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 Population and community dynamics within ecosystems are driven by 

biological, chemical, and physical factors whose effects generally result from either 

external forcing: pressures originating from outside of the ecosystem boundaries (e.g., 

meteorological or anthropogenic in origin), or from internal self-organization: species 

interactions such as predation or competition.  The aim of my research was to study 

the balance between these two general processes in plankton population dynamics and 

the relative impact of each in structuring aquatic pelagic communities.    

 I performed this research in eight embayments along the southeastern shoreline 

of Lake Ontario that varied widely in water residence time (WRT) because of 

differences in basin volume, watershed area, and degree of lake connectivity, where 

WRT was taken as in indication of the extent of external forcing.  I used three 

approaches in this research: (1) seasonal characterization of plankton dynamics and 

community characteristics in each embayment along the WRT gradient represented by 

the embayments; (2) an intensive assessment of one external force, upwelling-driven 

exchange flow, on two embayments with similar connectivity, but different in volume 

and watershed size; and (3) mesocosm experiments that analyzed the factors 

responsible for the resistance of the plankton community in one embayment to the 

establishment of newly introduced species.   

 Overall, there was an underlying pattern of increasing internal self-



 

organization with decreasing WRT, although the relationship was complicated by the 

physical and biological characteristics of the embayments that buffered them from 

external forcing.  For external forcing to be effective, it had to be sufficiently strong to 

counterbalance the dilution effect of large embayment volume or the flow-restricting 

action of dense macrophyte stands.  Plankton community composition also 

counteracted the expected effects of WRT, as characteristics such as high plankton 

rmax  allowed populations to respond quickly enough to high flow that they were able 

to thrive and interact, muting the expected wash-out dynamics.  Additional trophic 

levels (fish, macrophytes) inhibited the potential disturbance of resident community 

dynamics by invading species.  Overall, while external forcing played an important 

role in these systems, it was not as dominant a force as expected, highlighting the 

strength of internal self-organization in structuring plankton community dynamics. 
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CHAPTER 1 

 

INVESTIGATING THE ROLE OF WATER RESIDENCE TIME AS A DRIVER OF 

PLANKTON COMMUNITY COMPOSITION AND DYNAMICS 

 

Introduction 

Species dynamics within ecosystems are driven by a variety of biological, 

chemical, and physical factors.  Populations change in response to biological 

interactions such as predation, competition, parasitism and symbioses (Hairston et al. 

1960, Connell 1961, Janzen 1966, Paine 1971, Addicott 1974, Rothstein 1975, 

Hairston 1980, Morin 1983, Clay et al. 1985, Root and Cappuccino 1992, Cáceres et 

al. 2006), by altered nutrient cycling through the system (Likens 1971, Wimp et al. 

2010), and through major physical disturbances (Sousa 1979, Hughes 1984, Sousa 

1984).  In lakes, plankton population dynamics are externally forced (driven from 

outside the shoreline boundaries) by temperature, wind, and precipitation events (De 

Stasio et al. 1996, Winder and Schindler 2004, Gyllström et al. 2005, Doyle-Morin et 

al. Chapter Two), influxes of nutrients from the landscape (Edmondson 1970), and 

introductions of exotic species (Lehman 1991, Schulz and Yurista 1999, Benoît et al. 

2002). From within the aquatic system, internal dynamics result from nutrient 

recycling (McCauley and Kalff 1987, van Donk et al. 1993), interspecific competition 

(MacIssac and Gilbert 1991, Goulden et al. 1982), grazing pressure (Porter 1973, 

Lampert et al. 1986, Sommer et al. 2003), predation (Brooks and Dodson 1965, Lynch 

1979, Schindler 1987), and changes in habitat structure (Gliwicz 2003).   While some 

combination of these influences work simultaneously in each pelagic ecosystem, the 

significance of each, their seasonal timing, and particularly the relative importance of 
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internal dynamics versus external forcing for dynamics varies as a function of the 

extent to which a plankton community is connected to the external environment.  

Embayment ecosystems – bodies of water that have a direct connection to a 

larger, adjacent body of water – provide the ideal opportunity to study this balance 

between internal self-organization and external forcing.  Along the shoreline of very 

large lakes, such as the Laurentian Great Lakes, embayments are abundant and often 

within close geographic proximity to one another.  Such water bodies provide an 

opportunity to study systems with different levels of connectivity, but that experience 

similar climatic impacts and have access to the same regional planktonic taxa.  In 

addition, the variation in the strength of connection to the large lake that defines these 

systems as embayments, as well as differences in embayment volume and in 

connectivity to the surrounding terrestrial landscape, make it possible to explore a 

wide gradient of impacts from external forcing.   

We explored the patterns of plankton community composition and dynamics in 

eight embayment systems located on the southern and eastern shorelines of Lake 

Ontario (Fig. 1.1) that vary in total volume (between 8.90 × 104 m3 and 2.92 × 107 m3), 

connectivity to Lake Ontario (ranging from a permanently maintained channel to only 

indirect seepage through a gravel bar), and watershed area (1.0 to 3658 km2) (Table 

1.1a).  This combination of characteristics created a gradient in external forcing 

through their combined effect on water retention time (WRT) – the mean amount of 

time water, dissolved chemicals, and suspended substances entering an embayment 

stay in that water body before exiting by flow into the larger lake.  Using this WRT 

gradient (between 1 and 148 days for our eight embayments), we explored how the 

magnitude of external forcing influences plankton dynamics.   

 Previous research conducted in laboratory flow-through microcosms 

(chemostats) has shown that WRT is an important driver of zooplankton- 
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Table 1.1  Physical (a), chemical (b), and biological (c) characteristics of L. Ontario 

embayments (Cornell University 2010, C.T. Driscoll personal communication, Arend 

2008). 

 

a) Physical Maximum 
Depth (m)

Watershed 
Area (km2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blind Sodus B.

Little Sodus B.

terling P.

uniper P.

outh Sandy P.

andy P.

uth Colwell P.

oodwood P.

7

11

3

3

6

5

3

5

36

12

203

1

10

246

2

3658

S

J

S

North S

So

Fl

Watershed % 
Agriculture

37

43

24

17

37

19

29

40

Volume (m3) 

4110326

20242177

991331

88985

4303587

29185426

844857

247493
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Table 1.1 continued 

 

b) Chemical 

 

N load (kg 
year-1)

Watercolumn
Total N  

(μmol L-1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blind Sodus B.

Little Sodus B.

erling P.

uniper P.

outh Sandy P.

andy P.

 Colwell P.

loodwood P.

17901

3127

113876

352

6692

147970

875

549994

38

23

52

39

38

28

43

53

St

J

S

North S

South

F

Watercolumn
Total P    

(μmol L-1)

0.69

1.66

0.64

1.01

1.34

0.86

0.67

0.64

P load (kg 
year-1) 

523

29

3595

11

163

2879

10

15942
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Table 1.1 continued 

 

c) Biological Planktivore
Biomass
(g min-1)

Blind Sodus B.

Little Sodus B.

Sterling P.

Juniper P.

South Sandy P.

North Sandy P.

South Colwell P.

Floodwood P.

890

2588

5519

74

7154

735

1509

5566

Piscivore
Biomass 
(g min-1)

17029

13365

15640

79

12516

7514

10057

8597
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phytoplankton dynamics (Fussmann et al. 2000; 2005).  Varying dilution rate, the 

speed at which growth medium is pumped through these artificial systems (i.e., in 

effect WRT), in combination with external enrichment (limiting nutrient 

concentration) determines whether predator-prey microcosm food chains exhibit 

predator-prey cycles, stable coexistence, or extinction.  The patterns observed in these 

simple communities illustrate how the balance between external forcing (WRT) and 

internal self-organization (the strength of interspecific interactions) dictates the 

resulting plankton dynamics. Our embayments, with their varied “flow-through” rates 

due to their differing connectivities to their watersheds and Lake Ontario, offer an 

opportunity to explore these questions at a much larger and more natural scale.    

 

Plankton dynamics in embayments with low vs. high water retention time 

Although we do not really believe that embayments are large chemostats, these 

field systems do have some properties in common with continuous flow laboratory 

microcosms: inflow of nutrient-rich medium (typically primarily via one or a very few 

single inlet streams); a relatively constant volume in which plankton taxa at several 

trophic levels interact; a single outflow that exports both embayment water and the 

plankton it contains.  There are, however, many ways in which they are more 

complicated than chemostats: for example, benthic-pelagic coupling of nutrients and 

organisms at the sediment-water interface; shallow areas and complicated shorelines 

with the potential for significant growth of submersed and emergent macrophytes; 

higher trophic levels such as fish that have generation times much longer than that of 

the plankton and that are able to avoid being flushed out; non-constant external forcing 

from variable rainfall, wind, and human activities in the watershed.  

If the analogy with chemostat dynamics holds at all, we would expect the 

interactions among pelagic resources and consumers to differ between high and low 
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WRT embayments. Very generally, this means that all else being equal (i.e., the same 

assemblage of taxa in all embayments and unimportant seasonality), where WRT is 

high there should be tight internal coupling among species with reciprocal interactions 

between consumer and consumed, and negative interactions among species within a 

trophic level. In contrast, planktonic taxa in externally driven, low WRT systems 

should be positively correlated in abundance, with consumer and resource species 

fluctuating together, driven to low densities by high flushing events and recovering 

together once an event ends.  Nutrient influxes from the watershed during events may 

stimulate growth, but strong biotic interactions would have little or no time to develop 

before the next flushing event.  The larger the variation in external forcing, the more 

tightly we would expect plankton dynamics to be positively correlated in low WRT 

embayments.  

This simple embayment-as-chemostat hypothesis was motivated in part by 

preliminary data collected during a heavy precipitation event at the end of 2001.  After 

a dry summer, a week-long rainstorm in late September flooded the watersheds of all 

of our study embayments.  An exploration of phytoplankton and zooplankton 

dynamics in two embayments representing opposite extremes of WRT illustrates the 

patterns just discussed.  Floodwood Pond, which is highly connected to its watershed 

by a series of tributaries draining a large watershed (3658 km2), and has a strongly 

flowing natural channel connecting it to Lake Ontario, represents a system with a low 

WRT.  Its phytoplankton and zooplankton communities were both completely washed 

out as a result of the flooding event (Fig. 1.2a). In contrast, Juniper Pond, with very 

low connectivity to the surrounding landscape (1 km2 watershed area) and no channel 

connecting it to Lake Ontario (the only flow to Lake Ontario is via percolation through 

a gravel bar), showed phytoplankton and zooplankton community dynamics that 

appear to fluctuate oppositely to each other (Fig. 1.2b), suggesting that the plankton  
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dynamics were driven mostly by internal biological forcing. At least at the extreme 

ends of the WRT gradient and under high runoff, the chemostat analogy seems useful.  

Our question here is: How far does the analogy go? 

The plankton of embayments may differ from chemostat communities in 

several critical ways.  First, natural water bodies are subject to strong seasonal changes 

in solar insolation and the effects that this has on primary production as well as on 

water temperature, thermal stratification, and related physical and chemical (nutrient) 

processes (Wetzel 2001).  Second, the taxonomic composition of the plankton, and 

especially the dominant functional groups, may differ among embayments in ways 

that influence the nature of how sensitive plankton dynamics of any particular system 

are to the temporal mean and variance of WRT.   

In high WRT systems, changes in phytoplankton and zooplankton populations 

should be underlain by consumer-resource dynamics, modified by seasonal forcing 

driving species succession.  A general depiction of the seasonal plankton dynamics of 

North Temperate Zone lakes of intermediate size and moderate to high productivity is 

that described by the Plankton Ecology Group (the so-called PEG Model: Sommer et 

al. 1986).  The most pervasive example of consumer-resource coupling in these lakes 

is the clear water phase (CWP) in which the annual spring phytoplankton bloom is 

terminated by an increase in the abundance of grazing zooplankton, especially 

members of the genus Daphnia (Lampert et al. 1986, Sarnelle 1993, Scheffer et al. 

1997). The CWP typically starts in late May or early June, though the timing may 

vary, and ends when Daphnia abundance declines as a result of some combination of 

limiting abundance of phytoplankton (Threlkeld 1979), a seasonal shift in 

phytoplankton composition toward poor quality taxa such as cyanobacteria (Arnold 

1971, Trabeau et al. 2004), and a seasonal increase in the density or activity of 

zooplanktivorous fish (including young of the year) (Luecke et al. 1990, Rudstam et 
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al. 1993, Klumb et al. 2003, Wagner et al. 2003, Hansson et al. 2007a). Other common 

traits of seasonal phytoplankton and zooplankton succession that are representative of 

internally-driven dynamics (outlined in Fig. 1.3) include the mid-summer appearance 

of cyanobacteria as the water column becomes N-limited, as well as large silica-

dependent species blooms during fall overturn as the temperature cools and photic 

zone receives silica from mixing with the hypolimnion (Sommer et al. 1986).  The 

mid-summer Daphnia decline is often followed by an increase in the abundance of 

selective zooplankton species, including copepods and small cladocerans, which are 

released from competition with Daphnia and better adapted for selectively obtaining 

good food particles from a phytoplankton mixture that contains many poor food 

species (Kirk and Gilbert 1992, Hansson et al. 2007b).  We expect the CWP and these 

other competition-based lake succession patterns to be more prevalent in high WRT 

than low WRT embayments.  

Fundamental to any expectation about how WRT influences plankton 

dynamics however, must also be a consideration of the characteristics of the species 

present, especially their potential maximum growth rates.  If species composition 

remains essentially constant, the effect of decreasing WRT should be an increase in 

the importance of external forcing (as is the case in simple laboratory chemostat 

communities; Fussmann et al. 2000, 2005).  Similar plankton communities in these 

different systems are not entirely unlikely, given the close geographic location of the 

embayments to each other and their connection to the same large lake. However, 

plankton assemblages may also be a product of local differences in the physical, 

chemical, and biological environments of individual embayments.  In particular, the 

plankton dynamics in an embayment should be as much a product of the growth rate 

characteristics of the species present as they are of WRT (or any other environmental 

variable).  If species with short generation times and high growth rates are what persist  
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Figure 1.3  Common characteristics of plankton succession in (eutrophic) lakes 

expected in high WRT systems (adapted from Sommer et al. 1986).  The Sterling P. 

outlier is circled. ρ (2.218*) is significant at the p < 0.10 level when outlier removed. 
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in embayments with low WRTs while those with long generation time and relatively 

slow growth rates dominate in high WRT embayments, any differences in plankton 

dynamics among embayments may be reduced or eliminated.  

If a species’ characteristics are important in explaining in which embayments it 

occurs, we expect to see a phytoplankton community dominated by small, fast-

growing, edible species in low WRT habitats.  These organisms, which include species 

predominantly in the Chlorophyta, Chrysophyta, Bacillariophyta and Cryptophyta, 

grow quickly in response to high nutrient conditions and are easily handled and 

digested by grazing zooplankton. Silica-dependent diatoms and some chrysophytes are 

also common in the physically turbulent conditions that often accompany nutrient 

introduction, typical of spring and fall turnover, both because dissolved silicate enters 

the water column, and because turbulence aids in keeping the cells, heavy with silica-

laden frustules, suspended in the euphotic zone.  External physical forcing in the low 

WRT water bodies, especially from the intrusion of cool water during summer, could 

have a marked effect on diatom and chrysophyte populations, generating a bloom 

outside of the spring or autumn bloom periods as long days and added nutrients 

stimulate growth of taxa that typically do best at low water temperatures.  These 

species could present an exception to the small size expectation just described, given 

that many grow as large cells or colonies (e.g., Dinobryon, Fragilaria).   

The small-bodied, high rmax, zooplankton taxa that we expect to see in low 

WRT systems include rotifers and small cladocerans (e.g., Bosmina, Chydorus), all of 

which are parthenogenetic for much of the growing season. Because larger, slower 

growing taxa such as Daphnia and copepods (Koivisto and Ketola, 1995) are likely to 

be unable to persist in these high dilution-rate environments, their importance as 

dominant competitors (Lynch 1979, Goulden et al. 1982, Vanni 1986), or effective 

predators (e.g., cyclopoid copepodids (Dodson 1974), calanoids and Daphnia that 
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consume rotifers (Williamson 1986, Gilbert 1988a,b, Conde-Porcuna 1994)) is 

diminished, allowing the smaller taxa to thrive.  Nevertheless, although embayment 

waters are often nutrient-rich due to the continual influx of water from surrounding 

farm land, and shoreline septic fields, even small taxa  may not reach high population 

sizes very quickly, or ever in these seasonal environments, if their realized growth 

rates are low because of high wash-out rates in low WRT conditions.   

In high WRT systems, where we expect physically forced population loss rates 

to be relatively low, ecological interactions like competition and predation will likely 

be significant drivers of plankton dynamics. There are, however, a number of 

organisms that we would expect to see established only in systems with these low 

washout rates due to their particular adaptations.  These include the largest and least 

edible phytoplankton taxa such as cyanobacteria, which often dominate in calm high 

WRT conditions (Paerl and Huisman 2009, Soares et al. 2009, Elliot 2010), especially 

where phosphorus is enriched favoring N-fixing species.  Together with 

cyanobacteria, the phytoplankton expected in higher WRT systems, include 

dinoflagellates, colonial greens, and chrysophytes, which are defended against grazing 

by some combination of large cell size, gelatinous sheaths, spines, thick cell walls and 

toxins. These defenses require energy investment that correlates with reduced rmax 

(Agrawal 1998), again making these taxa less able to persist in high-flushing low-

WRT embayments, but well suited to high WRT systems where biotic interactions are 

more likely to be intense.   

Zooplankton that do well under conditions of intense competition or predation 

tend to be slower growing and longer-lived. One genus that we expect to be well 

represented in high WRT systems is Daphnia. Their large size and generalist feeding 

behavior allows them to filter water efficiently, limiting resources for the smaller 

cladocerans and rotifers (Vanni 1986).  However, generalist feeding is only beneficial 
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when phytoplankton is dominated by high food-quality taxa, typical in most 

freshwater pelagic systems early in the growing season (Sommer et al. 1986). In the 

presence of the poor food-quality taxa expected to dominate high WRT embayments, 

copepods, another slow-growing long-lived group, should become dominant because 

of their ability to feed selectively, avoiding phytoplankton of poor food quality (Kirk 

and Gilbert 1992, Hansson et al. 2007b).   

This recounting of possible mechanisms regulating plankton dynamics along a 

gradient of WRTs, suggests two alternative patterns at the extremes:  (1) if community 

composition remains relatively constant among embayments, we expect to see the 

effect of external forcing dominating in low WRT conditions and then diminished at 

progressively higher WRT embayments as the importance of interspecific interactions 

increases, whereas (2) if instead species composition varies among embayment 

ecosystems, as is likely, so that high rmax taxa dominate in low WRT systems and low 

rmax taxa in high WRT systems, then the ratio of species growth rate to average wash-

out rate may not vary nearly as much as the first alternative would suggest, and the 

plankton dynamics (assessed as changes in aggregate groups such as all edible 

phytoplankton and all grazing zooplankton) might not be very sensitive to a gradient 

of WRTs.  We expect that these patterns cannot be considered strictly as alternative 

hypotheses, because they are not mutually exclusive and intermediate mixtures of the 

processes are possible. 

 

Methods 

This research is a component of a larger study of the dynamics of embayment 

ecosystems along the Lake Ontario coast, including, in addition to the plankton 

addressed here, hydrodynamics, nutrients and other water chemistry, macrophytes and 

fishes.  The primary monitoring dataset for this study was collected though weekly 
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sampling between 8 May and 8 October, 2002, while focused process studies were 

carried out in other years (Chapters 2 and 3). Methods for plankton collection and 

analysis are detailed below, while nutrient, macrophyte, and fish data collected at the 

same sites and on the same dates as the plankton will be described in detail elsewhere 

(C.T. Driscoll personal communication; R.L. Johnson personal communication; Arend 

2008), but are mentioned here to provide context. 

 

Site Descriptions 

The eight embayments of this study are located in two groups of four, one on 

the southeastern shoreline, and the other on the eastern shoreline of Lake Ontario (Fig. 

1.1). Their basic features are described here in geographical order along the Lake 

Ontario coastline from southwest to north east. 

 

Blind Sodus Bay – This is the second deepest of the eight embayments, with a 

watershed and volume intermediate in size (Table 1.1a).  The watershed is 37% 

covered in agriculture, and there is a moderate community of permanent residences 

and summer homes along its shoreline so that nutrient loading of both N and P are 

intermediate relative to the other embayments in this study. Mean seasonal water-

column TP is second highest of the embayments, mean TN is intermediate, and it has 

the second lowest TN:TP ratio (Table 1.1b).  The fish community is dominated by 

piscivores, with the highest piscivore biomass and the third lowest planktivore 

biomass of the eight systems (Table 1.1c).  Blind Sodus B. is connected to Lake 

Ontario by a shallow (< 1 m deep) sandy channel that is dredged annually at the 

beginning of the summer and then naturally fills in over the course of the winter. 
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Little Sodus Bay – The deepest of the embayments (zmax 11 m), Little Sodus B also has 

the second largest volume (Table 1.1a).  This system has a long (550 m), 3 m deep, 

permanent man-made channel, dredged and maintained year-round, between extensive 

seawalls that connect it to Lake Ontario. The embayment has a very small watershed, 

with little agricultural influence, and correspondingly low nutrient loading through its 

single small tributary, although it is surrounded by permanent residences and summer 

cottages.  The embayment itself had a high seasonal mean water column TP for 2002 

(3rd highest), but the lowest TN value, which gave it the lowest mean seasonal TN:TP 

ratio of the eight embayments (Table 1.1b).  Both zooplanktivorous and piscivorous 

fish densities were intermediate compared with the other embayments (Table 1.1c). 

 

Sterling Pond – This is a medium-sized but shallow embayment (Table 1.1a) 

connected to Lake Ontario by a well-maintained, 3 m deep, permanent channel.  It has 

a relatively large tributary (Sterling Creek) draining the third largest watershed of the 

eight embayments.  This watershed is the most highly agriculture-dominated of the 

eight embayments (43%), there are no immediately adjacent houses (though it is 

located within a state campground), and nutrient loading is high for both N and P 

(Table 1.1b).  Nutrient levels were high in Sterling Pond in 2002, with the highest 

mean water column TP and second highest TN values of the eight embayments, which 

combined resulted in a relatively low average TN:TP ratio.  Sterling Pond contained 

extensive beds of rooted macrophytes, with the highest submersed-vegetation to open-

water habitat ratio of the eight embayments.  It supported both large piscivorous and 

planktivorous fish communities (Table 1.1c).   

Juniper Pond – This embayment has the smallest volume, depth (zmax 3 m), and 

watershed size of the eight embayments (Table 1.1a).  It also has the weakest 
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connectivity with L. Ontario:  it is separated from the lake by a high coarse gravel and 

sand bar through which embayment water percolates, keeping the water level in the 

embayment similar to that of the lake.  Its watershed is second highest in terms of 

percent agriculture but has the smallest total area as it is fed largely by ground water, 

resulting in the lowest N and P loads of the eight systems (Table 1.1b).  There are no 

houses along its shoreline. Mean seasonal water column TN concentration is 

intermediate, while TP is the lowest of the other embayments.  This system has the 

third highest ratio of area in rooted vegetation to area of open water, but supports the 

lowest total fish biomass of the eight embayments (Table 1.1c). 

 

South Sandy Pond – This pond has the second greatest depth and volume of the eight 

embayments, but the third smallest watershed (Table 1.1a).  It has an indirect 

connection to L. Ontario through a channel to North Sandy P., which, in turn, has a 

permanent natural connection to the larger lake.  Otherwise South Sandy P. is 

permanently cut off from L. Ontario by a wide, extensively vegetated sand bar. The 

pond receives an intermediate nutrient load relative to the other embayments from a 

small watershed that is 29% agricultural land.  The pond has permanent residences and 

summer cottages on two sides, but nevertheless had mean seasonal water column TN 

and TP values that were the third lowest relative to the others, yielding the third 

highest TN:TP ratio (Table 1.1b).  The system held the highest planktivorous fish 

biomass, and an intermediate piscivore biomass compared with the other embayments 

(Table 1.1c).   

   

North Sandy Pond – The embayment with the largest volume of the eight 

embayments, it is fed by multiple tributaries draining the second largest watershed 

(Table 1.1a).  As mentioned above, this embayment is connected to L. Ontario by a 
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large, natural and dynamic opening in the sand bar that separates most of the 

embayment from the lake.  Although the watershed supports the third lowest amount 

of agriculture by area, the nutrient load was relatively high for both N (second highest) 

and P (third highest), likely due to the relatively high density of permanent residences 

and summer cottages along or close to the shoreline (Table 1.1b). However, because 

these loads entered a large water body, well connected to L. Ontario, mean annual 

water column TN and TP values were both relatively low.  North Sandy P. supports 

the largest abundance of planktivorous fish by biomass of the eight systems, and the 

second smallest piscivorous fish biomass (Table 1.1c).   

 

South Colwell Pond – This pond is shallow, and is the third smallest embayment by 

volume (Table 1.1a).  It also has the second smallest watershed and second smallest 

percentage of agriculture (19%). It has no houses near its shoreline. A natural channel 

connecting the embayment to Lake Ontario is variable in both size and depth, but is 

generally weak.  Nutrient loads from the watershed are low, while mean seasonal 

water-column TN and TP concentrations were intermediate compared with the other 

systems (Table 1.1b), as were the abundances of both planktivorous and piscivorous 

fish (Table 1.1c).  South Colwell P. contained large amounts of rooted macrophytes, 

with a large submersed-vegetation to open-water area ratio, second only to Sterling P.   

 

Floodwood Pond – With an extensive tributary system, Floodwood P. has the largest 

watershed of the eight embayments by over a factor of ten, with 37% in agriculture 

and no houses directly along the shoreline, which is predominantly marsh (Table 

1.1a).  This contrasts with this embayment’s relatively small volume (larger only than 

Juniper P.).  It also has a large and permanent natural connection to L. Ontario.  In 

essence this embayment is a wide reach in Floodwood Creek before it enters the lake.  
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Nutrient loading was highest in this system for both N and P compared with the other 

embayments, however while mean seasonal TN concentrations were highest in 

Floodwood P., TP values fell in the middle range relative to the other systems, leading 

to the highest TN:TP ratio overall (Table 1.1b).  Piscivorous fish were in relatively 

low abundance, while planktivorous fish populations were second highest in total 

biomass of the embayments (Table 1.1c). 

 

Water retention time gradient 

The eight embayments encompass a range of volume, watershed size, and 

extent of connectivity with L. Ontario, which together determine water retention time.  

WRT was estimated using passive chemical tracer methodology (C.T. Driscoll and X. 

Chen personal communication) which allowed us to rank embayments on a relative 

scale from lowest (rank = 1) to highest (rank = 8) WRT (Table 1.2).  While these 

values are reasonably applicable to a plankton “particle” in most of the embayments, 

physical barriers such as sand or gravel bars and dense macrophyte beds restrict the 

movement of plankton in ways that they do not for dissolved chemical tracers.  As a 

result, we modified the original relative WRT ranks as follows.  For Juniper P., which 

has no direct connection to L. Ontario and no tributary flow, WRT calculated from 

chemical-tracer data must severely underestimate how long plankton remain in the 

embayment (since there is no clear path for flow of plankton particles between the two 

systems, unlike the other seven embayments).  We designate this embayment to have 

the highest WRT for plankton, moving its rank from 6 to 8.  The other embayment 

with a WRT rank that we adjusted is Little Sodus Bay.  Although there is little 

watershed drainage through this system, its substantial channel connection to Lake 

Ontario provides a different avenue for the exchange of water and plankton. Rueda 

and Cowen (2005) and Doyle-Morin et al. (Chapter 2) have shown that major  
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Table 1.2  Original (X. Chen, personal communication) and derived water residence 

time (WRT) data and ranks for eight L. Ontario embayments 
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(days)
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WRT Rank

Blind Sodus B.
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Sterling P.

Juniper P.

South Sandy P.
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56

1
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148

35
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4

2

8
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6

1
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upwelling events in L. Ontario, including one in 2002 between 28 Aug. and 10 Sept., 

result in exchange flow of cold L. Ontario water flowing in through the channel and 

forcing warm embayment surface water out to the lake.  Other embayments must also 

experience exchange flow under these conditions but the extent of impact is less 

because their connections to the lake are smaller, or macrophyte beds restrict flow.  To 

account for this kind of reduction in WRT, we moved Little Sodus B. from a rank of 5 

to 4.  Finally, we retained the position of Sterling P. in the ranking even though its 

high macrophyte density in summer and autumn apparently decouples plankton 

dynamics from mean WRT by in effect channelizing the substantial stream flow 

across the embayment while sheltering a large fraction of the embayment volume from 

high water exchange.  We do not have an easy way of determining the logical 

placement of this embayment along our WRT gradient, so instead of moving Sterling 

P. in our ranking, we note in our statistical analyses how removing it as an outlier 

greatly improves some relationships.  Because the WRT rank is qualitative and 

probably changes seasonally, for ANOVA analyses we reduced the number of rank 

categories from 8 (the number of embayments) to 4 with two embayments in each 

rank.  

 

Sample collection 

Samples were collected weekly at a central site in each of the eight 

embayments from 8 May 2002 through 8 October 2002.  Temperature and dissolved 

oxygen profiles were recorded at half-meter to one-meter intervals throughout the 

water column at each site using standard equipment (Yellow Springs Instruments 

Model 58).   Replicated phytoplankton samples were collected using a tube sampler 

that integrated the entire water column, and preserved in 1% Lugol’s solution.  

Samples were settled for at least 24 h and counted at 400× with Wild M40 inverted 
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microscope (Lund et al. 1958).  Additional counts were made at 100× to estimate 

abundances of larger or rarer forms. Phytoplankton densities were expressed as 

individuals mL-1 or converted to biovolume (μm3 mL-1) based on cell dimensions 

(Wetzel and Likens 2000).  Zooplankton (also obtained in replicate) were collected by 

diagonal tow using a Clarke Bumpus quantitative sampler fitted with a 75-μm-mesh 

net and preserved using 70% ethanol.  Individuals were identified to species, measured 

with an eyepiece micrometer, and counted using an Olympus SZH10 dissecting 

microscope.  Biomasses were calculated using length-weight regression from Bottrell 

et al. (1976).   

 

Data analysis 

Because WRT values are expressed as relative ranks, the relationships between 

plankton variables and WRT were assessed using a Spearman’s Rank Correlation. All 

numeric correlations used Pearson’s Correlation Coefficient.  Differences among 

embayments were assessed using one-way ANOVA, with Tukey HSD-adjusted α-

values for individual comparisons.  All error estimates reported are ± 1 standard error.   

Statistical analyses were carried out using Minitab, version 15.1 (2007) and SPSS, 

version 16.0 (2007).  Because it was only possible to sample eight embayments as 

intensively as we did, and because there is considerable variability in these data, the 

power to detect statistical trends is limited.  For this reason, we have chosen to use α = 

0.1 as our cutoff for statistical significance. 

For many of the analyses, plankton taxa were combined into functional 

groupings.  Phytoplankton edibility was determined by both size and known 

physiological or morphological defenses; phytoplankton that were greater than 30 µm 

in cell size or colony dimension, those that had spines or gelatinous sheaths, and those 

known, at least at times, to produce toxins or to have reduced nutritional value were 
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categorized as “inedible” (Porter 1973, Vanni and Lampert 1992).  All other taxa were 

placed in the “edible” category, including most small Chlorophyta, Chrysophyta, and 

Cryptophyta.  Grazers were categorized based on literature information on feeding 

selectivity and mode (filtering or grasping), and adult body size.  Large, nonselective 

filter feeders like Daphnia, Diaphanasoma, Holopedium, and Ceriodaphnia were 

included in the “unselective grazer” category, while smaller, more selective 

cladocerans like Bosmina, Eubosmina,  and Chydorus species comprised the “selective 

cladoceran” category.  Rotifers and the selective cladocerans comprised the high rmax 

species category, while the low rmax species category contained the unselective 

cladocerans and copepods.  

To assess the extent to which internal processes drive an embayment’s 

plankton dynamics, we evaluated their fit to the stereotypical seasonal pattern for 

temperate zone lakes of moderate to high productivity, described by the Plankton 

Ecology Group (PEG) model (Sommer et al. 1986). Five phases of the PEG dynamics 

were identified (Fig. 1.3), and a quantifiable index for each was devised. Each index 

had a range of 0 to 1 with the embayment having the poorest fit to PEG expectation 

assigned a value of 0 and that with the best fit given a value of 1.  Other embayments 

received fractional values that represented where they lay between the extremes.  The 

PEG phases chosen are as follows.   

1) All embayment systems are expected to have a spring edible phytoplankton 

bloom, however only the higher WRT systems are expected to show a strong 

coupling between the termination of this bloom and increasing Daphnia 

density as occurs during the clear water phase (CWP). Thus, the strength of 

spring crash of edible phytoplankton was determined by calculating the 

maximum range of phytoplankton biovolumes during a period of two or more 

consecutive weeks of positive edible algae growth in May and early June.   
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2) The increase in Daphnia biomass that accompanied the CWP was made into an 

index by calculating the fraction of the total zooplankton biomass comprised of 

Daphnia on the date of lowest biovolume of edible phytoplankton in late May 

or June (as determined in (1)).   

3) The N-fixing cyanobacteria maximum was used as a measure of nutrient 

limitation expected in an enriched, highly coupled system.  The index uses the 

highest biovolume of these taxa during a period of two or more consecutive 

weeks of positive cyanobacterial growth rates in July and August.  

4) Herbivorous copepods with an ability to avoid consumption of cyanobacteria 

are expected to be abundant in late summer if and when these phytoplankton 

taxa are abundant.  Our index for this period is the fraction of the total 

zooplankton biomass comprised of copepods on the date of highest N-fixing 

cyanobacterial biovolume in June and July. 

5) The fall bloom of edible phytoplankton was used as a measure of 

phytoplankton response to fall mixing and release from nutrient limitation.  

This index was a function of the highest biovolume of taxa in the edible 

category during September and October.   

 

Results 

External forcing versus internal dynamics 

We first explored the hypothesis that embayments with low WRT should have 

plankton dynamics generally synchronized by external forcing (high or low flow 

events), while the plankton in high WTR embayments should tend to show patterns 

consistent with strong community interactions.  The simplest test was to look for 

relationships among the abundances of major functional groups across sampling dates 

for the entire study period in 2002 (e.g. Fig. 1.4).  We regressed various combinations  
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Figure 1.4  2002 phytoplankton and zooplankton community dynamics in Blind 

Sodus B. (a), Little Sodus B. (b), Sterling P. (c), Juniper P. (d), South Sandy P. (e), 

North Sandy P. (f), South Colwell P. (g), and Floodwood P. (h).  Error bars represent 

+/- 1 s.e.  
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Figure 1.4 continued 
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of phytoplankton biovolume and zooplankton biomass, from individual embayments, 

against each other. No significant patterns (negative or positive) were found in any  

comparison, in any embayment, for likely competitive relationships between 

phytoplankton functional groups, or between zooplankton functional groups.  

Similarly, no potential consumer-resource relationships (either monotonic or 

oscillatory limit cycles) such as might have been expected between total zooplankton 

densities and total phytoplankton densities were found, even when the zooplankton 

dynamics were lagged behind the phytoplankton by a week (i.e., roughly the 

generation time of the major grazing cladocerans during much of the summer).   

One possible explanation for not finding any relationships among the 

abundances of different functional groups, is that plankton dynamics are seasonally 

driven so that even when biological coupling is strong, the nature of those ecological 

interactions changes from one time of year to the next and analysis of all dates in a 

single statistical test is unlikely to show any relationships.  When we divided the 

seasonal data for each embayment and scored them for consistency with major periods 

described in the PEG Model (Sommer et al. 1986), as described in Methods, we see a 

pattern emerge.  Although there is no discernable relationship between mean PEG 

index and WRT when all eight embayments are included, the relationship is 

significant once Sterling P. is dropped from the analysis (for reasons given previously) 

(Fig. 1.3; Spearman Rank ρ = 2.218; p = 0.077).  Blind Sodus B. had the highest mean 

PEG index, exhibiting moderate to strong consistency for all five phases during the 

2002 growing season, as would be expected for an embayment where external forcing 

is weak compared with the strength of internal self-organization.  This was the case for 

Blind Sodus B. even though it was scored as intermediate in WRT.  At the extreme 

low end of WRT, Floodwood P. had the weakest consistency with PEG dynamics, 

with only a late-summer copepod increase fitting the reference pattern, as would be 
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expected of an externally forced system.  Note that Sterling P. was the embayment that 

ranked second in consistency with PEG dynamics, and although this is not expected 

based on our WRT ranking, it likely resulted from the effects of macrophytes that 

make Sterling P. an outlier. 

 

Plankton assemblage matching to water retention time 

 When compared with ranked WRT, both ranked mean phytoplankton 

biovolume and ranked mean zooplankton biomass over the entire sampling period 

showed positive trends, with greater densities in embayments with longer WRTs (Fig. 

1.5; Spearman Rank phytoplankton ρ = 0.405; p = 0.320; zooplankton ρ = 0.738; p = 

0.037). This is the case for phytoplankton biovolume only when Sterling P. is removed 

as an outlier (Spearman Rank ρ = 0.69; p = 0.094), which in addition to the 

explanation in Methods, is necessary because the phytoplankton samples unavoidably 

contained many epiphytic taxa presumably knocked off of macrophytes during 

sampling. When the phytoplankton data are broken into the “edible” portion of the 

community (the smaller, faster growing, typically high rmax species) and the “inedible” 

part (the larger, more highly defended species with lower rmax values), the 

relationships trend in opposite directions (Fig. 1.6;  Spearman Rank edible ρ = -0.524; 

p = 0.183 ; inedible ρ = 0.548 ; p = 0.160) with the edible fraction becoming less 

abundant and the inedible fraction increasing with lengthening WRT, as grazer density 

increases (c.f., Fig. 1.5b). These opposing trends are statistically significant when 

combined as a measure of percent of phytoplankton biovolume that was edible (Fig. 

1.6c; Spearman Rank ρ = -0.69; p = 0.058).   

 Not only did phytoplankton composition depend upon WRT, but overall 

phytoplankton diversity (Simpsons Ds) decreased in value as WRT lengthened (Fig. 

1.7; Spearman Rank ρ = -0.786; p = 0.021 ), suggesting that the same environmental  
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Figure 1.5 Embayment average 2002 phytoplankton (a) and zooplankton (b) values 

plotted against water residence time (WRT) ranking. Spearman’s ρ values are listed.  

Asterisks indicate significant effects at the p < 0.10 level (*) or p < 0.05 level (**).  

The Sterling P. phytoplankton outlier is circled. ρ =0.69* when outlier is removed. 
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Figure 1.6  Embayment average edible (a) and inedible (b) phytoplankton biovolume 

values, as well as  % phytoplankton edibility (c), plotted against water residence time 

(WRT) ranking. Spearman’s ρ values are listed.  An asterisk indicates significant 

effects at the p < 0.10 level.   
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Figure 1.7  Simpson’s phytoplankton diversity versus water residence time ranking 

(low=1). Ds values range from 0.81 - 0.91. 
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conditions that are conducive to slow growing, well defended phytoplankton groups 

also resulted in assemblages dominated by only a few taxa. 

 The biomass abundance of slow-growing, low rmax zooplankton taxa was 

significantly positively related to increasing WRT (Fig. 1.8a; Spearman Rank ρ = 

0.786; p = 0.021).  Animals that cannot increase rapidly in numbers do best in 

embayments that do not wash them out at a high rate.  In contrast, fast-growing, high 

rmax zooplankton taxa had no monotonic relationship with WRT (Fig. 1.8b; Spearman 

Rank ρ = -0.119; p = 0.779), but instead exhibit maximum biomass abundance at 

intermediate WRT (Fig. 1.9).  When the low rmax  group is broken  down into two 

taxonomic subcategories, adult copepods, which are slow growing, show a strong 

positive correlation of biomass with WRT (Fig. 1.10a; Spearman Rank ρ = 0.619 ; p = 

0.102 ).  The Daphnia pattern does not hold when the eight embayments are ranked 

for WRT separately because Daphnia was scarce in Juniper P., which had the highest 

WRT rank, while another slow-growing group, calanoid copepods, dominated (Fig. 

1.10b; Spearman Rank ρ = 0.190 ; p = 0.651).  The highest rmax zooplankton group, the 

rotifers, occurred in greatest abundance in the medium-low WRT embayment systems 

(ANOVA, F = 14.141, p = 0.014), while small cladocerans, the next fastest 

reproducing group (i.e., Bosmina sp. and Chydorus sp.), showed a significantly higher 

abundance in the medium-high WRT systems relative to the others (Fig. 1.9; ANOVA, 

F = 4.450, p = 0.092).  Unlike the phytoplankton, there was no discernable pattern 

between zooplankton diversity and WRT. 

 

Discussion  

Our analysis of the eight embayments along the shore of Lake Ontario shows 

that both plankton composition and seasonal dynamics are related to water retention 

time, though not in a way suggestive of laboratory chemostat dynamics.   There were  
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Figure 1.10 Average adult copepodid (a) and Daphnia (b) biomass vs WRT. Asterisks 

indicate significant effects: * p < 0.10.  
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few of the positive or negative correlations within or between phytoplankton and 

zooplankton functional groups predicted based on this simple explanation.  There was 

no evidence of a relationship between the strength of community interactions between 

functional groups and WRT. Instead, we found that the dominant taxa present within 

each trophic level changed as a function of WRT.  Low rmax species of both 

phytoplankton and zooplankton were most abundant in high WRT systems and high 

rmax species dominated in those with low WRT (Figs. 1.6 and 1.8).  Nevertheless, once 

seasonality was considered, we found a significant pattern of increasing consistency 

between embayment plankton dynamics, stereotypical pelagic processes described by 

the standard PEG model, and system WRT (Fig. 1.3).   

 

Low WRT systems   

There are several potential explanations for why we did not find distinct, 

strong, positive correlation we predicted in the two lowest WRT systems, Floodwood 

P. and Sterling P., based on chemostat dynamics. As previously mentioned (see 

Methods), placing Sterling P. at the low end of the WRT gradient is questionable 

because of the extensive macrophyte growth that fills this embayment at the primary 

sampling site, especially in the late summer.  Additional research (King 2006) has 

shown that these macrophytes play a role in increasing WRT seasonally, creating a 

physical barrier isolating the plankton from stream flow (see Chapter 2).  This would 

allow quickly-growing phytoplankton to take advantage of the high nutrient loads 

percolating through this system without being washed out, and may account for the 

unexpectedly high phytoplankton abundance during the early summer months, before 

tributary flow waned and increasing macrophyte density started to restrict circulation 

within the system. This system, however, is also at times an extremely low WRT 

system (c.a. 0.6 day WRT, King 2006) before macrophytes become dominant, or after 
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the Sterling P. macrophyte community was mechanically harvested, so giving it a 

WRT ranking closer to larger less-connected systems would not have been 

appropriate.   

