REPRESENTATION OF ALMOST
CONSTANT VECTORS

by

J. Steensgaard-Madsen*

TR79-375

J. Steensgaard-Madsen
Department of Computer Science
Cornell University

Ithaca, New York 14853

*

On leave from University of Copenhagen, DIKU, Sigurdsgade 41, DK-2200
Copenhagen N. Demmark, with support from the Danish Natural Research
Council.

Repregentation of almost constant yectors.

J. Steensgaard-Madsen *

Department of Computer Science
Cornell University
Ithaca, New York 14853

ABSTRACT

An example in a recent report on the program-
ming language Russell has illustrated difficulties
related to user defined storage management, Here
is demonstrated how the dynamic approach to encap-
sulation earlier proposed by the author provides
means to solve the particular storage management
problem. The method used is, however, easily gen-
éralized to other similar cases,

In addition to the example a number of nota-
tional conveniences are introduced, One that al-
lows abbreviated references to components of
record-like structures is called controlled coer-
cion., Another allows a function-like wuse of
classes.

Keywords: Classes, abstract data types, storage
management, programming languages.

® On leave from University of Copenhagen, DIKU, Sigurdsgade
41, DK-2200 Copenhagen N, Denmark, with support from the
Danish Natural Research Council,

Representation of almost constant yectors.

J. Steensgaard-Madsen *

1. Introduction.

In a previous report I have introduced the folloving
constructs for use in a Pascal-like programming language:
Types as parameters, classes (often considered to be
abstract data types) and objects. The constructs for class
definition and object application can in their basic fora be
explained by simple rewriting rules transforming them into
procedure declarations and calls. In this sense class and
object usage can be considered a simple shorthand for a pro-
gramming technique relying on procedures. A fairly obvious
idea i3 to 1look for a similar technique related to func-
tions, A very trivial result comes out of this search, basi-

cally a notational convenlence.

A. Demers and J. Donahue have in a recent report [1]
defined a programming language called Russell. An example in
the report shows a definition of a type, "sparse", 1intendec
for representation of sparse matrices, The solutlon to the
problem of representing sparse matrices should illustrate

the implementation of a type with its own storage manage-

ment. The solution should also enhance facilities of Russell

particular to that language. Unfortunately the example 1in
the available preliminary version of the report is in error
because stnorage may be released while still in use with ob-

visus bad effects.

The fundamental reason why .the example fails is that a
preogrammer has no means to express actions to be performed
after an access right to a capsule (class or abstract data
type) has been exercised. The facility to do this by means
of nested class definitions .is fundamental in the dynamic
approach to class semantics in amy proposal, This report

sheows how a class similar to "sparse" may be defined

2. [o3 n coercion.

Consider a variable declaration as in Pascal:

integer;
array (1..80 1 of char

n

3

end

This allows field references like x.n and x.s [10],

Now, cne may want the convenience of omitting some field
:dentifiers. Context requirements will often provide enough
information for automatic selection of the proper field -
e.z., x [10]. Such inferences from context requirements to
a:tcmatically invoked operations are called coercions, If
snly one path from one level of nested definitions to anoth-
er may be fcilowed by coercions, common problems with back-

tracking across several levels can be avoided. This means

that if some context requirements are notv fulfilled in a
particular situation only one field - or sequence of fields
- can be produced in any attempt to fulfill the require-
ments. In this report brackets around an identifier viil be
used to indicate a field identifier that may be omitted from
a reference. As coercions thus is under the control of the

programmer the term gontrolled goercions will be used.
The example declaration above may be modified to

yar x : record

n : integer;
[s) : array [1..80] aof char
end

allowing constructions like x.n := 0 and x { 3] := 'a', but
not x := x + 1. The same mechanism may be used in selecting

facilities provided by an object.
3. Anonymous obljecty.

