’s effects persisting are 85.3% in February (Table 3.8b)

and 86.1% in May (Table 3.8c).

11This is done by setting the relevant time dummy, i.e. δMay2017 = 0 and γs
May2017 = 0.

12We lose one round by construct due to the lag
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These tables allow us to track how the perceived incidence and persistence

of the adverse effects of subjective shocks vary of over time. For example, while

the effects of flooding are highly persistent in November (Table 3.9a), by May

(Table 3.9c) the persistence of their effects has subsided significantly. Conversely

the persistence of illness is quite stable throughout the three rounds, as we can

see in Table 3.10. Figure 3.5a illustrates this change in the persistence of shocks

p̂s1,1 visually across all rounds. We see that while the persistence of a drought’s

effects remains stable across time, the persistence of crop-disease’s effects increase.

Unsurprisingly this increase coincides with the planting season.

In addition to estimating persistence, a useful feature of the specification is

that we can separately estimate the probability of a household experiencing the

effects of a new shock, its incidence p̂s0,1 = γ̂s0+ δt. For example, crop-disease starts

at a lower level of incidence in Table 3.11a with p̂s0,1 = 15.1% but this rapidly

climbs to 44.8% in Table 3.11b and 41.9% in Table 3.11c. It makes sense that the

adverse effects of crop disease are most acute when the planted harvest is nearing

maturation. Figure 3.5b illustrates how p̂s0,1 changes over time for each shock s.

We notice that incidence and persistence do not necessarily move in tandem. For

example, the effects of drought are very persistent, at p̂s1,1 > 80% throughout the

year, where s = drought. By contrast p̂s0,1 fluctuates over time, reflecting the

seasonality of a drought’s incidence.

3.3.3 Shock Persistence and Household Characteristics

The results of having mapped out the persistence of shocks begs the question:

what are the household characteristics correlated with the persistence of a given

shock s? From the above specification we can predict the probability of persistence
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of shock s for a given household i at time t, ρ̂si,t = p̂s0,1 + µ̂s
i . We can then regress

this predicted value against time invariant characteristics Xi:

ρ̂si,t = α0 + α1Xi + ζi,t (3.4)

allowing us to infer the correlation between these fixed effects and house-

hold characteristics
δρ̂si,t
δXi

= α̂1.
13 A negative correlation indicates that households

with these characteristics are less likely to experience the persistent effects of a

given shock. As discussed earlier, we consider such non-persistence of a shock’s

effects as a sign of resilience. We estimate equation (4) using the observed char-

acteristics from the baseline. Figure 3.6 presents estimated correlations with their

bootstrapped standard errors. These descriptives are inherently endogenous, but

can help inform which type of households are more vulnerable to shocks.

Living in a flood plain is negatively correlated with the persistence of a

drought’s adverse effects, but positively correlated with the persistence of illness’s

adverse effects. Both of these make sense, as soil in the flood-plain is likely to

retain more moisture, but the abundance of stagnant water offers breeding pools

for malaria and cholera. As discussed earlier, having a secondary house indicates

the household has fields far from its primary home, where they sometimes have to

spend the night. This suggests that households with spatially dispersed fields are

more resilience to drought. Female headed headed households are more likely to

experience the persistent effects of illness and are therefore less resilient. Finally, we

unsurprisingly find a significant correlation between the persistence of an illness’s

effects and whether the household has a chronically ill member.

13Since these are point estimates, we bootstrap the above two-step process.
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3.3.4 Resilience as a Conditional Moments-Based Approach

An alternative to looking at the persistence of specific shocks is to think of resili-

ence as the stochastic distribution in food insecurity outcomes yn,t. For compar-

ative purposes we also estimate the above data using the Cissé and Barrett, 2016

approach. This is a three step process:

The first step estimates

CSIit =
3

∑

γ=1

(βM,γCSI
γ
i,t−1) + δM,1Xi,t + δM,2Zi,t−1 + ui,t (3.5)

where Yi,t is CSI, Xi,t the set of covariates and Zi,t the set of shocks experi-

enced.

The second step regresses the same specification on estimated variance, σ2
CSI =

hatu2i,t:

σ2
CSI =

3
∑

γ=1

(βV,γCSI
γ
i,t−1) + δVXi,t + ǫi,t (3.6)

We posit ˆCSIit and hatsigma2i,t as the first and second moments of a con-

ditional distribution, respectively. Under the assumption that CSIi,t has either a

normal or gamma distribution, we construct the cumulative density function and

calculate p̂i,t(X,Z) = P (CSIi,t ≤ ¯CSI), where ¯CSI is a threshold level of food

insecurity. We posit ¯CSI = 10 The estimated parameters are reported in Table

3.12a. We can then estimate
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p̂i,t =
3

∑

γ=1

(βR,γCSI
γ
i,t−1) + δRXi,t + ηi,t (3.7)

Where p̂i,t can be thought of as ‘resilience’. Estimates of equations (5), (6)

and (7) for both a normal and gamma distribution are reported in Table 3.12b. Of

the household covariates, flood plain has a large and significant positive correlation

with household resilience. The correlation with having a secondary house is large in

magnitude and positive but not statistically significant. The other characteristics

we identified as important relative to specific shocks, such as gender and being

chronically ill, are not significantly different from 0. Of the shocks, experiencing

flooding is correlated with a significant decrease in resilience, as does drought,

though the effect is only significant for P̂Gamma. The effect of Illness is marginally

significant and negative.

These results highlight the similarities and differences between an approach

focusing on subjective shock persistence and one based on conditional moments.

The insights are broadly similar: they emphasize the persistent adverse effects of

flooding and drought on household food security. Both also highlight that living in

the flood plain and having a secondary house mitigates these adverse effects. Some

of the details differ: Gender and being chronically ill have no significant effect on

p̂i,t in Table 3.12. There are two possible explanations: those characteristics only

affect the persistence of illness for the 20-25% of households experiencing illness

at any given time, so the effect might be lost in the statistical noise. Altern-

atively, since persistent illness has little to no effect on food security (see Table

3.5), characteristics shifting the persistence of illness may not affect the stochastic

distribution of food security. This comparative analysis showcases how the two ap-

proaches complement each other and offer a fuller picture of household resilience.
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3.4 Distribution of Food Insecurity

We can also harness this data to infer seasonal trends in food insecurity over time.

We use the Coping Strategy Index (CSI) as our measure of food insecurity. In

general, the more coping strategies a household employs, the worse off it is, and

households which are resilient should experience decreasing levels of CSI over time.

We draw our model from the literature on poverty dynamics and posit CSI as an

observed outcome from a stochastic distribution of potential outcomes. This allows

us to verify whether the characteristics we identified as determinants of resilience

also affect the trajectory of food insecurity.

We estimate an AR(1) model using a Blundell-Bond estimator (Blundell and

Bond, 1998). From the predicted values, we plot the distribution of outcomes as

∆CSI conditional on observable characteristics.

3.4.1 Specification

To motivate our investigation, we build on existing theory concerning household

poverty dynamics: Specifically, we postulate a conditional trajectory for dynamic

food insecurity Yt:

Yt = F (Yt−1, Zt|X) (3.8)

Food insecurity is a function of previous food insecurity Yt−1 and any shock Zt

experienced. F(.) can be a higher order polynomial.14 X represents conditioning

14There is a larger literature on the production function of households living at or near subsist-
ence level, well summarized in Barrett et al., 2016. This production function is often non-linear.
Multiple technologies may lead to a convex hull with one or multiple kinks. Lumpy assets, such
as livestock, may make it difficult to incrementally acquire wealth over time. A linear function
would therefore misspecify how current food insecurity relates to future food insecurity.
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variables, which may lead to different trajectories. Our observed food insecur-

ity outcome yt ∼ Yt is a random variable drawn from an unknown conditional

distribution.

We model the conditional distribution of food insecurity trajectories, CSI, as

a continuous state Markov chain (Sargent and Stachurski, 2016). We can infer the

distribution of yt ∼ ψt given the prior distribution ψt−1(yt−1):

ψt(yt) =

∫

p(yt, yt−1)ψt−1(yt−1)dyt (3.9)

where p(yt, yt−1) is the joint distribution of yt−1 ∈ St−1 and yt ∈ St. This result

can be generalized to a Cumulative Distribution Function:

Ft(yt) =

∫

G(yt, yt−1)Ft−1dyt (3.10)

one can compute the family of distributions G(yt, .) by setting:

G(yt, yt−1) := P{β0 +
K
∑

k=1

βky
k
t−1 + ξt ≤ yt} (3.11)

an AR process with a polynomial of degree K. As discussed earlier, we want to

allow for non-linearity in the dynamics of CSI over time by estimating a higher

order polynomial. We can construct the above by estimating:

yi,t = β0 +
K
∑

k=1

βky
k
i,t−1 + Zi,t + δt + ǫi,t (3.12)

and plotting the predicted distribution. For robustness, we control for observable

shocks with Zn,t.
15 δt controls for time fixed effects.

In order to condition this distribution on various characteristics Xi, we run

the above specification on observable subsets of the sample. These criteria include

15These include the four principle shocks reported: drought, flood, crop-disease and illness.
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age, education, gender, whether the household have a chronically ill member at

home, as well as land farmed, tropical livestock units, whether the household lived

in the flood plain and whether the households has a secondary home. As before, for

binary variables we disaggregate the sample by type, and for continuous variables

we disaggregate by whether a household is above or below the median value.

3.4.2 Estimator: Blundell Bond System GMM

An AR process allows us to exploit the Arellano Bond (AB) estimator (Arellano

and Bond, 1991), which addresses potential endogeneity by differencing the regres-

sion and instrumenting the lagged dependent variable with previous lags.

A followup paper (Blundell and Bond, 1998) addresses the issue of weak

instruments. Instead of differencing the dependent variable, it differences the in-

struments, making them exogenous to the fixed effect and demonstrating that this

achieves greater efficiency. It also performs better closer to the unit root. Because

this combines the original AB estimator with a transformed equation by stacking

the observations, it is often referred to as the System General Method of Moments

(GMM) estimator.

To illustrate, take an AR(1) model:

ynt = αyn,t−1 + ηi + υnt (3.13)

where ηn represents time invariant unobservables, υnt is a time varying stochastic

error term and µnt ≡ ηn + υnt. We assume the following moment conditions in

order for our estimates to be consistent:
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A1) E(υnt, υns) = 0 ∀t 6= s (No serial correlation)

A2) E(yn1, υnt) = 0 for t = 2, ...T (Initial Conditions)

A3) E(µn3,∆yn2) = 0 for t = 2, ...T (Initial deviations uncorrelated

with aggregate error)

Which imply

E(µnt∆yn,t−1) = 0 for t = 3, ...T

Note that stationarity is a sufficient but not necessary condition to satisfy A3. Any

first period randomly distributed deviation from the long term mean will preserve

this assumption. This gives us a set of instruments ∆yn,t−1 to exploit.

The model explicitly assumes an AR(1) process. In general, an observed

AR(T) process requires us to restrict our set of instruments to the set t ≥ T − 1.

Fortunately we can take advantage of our relatively long panel. We also report

Sargan’s J-test of over-identified restrictions.

3.4.3 Estimation

Using CSI as a measure of food insecurity we estimate equation (9) using a

Blundell-Bond estimator for K = 2. We include a square term in order to al-

low for non-linearity in the persistence of CSI across the spectrum of potential

outcomes.16 As we observed in Figures 3.3 and 3.4, there was an acute food crisis

16We test for high order polynomials and find that they introduce too much noise, rendering
all coefficients insignificant.

79



at the beginning of the data collection period, leading to high inital levels of CSI

which only gradually abated. In order to capture these shifting dynamics, we di-

vided our sample into two halves, June-November and December-May. The results

are presented in Table 3.13. Column (1) presents the specification for the entire

year sampled, June through May. Column (2) estimates the specification for the

first half of the year, and column (3) estimates it for the 2nd half of the year.17

We ran a series of tests on the specification to verify our assumptions. Under

our first identifying assumption there is no serial correlation of order 3 or above.

By construct, the residuals of the differenced errors in the Blundell Bond model

are serially correlated AR(1). We also find evidence of AR(2) correlation in some

of our specifications, so in order to avoid serial correlation we restrict our lagged

instruments to period t-3 and higher. We test and fail to reject the null of no

AR(3) serial correlation.

We investigate the exclusion restriction on our constructed instrumental vari-

ables with the Sargan-Hansen test, which tests the validity of over-identified re-

strictions.18 The null hypothesis is that the over-identified restrictions are valid,

and rejection of the null would therefore cast doubt on the consistency of our es-

timates. The Sargan-Hansen test fails to reject the null in all our specifications,

except for columns (1) and (3) of Table 3.17a. Given the number of regressions

we run, it is statistically plausible that this is a false positive, but we nevertheless

refrain from interpreting these results.19

17Unlike the estimation in section 3, we cannot divide our sample down further as the Blundell
Bond estimator requires a minimum of 4 rounds, 5 if we want to run a Sargan-Hansen over-
identification test.

18An issue with system GMM is that the large number or instruments generates weakens the
Sargan-Hansen statistic, increasing the likelihood of type I error. We use the Windmeijer, 2005
small sample correction and the collapsed instruments matrix suggested by Roodman, 2009,
restricting the set of lags for increased precision.

19For robustness we run the same specification while varying the number of lagged instruments,
consistently failing to reject Sargan-Hansen with similar coefficient estimates.
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We estimate equation (9) for sub-samples of the population to determine

which household characteristics affect the expected distribution of CSI. This condi-

tions the distribution of our expected outcomes on characteristics Xn. Tables 3.14,

3.15 3.16 and 3.17 give us the results from estimating a second order lagged poly-

nomial, dissaggregated by observable characteristics as discussed above. Columns

(1)-(3) run the specification for observations above the median, or where the bin-

ary variable equals 1. Columns (4)-(6) run the specification for observations below

the median, or where the binary variable equals 0. Columns (1) and (4) run this

specification for the full time span of the sample, June through May. Columns (2)

and (5) run the specification for the time period June-November, and columns (3)

and (6) run the specification for the time period December-May. For robustness

we estimate the same set of results with the inverse mills ration γ, with similar

results in order and magnitude. These are reported in the supplementary tables.

In order to interpret these results intuitively we predict the change in CSI

conditional on these characteristics and project the resultant distribution. We pre-

dict the outcome variable ˆCSIn,t and by extension ∆ ˆCSIn,t = ˆCSIn,t −CSIn,t−1,

then project the resultant distributions. This is the expected change in CSI next

month, averaged over the sample or relevant sub-sample. Because the recovery

happens largely in the second half of the year, we focus on columns (3) and (6) in

each of the above tables, giving us Figures 3.7 and 3.8. From Figure 3.7a, younger

households are practically indistinguishable from older households in the projected

change in CSI. Households with above median education are slightly more likely

to experience increased CSI, though the difference is not economically meaningful.

From Figure 3.7b, male headed households are more likely to experience increas-

ing levels of food insecurity on average, but have a long left tail. Female headed

households are more stable, with their expected change in CSI centered around 0.
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Households with and without a chronically ill member have similar distributions.

From Figure 3.8a, households with access to more than 2 hectares of farming

land can expect little change on average in CSI, while households with less than

median levels have a greater risk of experiencing increased CSI. Unsurprisingly,

having more land is a good hedge against hunger. There is no distinguishable

difference in the distribution for households with or without livestock. We do not

interpret the results for flood plains because we reject Hansen’s J test (see above).

Interestingly, households with a secondary home have a left skewed distribution,

implying that they can expect lower CSI and therefore a quicker recovery. This

coincides nicely with the insights from Figure 3.6, where having a secondary house

makes it less likely for the effects of drought to persist.

To summarize, the characteristics that most influence a household’s food

insecurity by shifting the predicted distribution of ∆CSI are gender, access to

land and owning a secondary house.

3.5 Predicting Food Insecurity

A third approach to measuring resilience is as the predictor of food insecurity

in the immediate future. In the reduced form specification above we based our

choice of observable characteristics on informed priors, which is not necessarily

desirable when we seek to maximize predictive accuracy. Instead we propose to

search through the full scope of available data to find the best predictors of fu-

ture CSI. We do this using supervised machine learning algorithms. We compare

two algorithms, the Least Absolute Shrinkage and Selection Operator (LASSO)

and Random Forest. Both allow us to identify the best predictors by selecting a
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subset of promising variables within a larger set. We also show how the predicted

outcomes from these algorithms can be used for geographic targeting.

The use of these algorithms has recently gained popularity in terms of both

predicting poverty and shortlisting variables for the purpose of targeting. In

terms of targeting, Jean et al., 2016 show how running an image recognition al-

gorithm through publicly available satellite imagery significantly improves geo-

graphic poverty targeting. Blumenstock et al., 2015 use Call Detail Records

(CDR) from respondents’ cell-phones to predict poverty in Rwanda. A compli-

mentary body of work is concerned with improving accuracy of targeted social

programs when lacking comprehensive data on income and consumption. McBride

and Nichols, 2015 present evidence that applying machine learning algorithms to

PMT development can substantially improve the out-of-sample performance of

these targeting tools. Kshirsagar et al., 2017 use a bootstrapped LASSO to se-

lect a subset of indicators which accurately predict poverty rates, and show that

they outperform a random distribution benchmark. Building on this literature, we

innovate here by applying this approach to dynamic food security data.

Though a wide array of popular supervised machine learning tools exist, the

general premise is straightforward.20 Divide the dataset in two subsets. Using

the first subset of the data, the ‘training’ set, the model is calibrated. These

calibrated parameters are then used to predict outcomes in the second, ‘testing’

subset of the data. The performance of an algorithm is judged by its predictive

accuracy, as measured using the R2. The process is then iterated in an attempt

to improve performance. In addition, as an intermediary step some algorithms

explicitly identify a subset of variables that are considered the best predictors.

20‘Supervised’ machine learning use inputs x to predict outputs y. ‘Unsupervised’ tools seek
to identify patterns in x without corresponding outputs.
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These are the predictors we are interested in.

We use the Least Absolute Shrinkage and Selection Operator (LASSO) and

Random Forests to identify the best predictors of CSI. LASSO was selected because

it retains much of the structure of linear regression analysis, allowing for intuitive

interpretation of the coefficients. These can be compared in sign and magnitude

to results elsewhere in the paper. Random Forest offers a salient contrast, as by

design it is non-linear and every variable is implicitly allowed to interact with

every other variable. Though more flexible, this ’black box’ approach makes it

difficult to interpret the sign of any one coefficient, as it depends on all the others.

Comparing the performance of both is therefore useful. More sophisticated deep

learning algorithms using neural networks were too demanding of the data given

our limited sample size.

We trained our data on the 10 rounds from June to March (the ‘training’

set) and sought to predict the likely outcomes for April and May (the ‘test’ set),

comparing it with actual CSI levels in those two months.21 A feature of using this

machine learning technique is that it harnesses all the variables collected, rather

than just the data described in section 2. These included asset indicators from the

baseline, such as quality of the home, distance to drinking water and diet. They

also included time varying indicators, such as the type and source of assistance a

household received and any change in assets. We kept all variables with less than

2% of observations missing.22 After this cleaning process, we were left with an R
d

space of predictors, where d=79 variables.

21A rule of thumb is splitting the data into roughly 80 % training and 20 % testing. We erred
on the side of a slightly larger training dataset because the algorithms further subdivide this
dataset for cross-validation.

22In order to avoid dropping too many observations, we substituted values for those missing
variables using nearest matches from observed data, randomly sampling from the set of nearest
observations.
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3.5.1 LASSO

In a traditional regression, additional parameters always increase predictive per-

formance but risk overfitting the data. LASSO, short for Least Absolute Shrinkage

and Selection Operator, is a linear regression which penalizes additional parameters

β by including the term λ′‖β‖.23 The modified least squares operator is therefore

min
β∈Rd

{

1

N

N
∑

i=1

(Yi,t − βXi,t)
2 + λ‖β‖

}

(3.14)

Each β ∈ R
d must therefore add sufficient explanatory power to overcome the

penalty term λ‖β‖, otherwise it is minimized to 0. Since we have no good a priori

for the penalty term λ′ the algorithm we use, glmnet, uses coordinate descent and a

soft threshold operator to iterate through a plausible range (Friedman et al., 2010).

For each candidate λ′, the algorithm randomly subsets the training data further

and computes the mean cross-validated mean squared error (MSE). It settles on

two candidates values of λ′: λ̂′
min

minimizes the mean cross-validated error. λ̂1se

is the most parsimonious model in terms of number of parameters β while within

a standard error of the minimum. Since we seek to identify the subset of best

predictors, we report the results from λ̂1se, the parsimonious model.

In order to identify the best predictors of CSI, we bootstrap the training data

and run the LASSO algorithm through a thousand iterations, similar to Kshirsagar

et al., 2017. We then compute the mean coefficient and its standard deviation and

keep the 10 most significant variables.24 We report these predictors in Table 3.18.

Lagged CSI is unsurprisingly a strong predictor of future CSI. Location, as indic-

ated by community id (GVH), is also a strong predictor. Receiving assistance from

23We use λ′ to differentiate from the inverse mills ratio λ, defined earlier.
24We kept non-statistically significant variables for their potential predictive power.
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the government and receiving it as food are both predictors of future decreases in

CSI, and therefore decreased food insecurity. The algorithm selects four types

of asset indicators: distance to drinking water, whether any assets were bought,

whether assets were sold, and the quality of the floor. Every additional minute

of walking distance to drinking water increases predicted CSI. Interestingly both

buying and selling assets are predictors of decreased CSI, suggesting that what

matters is liquidity. Living in a flood plain decreases predicted CSI, and experien-

cing drought last month increases it.

With the exception of living in a flood plain, these predictors do not directly

correspond to the characteristics we used in our earlier specification. Unlike those

characteristics, five of these predictors vary over time and are therefore good proxies

for a household’s fluctuating state of food insecurity in the immediate. This points

to a difference in time frame. Whilst our earlier approaches sought to estimate

characteristics contributing to resilience over a year or half year time frame, this

exercise emphasizes predictive accuracy over a one to two month time frame. Time

frame therefore affects the characteristics of interest to our resilience analysis.

We then use the estimated parameters to predict CSI in our test data and

compare its performance to the actual CSI outcomes. When compared, our LASSO

algorithm gives us an R2 = 56.4%.

3.5.2 Random Forest

While it does allow us to narrow down the set of predictors, a LASSO algorithm

remains a linear regression. An alternative approach, regression trees, offers a more

flexible functional form (Hastie et al., 2009). A regression tree chooses variables in
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the set xj ∈ X and the value of that variable s, that split the set into two ‘branches’

which form half planes R1 and R2. xj and s are chosen through an optimization

process which jointly minimizes the mean squared error for the dependent variable

yi in each of the half planes defined by the branches.

min
js

[min
c1

∑

xi∈R1(j,s)

(yi − C1)
2 +min

c2

∑

xi∈R2(j,s)

(yi − C2)
2] (3.15)

where

c1 =
1

n

∑

i

(yi|xi ∈ R1(j, s)) and c2 =
1

n

∑

i

(yi|xi ∈ R2(j, s)) (3.16)

Each half plane is in turn split into two branches and the process is iterated to

create a ’tree’ which fits the data. Single regression trees tend to suffer from over-

fitting, mistakenly attributing random variations in the outcome to an explanatory

variable. In order to correct for this, random forest randomly select a subset of xj ∈

X as candidate variables for the regression tree, which it fits to the data (Breiman,

2001). By repeating the process, it can compare the cross-mean performance across

these ’trees’, hence creating random forest. Because the performance of any given

variable is conditional on its parent branches, regression trees do not allow for

explicit coefficient estimates. Instead variable xj’s performance is measured as

∆MSEj, ie the increase in Mean Squared Error if the variable is omitted.

We bootstrap the training data and run the random forest algorithm through

a thousand iterations. This gives us a thousand values for each variable: ∆MSEb
j .

We calculate the mean across bootstrapped values and divide by the standard de-

viation to normalize it. This allows us to rank the 10 best predictors of CSI, listed

in Table 3.19. Note that because these are not coefficients, we cannot say whether

individual variables predict increased or decreased CSI. Like LASSO, it finds that
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CSI last month, location and the distance to drinking water are good predictors.

Indeed five of the top ten variables overlap between the two approaches. Unlike

LASSO, the regression tree algorithm favors household characteristics from the

baseline. Many of these correspond to the characteristics we used in our other spe-

cifications, including age, education, land farmed and whether the household lived

in a flood plain. A household’s dietary diversity score is also a good predictor.25

The quality of a households roof and whether anyone in the household is pregnant

or nursing round of the top ten variables selected.

By running the subset of selected variables through one more iteration of a

random forest, we generated out of sample predictions for April and May, giving

us an R2 = 55.6%.

Figure 3.9 compares the predictors across both algorithms. Five of the top

ten variables overlap or are very similar. Previous months CSI is the best predictor

in both cases, followed closely by geographic location as indicated by group village

head. Other good predictors include the households distance to drinking water,

the quality of their home and whether they live in a floodplain. The differences

between what each algorithm picks up are illustrative as well, and speaks to the

differences in the objective function optimized. LASSO, by weighing each variable

as a stand-alone in a linear regression, favors time varying variables that imme-

diately affect CSI. By optimizing iteratively, regression trees implicitly condition

variables on each other, thereby favoring underlying variables which affect CSI

via their effect on other variables. Hence it favors time invariant characteristics.

Though LASSO performs marginally better in terms of out of sample R2 (56.4%

vs. 55.6%), this must be traded off against the additional difficulty and expense

25Dietary diversity score, or DDS, is the sum of food types a household reports having consumed
in the past 24 hours.
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of collecting monthly data from these sentinel sites.

3.5.3 Mapping predicted outcomes

Since this data collection exercise occurred during a humanitarian emergency, we

worked with our partners on the ground to feed data into their decision making

process. Given the uneven pace of households recovery from drought, we sought

to determine if there were lingering ‘pockets’ of food insecurity. We used the

predictions from the above algorithms to map out the predicted CSI levels ˆCSI in

Figure 3.10. The first column maps the actual CSI outcomes in April and May. The

subsequent columns show the outcomes as they were predicted using the LASSO

and Random Forest algorithms, respectively. This allowed us to demonstrate the

usefulness of a high resolution system of sentinel sites.

Equipped with such a map, decision makers could target necessary inter-

ventions with improved accuracy. Though not always precise in magnitude, the

predictions provide an accurate forecast of where we could expect high levels of CSI.

These tended to be in tightly circumscribed geographical areas. Such concentrated

levels of high CSI were due to localized co-variate shocks: some communities were

still struggling to recover from the effects of drought. Communities in the flood

plain experienced the adverse effects of localized flooding, while other communities

experienced outbreaks of crop disease.

89



3.6 Conclusion

Efforts to measure resilience are increasingly prevalent in development economics.

Rather than adapt our method to the available data, we collected a novel 12

month data-set from sentinel sites in southern Malawi. We use this data to present

three approaches to modeling resilience. This allows us to offer insights into the

characteristics driving households’ resilience.

We describe the persistence of subjective shocks, modelled as a non-stationary

Markov Matrix. We find that some shocks, like drought, are very persistent in their

effects, while the persistence of shocks like flood and crop disease vary over time.

We also contrast shock persistence with experiencing the adverse effects of new

shocks, and show that the two do not necessarily move in tandem. By estimating

household level shock persistence and regressing it against household character-

istics, we find that households with fields far from home and those living in the

flood plain are more resilient to the effects of drought, and households headed by a

woman or with are chronically ill member are less resilient to the effects of illness.

Next we estimate the persistence of food insecurity, measured using the Cop-

ing Strategy Index (CSI), and test whether household characteristics shift this

persistence. We split our sample in two to allow for an initial humanitarian emer-

gency with high levels of CSI, followed by a gradual and heterogeneous recovery.

As an illustration we plot the expected change in the distribution of food insecurity.

We find that access to land, and having fields far from home shift the distribution

of food insecurity.

Finally we use a predictive algorithm to select the best predictors of future

CSI from our dataset. Using a LASSO algorithm, we narrow down the set of best
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predictors to a subset with the most predictive power. When we compare this

to a Random Forest Algorithm, we find that previous levels of food insecurity,

location and distance to drinking water are the best predictors. We also note that

LASSO favors time varying variables, while the regression trees algorithm favors

time invariant characteristics because it implicitly conditions variables on each

other. The out of sample predictive accuracy is similar, with an R2 of 56.4% for

LASSO and 55.6% for Random Forest. Mapping the predicted CSI against actual

CSI gives a relatively accurate indication of which zones experience high levels of

CSI. We find that these zones are geographically concentrated, and would therefore

benefit from targeted interventions.

As a next step in our research, we are expanding our sample to three districts

and collecting monthly data for a second year in Southern Malawi. This will allow

us to make year on year comparisons, comparing seasonal trends in a ’normal’ year

to those in a year of extreme drought or flooding. We are also seeking to replicate

our methodology in other shock prone countries such as Madagascar and Nigeria,

allowing for cross-country comparisons of resilience characteristics. We hope to

start setting in place a system of sentinel sites, providing both early warning of a

humanitarian emergency and valuable data for analysis.

A particularly promising vein of research is in contributing to improved Proxy

Means Targeting in the context of natural disasters, or Post-Disaster PMT. By

combining sentinel site data like ours to geo-spatial and phone record data, re-

searchers can calibrate the latter and use it to predict post-disaster food insecurity

when on-the-ground data is unavailable. It would be a valuable exercise to compare

various proposed algorithms, including LASSO, Regression Trees and Neural Net-

works, in terms of their predictive performance and feasibility in a humanitarian
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emergency.
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Tables

Table 3.1: MIRA Study Sample

Traditional Authority GVH Strata General Village Head Villages Households
(Flood Risk) (N=17) (N=31) (N=580)

Mikhwira

High Mpama 2 40
N=106 Kanyimbiri 2 32

Salvala 2 34
Low Nyambalo 2 39

N=102 Chagambatuka 2 38
Champhanda 2 25

Ngabu

High Jombo 2 50
N=86 Nkhwazi 2 36
Low Malikopo 2 39

N=114 Kalulu 2 39
Chapomoko 2 36

Lundu

High Mafale 2 38
N=92 Biliati 2 39

Sekeni 1 15
Low Bestala 2 38
N=59 Biyasi 1 21

Maseya Low M’bande 1 21
N=21

Totals High risk 8 15 284
by Risk Low risk 9 16 296
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Table 3.2: Household Covariates

Characteristic N Mean Std. Dev. Min Max
Land (Ha) 580 2.59 1.91 .2 20
Tropical Livestock Units 580 .63 2.66 0 38
Lives in Flood Plain (1=Yes) 580 .50 .50 0 1
Secondary House* (1=Yes) 580 .19 .39 0 1
Head of Household:
Age (Years) 580 42.71 16.2 0 97
Gender (1=male) 580 0.76 0.43 0 1
Education (Years) 580 6.26 4.21 0 15
Chronically ill or disabled 580 0.16 0.37 0 1
*An indicator of owning fields far from home.
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Table 3.3: Sample Attrition Over Time

Missing June July August September October November
No 580 557 572 567 566 543
Yes 0 23 8 13 14 37

Missing December January February March April May
No 421 428 463 490 465 443
Yes 159 152 117 90 115 137
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Table 3.4: Determinants of Missing Observations, Probit

Missing
(1) (2) (3)

Land Farmed (HA) -0.0397 -0.0386 -0.00717
(0.0379) (0.0376) (0.0279)

Tropical Livestock Units 0.0218 0.0312∗ 0.0302
(0.0260) (0.0187) (0.0184)

Flood Plain 0.755∗∗∗ 2.932∗∗∗ 3.139∗∗∗

(0.139) (0.553) (0.601)

Secondary House 0.508∗∗∗ 0.172 0.120
(0.171) (0.138) (0.144)

Age of HH Head -0.00176 -0.00478 -0.00145
(0.00468) (0.00479) (0.00336)

Education -0.00267 0.00113 0.00932
(0.0186) (0.0184) (0.0130)

Gender 0.148 0.0835 0.133
(0.175) (0.177) (0.125)

Chronically ill -0.129 -0.0180 0.106
(0.186) (0.192) (0.135)

Year Fixed Effects YES YES YES

Community Fixed Effects NO YES YES

Enumerator Fixed Effects NO NO YES

N 6215 6215 6215

The above were used to generate a Heckman style inverse Mills ratio λ
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.5: Shocks and Food Security

Coping Strategy Index
(1) (2) (3) (4)

Drought 2.361∗∗

(1.068)

Flood Water 3.688∗∗

(1.591)

Illness 0.818
(1.067)

Crop Disease 2.747∗

(1.312)

Constant 12.07 13.77 12.09 14.42
(26.84) (26.82) (27.50) (26.89)

N 5795 5795 5795 5795

Not reported: time fixed effects δt, household fixed effects

µs
t and inverse mills ratio λ̂. Village clustered standard errors

in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.6: Lagged Effect of Most Frequent Shocks, OLS

Drought Flooding Illness Crop Disease

Drought 0.521∗∗∗

(1 month lag) (0.0602)

Flood Water 0.133
(1 month lag) (0.132)

Illness 0.403∗∗∗

(1 month lag) (0.0667)

Crop Disease 0.400∗∗∗

(1 month lag) (0.0843)

Constant 0.340∗∗∗ 0.104∗∗∗ 0.132∗∗∗ 0.419∗∗∗

(0.0516) (0.0287) (0.0173) (0.0578)
N 5165 5165 5165 5165

Not reported: time fixed effects δt, interaction of time fixed effects and lagged

coefficient γs
t , household fixed effects µs

t . For reference, we set δMay2017 = 0,

inverse mills ratio λ̂. Clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.7: Persistence Across Shocks, OLS

Drought Flooding Illness Crop Disease

Drought 0.380∗∗∗ 0.024 0.0053 -0.004
(1 month lag) (0.041) (0.024) (0.023) (0.031)

Flood Water 0.017 0.406∗∗∗ 0.031 0.104∗∗

(1 month lag) (0.028) (0.047) (0.028) (0.044)

Illness -0.004 -0.013 0.419∗∗∗ 0.0113
(1 month lag) (0.015) (0.022) (0.045) (0.027)

Crop Disease -0.004 -0.010 0.031 0.456∗∗∗

(1 month lag) (0.021) (0.018) (0.019) (0.044)

N 4956 4956 4956 4956

Not reported: time fixed effects δt, household fixed effects µs
t , inverse

mills ratio λ̂. Village clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.8: Transition Matrices for Drought

(a) November (Planting Season)

Droughtt = 0 Droughtt = 1

Droughtt−1 = 0 p̂s0,0 = 54.2% p̂s0,1 = 45.8%
Droughtt−1 = 1 p̂s1,0 = 11.5% p̂s1,1 = 88.5%

Calculated from γ̂s
0 ,γ̂

s
1 ,γ̂

s
Nov2016 and δ̂Nov2016, where s=drought, in table 3.6, column (1)

(b) February (Hungry Season)

Droughtt = 0 Droughtt = 1

Droughtt−1 = 0 p̂s0,0 = 58.3% p̂s0,1 = 41.7%
Droughtt−1 = 1 p̂s1,0 = 14.7% p̂s1,1 = 85.3%

Calculated from γ̂s
0 ,γ̂

s
1 ,γ̂

s
Feb2017 and δ̂Feb2017, where s=drought, in table 3.6, column (1)

(c) May (Harvest Season)

Droughtt = 0 Droughtt = 1

Droughtt−1 = 0 p̂s0,0 = 56% p̂s0,1 = 34%
Droughtt−1 = 1 p̂s1,0 = 13.9% p̂s1,1 = 86.1%

Calculated from γ̂s
0 ,γ̂

s
1 ,γ̂

s
May2017 and δ̂May2017, where s=drought, in table 3.6, column (1)
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Table 3.9: Transition Matrices for Flood

(a) November (Planting Season)

Floodt = 0 Floodt = 1

Floodt−1 = 0 p̂s0,0 = 88.3% p̂s0,1 = 11.7%
Floodt−1 = 1 p̂s1,0 = 45% p̂s1,1 = 55%

Calculated from γ̂s
0 ,γ̂

s
1 ,γ̂

s
Nov2016 and δ̂Nov2016, where s=flood, in table 3.6, column (2)

(b) February (Hungry Season)

Floodt = 0 Floodt = 1

Floodt−1 = 0 p̂s0,0 = 87.9% p̂s0,1 = 12.1%
Floodt−1 = 1 p̂s1,0 = 50.6% p̂s1,1 = 49.4%

Calculated from γ̂s
0 ,γ̂

s
1 ,γ̂

s
Feb2017 and δ̂Feb2017, where s=flood, in table 3.6, column (2)

(c) May (Harvest Season)

Floodt = 0 Floodt = 1

Floodt−1 = 0 p̂s0,0 = 89.6% p̂s0,1 = 10.4%
Floodt−1 = 1 p̂s1,0 = 76.4% p̂s1,1 = 23.6%∗

Calculated from γ̂s
0 ,γ̂

s
1 ,γ̂

s
May2017 and δ̂May2017, where s=flood, in table 3.6, column (2)

*though γ̂Flood
1 is insignificant, the sum of the two coefficients is significant
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Table 3.10: Transition Matrices for Illness

(a) November (Planting Season)

Illnesst = 0 Illnesst = 1

Illnesst−1 = 0 p̂s0,0 = 86.2% p̂s0,1 = 13.8%
Illnesst−1 = 1 p̂s1,0 = 44.7% p̂s1,1 = 55.3%

Calculated from γ̂s
0 ,γ̂

s
1 ,γ̂

s
Nov2016 and δ̂Nov2016, where s=illness, in table 3.6, column (3)

(b) February (Hungry Season)

Illnesst = 0 Illnesst = 1

Illnesst−1 = 0 p̂s0,0 = 86.7% p̂s0,1 = 13.3%
Illnesst−1 = 1 p̂s1,0 = 44% p̂s1,1 = 56%

Calculated from γ̂s
0 ,γ̂

s
1 ,γ̂

s
Feb2017 and δ̂Feb2017, where s=illness, in table 3.6, column (3)

(c) May (Hunger Season)

Illnesst = 0 Illnesst = 1

Illnesst−1 = 0 p̂s0,0 = 86.8% p̂s0,1 = 13.2%
Illnesst−1 = 1 p̂s1,0 = 46.5% p̂s1,1 = 53.5%

Calculated from γ̂s
0 ,γ̂

s
1 ,γ̂

s
May2017 and δ̂May2017, where s=illness, in table 3.6, column (3)
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Table 3.11: Transition Matrices for Crop Disease

(a) November (Planting Season)

CropDiseaset = 0 CropDiseaset = 1

CropDiseaset−1 = 0 p̂s0,0 = 84.9% p̂s0,1 = 15.1%
CropDiseaset−1 = 1 p̂s1,0 = 29.8% p̂s1,1 = 70.2%

Calculated from γ̂s
0 ,γ̂

s
1 ,γ̂

s
Nov2016 and δ̂Nov2016, where s=crop disease, in table 3.6, column (4)

(b) February (Hungry Season)

CropDiseaset = 0 CropDiseaset = 1

CropDiseaset−1 = 0 p̂s0,0 = 55.2% p̂s0,1 = 44.8%
CropDiseaset−1 = 1 p̂s1,0 = 27% p̂s1,1 = 73%

Calculated from γ̂s
0 ,γ̂

s
1 ,γ̂

s
Feb2017 and δ̂Feb2017, where s=crop disease, in table 3.6, column (4)

(c) May (Harvest Season)

CropDiseaset = 0 CropDiseaset = 1

CropDiseaset−1 = 0 p̂s0,0 = 58.1% p̂s0,1 = 41.9%
CropDiseaset−1 = 1 p̂s1,0 = 18.1% p̂s1,1 = 81.9%

Calculated from γ̂s
0 ,γ̂

s
1 ,γ̂

s
May2017 and δ̂May2017, where s=crop disease, in table 3.6, column (4)
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Table 3.12: Estimating Resilience, Conditional Moments Approach

(a) Estimated Resilience Parameters

variable mean standard deviation min max
ˆCSI 25 8.4 5.9 75

σ̂2
CSI 121 30 48 252

P̂Normal .14 .16 5.9e-06 .71

P̂Gamma .13 .2 1.7e-14 .81

We posit ¯CSI = 10 to calculate P̂Normal and P̂Gamma

(b) Resilience, Household Covariates and Reported Shocks

ˆCSI σ̂2
CSI P̂Normal P̂Gamma

CSI 0.094∗∗∗ 0.026∗∗∗ -0.162∗∗∗ -0.167∗∗∗

(0.002) (0.001) (0.024) (0.030)

Land Farmed (HA) -0.001 -0.017∗∗∗ -0.008 -0.009
(0.002) (0.001) (0.026) (0.029)

Tropical Livestock Units -0.004∗∗∗ -0.008∗∗∗ 0.009 0.013
(0.001) (0.001) (0.019) (0.021)

Flood Plain -0.063∗∗∗ 0.012∗∗∗ 0.244∗∗ 0.337∗∗∗

(0.006) (0.003) (0.109) (0.126)

Secondary House -0.010 0.152∗∗∗ 0.143 0.187
(0.008) (0.003) (0.121) (0.135)

Age of HH Head 0.005∗∗ 0.024∗∗∗ 0.006 0.008
(decades) (0.002) (0.001) (0.033) (0.036)

Education of HH Head 0.000 -0.001∗∗ -0.002 -0.002
(0.001) (0.000) (0.013) (0.015)

Gender of HH Head 0.032∗∗∗ 0.044∗∗∗ -0.070 -0.100
(0.008) (0.003) (0.118) (0.132)

Chronically Ill -0.005 -0.080∗∗∗ -0.062 -0.078
(0.008) (0.004) (0.132) (0.148)

Drought 0.131∗∗∗ 0.349∗∗∗ -0.178 -0.244∗∗

(0.008) (0.004) (0.109) (0.120)

Flood 0.065∗∗∗ -0.172∗∗∗ -0.465∗∗∗ -0.603∗∗∗

(0.007) (0.003) (0.141) (0.168)

Illness 0.059∗∗∗ 0.046∗∗∗ -0.156 -0.227∗

(0.007) (0.003) (0.113) (0.128)

Crop Disease -0.026∗∗∗ -0.055∗∗∗ 0.045 0.059
(0.006) (0.003) (0.101) (0.116)

N 4931 4931 4931 4931

Not reported: CSI2, CSI3, inverse mills ratio λ̂

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 3.13: Coping Strategy Index with Lagged Polynomial, GMM

June-May June-Nov Dec-May
(1) (2) (3)

CSI 1.723∗∗ 4.258 1.807∗

(0.720) (2.983) (0.953)

CSI2 -0.0126 -0.0725 -0.0127
(0.0123) (0.0717) (0.0145)

N 5139 2633 2395
ar2p 0.0000277 0.795 0.118
ar3p 0.140 0.144 0.463
hansenp 0.578 0.121 0.848

(1) full sample, (2) first six month, (3) last six months

Not reported: controls for drought, flood, pests and

illness Zi,t, time fixed effects δt.

Two-step robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.14: Coping Strategy Index with Lagged Polynomial, GMM, dis-
aggregated

(a) Disaggregated by Age of Household Head

Median=40 years
Above Median Below Median

June-May June-Nov Dec-May June-May June-Nov Dec-May
(1) (2) (3) (4) (5) (6)

CSI 1.219 8.034 1.309 1.760∗∗ 2.212∗ 1.928
(0.999) (4.992) (1.141) (0.688) (1.246) (1.381)

CSI2 -0.00373 -0.148 -0.00874 -0.0139 -0.0241 -0.0117
(0.0178) (0.104) (0.0187) (0.0111) (0.0267) (0.0199)

N 2444 1312 1132 2695 1432 1263
ar2p 0.00200 0.539 0.401 0.00493 0.122 0.106
ar3p 0.441 0.444 0.768 0.195 0.500 0.520
hansenp 0.923 0.481 0.763 0.324 0.271 0.415

(1) and (4) full sample, (2) and (5) first six months, (3) and (6) last six months

Not reported: controls for drought, flood, pests and illness Zi,t, time fixed effects δt

Two-step robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) Disaggregated by Education of Household Head

Median=7 years
Above Median Below Median

June-May June-Nov Dec-May June-May June-Nov Dec-May
(1) (2) (3) (4) (5) (6)

CSI 1.061∗ 2.915∗∗∗ 1.558 0.431 2.477 0.918
(0.565) (0.959) (1.635) (0.937) (1.551) (0.903)

CSI2 -0.00297 -0.0364∗∗ -0.0104 0.0131 -0.0345 0.00158
(0.00937) (0.0176) (0.0236) (0.0177) (0.0300) (0.0143)

N 2263 1195 1068 2876 1549 1327
ar2p 0.000715 0.0878 0.210 0.0240 0.777 0.198
ar3p 0.974 0.208 0.853 0.0796 0.667 0.413
hansenp 0.110 0.847 0.0885 0.374 0.00824 0.231

(1) and (4) full sample, (2) and (5) first six months, (3) and (6) last six months

Not reported: controls for drought, flood, pests and illness Zi,t, time fixed effects δt.

Two-step robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.15: Coping Strategy Index with Lagged Polynomial, GMM, dis-
aggregated

(a) Disaggregated by Gender of Household Head

Female Male
June-May June-Nov Dec-May June-May June-Nov Dec-May

(1) (2) (3) (4) (5) (6)
CSI -0.528 1.869 0.640 2.084∗∗∗ 2.518∗ 2.421

(1.862) (2.622) (0.976) (0.803) (1.332) (1.793)

CSI2 0.0225 -0.0270 0.00441 -0.0184 -0.0288 -0.0213
(0.0305) (0.0416) (0.0156) (0.0138) (0.0280) (0.0269)

N 1285 669 616 3854 2075 1779
ar2p 0.285 0.826 0.291 0.000884 0.160 0.355
ar3p 0.744 0.735 0.545 0.162 0.153 0.657
hansenp 0.234 0.160 0.711 0.779 0.129 0.562

(1) and (4) full sample, (2) and (5) first six months, (3) and (6) last six months

Not reported: controls for drought, flood, pests and illness Zi,t, time fixed effects δt.

Two-step robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) Disaggregated by Whether Household Member is Chronically Ill

Chronically Ill No One Chronically Ill
June-May June-Nov Dec-May June-May June-Nov Dec-May

(1) (2) (3) (4) (5) (6)
CSI 2.432 3.756 1.919∗ 1.900∗∗ -0.989 1.733

(1.792) (2.337) (1.053) (0.943) (3.561) (1.068)

CSI2 -0.0222 -0.0619 -0.0225 -0.0171 0.0472 -0.0130
(0.0296) (0.0381) (0.0159) (0.0157) (0.0829) (0.0162)

N 876 470 406 4263 2274 1989
ar2p 0.763 0.709 0.273 0.0000108 0.462 0.0454
ar3p 0.236 0.829 0.222 0.318 0.727 0.865
hansenp 0.198 0.0513 0.466 0.402 0.0386 0.834

(1) and (4) full sample, (2) and (5) first six months, (3) and (6) last six months

Not reported: controls for drought, flood, pests and illness Zi,t, time fixed effects δt.

Two-step robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.16: Coping Strategy Index with Lagged Polynomial, GMM, dis-
aggregated

(a) Disaggregated by Land Farmed

Median=2 HA
Above Median Below Median

June-May June-Nov Dec-May June-May June-Nov Dec-May
(1) (2) (3) (4) (5) (6)

CSI 1.113 -5.665 0.916 2.110∗ 2.316∗ 2.556
(0.876) (14.54) (0.869) (1.086) (1.380) (1.828)

CSI2 -0.00346 0.131 -0.00183 -0.0180 -0.0233 -0.0242
(0.0161) (0.299) (0.0137) (0.0177) (0.0278) (0.0282)

N 2084 1128 956 3055 1616 1439
ar2p 0.00140 0.639 0.264 0.0160 0.685 0.301
ar3p 0.679 0.836 0.782 0.152 0.166 0.486
hansenp 0.789 0.531 0.784 0.389 0.348 0.700

(1) and (4) full sample, (2) and (5) first six months, (3) and (6) last six months

Not reported: controls for drought, flood, pests and illness Zi,t, time fixed effects δt.

Two-step robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) Disaggregated by Tropical Livestock Units

Median=.01 TLU
Above Median Below Median

June-May June-Nov Dec-May June-May June-Nov Dec-May
(1) (2) (3) (4) (5) (6)

CSI 1.056 2.063∗ 1.483 1.727∗∗ 1.625∗ 1.135
(1.503) (1.121) (0.992) (0.775) (0.925) (0.793)

CSI2 -0.00316 -0.0234 -0.00972 -0.0115 -0.0118 -0.00226
(0.0266) (0.0248) (0.0158) (0.0129) (0.0147) (0.0125)

N 2491 1343 1148 2648 1401 1247
ar2p 0.0147 0.356 0.573 0.000255 0.0535 0.0567
ar3p 0.194 0.675 0.397 0.426 0.571 0.848
hansenp 0.436 0.332 0.863 0.993 0.0837 0.571

(1) and (4) full sample, (2) and (5) first six months, (3) and (6) last six months

Not reported: controls for drought, flood, pests and illness Zi,t, time fixed effects δt.

Two-step robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.17: Coping Strategy Index with Lagged Polynomial, GMM, dis-
aggregated

(a) Disaggregated by Whether Household Lives in Flood Plain

Lives in Flood Plain Lives Outside FLood Plain
June-May June-Nov Dec-May June-May June-Nov Dec-May

(1) (2) (3) (4) (5) (6)
CSI 0.813∗ 2.046∗∗ 0.707∗ -1.441 0.394 -3.935∗

(0.469) (1.000) (0.413) (1.134) (2.903) (2.118)

CSI2 0.000742 -0.0258 -0.00168 0.0376∗∗ 0.00842 0.0735∗∗

(0.0104) (0.0240) (0.00783) (0.0189) (0.0571) (0.0325)
N 2364 1364 1000 2775 1380 1395
ar2p 0.0704 0.255 0.0374 0.00147 0.239 0.880
ar3p 0.200 0.255 0.198 0.565 0.832 0.996
hansenp 0.000737 0.0677 0.0188 0.150 0.100 0.979

(1) and (4) full sample, (2) and (5) first six months, (3) and (6) last six months

Not reported: controls for drought, flood, pests and illness Zi,t, time fixed effects δt.

Two-step robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) Disaggregated by Whether Household Has A Secondary House

Has a Secondary House Does Not Have a Secondary House
June-May June-Nov Dec-May June-May June-Nov Dec-May

(1) (2) (3) (4) (5) (6)
CSI 1.966 2.276 -1.009 1.743∗∗ 6.294 2.377∗∗

(2.244) (1.592) (1.484) (0.716) (4.645) (1.107)

CSI2 -0.0205 -0.0250 0.0275 -0.0130 -0.117 -0.0206
(0.0380) (0.0331) (0.0271) (0.0123) (0.101) (0.0169)

N 865 509 356 4263 2230 2033
ar2p 0.0773 0.475 0.516 0.000537 0.633 0.322
ar3p 0.426 0.362 0.419 0.299 0.517 0.644
hansenp 0.267 0.687 0.175 0.0913 0.230 0.990

(1) and (4) full sample, (2) and (5) first six months, (3) and (6) last six months

Not reported: controls for drought, flood, pests and illness Zi,t, time fixed effects δt.

Two-step robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.18: Top Variables Selected by LASSO Algorithm

Variable Coefficient
CSI Last Month 0.473∗∗∗

(0.015)

Group Village Head 0.012∗∗∗

(0.002)

Received Assistance from Government Last Month -1.535∗∗

(0.727)

Received Assistance as Food Last Month -0.662∗

(0.417)

Distance to Drinking Water 0.013∗

(minutes walking) (0.007)

Quality of Floor -0.518
(0.368)

Sold Assets Last Month -0.818
(0.691)

Purchased Assets Last Month -0.778
(0.694)

Lives in Flood Plain -0.662
(0.562)

Experienced Drought Last Month 0.434
(0.371)

N 4308
Out of sample R2 (April, May) 56.4 %

Sample restricted to training set, (June-March)

Bootstrapped standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.19: Top Variables Selected by Random Forest Algorithm

Variable ∆MSE*
(standardized)*

CSI Last Month 21.70

Group Village Head 25.58

Age 19.98

Education 17.32

Land Farmed (ha) 17.91

Dietary Diversity Score 17.02

Distance to Drinking Water 14.27
(minutes walking)

Quality of Roof 16.76

Pregnant or Nursing 14.65
Household Member

Lives in Flood Plain 13.80
N 4308
Out of sample R2 (April, May) 55.6 %

Sample restricted to training set, (June-March)

*Increase in MSE when variable is omitted, measure of

variable importance
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Figures

Figure 3.1: MIRA households and incidence of 2015 flooding from the Dartmouth
Flood Observatory (Brakenridge and Anderson, 2004)
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Figure 3.2: Most frequent shocks reported
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Figure 3.3: Trajectory of Coping Strategy Index disaggregated by demographic
characteristics

(a)

(b)
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Figure 3.4: Trajectory of Coping Strategy Index disaggregated by assets and
geographic characteristics

(a)

(b)
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Figure 3.5: Illustration of the parameters calculated from table 3.6 as they vary
by round.

(a) Estimated parameter p̂s1,1 = γ̂s0 + γ̂s1, the perceived persistence of shock’s effects

(b) Estimated parameter p̂s0,1 = γ̂s0, the perceived incidence of new shocks
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Figure 3.6: Correlation between estimated shock specific probability ρ̂si,t and
household characteristics (bootstrapped s.e)
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Figure 3.7: Predicted probability distribution functions for ∆ CSI for December
through May, conditional on demographic characteristics

(a) Predicted from table 3.14, col (3) and (6)

(b) Predicted from table 3.15, col (3) and (6)
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Figure 3.8: Predicted probability distribution functions for ∆ CSI for December
through May, conditional on assets and location

(a) Predicted from table 3.16, col (3) and (6)

(b) Predicted from table 3.17, col (3) and (6)
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Figure 3.9: Top predictors of CSI
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Figure 3.10: Actual and predicted CSI in April and May
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CHAPTER 4

LAND FRAGMENTATION AND FOOD INSECURITY IN

ETHIOPIA

4.1 Introduction

Large gains have been made in reducing food insecurity, but an estimated 815

million people still suffered from chronic malnutrition in 2017 (FAO, 2017b). Sub-

sistence farmers in particular struggle to smooth their consumption over time.

Households are vulnerable if they cannot rely on credit, savings, social networks

or other mechanisms to manage risk and smooth their food consumption in the

face of shocks (Dercon et al., 2005; Dercon, 2002; Fafchamps and Gubert, 2007).

Such households’ inability to deal with risks perpetuates poverty and chronic food

insecurity, as they tend to forego risky but potentially lucrative activities with

long-term payoffs in order to avoid downside risk (Dercon, 2006; Carter et al.,

2007). Deprivations also have long term adverse effects on education and wage

outcomes, especially if experienced at a young age (Alderman et al., 2006; Bar-

rett and Santos, 2014). These negative effects can perpetuate across generations

(Tafere, 2017). Recent literature has emphasized interventions aimed at making

households more ‘resilient’ to the adverse effects of such shocks, and found that

these were effective at reducing food insecurity (Cissé and Barrett, 2016; Knippen-

berg and Hoddinott, 2017). It is well documented that household characteristics

may also influence their ability to mitigate risk and smooth food consumption in

the face of heterogeneous shocks (Morduch, 1994).

We explore one such characteristic: a household’s level of land fragmentation.

Land fragmentation is a state of division of holdings into discrete parcels that are
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dispersed over a wide area but operated by a single farmer and his or her household.

It is often driven by a combination of increased population density, inheritance

and government policy (Demetriou et al., 2013). It is pervasive in contexts where

incomplete land markets and lack of access to credit constrain attempts at land

consolidation for commercial purposes (Binswanger et al., 1995).

A strand of thought within agricultural and development economics has long

expressed concern regarding the negative effects of land fragmentation in terms

of crop production and yield (Monchuk et al., 2010). Land fragmentation is as-

sociated with lower agricultural output and reduced productivity, as farmers with

more parcels are further from the production possibility frontier. This has been

demonstrated across a wider array of agricultural contexts, including rural China

(Tan et al., 2010; Nguyen et al., 1996; Wan and Cheng, 2001), India (Rahman

and Rahman, 2009; Jha et al., 2005; Monchuk et al., 2010) and Vietnam (Van

Hung et al., 2007), though some studies find no significant effect on yields (Tan

et al., 2008). Land fragmentation is also associated with higher production costs,

particularly in terms of labor, because of the lost time spent getting to spatially

separated parcels (Van Hung et al., 2007; Tan et al., 2008). Finally smaller, more

fragmented parcels hinder mechanization, increase fixed costs like fencing and are

likelier to lead to land disputes (Foster and Rosenzweig, 2011; Demetriou et al.,

2013).

A complimentary but dissenting view points to the benefits of land fragment-

ation as diversifying risk through the spatial variance in land characteristics. In a

seminal study, Blarel et al. (1992) model how land fragmentation reduces aggreg-

ate risk to the household . Assuming imperfect correlation in yields across parcels,

increased fragmentation decreases the variance of total farm income per hectare
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over time. They demonstrate this empirically using panel data from Rwanda. In a

recent working paper, Veljanoska (2016) uses panel data from Uganda to show that

land fragmentation mitigates the adverse impact of deviations in rainfall on yield .

This is relevant to contemporary concerns regarding climate change and associated

increased variability in rainfall and temperature. Land fragmentation also encour-

ages crop diversification (Van Hung et al., 2007). Though suggestive, these studies

tend to focus on yields rather than inquire as to the effects of fragmentation on

food security in a shock-prone environment.

With the exception of Veljanoska (2016), the above studies do not attempt

to assess whether fragmentation reflects conscious decisions by farms to spatially

diversify (for example, through renting in parcels that are not contiguous with

each other) or whether it reflects exogenous factors such as rules and customs

regarding land access. A rational farmer operating in a functioning land mar-

ket would seek to optimize her portfolio of land holdings, making fragmentation

endogenous to ability. To address this concern we exploit a unique natural experi-

ment: Ethiopia’s land reforms under the former communist regime. We propose to

harness this historical event as an exogenous source of household-level land frag-

mentation. Our identification strategy is premised on the assumption of exogenous

land redistribution in an incomplete market. We will argue that the main driver

of land fragmentation was redistribution efforts, and that land thereby acquired

was then bestowed to the next generation. Household-level unobservables, such as

ability, are therefore orthogonal to the level of land fragmentation.

The paper explores the question of land fragmentation and food security using

Ethiopia’s Living Standards and Measurement Study-Integrated Survey on Agri-

culture (LSMS-ISA), a three round panel dataset jointly collected by the World
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Bank and Ethiopian government. This dataset combines household level charac-

teristics and food security indicators with details on the parcels households farm,

including the origin of their tenure, size and geo-spatial characteristics. This rich

set of indicators allows us to explore the link between land fragmentation and food

security.

Bringing together the literature on land fragmentation and food security,

this paper uses detailed parcel-level data to construct and compare a series of

land fragmentation measures, and shows that land fragmentation reduces food

insecurity. It harnesses a policy-driven natural experiment, using robustness checks

and an instrumental variable approach to argue that this effect is causal. Finally,

it unpacks the risk diversification mechanism, demonstrating that the reduction in

food insecurity is due to variation in plot characteristics and crop diversification,

allowing farmers to absorb adverse weather shocks.

The remainder of the paper is structured as follows: Part 2 reviews the

history of land tenure in Ethiopia, in particular the nationwide land redistribution

efforts under the communist government. Part 3 walks the reader through the

LSMS dataset and presents summary statistics. Part 4 presents the principal

specification. Part 5 includes the principle results, that land fragmentation reduces

food insecurity, and presents evidence that this relationship is causal. Part 6

explores how land fragmentation helps farmers mitigate risk. Part 7 concludes.

4.2 Land Tenure in Ethiopia

For historical reasons, households access to land in Ethiopia differs from land tenure

systems found elsewhere in Africa.
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Until 1974, Ethiopia had a complex land tenure system characterized by its

diversity. Broadly speaking, the tenure system differed between the highlands

constituting the core of the old Christian Kingdom, the subsequently conquered

southern low-lands, and the peripheral area characterized by pastoralism (Ofcansky

and Berry, 1991). In the highlands the major form of land tenure was rist, a form

of communal ownership within family lineages, entitling every male and female

descendant to a share of land in the form of usurfruct rights. Since the land

belonged to the family rather than the individual, it could not be sold, mortgaged

or bequeathed outside the family (Kebede, 2002). Since rist rights could be passed

on through both male and female descendants, in principle individuals who could

trace their ancestry several generations back had access to a large set of rist rights.

Conflicting claims were resolved through informal channels and litigation in court

(Kebede, 2002). These overlapping claims guaranteed access to land for most

farmers and impeded inter-generational land consolidation.

By contrast, gult was an ownership right bequeathed by the monarch or

regional governors, often as reward for military service. Gult owners formed an

aristocracy entitled to a share of the harvest and to labor services from the peas-

antry, including mobilization in times of war (Ofcansky and Berry, 1991). Samon

was land entrusted to the church, which also collected tribute from the peasantry.

After conquering the south at the end of the 19th century, emperor Menelik dis-

tributed Gult rights to northern nobles and loyal southern landlords. This meant

that, in contrast to the northern highlands where tenancy was rare, feudal share-

cropping predominated in the south, constituting 65-80% of holdings (Kebede,

2002). Somali and Afar were predominantly pastoral, though beginning in the

1950s malaria eradication and irrigation led to attempts at large-scale commercial

agriculture. All this changed with the overthrow of Emperor Haile Selassie by the

126



Marxist Derg regime in 1974.

Under pressure from the peasantry and university students, on March 4 1975

the new government announced its land reform program, which nationalized all

land and abolished tenancy (Ofcansky and Berry, 1991). It also prohibited land

sales, rentals or the use of hired labor. Large landowners, including the nobility,

church and those who operate large commercial estates, had their land seized. The

government encouraged peasant cooperatives to form in each kebele (community)

and proceed in redistributing the land. Peasants were to receive ‘posessing rights’

to a plot of land not exceeding 10 hectares, though in practice they often received

much less. Families received land in proportion to household size, each adult eli-

gible for one timad of land, or about 1/4 of a hectare (Holden and Yohannes, 2002).1

In an attempt to ensure equitable quality, land was classified into 4 categories ac-

cording to soil depth: deep, medium, shallow and very shallow. The cooperatives

then sought to ensure each family had access to a parcel of land in each of these

four categories (Kosec et al., 2016). Land fragmentation increased as a result.

A study found that in Gojjam, a region in northern Ethiopia, the proportion of

farmers with three or four parcels of land more than doubled (Ofcansky and Berry,

1991). Land redistribution was particularly prevalent in the highlands, where rist

was the dominant form of land tenancy. In the more fertile south and particularly

modern day SNNP, the reforms focused on abolishing sharecropper payments to

their landlords, thereby giving them defacto tenure of their homesteads.

The Derg fell in 1991, but did not seek to reverse the reforms. In 1995,

the new government issued a proclamation entrenching the state ownership of

land in the constitution. Sales remained prohibited, as the government wanted

1Traditionally a ‘Timad’ is the amount of land two ox can plow in a day. This will tend to vary
accordingly to land topology, but is held to be approximately 1/4 of a hectare in the literature.
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to mitigate the pressure of landless farmers migrating to the city. State control

of land also facilitated control of the population. Rules were loosened to allow

for limited renting and sharecropping. Existing allocations were frozen in place,

though the government continued to redistribute public land at the margin in order

to accommodate new families and dampen urbanization pressures (Kosec et al.,

2016). To address concerns of land seizure, the government has sought to entrench

existing land tenure rights through a nation-wide land certification scheme, though

without the right to sell or mortgage the titled land (Deininger et al., 2011). Local

authorities used communal and participatory measures to establish rights to the

land, resolve disputes and issue households with a certificate.

Though the current government maintained the exogenous distribution of

land, we may be concerned that subsequent re-allocations could introduce endo-

geneity. As we discussed, both the communist regime and current administration

have maintained severe restrictions on the sale of arable land (Deininger et al.,

2011). Any potential inter-generational re-allocation through inheritance would

face the following constraints:

1. By law, parcels cannot be smaller than a half timad, restricting households’

ability to sub-divide land among their children (Kosec et al., 2016).

2. Although any child can in principle inherit land, customary norms and prac-

tices tend to favor men, either the eldest or youngest, especially as marriage

is predominantly patrilocal and sons are expected to care for their parents

(Fafchamps and Quisumbing, 2005).

A final concern is that households may optimize at the margins by renting in

and renting out land. We address these concerns in our robustness checks. As we
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shall see from the data, the historical reforms and constraints on land re-allocation

have perpetuated high levels of land fragmentation. We use these reforms as an

exogenous sources of variation in land fragmentation, leading to different food

security outcomes at the household level.

4.3 Specification

Our principle specification is a reduced form regression, estimating the impact of

land fragmentation (Fi,t) on food security (Yi,t):

Yi,t = β0 + β1Fi,t + β2Ai,t +Xi,t + δt + ki + ǫi,t (4.1)

where ǫi,t is a time variant error term. δt controls for time fixed effects. ki is

a Kebele fixed effectamer, the smallest administrative unit in Ethiopia. Ai,t is the

total land farmed by the household in hectares.

Since we argue that land fragmentation is historically exogenous, we can-

not exploit inter-temporal variation in land tenure across the three rounds. These

variations are largely driven by decisions to rent-in or rent-out land. This may

allow a household to optimize their land portfolio at the margin, introducing en-

dogeneity. We therefore fix our measure of household land fragmentation to the

first round available and run a pooled regression. As a result we cannot control

for household fixed effects directly, and instead saturate the model with household

level controls Xi,t. These include gender of household head, their age, the size

of household, dependency ratio, and an asset index constructed using principal

component analysis.
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We use population level weights in all our estimation, and cluster errors at

the household level.

4.4 Data

We use data from the Living Standards and Measurement Study-Integrated Survey

on Agriculture (LSMS-ISA), an initiative to collect high quality, standardized data

in developing countries in order to inform policy making. These surveys collect

socio-economic panel data at the household level, with a special focus on agri-

cultural statistics and the link between agriculture and other household income

activities. Ethiopia’s LSMS-ISA data-set is a panel with three rounds collected

in 2011-2012, 2013-2014, and 2015-2016. It initially collected data on 3,776 rural

households, before expanding to 5,262 in the 2nd wave to include households liv-

ing in urban areas.2 After dropping the major cities and keeping only households

for whom we have complete parcel records, we have a sample of 3,730 households

in the first round, increasing to 4,607 households in the second round and 4,449

households in the third round. The attrition rate from round 1 to round 2 is 2.1%

and from round 2 to round 3 is 3.4%. The survey is representative at the national

and regional levels with population weights to adjust for over-sampling. It was

implemented by the World Bank’s Development Data Group in collaboration with

the Central Statistics Agency of Ethiopia, with funding from the Bill and Melinda

Gates Foundation.

Ethiopia’s LSMS-ISA data is characterized by its combination of detailed

agricultural data with household characteristics. It contains both household and

2A number of these households living in peri-urban areas has access to land parcels, and we
include them in our analysis.
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parcel level indicators, including detailed data on the following:

• Parcel-level data detailing the origin of land tenure for each parcel of land.

• Parcel-level measures of area, crop, geophysical characteristics and location,

allowing for the calculation of land fragmentation measures. 3

• Household-level data on welfare outcomes specific to food security.

• Household-level data on demographic characteristics and assets held by the

household.

• Household-level data on shocks experienced, such as drought.

This combination of household-level and parcel-level variables allows us to

estimate the specification outlined above, explicitly linking agricultural land frag-

mentation to household-level well-being, conditional on household characteristics.

4.4.1 Origin of Land Tenure

Given the diversity of land tenure in Ethiopia before the redistribution efforts, the

natural experiment is not equally valid everywhere. As outlined above, though

the scope of the land reforms was nationwide their implementation differed across

regions. In the highlands where ownership was traditionally defined by rist, the

emphasis was on equitable land re-allocation according to family size. This attempt

to ensure each family had access to parcels of similar quality created exogenous

variation by administrative fiat. In the lowlands where tenure was largely defined

3Land data in the LSMS-ISA is collected at three levels of aggregation: parcels; fields; and
plots. Plots are the smallest unit of analysis. Multiple plots can make up a field. Multiple fields
make up a parcel; parcels are the highest unit of land aggregation. For our main analysis we
chose to aggregate all these measures up to parcels, weighed by area. See appendix for details.
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by gult, tenants simply seized the farms they already cultivated, so there was less

redistribution leading to exogenous variation. We see this in the data. On aggreg-

ate, 79% of households sampled either received land directly from the government

via local leaders, or inherited it from their parents (Table 4.1). Yet this varies

signficantly by region. These forms of ownership are dominant in the Ethiopian

highlands (Amhara, Tigray and Oromiya). Because the lowlands were dominated

by sharecropping, there was less redistribution, as is particularly evident in SNNP.

We therefore drop the lowlands as a robustness check. In pastoral areas (Afar and

Somalie) many households are squatters, likely making land tenure endogenous.

We therefore exclude these areas in our subsequent regressions.

Table 4.2a illustrates how the patterns in land tenure stayed largely un-

changed over time. The one interesting trend to note is that many of the parcels

in the ‘other’ category were purchased, despite the ban on land sales. Followup

interviews found that these were taking advantage of a loophole allowing land

transactions if they include a built structure. The survey therefore added an ex-

plicit question regarding land purchases in round 3.

We also see some limited incidence of land leasing. Ethiopia is unusual in

that it is characterized by reverse-land tenancy. Households with fewer working

age adults, often headed by widows and the elderly, lease out their land to those

with the manpower and capital to farm it. We see evidence of this in Table 4.2b,

where households renting land are younger on average, have smaller families and a

lower dependency ratio. Households renting out land are much likelier to be female

headed, older and with a higher dependency ratio.

Since both the purchase and renting-in of land would allow farmers to endo-

genously restructure their portfolio of land holdings, we conduct two robustness
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checks: we restrict our specification to households whose land holdings are either

inherited or received from local leaders; and we instrument our fragmentation

measures with the number of parcels inherited or received.

4.4.2 Measuring Land Fragmentation

The pattern of tenure suggests that land fragmentation is exogenous to the house-

hold. A key part of the literature is how to measure it. Land fragmentation is the

dispersion of parcels across the landscape, as illustrated in Figure 4.2, where we see

examples of consolidated and fragmented parcels. There are multiple approaches

to measure land fragmentation, summarized in Table 4.3.

The simplest measure of land fragmentation is the number of parcels K held

by a household. All else being equal, more parcels suggests greater fragmentation.

However this does not take into account the different size of parcels, which we

denote αk. One measure incorporating both parcel count and size is the Simpson

FI measure:

Simpson land fragmentation index (FI):

FI = 1−
∑K

k α
2
k

(
∑K

k αk)2
(4.2)

Where K is the number of parcels, and αk their size in square meters. A score of

0 would indicate no land fragmentation, while as K → ∞FI → 1.

According to Demetriou et al. (2013) this index has three properties:

1. Fragmentation increases proportional to n

2. Fragmentation increases when the range of parcel sizes α is small
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3. Fragmentation decreases as the area of large parcels increases and that of

the small parcels decreases.

The Januszewski index is similar to the Simpson index in scale and compos-

ition (Januszewski, 1968).4 For conciseness we do not report it in our principal

regressions.

We also consider a measure of fragmentation which captures the variability

of fragment size, as proposed by Monchuk et al . They point out that the Simpson

index conflates the effect of increased number of parcels δFI
δn

> 0 with the effect

of increased variability in fragment areas δFI
δσ2 < 0. Since both of these can be

thought to increase’ fragmentation, they propose to isolate the effect of variability

in fragment area through the following measure:

Sk =

√

(αk − ᾱ)2

ᾱ
(4.3)

A shortcoming of the above is that it registers a value of 0 for a single

parcel aswell as for a number of parcels with the same size. It should therefore

be considered as complementary to other measures, such as the number of parcels,

rather than a perfect substitute. For a household we take the weighted average of

Sk.

The above measures consider the size and number of parcels, but not their

physical dispersion. If the correlation between fragmentation and labor costs is

driven by travel time, this is an important measure. With the georeferenced co-

ordinates of each parcel, we calculate Dt, the minimum round trip distance to

reach all parcels and return home (Igozurike, 1974).

4J = 1− (

√∑
K

k
αk∑

n

K

√
αk

), As K → 1 fragmentation increases.
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Dt = min
xkj

K
∑

k

K
∑

j 6=k

ckjxkj (4.4)

where xkj =















1 use path between parcel k and j

0 otherwise

and ckj is the distance from plot k to plot j. We calculate Dt using a travelling

salesman algorithm, finding the shortest route connecting multiple parcel locations

as defined by their longitude and latitude.5

Parcel Characteristics

Calculating the Simpson Fragmentation Index and deviations in parcel size both

require an accurate measures of parcel area α. Most measures in the data were

calculated using GPS coordinates. When GPS observations were missing, enu-

merators measured area using a rope-and-compass method. They also inquired

as to the farmer’s own estimate of the field size. Across three rounds 10.4% of

parcels were missing area measurements taken by GPS, the bulk of them in the

first round. Where GPS measures were missing but rope-and-compass measures

were available, we used the rope-and-compass measures of α. This allowed us to

recover half of the missing observations. In order to validate this substitution,

we regressed GPS measured area on rope-and-compass area for those parcels with

overlapping measures, and found them to be strongly correlated, with a β̂ = 1.04

and R2 = .44.6

5The parcel coordinates are first flattened to cartesian space. A distance matrix is calculated
for each household’s parcels, and fed into a travelling salesman minimization algorithm, specifying
the home as the start and end point.

6See appendix for details.
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We attempted to incorporate the self-reported measures, but many of these

were expressed using traditional Ethiopian measures of area, such as the ’timad’.7

Our attempts to convert these measures to standard hectares found them to be

poorly correlated with GPS measures of area.8 Furthermore, it is well documented

that self-reported measures of parcel area suffer from non-random measurement

error (Carletto et al., 2015).

The number of parcels K, their average size ᾱ and the total area farmed by

a household
∑

αk are reported in Table 4.4a. We find evidence that the pattern

of land tenure due to land redistribution persists. In the highland regions most

affected by the reforms, the number of parcels are in the range of ≈ (3.5, 4.5),

which corresponds neatly with the four categories of land discussed earlier. In

other parts of the country, the number of parcels is closer to 2. In these regions

land tenancy is characterized by homesteads. The size of parcels varies, but tends

towards a quarter or half hectare. Recall that the distribution was done in ‘timads’,

approximately a quarter hectare. Finally, the total number of hectares held by

households is between .9 and 1.5 hectare, reflecting strict limits on large land

tenure and further evidence of the legacy of land redistribution efforts.

In addition to area α, the data-set contains geovariables matched at the plot

level using non-scrambled GPS coordinates. These include:

1. Distance from plot to household (in km)

2. Slope of the plot (in percentages)

7A ‘Timad’ is traditionally the amount of land that can be plowed in a day.
8The LSMS Ethiopia documented district specific units of conversion from ‘Timad’ to hectare.

We therefore attempted to convert these self-reported measures but produced a large number
of outliers. As an alternative, we tried using a standard conversion for the ‘Timad’, treating it
as 1/4 of an acre in line with the FAO standard. However, comparisons between self-reported
area and GPS measurements when the two overlapped showed the former to be inconsistent. See
appendix for further details.
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3. Plot elevation (in metres)

4. Plot potential wetness index9

These plot level characteristics were averaged at the parcel level, weighted

by plot area. They are summarized in Table 4.4b.

4.4.3 Food Insecurity

We investigate the impact of land fragmentation on food insecurity Yi,t. We use

two measures of food insecurity: the number of Months Hungry a household ex-

periences and the Coping Strategy Index (CSI). Months Hungry captures the long-

term, extensive experience of hunger while CSI captures the short term, intensive

experience of hunger.

Months Hungry measures the temporal extent of hunger. It is the sum of

months in the past year a household experienced hunger for five or more days.

Households were asked whether, in the last 12 months, they faced a situation

when they did not have enough food to feed the household for five of more days.

Those who did were prompted to list in which months they lacked sufficient food.

The sum of those months constitutes the measure of Months Hungry.

Months Hungry =
12
∑

m

1(days hungrym ≥ 5) (4.5)

The Coping Strategy Index measures the intensity of hunger. The CSI is a

composite weighted score of various strategies households engage in when faced

9Local up-slope contributing area and slope are combined to determine the potential wetness
index: WI = ln(As/tan(b)) where As is flow accumulation or effective drainage area and b is
slope gradient. Data matched from the Africa Soil Information Service by the World Bank.
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with short-term food shortages (Maxwell, 1996). It is a measure of the intensity of

hunger. Coping strategies c are a set of 8 questions which reflect undesirable activ-

ities households are forced to engage in due to food insecurity, a set of strategies

c ∈ C.10 As these strategies are unpleasant, unhealthy and socially stigmatizing,

resorting to them is an indicator of short term food stress (Maxwell et al., 2003).

The survey asks the number of days in the past week a household engaged in each

of these activities, then multiplies those days by a weight wc indicating its severity.

The scores are then compiled into the following index:

Coping Strategy Index =
8

∑

c

daysc ∗ weightc (4.6)

Where daysc is the number of days a household had engaged in a given

strategy c over the past week, and wc is the assigned severity weighting based on

existing literature.

CSI is useful for rapidly measuring food insecurity in a humanitarian con-

text, strongly correlated with more complex and time intensive measures of food

insecurity (Maxwell et al., 2008). A higher CSI score indicates greater levels of

food insecurity and therefore lower well-being. For example, a household with a

CSI of 10 may eat less preferred foods or limit portion size a few days a week. A

household with a CSI of 30 may do this every day, while also skipping meals and

10Coping strategies and corresponding weights:
“In the past 7 days, how many days have you
or someone in your household had to... Number of Days Weight
Rely on less preferred foods? 1
Limit the variety of foods eaten? 1
Limit portion size at mealtimes? 1
Reduce number of meals eaten in a day? 2
Restrict consumption by adults for small children to eat? 2
Borrow food, or rely on help from a friend or relative? 2
Have no food of any kind in your household? 3
Go a whole day and night without eating anything?” 4

138



occasionally borrowing food. A household with a CSI of 70 is engaging in all these

coping mechanisms daily, but also occasionally spends a day and night without

eating.

To understand both the extent and intensity of hunger, Figure 4.1 illustrates

the percentage of households in each round and region which experience non-zero

CSI and non-zero Months Hungry. In general there is a trend towards improved

food security outcomes, with fewer households reporting food insecurity in later

rounds. Yet in some regions up to 40% of the population continues to experience

chronic food insecurity in the latest round.

Household Controls

As we are not using a household fixed effect, we want to control for household

characteristics that would affect food security. These include demographic charac-

teristics such as whether the household head is female, the size of the household,

and its composition in terms of the dependency ratio.11

We also use a roster of 40 reported assets to create an asset index using

Principal Component Analysis (PCA).12 The index plots all households along the

first axis of a PCA vector, maximizing variance. Assuming that none of these are

inferior goods, the index therefore offers an ordinal ranking of households’ wealth

in terms of their asset holding.

The above statistics are summarized in Table 4.5. These include measures of

food insecurity, land fragmentation and household level controls.

11The dependency ratio is calculated as HH Members aged 0-14 & 65 and older
HH Members aged 15-64 .

12Principal Component Analysis (PCA) aims to reduce the dimensionality of a matrix by
transforming each row vector xi using a unit vector of weights wk so as to maximize the variance
of the resultant vector tk(i) = xiẇ)k (Hotelling, 1933).
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Shock Statistics

The LSMS dataset also matches household level GPS coordinates with geospatial

characteristics, most notably the level of rainfall. By comparing it to long term

trends we can construct the standardized deviation (Z score) Zi,t of total rainfall in

the wettest quarter, which farmers rely on most for their crops. These deviations

allow us to objectively quantify weather shocks a household has experienced in

a given year, and infer whether land fragmentation mitigates or exacerbates the

effect of these shocks on food security.

4.5 Results

4.5.1 Land Fragmentation and Food Insecurity

We estimate equation (1) in Table 4.6, separately for Months Hungry and the

Coping Strategy Index across our four measures of land fragmentation.

Table 4.6a shows a significant negative correlation between land fragmenta-

tion and the temporal extent of hunger measured as Months Hungry. This negative

correlation is consistent in sign and magnitude across measures of land fragment-

ation. At the margin, the coefficients reflect changes in the number of Months

Hungry a household experiences. As an illustration, from Table 4.6a column (1)

farming an additional parcel of land, holding area constant, reduces the number of

months hungry on a scale equivalent to farming an additional 2.2 hectares.13 From

column (2), a household at the 25th percentile of the Simpson Index (FI → 0)

13 β̂Parcels

β̂Area

= −0.060
−.027 = 2.22
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moving to the 75th percentile of land fragmentation (FI = .656), while hold-

ing area constant, would decrease the number of Months Hungry by a third of a

month.14 This effect is comparable to effects achieved through external cash grant

programs (Knippenberg and Hoddinott, 2017).

Table 4.6b finds a negative correlation between land fragmentation and the

intensity of hunger measured using the Coping Strategy Index. At the margin,

the coefficients reflect changes in the intensity of coping strategies employed by

the household, both in terms of their frequency and severity.15 To illustrate using

results from Table 4.6b column (2), moving from the 25th to 75th percentile of

land fragmentation decreases CSI by -2.22, the equivalent of going hungry so one’s

children can eat for a day. This negative correlation retains its significance across

the various measures of fragmentation, suggesting it is a combination of the num-

ber of parcels, deviation in parcel size and distance travelled that is driving the

narrative. The total area farmed also reduces CSI, but only marginally.

4.5.2 Endogeneity Concerns

A concern when using non-randomized data is the potential endogeneity of the key

independent variable Fi,t, measuring land fragmentation. We address some of the

potential sources of endogeneity through the following robustness checks.

Table 4.7 restricts the specification to the highlands where the natural exper-

iment is most relevant. This sub-sample, which includes the highlands of Amhara,

Tigray and Oromia, includes about half of the original observations. It finds equi-

14β̂Simpson ∗ (.656− 0) ≈ −.354
15i.e. eating less preferred foods is less severe (Weight=1) than going a whole day and night

without eating (Weight=4).

141



valent effect of land fragmentation on food security in both sign and magnitude.

The coefficient on deviations in parcel size (Table 4.7a col (3)) loses significance,

likely because of the smaller sample size, but is otherwise consistent with the coef-

ficient in Table 4.6a col (3).

If land fragmentation is a risk diversification strategy, then farmers may seek

to optimize their portfolios of land holdings in order to minimize risk. These

farmers may have more fragmented land holdings because of their unobserved

ability, which would also be correlated with reduced food insecurity. Despite legal

restrictions we find evidence of land being bought and rented in. This may enable

more entrepreneurial farmers to diversify their land holdings. Table 4.8 therefore

restricts the sample to farmers for whom all parcels are either inherited or received

from the government.16 It finds similar effects in sign, significance and magnitude

for both Months Hungry (Table 4.8a) and CSI (Table 4.8b) across all measures of

fragmentation.

The variation in land fragmentation may be driven by farmers adding or

subtracting a parcel at the margin. Tables 4.9 and 4.10 use the number of parcels

inherited or received from the government as an instrumental variable for land

fragmentation, similar to the identification strategy used by Veljanoska, 2016. The

first stage regression in Tables 4.9a and 4.10a confirms the instrument’s relevance.

The second stage regressions in Tables 4.9b and 4.10b finds results similar to Table

4.6 in sign and significance, allaying our concerns of bias. In columns (1) and (2)

these coefficients are of similar magnitude, while in columns (3) and (4) they are

almost an order of magnitude larger. The instrument only explains 10-16% of the

variation for the latter two measures of land fragmentation Deviation in Parcel

16Though many of these households do live in the highlands, there is only a 48% overlap
between this sub-sample and the previous one.
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Size and Distance Travelled. Since variation in the second stage is driven by the

instrument, a weaker instrument may push the coefficient upwards (Angrist and

Pischke, 2008).

4.5.3 Non-Linear Estimation

A separate concern lies with mis-specification due to non-linearity of the data

generating process. Both the CSI and Months Hungry have a mass point at 0.

Furthermore, Months Hungry is a discrete count variable, taking on integer values

from 0 to 12. Hence there is a concern that using a linear regression does not

properly reflect the underlying data-generating process. As a robustness check

we estimate our principle specification across fragmentation measures using two

alternative Maximum Likelihood Estimators (MLE). Table 4.11 estimates a Pois-

son MLE, and Table 4.12 estimates a negative binomial MLE. Because we use a

non-linear estimator, to compare the average marginal effects we multiply the coef-

ficients by the sample average of the outcome variable. The results are consistent

with the results reported in Table 4.6 in sign, magnitude and significance.

4.5.4 Selection into the Sample

Finally, we may be concerned about non-random selection into the sample. The

LSMS data only observes household who retained their allocated land and passed

it on to their children. If households who received favorable fragments retained

their land and are more likely to be food secure, while those granted unfavorably

fragmented areas were more likely to perish, out-migrate or abandon their land,

this sample would not be representative. While this does not affect the internal
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validity of our analysis, it may temper the external validity, as we are not observing

the full universe of households allocated land fragments by the government.

4.6 Land Fragmentation as Risk Mitigation

What drives this relationship between land fragmentation and reduced food in-

security? If we allow that land fragmentation decreases yields and profits as the

literature suggests, the effect on food security must be through risk mitigation.

Building on Blarel et al. (1992) we argue that land fragmentation allows households

to better manage the downside risk of shocks such as drought. With incomplete

access to credit and markets, households with multiple parcels are endowed with

an inherently more diverse portfolio. This diversity is reflected in the difference

in parcel level characteristics, which is correlated with decreased food insecurity.

Households can take advantage of this diversified portfolio by tailoring the crop

grown to the parcel characteristics. Households with more land fragmentation also

grow a greater diversity of crops, which is correlated with decreased food insecurity.

4.6.1 Land Fragmentation and Rainfall Deviation

Under the risk mitigation hypothesis, land fragmentation is particularly useful in

the context of severe shocks. To illustrate this, we estimate

Yi,t = β0 + β1Fi,t + β2Zi,t + β3Fi,t ∗ Zi,t + Ai,t +Xi,t + δt + ki + ηi,t (4.7)
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where Zi,t is the standardized deviation (Z score) of total rainfall in Meher, the

rainy season (June-September). Trivially we expect β̂2 < 0, a good year of rainfall

decreases food insecurity and vice versa. Our interest is in testing whether land

fragmentation exacerbates this sensitivity to rainfall β̂3 < 0 or mitigates it β̂3 > 0

.

From Table 4.14 we find that rainfall indeed correlates with decreased food

insecurity as measured by CSI. Since β̂3 > 0, land fragmentation mitigates the

sensitivity of food security to rainfall.

Figure 4.3 illustrates this visually. Figure 4.3a illustrates the difference in dis-

tribution of CSI between households with a low level of land fragmentation (FI=0)

and households with perfect fragmentation (FI=1), in a normal year, where the

Z-score for rainfall is 0. We find that households with diversified plots have lower

levels of CSI, ceteris paribus. Figure 4.3b illustrates the difference in distribution

of CSI outcomes for the same two households in a year of drought, where the Z-

score for rainfall is -2. We find that though both types of households see increases

in the CSI levels, the difference between the two increases. The household with no

land fragmentation experiences more severe food insecurity in times of drought.

4.6.2 Reduced Risk through Diversification

This drought buffering effect is linked to a diversified portfolio. Land fragmenta-

tion means a greater diversity in parcel level characteristics. We therefore expect

households with a more diverse portfolio of land to have better food security out-

comes. Tables 4.15 and 4.16 regress the household level average characteristics and

standard deviation against Months Hungry and CSI, respectively. These charac-
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teristics include distance from the home, slope, elevation and wetness. Tables 4.15a

and 4.16a show a null result, suggesting that the level is not significantly correlated

with food security. There is no optimal slope, elevation or wetness. However, hav-

ing a diverse set of plots does improve food security. Table 4.15b shows a negative

and significant correlation between Months Hungry and the standard deviation in

distance, slope and elevation. Table 4.16b suggests that households with a diverse

set of plots in terms of slope and wetness experience lower levels of CSI. Together,

these results suggest that agro-ecological heterogeneity plays an important role in

helping households diversify their portfolio. Though no particular slope, elevation

or wetness is ideal, a heterogeneous mix offers a good buffer against shocks, leading

to better food security outcomes.

Endowed with this portfolio of land characteristics, farmers can choose the

crops grown accordingly in order to minimize risk. Dercon, 1996 models how

households with fewer assets mitigate their risk by cultivating low yield, low vari-

ance crops, such as sweet potato, while households with more assets are likelier

to cultivate high yield, high variance cash crops such as cotton. In the case of

Ethiopian farmers, this portfolio of land is an endowment under our assumption

of exogeneity, which households can take advantage of by tailoring their crops to

the lands characteristics. Table 4.17 regresses these parcel characteristics against

the five most prevalent crops grown and find that these characteristics shift the

probability of planting given crops. For example, farmers are more likely to plant

teff and less likely to plant coffee in soils with a high wetness index. This suggests

that one of the advantages of a diverse set of parcel characteristics is the ability to

plant several different crops.

Agro-ecological variation may effect food security via crop diversity or by
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directly reducing production risk within a given crop. Mediation analysis using

a controlled direct effects regression can help disentangle these two mechanisms

(Baron and Kenny, 1986). Given the variation in geovariables GV sd
i,t , food security

Yi,t and crop diversity as the mediator CDi,t, CDE estimates:

CDi,t = γ0 + γ1GV
sd
i,t + γ2Xi,t + ǫi,t (4.8)

Yi,t = β0 + β1GV
sd
i,t + β2CDi,t + β3Xi,t + ηi,t (4.9)

Where β̂1 is the direct effect and γ̂1 ∗ β̂2 is the indirect effect. Table 4.18

explores the relationship between land fragmentation, crop diversity and food in-

security.‘Number of Distinct Crops’ counts the number of different crop types a

household grows across its parcels. From Table 4.18a, increased diversity in agro-

ecological characteristics increases the diversity of crops grown. Table 4.18b sug-

gests that the increased diversity of crops contributes to improvements in house-

hold food security, evidence of the indirect effect of agroecological heterogeneity

via crop diversification. In the case of CSI, variation in slope and wetness also

directly affect food security, likely by reducing production risk within a given crop.

Both mechanisms operate in tandem.

4.7 Conclusion

Land fragmentation is much maligned as an obstacle to agricultural productivity.

Drawing from the link between land enclosure and the industrial revolution in the

UK, they argue that land consolidation is a precondition for households to emerge

out of poverty. Yet this overlooks the benefits land fragmentation may confer to

subsistence farmers in terms of food security. By allowing them to diversify their

risks, farmers are less vulnerable to a shock wiping out their crop. An empirical
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investigation of this question is hampered by the potential endogeneity of land

allocation decisions.

We exploit a natural experiment in Ethiopia, where the pattern of land re-

distribution under the communist government was maintained by law and custom,

arguing that land fragmentation is therefore orthogonal to farmer’s ability. We

find that higher levels of of land fragmentation decrease both short terms and

long term food insecurity. This result is robust to various subsets of the data and

alternative specifications.

Unpacking this mechanism, we demonstrate that land fragmentation mitig-

ates the impact of drought on food security. Higher land fragmentation means

households are endowed with a more diverse set of parcels in terms of walking

distance, slope, elevation and wetness. The level of these characteristics has no

effect on food security, but a higher standard deviation translates to improved food

security outcomes. In part, this is because a farmer with multiple parcels can cater

the crop she grows to her parcel’s characteristics. Farmers who grow more crop

types are more food secure.

This paper suggests that efforts at land consolidation should be approached

with caution. Though they may improve agricultural productivity, in the absence

of credit and insurance markets land fragmentation plays a crucial role in allowing

households to mitigate risk by diversifying their crop portfolio. The paper also

highlights how households living at or near subsistence levels resort to informal

risk mitigation mechanisms. Though incomplete, these mechanisms must be un-

derstood before they are intentionally or unintentionally disrupted by external

interventions. As in medicine, development practitioners should abide by the rule:

“First, do no harm”.
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Table 4.1: Land Tenure By Region

Highlands Pastoral*
Tenure Type Tigray Oromia Amhara Afar Somalie
Granted by Local Leaders 64% 33% 48%% 14% 15%
Inherited 13% 44% 33% 31% 52%
Rent 11% 4% 5% 9% 1%
Borrowed for Free 3% 4% 3% 3% 1%
Moved in Without Permission 1% 7% 0% 38% 27%
Shared Crop 0% 0% 0% 0% 0%
Purchased 1% 2% 2% 1% 1%
Rented out 5% 2% 4% 1% 2%
Other 2% 4% 3% 4% 0%
Total 100% 100% 100% 100% 100%

Lowlands
Tenure Type Benshagul Gumuz SNNP Gambelia Total
Granted by Local Leaders 64 % 20% 48% 36%
Inherited 8% 67% 21% 43%
Rent 6% 2% 2% 5%
Borrowed for Free 3% 2% 4% 3%
Moved in Without Permission 8% 0% 4% 5%
Shared Crop 1% 0% 0% 0%
Purchased 4% 2% 7% 2%
Rented out 1% 3% 2% 3%
Other 4% 4% 13% 4%
Total 100% 100% 100 % 100%

Source: LSMS Ethiopia parcel dataset

* Subsequently excluded from analysis

Tables
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Table 4.2: Land Tenure

(a) Parcel Tenure Type by Round

Tenure Type 2011/2012 2013/2014 2015/2016 Total
Granted by Local Leaders 4,000 4,335 4,214 12,549
Inherited 3,599 4,904 4,989 13,492
Rent in 1,284 1,478 754 3,516
Borrowed for Free 372 142 163 677
Moved in Without Permission 446 309 323 1,078
Shared Crop 0 0 794 794
Purchased 0 0 524 524
Rented out 319 763 955 2,037
Other 507 425 34 966
Total 10,527 12,356 12,750 35,633

Source: LSMS Ethiopia parcel dataset

(b) Household Demographics by Tenure Type

Tenure Type Female Age HH Size Dependency
Granted by Local 26 % 50.23 5.09 1.27
Inherited 21 % 42.98 5.24 1.47
Rent 34 % 36.91 3.84 1.03
Borrowed for Fre 30 % 39.69 4.21 1.21
Moved in Without 24 % 46.01 5.46 1.56
Shared Crop 5 % . 5.63 1.34
Purchased 21 % 52.12 5.34 1.47
Rented out 44 % 51.49 4.26 1.48
Other 19 % 41.13 5.32 1.20
Total 24 % 45.59 5.09 1.37

Source: LSMS Ethiopia household dataset & parcel dataset
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Table 4.3: Proposed Fragmentation measures

Measure Equation Interpretation Data required

Number of Parcels Np • n number of parcels • Parcel count

Simpson FI = 1−
∑K

k α2
k

(
∑K

k αk)2
• n number of parcels • Parcel count

• α size in square meters • Parcel area
• A total size of the land holdings
• K → ∞FI → 1

Monchuk et al Sk =

√
(αk−ᾱ)2

ᾱ
• Captures deviation from the average size • Parcel area
• Independent of number of parcels

Igozurike D • Round trip distance to reach all fields • Parcel Geocodes
• Measured with travelling salesman
algorithm

Source: Authors
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Table 4.4: LSMS Land Statistics

(a) Mean Number and Size of Parcels

Region Number of Parcels Average Parcel Area (HA) Household Area (Ha)

Highlands
Tigray 3.17 0.43 1.29
Amhara 4.54 0.27 1.23
Oromia 3.85 0.51 1.69

Lowlands
Benshagul Gumuz 3.43 0.48 1.46
SNNP 2.48 0.40 0.93
Gambelia 2.06 0.21 0.47

Total 3.24 0.39 1.17

Source: LSMS Ethiopia parcel dataset

(b) Parcel’s Physical Characteristics

Region Distance (km) Slope (%) Elevation (m) Wetness Index

Highlands
Tigray 1.20 11.88 1859.73 12.92
Amhara 0.99 14.72 2122.35 12.69
Oromia 0.80 10.33 2007.55 12.71

Lowlands
Benshagul Gumuz 1.64 6.17 1294.88 12.97
SNNP 1.37 15.42 1894.25 12.61
Gambelia 1.40 3.69 754.68 14.53

Total 1.13 11.98 1828.64 12.92

Area-weighted household mean of parcel level values

Source: LSMS Ethiopia parcel dataset
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Table 4.5: Household Level Statistics

Variable Mean Standard Min Max
Deviation

Food Insecurity
Coping Strategy Index 4 8.3 0 84

Months Hungry .9 1.7 0 11

Fragmentation
Number of Parcels 3.2 2.7 1 26

Simpson Fragmentation Index .38 .31 0 .95

Deviation in Plot Size .46 .48 0 7

Round Trip Distance Travelled 4.2 6.6 0 60
(Travelling Salesman)

Household Controls
Household Head is Female .28 .45 0 1

Household Size 4.7 2.4 1 16

Dependency Ratio 1.2 1.1 0 11

(# under 15 or over 64
# between 15 and 64

)

Age of Household Head 44 16 3 100

Asset Index .29 3 -1.2 42
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Table 4.6: Food Insecurity and Land Fragmentation, Pooled OLS

(a) Month Hungry and Land Fragmentation

Months Hungry
(1) (2) (3) (4)

Number of Parcels -0.063∗∗∗

(0.010)

Simpson Fragmentation Index -0.539∗∗∗

(0.103)

Deviation in Parcel Size -0.115∗∗

(0.054)

Distance Travelled -0.009∗∗∗

(0.003)
Total Household Area Farmed -0.037∗∗∗ -0.043∗∗∗ -0.050∗∗∗ -0.050∗∗∗

(0.012) (0.012) (0.013) (0.013)

N 8698 8698 8698 8445

(b) CSI and Land Fragmentation

Coping Strategy Index
(1) (2) (3) (4)

Number of Parcels -0.240∗∗∗

(0.055)

Simpson Fragmentation Index -3.390∗∗∗

(0.670)

Deviation in Parcel Size -0.825∗∗∗

(0.293)

Distance Travelled -0.064∗∗∗

(0.019)

Total Household Area Farmed -0.173∗∗∗ -0.170∗∗∗ -0.211∗∗∗ -0.215∗∗∗

(0.048) (0.046) (0.052) (0.051)
N 8698 8698 8698 8445

Fragmentation measures fixed to first round. Excludes cities, pastoral areas (Afar, Somalie)

Not reported: controls for gender of household head, dependency ratio, size of household,

asset index, Kebele, round. Household clustered standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.7: Food Insecurity and Land Fragmentation, Highlands Only

(a) Months Hungry and Land Fragmentation

Months Hungry
(1) (2) (3) (4)

Number of Parcels -0.060∗∗∗

(0.011)

Simpson Fragmentation Index -0.562∗∗∗

(0.119)

Deviation in Parcel Size -0.091
(0.062)

Distance Travelled -0.010∗∗

(0.004)
Total Household Area Farmed -0.027∗∗ -0.033∗∗∗ -0.040∗∗∗ -0.039∗∗∗

(0.012) (0.012) (0.013) (0.013)

N 4768 4768 4768 4779

(b) CSI and Land Fragmentation

Coping Strategy Index
(1) (2) (3) (4)

Number of Parcels -0.163∗∗∗

(0.043)

Simpson Fragmentation Index -2.502∗∗∗

(0.548)

Deviation in Parcel Size -0.626∗∗

(0.255)

Distance Travelled -0.076∗∗∗

(0.022)

Total Household Area Farmed -0.152∗∗∗ -0.150∗∗∗ -0.174∗∗∗ -0.168∗∗∗

(0.050) (0.049) (0.051) (0.050)
N 4768 4768 4768 4779

Fragmentation measures fixed to first round. Sample limited to Ethiopian Highlands

(Amhara, Tigray & Oromia). Not reported: controls for total area farmed, gender of

household head, dependency ratio, size of household, asset index, Kebele, round.

Household clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.8: Food Insecurity and Land Fragmentation, Inherited or Gran-
ted Parcels Only

(a) Months Hungry and Land Fragmentation

Months Hungry
(1) (2) (3) (4)

Number of Parcels -0.086∗∗∗

(0.016)

Simpson Fragmentation Index -0.630∗∗∗

(0.140)

Deviation in Parcel Size -0.223∗∗∗

(0.082)

Distance Travelled -0.015∗∗∗

(0.005)

Total Household Area Farmed -0.037∗∗∗ -0.041∗∗∗ -0.046∗∗∗ -0.049∗∗∗

(0.014) (0.014) (0.015) (0.016)
N 4843 4843 4843 4749

(b) CSI and Land Fragmentation

Coping Strategy Index
(1) (2) (3) (4)

Number of Parcels -0.291∗∗∗

(0.095)

Simpson Fragmentation Index -3.628∗∗∗

(0.936)

Deviation in Parcel Size -1.186∗∗∗

(0.448)

Distance Travelled -0.070∗∗

(0.030)

Total Household Area Farmed -0.201∗∗∗ -0.190∗∗∗ -0.221∗∗∗ -0.237∗∗∗

(0.066) (0.064) (0.070) (0.072)
N 4843 4843 4843 4749

Sample limited to households with parcels inherited or granted from local leaders.

Not reported: controls for total area farmed, gender of household head, dependency ratio,

size of household, asset index, region and time fixed effects.

Household clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.9: Months Hungry and Land Fragmentation, Instrumental Vari-
able

(a) First Stage

(1) (2) (3) (4)
Number of Simpson Deviation Distance
Parcels Fragmentation in Parcel Size Travelled

Number of Parcels inherited or 0.730∗∗∗ 0.065∗∗∗ 0.052∗∗∗ 0.476∗∗∗

received from local authorities (0.025) (0.003) (0.004) (0.057)
N 8853 8853 8853 8763
R2 0.630 0.447 0.168 0.108

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) Second Stage, Regressing on Months Hungry

Months Hungry
(1) (2) (3) (4)

Number of Parcels -0.064∗∗∗

(0.012)

Simpson Fragmentation Index -0.718∗∗∗

(0.131)

Deviation in Parcel Size -0.894∗∗∗

(0.170)

Distance Travelled -0.102∗∗∗

(0.020)

Total Household Area Farmed -0.055∗∗∗ -0.052∗∗∗ -0.033∗∗ -0.026
(0.012) (0.012) (0.013) (0.016)

N 8602 8602 8602 8513

Not reported: controls for total area farmed, gender of household head, dependency ratio,

size of household, asset index, Kebele and time fixed effects. Household clustered standard

errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.10: CSI and Land Fragmentation, Instrumental Variable

(a) First Stage

(1) (2) (3) (4)
Number of Simpson Deviation Distance
Parcels Fragmentation in Parcel Size Travelled

Number of Parcels inherited or 0.730∗∗∗ 0.065∗∗∗ 0.052∗∗∗ 0.476∗∗∗

received from local authorities (0.025) (0.003) (0.004) (0.057)
N 8853 8853 8853 8763
R2 0.630 0.447 0.168 0.108

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) Second Stage, Regressing on CSI

Coping Strategy Index
(1) (2) (3) (4)

Number of Parcels -0.361∗∗∗

(0.057)

Simpson Fragmentation Index -4.068∗∗∗

(0.593)

Deviation in Parcel Size -5.194∗∗∗

(0.793)

Distance Travelled -0.555∗∗∗

(km) (0.097)

Total Household Area Farmed -0.166∗∗∗ -0.151∗∗∗ -0.038 -0.007
(0.047) (0.044) (0.052) (0.068)

N 8602 8602 8602 8513

Not reported: controls for total area farmed, gender of household head, dependency ratio,

size of household, asset index, Kebele and time fixed effects. Household clustered standard

errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.11: Food Insecurity and Land Fragmentation, Poisson MLE

(a) Months Hungry and Land Fragmentation

Months Hungry
(1) (2) (3) (4)

Number of Parcels -0.075∗∗∗

(0.008)

Simpson Fragmentation Index -0.389∗∗∗

(0.053)

Deviation in Parcel Size -0.122∗∗∗

(0.032)

Distance Travelled -0.012∗∗∗

(0.003)

Total Household Area Farmed -0.115∗∗∗ -0.136∗∗∗ -0.151∗∗∗ -0.147∗∗∗

(0.014) (0.014) (0.014) (0.014)
N 8698 8698 8698 8445

(b) CSI and Land Fragmentation

Coping Strategy Index
(1) (2) (3) (4)

Number of Parcels -0.106∗∗∗

(0.004)

Simpson Fragmentation Index -0.687∗∗∗

(0.027)

Deviation in Parcel Size -0.172∗∗∗

(0.016)

Distance Travelled -0.017∗∗∗

(0.001)

Total Household Area Farmed -0.054∗∗∗ -0.064∗∗∗ -0.086∗∗∗ -0.085∗∗∗

(0.005) (0.006) (0.006) (0.006)
N 8698 8698 8698 8445

Fragmentation measures fixed to first round. Excludes cities, pastoral areas (Afar Somalie).

Not reported: controls for gender of household head, dependency ratio, size of household,

asset index, Kebele and time fixed effects. Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.12: Food Insecurity and Land Fragmentation, Negative Binomial
MLE

(a) Months Hungry and Land Fragmentation

Months Hungry
(1) (2) (3) (4)

Number of Parcels -0.089∗∗∗

(0.013)

Simpson Fragmentation Index -0.520∗∗∗

(0.098)

Deviation in Parcel Size -0.169∗∗∗

(0.057)

Distance Travelled -0.016∗∗∗

(0.005)

Total Household Area Farmed -0.098∗∗∗ -0.110∗∗∗ -0.120∗∗∗ -0.119∗∗∗

(0.018) (0.018) (0.018) (0.018)
N 8698 8698 8698 8445

(b) CSI and Land Fragmentation

Coping Strategy Index
(1) (2) (3) (4)

Number of Parcels -0.143∗∗∗

(0.020)

Simpson Fragmentation index -1.089∗∗∗

(0.145)

Deviation in Parcel Size -0.247∗∗∗

(0.082)

Distance Travelled -0.024∗∗∗

(0.006)

Total Household Area Farmed -0.039∗∗ -0.044∗∗∗ -0.054∗∗∗ -0.056∗∗∗

(0.016) (0.016) (0.015) (0.015)
N 8698 8698 8830 8613

Fragmentation measures fixed to first round. Excludes cities, pastoral areas (Afar, Somalie)

Not reported: controls for gender of household head, dependency ratio, size of household,

asset index, Kebele and time fixed effects.

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.13: Months Hungry and Land Fragmentation interacted with
Rainfall, Pooled OLS

Months Hungry
(1) (2) (3) (4)

Total rainfall in wettest quarter (mm) -0.128∗∗∗ -0.184∗∗∗ -0.032 -0.117∗∗∗

(0.045) (0.055) (0.044) (0.039)

Number of Parcels -0.053∗∗∗

(0.011)

Number of Parcels* 0.011
Total rainfall in wettest quarter (mm) (0.007)

Simpson Fragmentation Index -0.434∗∗∗

(0.109)

Simpson Fragmentation Index * 0.219∗∗

Total rainfall in wettest quarter (mm) (0.091)

Deviation in Plot Size -0.105∗

(0.056)

Deviation in Plot Size -0.094
Total rainfall in wettest quarter (mm) (0.060)

Distance Travelled -0.006
(0.004)

Distance Travelled * 0.006∗

Total rainfall in wettest quarter (mm) (0.004)
N 5861 5861 5861 5817

Fragmentation measures fixed to first round. Excludes cities, pastoral areas (Afar & Somalie).

Not reported: controls for farmed area, gender of household head, dependency ratio, size of household,

asset index, Kebele and time fixed effects.

Household clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.14: CSI and Land Fragmentation interacted with Rainfall, Pooled
OLS

Coping Strategy Index
(1) (2) (3) (4)

Total rainfall in wettest quarter (mm) -1.223∗∗∗ -1.129∗∗∗ -0.987∗∗∗ -0.881∗∗∗

(0.209) (0.259) (0.194) (0.171)

Number of Parcels -0.153∗∗∗

(0.056)

Number of Parcels * 0.138∗∗∗

Total rainfall in wettest quarter (mm) (0.036)

Simpson Fragmentation Index -2.446∗∗∗

(0.548)

Simpson Fragmentation Index * 0.949∗∗

Total rainfall in wettest quarter (mm) (0.436)

Deviation in Plot Size -0.681∗∗

(0.273)

Deviation in Plot Size * 0.517∗∗

Total rainfall in wettest quarter (mm) (0.242)

Distance Travelled -0.057∗∗

(0.023)

Distance Travelled * 0.036∗∗

Total rainfall in wettest quarter (mm) (0.018)
N 5838 5838 5838 5794

Fragmentation measures fixed to first round. Excludes cities, pastoral areas (Afar & Somalie).

Not reported: controls for farmed area, gender of household head, dependency ratio, size of household,

asset index, Kebele and time fixed effects.

Household clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.15: Months Hungry and Geo-Variables

(a) Household Mean of Characterisitics

Months Hungry
(1) (2) (3) (4)

¯Distance -0.007
(0.008)

¯Slope -0.002
(0.005)

¯Elevation 0.000
(0.000)

¯Wetness 0.007
(0.016)

N 8551 8573 8573 8573

Not reported: controls for total area farmed, gender of household

head, dependency ratio, size of household, asset index, Kebele and time

time fixed effects.

Household clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) Household Standard Deviation of Characteristics

Months Hungry
(1) (2) (3) (4)

Distancesd -0.080∗∗∗

(0.021)

Slopesd -0.022∗∗∗

(0.006)

Elevationsd -0.001∗∗∗

(0.000)

Wetnesssd -0.028
(0.026)

N 8552 8574 8574 8574

Not reported: controls for total area farmed, gender of household

head, dependency ratio, size of household, asset index, Kebele and

time fixed effects.

Household clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.16: CSI and Geo-Variables

(a) Household Mean of Characterisitics

Coping Strategy Index
(1) (2) (3) (4)

¯Distance 0.033
(0.043)

¯Slope -0.012
(0.021)

¯Elevation -0.000
(0.001)

¯Wetness 0.137
(0.103)

N 8348 8348 8348 8348

Not reported: controls for total area farmed, gender of household

head, dependency ratio, size of household, asset index, Kebele and time

time fixed effects.

Household clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) Household Standard Deviation of Characteristics

Coping Strategy Index
(1) (2) (3) (4)

Distancesd -0.057
(0.112)

Slopesd -0.113∗∗∗

(0.029)

Elevationsd -0.003
(0.002)

Wetnesssd -0.349∗∗∗

(0.093)
N 8327 8349 8349 8349

Not reported: controls for total area farmed, gender of household

head, dependency ratio, size of household, asset index, Kebele and

time fixed effects.

Household clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.17: Parcel Characteristics and Crop Grown, Probit

Maize Sorghum Teff Wheat Coffee
(1) (2) (3) (4) (5)

Distance -0.006∗∗∗ -0.001 -0.001 0.002∗ -0.004∗

(0.002) (0.001) (0.001) (0.001) (0.002)

Slope -0.010∗∗∗ 0.008∗∗∗ -0.002∗ 0.001 0.003∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Elevation -0.001∗∗∗ -0.001∗∗∗ -0.000∗∗∗ 0.001∗∗∗ -0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Wetness -0.009∗ -0.010∗ 0.030∗∗∗ 0.022∗∗∗ -0.021∗∗∗

(0.004) (0.005) (0.005) (0.006) (0.006)
N 48468 48468 48468 48468 48468

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4.18: Land Fragmentation, Crop Diversity and Food Insecurity

(a) Number of Crops and Land Fragmentation

Number of Distinct Crops
(1) (2) (3) (4)

Distancesd 0.090∗∗∗

(0.025)

Slopesd 0.023∗∗∗

(0.008)

Elevationsd 0.003∗∗∗

(0.001)

Wetnesssd 0.129∗∗∗

(0.024)
N 5904 5918 5918 5918

Not reported: land area, controls for gender of household head, dependency

ratio, size of household, asset index, Kebele and time fixed effects.

Household clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) CSI and Number of Crops

Months Hungry CSI
(1) (2)

Number of Distinct Crops -0.030∗ -0.353∗∗∗

(0.016) (0.071)

Distancesd -0.008 -0.154
(0.023) (0.106)

Slopesd -0.011 -0.126∗∗∗

(0.007) (0.028)

Elevationsd 0.000 0.001
(0.001) (0.002)

Wetnesssd 0.014 -0.352∗∗∗

(0.025) (0.110)
N 5904 5753

Not reported: controls for area, Kebele ect...

Household clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figures

Figure 4.1: Incidence of food insecurity across regions
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Figure 4.2: Illustration of land fragmentation

(a) Consolidated parcels

(b) Fragmented parcels



Figure 4.3: Distribution of Food Insecurity

(a) Non-Drought Year (Z-score= 0)

(b) Drought Year (Z-score= -2)



APPENDIX A

SUPPLEMENTARY TABLES TO CH 2
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Table A.1: IV with objective SPEI measure of drought occurence

(1) (2) (3)
PSNP Payment 0.103 -0.112 0.026

(0.093) (0.090) (0.055)

Negative SPEI in past year 0.856 -1.101 -2.005∗∗∗

(0.783) (0.729) (0.770)

PSNP Payment * Negative SPEI in past year -0.134 0.330∗∗ 0.403∗∗∗

(0.141) (0.156) (0.114)

PSNP Payment 2 years ago 0.016 -0.025
(0.076) (0.091)

Negative SPEI 2 years ago -2.346∗∗∗ -3.150∗∗∗

(0.718) (0.957)

PSNP Payment * Negative SPEI 2 years ago 0.312∗∗∗ 0.381∗∗∗

(0.100) (0.130)

PSNP Payment 4 years ago 0.083
(0.071)

Negative SPEI 4 years ago -1.710∗∗∗

(0.566)

PSNP Payment * Negative SPEI 4 years ago 0.269∗∗

(0.123)
N 8005 8005 8005
J-Test p-value 0.2857 0.3932 0.3861

SPEI: Standard Precipitation Evapotranspiration Index, negative values indicate drought conditions

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.2: IV including USAID implemented Woredas

(1) (2) (3)
PSNP Payment 0.056∗∗ 0.076∗∗∗ 0.194∗∗∗

(0.027) (0.023) (0.023)

Drought in past year -3.721∗∗∗ -3.478∗∗∗ -3.840∗∗∗

(0.862) (0.426) (0.507)

PSNP Payment * Drought in past year 0.410∗∗∗ 0.511∗∗∗ 0.479∗∗∗

(0.141) (0.114) (0.108)

PSNP Payment 2 years ago 0.174∗∗ 0.083∗

(0.069) (0.045)

Drought 2 years ago -0.781 -0.969∗∗

(0.737) (0.378)

PSNP Payment * Drought 2 years ago 0.279 0.180∗

(0.199) (0.105)

PSNP Payment 4 years ago 0.097∗

(0.051)

Drought 4 years ago -0.318
(0.465)

PSNP Payment * Drought 4 years ago -0.086
(0.142)

N 8623 8623 8623

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.3: IV excluding Direct Support Beneficiaries

(1) (2) (3)
PSNP Payment 0.015 0.045∗ 0.036∗∗∗

(0.041) (0.024) (0.014)

Drought in past year -3.852∗∗∗ -3.552∗∗∗ -4.922∗∗∗

(1.273) (0.362) (0.542)

PSNP Payment * Drought in past year 0.415∗∗ 0.514∗∗∗ 0.590∗∗∗

(0.185) (0.095) (0.123)

PSNP Payment 2 years ago 0.138 0.050
(0.090) (0.051)

Drought 2 years ago -1.373∗ -2.118∗∗∗

(0.793) (0.614)

PSNP Payment * Drought 2 years ago 0.331∗ 0.348∗∗∗

(0.171) (0.125)

PSNP Payment 4 years ago 0.023
(0.058)

Drought 4 years ago -1.198∗∗

(0.484)

PSNP Payment * Drought 4 years ago 0.033
(0.131)

N 6543 6543 6543

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.4: IV with HABP control

(1) (2) (3)
PSNP Payment 0.013 0.055∗∗ 0.116∗∗∗

(0.027) (0.023) (0.020)

Drought in past year -3.798∗∗∗ -3.775∗∗∗ -4.142∗∗∗

(1.140) (0.324) (0.540)

PSNP Payment * Drought in past year 0.414∗∗ 0.513∗∗∗ 0.470∗∗∗

(0.179) (0.092) (0.118)

HABP -0.340∗∗∗ -0.245∗ -0.403∗∗∗

(0.111) (0.138) (0.134)

PSNP Payment 2 years ago 0.037 0.031
(0.088) (0.047)

Drought 2 years ago -1.698∗∗ -1.457∗∗∗

(0.755) (0.387)

PSNP Payment * Drought 2 years ago 0.370∗∗ 0.242∗∗

(0.175) (0.095)

PSNP Payment 4 years ago 0.176∗∗∗

(0.068)

Drought 4 years ago -0.054
(0.471)

PSNP Payment * Drought 4 years ago -0.151
(0.125)

N 7075 7075 7075
Hansen J-Test 0.9224 0.5394 0.5867

Standard errors clustered at the village level in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Transfers are in 100 birr increments
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Table A.5: Poisson ML estimator with Fixed Effects

(1) (2) (3)
PSNP Payment 0.001∗ 0.001∗∗ 0.001∗∗

(0.001) (0.001) (0.001)

Drought in past year -0.143∗∗∗ -0.147∗∗∗ -0.164∗∗∗

(0.015) (0.015) (0.017)

PSNP Payment * Drought in past year 0.002∗ 0.002∗∗ 0.002∗

(0.001) (0.001) (0.001)

PSNP Payment 2 years ago 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001)

Drought 2 years ago -0.030∗∗ -0.049∗∗∗

(0.013) (0.015)

PSNP Payment * Drought 2 years ago 0.001 0.001
(0.001) (0.001)

PSNP Payment 4 years ago 0.001
(0.001)

Drought 4 years ago -0.034∗∗

(0.015)

PSNP Payment * Drought 4 years ago -0.002
(0.002)

N 8005 8005 8005

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

175



Table A.6: Poisson ML estimator with Instrumental Variables

(1) (2) (3)
PSNP Payment -0.007 -0.005 -0.001

(0.005) (0.005) (0.005)

Drought in past year -0.387∗∗∗ -0.337∗∗∗ -0.292∗∗∗

(0.065) (0.077) (0.080)

PSNP Payment * Drought in past year 0.030∗∗∗ 0.023∗∗∗ 0.015
(0.007) (0.008) (0.011)

PSNP Payment 2 years ago -0.007 -0.016
(0.011) (0.010)

Drought 2 years ago -0.190∗∗∗ -0.239∗∗∗

(0.052) (0.056)

PSNP Payment * Drought 2 years ago 0.030∗∗∗ 0.041∗∗∗

(0.011) (0.011)

PSNP Payment 4 years ago 0.009
(0.012)

Drought 4 years ago 0.068
(0.099)

PSNP Payment * Drought 4 years ago -0.046
(0.032)

N 8005 8005 8005

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.7: IV with Detrended Measure of Food Security

(1) (2) (3)
PSNP Payment 0.032 0.013 0.015

(0.033) (0.021) (0.020)

Drought in past year -3.185∗∗ -3.340∗∗∗ -4.426∗∗∗

(1.340) (0.376) (0.473)

PSNP Payment * Drought in past year 0.365∗ 0.475∗∗∗ 0.556∗∗∗

(0.214) (0.105) (0.111)

PSNP Payment 2 years ago -0.062 -0.094
(0.081) (0.062)

Drought 2 years ago -1.609∗∗ -1.836∗∗∗

(0.714) (0.440)

PSNP Payment * Drought 2 years ago 0.377∗∗ 0.337∗∗∗

(0.167) (0.104)

PSNP Payment 4 years ago 0.069
(0.083)

Drought 4 years ago -0.934
(0.587)

PSNP Payment * Drought 4 years ago 0.032
(0.159)

N 8005 8005 8005

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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APPENDIX B

MEASURING LAND IN CH4

B.1 Plot, Field and Parcel

The Ethiopian Living Standards Measurement Survey Integrated Survey on Ag-

riculture (LSMS-ISA) is a household panel data set with three rounds collected in

2011-2012, 2013-2014, and 2015-2016.

Land data is collected at three levels of aggregation: parcels; fields; and plots.

Plots are the smallest unit of analysis. Multiple plots can make up a field. Multiple

fields make up a parcel; parcels are the highest land unit.

For example, consider a sample household who was interviewed in the 2013/14

survey round. She has two parcels of land, Parc1 and Parc2.

• Parc1 is divided into two fields, Parc1,F1 and Parc1,F2.

– Parc1,F1 consists of a single plot (Parc1,F1,P1).

– Parc1,F2 is divided into two plots (Parc1,F2,P1, Parc1,F2,P2).

• Parc2 is divided into three fields, Parc2,F1, Parc2,F2 and Parc2,F3.

– Parc2,F1 has two plots (Parc2,F1,P1, Parc2,F1,P2).

– Parc2,F2 has one plot (Parc2,F2,P1).

– Parc2,F3 has one plot (Parc2,F3,P1).

It is important to note that different data were collected at the parcel, field

and plot level.
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At the parcel level, the following data were collected on all parcels owned

or rented in:

• Number of fields in parcel

• How parcel was acquired (granted by local leaders; inherited; rented in etc)

• Whether household has a land certificate for the parcel

• Details on parcels and/or fields rented in or out

At the field level, the following data were collected:

• Use during current season (farmed, fallow, etc)

• Size as reported by farmer

• Size as measured by GPS

• Size as measured by rope and compass

• Input use

• Crop Type

• Crop Yield

At the plot level, the following data were collected:

• Land characteristics: slope, elevation, distance from household and potential

wetness index

• geo-spatial coordinates. 1

1Due to confidentiality issues, we do not have access to the actual gps coordinates; however
characteristics derived from these were made available.
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At what level of aggregation (parcel, field, plot) should fragmentation be

measured? To determine this, we note a number of additional features of the data

collection on parcels, fields and plots:

• Unique parcel and field identifiers are available, which allow for merging data

between modules within rounds, but no unique plot ids are available, which

eliminates plot level comparisons as feasible.

• In rounds 2013/14 and 2015/16, parcel data from previous rounds was pre-

filled; this means that, for existing parcels recorded in 2011/2012 enumerators

returned to the same parcels in subsequent rounds. Further, information on

parcels was collected in a consistent manner across all rounds with unique

identifiers. This means that it is possible to construct a panel of parcels.

• It is difficult to construct a panel of fields. There are two reasons for this:

(1) The numbering of fields is not consistent across rounds; and (2) In the

2015/16 round, no data were collected on fields that were not managed by

the household (for example, fields that were rented out; fields that had been

given as gifts to others etc).

This implies that we can calculate the following on a consistent basis across

all three rounds:

1. For each round, the number of fields operated by the household and charac-

teristics of those fields.

2. For each round, the number of parcels operated by the household. Aggreg-

ating the field data (with or without adjustments for the size of each field),

we can construct aggregate characteristics of each parcel.
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3. For each round, we can construct aggregate characteristics of the holdings

operated by the household (with or without adjustments for the size of each

parcel).

4. We can construct a panel of parcels operated by the household over all rounds.

5. We can construct a panel of land operated by the household over all rounds.

When merging land data across rounds, we noted the following issues driving

attrition:

1. There was some data loss after the first survey round, partly because of

households moving and partly because of errors in pre-populating the second

round survey instrument with parcel level data.

2. There was also a change in methodology between rounds two and three.

Previously enumerators continued collecting data on all the parcels surveyed

in round one. However since a number of these parcels were subsequently

rented our or used for sharecropping, this led to data inconsistencies. As

a result, in round three enumerators only collected data on parcels being

operated by the household. This means that we can consistently measure

the size (and fragmentation) of land holdings operated by the household but

not the size (and fragmentation) of holdings to which the household has

access because, for round three, we have little information on parcels that

were rented out.
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B.2 Measuring Area

In order to measure area at the parcel level, we need to sum it from the field

level measurements. The original data files contained a small number of duplicate

observations; these, comprising approximately one percent of the data on parcels,

were dropped.

Constructing a consistent measure for area from the various measures avail-

able was done through the following process.

We begin with field measures taken by GPS (measured in m2). We divide

these by 10,000 to convert to hectares. Fields larger than 20 hectares are considered

outliers and are dropped. In order to ensure we were not missing a crucial element

of variation we looked into the regional distribution of these ’large’ reported parcels.

Most of them seem to be in Oromiya or Tigray, though the largest one is in Somale.

Either these reflect particularly large land-owners sampled, or enumerator error.

In either case, we decide to exclude them from our principal analysis.

Table B.1: Large Parcels Excluded from Dataset

region mean N
Tigray 21.79 8
Afar . 0
Amhara . 0
Oromiya 31.15 14
Somalie 126.41 2
Benishangul Gumu . 0
SNNP 81.22 2
Gambella . 0
Harari . 0
Dire Dawa . 0
Total 39.45 26
Source: LSMS Ethiopia parcel dataset (round 1)
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Across three rounds 10.4% of parcels were missing area measurements taken

by GPS, the bulk of them in the first round. Where these data are missing, meas-

urements were made either using rope-and-compass or were based on farmer self

reports. Where GPS area data were missing but rope-and-compass were available,

the rope and compass measures were used. For consistency these were similarly

truncated below 20 hectares, though there were no outliers. This allowed us to

recover half of the missing observations, as evidenced from the table below:

Table B.2: Parcels Missing Measurements of Area

Round Missing GPS AREA Missing GPS+Plot & Compass
2011/2012 18.6 % 4.37 %
2013/2014 6.4 % 6.39 %
2015/2016 6.4 % 6.39 %
Total 10.4 % 5.73 %
Source: LSMS Ethiopia parcel dataset (panel)

Self-reported holdings suffer from non-random measurement error (Carletto

et al., 2015). To complicate matters further, many farmers report these using non-

standard measures. The most widespread in Ethiopia is the ’Timad’, traditionally

the amount of land that can be plowed in a day. The LSMS Ethiopia documented

district specific units of conversion. We therefore attempted to convert these self-

reported measures to hectares, but this produced a large number of outliers. As an

alternative, we tried using a standard conversion for the most common measure,

the Timad, treating it as 1/4 of an acre in line with the FAO standard.2

As Table 5 shows, there were cases where both GPS and rope-and-compass

measures or GPS and self-reported measures were obtained. This allows us to

assess the correlation between these alternative ways of measuring land holdings.

2We only converted measures expressed in acres, hectares or Timad. Any other measures were
converted as missing observations.
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Table B.3: Missing Area observations (Round 1)

Rope & Compass Area
GPS Area Not Missing Missing Total
Not Missing 458 25,658 26,116
Missing 4,570 1,401 5,971
Total 5,028 27,059 32,087
Source: LSMS Ethiopia parcel dataset (panel)

Self Reported Area
GPS Area Not Missing Missing Total
Not Missing 25,656 460 26,116
Missing 5,568 403 5,971
Total 31,224 863 32,087
Source: LSMS Ethiopia parcel dataset (panel)

We regress the GPS reported area against four alternative measures: (1) the area

measured using rope and compass, (2) self reported area converted into acres using

the conversion rates provided in the dataset, (3) self reported area where Timad

was converted into acres at the rate of 8 Timads to an acres, and (4) self-reported

area in its original units.

The coefficients confirm that for the small overlapping set GPS and Rope &

Compass area are strongly correlated and one accounts for almost half the variation

in the other (R2 = .44). But irrespective of the conversion we use, the coefficients

on self-reported areas are small and the R2 low, one that barely improves when we

attempt to convert the reported areas into standard hectares. We therefore use the

rope-and-compass measures when GPS measured area is not available. However,

we do not use the farmer self-reported area data.
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Table B.4: Correspondence between Area Measures

(1) (2) (3) (4)
areagps areagps areagps areagps

area (rope & compass) 1.004∗∗∗

(0.00980)

area (self-reported 1) 0.0000479∗∗∗

(0.00000809)

area (self-reported 2) 0.0000525∗∗∗

(0.00000859)

area (self-reported original) 0.0000841∗∗∗

(0.00000692)

cons 0.00271∗∗∗ 0.184∗∗∗ 0.188∗∗∗ 0.132∗∗∗

(0.000741) (0.00187) (0.00225) (0.00121)
N 458 25,656 25,656 25,656
r2 0.440 0.000702 0.000942 0.00165
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Standard errors in parentheses. Self Reported 1 uses conversion rates provided by the dataset.

Self Reported 2 uses a standard 1/8 hectare conversion rate from the Timad. Orig uses no conversion.
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