 Macrophytes were not the only complicating factor for our low WRT site 

designations during this sampling season.  While both Floodwood P. and Sterling P. 

appear to be highly connected both to their watersheds and to L. Ontario, physical 

exchanges with the watershed and lake were not as strong as expected when we 

studied them during summer 2002; the two main physical drivers, precipitation and 

wind, were generally low and not sufficient to cause tributary flow or embayment-lake 

exchange for much of that year.  As a result, the low WRT systems may have only had 

a low WRT at the same time that other embayments are undergoing seasonal 

temperature-driven spring bloom and fall overturn periods, making it difficult to 

differentiate these more strongly externally forced systems.  In addition, these two 

systems likely did not represent an extreme of low WRT because both have nearby 

plankton sources (macrophyte beds and low flow lobe in Sterling P., adjacent wetland 

in Floodwood P.) that may have contributed to species abundance and diversity.   

Nevertheless, both Floodwood and Sterling Ponds did have some of the 

characteristics expected of embayments at the low end of the WRT gradient, 

underlying the significant correlations that we did find.  Both Floodwood and Sterling 

P. had relatively low zooplankton biomass, which can likely be attributed to high 

wash-out rates in Floodwood P.  This may also be the case early in the season in 

Sterling P. before the macrophytes fill in completely, however, it is more likely to 

have been due to high predation by omnivorous fish (dominated by Lepomis gibbosus 

and small-bodied Perca flavescens) which had an extensive refuge (macrophytes) 

from piscivores (Table 1.1c).  This low zooplankton abundance may, in turn, have 

been an important factor explaining the high phytoplankton density in Sterling P., 
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further allowing particularly fast growth of the populations in the higher WRT 

conditions.  As the lowest WRT system, Floodwood P. more consistently fell within 

the range expected for the variables sampled, with a low biovolume of highly edible 

phytoplankton, relatively low cyanobacterial density, and a relatively diverse 

zooplankton community that included the second highest percentage of rotifers (with 

the fastest zooplankton growth rate) and second lowest percentage of the large grazing 

crustaceans, like Daphnia, which are not expected to do well in low WRT systems 

(Doyle-Morin, unpublished data; Fig. 1.10b).  Floodwood P. was also the system that 

was the least consistent with the PEG model, only scoring above the minimum for one 

index: high summer copepod abundance (Fig. 1.3), and even that instance may have 

resulted from a somewhat anomalous combination of unusually low-flow conditions in 

mid-summer 2002 and copepod recruitment from the adjacent marsh.    

Interestingly, neither Floodwood P. nor Sterling P. had the greatest biomass 

values for the high rmax taxa rotifers and small cladocerans: those occurred in either 

medium-low WRT systems (rotifers; Fig. 1.9a) or medium-high WRT systems (small 

cladocerans; Fig. 1.9b).  Apparently, even the fastest growing rotifers could not grow 

fast enough to overcome some effect of high washout. Small cladocerans grow more 

slowly than rotifers (and may be stronger competitors), and thus attained maximum 

density in the medium-high WRT embayments, while in the high WRT embayments, 

competition with the largest grazers may limit the growth of both groups.  

 

High WRT systems   

The high WRT systems, South Sandy P. and Juniper P., more clearly represent 

an extreme end of the WRT gradient.  They both had high plankton abundances, 

dominated by a small number of low rmax taxa.  Low diversity, driven by substantial 

populations of cyanobacteria and abundant large grazing zooplankton (i.e., selectively 
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feeding calanoid copepods in Juniper P. and Daphnia spp. in South Sandy P., see 

Appendix) likely reduced the strength of any consumer-resource dynamics in these 

systems.  Although we did find some patterns in the plankton indicative of negative 

consumer-resource relationships between trophic levels, these were not the dominant 

community dynamics for these two systems.  Reciprocal dynamics between edible 

phytoplankton and large grazing cladocerans occurred in Juniper P. (Fig. A.5), but 

abundances were so low compared with the much denser cyanobacteria and copepods 

that they did not contribute detectably to broad trophic dynamic patterns.   South 

Sandy P. pelagic processes appear to be driven from the bottom of the food chain, with 

the highest N and P loads of the four highest WRT systems (Table 1.1b,c), resulting in 

high biomasses at each trophic level relative to other embayments, including an 

additional predatory invertebrate group (Leptodora kindtii) not found in substantial 

abundance in any of the other embayments. Bottom-up forcing by nutrients may be the 

cause of the muted dynamics between trophic levels in this pond, although there were 

reciprocal interactions within the trophic levels, such as the competitive dynamics 

among some of the crustaceans (Fig. A.6). 

 

Intermediate WRT systems   

We recorded the strongest consumer-resource coupling between zooplankton 

and phytoplankton in the intermediate WRT system, Blind Sodus B.  This was the 

only embayment during the 2002 growing season to exhibit all of the five PEG model 

characteristics we scored (Fig. 1.3).  Blind Sodus B. has a food chain that appears to 

be forced from the top-down, with high abundance of piscivorous fish producing low 

density of zooplanktivorous fish, which, in turn allowed high cladoceran biomass, 

intermediate phytoplankton abundance, and high water-column TP (Table 1.1b,c, 

Table A.1). The phytoplankton and zooplankton communities appear to have 
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negatively correlated dynamics for much of season, with all of the typical successional 

dynamics, like the early summer crash in the edible phytoplankton community 

coinciding with an increase in large grazers like Daphnia.  Like South Sandy P., we 

also documented a succession of cladoceran species in this system, with a pattern of 

reciprocal abundance between the bosminid cladocerans, B. longirostris and E. 

coregoni, providing the clearest example (Fig. A.3).  

The other intermediate WRT system, Little Sodus B., also appears to follow 

typical PEG-model lake dynamics.  Reciprocal consumer-resource dynamics occurred 

at the beginning and end of the growing season (Fig. 1.4b), but this was absent in 

summer.  One cause of the mid-summer interruption in consumer-resource dynamics, 

which also explains an early fall bloom and disappearance of heterocysts from the 

cyanobacteria community (Fig. A.4), is the occurrence of an upwelling event in L. 

Ontario that drove exchange flow with the embayment in late August and early 

September (Chapter 2).  Upwelling events are the largest source of water exchange for 

this embayment (Rueda and Cowen 2005), which is particularly vulnerable to L. 

Ontario forcing because of the permanent, human-maintained channel connecting the 

two water bodies.   

 

Conclusions 

We did not observe strong positively or negatively correlated seasonal 

dynamics among functional plankton groups that a simple application of chemostat 

dynamics predicted for our gradient of low-to-high WRT embayments.  Chemostats 

control three things that are not representative of natural water bodies: (1) identical 

species throughout the season within each embayment, and (2) identical species 

among embayments, from one extreme end of the WRT gradient to the other, and (3) 

controlled and constant external environment and flow of medium.  Because these are 
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demonstrably not the case for the embayment systems, we identified two additional 

approaches to measuring the relationship between plankton community dynamics and 

WRT. 

 Regardless of their connection to the surrounding terrestrial and aquatic 

habitats, each of these systems is externally forced by seasonal changes in temperature 

and sunlight that result in a replacement of one species by another in response to the 

physical, chemical, and biological changes in their environment.  The PEG model 

indices we developed represent an objective means of assessing the prevalence of 

internally driven dynamics in these systems.  The increase in correspondence with the 

PEG model with increasing WRT (with the removal of Sterling P. as an outlier) 

suggests that external forcing does disrupt typical plankton dynamics and the greater 

the water flow rate, the greater the disruption to internal self-organization. 

 This result is not independent of our observation that community composition 

also changes in response to WRT: low rmax taxa dominate the high WRT systems and 

the rmax of the dominant taxa in each embayment increases as WRT decreases.  The 

prevalence of high rmax taxa like rotifers in low WRT embayments and bosminid 

cladocerans in medium WRT systems demonstrate the important effect of high water 

flow on community composition. Given that PEG dynamics are in many cases a 

function of the interactions of low rmax species like Daphnia, copepods, and 

cyanobacteria, it makes sense that we find the greatest consistency with PEG 

dynamics in high WRT embayments where these slowly growing taxa can persist and 

the least consistency in low WRT embayments.    
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APPENDIX 1A 

 

SEASON AVERAGES AND COMMUNITY DYNAMICS  

FOR INDIVIDUAL EMBAYMENTS 

 

 

Blind Sodus Bay 

Seasonal averages: When averaged over the entire 2002 growing season, Blind Sodus 

B. supported an intermediate total phytoplankton biovolume compared with the other 

embayments, with half of the community being edible (Table A.1).  Consistent with its 

low water column N:P, this embayment had the second highest ratio of heterocysts to 

vegetative cells for N-fixing cyanobacteria in what was a medium-density 

cyanobacterial community.  The zooplankton had the highest average seasonal 

biomass of the eight embayments, dominated by cladoceran biomass almost two times 

that of the next largest cladoceran assemblage (South Sandy P.).  Both selective and 

unselective cladocerans were abundant, with Daphnia accounting for over 20% of the 

season’s total zooplankton biomass.   Species richness was low in both the 

phytoplankton and zooplankton communities, however because species replaced one 

another seasonally (particularly within functional groups), evenness was high.  While 

overall phytoplankton diversity levels fell in the middle range, crustacean diversity 

was relatively high compared with the other embayments. 

 

Community dynamics: The phytoplankton community in Blind Sodus B. began the 

growing season with a bloom of small edible taxa, including cryptomonads, 

chrysophytes, and chlorophytes (Fig. A.1a).  There was also a small peak of edible 

phytoplankton in late June, but generally the phytoplankton remained at low  
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Table A.1  2002 seasonal embayment average phytoplankton (a) and zooplankton (b) 
data.  Diversity measures (c) are also listed. 
 

Phytoplankton 
Biovolume

(μg/mL x 106)

Cyanobacteria
Biovolume

(μg/mL x 106)

Blind Sodus B.

Little Sodus B.

Sterling P.

Juniper P.

South Sandy P.

North Sandy P.

South Colwell P.

Floodwood P.

2.4

1.5

3.0

5.4

2.8

2.8

1.8

1.7

0.25

0.38

0.48

0.64

1.23

0.69

0.52

0.08

Heterocyst: 
Vegetative 
Cell Ratio

0.04

0.04

0.02

0.07

0..04

0.02

0.03

0.04

Phytoplankton 
% Edibility

52

75

60

32

31

40

56

69

a) Phytoplankton
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Table A.1  continued 

 

 

 

 

 

 

 

 

 

 

 

Zooplankton
Biomass 

(μg/L)

Blind Sodus B.

Little Sodus B.

Sterling P.

Juniper P.

South Sandy P.

North Sandy P.

South Colwell P.

Floodwood P.

524

290

245

308

328

229

336

57

274

153

60

49

31

148

139

31 54

24

65

53

52

42

9

16

% High rmax
Species 
Biomass

184

86

79

185

231

24

71

8

Low rmax Species 
Biomass

(μg/L)

High rmax Species 
Biomass

(μg/L)

b) Zooplankton
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Table A.1  continued 

 

 

 

 

 

 

 

 

 

 

 

 

Phytoplankton 
Diversity (Ds)

Blind Sodus B.

Little Sodus B.

Sterling P.

Juniper P.

South Sandy P.

North Sandy P.

South Colwell P.

Floodwood P.

0.86

0.91

0.87

0.81

0.81

0.88

0.87

0.89

0.73

0.71

0.86

0.91

0.95

0.55

0.83

0.81 18

16

20

16

15

17

17

14

Phytoplankton 
Richness      

(# spp)

58

63

72

83

50

59

46

64

Crustacean 
Richness

(# spp)

Crustacean 
Diversity (Ds)

c) Diversity measures
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Figure A.1 Edible and inedible phytoplankton dynamics in L. Ontario embayments 

(Blind Sodus B. (a), Little Sodus P. (b), Sterling P. (c), Juniper P. (d), South Sandy P. 

(e), North Sandy P. (f), South Colwell P. (g), Floodwood P. (h)).  Error bars represent 

+/- 1 s.e. 
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Figure A.1 continued 
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biovolume throughout the summer before both edible and inedible taxa increased in 

late July.  A bloom of large inedible phytoplankton, predominantly comprised of N-

fixing Anabaena and Aphanizominon, lasted from July through September.  The 

season ended with a bloom of diatoms dominated by Aulacoseira.   

 Zooplankton density in Blind Sodus B. started low, before an initial spring 

peak comprised predominantly of Bosmina longirostris (Fig. A.2a, Fig. A.3).  This 

was followed from mid-June to mid-July by a period of high density dominated by B. 

longirostris, cyclopoid copepods, and Daphnia spp., peaking in that order (Fig. A.2a).  

The peak in copepods and Daphnia spp. followed the crash in edible phytoplankton, 

after which these two functional groups (edible phytoplankton and large crustacean 

grazers) fluctuated oppositely one another (with the exception of a short period in 

early August) (Fig. 1.4a).  Copepods dominated the early August peak before all of the 

zooplankton declined to biomass levels comparable to those present at the start of 

spring sampling. A final fall peak in zooplankton was comprised predominantly of 

Eubosmina coregoni, which appeared as the B. longirostris population crashed out 

altogether, finishing a distinct succession of cladocerans through the growing season 

(Fig. A.3; significant negative correlation between E. coregoni and B. longirostris, r = 

-0.53, p < 0.01).    

 

Little Sodus Bay 

Seasonal averages: Little Sodus B. had the smallest mean seasonal phytoplankton 

biovolume with the lowest overall diversity of the eight embayments (Table A.1).  

Mean percent edibility (75%) was greatest, with cyanobacteria low relative to the 

other systems, although those present have the highest ratio of heterocysts to 

vegetative cells (consistent with having the lowest water column N:P).  Whereas total  
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Figure A.2  2002 zooplankton community dynamics in Blind Sodus B. (a), Little 

Sodus B. (b), Sterling P. (c), Juniper P. (d), South Sandy P. (e), North Sandy P. (f), 

South Colwell P. (g), and Floodwood P. (h).  Error bars represent +/- 1 s.e.  
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Figure A.2 continued 
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Figure A.3 Cladoceran succession in 2002 Blind Sodus B. zooplankton community.  

Error bars represent +/- 1 s.e. 
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zooplankton biomass was in the lower half of the embayments, it held the second most 

diverse zooplankton community.   

 

Community dynamics: The growing season in Little Sodus B. started with a large 

spring phytoplankton bloom comprised almost entirely of centric diatoms (Fig. A.1b).  

The biomass of edible taxa fluctuated, but remained at intermediate levels throughout 

the period of study, unlike the inedible phytoplankton which peaked in late summer.  

A distinct decrease in biovolume of edible phytoplankton occurred in early July, as did 

that of inedible taxa.  Both groups rebounded, and then edible phytoplankton gradually 

decreased though late August and early September as inedible phytoplankton began to 

dominate, due in large part to a late-summer bloom in typical large spring species, 

including Fragilaria, Asterionella, Dinobryon, Ceratium, and Aulacoseira (Fig. A.4a).  

At the same time that these spring species increase again, the large Anabaena 

population crashed, before rebounding one week later, but with no heterocysts (Fig. 

A.4b).  Both inedible and edible groups reached peak biovolume in mid-September, 

the edible group bolstered by a large population of large cryptomonads and Fragilaria 

(Fig. A.1b).  The phytoplankton population then declined to a low biovolume value by 

the end of the season. 

 The zooplankton community in Little Sodus B. started out growing slowly 

from a low total biomass comprised primarily of cyclopoid copepods during a 

relatively low density spring algal bloom (Fig. 1.4b).  Populations of rotifers and small 

cladocerans began to increase in early June and then declined as both copepods and 

large cladocerans reached high biomass in early July (at the same time that edible 

biovolume decreased (Fig. 1.2b).  Total crustacean biomass fluctuated throughout July 

and August, and rotifers did not rebound until the end of the growing season.  In  
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Figure A.4 2002 Little Sodus B. phytoplankton dynamics; cold-water species 

(diatoms, Dinobryon sp., Ceratium sp.) biovolume (a) and N-fixer, heterocyst 

abundance (b). Error bars represent +/- 1 s.e. 
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general, high-r species dominated the Little Sodus B. biomass through the first half of 

the growing season, but were then replaced by low-r large cladocerans and copepods. 

 

Sterling Pond 

Seasonal averages: Sterling P. supported the second highest total seasonal mean 

phytoplankton biovolume of the eight embayments, as well as the highest edible 

phytoplankton biovolume, taxon richness, and diversity (Table A.1).  This large 

biovolume was driven by high relative chrysophyte abundance, as well as moderately 

high levels of all the other taxonomic groups. Cyclopoid copepods dominated the 

zooplankton (31% of mean seasonal biomass), with all life history stages in high 

abundance relative to the other embayments.   

Community dynamics: Phytoplankton was abundant in Sterling P. in June and July, but 

otherwise low in total biovolume (Fig. 1.4c).  There was a peak of edible species in 

early June comprised of small quadrate diatoms, Fragilaria, microflagellates, and a 

few edible chlorophyte species (i.e., Chlamydomonas and Ankistrodesmus) (Fig. 

A.1c).  Larger, less edible diatoms came to dominance in the following weeks before 

many of the populations that had been found in the June 3 phytoplankton community 

bloomed again in early July, joined by a large population of Chlorella.  There was a 

second phytoplankton peak later in July composed of less edible cyanobacteria, 

dominated by heterocyst-bearing Anabaena and Oscillatoria, as well as large 

populations of Aulacoseira and large-celled Fragilaria.  Phytoplankton became scarce 

after the end of July and remained at low density throughout the remainder of the 

growing season.  

The Sterling P. zooplankton was low in density during all of the growing 

season except for a single date in mid-July (Fig. 1.4c).  This brief peak (captured in 
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both replicate samples on that date) was comprised of rotifers, large and small 

cladocerans, and cyclopoid copepods (Fig. A.2c).  This zooplankton peak coincided 

with the peak in inedible phytoplankton described above (Fig. A.1c).   This peak also 

coincided with the first date on which significant amounts of benthic cladocerans were 

captured in the water column, including Sida crystallina and Simocephalus sp.  These 

species continued to be present in plankton samples through late September and their 

presence generally corresponds with periods of high macrophyte abundance at the 

sampling site. 

Juniper Pond 

Seasonal averages: Juniper P. contained the highest seasonal mean  phytoplankton 

biovolume of any of the embayments, with the highest inedible and second lowest 

edible biovolume (making it 68% inedible, Table A.1).  Juniper P. also had much 

higher phytoplankton species richness than the other embayments, with eleven more 

taxa than the next highest embayment, Sterling P. Despite the high level of 

phytoplankton inedibility, there was only a very small population of cyanobacteria in 

Juniper P., with N-fixers comprising only 0.05% of the total biovolume.  Instead, the 

high inedibility numbers were driven by large cell and colony sizes. The zooplankton 

community was dominated by copepods, which comprised 65% of the total biomass, 

which was intermediate in comparison with the other embayments.  It had greater than 

four times the calanoid copepod biomass of any other embayment, and more than 

twice the density of total copepods.  Rotifers and cladocerans were at low relative 

abundances, and the copepod dominance resulted in low crustacean species richness 

and diversity.   
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Community dynamics:  Low Juniper P. spring phytoplankton biovolume (Fig. A.1d)  

was comprised of predominantly inedible taxa in late May and early June, during 

which the plankton biovolume consisted mainly of  large colonial chrysophytes and 

diatoms, including Dinobryon, Tabellaria, and Fragilaria, and the dinoflagellate, 

Glenodinium.  These species were replaced in June by cyanobacterial species, 

dominated primarily by heterocyst-bearing Anabaena spp. as well as Microcystis and 

Oscillatoria.  These inedible species dominated the system at low numbers through 

July until they were replaced primarily by another group of large chrysophytes, 

dinoflagellates, and euglenoids.  The first peak of edible taxa occurred in September, 

when a highly edible and diverse group of cryptophytes, diatoms, and chlorophytes 

including Chlamydomonas, Oocystis, and Selenastrum dominated.  This edible 

assemblage declined markedly in October, when the water column was again filled 

with large, silica-dependent species like Tabellaria. 

   The zooplankton community in Juniper P. showed a spring peak in total 

biomass that followed the phytoplankton peak by one week (Fig. 1.4d).  The spring 

population was comprised predominantly of rotifers, cyclopoid copepods, and small 

cladocerans, and was followed temporally by a large peak in zooplankton biomass in 

late June when these smaller grazers were replaced first by large cladoceran grazers 

such as Diaphanosoma and Ceriodaphnia, as well as growing populations of both 

cyclopoid and calanoid copepods (the dominant crustacean grazers in Juniper P.) 

during the last half of July (Fig. A.2d).  By September, the large grazers were almost 

entirely replaced by the small cladoceran (Bosmina, Chydorus) and rotifer populations 

seen earlier in the season, while calanoid copepods continued to dominate the system 

before virtually everything crashed out, with zero positive growth for any of the 

groups during the last few weeks of the growing season.  While copepods dominated 

the system numerically, the large unselective cladocerans appear to have exerted the 
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most influence on the edible phytoplankton community, which did not bloom in large 

numbers until the unselective cladoceran population had crashed out of the system 

(Fig. A.5).  

 

South Sandy Pond 

Seasonal averages: South Sandy P. supported the most diverse phytoplankton 

assemblage of the eight embayments with an intermediate biovolume (Table A.1).    

Numerically, it had the highest phytoplankton abundance for all taxonomic groups, 

and one of the highest total biovolumes across all groups as well, with the exception of 

the chrysophytes.  The phytoplankton community was the lowest among the 

embayments in terms of percent edibility (31%), in part because it also contained the 

highest percentage (by biovolume) of N-fixing cyanobacteria at 39%.  The 

zooplankton community was the third greatest in terms of total biomass, and included 

both the largest percentage of unselective cladocerans (comprising on average over the 

season 69% of the total biomass) and predatory invertebrates.  It also contained the 

second highest mean biomass of both calanoid copepods and Daphnia.  The biomass 

of small selective cladocerans was very low relative to the other systems.  The 

dominance by a few large unselective grazers resulted in the lowest crustacean 

diversity measured.  

 

Community dynamics: South Sandy P. phytoplankton biovolume peaked on three 

dates during 2002: late May, late-June, and late August (Fig. 1.4e).  Chrysophytes and 

diatoms contributed to these peaks and were abundant throughout the year, 

particularly Uroglenopsis and Aulacoseira, which dominated the final half of the 

major August bloom.  Edible taxa dominated the mid-summer biovolume (Fig. A.1e).  

Cyanobacterial species were also present through the year and added to all three  
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biovolume peaks, particularly the N-fixing species Aphanizomenon, which was present 

on all but two of the sampling dates.  Heterocyst-bearing Anabaena species were also 

present throughout the season, starting in late May, and dominated the second and the 

beginning of the third phytoplankton peaks.  The final fall phytoplankton community 

was dominated by a suite of cyanobacterial species, in particular Microcystis and 

Aphanizomenon.   

 South Sandy P. zooplankton was also dominated by a limited number of 

species, especially unselective cladocerans and copepods (Fig. A.2e).  Two peaks in 

zooplankton density early in the season, dominated by Daphnia and Eubosmina, 

immediately preceded the two early season phytoplankton blooms (Fig. A.6e).  

Daphnia mendotae was present predominantly early in the season, and Daphnia 

retrocurva became increasingly abundant as the season progressed (Fig. A.2e).  

Diaphanosoma added significantly to the large cladoceran biomass as well later in the 

season when Daphnia populations waned.    Both cyclopoid and calanoid copepods 

contributed to the late season zooplankton biomass as well, along with rotifers and 

small cladocerans, which were present during the first and last zooplankton peaks 

(with Eubosmina dominating the first peak and Bosmina dominating the second, Fig. 

A.6).  A small Leptodora kindtii population was present throughout the season.  

 

North Sandy Pond 

Seasonal averages: North Sandy P. had intermediate phytoplankton and zooplankton 

densities relative to the other systems (Table A.1).  The phytoplankton community 

contained both small edible and large inedible groups, including the second largest 

density of cyanobacteria resulting in a low mean edibility of 40% over the course of 

the growing season.  Zooplankton had the highest numerical abundance of any 

embayment, but because small rotifers were prevalent, this did not translate into high  

64 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90
Zo

op
la

nk
to

n 
bi

om
as

s 
( μ

g/
L)

Eubosmina coregoni

Bosmina longirostris,
Chydorus sphaericus

0

100

200

300

400

500

600

700

5/8
/200

2

5/1
5/2

00
2

5/2
2/2

00
2

5/2
9/2

00
2

6/5
/200

2

6/1
2/2

00
2

6/1
9/2

00
2

6/2
6/2

00
2

7/3
/200

2

7/1
0/2

00
2

7/1
7/2

00
2

7/2
4/2

00
2

7/3
1/2

00
2

8/7
/200

2

8/1
4/2

00
2

8/2
1/2

00
2

8/2
8/2

00
2

9/4
/200

2

9/1
1/2

00
2

9/1
8/2

00
2

9/2
5/2

00
2

10
/2/

20
02

Zo
op

la
nk

to
n 

bi
om

as
s 

( μ
g/

L)

Copepods
Daphnia spp.

Diaphanasoma birgei

700

600

500

400

300

200

100

0

May          June                July                 Aug       Sept         Oct

a

b

 

Figure A.6  2002 South Sandy P. high (a) and low (b) rmax zooplankton dynamics.  

Error bars represent +/- 1 s.e. 
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biomass, which was the second lowest of the embayments. All other zooplankton 

groups were only moderately abundant, with cyclopoid copepods and small selective 

cladocerans comprising much of the overall biomass.  Whereas the phytoplankton 

community was only moderately diverse, the zooplankton community ranked as both 

the most rich and diverse of the eight embayments. 

 

Community dynamics: The phytoplankton population in North Sandy P. in May, was 

comprised predominantly of cryptomonads, Dinobryon, and Asterionella (Fig. 1.4f).  

This modest bloom represented the largest abundance of edible phytoplankton 

throughout the growing season (Fig. A.1f), and was followed immediately in mid-June 

by the first of three peaks of inedible taxa.  The latter two peaks occurred in August 

and at the end of the growing season in October.  While the first and second inedible 

peaks were dominated by large diatoms like Fragilaria, Asterionella, and Aulacoseira, 

cyanobacteria strongly contributed to the end of season bloom when heterocyst-

containing Anabaena appeared.  

 For zooplankton biomass, (Fig. 1.4f), a peak in early June was comprised of 

rotifers and large cladocerans.  Daphnia retrocurva and D. mendotae dominated in 

mid-July along with cyclopoid copepods, while smaller zooplankton decreased in 

abundance before rebounding following a decline in large cladocerans at the end of 

July (Fig. A.2f).    

  

South Colwell Pond 

Seasonal averages: South Colwell P. had the third lowest mean seasonal 

phytoplankton biovolume of the eight systems, but the highest numerical abundance of 

edible phytoplankton taxa resulting from the presence of many small cells in the early 

spring bloom (Table A.1, numerical abundance not listed).  The pond, however, also 
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had the second highest percentage of N-fixing species by biovolume, but the lowest 

ratio of heterocysts to vegetative cells.  The zooplankton community had the second 

highest mean seasonal biomass, with relatively high densities of all functional groups.  

Diversity of both phytoplankton and zooplankton was intermediate, even though South 

Colwell P. had low phytoplankton species richness.   

   

Community dynamics: South Colwell P. phytoplankton biovolume was dominated by 

inedible taxa throughout most of the season, with edible species contributing to over 

half of the biovolume only during the early spring bloom (Fig. A.1g).  This early 

spring assemblage was predominantly comprised of cryptomonads, pennate diatoms, 

and large colonies of Fragilaria and Dinobryon.  Three peaks of inedible 

phytoplankton were spaced throughout the season, and all three were dominated by N-

fixing cyanobacteria species, particularly Anabaena.  Heterocysts were abundant only 

in June and July.  

 Zooplankton biomass was very low throughout May, increased in mid-June 

and then fluctuated throughout the remainder of the season (Fig. 1.4g).  Rotifers were 

the first group to appear in spring, followed by copepods and small cladocerans in 

mid-June (Fig. A.2g).  These populations decreased as large unselective cladocerans 

increased in the following weeks.  Each of these functional groups fluctuated around 

moderate levels throughout the rest of the season.  The biomass of edible 

phytoplankton taxa decreased as crustacean biomass increased in early June, and then 

remained essentially constant at an intermediate density throughout the rest of the 

season as crustaceans remained in the water column. 
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Floodwood Pond 

Seasonal averages: Mean seasonal total phytoplankton biovolume was low (higher 

only than Little Sodus B.), with cyanobacterial densities particularly low relative to all 

other systems (and comprising only 0.1% of the total biovolume, Table A.1).  The 

community was dominated instead by edible species (69% of total biomass).  

Zooplankton biomass was low, only a quarter of that of the next largest zooplankton 

embayment community. Rotifer abundance was intermediate, but each of the other 

functional groups was lowest in biomass.  Copepods and small selective cladocerans 

comprised much of the mean seasonal zooplankton biomass.  Although both 

phytoplankton and zooplankton taxon richness was relatively high in Floodwood P., 

diversity was relatively low.   

 

Community dynamics: The season began in Floodwood P. with a bloom of inedible 

phytoplankton, made up of large colonial chrysophytes like Dinobryon, which was 

abundant throughout the season (Fig. A.1h).  Chrysophytes and large diatoms 

dominated the inedible phytoplankton functional group throughout the season, while 

cyanobacteria never reached high numbers.  Both edible and inedible phytoplankton 

bloomed in early July before a large increase in inedible taxa in mid-July.  There was 

one final bloom of large chrysophytes and diatoms in mid-August before the largest 

peak of edible phytoplankton, comprised predominantly of cryptomonads, in late 

August.  The phytoplankton community gradually declined to negligible abundance 

throughout the remainder of the season. 

 Zooplankton biomass was relatively low compared with the other embayments 

throughout the growing season (Fig. 1.4h).  Density was very low until late May, 

when rotifers increased, followed soon after by a short-lived peak of copepods and 

small cladocerans (Fig. A.2h).  Large unselective cladocerans did not appear in 
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notable biomass until July and were present through September at low numbers.  Their 

density was at its maximum throughout July and August when other zooplankton 

groups were at their minimum. Large cladocerans declined in September as small 

cladocerans, rotifers, and copepod nauplii rose before declining precipitously in early 

October.  
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CHAPTER 2 

 

OF WIND AND WATER: INSIGHT INTO THE REGULATORY ROLE OF 

UPWELLINGS IN FRESHWATER EMBAYMENT PROCESSES 

 

Introduction 

 Lake ecosystems can be thought of as both self-contained “microcosms”, with 

boundaries clearly delineated by their shorelines (Forbes 1887; Hutchinson 1964; 

Hairston 2005), and as habitat patches strongly connected to their surrounding 

terrestrial landscapes via tributary flow, overland run-off, and atmospheric deposition 

(Likens 1974; Hanson et al. 2003; Carpenter et al. 2005). The relative importance of 

ecological interactions internal to the lake basin in comparison with the effects of 

external forcing and subsidies depends critically upon such things as basin size, 

strength and temporal variability of connectivity to the external environment, and the 

strengths of biogeochemical and interspecific interactions within the lake relative to 

the magnitudes and kinds of external inputs.  These links beyond the shoreline are 

particularly apparent in freshwater embayment systems, basins directly connected to 

an adjacent larger body of water but separated by coastal sediment deposition across 

the mouth of a tributary.  The connection can range from permanent (often artificially 

maintained) channels connecting the embayment to its adjacent lake, to transient 

openings, to subsurface flow through a gravel bar or sandbar. Thus, these embayment 

systems are not only influenced by terrestrial inputs from the watershed, but can also 

be impacted directly by bidirectional exchange flow with the larger body of water.    

This additional external connectivity creates an unusual challenge for the 

resident taxa that make up the embayment plankton because they are exposed to an 

influx of organisms from the adjacent lake that are much more similar in habitat 
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requirements than are those that might be transported in from upstream in the 

watershed.  In addition, fish can actively swim in and out of an embayment, often 

using it as a spawning ground, bringing nutrient subsidies and increased predation 

pressure with them (Boehlert and Mundy 1988, Klumb et al. 2003, Meixler et al. 2005, 

Moore et al. 2007, West et al. 2010).  As a result, plankton communities in 

embayments are exposed, and potentially vulnerable, to external forcing in the form of 

both biotic introductions and chemical (nutrient) and physical forces originating 

outside of the system. 

One of the external forces influencing embayment plankton communities is an 

upwelling event in the large lake that causes exchange flow between the two water 

bodies as cold up-welled water in the large lake flows by gravity into the embayment, 

in turn forcing warm surface water out into the lake (Fig. 2.1).  Upwelling and 

exchange flow occur in summer when both the large lake and the embayment are 

thermally stratified. Warm surface waters in the large lake are driven offshore by 

persistent winds and are displaced by cold hypolimnetic water pushed up into the near-

shore euphotic zone. Upwelling events have been intensively studied in coastal ocean 

environments as well as in large lakes, with a particular focus on the influx of 

nutrients that the cold water brings to the surface (Schelske et al. 1971, Richards 1981, 

Rosenfeld et al. 1994, Hill et al. 1998, Pitcher et al. 2010).  The effect of upwelling on 

water exchange with embayments along the shoreline has received much less 

attention. Marine research has demonstrated the impact of saline intrusions into 

coastal bay ecosystems, much of which has focused on the large effects of the saline 

mixing (Fram 2007, Ryan 2009, Eichler 2010). Similar exchange flow between two 

freshwater systems is distinct because the salinities of the two water bodies are 

similar, and so are driven purely by temperature-related density differences rather than 

salinity (or salinity and temperature) in marine cases.  A potentially significant  
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Figure 2.1  Diagram of upwelled water exchange between large lake and coastal 

freshwater embayment.  In this situation, cold hypolimnetic water is upwelling along 

the shoreline of the large body of water.  This water is dense compared to the warm 

epilimnetic water of the adjacent shallow embayment system, and thus flows along the 

bottom of the connecting channel, following the basin bathymetry into the 

embayment.  This cold, dense water fills the embayment from the bottom-up, 

displacing the warmer embayment water out into the surface of the lake.  
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difference between inland water and marine upwelling events is, then, a much greater 

likelihood of successful biological exchange between a large lake and a connected 

embayment, because of the absence of an osmotic barrier.   

Upwelling-driven exchange flows may also bring water with a distinct nutrient 

signature into an embayment accompanied by a direct response of the resident 

plankton community.  In marine and lake coastal environments, upwelling events are 

well known for inducing high productivity when they introduce nutrients into a 

nutrient-deprived near-shore euphotic zone.  However, upwelling-driven exchange 

with adjacent embayments is distinct from simple coastal upwelling, both because it 

involves water movement between two separate bodies of water, and because the 

relative productivities of the primary water body and the embayment may differ 

markedly.  Unlike non-embayment coastal upwelling where cold nutrient-rich water 

rises into a nutrient-deprived photic zone, embayments, because of their intimate 

connection to the watershed, are typically nutrient-enriched relative to the adjacent 

large lake.  Upwelling-driven exchange flow has the potential to fill an embayment 

with relatively nutrient-poor water, negating any possibility for the increased 

biological productivity generally associated with upwelling events and potentially 

leading to decreased productivity.  Rueda and Cowen (2005) suggested that 

upwelling-driven flow could be the most important exchange of water masses between 

these adjacent freshwater systems, yet there are only a few examples of studies 

documenting exchange flow transport between large inland water bodies like the 

Laurentian Great Lakes and their coastal embayments (Dunstall et al.1990, Churchill 

et al. 2004, Wells and Sealock 2009).   

As a part of a more comprehensive multi-investigator study of eight 

embayments and the effect of their level of connectivity to Lake Ontario on plankton 

dynamics, Rueda and Cowen (2005) analyzed the hydrodynamic properties of 
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exchange flow with a large, well connected embayment, Little Sodus Bay, on the Lake 

Ontario’s southern shore, and found the introduction of upwelled water to the 

embayment to be extensive. This raises the question of how important such exchange 

flows can be to the transfer of planktonic organisms from the large lake to the 

embayment.  We explore this question for two significant (hurricane induced) 

weather-driven upwelling events, in two years, for two embayments along the 

southern shore of Lake Ontario. 

The importance of exchange flows for plankton movement depends upon how 

frequently they occur and on how long each event lasts.  An analysis of 26 years of 

data for water temperatures along the southern shore of Lake Ontario shows (as 

described below in greater detail) that an average of nearly five events occurs per year, 

between two and three of which last at least four days.  This suggests that such events 

have the potential to be important both in introducing species from one water body to 

the other and as an influence on embayment plankton dynamics.  

Our study was designed to explore the several specific upwelling events in two  

embayments.  First, we compare the theoretical and simulation results of Rueda and 

Cowen (2005), which projected the exchange flow behavior between the two systems 

during events in 2002, with data we had collected as part of a routine sampling effort 

in that year. These include weekly samples for physical, chemical, and biological 

variables at Little Sodus Bay, but because each of the two upwelling events in that 

year lasted only about a week, subsequent retrospective analysis of our weekly 

sampling data revealed only a hint that these physical forcing events could be 

significant drivers of the dynamics of the resident plankton populations (Doyle-Morin, 

Chapter 1).  As a result, in 2003 and 2004 we carried out focused field studies of the 

pelagic portions of two embayment-large-lake systems at short sampling intervals  
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during upwelling events.  Our field study compared the effects of Lake Ontario 

upwelling on the coastal dynamics of Little Sodus Bay and another neighboring 

embayment system, Sterling Pond.  These two water bodies have similar connectivity 

with the lake, but differ in total surface area, bathymetry, and the sizes of their 

respective watersheds.  A comparison of these two embayments permits an 

exploration of the effect of external physical forcing, impinging upon embayment-

specific chemical and biological characteristics, on the internal dynamics of the 

planktonic communities.  Our objective was to look, during conditions of upwelling, 

for physical and chemical signatures of exchange flow (e.g., summer-time appearance 

of cold, dissolved oxygen-rich water in the embayment hypolimnion), and evidence of 

the appearance Lake Ontario plankton taxa in the embayments where they are 

otherwise absent. 

 

Methods 

Study site description 

The two embayments of this research are located along the southern shoreline 

of Lake Ontario, both within the confines of Fairhaven State Park in Fairhaven, NY 

(Fig. 2.2).  Little Sodus Bay (LSB) (43°20’00”N, 76°42’30”W) is the larger of the two 

systems (4.69 km2 surface area, 4.31 m median depth, 12.0 m maximum depth).  It has 

a very small watershed (6.84 km2), only slightly larger than the embayment itself, and 

is predominantly connected to the surrounding landscape by direct run-off, although 

there is a single small tributary with a mean daily discharge of 0.154 m3 s-1.   LSB is 

permanently connected to Lake Ontario through a large (550 m long, 75 m wide) and 

shallow (2-3 m deep) artificial channel maintained for boating traffic.  Due to its 

depth, LSB is predominantly an open-water pelagic habitat, and supports a planktonic 

community typical of a large lake (Doyle-Morin, Chapter 1).     

83 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2  Map of LSB and SP, with sampling locations denoted.  Bathymetric 

contours are depicted at 1 m intervals.  Figure provided by A.King. 
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Sterling Pond (SP) (43°20’30”N, 76°42’00”W), 1 km east of (LSB), is smaller than 

LSB (1.01 km2 surface area, 0.98 m median depth, 5.0 m maximum depth) but with a 

much larger watershed (202.3 km2), nearly 200 times the embayment’s surface area.  

This embayment is fed by a large tributary, Sterling Creek, which is 149.83 km in 

length with a mean daily discharge of 3.63 m3 s-1.  SP is also permanently connected to 

Lake Ontario by an artificial channel (17 m wide, 2.5 m maximum depth, 140 m long).  

The shallow bathymetry of this embayment supports a predominantly littoral 

community dominated by dense macrophyte growth.  There is an area of open-water 

habitat year-round in the deepest eastern lobe portion of the embayment (hereafter 

“deep lobe”).    

 To compare environmental variables of the embayments with those of near-

shore Lake Ontario (LO), we established a study site 2 km offshore (43°22’30”N, 

76°42’15”W), directly north of the channel openings for the two embayments (Fig. 

2.2).  The maximum pre- and post-event water depths at this site (during calm 

conditions) ranged from 12-13 meters. 

 

Event description 

 We analyzed the effects of three upwelling events of varying duration and 

apparent effect. The exchange flows during these events were the result of a 

combination of baroclinic, or temperature- and density-driven forces, and barotropic, 

or water-elevation and pressure-driven, forces.  The first event, 28 August - 4 

September 2002, was a sustained baroclinic event that brought upwelled hypolimnetic 

LO water along the southern shoreline for over a week.  Although this event did not 

include associated precipitation, there was an additional small wind-driven exchange 

event preceding the sustained event (Fig. 2.3a).  The second upwelling event, 19 - 23 

September 2003, also did not include associated precipitation, but was a shorter- 
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Figure 2.3 Interpolated 2002 (a), 2003 (b), and 2004 (c) time-depth temperature 

profiles in LO near-shore water column. Thermister strings set at one meter intervals 

recorded data continuously (1 hour increments) from surface to bottom.  Dashed lines 

represent routine weekly (a) or event-based sampling dates (b,c).  (E.A. Cowen and 

A.T. King, personal communication) 
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duration, baroclinic and barotropic pulsing event in which upwelling LO water was 

displaced along the shoreline for two relatively brief (1 – 2 day) intervals (Fig. 2.3b).  

The third event, 10 -14 September 2004, was a short-duration (3-4 days) sustained 

event that included precipitation and thus barotropic forcing from the watershed in 

addition to the baroclinic forcing from Lake Ontario (Fig. 2.3c).   

 

Retrospective data analysis – long-term frequency of exchange flow 

 Rueda’s and Cowen’s (2005) analysis of  exchange flow between Lake 

Ontario and Little Sodus Bay, suggested that when upwelling water is sufficiently cold 

and dense (ca. 5 °C cooler than the embayment surface water), and if the upwelling 

event is sufficiently long (≥ ca. 4 d.), extensive exchange is possible. Surface 

temperatures in Little Sodus Bay typically exceed 20 °C, so once near-shore Lake 

Ontario temperature is depressed to 15 °C exchange flow is expected.  We used near-

shore Lake Ontario, surface temperature data collected near Fairhaven State Park, 

Fairhaven, NY, for the 26 years between 1976 and 2001 to determine the frequency of 

occurrence of upwelling conditions along the shoreline (Jim Nugent, personal 

communication).  We identified the periods during summer thermal stratification in 

Lake Ontario that water temperature was  ≤ 15 °C, and then aggregated these data into 

categories of shorter-duration events (< 3 consecutive days of cold water), longer-

duration events (≥ 4 consecutive days) and pulsing upwellings that fluctuated between 

warm and cold near-shore water with a frequency less than two days.   

 

Retrospective data analysis – 2002 upwelling event 

We analyzed our routine weekly sampling data for the longer-term, sustained 

upwelling event in 2002.  Rueda and Cowen (2005) documented upwelling-driven 
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exchange flow between LO and LSB using hourly temperature data from a set of 

vertical thermistor strings deployed in near-shore LO and in LSB.  They used these 

data to model the water exchange dynamics during the event.  We compared their 

results to the limnological data we collected weekly at a central site in LSB and bi-

weekly in LO, from May - October 2002. Temperature and dissolved oxygen profiles 

(Yellow Springs Instruments Model 58) were recorded at half-meter to one-meter 

intervals throughout the water column. Phytoplankton samples were collected using a 

tube sampler that integrated the entire water column, and preserved in 1% Lugol’s 

solution.  Cells were identified to genus or species, measured with an eyepiece 

micrometer, and counted using a Wild M40 inverted microscope.  Phytoplankton 

densities were expressed as individuals mL-1 or converted to biovolume (μm3 mL-1) 

based on cell dimensions (Wetzel and Likens 2000).  Zooplankton were collected by 

diagonal tow using a Clarke Bumpus quantitative sampler fitted with a 75-μm-mesh 

net and preserved using 70% ethanol.  Individuals were identified to species, measured 

with an eyepiece micrometer, and counted using an Olympus SZH10 dissecting 

microscope.  Biomasses were calculated using length-weight regressions from Bottrell 

et al. (1976).  Plankton were categorized into functional groups (i.e., edible and 

inedible phytoplankton) based on size and taxon as described in Doyle-Morin et al. 

(Chapter 1).  Because we did not anticipate this event and only have data collected at 

predetermined weekly intervals, we treat this analysis as “retrospective”.  Physical 

dynamics are outlined below, while the biological response is discussed in greater 

detail elsewhere (Doyle-Morin, Chapter 1). 

 

Upwelling event sampling 

In 2003 and 2004 we were able to anticipate upwelling events associated with 

the remnants of hurricanes that passed inland over Lake Ontario late in the summers of 
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those years. We carried out intensive sampling before, during, and after upwellings 

and exchange flows with LSB and SP.   Sampling consisted of temperature and 

dissolved oxygen profiles at 0.5 – 1.0 meter intervals throughout the water column, 

plus water samples for phytoplankton and zooplankton at depths half-way through the 

epilimnion and half-way through the hypolimnion, using the pre-upwelling 

thermocline to determine these depths. SP was too shallow to stratify, so samples were 

collected from a single mid-depth location at each site.  Sampling was completed in 

both 2003 and 2004 at a central and near-channel site in both embayments in order to 

track the influence of the event as it moved further into the embayment.  In 2004, an 

additional “Deep-Lobe” site was added at the deepest location in each embayment 

(Fig. 2.2) to sample the point of deepest bathymetry where the cold intruding water 

from LO would first begin to pool during an upwelling event (Fig. 2.2).  We also 

collected physical data immediately outside of the SP channel in LO (hereafter “LO 

Near-SP”) and upstream in SP Creek (Fig. 2.2) during this event. 

    For the 2002 and 2003 upwelling events, an Acoustic Doppler Current 

Profiler (ADCP) was deployed in the SP channel to measure water-flow direction and 

temperature as a function of water depth during exchange flow between the 

embayment and Lake Ontario.  Government navigation restrictions did not permit 

equipment to be deployed in the LSB channel, although temperature and dissolved 

oxygen data collected daily at 0.5 m increments from surface to bottom confirmed 

similar flows for each event in the LSB channel. Dissolved oxygen and temperature 

data were similarly collected in both channels in 2004. Note that because we were not 

allowed to collect ADCP data in the LSB channel, we assume that the SP channel data 

characterize channel exchange flows for LSB as well as SP. 
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Data Analysis 

 Statistics were calculated in SPSS, Version 16.0 (2007). All paired t-test 

comparisons followed significant ANOVA results for all comparisons, where 

significance is determined as p < 0.05.  Tukey’s HSD was applied to all post-hoc 

comparisons to adjust calculations for multiple comparisons. All error estimates 

reported are ± 1 standard error. Lack of replication in some datasets precluded 

statistical analysis for the 2002 dataset.   

 

Results  

Retrospective data analysis – long-term frequency of exchange flow 

The 26 years of near-shore Lake Ontario water temperature data show that 

there was a mean of 4.92 (± 0.29) upwelling events per year along the southern 

shoreline (Fig. 2.4), 2.32 (± 0.19) per year of which were longer sustained upwelling 

events (≥ 4 days) capable of causing significant exchange flow with the embayment. 

Shorter duration upwellings were about equally common (though perhaps more 

difficult to detect), with a mean of 1.92 (±0.29) brief, but sustained, upwellings per 

year. Pulsing upwellings occurred on average 0.68 (± 0.15) times per year.  It appears 

likely, then, that exchange flows are sufficiently common to have the potential to 

influence the dynamics of the pelagic zone of coastal embayments on the south shore 

of Lake Ontario.   

 

Retrospective data analysis – the 2002 upwelling event 

The period from 20 August to 5 September 2002 was characterized by two 

upwelling events in Lake Ontario (Fig. 2.3a): a brief upwelling followed two days 

later by a sustained six-day event.   Current velocity (ADCP) data taken in the SP  
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Figure 2.4  Number of short (<3 days), pulsing (multiple events separated by one day 

or less), and long (>3 days) upwelling events occurring each year along the southern 

LO shoreline.  Events identified as periods of time during which LO surface 

water<15˚C during period of summer thermal stratification. 
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channel show that the colder LO upwelling water flowed into the embayment along 

the bottom of the channel while warm embayment water was displaced out along the 

surface of the channel for both upwelling events.  There were also periods when 

essentially the entire channel was filled with Lake Ontario water flowing in to SP, 

which was followed by full-channel flow out of the embayment (e.g., 22-24 Aug., 27-

28 Aug., 5 Sept.; Fig. 2.5a).  The first, brief, upwelling occurred on 24 and 25 Aug. 

entirely between our routine sampling dates of 20 Aug. and 28 Aug., while the second 

event started immediately following the 28 Aug. sampling date and continued until the 

3 Sept. sampling date.  Temperature data indicate that water at the LO site reached its 

coldest temperatures during the sustained event (as low as 6.3 °C), whereas returning 

surface water was between 16 and 22 °C (Fig. 2.3a).  

 On 20 Aug., before upwelling in LO, the center site in LSB exhibited typical 

late-summer temperature and dissolved oxygen stratification patterns (Figs. 2.6 and 

2.7).  The epilimnion occupied the top 6 m of the water column, with temperature 

ranging between 25.9 °C and 24.0 °C.  Below 6 m, the temperature decreased to 13.9 

°C at the bottom (10.5 m).  Mean dissolved oxygen levels were between 7 and 8 mg 

O2/L throughout the epilimnion, but below 6 m, hypolimnetic oxygen levels decreased 

to near zero (Fig. 2.7b).  

Temperature data from LO (Fig. 2.3a) and the SP channel velocity data (Fig. 

2.5a) show a brief upwelling event on 24 Aug. before the longer sustained event. 

Rueda and Cowen (2005) found using their SI3D model that upwelling hypolimnetic 

LO water from this short event must have entered LSB along the bottom of the 

channel.  However, the temperature gradient was not strong enough to force the LO 

water through the LSB thermocline, and instead the LO water flowed into the 

embayment along the thermocline, eventually mixing into the epilimnion.  The LSB 

temperature data (Fig. 2.6) are consistent with the model, showing that the epilimnetic  
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Figure 2.5  Interpolated water velocity profiles through the SP channel water column 

during upwelling exchange-flow events in 2002 (a) and 2003 (b). Data collected by 

ADCP (E.A. Cowen and A.T. King, personal communication). Positive (red) values 

represent water moving from the embayment out into LO, while negative (blue) values 

represent water flow from LO into SP.  Dashed lines represent embayment routine 

weekly (a) and event-based (b) sampling dates.   
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Figure 2.6  Interpolated 2002 time-depth temperature profiles in LSB center site water 

column. Thermister strings set at one meter intervals recorded data continuously (1 

hour increments) from surface to bottom.  Dashed lines represent routine weekly 

sampling dates  (E.A. Cowen and A.T. King, personal communication). 
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Figure 2.7  2002 temperature (a) and dissolved oxygen (b) profiles at LSB center site.  

Dashed profile lines represent pre- and post event sampling dates; solid profiles are 

during events.  Arrows indicate direction of strong changes between dates.  
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stratification began to break down between 20 and 28 Aug.  Temperature profile data 

also show that the entire epilimnion cooled by 1.5 to 3.2 °C during this period, while 

the hypolimnion remained at essentially a constant temperature (Fig. 2.7).  Dissolved 

oxygen in the hypolimnion also remained constant (although the oxycline deepened by 

almost a meter), while the epilimnion showed an increase in dissolved oxygen of 

almost 1 mg/L (except for an unexplained marked negative heterograde pattern in the 

surface waters on 28 Aug.: Fig. 2.7b). 

The LO thermistor data (Fig. 2.3a) show the sustained upwelling event 

beginning on 28 August.  Rueda and Cowen’s (2005) simulation depicts the cold 

hypolimnetic LO water flowing along the bottom of the channel into LSB and then 

flowing down the basin slope to the bottom of the embayment, where it fills the 

system from the bottom up, forcing the warmer LSB epilimnetic water out through the 

top of the channel.  Our temperature data show that the incoming hypolimnetic water 

was cooler (8 - 10 °C) than the hypolimnetic LSB water (~13 °C), and so did not 

thoroughly mix with it, but instead displaced the LSB hypolimnion up higher into the 

water column.  During this period, SP channel velocity data show the water beginning 

to flow into the SP embayment along the bottom of the channel, accompanied by a bi-

directional flow of water moving at the channel surface from the embayment out into 

L. Ontario (Fig. 2.5a).  Bi-directional flow continued in a sustained manner throughout 

the week of 28 Aug. to 3 Sept.  On 29 Aug., LSB thermistor data from the center site 

show cold water filling in along the bottom of the embayment, and the thermocline 

ultimately being displaced upwards by over 2 m (Fig. 2.6).  

 Temperature profile data from the LSB center site (Fig. 2.7a) also show the 

temperature in the top 5 m of the water column only decreasing slightly (0.2 - 0.5 °C) 

over the course of the week while temperature in the bottom 4 m decreased by 1.0 to 

4.5 °C as the LO water intruded.  The most extreme temperature change occurred at 6 
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– 8 m, the depth of the thermocline when the event started, as cold water intruded 

higher into the water column (Fig. 2.7a).  Accompanying these temperature changes in 

deep LSB water was a large increase in dissolved oxygen of as much as 4.2 mg O2/L 

in the previously anoxic bottom four meters of the embayment (Fig. 2.7b).  By 3 Sept., 

LO thermistor data suggest that the upwelling event was ending, however, the LO 

water column remained filled with cooler, ~15 °C water.  SP channel velocity data 

show that cool LO water is barotropically forced into the embayment, filling the SP 

water column from top to bottom with LO water, followed by a corresponding flow of 

embayment water back out into LO as warm water returned to the near-shore of LO 

(Fig. 2.5a).   

 

2003 and 2004 short-term upwelling event sampling 

Physical comparison of upwellings in both events 

The inland excursion across New York State of two hurricanes, Isabel in 

September 2003 and Francis in September 2004, provided opportunities to anticipate 

upwelling events in LO and to follow their effects on exchange flows in LSB and SP.  

As Hurricane Isabel moved north over LO on 19 Sept. 2003, we documented two 

approximately 36-h periods (separated by a 12-24 hour interval) during which 

upwelled cold hypolimnetic water filled the near shore water column.  The coldest 

water (< 10 °C) was detected during the second pulse (Fig. 2.3b).  Channel velocity 

data from the SP channel (and complementary temperature probe data in LSB 

channel) show that this cold water flowed in through the channels of both 

embayments, filling them from bottom to top for about 12 h on both occasions (Fig. 

2.5b).  Bi-directional exchange flow, with colder LO water flowing into the 

embayment along the bottom of the channel and warmer embayment water flowing 
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out the top of the channel, occurred in both channels between these larger pulses of 

hypolimnetic LO water.    

As Hurricane Frances crossed New York State and over LO on 9 September 

2004, the upwelling event it caused near LSB and SP differed from the 2003 event in 

that the cold, upwelled hypolimnetic water remained consistently up along the LO 

shoreline for a sustained period of approximately 84 h (Fig. 2.3c).  A strong 

temperature gradient, indicative of bi-directional flow was detected in the LSB 

channel, with 12.5 °C water flowing into the embayment along the bottom of the 

channel and 21 °C water flowing out along the top of the channel on 10 Sept. (Fig. 

2.8b).  This was notably not the case in the SP channel, which contained only warm 

(18-20 °C) water filling the channel throughout the course of the event (Fig. 2.8b).  

This difference among years and embayments is explained by the fact that unlike the 

2003 event, which did not have precipitation associated with it, the 2004 event was 

accompanied by heavy rainfall and a flow rate in the Sterling Creek tributary to SP 

that increased from virtually no flow on 7 Sept. to 7 m3 s-1 by 9 Sept. (Fig. 2.9).  The 

flow rate gradually decreased throughout the LO upwelling event, but did not fall 

below 2 m3 s-1 until after the upwelling event had concluded.   Heavily tannin-stained 

water visibly flowed from the creek, through the embayment, out of the channel and 

into near-shore LO throughout the event, carrying many pieces of broken macrophyte 

stems and leaves.  Due to its small watershed and tributary, there was no comparable 

effect of storm runoff in LSB in 2004.  

  

2003 Lake Ontario upwelling response summary 

Both thermistor-string data (Fig. 2.4b) and temperature-probe data (Fig. 2.10a) 

show that the near-shore LO site was 10 to 14 °C from top to bottom during both 

upwelling surges in 2003 and that dissolved oxygen was super-saturated during the  
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Figure 2.8  LSB (a) and SP (b) channel temperature profiles in 2003 (LSB) and 2004.  

Dashed profile lines in (a) represent pre- and post event sampling dates; solid profiles 

are during events. Dashed profile lines in (b) represent SP samples; solid profiles are 

LSB samples.  
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Figure 2.9  Sterling creek flow rate during 2004 upwelling event (Cornell University 

2010).  Dashed lines represent upwelling event sampling dates. 
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Figure 2.10  2003 temperature (a) and dissolved oxygen (b) profiles at LO near-shore 

sampling site.  Dashed profile lines represent pre- and post event sampling dates; solid 

profiles are during events.   
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first surge (14-15 mg L-1), but decreased down to pre-event levels (9-10 mg L-1) 

during the course of the event (Fig. 2.10 a-b).  Near-shore pre-event (17 Sept.)  

zooplankton densities showed a marked temporal pattern of vertical distribution with 

abundance at 2.5 m ten-fold greater than that at 6.5 m (Fig. 2.11a).  In contrast, during 

the event (21 Sept.), zooplankton densities became uniform with values comparable to 

those pre-event at 6.5 m, consistent with an interpretation that the entire water column 

was filled with upwelling hypolimnetic water.  The original zooplankton distribution, 

with density greater near the surface, was reestablished once the upwelling event 

ended on 24 Sept. (Fig. 2.11a, 2-m density significantly greater than 6.5-m density 

pre- and post- event: t-test, df = 2; 17 Sept.: t = 127.46, p = 0.0025; 24 Sept.: t = 

25.02, p = 0.013; NS during the event 21 Sept.: t = 0.27, p = 0.415).               

Cladocerans declined significantly from pre-event biomass values (Fig. 2.12, 

paired t-test, df = 1, t = 13.047, p = 0.024) while copepods did not change significantly 

in total biomass.  The zooplankton showed a significant biomass increase post-event 

relative to the pre-event surface water density (Fig. 2.11a, t-test, df = 1, t = 10.59, p = 

0.03).  This increase was due primarily to cladocerans, particularly Daphnia 

retrocurva and Bosmina longirostris, which both changed significantly in abundance 

through the event (one-way ANOVA, df = 2, D. retrocurva F = 166.130, p = 0.001; B. 

longirostris F = 44.409, p = 0.006; all post-hoc comparisons for both species p < 0.05, 

except B. longirostris 17 Sept. vs. 21 Sept., p = 0.073). 

Total phytoplankton biovolume in near-shore LO followed a similar, albeit not 

statistically significant, trend of decreasing in the surface during the event and 

increasing post-event (Fig. 2.11b).  There were no significant differences among dates 

and depths presumably due to high variance in the 17 Sept. and 24 Sept. samples from 

2 m (ANOVA, df = 5, F = 2.870, p = 0.116).  During the event, the phytoplankton 

community had a significantly higher percentage of edible taxa than before and after  
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Figure 2.11  2003 zooplankton biomass (a) and phytoplankton biovolume (b) at near-

shore LO sampling site before (17 Sept.), during (21 Sept.), and after (24 Sept.) 

upwelling event.  SP phytoplankton (dashed line) added for comparison (b). Error bars 

represent 1 s.e.  
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and after (24, 30 Sept.) 2003 upwelling event.  Error bars represent 1 s.e. 
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Figure 2.13  2003 LO (a. near-shore sampling site) and SP (b. near-channel site) 

phytoplankton edibility and cyanobacteria dynamics.  Error bars represent 1 s.e. 
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the upwelling (Fig. 2.13a, t-test, df = 4, t = 2.69, p = 0.027).  Two taxa not previously 

present appeared during this time, Asterionella sp. and Peridinian sp., while all other  

taxa present pre-event either disappeared or decreased in numbers.  The increase in 

edibility was driven by the marked decrease in cyanobacteria, particularly Anabaena, 

which disappeared altogether during the event before reappearing post-event (Fig. 

13a).  The apparent post-event increase in phytoplankton biovolume was driven most 

strongly by increases of small edible Cryptomonas, Sphaeorcystis, and microflagellate 

species, as well as colonial species such as Coelastrum reticulatum and Fragilaria sp. 

and the mixotroph Ceratium hirundinella.    

 

2003 Embayment response dynamics 

Vertical profiles of temperature and dissolved oxygen measured throughout the 

2003 upwelling event in SP showed clear evidence of cold, highly oxygenated 

upwelling water appearing at the near-channel SP site only (Fig. 2.14).  A plug of 

cold, highly oxygenated water flowing into SP during the event was traced from the 

channel through the embayment using a probe deployed from our boat.  It flowed 

through the open-water near-channel site and to the dense bed of macrophytes 

surrounding the center site, but could not be tracked into the rooted plants and was not 

detected at the center site. Temperature profiles taken at the near-channel SP site 

before the event showed the water column was filled from top to bottom with 19 °C 

water.  Following the first pulse of upwelled water along the LO shoreline (19 Sept.), 

the bottom half-meter of water at the SP near-channel site became filled with 15 °C 

water while surface water remained only slightly cooler than pre-event. The second 

pulse of upwelling water on 23 Sept. filled the near-channel site with 13 °C water  
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Figure 2.14  2003 temperature (a) and dissolved oxygen (b) profiles at SP near-

channel sampling site.  Dashed profile lines represent pre- and post event sampling 

dates; solid profiles are during events. Arrows indicate direction of strong changes 

between dates.  
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from bottom to top.  Dissolved oxygen levels tracked those seen in LO during these 

two intrusions (cf. Figs. 2.10b and 2.14b).  Although no such change was measured at 

our near-channel or center sampling sites in LSB, we were able to trace the cold, high 

DO water flowing from the channel into the embayment on 21 Sept. 2003 using a 

probe deployed from a boat.  A narrow and vertically thin stream bypassed the near-

channel site to the east, following the deepest contour of the embayment bottom out 

into the embayment (Fig. 2.2) to a depth at which point it could no longer be detected 

in the rough weather. 

Plankton populations in SP (near channel) also changed rapidly during the 

exchange flow event.  Both phytoplankton and zooplankton showed marked changes 

between 17 Sept. (pre-event) and 23 Sept. (peak of second event; plankton not 

sampled on 19 Sept.). Phytoplankton biovolume mimicked that in LO, decreasing 

following the first upwelling pulse to a level that did not statistically differ from LO 

surface phytoplankton biovolume on 21 Sept. (Fig. 2.15a, t-test, df = 1, t = 2.81, p = 

0.11).  The community then rebounded during the second pulse on 23 Sept., driven by 

an increase in the inedible phytoplankton group, which changed significantly in total 

biovolume throughout the event (Fig. 2.15a, one-way ANOVA, df = 7, F = 17.98, p = 

0.009; Tukey’s HSD 21 Sept. vs. 23 Sept.: p = 0.012).   Unlike LO, edible species did 

not change significantly in total biovolume during the event (one-way ANOVA, df = 

3, F = 2.537, p = 0.195), including during this time period (Tukey’s HSD p = 0.999), 

which led to increased overall inedibility of phytoplankton on 23 Sept. (Fig. 2.13b).  

This increase in inedibility was driven in part by increases in cyanobacteria, especially 

Anabaena sp. and Oscillatoria sp., which had disappeared during the upwelling in LO 

(Fig. 2.13a-b).  Immediately following the event (24 Sept.), overall phytoplankton 

biovolume was not significantly different from pre-event values, however community 

composition was not the same as edibles had not changed (Tukey’s HSD p = 0.266),  

116 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15  2003 phytoplankton biovolume (a) and zooplankton biomass (b) at near-

channel SP sampling site before (17 Sept.), during (21 and 23 Sept.), and after (24 

Sept.) upwelling event.  Error bars represent 1 s.e.   
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while inedibles decreased significantly from 23 Sept. to a level comparable to pre-

event conditions (Fig. 2.15a, Tukey’s HSD p = 0.010, p = 0.174 respectively).  Total 

zooplankton biomass also changed significantly in SP (near-channel site) over the 

course of the event (Fig. 2.15b, one-way ANOVA, df = 4, F = 15.16, p =  

0.005). While we did not see a notable decrease after the first pulse (21 Sept.), total 

biomass appeared to decline by about half from pre-event values after the second 

upwelling pulse, though the change was not significant (23 Sept., Tukey’s HSD p = 

0.131).  The resulting biomass value mirrored zooplankton density in near-shore LO 

on 21 Sept., with no significant difference in total biomass between the two locations 

(t-test, df = 1, t = 2.062, p = 0.144).  Post-hoc tests showed SP zooplankton biomass 

increased to levels significantly greater than all other dates after the exchange event 

ended (e.g., Tukey’s HSD post-hoc test comparing pre- and post-event biomass, p = 

0.048).  As in LO, this post-event increase was driven predominantly by the 

cladoceran population.  Cladocerans followed a similar trajectory to that in LO, but 

delayed by several days, decreasing through the event and increasing to significantly 

greater biomass following the event (Fig. 2.12, ANOVA, df = 4, F = 34.342, p = 

0.001; post-hoc comparison 30 Sept., p < 0.004 for all comparisons).  The cladocerans 

Ceriodaphnia spp. and Chydorus sphaericus disappeared from both sites with the 

influx of upwelling water.  While Daphnia mendotae made up much of the post-

upwelling cladoceran increase in LO (comprising 80% of 24 Sept. biomass), Bosmina 

longirostris reached significantly greater densities than seen before the event in SP 

(paired t-test, df = 1, t = 8.33, p = 0.038), comprising the largest portion (54 %) of the 

total biomass on 30 Sept. 

Most strikingly, plankton taxonomic composition showed a strong influence of 

the intrusion of LO water into SP.  Eleven LO phytoplankton taxa that had not 

previously been found in SP in 2003 appeared on 21 and 23 Sept., following the two 
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exchange events (Fig. 2.15a), including species from four distinct higher taxa: 

Chlorophyta, Bacillariophyta, Pyrrophyta, and Cyanobacteria.  Five zooplankton taxa 

novel to SP, but present in LO, also appeared in SP on this date, including three rotifer 

species, plus Daphnia retrocurva, and Cercopagis pengoi.  Two of these 

phytoplankton taxa (Anabaena sp. and Merismopedia sp.) and two of the rotifers 

(Kellicotia sp. and Keratella sp.) were also found in SP after the event, as was the 

predatory cladoceran Cercopagis, which was detected again on the last day of 

sampling (30 Sept.), one week post-event (Fig. 2.15b), indicating that at least some of 

the LO taxa persisted for an extended period after the upwelling event.   

 

2004 Lake Ontario upwelling response 

 Vertical temperature profiles collected throughout the 2004 event in near-shore 

LO (Fig. 2.16a) were consistent with the thermistor data (Fig. 2.3c), showing the water 

column decreasing by about 10 °C from pre-event to the first sampling day after the 

start of upwelling (10 Sept.), along with an associated increase in dissolved oxygen 

(Fig. 2.16b).  On the second day of the upwelling (11 Sept.), LO temperature and 

dissolved oxygen were both stratified, with the surface water slightly warmer than the 

previous day, and the water increasing substantially in dissolved oxygen with depth.  

By the third day of the event (12 Sept.) the water column had returned to being 

unstratified (13.5-14 °C) with high dissolved oxygen (10 - 11 mg O2 L-1).  The near-

shore LO water column gradually moved back to pre-event conditions over the course 

of the following week (Figs. 2.16a-b).   

Total phytoplankton biovolume in near-shore LO varied significantly over the 

course of the event, when compared among all dates and depths sampled, (ANOVA, 

df = 19, F = 27.085, p < 0.001).  These patterns were driven exclusively by 

significantly greater phytoplankton biovolume in the post-event (24 Sept.) surface  
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Figure 2.16 2004 temperature (a) and dissolved oxygen (b) profiles at LO near-shore 

sampling site.  Dashed profile lines represent pre- and post event sampling dates; solid 

profiles are during events. Arrows indicate direction of strong changes between dates.  
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Figure 2.17  2004 LO near-shore site phytoplankton biovolume at shallow and deep 

depths and % edibility (combined depths).  Error bars represent 1 s.e. 
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water samples than in the surface or deep waters on all other dates (Fig. 2.17, Tukey’s 

HSD, p < 0.001 for all comparisons). Total phytoplankton biovolume was not 

significantly different at either 2.5 m or 6.5 m pre-event, and the apparent decrease in 

phytoplankton at both depths from pre-event conditions in late August to the first day 

of upwelling was not statistically significant (10 Sept.; Fig. 2.17, Tukey’s HSD p = 

0.109, p = 0.198 for surface and deep water respectively).  While percent edibility did 

not vary throughout the event, perhaps due to high variance among replicate samples 

(ANOVA  df = 9, F = 1.941, p = 0.242), the community trended to be slightly less 

edible during the event (Fig. 2.17) with the loss of small coccoid taxa and 

cryptophytes like Chroomonas.  significantly different at either 2.5 m or 6.5 m pre-

event, and the apparent decrease in phytoplankton at both depths from pre-event 

conditions in late August to the first day 2.17). This increase in biovolume was 

accompanied by an increase in a number of taxa, with the greatest increases from pre-

event conditions seen in Chroomonas sp., Cryptomonas sp., microflagellates, and 

Aphanocapsa sp.   

Zooplankton density (data not shown) was also low during the event 

throughout the water column (20.19 ± 7.31 μg L-1 average biomass; no difference 

between depths: t-test, df = 1, t = 0.11, p = 0.47), but began to increase on 14 Sept. 

following the event, with the surface waters containing twice the biomass of the deep 

waters (410.47 μg L-1 total biomass at 2.5 m; 191.95 μg L-1 total biomass at 6.5 m).  

Copepods were the dominant contributor to zooplankton biomass during the event, but 

the apparent increase following the event was primarily due to the cladocerans, 

particularly Eubosmina coregoni, Holopedium gibberum., and Daphnia spp. (10 Sept. 

vs. 14 Sept. biomass, marginally significant increase in cladocerans: t-test, df = 7, t = 

1.41, p = 0.10; no difference in copepods).   
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Figure 2.18  2004 LSB deep lobe (a) and center (b) site dissolved oxygen profiles.  

Dashed profile lines represent pre- and post event sampling dates; solid profiles are 

during events. Arrows indicate large increases in hypolimnetic D.O.  
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2004 Embayment response dynamics 

 Dissolved oxygen profiles at LSB, taken throughout the 2004 growing season, 

showed a sudden increase in oxygen levels in the bottom two meters of the LSB Deep 

Lobe and Center sites during the September upwelling event (Fig. 2.18 a-b), while  

temperature (data not shown) did not change.  Pre-event hypolimnetic conditions were 

nearly anoxic at both sites on 25 Aug. (0.2 mg L-1 at 12 m and 11 m respectively) and 

8 Sept. (0.1 mg L-1 and 0.0 mg L-1 respectively at 11 m), but oxygen levels increased 

to almost 3 mg L-1 in the bottom waters of the Center site, and up to 6 mg L-1 at the 

Deep Lobe site during the upwelling event (11 Sept.: Fig. 2.18 a-b).   After this date, 

dissolved oxygen values gradually decreased in the bottom water of both sites through 

the rest of the upwelling event.  The oxycline deepened by about a meter at both sites 

from before to after the event (Fig. 2.18 a-b) and neither site returned to completely 

anoxic conditions for the remainder of the season.  Plankton sampled further up in the 

water column did not show a significant response to this influx of water (data not 

shown).   

 All measured variables in SP showed similar dynamics among sites throughout 

the 2004 event.  Thermistor strings deployed in Sterling Creek, the Sterling Channel, 

and in the SP Deep Lobe site all showed similar temperature changes and none 

showed an influx of cold, upwelling water.  Rather, all showed the inflow of slightly 

cooler stream water throughout the embayment and out through the channel (Fig. 

2.19).  Temperature and dissolved oxygen vertical profile data, taken throughout the 

event at all sites, are consistent with this interpretation.  There was no vertical 

stratification at any site, nor was there any indication of cold, oxygen-rich upwelling 

LO water in SP.  There was, however, strong stratification at the LO site immediately 

outside of SP channel, where cold, highly oxygenated water was present in the bottom 

half of the near-shore water column while water close in temperature and dissolved  
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Figure 2.19  Continuous thermister temperature measurements throughout 2004 

upwelling and precipitation events at three locations in or near SP.  Dashed lines 

represent event sampling dates  (E.A. Cowen and A.T. King, personal 

communication). 
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Figure 2.20  2004 temperature (a) and dissolved oxygen (b) profiles at LO near-SP 

sampling site immediately outside of channel.  Dashed profile lines represent post 

event sampling date; solid profiles are during event.  Solid arrows indicate SP water 

flowing out of channel while patterned arrows represent upwelling LO water.  
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oxygen content to that of the embayment (11 Sept. average SP Center site 

temp.:18.7˚C, DO: 7.1 mg/L) filled the upper half of the water column, and 

represented embayment water forced out into LO by storm runoff (Fig. 2.20 a-b).   

Plankton, while spatially heterogeneous before the event, converged on a 

similar density value during this event at each of the SP sites.   Both phytoplankton 

and zooplankton had statistically significantly different biovolume and biomass values 

at the different sites during pre-event sampling dates (Fig. 2.21a-b, one-way ANOVA 

comparing sites immediately pre-event on 8 Sept.: df = 3, phytoplankton F = 652.968, 

p < 0.001; zooplankton F = 13.458, p = 0.015). While already declining from mid-

summer highs at the center site, both zooplankton and phytoplankton in SP continued 

to decline at all four sites during the combined precipitation and upwelling event to 

values that were not significantly different among sites during the event (one-way 

ANOVA comparing sites on 11 Sept.: phytoplankton df = 2 (missing Near-stream 

samples), F = 1.666, p = 0.326; zooplankton df = 3, F = 1.231, p = 0.478).  While 

zooplankton populations had not recovered at any site post-event (one-way ANOVA 

comparing sites on 21 Sept.: df = 3, F = 1.021, p = 0.472; all post-hoc comparisons 

N.S.), or even a full month later (6 Oct., N.S. differences at any site), phytoplankton 

increased significantly at the center site within a week (Fig. 2.21a; one-way ANOVA 

comparing sites on 21 Sept.: df = 3, F = 7.64, p = 0.039;  center site significantly 

higher than all three sites: post-hoc p = 0.052 compared to near-channel, p = 0.055 

compared to near-stream, p = 0.065 compared to deep lobe; N.S. differences between 

other sites).  This phytoplankton increase included diverse taxa including pennate and 

centric diatoms such as Fragilaria sp. and Aulacoseira sp., the chlorophyte 

Chlamydomonas sp., and the cyanobacteria Anabaena sp. and Oscillatoria sp.       
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Figure 2.21  2004 phytoplankton biovolume (a) and zooplankton biomass (b) at four 

spatial sampling sites in SP.  Sites sampled before (25 Aug., 8 Sept.), during (11 

Sept.), and after (14 and 21 Sept.) upwelling and precipitation event.  Error bars 

represent 1 s.e. 
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Discussion 

 Upwelling-driven exchange flow played an important role not only in initiating 

physical water exchange between Lake Ontario and its adjacent embayments, but also 

in mediating biological transport of organisms between these systems.  The impact this 

external forcing had on the internal water-column dynamics of the embayment 

systems depended upon the duration of the upwelling event, the specific physical 

characteristics of the embayment, and the particular internal biological interactions 

that were already established within that embayment’s plankton community.  The final 

overall response of the embayments’ plankton communities to each event was thus a 

result of the interaction between physical and biological forces—both those factors 

that serve to impact the system from outside, as well as internal processes that  modify 

how the system responds to these outside influences.  

 

Event duration 

Our 25-year retrospective analysis of upwelling frequency in LO elucidates a 

pattern similar to that previously documented in the lake (Haffner 1984), which 

suggests that these events occur multiple times each year during the period of thermal 

stratification, sufficient to play an important role in the seasonal dynamics of adjacent 

embayments.  We detected no noticeable temporal trend in the annual frequency of 

upwelling occurrences during the 25-year period we analyzed. Our data about the 

duration of these events documents the differential effects of sustained versus fleeting 

events. The potential impacts of two events per year lasting longer than four days (Fig. 

4) on ecological dynamics has important implications for the LO near-shore and 

embayment habitats.  Nevertheless, we did not observe any prolonged events during 

the two years of intensive sampling we conducted in 2003 and 2004.  This could 
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indicate that our retrospective analysis did not account for all upwelling-inducing wind 

patterns, that these events are not as common as they appear in our dataset (or have 

become less common in the past decade due to meteorological shifts in characteristics 

like wind direction (Waples and Klump 2002)), or that the years of our intensive 

studies happened to be unusually free of prolonged upwelling events.   

 

Little Sodus Bay: Buffered by volume, impacted by duration 

The importance of event duration is illustrated by the differential effects we 

documented of shorter and longer-term upwellings on LSB and SP.  Embayment 

volume played an important role in limiting the potential impact of upwellings in LSB, 

particularly those brief in nature.  During the two short events in 2003 and 2004, LSB 

did not experience a measurable, system-wide response, nor did it show a distinct 

response to the precipitation that accompanied the second of the two events.  Its large 

volume, coupled with its minimal connection to the terrestrial environment via its 

small watershed, essentially buffered this embayment from the effects of shorter-term 

upwelling events that did not last long enough to exchange large volumes of water.  

This is particularly true of impacts on the plankton community, because the nature of 

the density-driven flow from upwelling events typically occurs first along the 

sediment-water interface at the embayment bottom, which is many meters removed 

from the photosynthetically active surface waters of deeper water bodies like LSB. 

The immediate impact of short-term events was not always restricted to the 

sediment-water interface in this larger-volume, stratified system, however.  The 2002 

event illustrates the potential that both short- and long-term events can have on 

systems like LSB.  The minor upwelling that preceded the long-duration 2002 event 

(Fig. 2.3a) provides a clear example of how a very short event can drive exchange 

flow that can significantly impact the embayment photic zone.  Because this upwelling 
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was not strong and did not result in the intrusion of a large amount of the cold deep 

LO water along the shoreline, the upwelling water was not cold enough to sink into 

the LSB hypolimnion, and instead it flowed along the thermocline, mixing in with the 

epilimnetic water (Fig. 2.7a-b).  Estimates of displaced volume suggest that roughly 

25% of the LSB epilimnion was replaced by LO water during this short event (Rueda 

and Cowen 2005).   

The long-duration 2002 upwelling had a very different, and arguably stronger, 

effect on LSB than shorter events.  Its increased duration and strength not only 

introduced a larger volume of LO water to the embayment, but also disrupted the late-

summer thermal stratification of the system.  While the shorter, epilimnion-restricted 

event preceding this one diluted the active photic zone with nutrient-poor water and 

hypolimnetic plankton from LO, the longer event had an effect more typical of in-lake 

upwelling dilution.  In this case, the LSB epilimnetic water was forced out the channel 

into LO while the LSB hypolimnion was displaced upwards in the water column as 

colder LO water filled in along the bottom of the embayment (Fig. 2.5a, 2.7a-b).  The 

effect of these large-volume exchanges would thus be to force nutrient-rich 

embayment hypolimnetic water (along with the associated plankton taxa) into the 

photic zone.  The difference, however, is that the epilimnetic water that exited the 

embayment does not rock back following the event (as during a typical in-lake 

upwelling), and instead the newly introduced hypolimnetic embayment water is 

entrained in the photic zone.  Depending on the extent of the event, the epilimnion 

may also not be completely displaced out of the embayment.  The result is that photic 

zone plankton species may remain in the embayment, able to respond immediately to 

the nutrient influx from the hypolimnion.  This characteristic distinguishes these 

events from typical in-lake upwellings by increasing the potential for longer-term 

impact.  While the overall effect of in-lake upwelling on the plankton community has 
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been described in the literature with conflicting conclusions (Schelske et al. 1971, 

Gachter et al. 1974, Megard 1997), one reoccurring description of these physical 

forcing events is that they are transitory and isolated (e.g., Haffner et al. 1984).  This is 

because thermal resistance can ensure these epi- and hypolimnetic water masses move 

past one another in the lake with little interaction, such that the original near-shore 

epilimnetic water mass eventually returns following the event, thus explaining the 

prevalence of reports discussing little net change between pre- and post-event plankton 

communities.   

 

Sterling Pond:  Buffered by macrophytes, impacted by precipitation  

The potential impact of upwelling events is very different, however, for 

shallow, relatively small embayments where volume cannot buffer the impact of short-

term events, nor entrain the intruding water.  While event duration is not influential, 

embayment basin shape can still drive shallow embayment response to these 

upwelling events. Shallow bathymetry creates a different potential buffering factor: 

the dense macrophyte growth seen in SP.  When an upwelling event was isolated, with 

low associated precipitation to drive tributary flow, exchange flow completely filled 

the water column of SP, replacing the resident biota.  The net effect was more similar 

to the complete displacement of the near-shore epilimnion seen in nearshore LO (i.e., 

as seen in Figs. 2.11b, 2.15b) than the mixed water exchange in LSB.  This was 

particularly true as post-upwelling rocking of water masses barotropically forced 

much of the near-channel water intrusion back out into LO.  In SP we did not observe 

an upwelling-driven exchange flow event strong enough to penetrate the extensive 

macrophyte beds, and we saw no effect of upwelling intrusion in SP further into the 

embayment than the near-channel site.  This was true both in 2003, as discussed 

above, but also in 2002, when we had similar retrospective data to that in LSB (at the 
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center sampling site only), yet saw no indication of upwelling impact at that site 

throughout the paired event.  This suggests a spatially limited impact of these events, 

where the effect is constrained to a small portion of the system, especially because 

upwelling events can only occur in the late summer when LO is stratified, which is 

after dense macrophyte growth has filled much of the SP basin, isolating the center 

and near-stream sites from LO water entering through the channel.  

The presence of a strong watershed connection via an extensive tributary also 

defined the relative importance of different forms of external forcing in highly 

connected SP, compared with LSB and its weak watershed connection.  Whereas LO 

water and its associated biota were able to intrude into LSB to some extent during 

each of the events we studied, this was not the case for SP.  Many of the late-summer 

winds that drive upwelling events in LO are accompanied by rain storms, as was the 

case for the 2004 hurricane-driven event.   The strong tributary connection to the 

watershed made external forcing dynamics in SP more complex than for LSB.  While 

the macrophyte buffer may provide a protective barrier for much of SP from the 

immediate impact of upwelling exchange flow from LO, this is not the case for 

tributary flow during high-precipitation events.  In 2004, stream water from the 

tributary reached two-times the velocity of water entering the embayment from the 

2003 upwelling exchange flow (Figs. 2.9, 2.5b).  As seen in 2004, very cold upwelling 

LO water was located at the entrance of the SP channel, with a density capable of 

driving it into the channel and embayment as it did in 2003 (Fig. 2.20a), however, the 

force of the runoff coming from the tributary was so much stronger that it dominated 

the flow not only through the embayment but also throughout the water column of the 

channel. Unlike the upwelling flow of 2003, the physical forcing from the watershed 

was not noticeably constrained by the macrophytes, which were either flattened or 

pulled out of the sediment by high stream velocity.  As a consequence, the tributary 
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flow was strong enough to flush all four of our SP sampling sites, resulting in a large-

scale system-wide impact detectable throughout the plankton community with effects 

that lasted beyond the duration of the physical forcing (Fig. 2.21a-b). 

 

Plankton community responses  

Differential response:  The impact of this macrophyte buffering is that many of the 

effects we observed at the Near-channel site in 2003 were fleeting, as was the 

accompanying upwelling event in LO. Again, it is likely that during this 2003 event 

much of the LO water intruding into SP encountered the macrophyte bed and then 

flowed back out of the embayment as the upwelling ceased in LO.  Yet, this too was 

not an entirely transitory event.  Rather, one major potential result of these events is 

the introduction of novel plankton to the embayment from LO (Fig. 15a-b), which 

though possibly small in number have the potential for strong lasting effects if these 

few introduced organisms were to establish successful populations.  This is 

particularly true for the zooplankton, which can swim out of the intruding water and 

into the more protected parts of the embayment.  While novel LO species were not 

detected in LSB during these events, phytoplankton and zooplankton were 

undoubtedly also introduced by upwelling exchange flow between LO and LSB.  We 

did find the reverse: LSB phytoplankton species in LO near the channel immediately 

following the 2002 upwelling event, suggesting that near-shore LO may also be 

affected by organisms in the reverse exchange flow. However, the extent of impact on 

zooplankton dynamics of this exchange flow between LO and LSB, two 

predominantly limnetic systems, is likely small given that the two systems have most 

of their species in common. With the exception of the clear threat of newly introduced 

exotic species in the Great Lakes ecosystem being transported into the embayments, 

this exchange flow does not represent a significant pathway for the introduction of 
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species capable of dramatically shifting ecosystem dynamics in a relatively large 

pelagic embayment like LSB.   

In contrast to LSB, SP, as a shallow, macrophyte-dominated ecosystem, has a 

distinctly different plankton community from LO. The 2003 upwelling event 

introduced at least 16 novel taxa into the embayment during the influx of upwelled 

water.   Within the zooplankton, two new functional groups appeared – a large, 

efficient grazer, D. retrocurva, and a predatory cladoceran, C. pengoi, each capable of 

altering plankton dynamics through competition and predation respectively in a 

system dominated by rotifers and small cladocerans. Cercopagis additionally 

represents the spread of an exotic species.  Although only C. pengoi was found in SP a 

few days after the initial introduction, both cladoceran species are capable of laying 

diapausing eggs that could lead to the future establishment of these species.  .   

Although we documented the short-term establishment of C. pengoi in SP, we 

did not find an established population of this species at any site in the succeeding three 

years that we sampled this embayment (Doyle-Morin, unpublished data).  This result 

suggests that while the vector for invasion existed, something prevented it from 

successfully populating the embayment.  Cercopagis is not typically found in shallow, 

littoral, fish-dominated systems (Rivier 1998) and so SP may not be ecologically 

suitable for it.  However subsequent work has shown that another predatory 

cladoceran, Polyphemus pediculus, which has a large, late-summer populations in 

near-shore LO, and which is commonly found established in systems similar to SP 

(Wendel and Jüttner 1997, Halvorsen et al. 2004, Higgins et al. 2006, Sacherová et al. 

2006, Ward and Whipple 1959, Lampert and Sommer 2007), also has not established in 

this embayment (Doyle-Morin, unpublished data).  Macrophytes, which have been 

shown to affect survivorship and fecundity of other cladocerans negatively (Sutfeld et 
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al.1998, Burks et al. 2000, Cerbin et al. 2007) may play a role in the lack of success of 

Polyphemus, potentially serving as another biological buffer against the effect of 

upwelling events (Doyle-Morin, Chapter Three).      

 

Common responses:  While different upwelling events clearly varied in their effects 

on the LO and two embayments, we observed a number of commonalities, particularly 

in the overall plankton community response to physical forcing from exchange flow. 

In each event, in all three systems, both the phytoplankton and zooplankton 

communities were immediately diluted by the influx of hypolimnetic water into the 

photic zone.  The extent of this dilution effect on the phytoplankton depended upon 

the species that were introduced into the photic zone with the hypolimnetic water, as 

large inedible taxa often increased at this time (countering the overall effect of 

dilution).  Spring species, which often settle out of the system of stratified lakes during 

the warmer summer months (Reynolds 2006), commonly reappeared in these systems 

during exchange flow events, particularly large colonial diatoms like Asterionella sp. 

and Fragilaria sp. and mixotrophs like Ceratium sp. and Dinobryon sp.  These species 

do not typically otherwise occur in the photic zone of these systems until fall overturn, 

when increased turbulence keeps them in contact with the photic zone and cooler 

temperatures reduce competition from faster growing summer species.  The 

reemergence and growth of these cool-weather species during upwelling events has 

also been documented by others (Yaguchi 1977, Haffner et al. 1984).   

Another general result of the exchange-flow events we documented was an 

increase in the availability of phytoplankton resources for grazers (with the minor 

exception of the short 2002 event, which was interrupted by the consecutive long 

upwelling).  This result may explain why zooplankton populations exhibited more 

consistent patterns of abundance between events than phytoplankton.  As seen in 
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previous research (Dunstall et al. 1990), copepods were the dominant component of 

the total zooplankton biomass during the majority of these events.  However this 

pattern was not driven by an increase in the copepod populations, as discussed in 

Dunstall et al. (1990), but instead was the result of a consistent decrease in cladoceran 

populations during these events.  The recovery of these grazing crustaceans, 

particularly Daphnia and Bosmina, also drove the post-event zooplankton biomass 

increases.  This cladoceran response, particularly for the Daphnia species, may have 

resulted from the extent to which these grazers depend on abundant edible 

phytoplankton compared with copepods (Richman and Dodson 1983).  It is 

noteworthy, however, that the population increase we documented occurred very 

quickly in some of these events (e.g., 2003 Lake Ontario (Fig. 2.11a) when a ten-fold 

biomass increase was found in less than three days), making it unclear if the 

population response that we saw was growth in response to environmental changes or 

simply the reintroduction of either offshore (LO) or undisturbed embayment water 

(LSB, SP).  Given the significant increase compared with pre-event conditions, it 

seems likely that what occurred was a combination of both physical advection and 

biological dynamics.   

 

Conclusion 

We documented the short-term effects of upwelling exchange-flow events on 

two embayment ecosystems that differ in volume, depth, and watershed connectivity.  

Our findings show the potential impact of both physical and biological forcing from 

outside of the system, but also document the role that internal processes play in 

determining the extent of these external impacts on the overall response of resident 

plankton communities.  This study also raises questions about the potential long-term 

impact of such exchange flows on these aquatic ecosystems, such as the role such late-
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summer events play on biologically available nutrient (ie Si, SRP, NH4) cycling in the 

photic zone both for the remainder of the current growing season as well as during the 

following spring overturn period, as well as the role of these events in the spread of 

exotic species.  Water-level regulations, channel management decisions, and regional 

climate changes in the Great Lakes watershed will almost certainly affect the strength 

of future exchange events, altering the role these embayments play as intermediaries 

between the terrestrial watershed and the greater lake ecosystem.  
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CHAPTER 3 

 

THE BIOLOGICAL BARRIER: ASSESSING THE ROLE INTERSPECIFIC 

INTERACTIONS PLAY IN BUFFERING AGAINST INVADER 

ESTABLISHMENT IN A GREAT LAKES EMBAYMENT ECOSYSTEM 

 

Introduction 

 

  Many systems retain distinct community identities despite strong connections 

and exchange with adjacent systems containing different assemblages of species.  One 

such set of ecosystems are freshwater embayments located along the shorelines of 

larger water bodies, such as the Great Lakes.  Embayments are often directly 

connected to these adjacent larger-bodied lakes via permanent water channels, and 

recent work has elucidated exchange flow processes that have driven the transport of 

native organisms through these channels (Doyle-Morin et al., Chapter 2).  Unlike their 

marine counterparts, where strong salinity gradients can impose an osmotic barrier to 

successful biological transport between freshwater coastal embayments and the 

connected oceanic ecosystems, the exchange between two freshwater systems appears 

to offer less resistance to successful colonization.  Yet, in many cases, transported 

organisms do not establish and the communities in these adjacent, connected systems 

remain distinct.  The goal of our study is to explore what maintains community 

differences in the face of high levels of exchange.  Specifically, we focused on the 

apparent exclusion of a potentially important predatory planktonic crustacean, 

Polyphemus pediculus, that is seasonally abundant in Lake Ontario but absent from a 

connected embayment, Sterling Pond, whose habitat appears to be quite suitable for its 

persistence. 
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 As a part of a larger study of plankton dynamics in eight embayment 

ecosystems along the coast of Lake Ontario, we studied exchange flows between the 

lake and Sterling Pond, a small, shallow water body located in Fairhaven, NY.  This 

embayment lies on the central southern coast and is connected to L. Ontario through a 

30 m long, permanent man-made channel.  We showed previously (Doyle-Morin et 

al., Chapter 2) that upwelling-driven exchange resulted in the inoculation into Sterling 

P. of 16 Lake Ontario zooplankton species not naturally present in the embayment.  

One of these novel species, the predatory cladoceran Cercopagis pengoi, remained in 

Sterling P. for as many as ten days after an exchange-flow event (Doyle-Morin et al., 

Chapter 2).  The introduction of this species was particularly interesting because it 

represented the potential addition of a novel functional link (predatory cladoceran) to 

the food chain of this small embayment.  At the same time, its transport represents 

both a pathway for the spread of an invasive species, but its ultimate failure to 

establish is an indication that the embayment plankton community is resistant to its 

invasion. 

Much of the recent attention devoted to the role of predatory cladocerans in 

aquatic food webs has focused on species newly introduced to the North American 

Great Lakes and their watershed from their native habitats in the Baltic Sea region in 

the ballast water of ships (Mills et al. 1993, MacIsaac et al. 1999, Holeck et al. 2004, 

Duggan et al. 2005, Ricciardi 2006).  The fact that these organisms can often represent 

an entirely novel link and functional role in pelagic food chains means that they have 

the potential to affect significantly resident populations not adapted to this type of 

predation pressure. Recent studies have documented the predatory impact moderately-

sized taxa like Cercopagis pengoi have had on the small zooplankton of the lakes they 

have invaded (Benoît et al. 2002, Laxson et al. 2003, Gorokhova et al. 2005, Warner et 

al. 2006), while other studies have shown that larger taxa like Bythotrephes 
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longimanus may compete with zooplanktivorous fish for large prey, including other 

predatory zooplankton (Lehman 1991, Schulz and Yurista 1999).  Other effects on the 

pelagic ecosystem have been documented for both species groups, including 

competition with native predatory invertebrates (Witt and Cáceres 2004, Põllumäe and 

Kotta 2007, Barbiero and Rockwell 2008, Foster and Sprules 2009), and cascading 

positive effects on phytoplankton through negative effects on grazers (Lehman 1991, 

Hovius et al. 2007). 

   The native Sterling P. pelagic zooplankton community, dominated by rotifers, 

small cladocerans, and copepod nauplii (Doyle-Morin et al., Chapter 1), appears to be 

well-suited for the diet of predatory cladocerans (Matveeva 1989, Packard 2001, 

Higgins et al. 2007, Põllumäe and Kotta 2007). A calculation of the likely frequency 

of upwelling events substantial enough to produce exchange flow carrying these 

predators into Sterling P. suggests on average 4.9 occurrences per year (Doyle-Morin 

et al., Chapter 2), yet extensive temporal and spatial sampling in this embayment 

during a recent six-year time period (2001-2006) did not reveal any successful 

establishment of a predatory cladoceran population (Doyle-Morin et al., Chapter 1, 

unpublished data).  Whereas the absence of predatory invertebrates in the Sterling P. 

plankton may help to explain the high abundance of suitable prey, it also suggests that 

this zooplankton community could be especially vulnerable to successful introduction 

of a predatory invertebrate like Cercopagis. 

The failure of Cercopagis to establish successfully in shallow, macrophyte-

filled Sterling P. is perhaps not a surprise given that it naturally occurs exclusively in 

lakes large enough to have an extensive true pelagic zone (Rivier 1998).  There is, 

however, a related predatory cladoceran, Polyphemus pediculus (like Cercopagis, a 

member of the Suborder Onychopoda) native to L. Ontario that frequently occurs as 

dense populations in the near-shore environment.  Although it is difficult to determine 
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the average pelagic density of Polyphemus because of its characteristic swarming 

behavior (Young and Taylor 1990, Wendel and Juttner 1997) and seasonal migration 

between the limnetic and littoral zones in lakes (Haney 1980), we observed the 

greatest abundances along the near-shore (< 6 m of water) of L. Ontario in late 

summer (Doyle-Morin et al., unpublished data), at the time when the lake is strongly 

thermally stratified, summer storms are prevalent, and upwelling events are most 

likely (Doyle-Morin et al., Chapter 2).  Thus, Polyphemus is abundant in near-shore L. 

Ontario in precisely the period that they are most likely to be carried into the 

embayment, and in fact, we have documented their presence in the near-shore zone 

during upwelling conditions in Lake Ontario (28 Aug 2002, 8.2 ˚C average water-

column temperature, 0.02 Polyphemus L-1 density).   

Prior research on Polyphemus suggests that it would be well-suited to living in 

Sterling P. as it is typically a littoral species, inhabiting shallow macrophyte-

dominated habitats similar to that in this embayment (Wendel and Jüttner 1997, 

Halvorsen et al. 2004, Higgins et al. 2006, Sacherová et al. 2006, Ward and Whipple 

1959, Lampert and Sommer 2007).  Indeed, macrophytes undoubtedly provide a 

refuge for Polyphemus from predation by visually orienting zooplanktivorous fish that 

would cue in on their prey’s large compound eye, as has been demonstrated for other 

cladocerans (c.f. Zaret 1972; Branstrator and Holl 2000).  Rather than laying their 

diapausing eggs in the sediment or releasing them into the water column, Polyphemus 

have also been documented to lay their eggs preferentially on submersed aquatic 

vegetation, often on macrophyte stalks and the edges of leaves, suggesting another 

important role of the rooted plants in their natural habitat (Buttorina 2000).  

Sterling Pond also contains the preferred prey of Polyphemus. As the smallest 

of the predatory cladocerans, Polyphemus is gape limited in the size of the prey that it 

can effectively manipulate with its feeding appendages, selectively consuming rotifers, 
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small cladocerans, and copepod nauplii (Matveeva 1989, Packard 2001, Higgins et al. 

2007), all of which are abundant in the plankton of Sterling P.  Nevertheless, despite 

“motive and opportunity”, Polyphemus has not established a population in Sterling 

Pond. 

  The purpose of this study was to explore the factors that cause Sterling P. to 

remain resilient to the establishment of Polyphemus. The factor we considered to be 

most likely to limit Polyphemus establishment is fish predation, although the effect of 

macrophytes as a refuge might ameliorate this effect (Timms and Moss 1984, Schriver 

et al. 1995, Jeppesen et al. 1997, Burks 2002).  The macrophyte-dominated Sterling P. 

habitat supports a large and diverse fish population dominated by planktivorous 

Lepomis spp. (e.g., L. gibbosus, L. machrochirus) and yellow perch (Perca 

flavescens), as well as piscivores (e.g., Esox lucius) and opportunistic bottom feeders 

such as the brown bullhead (Ameiurus nebulosus) (Arend 2008). It is unlikely for 

embayment water chemistry to have played a measurable role in keeping Polyphemus 

out, since this taxon has been shown to survive in a wide range of pH and nutrient 

conditions (Bērzinš and Bertilsson 1990).  Similarly, the zooplankton community of 

Sterling P., as mentioned above, appears to be well suited for Polyphemus, as does the 

absence of many other planktonic predatory invertebrates that might otherwise be 

competitors.  We tested each of these potential factors using mesocosm experiments: 

the suitability of embayment water for survival, resident embayment zooplankton both 

as potential prey and competitors, the effect of embayment zooplanktivorous fish, and 

the presence of macrophytes as a refuge from fish predation.   
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Methods 

Study Site 

Sterling Pond is a small (1.01 km2 surface area), shallow (1.0 m median depth) 

embayment on the south shore of Lake Ontario near Fairhaven, New York.  It is fed 

by Sterling Creek, which drains a large (203 km2), agriculturally-dominated watershed 

providing a water retention time as short as five days during high rain events (Edwin 

T. Cowen, personal  communication).  The 140 m long channel that connects Sterling 

P. to L. Ontario is 2.5 m deep.  The embayment’s shallow depth and high nutrient and 

sediment loads from the watershed results in the growth of an extensive macrophyte 

bed that encompasses most of the basin except for a “deep lobe” area, 4 m deep, 

located to the east of the channel connection (see map in Doyle-Morin et al., Chapter 

2).  

 

Experimental Design 

We ran two mesocosm experiments near the site of the deep lobe. The first, 

conducted from 2 to 10 August 2005, tested the effects of water source and the 

resident Sterling P. zooplankton community on Polyphemus survivorship and 

fecundity. The second, conducted from 1 to 8 August 2006, tested the effect of 

macrophytes and fish predation on Polyphemus survivorship and fecundity.  August is 

the time of year when L. Ontario is stratified and introduction of Polyphemus by 

exchange flow to Sterling P. might be expected. 

For the 2005 experiment, four combinations of L. Ontario and Sterling P. water 

and zooplankton were added to 12 mesocosms, with three replicates per treatment.  

The first treatment contained the natural assemblage of Sterling P. zooplankton in 

Sterling P. water.  The second contained the natural assemblage of L. Ontario 

zooplankton in L. Ontario water.  The third tested the effect of Sterling P. water (and 
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associated microbes and phytoplankton  ≤ 75 μm) on Polyphemus survivorship, and 

contained 75 μm mesh filtered Sterling P. water with the natural L. Ontario 

zooplankton assemblage added (collected with a 75 μm mesh net) at natural density.  

The fourth tested the effect of the natural Sterling P. zooplankton assemblage on 

Polyphemus as both potential prey and competitors. This treatment contained 75 μm 

filtered Sterling P. water, and half-ambient densities each of L. Ontario and Sterling P. 

zooplankton assemblages. 

 Mesocosms were constructed out of plastic cylinders open at the top and 

closed at the bottom, each 2 m tall, 1 m in diameter. They were deployed in two sets of 

six, and connected to floating wooden braces anchored in place at a depth where the 

cylinders were suspended at least 1/3 m above the sediment. The 12 mesocosms were 

assigned in triplicate to the four different treatments, with replicates blocked according 

to location, assigned to each side of the two floating beams, ensuring that no two were 

directly across from each other.  Each mesocosm was first filled with 150 L of 75 �m 

filtered lake water from either the center of Sterling P. or nearshore L. Ontario, 

depending on treatment.  Zooplankton were collected throughout the water column (0 

– 6 m in near-shore L. Ontario, 0 – 3 m in Sterling P.) using a Clarke-Bumpus 

quantitative sampler fitted with a 75 μm mesh net, and gently mixed into mesocosms 

at ambient density. The L. Ontario zooplankton assemblage was examined to confirm 

the presence of Polyphemus.  Three replicates of an equal volume of the dense 

zooplankton water added to each treatment were filtered through a 75 μm mesh cup 

and preserved in 70% ethanol.  These samples were used to estimate initial 

zooplankton densities added to each mesocosm.  Samples for initial phytoplankton 

density (100 mL) were taken from each mesocosm and preserved in a 1% Lugols 

solution. Netting (1 mm mesh) was secured over the mesocosms to exclude birds, 

large insects and litter fall (though the nearest trees were at least 150 m away). 
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Mesocosms were thoroughly but gently mixed twice daily using a small paddle. 

Throughout the course of the experiment temperature and dissolved oxygen were 

measured (Yellow Springs Instruments, Model 54) at the surface and bottom of each 

mesocosm each morning prior to mixing.   

The 2006 experiment was also comprised of four treatments, (four replicates 

per treatment) in a 2 × 2 design with macrophyte presence or absence (hereafter 

+Macrophytes or -Macrophytes) crossed with fish presence or absence (hereafter 

+Fish or -Fish). All mesocosms were filled with 180 L of ambient Sterling P. water 

(unfiltered) to which L. Ontario zooplankton at natural density (collected as in the 

2005 experiment) was added. Macrophytes from the center of Sterling P. were added 

to eight of the mesocosms.  Ceratophyllum demersum, Nitellopsis obtusa, Elodea 

canadensis, and Myriophyllum spicatum, the naturally abundant species in Sterling P., 

were added at a mean of 14.5 stems (range 13-19) per mesocosm.  Before being 

introduced, the macrophytes were rinsed in filtered lake water, and the base of each 

stem was weighed down with a small bag filled with clean lake rocks.  Immature 

sunfish (Lepomis sp.) were collected using baited minnow traps in Sterling P. and 

added to the mesocosms on the second day of the experiment.  Two sunfish, 3.5 - 4 cm 

SL, were added to each of four mesocosms without macrophytes and four with 

macrophytes. Three samples of 180 L of Sterling P. water, filtered through a 75 μm 

mesh, were preserved for initial zooplankton densities.  Three samples of the L. 

Ontario zooplankton water were also preserved for initial densities. 

Prior to adding the fish on 3 Aug., dissolved oxygen and temperature 

measurements were taken from each mesocosm. Ten liters of water collected from the 

middle of each well-mixed mesocosm were filtered through a 75 �m mesh for initial 

zooplankton determination (preserved in 70% ethanol), and the filtered water was 

returned to each mesocosm.  A phytoplankton sample (100 mL, 1% Lugols 
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preservation) was also collected from each mesocosm. The fish were added after 

sampling was completed.  Temperature and dissolved oxygen were measured daily, 

after which each mesocosm was mixed gently with a paddle and checked twice daily 

throughout the experiment for live, active fish.  Zooplankton and phytoplankton 

samples (as at the start) were collected and preserved 24 h following the addition of 

the fish to assess the immediate impact of the fish predation, for a total of four 

plankton sampling dates (experiment start, before and after fish addition, experiment 

end).       

  The 2005 experiment ran for seven days, and the 2006 experiment for five 

days after the addition of the fish.  At the conclusion of each experiment, mesocosms 

were mixed and a 100 mL sample was collected from each for phytoplankton 

identification and enumeration.  Most taxa were identified to species when possible, 

and at least to genus, except for small flagellates. The remaining water from each 

mesocosm was then filtered through a 75 μm mesh for final zooplankton enumeration.  

At the end of the 2006 experiment, fish length was measured and recorded, and 

macrophytes (which were floating and intact) were indentified to species, rinsed with 

75 μm filtered lake water, inspected for the presence of littoral invertebrates, and dried 

(60 °C for two days) for determination of dry weights.  

Zooplankton samples were processed in the laboratory, using an Olympus 

SZH10 stereo-dissecting scope and an Olympus BH-2 compound scope to identify 

organisms to species (genus for some rotifers).  All samples were subsampled, and at 

least 100 total organisms were identified and counted.  Entire samples were then 

analyzed for abundance of predatory invertebrates and any rare species not found in 

the subsamples.  Polyphemus individuals were measured to the nearest 0.10 μm using 

an eyepiece micrometer.   
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Statistical analyses 

Normality (Kolmogorov-Smirnov test) and homogeneity of variances 

(Levene’s test) of each data set was assessed. Temperature and dissolved oxygen 

measurements (except 10 August 2006 when no dissolved oxygen data were collected) 

were compared among replicates and with the Sterling P. water column to determine 

the extent to which environmental conditions in the mesocosms deviated from the 

natural environment.  Because dissolved oxygen data were not Normal and 

transformation did not improve Normality, Kruskal-Wallis tests were used for 

temperature and dissolved oxygen measurements.  A nonparametric Mann-Whitney 

test was used for all two-sample temperature and dissolved oxygen comparisons, 

including post-hoc Kruskal-Wallis comparisons.  

Zooplankton treatment responses were assessed using either one- or two-way 

ANOVA, with Bonferroni-adjusted α-values for individual comparisons.  The 

Polyphemus data from 2006 were square-root transformed to adjust for a large number 

of zero values.  All error estimates reported are ± 1 standard error.  Bythotrephes from 

L. Ontario, a potential predator of Polyphemus, was found alive in two of the 2006 

mesocosms (one +Macrophyte/-Fish treatment  and one -Macrophyte/-Fish treatment).  

Because the presence of this additional potential predatory pressure is a confounding 

variable, data from those two mesocosms were not used and statistical analyses 

employed an unbalanced design.  Statistical analyses were carried out using Minitab, 

version 15.1 (2007) and SPSS, version 16.0 (2007). 
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Results   

Experimental conditions 

 Temperature and dissolved oxygen in the mesocosms were not vertically 

stratified in the 2005 experiment, while in the 2006 experiment surface values were 

slightly warmer and less oxygen-rich than bottom values in 2006  (Table 3.1, Mann-

Whitney U test, Z = -2.173, p = 0.030 for temperature, Z = -2.496, p = 0.013 for 

dissolved oxygen).  For both years, temperature ranged between 23.7 and 29.6 °C 

throughout the water column, and dissolved oxygen ranged from 5.4 to 12.6 mg L-1 in 

the surface waters and from 6.1 to 14.9 mg L-1 in the bottom water of the mesocosms, 

depending upon the time of day the measurement was taken (low values occurred 

during morning sampling and high values in the afternoon, thus driven by 

photosynthesis).  

There were significant differences in dissolved oxygen concentration among 

treatments in both the 2005 and 2006 experiments (Table 3.2, Kruskal-Wallis Test χ2 = 

15.85, p = 0.001 for 2005; χ2 = 136.0, p < 0.001 for 2006), and for temperature in 2005 

(Kruskal-Wallis test χ2 = 8.85, p = 0.031).  Temperature in 2006 did not vary 

significantly among treatments (Kruskal-Wallis test χ2 = 0.220, p = 0.947).  Post-hoc 

tests for 2005 showed that temperatures in the treatments containing L. Ontario water 

were significantly higher than in other treatments, and that the Sterling P. zooplankton 

treatment was significantly higher in dissolved oxygen than the other treatments.  

Although they are statistically significant, the differences were only 0.6 °C and 0.5 mg 

L-1 respectively, and so likely not ecologically important.  In 2006, mesocosms 

containing macrophyte treatments were significantly higher in dissolved oxygen  

concentration, by 2.5 mg DO L-1, than those containing treatments without 

macrophytes (Table 3.2, Mann-Whitney U test Z = -9.97, p < 0.001). Water  
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Table 3.1  Mean 2005 and 2006 temperature and dissolved oxygen at the surface and 

bottom of the experimental mesocosms  (± 1 SE).  Asterisks indicate significant 

differences between depths (p < 0.05). 

 

 

 

 

 

2005 
Temp. °C 

2005 D.O. 
mg/L

Surface

Bottom

2006 
Temp. °C 

2006 D.O. 
mg/L

26.5 ± 0.2

26.3 ± 0.2

27.0 ± 0.1*

26.6 ± 0.2*

8.0 ± 0.2

9.7 ± 0.2

9.9 ± 0.2*

9.1 ± 0.2*
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Table 3.2  2005 (a) and 2006 (b) temperature and dissolved oxygen for each 

treatment, averaged among the experimental replicates (± 1 SE).  Asterisks indicate 

significant differences among treatments (p < 0.05). 

 2006 
Temp. °C

2006 
D.O. mg/L 

 SP w

 

 

 

 

 

 

ater &
SP zoop.

LO water &
LO zoop.

SP water &
LO zoop.

SP water &
LO/SP zoop.

- Fish 
- Macrophytes

-Fish
+ Macrophytes

+ Fish
+ Macrophytes

+ Fish
- Macrophytes

2005 
Temp. °C

2005 
D.O. mg/L

a b

26.4 ± 0.2* 7.2 ± 0.3*

7.5 ± 0.1*27.0 ± 0.3*

26.2 ± 0.3* 7.2 ± 0.2*

8.0 ± 0.1*26.1 ± 0.3*

26.7 ± 0.2* 8.5 ± 0.1*

10.9 ± 0.2*26.7 ± 0.2*

26.7 ± 0.2* 8.6 ± 0.1*

11.2 ± 0.2*26.8 ± 0.2*
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temperature did not differ significantly between the inside and outside of the 

mesocosms in either experiment, but dissolved oxygen was significantly lower in the 

mesocosms than in the surrounding water column in 2005, while it was slightly higher 

inside of the mesocosms than in the surrounding lake water in 2006 (Table 3.3, t-test, t 

= 5.782, p < 0.001 in 2005; t = -6.100, p < 0.001 in 2006). 

 

Treatment effects 

Polyphemus survivorship 

Polyphemus survived and reproduced in both experiments.  In 2005, 

Polyphemus densities in the water inoculated from L. Ontario were low (mean = 0.017 

Polyphemus L-1 across replicates containing L. Ontario water) and patchily distributed 

with only one-third of both initial and final experimental replicates containing 

Polyphemus.  Final densities in those Sterling P. mesocosms that initially contained 

Polyphemus (both Sterling P. water and Sterling P. zooplankton treatments) averaged 

0.057 individuals L-1 resulting in a mean rate of increase of 0.17  day-1.  In the single 

mesocosm of L. Ontario water with L. Ontario zooplankton that contained 

Polyphemus, the Polyphemus density also increased slightly over the course of the 

experiment to 0.133 individuals L-1 at a rate of 0.27 day-1. 

 Inoculated Polyphemus densities were substantially higher in the 2006 

experiment than in 2005, averaging 0.52 (± 0.1 SE) individuals L-1 in the three initial 

L. Ontario addition replicates.  On the day following the fish addition, there was  

significant variation in Polyphemus density among treatments (One-way ANOVA, F = 

4.060, df = 3, p = 0.040).  This result was driven by the -Macrophyte/-Fish treatment, 

which had a significantly higher average density (0.57 + 0.2 Polyphemus L-1) than the  
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Table 3.3  Mean 2005 and 2006 temperature and dissolved oxygen outside (in Sterling 

P.) and inside of the experimental mesocosms  (± 1 SE).  Asterisks indicate significant 

differences between outside and inside of mesocosms (p < 0.05). 

 

 

 

 

2005 
Temp. °C 

2005 D.O. 
mg/L

Outside

Inside

2006 
Temp. °C 

2006 D.O. 
mg/L

26.4 ± 0.3

26.4 ± 0.1

27.2 ± 0.2

26.7 ± 0.1

10.4 ± 0.5*

7.5 ± 0.1*

7.9 ± 0.3*

9.7 ± 0.1*
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+Macrophyte/ +Fish treatment (Bonferroni-adjusted t-test, p = 0.045).  The 

+Macrophytes/-Fish and -Macrophytes/+Fish treatments did not differ in Polyphemus 

densities from the -Macrophyte/-Fish treatment at this point (Bonferroni-adjusted t-

test, p = 0.189, p = 0.168 respectively), and no other comparisons were significant.  

The +Macrophyte/+Fish treatment was the only one to show any evidence of a decline 

in overall Polyphemus density (final mean = 0.25 ± 0.25 Polyphemus L-1 from the 

initial inoculation densities, though the change was not significant (Bonferroni-

adjusted t-test, p = 0.182; all other comparisons, p > 0.50).   

At the end of the experiment, five days after fish addition, Polyphemus 

densities showed significant treatment and interaction effects (Fig. 3.1a).  Densities in 

the -Macrophyte/-Fish treatment (0.67 ± 0.23 individuals L-1) were significantly 

greater than in any of the other three treatments (Bonferroni adjusted t-test, p = 0.004 

vs. -Macrophyte/+Fish, p = 0.009 vs. +Macrophyte/-Fish, p = 0.004 vs. 

+Macrophyte/+Fish).  There are no statistical differences between any of the other 

treatments: with macrophytes, with fish or with both (Bonferroni-adjusted t-test, p = 

1.000 for all comparisons).  While Polyphemus density had not significantly changed 

from initial densities (dashed line in Fig. 3.1) in the -Macrophyte/-Fish treatment 

(Bonferroni-adjusted t-test, p = 1.000), densities were either marginally significantly 

lower than initial densities in all other treatments (Bonferroni-adjusted t-test, p = 0.062 

for -Macrophyte/+Fish; p = 0.060 vs. +Macrophyte/+Fish), or not significant (p =  

0.113 for +Macrophyte/-Fish). The -Macrophyte/-Fish treatments were the only 

mesocosms not to show a negative Polyphemus population growth rate over the course 

of the experiment (Fig. 3.2).   
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Figure 3.1  Final abundance of various zooplankton groups in 2006 as a function of 

treatment.  Closed symbols: +Fish; open symbols: -Fish (± 1 SE). Results of 2-way 

ANOVAs are listed as F-values for both treatments and interaction effects; df = 1 for 

all tests.  Asterisks indicate significant effects; * = p ≤ 0.05, ** = p ≤ 0.001, ‡ = p ≤ 

0.10.  Starting densities are shown with dashed line on each graph. 
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Impact on zooplankton prey community  

There was a significant increase in overall zooplankton density in treatments 

containing macrophytes versus those without macrophytes, but no difference between 

treatments with and without fish, and no interaction effect (Fig. 3.1b).  When the 

zooplankton community is broken down into functional groups, copepodids were the 

only group not to exhibit a significant effect of either the fish or the macrophyte 

treatments, however they did show a significant interaction effect (Fig. 3.1i), though 

the reason for this is obscure.    

For zooplankton within the size range edible to Polyphemus, including rotifers, 

small cladocerans, and copepod nauplii, there were highly significant effects of the 

macrophyte and fish treatments with densities greater in the absence of macrophytes 

and the absence of fish.  The interaction effect was also significant, with density 

differences between the +Fish and –Fish treatments greater in the absence of 

macrophytes (Fig. 3.1c). When broken down into the three taxonomic groups edible to 

Polyphemus, only rotifer density had significant effects that mirrored the “total edible 

zooplankton” group as a whole, although the interaction effect was only marginally 

significant (Fig. 3.1e).  This is unsurprising given that rotifers were an order of 

magnitude greater in density than small cladocerans or nauplii.  All three of these 

taxonomic groups were significantly more dense in the -Macrophyte treatments  

(nauplii only marginally significant), while rotifers and nauplii were also more dense 

in the +Fish treatments (Fig. 3.1e-g).   

Taxa that are presumably too large to be vulnerable to Polyphemus predation 

(i.e., large cladocerans, copepodids) also showed significant treatment effects when 

pooled as a group, with densities greater in the -Macrophyte and -Fish treatments, and 

a significant interaction effect such that densities were greatest in the absence of both  
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Figure 3.2  Polyphemus growth rate during the 2006 feeding experiment. Rates differ 

among treatments, with “a” and “b” representing significantly different treatments 

(ANOVA: df = 3, F = 10.35, p = 0.002).  Error bars: ± 1 SE.  Low variance in +M+F 

and –M+F treatments due to almost complete mortality (-M+F: one replicate with two 

surviving individuals). 
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macrophytes and fish (Fig. 3.1d).  This pattern is driven predominantly by the large 

cladocerans which mirror the “inedible” group as a whole, but with only a marginally 

significant interaction; copepodids showed no significant response to either treatment, 

but did contribute to the interaction effect (Fig. 3.1h,i).   

 

Polyphemus predators 

 Although not a part of the experimental design, potential planktonic predators 

of Polyphemus were present in L. Ontario during both experimental time periods, and 

thus were added to the mesocosms as part of the ambient L. Ontario zooplankton in 

both experiments.  Cercopagis pengoi and Leptodora kindti were found in over half of 

the initial samples in 2005 at a mean total density of 0.012 (± 0.006) predatory 

invertebrates L-1.  None of these additional inoculated predatory invertebrates were 

found in the final mesocosm samples in 2005.  Cercopagis and Leptodora were also 

found in initial samples in 2006, along with Bythotrephes longimanus.  Unlike 2005, 

some of these predatory invertebrates were also found in the final mesocosm samples.  

Leptodora and Bythotrephes were found in several mesocosms both during and at the 

end of the experiment.  Chaoborus punctipennis was also found in two final 

mesocosm samples.  With the exception of a single Bythotrephes found in a 

+Macrophyte mesocosm, all additional predatory invertebrates found at the conclusion 

of the experiment were in the -Macrophyte/-Fish mesocosms.  The mean length of the 

fish added to the +Fish mesocosms was 3.79 cm (± 0.09 SE), and did not vary 

significantly among treatments.  
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Discussion 

 Increases in Polyphemus densities in water from Sterling P. both in 2005 and 

2006 showed that Polyphemus survival and reproduction is not negatively affected by 

the quality of the embayment water itself and so is not excluded from establishing in 

the embayment by features of the water distinct from those of Lake Ontario.  

However, low ambient Polyphemus densities in L. Ontario during the 2005 study 

limited our ability to draw conclusions from that experiment.  The results of the 2006 

experiment show that, as hypothesized, fish predation had a strong negative effect on 

Polyphemus persistence in Sterling P.  In addition, however, we obtained the 

unexpected result that the presence of macrophytes not only did not provide a refuge 

from fish predation, but in fact had a negative effect on Polyphemus in both the 

presence and absence of the fish predation. 

 Zooplankton samples collected 24 hours after the fish were introduced did not 

reveal any predation effect, presumably because insufficient time had elapsed, 

however the Polyphemus population was significantly reduced by the end of the 

experiment, four days later.  Macrophytes also did not serve as an effective refuge 

against predation for any of the other zooplankton taxa present in the mesocosms.  

Rather, plankton densities were uniformly either reduced in the presence of 

macrophytes, or in the case of copepodids, not affected.  Where there were significant 

interaction effects between the fish and macrophyte treatments for taxa vulnerable to 

fish predation (i.e., Polyphemus and large cladocerans), densities and density 

differences between -Fish and +Fish treatments were greatest in the absence of 

macrophytes.  Even in the absence of fish, the presence of macrophytes led to 

substantial decline in the Polyphemus population. This negative macrophyte effect was 

not immediate, exhibiting a slight but not statistically significant reduction in 
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Polyphemus after three days (24 hours following fish introduction), but a completely 

decimated population by the end of the experiment. 

 There are a number of possible explanations for this negative effect of the 

macrophytes.  Macrophytes may have produced an allelopathic chemical that 

negatively affected the Polyphemus. In one extreme case, Sutfeld et al. (1996) found 

complete mortality of Daphnia magna after five days of exposure to exudates from the 

macrophyte Nuphar lutea, though these are taxa not present in our study.  Several 

studies have, however, shown that two of the macrophyte taxa used in our study, 

Elodea and Myriophyllum, release chemicals that induce Daphnia species to avoid 

dense macrophyte beds (Pennak 1973, Dorgelo and Heykoop 1985).  Although 

subsequent studies showed that this negative behavioral response is suppressed in the 

presence of fish kairomones, suggesting that fish predation is a stronger pressure on 

the cladocerans (Lauridsen and Lodge 1996, Jepperson et al. 1997), authors of some 

recent studies have found that the presence of macrophytes leads to earlier maturation 

times and, as a result, smaller body and clutch sizes of cladocerans (Burks et al. 2000, 

Cerbin et al. 2007).  If this were the case in our system, it would explain the lower 

abundance of Polyphemus and large cladocerans in the macrophyte treatments at the 

end of the experiment. 

The reduced abundance of total zooplankton in the macrophyte treatments in 

2006 suggests that the Polyphemus population may have been indirectly negatively 

affected by the negative effects of macrophytes on phytoplankton (van Donk and van 

de Bund 2002, Bauer et al. 2009) which would ultimately reduce the density of the 

Polyphemus prey population.  This would explain the lower densities of small 

zooplankton edible to Polyphemus in the +Macrophyte treatments (Fig. 3.1c).  In 

addition, there may have been competition between the pelagic zooplankton 

enumerated in our study and macrophyte-associated benthic cladocerans that we found 
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associated with macrophytes in our mesocosms (i.e., Sida crystallina and 

Simocephalus sp.) which can exert extensive grazing pressure on phytoplankton 

(Stansfield et al. 1997). 

Finally, although we mixed the mesocosms twice daily, an artificial constraint 

of this environment may be a relative lack of physical mixing compared with the 

embayment itself.  Stagnation would reduce the suspension of phytoplankton and as a 

result, cells may have settled to the bottom where they would be unavailable for 

consumption by zooplankton. For example, a phytoplankton cell sinking at a rate of 25 

μm sec-1 (smaller cell from Table 2.5 in Reynolds 2006) would sink 1.08 m in the 

course of the 12-hour period between our mixing efforts, settling near the bottom even 

if it started at the top of the water column.  This effect would presumably be magnified 

by the presence of macrophytes, which provide physical surfaces throughout the water 

column on which the phytoplankton can settle.  Together, these indirect effects of 

macrophytes on the availability of prey for Polyphemus could explain their gradual 

decrease in the +Macrophyte treatments, as well as the low density of Polyphemus at 

the end of the experiment.  

While not directly assessed by the design of this experiment, cladoceran 

predation may have had a negative effect on Polyphemus.  No Polyphemus was found 

alive in the mesocom that contained five Bythotrephes at the end of the experiment, 

suggesting that Polyphemus is susceptible to predation by this voracious cladoceran 

(Schulz and Yurista 1999).  No such pattern was seen in mesocosms containing either 

Leptodora or Chaoborus, presumably because Polyphemus is too large to be 

effectively preyed upon by them.  While these two predators are strongly size-limited 

by the morphology of their feeding baskets and antennal gapes respectively, 

Bythotrephes has been shown to grasp and shred its prey (Schulz and Yurista 1999), 

and so could consume even larger Polyphemus individuals. Interestingly, these other 
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predatory cladocerans (Leptodora and Bythotrephes) were only found in the -

Macrophyte/-Fish mesocosms, suggesting that the same factors causing poor 

Polyphemus survivorship in Sterling P. may also have a negative effect on other 

predatory cladocerans introduced from L. Ontario. 

Finally, this study provided us with data on the potential impact of Polyphemus 

on the Sterling P. plankton community, were this species able to establish 

successfully. Zooplankton categorized as too large to be susceptible to Polyphemus 

predation showed treatment effects similar to those of Polyphemus. The large 

cladocerans that dominate this grouping, Diaphanasoma sp. and Ceriodaphnia sp., are 

large enough to be easily seen by the small planktivorous fish dominant in this system. 

Like Polyphemus, while their particular sensitivity to macrophyte allelochemicals has 

not been studied, these cladocerans are also taxonomically related to the daphniids 

typically used in such studies (eg. Burks et al. 2000, Cerbin et al. 2007), and could be 

expected to respond similarly.   

The fact that the taxa susceptible to Polyphemus predation (nauplii, rotifers, 

and small cladocerans) were most abundant in the -Macrophyte/+Fish treatment may 

have been the result of two factors acting in concert.  These smaller animals (in 

particular, the rotifers and nauplii) are not large enough to be vulnerable to predation 

by fish, and as a result, they are released from both (1) competition with large 

cladocerans and from (2) predation by Polyphemus relative to the –Fish treatments 

where their competitors and predators were abundant. 

With the additional physical connection they have to their adjacent large lakes, 

freshwater embayment ecosystems appear to be more vulnerable to outside influences 

than fully-enclosed lake and pond ecosystems.  This may be particularly true of 

influences in the form of biological invasions for embayments located along the 

shoreline of the North American Great Lakes, which have been inundated in recent 

171 
 



 

years by a wealth of exotic and invasive species (Mills et al. 1993, MacIsaac et al. 

1999, Holeck et al. 2004, Duggan et al. 2005, Ricciardi 2006).  Our study suggests, 

however, that these embayment systems contain biological vectors that prevent 

establishment of some invaders, and ameliorate the potentially strong detrimental role 

that newly introduced species like Polyphemus could have on the native flora and 

fauna of such systems.    
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