The application of classes has in an earlier presenta-

tion [3] been restricted to a context called an object

statement:

ohiect x : <class call>;

<block>

Within the block of an object statement as above, fa-
cilities of the object x are accessible much like fields of
record - e.g., X.reset(20) denotes selection of the facllity
reset of the object x, If x is used only once we have a ai-

tuation 1like

obliect <class calld>;
begin x

x 3
s () end

This can, however, be expressed more clearly by allow-
ing a class call to appear wherever an object 1dentifier may

be used - i.,e., the above situation specifies the meaning of
S (<class call>)
We say that an anonymous object 1s used within S.

Because one could expect that usually more than one fa-
cllity of an object will be used it might seem counterintui-
tive to provide a special notation for the case when an ob-
Ject i3 referred to only once. Some justification can, how-
ever, be found in ordinary expressions if left operands of
an infix operator 1is considered as an object. Usually, a
particular operator can be seen as a choice from a set of

possible operators,

Anonymous objects are especlially wuseful 1in with-
statemonts, Examples given with the proposal of the class
and object notation gain in clarity by the use of anonymous
objects in with-statements - for example, declaration of a
shared variable and its use in a conditional critical region
simplifies to

{ see explanation below)

object x : sharing of record oh : char; ... snd;

with x.when (B) do begin shared.ch := *A' ... and

thus establishing an even closer analogy to Hoare's original

proposal.

Above, "sharing® is a class identifier requiring one
type parameter following of. Any object of class sharing
provides a facility "when", which is a class, The benefit
of using an anonymous object here 1is in the class call
x.when (B). The identifier “shared"™ denotes a (facility
provided by objects of class when, "Shared" gives access to

the shared variable of the type given in the call of “"shar-

ing".

If with-statements are allowed as statement part of a
block, yet another advantage will be obtained, Blocks, and
programs in particular, then have a prefix property in so
far as a new, protected environment can be created for a
block by just adding text to precede the normal text of the

block, very much like SIMULA 67.
N. Almost gconstant yectors.

This section gives a class definition in the notation
of [3)] with which the reader should be famillar, However,
the notation is in good agreement with other proposals and
for the benefit of those who might go on without the de-
talled knowledge of [3] the overall structure of a simpli-
fied heading is glven:

clagy <class identifier> (<import parameter 1istd>)
: <export control identi{fier> (<export parameter 1ist>)

As seen from the example below, the import parameter

1130 aad Lhe enclosing parenthesis may be omitted., The eox-
port control identifier - always "def" in the example below
- and the associated export parameter list is in fact an ad-
ditiocnal procedure-parameter to the class, It is set off to
the right of the other parameters because no actual parame-
ter is 3Jubstituted explicitly. Implicitly, however, an actu-
al parameter is constructed from every object-statement., The
paraneter identifiers in the export parameter 1list are
called access identifiers because they are used to access
facilities provided by an object of the class., Within the
class definition the additional parameter is used as a pro-
cedure and a call of the procedure corresponds to the ac-
tivatinn of an object-statement. The actual parameters 1in
such an activation binds dynamically access-identifiers of
the ocbject to definitions (probably) local to the class de-
finition. Local definitions that are not bound to access

identifiers are thus hidden to .the object statement,

The example from the repourt on the programming language
Russell that triggered this report is on sparse matrices. A
sparse matrix could be represented by a two dimensional ar-
ray. In that case most components would have identtcal
valiues - e.g., zero. Thus, better storage economy might be
cbtained by keeping an explicit representation of only non-
zero values., Because the set of components with non-zero
values w®may vary 1in time an explicit storage management is

required.

In order Lo reduoe the size of the example and concen-
trate on the storage management issue, the following spe-
cialize to the similar problem for vectors. Letting the
index-type be reals emphasizes that an array representation
is inadequate. The vector will be represented by a linear
linﬁed list of components with non-zero values, sorted on
increasing values of indices., A component record contains in
addition to index, value, and link fields a field “"unused"

that is true when the component is in use from outside the

class,

The storage management works as follows. When a coa-
ponent of the vector is referenced, via an object of class
acceyy, the field "unused" is copied into a hidden variabdle,
"first_access". One such variable 1is allocated at each
reference to a vector component. An essential part of the

invariant for access-objects (of. [2 1) is
first_access = (number of references to component p- = 0)

The number of references may of course change during the ac-
tions represented by the call "def (p“.value)%, but at
completion of the call the relation 1s valid &gain. The
proof 1s simple: wuse of the parameters of "“def" cannot
change the invariant, and later references to the component

p must be dynamically contained in calls of class access

that will be completed when "def (p”.value)" is completed.

Overhead in this solution amounts to a) one boolean

-8 -

variable for each value represente

local variables and block admi

each active call on class "access"

say 2 or 3 calls,

¢lass thin_vector

d in a vector, and b) some

nistration information for
- typically only

a few,

R

idef (gclasyg f{access) (pos : real)
: def (yar [v] : real))
iype
link = component;
component = record
index, value : real;
next :t link;
unused : boolean
end;
yar
first : link;

glasy access (position :
: def (yar v

{ first®.index < first®.next".index <

first®.next".next”,index < ... }

real)

I v s St et et St St ot St o St ot St d St o a? ot et

: real);

yar first_access : boolean;
}

begin
{ find a component p" such that p-.
{ = position,
{ new component, setting p“.value t
{ and p“.unused to true

first_acce
p”.unused

. w
"non &

rst_access =
of ref's to p° =

Af first_access then
if p".value = 0 fhen
{ --- Free p ---}

else p~.unused :z true

= nil;
access);
Free all remaining components ---

possibly by allocating a

index)}

}
o0 }
}

0))}

Given the definition above, an object of class

thin_vector may be created and used in an object-statenment

like

. object x : thin_vector;
<block>

In the block of this statement one may find parts as:

x.access (0.5).v := 1,5

.o

-
-

—

x (0.7) :=x (0.5) - 1.5; {2}

with the following meaning according to the sections on

anonymous objects and controlled coercions:

object NN : x.,access (0.5);

begin NN.v := 1.5 end; {1}
object NN1 : x,access (0.7);

NN2 : x.access (0.5);
begin NN1.v := NN2.v - 1.5 end; t2)

Note that the order of allocation of NN1 and NN2 is ir-

relevant.

In 1t the compound statement will be executed
corresponding to the procedure call def (p“.value) in the
definition of "access"™, Hence, the component identified by
position = 0,5 will remain represented in x after executicn
of 1., Later, in 2, the component identified by poaition =
0.7 will be removed since zero i{s assigned as value. Note
especially, that if more than one reference to a particular

component {is 1in effect at one time only the dynamically

f:pa% may cause the disposal of that component.
5. Concluasions

The use of classes has been extended so that class
czlls may appear in places where a corresponding object
denotation might have been used. Further, a notation that
explicitly allows coercion in the form of default selection

of a facility has been introduced.

Using these means it has been shown how a programmer
m2y s$olve a particular storage management problem. However,
the snlutinn 13 obviously typical for a family of problems.
The ©problem of representing sparse matrices was originally
selected by the authors of the report on Russell in order to
foz2us on unusual facilities in tﬁat language., This paper has
shswn that the particular problem can be solved with the
2.333 definition method proposed by myself., It remains to be
seen hcow the problem will evenfually be solved by wuse of
Russell, For the time being the dynamic class interpretation
s2ez3s to provide better control than does the Russell facil-

itles.
References.

{1] Demers, A. and J. Donahue: "Report on the Programming
Language Russell™, TR 79-3T1, Computer Science Depart-

ment, Cornell University, 1979.

(2]

Hoare, C.A.R.:

"Proof of corectness of data

representation”,Acta Informatica, 1, p. 271-281, 1972,

Steensgaard-Madsen,

J.: "Classes and Objects - a dynam-

ic approach™, TR 78-356, Computer Science Department,

Cornell University,

1978,

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif

