
HIGH PERFORMANCE SEQUENTIAL
EXECUTION IN FINE-GRAIN MULTICORE
PROCESSORS VIA CORE AGGREGATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Meyrem Kırman

February 2010

c© 2010 Meyrem Kırman

ALL RIGHTS RESERVED

HIGH PERFORMANCE SEQUENTIAL EXECUTION IN FINE-GRAIN

MULTICORE PROCESSORS VIA CORE AGGREGATION

Meyrem Kırman, Ph.D.

Cornell University 2010

This dissertation presents core fusion, a reconfigurable chip multiprocessor

(CMP) architecture where groups of fundamentally independent cores can dy-

namically morph into a larger CPU, or they can be used as distinct processing el-

ements, as needed at run time by applications. Core fusion improves sequential-

code performance and thus gracefully accommodates software diversity in fu-

ture’s highly-parallel CMPs. It provides a single execution model across all con-

figurations, requires no additional programming effort or specialized compiler

support, maintains ISA compatibility, and leverages mature micro-architecture

technology.

We first present an effective approach to dynamically fuse multiple narrow-

issue out-of-order cores into a more powerful out-of-order execution engine.

The use of out-of-order base cores provides the design with valuable opportu-

nities for latency hiding.

Next, we present a second set of mechanisms to dynamically fuse multiple

in-order cores into a more powerful out-of-order execution engine. In-order

cores are extremely power-efficient and simple, and they help maximize core

count, which is ideal for exploiting thread-level parallelism (TLP). However,

sequential-code performance is significantly degraded. Enabling core fusion on

such substrates proves to be very effective in boosting performance, and only

with relatively small hardware overhead.

BIOGRAPHICAL SKETCH

Meyrem Kırman graduated with B.S. degrees in Control and Computer Engi-

neering and Electronics and Communication Engineering in 2002 and 2003, re-

spectively, from Istanbul Technical University (ITU), Turkey. In Fall 2003, she

started her M.S./Ph.D. study in Electrical and Computer Engineering at Cornell

University. Along the way, she earned her M.S. degree in 2007. Her research in-

terests included checkpointed processor architectures, reconfigurable processor

architectures, on-chip optical interconnects and memory-system design for chip

multiprocessors.

iii

To my dearest family

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to Prof. José F. Martı́nez, my adviser, for all

his contributions to my academic and personal development, and for provid-

ing a great working environment. His continuous guiding and support, always

constructive critiques, and high standards made my graduate study a valuable

and enriching one. I thank him for his patient and devoted efforts for develop-

ing our presentation, writing and communication skills. Discussions with him

have always been very inspiring and instructive. I also thank him for creat-

ing a working environment which I feel great pleasure to work in, as well as

providing numerous opportunities to us for attending conferences and other

professional activities.

I am greatly indebted to my sister Nevin Kırman. Without her support, it

would be difficult to successfully complete this work. She is continuous source

of motivation and joy. I deeply thank her for always being with me in my good

and difficult times.

I would like to thank Prof. Rajit Manohar and Prof. David Albonesi for

being a part of my committee, their useful feedback, and their contributions to

the Computer Systems Laboratory (CSL) and its warm environment.

I also thank my group members and other CSL members for fruitful collab-

orations, numerous discussions, and the good time spent together. I feel lucky

to be a part of such friendly and stimulating research environment.

Finally, I am deeply thankful to my family for their continuous support and

motivation, comfort and encouragement.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi
List of Tables . viii
List of Figures . ix

1 Introduction* 1

2 Core Fusion Based on Out-of-order Cores* 6
2.1 Architecture . 7

2.1.1 Front-end . 8
2.1.2 Back-end . 14

2.2 Dynamic Reconfiguration . 18

3 Evaluating Fusion of Out-of-order Cores* 19
3.1 Experimental Setup . 19
3.2 Hardware Overhead . 21
3.3 Core-Fusion Performance . 23
3.4 Performance Analysis . 24

4 Core Fusion Based on In-order Cores 29
4.1 Base In-order Core . 30
4.2 Architecture . 32

4.2.1 Distributed Program State 33
4.2.2 Distributed Fetch . 34
4.2.3 Satisfying Register Dependences 35
4.2.4 Checkpoint Allocation, Commit, and Recovery 40
4.2.5 Register Recycling . 42
4.2.6 Hardware Support for Register Renaming, Checkpoint-

ing, and Release . 44
4.2.7 Satisfying Memory Dependences 45
4.2.8 SMU Organization . 48
4.2.9 Performance Enhancements 49

5 Evaluating Fusion of In-order Cores 55
5.1 Experimental Setup . 55
5.2 Area and Delay Estimations . 57
5.3 Base-Core Performance . 59
5.4 In-order Core Fusion Performance 60
5.5 Performance Analysis . 62

5.5.1 Lookahead Execution . 62
5.5.2 Copy-out Queue Optimization 65

vi

5.5.3 Register Replication . 67
5.6 Comparison to Out-of-Order Cores 67

6 Banking Memory Operations in In-order Core Fusion 72
6.1 Mechanism for Memory-Operation Banking 73
6.2 Hardware Support for Bank Prediction 75

6.2.1 Choice of Bank Predictor 76
6.2.2 Speculative Update . 77
6.2.3 In-order Update . 78
6.2.4 Reusing Verified Bank Predictor Updates 78

6.3 Evaluation of Memory-Operation Banking 79
6.3.1 Hardware Overhead Estimation 79
6.3.2 Performance Evaluation . 80

6.4 Dynamic Policy for Memory-Operation Handling 82

7 Related Work* 86
7.1 Reconfigurable Architectures . 86
7.2 Clustered Architectures . 87
7.3 Scalable Issue-Queue Designs . 91
7.4 Other Related Work . 92

8 Conclusions 94

Bibliography 96

vii

LIST OF TABLES

3.1 Two-issue out-of-order core parameters 20
3.2 Memory-system parameters for out-of-order cores 20

5.1 In-order core and memory-system parameters 56
5.2 Parameters specific to in-order-core fusion. 57
5.3 Area overhead of in-order-core fusion 57
5.4 Out-of-order core parameters . 68

7.1 Comparison of out-of-order core fusion to recent proposals for
clustered processors. 88

viii

LIST OF FIGURES

2.1 Conceptual floorplan of an eight-core CMP with core fusion ca-
pability . 8

2.2 Configuration-oblivious indexing in branch predictor and BTB . 10
2.3 Rename pipeline and illustrative example of steering manage-

ment unit organization in out-of-order core fusion 12
2.4 Simplified diagram of distributed ROB in out-of-order core fusion 15

3.1 Speedup of out-of-order core fusion relative to two-issue out-of-
order core on SPECINT . 23

3.2 Speedup of out-of-order core fusion relative to two-issue out-of-
order core on SPECFP . 23

3.3 Distribution of fetch cycles in out-of-order core fusion on SPECINT 25
3.4 Distribution of fetch cycles in out-of-order core fusion on SPECFP 26
3.5 Sensitivity of out-of-order core fusion performance to various

parameters on SPECINT . 27
3.6 Sensitivity of out-of-order core fusion performance to various

parameters on SPECFP . 27

4.1 Pipeline of the base in-order core 31
4.2 In-order-core fusion support . 33
4.3 Copy-instruction flow through the source and destination cores . 39
4.4 Local rename table, checkpointing, and register recycling sup-

port in a core . 44
4.5 Lookahead execution (LE) support 50

5.1 Base in-order core’s execution-time breakdown 60
5.2 Speedup of in-order-core fusion over in-order core on SPEC . . . 61
5.3 Impact of lookahead execution on performance of in-order-core

fusion . 62
5.4 Issue-time breakdown of fused in-order cores when running

SPEC applications . 63
5.5 Speedup of a base in-order core enhanced with lookahead exe-

cution relative to the base core on SPEC 64
5.6 Impact of copy-out queue selection on performance of in-order-

core fusion . 66
5.7 Impact of register replication on performance of in-order-core fu-

sion . 67
5.8 Speedup of single- and dual-issue out-of-order cores relative to

base in-order core . 69

6.1 Bank predictor and interface to the SMU 75
6.2 Speedup of in-order core fusion with different static memory-

operation handling mechanisms over in-order core on SPEC . . . 80

ix

6.3 Breakdown of bank predictions by the block-offset predictor
based on accuracy and confidence 82

6.4 Speedup of in-order core fusion with dynamic policy for
memory-operation handling, over in-order core on SPEC 84

x

CHAPTER 1

INTRODUCTION*

Chip multiprocessors (CMPs) hold the prospect of translating Moore’s Law

into sustained performance growth by incorporating more and more cores on

the die. In the short term, on-chip integration of a modest number of relatively

powerful cores may yield high utilization when running multiple sequential

workloads. However, sustaining long-term performance scalability calls for

power- and performance-efficient, small-footprint core (micro)architectures that

maximize raw performance per power and overall throughput. Consequently,

harnessing the full potential of future CMPs makes the widespread adoption

of parallel programming inevitable. Unfortunately, code parallelization consti-

tutes a tedious, time-consuming, and error-prone effort. Significant amount of

code, therefore, is anticipated to remain sequential in future’s parallel comput-

ing substrates.

Beside the existing legacy sequential applications, difficulties of parallel pro-

gramming is likely to result in a dynamic and diverse landscape of software

of very different characteristics and in different stages of development: from

purely sequential, to highly parallel, and everything in between. Improving re-

gions of sequential code, even in highly-parallel applications, is crucial to main-

tain scalability, as also stressed by an article revisiting the Amdahl’s Law in the

multicore era [23]. In some cases, the problem itself is sequential or hard-to-

parallelize in nature. As a result, future highly-parallel CMP substrates have to

address sequential codes whose performance will be confined to a small core.

∗ c© ACM, 2007. Mostly reprinted, with permission, from ”E. Ipek, M. Kırman, N. Kırman,
J. F. Martı́nez. Core Fusion: Accommodating software diversity in chip multiprocessors.
In Intl. Symp. on Computer Architecture (ISCA), pages 186-197, San Diego, CA, Jun. 2007.
http://doi.acm.org/10.1145/1250662.1250686”

1

Asymmetric chip multiprocessors (ACMPs) [3, 31, 32] comprise cores of

varying sizes and computational capabilities. The hope is to match the demands

of a variety of sequential and parallel software. Still, the particular die compo-

sition is set at design time. Ultimately, this may constitute a hurdle to high

performance. For example, Balakrishnan et al. [3] find that asymmetry gen-

erally hurts parallel application scalability, and renders the applications’ per-

formance less predictable, unless relatively sophisticated software changes are

introduced. Hence, for example, while an ACMP may deliver increased perfor-

mance on sequential codes by placing one large core on the die, it may do so at

the expense of parallel performance or programmability.

Instead, we would like a CMP to provide the flexibility to dynamically “syn-

thesize” the right composition, based on software demands. In this thesis, we

investigate a novel reconfigurable hardware mechanism that we call core fusion.

It is an architectural technique that empowers groups of relatively simple and

fundamentally independent CMP cores with the ability to “fuse” into one large

CPU on demand to execute sequential code at higher performance. We envision

a core fusion CMP as a homogeneous substrate with conventional memory co-

herence/consistency support, where groups of cores and their i- and d-caches

can be fused at run-time into CPUs that have aggregated fetch, issue, and com-

mit width, and aggregated i-cache, d-cache, branch predictors. Our approach

promotes single-thread performance in many core CMPs of homogenous sub-

strate of simpler and smaller cores by aggressively extracting ILP, improving

memory-latency tolerance, and increase memory-level parallelism.

The core-fusion concept has the potential to provide a number of highly de-

sirable benefits to CMP design and functionality. Among them:

2

• Support for software diversity. CMPs may be configured for fine-grain paral-

lelism (by providing many lean cores), coarse-grain parallelism (by fusing

many cores into fewer, but more powerful CPUs), sequential code (by exe-

cuting on one fused group), and different levels of multiprogramming (by

providing as many fused groups as needed, up to capacity). In contrast,

for example, Asymmetric CMPs (ACMPs) [3, 31] are “stuck” with the mix

chosen at design time, which may compromise performance for parallel

codes and/or mismatched multiprogrammed workloads.

• Support for smoother software evolution. Core fusion would naturally sup-

port incremental parallelization, by dynamically providing the optimal

configuration for sequential and parallel regions of a particular code, e.g.,

one large fused group during sequential regions, and many small inde-

pendent cores during parallel regions.

• Single-design solution. A fusion group is essentially a modular structure

comprising several identical cores, plus the core fusion fabric. Core fusion

CMPs can be designed by tiling as many such groups as desired. In con-

trast, for example, ACMPs require the adoption of at least two processor

core designs.

• Optimized for parallel code. Core fusion comprises relatively small and

fundamentally independent cores. This provides good isolation across

threads in parallel runs, both internally (branch predictor, i- and d-TLB,

physical registers, etc.) and at the L1 cache level (i- and d-cache). The core

fusion support allows cores to work co-operatively when needed (albeit

probably at somewhat lower performance than a large, monolithic pro-

cessor). In contrast, techniques like simultaneous multithreading (SMT)

take the opposite approach: A large wide-issue core that is optimized for

3

sequential execution, augmented with support for multiple threads to in-

crease utilization. When executing parallel applications, cross-thread in-

terference in SMT designs is an obstacle to high performance. In a software

landscape where parallel code is expected to be increasingly more preva-

lent, a “bottom-up” approach like core fusion may be preferable. (More-

over, SMT support can be added to core fusion’s base cores.)

• Design-bug and hard-fault resilience. A design bug or hard fault in the core

fusion hardware need not disable an entire fusion group, as each core may

still be able to operate independently. Similarly, a hard fault in one core

still allows independent operation of the other fault-free cores, and even

smaller-way fusion on the other cores in the fusion group. Bug/hard fault

isolation may be significantly more challenging in designs based on large

cores.

At the same time, providing CMPs with the ability to “fuse” cores on de-

mand presents significant design challenges. Among them:

• Core fusion should not increase software complexity. Specifically, cores

should be able to execute programs co-operatively without changing the

execution model, and without resorting to custom ISAs or specialized

compiler support. This alone would set core fusion apart from other pro-

posed reconfigurable architectures, such as TRIPS [52] or Smart Memo-

ries [36], and from speculative architectures such as Multiscalar [53].

• Core fusion hardware should work around the fundamentally indepen-

dent nature of the base cores. This means providing complexity-effective

solutions to collective fetch, rename, execution, cache access and commit,

4

by leveraging each core’s existing structures without unduly overprovi-

sioning or significantly restructuring the base cores.

• Dynamic reconfiguration should be efficient, and each core’s hardware

structures should work fundamentally the same way regardless of the con-

figuration.

In this thesis, we look at both narrow out-of-order and in-order core sub-

strates to build upon when constructing a core-fusion architecture. The choice

of base core presents a trade-off to chip designers. An out-of-order core achieves

higher sequential-code performance, while an in-order core provides higher

power and cost efficiency, and maximizes core count and throughput on CMPs.

In the first part of our thesis, we construct a core-fusion architecture based

on dual-issue out-of-order cores. In the second part of the thesis, we construct

a core-fusion architecture based on single-issue in-order cores. In both cases,

we respect the capabilities of the base cores and try to devise techniques that

leverage existing resources and mechanisms.

5

CHAPTER 2

CORE FUSION BASED ON OUT-OF-ORDER CORES*

In this chapter, we present a detailed description of a complete hardware

solution to support dynamic core fusion in CMPs of narrow out-of-order cores.

In particular, we describe complexity-effective solutions for collective fetch, re-

name, execution, cache access, and commit, that respect the fundamentally in-

dependent nature of the base cores. The result is a flexible CMP architecture

that can adapt to a diverse collection of software. It does so without requiring

higher software complexity, a customized ISA, or specialized compiler support.

In the course of formulating our core-fusion solution, we make the following

additional contributions over prior art:

• A reconfigurable, distributed front-end and instruction-cache organiza-

tion that can leverage individual cores’ front-end structures to feed an

aggressive fused back-end, with minimal over-provisioning of individual

front-ends.

• A complexity-effective remote wake-up mechanism that allows operand

communication across cores without requiring additional register file

ports, wake-up buses, bypass paths, or issue-queue ports.

• A reconfigurable, distributed load/store queue and data cache organiza-

tion that (a) leverages the individual cores’ data caches and load/store

queues in all configurations; (b) does not cause thread interference in L1

caches when cores run independently; (c) supports conventional coher-

∗ c© ACM, 2007. Reprinted, with permission, from ”E. Ipek, M. Kırman, N. Kırman, J.
F. Martı́nez. Core Fusion: Accommodating software diversity in chip multiprocessors. In
Intl. Symp. on Computer Architecture (ISCA), pages 186-197, San Diego, CA, Jun. 2007.
http://doi.acm.org/10.1145/1250662.1250686”

6

ence when running parallel code, generates zero coherence traffic within

the fusion group when running sequential code in fused mode, and re-

quires minimal changes to each core’s CMP subsystem; (d) guarantees cor-

rectness without requiring data cache flushes upon runtime configuration

changes; and (e) enforces memory consistency in both modes.

• A reconfigurable, distributed ROB organization that can fully leverage

individual cores’ ROBs to seamlessly support fusion, without overprovi-

sioning or unnecessarily replicating core ROB structures.

Our evaluation pits core fusion against more traditional CMP architectures,

such as fine- and coarse-grain homogeneous cores.

2.1 Architecture

Core fusion builds on top of a substrate comprising identical, relatively efficient

two-issue out-of-order cores. A bus connects private L1 i- and d-caches, and

provides data coherence. On-chip L2 cache and memory controller reside on

the other side of this bus. Cores can execute fully independently if desired. It

is also possible to fuse groups of two or four cores to constitute larger cores.

Figure 2.1 is an illustrative example of a CMP comprising eight two-issue cores

with core fusion capability. The figure shows an (arbitrarily chosen) asymmet-

ric configuration comprising one eight-issue, one four-issue, and two two-issue

processors.

We now describe in detail the core fusion support. In the discussion, we

assume four-way fusion.

7

CORE

L1 i-$

L1 d-$

CORE

L1 i-$

L1 d-$

CORE

L1 i-$

L1 d-$

CORE

L1 i-$

L1 d-$

CORE

L1 i-$

L1 d-$

CORE

L1 i-$

L1 d-$

CORE

L1 i-$

L1 d-$

CORE

L1 i-$

L1 d-$

L2 $

Figure 2.1: Conceptual floorplan of an eight-core CMP with core fusion
capability. The figure shows a configuration example compris-
ing two independent cores, a two-core fused group, and a four-
core fused group. The figure is not meant to represent an actual
floorplan.

2.1.1 Front-end

Collective Fetch

A small co-ordinating unit called the fetch management unit (FMU) facilitates col-

lective fetch. The FMU receives and re-sends relevant fetch information across

cores. The latency from a core into the FMU and out to any other core is two

cycles (Section 3.1).

Fetch Mechanism and Instruction Cache

Each core fetches two instructions from its own i-cache every cycle, for a to-

tal of eight instructions. Fetch is aligned, with core zero generally responsible

8

for the oldest two instructions. On a taken branch (or misprediction recovery),

however, the target may not be aligned with core zero. In that case, lower-order

cores skip fetch, and core-zero-aligned fetch resumes on the next cycle.

On an i-cache miss, an eight-word block is delivered (a) to the requesting

core if it is operating independently, or (b) distributed across all four cores in a

fused configuration to permit collective fetch. To support these two options, we

make i-caches reconfigurable along the lines of earlier works [36]. Each i-cache

has enough tags to organize its data in two-word subblocks in fused mode.

During collective fetch, i-TLBs are “naturally” replicated as cores miss on

their i-TLBs. The FMU can be used to refill all i-TLBs upon a first i-TLB miss by

a core. The FMU is used to gang-invalidate i-TLB entries.

Branches and Subroutine Calls

Prediction. Because collective fetch is aligned, each branch instruction always

accesses the same branch predictor and BTB. Consequently, the effective branch

predictor and BTB capacity is four times as large. To accomplish maximum

utilization, these structures are indexed as shown in Figure 2.2 regardless of

the configuration. We empirically observe no loss in prediction accuracy when

using this “configuration-oblivious” indexing scheme.

Each core can handle up to one branch prediction per cycle. PC redirection

(predict-taken, mispredictions) is enabled through the FMU.

Naturally, on a misprediction, misspeculated instructions are squashed in

all cores. This is also the case for instructions “overfetched” along the not-taken

9

Index

Tag (BTB Only)

Byte
t-2

i-1

Figure 2.2: Configuration-oblivious indexing utilized in branch prediction
and BTB. In the figure, i bits are used for indexing and t for
tagging (tagging only meaningful in the BTB). Of course, i and
t are generally not the same for branch predictor and BTB. Be-
cause of aligned fetch, the two tag bits sandwiched between
index bits match the core number in the fused configuration.

path on a taken branch, since the target PC will arrive with a delay of a few

cycles.

Global History. Because each core is responsible for a subset of the branches in

the program, having independent and unco-ordinated history registers on each

core may make it impossible for the branch predictor to learn of their correla-

tion. To avert this situation, the GHR is simply replicated across all cores, and

predictions and non-speculative updates are co-ordinated through the FMU.

Return Address Stack. All RAS operations are processed by core zero. Subrou-

tine calls and function returns are communicated to core zero through the FMU.

Notice that, since all RAS operations are processed by core zero, the effective

RAS size does not increase when cores are fused. This is reasonable, however,

as call depth is a program property that is independent of whether execution is

taking place on an independent core or on a fused configuration.

10

Handling Fetch Stalls

On a fetch stall by one core (e.g., i-cache miss, i-TLB miss, fetching two

branches), all fetch engines must also stall so that correct fetch alignment is

preserved. To accomplish this, cores communicate stalls to the FMU, which in

turn informs the other cores. Because of the latency through the FMU, it is pos-

sible that the other cores may overfetch, for example if (a) on an i-cache or i-TLB

miss, one of the other cores does hit in its i-cache or i-TLB (unlikely in practice,

given how fused cores fetch), or (b) generally in the case of two back-to-back

branches fetched by the same core that contend for the predictor (itself exceed-

ingly unlikely). Fortunately, the FMU latency is deterministic: Once all cores

have been informed (including the delinquent core) they all discard at the same

time any overfetched instruction (similarly to the handling of a taken branch

before) and resume fetching in sync from the right PC—as if all fetch engines

had synchronized through a “fetch barrier.”

Collective Decode/Rename

After fetch, each core pre-decodes its instructions independently. Subsequently,

all instructions in the fetch group need to be renamed and steered. (As in clus-

tered architectures, steering consumers to the same core as their producers can

improve performance by eliminating communication delays.) Renaming and

steering is achieved through a steering management unit (SMU). The SMU con-

sists of: a global steering table to track the mapping of architectural registers to

any core; four free-lists for register allocation (one for each core); four rename

maps; and steering/renaming logic (Figure 2.3). The steering table and the four

rename maps together allow up to four valid mappings of each architectural

11

GLOBAL RENAME MAP
C0

-

P1

P11

P19

-

P33

C1

-

P15

-

P25

-

-

C2

-

P39

P8

-

P4

P3

C3

P18

P0

P16

P5

-

P3

R0

R1

R2

R3

R4

R5

C1

P2

P5

P20

P21

P7

P9

P31

P15

C2C0

P4

P6

P18

P25

P1

P2

P10

P14

C3
FREE LISTS STEERING TABLE

0

1

0

1

0

0

0

1

1

0

1

1

1

1

1

1

0

1

0

1

1

1

0

1

R0

R1

R2

R3

R4

R5

C0 C1 C2 C3

Write Port &
Traverse
XBar Link

 Traverse
XBar Link

 Traverse
XBar Link &
Read Port

Steer Rename
Write Port &

Traverse
XBar Link

 Traverse
XBar Link

 Traverse
XBar Link &
Read Port

RENAME PIPELINE

Figure 2.3: Rename pipeline (top) and illustrative example of SMU organi-
zation (bottom). R0 has a valid mapping in core three, whereas
R1 has four valid mappings (one in each core). Only six archi-
tectural registers are shown.

register, and enable operands to be replicated across multiple cores. Cores still

retain their individual renaming structures, but these are bypassed when cores

are fused.

Figure 2.3 depicts the high level organization of the rename pipeline. After

pre-decode, each core sends up to two instructions to the SMU through a set

of links. In our evaluation, we assume a three-cycle cross-core communication

over a repeated link (Section 3.1). Three cycles after pre-decode, the SMU re-

ceives up to two instructions and six architectural register specifiers (three per

instruction) from each core. After renaming and steering, it uses a second set

of links to dispatch no more than six physical register specifiers, two program

instructions, and two copy instructions to each core. (Copy instructions have a

separate, dedicated queue in each core (Section 2.1.2).) Restricting the SMU dis-

patch bandwidth in this way keeps the wiring overhead manageable, lowers the

number of required rename map ports, and also helps achieve load balancing.

12

In our evaluation (Section 3), we accurately model the latency of the eight-stage

rename pipeline when running in fused mode, as well as the SMU dispatch

bandwidth restrictions.

The SMU uses the incoming architectural register specifiers and the steering

table to steer up to eight instructions every pipeline cycle. Each instruction is

assigned to one of the cores via a modified version of dependence based steer-

ing [45] that guarantees that each core is assigned no more than two instructions.

Copy instructions are also created in this cycle.

In the next cycle, instructions are renamed. Since each core receives no more

than two instructions and two copy instructions, each rename map has only six

read and six write ports. The steering table requires sixteen read and sixteen

write ports (note that each steering table entry contains only a single bit, and

thus the overhead of multi-porting this small table is relatively low). If a copy

instruction cannot be sent to a core due to bandwidth restrictions, renaming

stops at the offending instruction that cycle, and starts with the same instruction

next cycle, thereby draining crossbar links and guaranteeing forward progress.

As in existing microprocessors, at commit time, any instruction that renames

an architectural register releases the physical register holding the prior value

(now obsolete). This is accomplished in core fusion easily, by having each

ROB send the register specifiers of committing instructions to the SMU. Reg-

ister replicas, on the other hand, can be disposed of more aggressively, pro-

vided there is no pending consumer instruction in the same core. (Notice that

the “true” copy is readily available in another core.) We employ a well-known

mechanism based on pending consumer counts [37, 39]. Naturally, the counters

must be backed up on every branch prediction. Luckily, in core fusion these are

13

small: four bits suffice to cover a core’s entire instruction window (16 entries).

2.1.2 Back-end

Each core’s back-end is essentially quite typical: separate floating-point and in-

teger issue queues, a physical register file, functional units, load/store queues,

and a ROB. Each core has a private L1 d-cache. L1 d-caches are connected via a

split-transaction bus and are kept coherent via a MESI-based protocol. When

cores get fused, back-end structures are co-ordinated to form a large virtual

back-end capable of consuming eight instructions per cycle.

Operand Crossbar

To support operand communication, a copy-out and a copy-in queue are added

to each core. Copy instructions wait in the copy-out queue for their operands

to become available, and once issued, they transfer their source operand and

destination physical register specifier to a remote core. The operand crossbar

is capable of supporting two copy instructions per core, per cycle. In addition

to copy instructions, loads use the operand crossbar to deliver values to their

destination register (Section 2.1.2). In our evaluation (Section 3), we accurately

model latency and contention for the operand crossbar, and quantify its impact

on performance.

14

Head

Speculative Head

2clk

ROB 0 ROB 1 ROB 2 ROB 3

Figure 2.4: Simplified diagram of core fusion’s distributed ROB. In the
figure, ROB 1’s head instruction pair is not ready to commit,
which is communicated to the other ROBs. Speculative and
conventional heads are spaced so that the message arrives just
in time (2 clock cycles in the example). Upon completion of
ROB 1’s head instruction pair, a similar message is propagated,
again arriving just in time to retire all four head instruction
pairs in sync.

Wake-up and Selection

When copy instructions reach the consumer core, they are placed in a FIFO

copy-in queue. Each cycle, the scheduler considers the two copy instructions

at the head, along with the instructions in the conventional issue queue. Once

issued, copies wake up their dependent instructions and update the physical

register file, just as regular instructions do.

Reorder Buffer and Commit Support

Fused in-order retirement requires co-ordinating four ROBs to commit in lock-

step up to eight instructions per cycle. Instructions allocate ROB entries locally

15

at the end of fetch. If the fetch group contains less than eight instructions, NOPs

are allocated at the appropriate cores to guarantee alignment (Section 3.4 quan-

tifies the impact that these “ROB bubbles” have on performance). Of course, on

a pipeline bubble, no ROB entries are allocated.

When commit is not blocked, each core commits two instructions from the

oldest fetch group every cycle. When one of the ROBs is blocked, all other cores

must also stop committing on time to ensure that fetch blocks are committed

atomically in order. This is accomplished by exchanging stall/resume signals

across ROBs. To accommodate the inevitable (but deterministic) communica-

tion delay, each ROB is extended with a speculative head pointer in addition to

the conventional head and tail pointers (Figure 2.4). Instructions always pass

through the speculative ROB head before they reach the actual ROB head and

commit. Instructions that are not ready to commit by the time they reach the

speculative ROB head stall immediately, and send a “stall” signal to all other

cores. Later, as they become ready, they move past the speculative ROB head,

and send a “resume” signal to the other cores. The number of ROB entries

between the speculative head pointer and the actual head pointer is enough

to cover the communication latency across cores. This guarantees that ROB

stall/resume always take effect in a timely manner, enabling lockstep in-order

commit. In our experiments (Section 3), we set the communication latency to

two cycles, and consequently the actual head is separated from the speculative

head by four instruction slots on each core at all times.

16

Load/Store Queue Organization

Our scheme for handling loads and stores is conceptually similar to clustered

architectures [4, 12, 20, 34, 59]. However, while most proposals in clustered

architectures choose a centralized L1 data cache or distribute it based on bank

assignment, we keep the private nature of L1 caches, requiring only minimal

modifications to the CMP cache subsystem.

Instead, in fused mode, we adopt a banked-by-address load-store queue

(LSQ) implementation. The two bits that follow the block offset in the effec-

tive address are used as the LSQ bank-ID to select one of the four cores, and

enough index bits to cover the L1 cache are allocated from the remaining bits.

The rest of the effective address and the bank-ID are stored as a tag. Making the

bank-ID bits part of the tag is important to properly disambiguate cache lines

regardless of the configuration.

Effective addresses for loads and stores are generally not known at the time

they are renamed. We attack this problem through LSQ bank prediction [4, 6].

The SMU steers each load and store to the predicted core. Each core allocates

load queue entries for the loads it receives. On stores, the SMU also signals all

cores to allocate dummy store queue entries regardless of the bank prediction.

Dummy store queue entries guarantee in-order commit for store instructions by

reserving place-holders across all banks for store bank mispredictions. Upon ef-

fective address calculation, remote cores with superfluous store queue dummies

are signaled to discard their entries (recycling these entries requires a collaps-

ing LSQ implementation). If a bank misprediction is detected, the store is sent

to the correct queue. Of course, these messages incur delays, which we model

accurately in our experiments.

17

In the case of loads, if a bank misprediction is detected, the load queue en-

try is recycled (LSQ collapse) and the load is sent to the correct core. There, it

allocates a load queue entry and resolves its memory dependences locally. In

case the load queue is full at the time the load arrives, it searches the load queue

for older instructions. If no such entry is found, a replay trap is taken, and the

load is steered to the right core. Otherwise, the load is buffered until a free load

queue entry becomes available.

Fence synchronization operation is dispatched to all the queues. The fence

is considered complete once each one of the local fences completes locally.

2.2 Dynamic Reconfiguration

Support for dynamic reconfiguration to respond to software changes (e.g., dy-

namic multiprogrammed environments or serial/parallel regions in a partially

parallelized application) can greatly improve versatility, and thus performance.

In general, we envision run-time reconfiguration enabled via a simple applica-

tion interface. The application requests core fusion/split actions through a pair

of FUSE and SPLIT ISA instructions, respectively. In most cases, these requests

can be readily encapsulated in conventional parallelizing macros or directives.

If, at the time of a FUSE request, fusion is not possible (e.g., in cases where an-

other application is running on the other cores), the request is simply ignored.

This is possible because core fusion provides the same execution model regard-

less of the configuration.

18

CHAPTER 3

EVALUATING FUSION OF OUT-OF-ORDER CORES*

3.1 Experimental Setup

We evaluate the performance of 4-way core fusion and compare it against three

monolithic configurations: two-, four-, and six-issue out-of-order cores. Ta-

ble 3.1 shows the microarchitectural configuration of the two-issue cores in our

experiments. Four- and six-issue cores have two and three times the amount

of resources as each one of the two-issue cores, respectively, except that first

level caches, branch predictor, and BTB are four times as large in the six-issue

core (the sizes of these structures are typically powers of two). Across different

configurations, we always maintain the same parameters for the shared portion

of the memory subsystem (system bus and lower levels of the memory hierar-

chy) (Table 3.2). All configurations are clocked at the same speed (this mainly

favors the wide-issue cores). Our experiments are conducted using a detailed,

heavily modified version of the SESC [43] simulator. Contention and latency

are modeled at all levels. In fused mode, this includes two-cycle wire delays for

cross-core communication across fetch, operand and commit wiring, the addi-

tional latency due to the eight-stage rename pipeline, and contention for SMU

dispatch ports. (We explain later how we derive cross-core communication la-

tencies.)
∗ c© ACM, 2007. Reprinted, with permission, from ”E. Ipek, M. Kırman, N. Kırman, J.

F. Martı́nez. Core Fusion: Accommodating software diversity in chip multiprocessors. In
Intl. Symp. on Computer Architecture (ISCA), pages 186-197, San Diego, CA, Jun. 2007.
http://doi.acm.org/10.1145/1250662.1250686”

19

Table 3.1: Two-Issue processor parameters.

Two-Issue Processor Parameters
Frequency 4.0 GHz
Fetch/issue/commit 2/2/2
Int/FP/Ld/St/Br Units 1/1/1/1/1
Int/FP Multipliers 1/1
Int/FP issue queues 16/16
Copy-In/Copy-Out queues 16/16
ROB entries 48
Int/FP registers (Arch.+Ren.) 32+40 / 32+40
Ld/St queue entries 12/12
Bank predictor 2K-entries
Max. br. pred. rate 1 taken/cycle
Max. unresolved br. 12
Br. penalty (min.) 7 cycles (14 when fused)
Br. predictor Alpha 21264
BTB size / RAS entries 512 entries/ 32
iL1/dL1 size 16 kB
iL1/dL1 block size 32B/32B
iL1/dL1 round-trip 2/3 cycles
iL1/dL1 ports 1 / 2
iL1/dL1 MSHR entries 8
iL1/dL1 associativity DM/4-way
Coherence protocol MESI
Memory Disambiguation Perfect
Consistency model Release consistency

Table 3.2: Parameters of the shared-memory subsystem.

Shared-memory Subsystem
System bus transfer rate 32GB/s

Shared L2 4MB, 64B block size
Shared L2 associativity 8-way

Shared L2 banks 16
L2 MSHR entries 16/bank

L2 round-trip 32 cycles (uncontended)
Memory round-trip 320 cycles (uncontended)

Applications

We conduct the simulations on sequential workloads that comprise nine integer

and eight floating point applications from the SPEC2000 suite [22]. We use the

20

MinneSpec reduced input sets [30]. In all cases, we skip the initialization parts

and then simulate the applications to completion.1

3.2 Hardware Overhead

We compare the areas of all configurations.

Prior work [32, 31, 44, 45] shows that the area overheads of key microarchi-

tectural resources scale superlinearly with respect to issue width in monolithic

cores. Burns et al. [9] estimate the area requirements of out-of-order processors

by inspecting layout from the MIPS R10000 and from custom layout blocks,

finding that four- and six-issue cores require roughly 1.9 and 3.5 times the area

of a two-issue core, respectively, even when assuming clustered register files,

issue queues, and rename maps, which greatly reduce the area penalty of im-

plementing large SRAM arrays.2 Recall also that our six-issue baseline’s first

level caches and branch predictor are four times as large as those of a two issue

core. Consequently, we model the area requirements of our four- and six-issue

baselines to be two and four times higher than a two-issue out-of-order core,

respectively.3

We estimate the area overhead of core fusion additions conservatively, as-

suming that no logic is laid out under the metal layer for cross-core wiring.

Specifically, we use the wiring area estimation methodology described in [33],

1Our simulation infrastructure currently does not support the other SPEC benchmarks.
2Note that, when all resources are scaled linearly, monolithic register files grow as O(w3),

where w is the issue width. This is due to the increase in the number of bit lines and word lines
per SRAM cell, times the increase in physical register count.

3We also experimented with an eight-issue clustered core (optimistically assumed to be area-
equivalent to the six-issue core), but found its performance to be inferior. Consequently, we
chose the six-issue monolithic core as our baseline.

21

assuming a 65nm technology and Metal-4 wiring with a 280nm wire pitch [17].

Accordingly, we find the area for fetch wiring (74 bits/link) to be 0.30mm2,

the area for rename wiring (244 bits/link) to be 1.56mm2, and the area for the

operand crossbar (76 bits / link) to be 1.46mm2. The area of the commit wiring is

negligible, as it is two bits wide. This yields a total area overhead of 3.32mm2 for

fusing a group of four cores, or 6.64mm2 for our eight-core CMP. Using CACTI

3.2, we also estimate the total area overhead of the SMU, the extra i-cache tags,

copy-in/copy-out queues, and bank predictors (four bank predictors, one per

core) to be 0.68, 0.25, 0.26, 0.23mm2 per fusion group, respectively, for a total of

2.84mm2 for the entire chip. Adding these to the wiring estimates, we find the

total area overhead of core fusion to be 9.48mm2. Even for a non-reticle-limited,

200mm2 die that devotes half of the area to the implementation of the cores, this

overhead represents roughly three quarters of the area of one two-issue out-of-

order core. Hence, we conservatively assume the area overhead to be equal to

one core.

We estimate the latency of our cross-core wiring additions conservatively, as-

suming that cores are laid out in a worst-case organization that maximizes cross-

core communication delays. We assume that each group of four cores in our

eight-core CMP must communicate over a distance equal to one half of the chip

edge length. Assuming a 65nm technology, a 4GHz clock, and 50ps/mm Metal-

4 wire delay [17], we find that it is possible to propagate signals over a distance

of 5mm in one cycle. Even for a reticle-limited, 400mm2 die with a worst-case

floorplan, this represents a two-cycle cross-core communication latency. While

these delays are likely to be lower for a carefully organized floorplan [33] or for

smaller dice, we conservatively model fetch, operand, and commit communi-

cation latencies to be equal to two cycles, and due to its wider links, we set the

22

bzip2 crafty gcc mcf parser perlbmk twolf vortex vpr g−mean
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

 S
pe

ed
up

 o
ve

r T
w

o−
is

su
e

 2.224

Two−issue
Four−issue
CoreFusion
Six−issue

Figure 3.1: Speedup over base core for SPECINT benchmarks.

applu apsi art equake mesa mgrid swim wupwise g−mean
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

 S
pe

ed
up

 o
ve

r T
w

o−
is

su
e

Two−issue
Four−issue
CoreFusion
Six−issue

Figure 3.2: Speedup over base core for SPECFP benchmarks.

latency of the rename communication to three cycles (which makes the rename

pipeline add up to eight cycles).

3.3 Core-Fusion Performance

Figures 3.1 and 3.2 show speedups with respect to two-issue out-of-order core

on SPEC 2000 applications. As expected, the results indicate that wide-issue

cores have significant performance advantages on sequential codes. Configura-

23

tions with a six-issue monolithic core obtain average speedups of 73% and 47%

on floating-point and integer benchmarks. (Speedups on floating-point bench-

marks are typically higher due to higher levels of ILP present in these applica-

tions.) Configurations that employ a four-issue core observe average speedups

of 35% and 27% on floating-point and integer-benchmarks, respectively. Core

fusion improves performance over the fine-grain two-issue out-of-order core by

up to 81% on floating-point applications, with an average of 50%. On integer

applications, up to 79% speedup improvements are obtained, with an average

speedup of 30%.

In summary, the monolithic six-issue core performs best, followed by Core-

Fusion’s fused core. While core fusion enjoys a high core count to extract TLP,

it can aggressively exploit ILP on single-threaded applications by adopting a

fused configuration.

3.4 Performance Analysis

In this section, we analyze and quantify the performance overhead of cross-core

communication delays. We also investigate the efficacy of our distributed ROB

and LSQ implementations.

Distributed Fetch. Our fused front-end communicates taken branches across

the FMU. Consequently, while a monolithic core could redirect fetch in the cy-

cle following a predicted-taken branch, core fusion takes two additional cycles.

Figures 3.5 and 3.5 show the speedups obtained when the fused front-end is

idealized by setting the FMU communication latency to zero. The performance

impact of the FMU delay is less than 3% on all benchmarks except vpr, indi-

24

6i R I 6i R I 6i R I 6i R I 6i R I 6i R I 6i R I 6i R I 6i R I
0

10
20
30
40
50
60
70
80
90

100

 F
et

ch
 C

yc
le

s
(%

)

bzip2 crafty gcc mcf parser perlbmk twolf vortex vpr

True fetch
FMU stall
Wrong path
Pipeline stall

Figure 3.3: Distribution of fetch cycles on SPECINT benchmarks. 6i, R,
and I denote our six-issue monolithic baseline, a realistic fused
front-end with a two-cycle FMU delay, and an idealized fused
front-end with no FMU delay, respectively.

cating that there is significant slack between the fused front- and back-ends.

Figures 3.3 and 3.4 illustrate this point by showing a breakdown of front-end

activity for realistic (R) and idealized (I) FMU delays, as well as our six-issue

monolithic baseline (6i). On memory-intensive floating-point applications, the

fused front-end spends 35-95% of its time waiting for the back-end to catch up,

and less than 5% of its time communicating through the FMU. On integer codes,

10-60% of the front-end time is spent communicating through the FMU, but re-

moving this delay does not necessarily help performance: once the FMU delay

is removed, the idealized front-end simply spends a commensurately higher

portion of its total time waiting for the fused back-end. Overall, performance is

relatively insensitive to the FMU delay.

SMU and the Rename Pipeline. Figures 3.5 and 3.6 show the speedups ob-

tained when pipeline depth and the SMU are idealized (by reducing the eight-

stage rename pipe to a single stage, and allowing the SMU to dispatch an ar-

bitrary number of instructions to each core, respectively). Depending on the

25

6i R I 6i R I 6i R I 6i R I 6i R I 6i R I 6i R I 6i R I
0

10
20
30
40
50
60
70
80
90

100

 F
et

ch
 C

yc
le

s
(%

)

applu apsi art equake mesa mgrid swim wupwise

True fetch
FMU stall
Wrong path
Pipeline stall

Figure 3.4: Distribution of fetch cycles on SPECFP benchmarks. 6i, R, and I
denote our six-issue monolithic baseline, a realistic fused front-
end with a two-cycle FMU delay, and an idealized fused front-
end with no FMU delay, respectively.

application, the longer rename pipeline results in performance losses under 5%,

with an average of less than 1%. While fusion increases the branch mispredic-

tion penalty from seven to fourteen cycles, both the branch predictor and the

BTB are four times as large in fused mode, decreasing misprediction rates and

lowering sensitivity to pipe depth. The performance impact of restricted SMU

bandwidth is more pronounced, and ranges from 0-7%, with an average of 3%.

However, considering the wiring overheads involved, and the impact on the

two-issue base cores, these performance improvements do not warrant an im-

plementation with higher dispatch bandwidth.

Operand Crossbar. Figures 3.5 and 3.6 show the speedups achieved by an ide-

alized operand crossbar with zero-cycle latency. Unlike communication delays

incurred in the front-end of the machine, the latency of the operand crossbar

affects performance noticably, resulting in up to 18% performance losses, with

averages of 13% and 9% on integer and floating point applications, respectively.

Sensitivity is higher on integer codes compared to floating-point codes: the lat-

26

bzip2 crafty gcc mcf parser perlbmk twolf vortex vpr g−mean
0.95

1
1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

 S
pe

ed
up

 o
ve

r C
or

eF
us

io
n

CoreFusion
CF−Ideal FMU
CF−Ideal Pipe Depth
CF−Ideal Dispatch BW
CF−Ideal Operand Xbar
CF−Centralized ROB&LSQ

Figure 3.5: Speedups on SPECINT benchmarks when the FMU latency,
rename pipeline depth, SMU dispatch bandwidth, operand
crossbar delay, or the distributed ROB/LSQ are idealized.

applu apsi art equake mesa mgrid swim wupwiseg−mean
0.95

1
1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

 S
pe

ed
up

 o
ve

r C
or

eF
us

io
n

1.455CoreFusion

CF−Ideal FMU
CF−Ideal Pipe Depth
CF−Ideal Dispatch BW
CF−Ideal Operand Xbar
CF−Centralized ROB&LSQ

Figure 3.6: Speedups on SPECFP benchmarks when the FMU latency,
rename pipeline depth, SMU dispatch bandwidth, operand
crossbar delay, or the distributed ROB/LSQ are idealized.

ter are typically characterized by high levels of ILP, which helps hide the latency

of operand communication by executing instructions from different dependence

chains.

Distributed ROB and LSQ. Inevitably, core fusion’s distributed ROB and LSQ

organizations suffer from inefficiencies that would be absent from a monolithic

implementation (e.g., NOP insertion for aligned ROB allocation, and dummy

27

entry allocation in the LSQ). Figures 3.5 and 3.6 show that eliminating these

inefficiencies improves performance by 7 and 23% over core fusion on integer

and floating point codes, respectively. Along with the latency of the operand

communication, this reduction in effective LSQ and ROB sizes has the highest

impact on core fusion’s performance.

28

CHAPTER 4

CORE FUSION BASED ON IN-ORDER CORES

In the landscape of multicore chips, in-order cores are quickly gaining

relevance–they are extremely power-efficient and simple, and they help max-

imize core count, which is ideal for exploiting throughput oriented or highly

parallel codes. In-order cores already have a significant presence in the server

domain, where there is ample thread-level parallelism.

In this work, we propose mechanisms to facilitate dynamic aggregation of

small, fundamentally-independent in-order cores to execute sequential code

fast. Our hardware-based approach does not change the ISA, and does not re-

quire compiler support. Unlike the case of out-of-order core fusion, where the

base cores provide the design with valuable opportunities for latency hiding,

minimally-provisioned in-order base cores leave little margin for inefficiencies.

In our design, loosely coupled cores process instructions at their own pace,

and maintain the program state in a distributed manner. The modular and dis-

tributed mechanisms require minimal central processing and functional repli-

cation. In the course of formulating our solution, we devise: (1) A distributed

checkpoint-based mechanism for bookkeeping of the program state; (2) a dis-

tributed renaming mechanism; (3) a lightweight approach for distributed mem-

ory disambiguation, and (4) a lightweight lookahead execution within each base

core to partially hide cross-core communication and other latencies latencies.

Our evaluation shows that a four-way fused configuration delivers a 45% per-

formance gain over a single core, at the cost of 15% hardware overhead per core.

We describe the proposed core-fusion architecture in Section 4.2 after review-

29

ing the base in-order core in the next section. We quantify the area overhead of

core fusion and present its performance evaluation in Chapter 5.

4.1 Base In-order Core

We assume a chip multiprocessor targeted for 32nm technology node that com-

prises single-issue, in-order, 8-stage-pipeline cores with 16KB private i- and d-

caches1. Cores are grouped in four, and cores within each group share a unified

L2 cache.

Figure 4.1 shows the base core’s pipeline structure. Most instructions fin-

ish execution in one cycle, while integer multiply/divide, floating-point, and

load instructions finish execution in three cycles2. The single write-back stage

(WB) for all instructions guarantees in-order completion and update of the ar-

chitectural state (except for load misses). It also simplifies architectural register

file (ARF), by requiring a single write port (load misses may require another

depending on implementation). All exceptions are caught at WB stage.

Direct jumps are processed at decode, while conditional branches and in-

direct jumps are resolved at EXE1. Each core has a branch predictor, a branch

target buffer (BTB), and a return address stack (RAS). On a misprediction, all

newer instructions are flushed, and fetch resumes from the correct target ad-

dress next cycle.

1Using Cacti5.3 [56], we estimate two-cycle access latency for the i- and d-caches, hence the
two stages for fetch and d-cache access.

2A double-precision floating-point unit in a SPE element of the IBM CELL processor consists
of a 9-cycle pipeline and has a cycle time of 11FO4 [40]. Assuming a latching delay of 2FO4, the
latency of computation is 81 FO4. Accordingly, in our three-cycle pipeline, we must fit 27 FO4.
Using ITRS [26] projections, we estimate that at 32 nm technology and at 4 GHz clock frequency,
this amount of computation can easily fit in one cycle.

30

D - cache

Score-
board

ISSUE EXE1
EXE2/
MEM1

EXE3/
MEM2 WB

ARF

WrBuff

DE

BU

FE2FE1

I - cache

BTAC

Figure 4.1: Pipeline of the base in-order core.

We assume a unified ARF with a split-cycle write/read implementation [21]

(the write-back stage writes during the first half of a cycle, and the issue stage

reads operands during the second half). This avoids structural hazards, and

it allows consumer instructions to read operands just updated by producer in-

structions in the first half cycle. The pipeline has all the needed bypass paths to

EXE1 from later stages, in order to achieve back-to-back dependent instruction

execution.

Effective addresses are calculated in EXE1. Stores are inserted into a FIFO

write buffer (no store merging) in MEM1, and are issued to the cache from the

buffer when they reach the WB stage and it is known that it is safe to perform

the memory update. For loads, cache tag and data array accesses, as well as

the check against the write buffer, are performed in parallel in MEM1. Data for-

warding from the write buffer, if any, happens in MEM2; also in MEM2 the data

array access is completed. Cache misses skip the write-back phase. They gen-

erally do not block subsequent L1 accesses; the cache has miss-status handling

registers (MSHR).

The core supports weak memory consistency, by ensuring that when a fence

operation is at the head of the write buffer, it can complete only when all previ-

ous stores have become globally visible. Also, loads cannot issue when there is

at least one issued but incomplete prior fence in the pipeline.

31

The issue stage has a simple scoreboard to track data hazards due to multi-

cycle operations. A Ready bit per register is reset when a multi-cycle instruction

issues, and set in a timely manner for bypassing. On a load miss, the Ready bit

is set back assuming a hit. The RAW and WAW hazards on destination registers

for load misses are handled via an Unknown-WB-Time bit per register. When a

load issues, this bit is set, conservatively assuming a miss. It is reset either on

a hit (on time to enable bypassing), or when a miss is eventually resolved and

the result is written back to the ARF. A set Unknown-WB-Time bit for any of

the source (RAW) and destination (WAW) registers of an instruction prevents it

from issuing.

On a pipeline flush, instructions in the front-end including the issue stage

are flushed. If the flush is due to an exception, caught at WB stage, then in-

structions in the execution stages are allowed to drain, properly setting back the

scoreboard bits, but without writing to the ARF.

4.2 Architecture

In this section, we describe the mechanisms to distribute execution of a single

instruction stream over a group of four in-order cores, effectively constituting

a four-issue processor. We strive for a modular approach that does not repli-

cate functionality or employ complex structures typically seen in out-of-order

processors. The following sections detail how we accomplish this. We explain

our extensions extensively in detail, however the overall complexity and associ-

ated area overhead remain relatively low (Section 5.2) Figure 4.2 highlights the

components we introduce on top of a base core.

32

RE

COPY
ISSUE

COPY
RE/WB

Steering

Copy gen.

CF state

SMU Operand Xbar
w

rr

FMU

Abbreviations
FMU: Fetch management unit
SMU: Steer management unit
RE : Rename stage
CF : Core fusion

DE

BU

FE2FE1

I - cache

BTAC

D - cache

Score-
board

ISSUE EXE1 EXE2/
MEM1

EXE3/
MEM2 WB

ARF

WrBuff

Figure 4.2: Core-fusion support on top of an in-order pipeline.

4.2.1 Distributed Program State

A base core modifies the program state in the architectural register file (ARF)

in order at WB stage. A distributed execution, on the other hand, disperses the

program state across the ARFs of all four cores. Retrieving a precise program

state upon mispredictions or exceptions may not be possible, unless the design

includes, for example, a global re-order buffer (ROB), as well as a global ARF or

commit-time rename table. Adding such hardware support is not only costly,

we believe it is unnecessary.

Checkpoint-based execution, where a processor periodically takes snap-

shots of the program state, has been proposed as an alternative to ROB-based

execution. It enables large instruction windows with relatively limited re-

sources, and has been successfully used to enable speculative execution mecha-

nisms [2, 41, 37, 54, 29].

We leverage checkpointing as a means to enable cost-effective bookkeeping

of the program state across cores. It avoids fine-grain global commit of instruc-

tions. On any event that requires program-state recovery (e.g. on misspecula-

tion or exception), the last committed checkpoint is restored.

33

Our design retains a checkpointed program state in the ARF registers hold-

ing the program-state values at the time of checkpointing. This pins those regis-

ters during the lifetime of the checkpoint.3The distributed nature of our check-

points necessitates a lightweight mechanism to coordinate global checkpoint

allocation and recovery. We review the checkpointing support in Section 4.2.4,

after we detail the architecture.

4.2.2 Distributed Fetch

We mostly borrow the approach for out-of-order core fusion to achieve collec-

tive fetch across cores. Each core fetches one instruction, for up to four con-

secutive instructions per cycle. Fetch is aligned such that the two lowest bits

in the instruction address determine the fetching core. These two bits are not

used in indexing predictor tables and caches, but are used in the tag, if any.

For out-of-order core fusion, we add extra tags to reconfigure the i-cache into

smaller cache blocks in fused mode, to utilize otherwise unused regions. These

effectively build wider fetch, larger i-cache and branch predictor from smaller

individual core components. In in-order core fusion, however, single instruc-

tion granularity requires eight cache-tag arrays if we were to use the same i-

cache reconfiguration approach. Our preliminary estimations revealed that this

would significantly increase the area overhead relative to a base in-order core.

We avoid this by leaving 3/4 of each i-cache block unused in fused mode, ef-

fectively having the same aggregate amount of i-cache as in a base core. This

simplification is reflected in our hardware-overhead estimation (Section 5.2) and

3Because the architectural state is distributed over four ARFs, which provide an aggregate
space four times the number of architectural registers, the cores may store checkpoints in place
and still have free registers to work with.

34

evaluation (Section 5.4).

A Fetch Management Unit (FMU) coordinates fetch alignment and global

branch-history update across cores, which results in one cycle fetch bubble

on taken branches and two-cycle bubble on function returns through return-

address stack in Core 0.

Due to checkpointed execution, branch predictions are assigned a confidence

for checkpoint allocation on low-confidence branches. We use saturated coun-

ters of four bits, and confidence threshold of fifteen. Confidence award is one,

and penalty is seven. We record branch predictions and their confidence for

each checkpoint interval, and reuse them after checkpoint recovery. Resolved

branches correct their prediction record and set their confidence to high.

Each core independently decodes its instruction and sends it to a central-

ized hardware structure that is responsible for instruction steering, named Steer-

ing Management Unit (SMU). We assume one cycle link delay to the SMU (Sec-

tion 5.2). The SMU is the only structure that observes the complete program

flow. Therefore, it plays a critical role in satisfying the program order, specif-

ically the register and memory dependences. It coordinates global checkpoint

allocation and recovery, and steers instructions to cores. In the following sec-

tions, we describe these mechanisms.

4.2.3 Satisfying Register Dependences

We introduce register renaming to allow preserving the checkpointed values in

the ARF registers, efficiently utilize registers, and correctly track dependences.

35

We propose a distributed renaming technique to reduce coupling between

SMU and cores, and simplify the SMU and rename logic. Each core indepen-

dently and locally maps logical source and destination registers to its ARF reg-

isters; the SMU does not manage register allocation and release, nor does it store

any logical-to-physical mappings. We do not increase the size of each ARF–the

distribution of the architectural state over the four cores automatically creates

space in each ARF for renaming.

Distributed register renaming

Each core is augmented with a rename stage that comes prior to the issue stage

(Figure 4.2). It renames instructions coming one at a time from the SMU, and

inserts them into the regular issue queue for execution.

A Local Rename Table (LRT) in the rename stage maps logical registers to

the local ARF registers. Different from typical rename tables, some LRT entries

might be invalid, and some valid mappings might be stale if a logical register is

more recently mapped in another core. Only the SMU knows and keeps track

of the core that has the most recent mapping for each logical register in a table.

Only local source operands locate their ARF register via the LRT. A remote

source operand (appropriately tagged by the SMU) allocates a new local ARF

register from the free-register list without updating the LRT. The remote value

will be brought into the register by a copy instruction injected by the SMU into

the sourcing core. The ARF register identifier is recorded in a small table called

Remote Operand Table (ROT).The ROT is a RAM array, indexed by a remote-

operand id that is assigned by the SMU at the time of steering. The id is also at-

36

tached to the corresponding copy instruction, so that the two instructions match

on a common ROT entry. When the copy instruction arrives at the destination

core, it checks the ROT entry to learn the ARF register to copy over.

It is possible that the copy instruction arrives before the regular instruction

is renamed. In this case, which is detected through invalid ROT entry, the copy

instruction allocates an ARF register and records it in the ROT. The regular in-

struction finds the entry valid and uses that register to rename its remote source

operand. When the ROT entry is consumed by the second instruction, the ROT

entry is invalidated.

The size of the ROT is large enough to accommodate the maximum number

of remote operands in the issue queue.4 SMU generates remote-operand ids per

core using a wrap-around counter. Free-ROT-entry assignment is guaranteed

by (1) securing a free issue-queue entry before dispatching an instruction and

its copy instruction(s), and (2) releasing issue queue entries in order, already

being the case.

Finally, renaming a destination register simply allocates a free ARF register

and updates the LRT.

Because of renaming, an ARF register’s Ready bit in the scoreboard is reset at

the time the register is allocated from the free-register list. For locally produced

registers, it is set in the main pipeline as in the base core. For remote-operand

registers, it is set by the copy instruction upon value delivery.

Because the SMU does not know a priori whether there are free registers in

the cores, it is possible that an instruction may be unable to secure an ARF regis-

4In an alternative implementation, the SMU can constrain the number of remote operands
per core.

37

ter during renaming. In this case, the instruction is marked as having raised an

exception. At WB stage, the failure will be communicated to the SMU as a Re-

name Failure, and it will cause the architecture to roll back to the last committed

checkpoint. When a rename failure occurs on copy-induced register allocation,

the failure is propagated to the consumer instruction through a flag in the ROT

entry. It is easy to guarantee forward progress on rename failures, by making

cores send a Free-Register Threshold signal to the SMU when the number of free

ARF registers drops below a predetermined threshold. Upon receiving such a

signal by any core, the SMU initiates checkpoint allocation, which guarantees

absence of rename failures up to that point (baring mispredictions or excep-

tions). We dynamically adjust this threshold between an aggressive and a con-

servative one based on the occurrence of rename failures, to minimize rollback

events. The SMU also takes measure to prevent mapping too many registers to

a core (Section 4.2.8).

Remote-operand transfer flow

This section details the copy-instruction flow (Figure 4.3). At a high level, the

SMU dispatches a copy instruction to the source core where the remote operand

value currently resides. Upon reading the value, the copy instruction delivers

it to the core of the instruction with the remote operand, over a cross-core full

crossbar.

Copy instructions share the same path with the regular instructions from

the SMU up to and including the rename stage in the source core. This ensures

properly ordered renaming. Because their source operand is always local, they

use the LRT to locate the ARF register. Afterwards, they are placed in a FIFO

38

From
SMU

Copy-out

LRT
SB

ARF
read

ROTcontrol

data
Copy-in

Source core Destination core

ARF
write

t1 t2 t3 t4

SB

Figure 4.3: Copy-instruction flow through the source and destination
cores. SB is short for scoreboard.

RAM copy-out queue (separate from the issue queue) for issue. The copy in-

struction at the head of the copy-out queue checks the scoreboard for operand

readiness, in the same way regular instructions do. When it issues, it reads the

ARF5, and goes to its destination core where it is placed in a copy-in queue. Pro-

cessing copy instructions at the source core, thus, requires an additional read

port to both the scoreboard and the ARF.

We assume that the remote-operand id precedes the data transfer, to make

room for (1) multiplexing among copy instructions from other cores, (2) locat-

ing the ARF register through ROT (Section 4.2.3), and (3) setting the Ready bit

of that register so that a consumer instruction can issue earliest next cycle, all

in the destination core.6 When issued from the copy-in queue, the copy instruc-

tion updates the ARF register and terminates. The aforementioned operations

require one extra write port to the Ready bit array. Copy-in queue accesses use

the extra write port originally reserved for load misses.

Renaming and proper register release (Section 4.2.5), together ensure that

no WAW and WAR hazards occur between instructions in the copy queues and

5We assume proper bypassing from the main pipeline.
6In rare cases, the Unknown-WB-Time flag of the register is set. This cancels the write-back

of the copy instruction. Eventually, when the load miss resets the flag, the copy instruction
resumes. This requires one read port to the Unknown-WB-Time array.

39

regular issue queue. (Recall that, checking the scoreboard for operand readiness

handles the RAW hazards.)

4.2.4 Checkpoint Allocation, Commit, and Recovery

Our preliminary studies showed that a lightweight checkpoint management

that does not block instruction flow is critical to performance. This led us to

implement a novel distributed and nonblocking checkpointing approach.

Checkpoint allocation and commit

To allocate a checkpoint, the SMU generates a special Checkpoint instruction,

which is dispatched to all cores. These are interleaved with ordinary instruc-

tions cutting them in waves. A Checkpoint passes through the main pipeline in

a core. It checkpoints the LRT at the rename stage. At this time, it is guaran-

teed that all instructions prior to the checkpoint have updated the LRT. Only

valid and non-stale mappings need to be checkpointed, which are conveyed

by the SMU along with the Checkpoint instruction. The checkpointed registers

are pinned and not allowed to be released/overwritten until the checkpoint is

released. On successful completion at WB stage, it notifies the SMU in order,

so that the SMU properly orders multiple in-flight checkpoint allocations and

determine the final action for each. The SMU deems a checkpoint committed

when it receives the acknowledgements from all cores. Then, it sends a Commit

signal to all cores. Each core commits the oldest non-committed checkpoint, and

releases the last committed one. Because checkpoints are handled at WB, they

are committed in order.

40

Checkpoint recovery

A mispredicted or excepting instruction in a core communicates a global flush

request to the SMU at WB stage. This orders flush requests with respect to

Checkpoint completions. Upon receiving a flush request, the SMU first waits

all prior checkpoints to commit (baring any flush request prior in program or-

der, necessarily from another core). At this point, the SMU cancels more recent

checkpoints and flushes the cores. A worst case delay allows any in-flight copy

instruction in the operand crossbar to be flushed as well. On receiving a com-

plete set of flush acknowledgements, the SMU signals Checkpoint Recovery to

cores, which instructs each core to restore the last committed checkpoint, clear

the ROT, and properly initialize the free-register list. The SMU also restores its

logical register-to-core mapping from its own checkpoint. Note that fetching the

new instruction stream overlaps with checkpoint recovery.

Committing speculative memory updates

We keep speculative memory updates off the caches and memory. Stores re-

main in the write buffer and are not issued to the memory system until they

are committed. A write buffer maintains a speculation level (SL) (initially 1 in

fused mode), whose value is attached to a write-buffer entry upon allocation. A

Checkpoint instruction increments the SL as it passes through the pipeline. On a

checkpoint commit, the SL as well as the non-zero SL fields in the write-buffer

entries are decremented. Entries whose SL becomes 0 are effectively commit-

ted. This commits all speculative stores prior to the commit point. On a flush,

all speculative entries are invalidated.

41

When write-buffer occupancy reaches a threshold, the core sends a commit

request to the SMU. If a store finds the write buffer full with speculative stores,

and no checkpoint commit is expected (speculation level is still 1), the store is

let to issue and go through the pipeline to request a flush at WB stage.

4.2.5 Register Recycling

In our distributed register management, each core recycles its ARF registers in-

dependently using only local information. The SMU is not directly involved in

register recycling.

A register can be released when (1) all consumers have read it, and (2) it is

not part of any checkpoint.

First, we identify after which local instruction there will be no more con-

sumers in program order to an ARF register. An instruction whose destination

rename mapping overwrites a valid LRT mapping safely indicates the end of

consumers for the ARF register in this previous mapping. In addition, an in-

struction with a remote operand is the only consumer of the register allocated

for it.7 (This does not apply if the register is made usable to subsequent instruc-

tions through a register replication optimization (Section 4.2.9).) Also, after a

local instruction that identifies a stale logical-to-ARF register mapping, there

cannot be subsequent consumers of that ARF register, since any subsequent

instruction will necessarily use the more recently mapped register in another

core. There are two occasions for identifying a stale mapping. First, when an

instruction renames its remote source operand, the current local mapping for

7Recall that the mapping is not present in the LRT.

42

the register in the LRT, if valid, must be stale. Second, when a Checkpoint in-

struction presents the list of logical registers to be checkpointed at rename stage

(Section 4.2.4), the remaining valid mappings in the LRT must be stale as well.

(Once identified, stale mappings are invalidated.) As a result, at rename stage,

each instruction identifies the registers it can recycle later.

The in-order pipeline guarantees that, by the time an instruction gets to the

WB stage, its recyclable registers have been read by all the local consumers that

went through the main pipeline. However, a preceding consumer copy instruc-

tion may still be outstanding in the copy-out queue in the core. Therefore, we

track the outstanding copy instructions using a consumer counter per ARF reg-

ister (incremented when a copy instruction is renamed, and decremented when

a copy instruction issues from the copy-out queue).

As a result, a register is recycled when (1) its recycling instruction reaches

the WB stage, (2) its copy-consumer counter is zero, and (3) it is not a part of

any checkpoint.8 Because an instruction can recycle multiple registers, we sim-

plify tracking (1) by allowing one or multiple instructions to accumulate their

recyclable registers on a to-be-recycled bit vector at rename stage, and letting the

last of these instructions to mark these registers at WB stage into a final ready-to-

recycle bit vector where they wait other recycling conditions to be satisfied. The

subsequent instructions must accumulate on a different to-be-recycled bit vector.

Hence, we provide multiple (at least two) of these vectors. We put charge on an

instruction whenever there is a free vector.
8In cases where a load-miss result register has no consumers, and it is recycled and reallo-

cated before the result is actually written back, the Unknown-WB-time bit in the scoreboard will
prevent any data hazard on this register. For this reason, copy instructions in copy-in queue also
need to check this bit before they can write to a register.

43

V

C1C2 C4
R1R2 Rm

Consumer
counters

Free-reg.
list

LRT

logical reg Checkpoints

(CAM)

logical reg

ARF reg
To-be-recycled

bit vectors

RWB

Checkpoints -
logical reg. lists

of

 A
RF

 re
gi

st
er

s

RO regs

Figure 4.4: A core’s CAM-based LRT, checkpoints of its Valid (V) bits (C1,
.., C4), and register recycling support (to-be-recycled bit vectors
(R1, .., Rm, and RWB), copy-consumer counters, and free-register
list.) A core also keeps the list of logical registers in each of its
checkpoints. The figure is not illustrative of port counts. RO is
short for remote operand.

4.2.6 Hardware Support for Register Renaming, Checkpoint-

ing, and Release

We would like to elaborate on our preferred hardware implementation for reg-

ister renaming, checkpointing and release (Figure 4.4).

Among the most common SRAM- and CAM-based rename-table implemen-

tations [45], we see the CAM-based one to be advantageous in our architecture.

A checkpoint of the rename table is simply the copy of the Valid bits in the re-

name table. A SRAM-based implementation, on the other hand, would require

checkpoint storage for full mapping table, while only some of the mappings are

actually relevant to the checkpoint. Based on the results of a recent work [50]

that compares the two approaches, we expect a CAM-based implementation of

44

our size and port requirements to be comparable to a SRAM-based one in terms

of delay and energy.

Having the LRT, its checkpoints, to-be-recycled and ready-to-recycle vectors,

copy-consumer counters, and the free-register list, all organized as arrays with

entries per ARF register simplifies the relevant operations. The only non-trivial

implementation issue is as follows. On a Checkpoint instruction, ideally only

Valid bits for non-stale mappings (Section 4.2.5) need to be checkpointed. The

remaining Valid bits should be invalidated, and the corresponding bits in the

current to-be-recycled vector should be set. The limited number of look-up ports

in the LRT renders a one-cycle implementation of locating all the stale ARF reg-

isters impractical. We achieve this over time, by first checkpointing all valid

bits, and then lazily identifying the stale mappings by checking against check-

point’s list of logical-registers.9 Any lazy approach that identifies a stale map-

ping should invalidate the LRT mapping, clear the checkpoint bit, and set the

to-be-recycled bit of the ARF register. A lazy approach does not compromise cor-

rectness on checkpoint release or recovery, as stale mappings are already not

visible/usable by any subsequent instruction. It only increases register pres-

sure. (Such issue also arises in a SRAM-based LRT implementation.)

4.2.7 Satisfying Memory Dependences

We assume a widely adopted cache hierarchy for chip multiprocessors. Fused

cores have private write-through and write-no-allocate L1 d-caches. All share

9We perform the check and clear the checkpoint bit of a stale mapping when it is already
invalidated/overwritten in the LRT by a regular instruction at rename. This avoids any extra
look-up port to the LRT. We also use the idle look-up ports on a flush to identify and free any
remaining stale mapping in the restored checkpoint.

45

an L2 cache. The L2 cache sends invalidations to the other L1 caches when it

processes a write from one of the L1 caches.

Stores: We propose a simple mechanism to handle memory dependences

without introducing load queues. Stores are replicated to all cores at the time

of steering. In a core, each replica performs address calculation and is inserted

into the write buffer as usual. Once committed, each store replica is issued to

the memory system. A store replica that hits in the L1 cache updates the cache

line and is always issued to the L2 cache, as is the operation of a write-through

cache. Store replicas from different cores reach the L2 cache in the same order.

However, allowing all stores to perform to the L2 cache may violate correct store

ordering due to any slip between cores. Therefore, we allow only the leading

store replica to perform in the L2 cache. The subsequent replicas are directly

acknowledged back upon reaching the L2 cache.10 Tracking this is straightfor-

ward: The L2 cache keeps four store counters, one per core. A store arriving

from a core is processed only if its count (after the store is accounted for) is

larger than those of others–this is the leading core. Stores by trailing cores are

accounted for and simply acknowledged. Counters are all decremented by one

whenever their counts all become nonzero–the important thing is the difference

between counts and not the counts themselves. Note that, the L2 cache need not

send invalidations on any of the store replicas, all L1 caches already see all the

stores. Fortunately, write-no-allocation policy reduces the cache-line replication

across the L1 caches due to store replication.

To reduce the number of copy instructions needed to communicate address

and data operands to store replicas, we use a special multicast copy instruction

that can encode multiple destinations (core, remote-operand-id pairs). After

10A write-no-allocate L1 cache does not expect the cache line on stores.

46

reading the source register, such copy instruction multicasts the value along

with the proper remote-operand id over the operand crossbar.

Loads: Because all L1 caches see all the stores in the program, load instruc-

tions can be steered to any core. This improves load balance and operand lo-

cality. Loads that hit in the write buffer or L1 cache complete. Load misses, on

the other hand, necessarily can only be dependent to stores in prior checkpoint

intervals. Stores in the same checkpoint interval, if any, have to be in the write

buffer. If a load miss reaches the L2 cache before any younger store replicas

from other cores, either from the same or a later checkpoint interval, it will read

the correct value from the L2 cache. However, if these younger stores are to be

committed and released to the memory, the load miss will race with them in

reaching the L2. To prevent a younger store replica to the same cache line from

updating the L2 cache before the load miss, cores wait all primary load misses

in all L1 caches at the time of a checkpoint commit to reach the ordering point in

L2 cache before releasing the stores committed by the checkpoint to the memory

system.11 (Secondary misses obtain their value from the cache line brought by a

primary miss.)

Memory fences: Finally, a memory fence instruction is always replicated to

all cores. Each replica ensures the fence operation is satisfied in a core, which is

acknowledged to the SMU. Upon receiving a full set of acknowledgments from

all cores, the SMU signals the global completion to all cores. A forward progress

issue arises when a load instruction comes after the fence with no intermediate

checkpoint allocation (i.e., commit point). The speculative fence and older stores

will be released from the write buffer on a subsequent checkpoint commit, but

such a checkpoint allocation cannot progress in the pipeline because the issue

11We do not block issue of new load instructions.

47

stage will block on the load that waits the fence to complete. We break this cycle

by always allocating a new checkpoint right after steering a fence instruction.

4.2.8 SMU Organization

With the discussed mechanisms in mind, we detail the SMU structure and its

policies in our architecture.

Mentioned a few times by now (Section 4.2.3), the SMU maintains logical

register-to-core mappings in a table, which it uses to steer instructions. In addi-

tion, it has an output buffer per destination core that is logically partitioned to

a copy-instruction and regular-instruction space. The dispatch bandwidth to a

core is restricted to a single instruction per cycle.

The SMU steers collectively-fetched blocks of instructions, one block at a

time. It uses dependence-based steering policy [45], except for store and fence

instructions which are replicated to all cores (Section 4.2.7). An instruction is

steered to the core where the producer instruction of any of its source operands

has been lastly dispatched. If this is not possible, it goes to an output buffer

with empty regular-instruction space.12 If that is not possible either, the steering

stalls. After a steering decision and copy-instruction generation (if any), SMU

stall is inevitable if there is no space in a target output buffer or credit for core-

side issue/copy-out queue.

The SMU initiates a new checkpoint allocation in the following cases: (1)

When a core signifies a reached write-buffer threshold (Section 4.2.7) or free-

register threshold (Section 4.2.3), (2) following the first branch after a flush, to
12The original steering policy in [45] looks for an empty issue queue.

48

ensure forward progress, (3) preceding a low-confidence branch, (4) if it has

been more than 32 program instructions since the last checkpoint, (5) after a

fence instruction (Section 4.2.7), and (6) when transitioning into and out of fused

mode. (1), (3), and (4) do not stall the SMU if there is no available checkpoint.

In addition, the SMU occasionally (just before allocating a new checkpoint

on exceeded free-register threshold in any of the cores) performs register balanc-

ing through move instructions to keep logical registers mapped to a core under

certain threshold. A move instruction (e.g. mv rx, rx) and its copy instruction

effectively transfers a logical register (rx in the example) from the current core

to another less loaded core. The move instructions update the logical register-

to-core mapping table as well.

Finally, when the SMU encounters an instruction that should not be executed

speculatively (e.g. I/O operation), the execution transitions to a special mode

in a single core. For this, the SMU first allocates a new checkpoint, waits for

its commit, and issues move instructions to gather the program state to the first

core. In this mode, instructions are always steered to the first core. When it

is safe to resume normal fused mode, the SMU first drains the pipeline, issues

fence instruction to ensure all stores take effect in the other caches, re-distributes

the state among cores via move instructions, and allocates a new checkpoint.

4.2.9 Performance Enhancements

We now discuss several optional techniques that improve performance signifi-

cantly, but add relatively little design effort and complexity over the base core-

fusion architecture.

49

Head

Tail Tail

Issue

Delink

VQ ptrsIQ SMU report

From MEM2
stall/advance/delink

From WB,
IQ idx

Head

Tail
Tail

VQ ptrsIQ

report ptr

(a) (b)

report
ptr

SMU report

Figure 4.5: Lookahead execution (LE) support: virtual queue (VQ) and in-
order report to the SMU. Issue-queue (IQ) entries in gray hold
non-issued instructions. (a) depicts the initial pointers in a LE,
while (b) depicts the VQ on exiting the LE. VQ Issue and Delink
pointers will be re-initialized on a subsequent LE.

Lookahead execution

Lookahead execution (LE) mode inside a core aims to hide remote-operand la-

tencies and load misses, without resorting to typical out-of-order processing

support for wake-up, select, etc. It tries to issue some of the instructions ahead

at the processing rate of a base core, utilizing otherwise idle resources, while

waiting for a blocking event to resolve. It comes with little cost on top of the base

core-fusion architecture. Specifically, register renaming and free ARF registers

handle register dependences. The global checkpointing support already main-

tains the program state. We take a conservative approach for handling memory

disambiguation. As a result, the main extensions are related to selecting an in-

struction from the issue queue, and preserving the in-order communication to

the SMU. Eventually, the mechanism is transparent to the SMU and other cores.

The required support in a core is depicted in Figure 4.5.

50

Entering lookahead execution: The mode is entered on an issue stall due to

a non-ready remote operand or dependency to a miss load. The mode is entered

only if there are other non-issued instructions.

Instruction selection: We reuse the base FIFO RAM issue queue. A virtual

queue (VQ) of non-issued instructions is constructed using an auxiliary RAM

array extending the issue queue. VQ essentially tracks these instructions in a

linked list. An entry keeps the issue-queue index of the next instruction in the

list. On inserting an instruction into the issue queue, it is also linked to the tail

of the VQ13, regardless of the execution mode. Notice that, IQ Head is also the

head of the VQ.

Upon entering LE mode, a VQ Delink pointer is initialized with IQ Head. A

VQ Issue pointer is initialized to the next entry in the linked list. At a high level,

instructions in the VQ are selected for issue one at a time by VQ Issue, which

traverses the linked list. On a successful issue, the issued entry is delinked using

VQ Delink14. For each issue trial from the VQ, VQ Delink either delinks, stalls, or

advances, effectively following the VQ Issue, however delayed by a few stages

for a reason explained below.

Memory disambiguation: We conservatively do not allow store and fence

instructions to issue during LE. We experimented with also not issuing loads

if there is a prior store or fence in the VQ. However, this resulted in not so

great performance improvement. To aid in memory disambiguation, we lever-

age the knowledge that store addresses can be calculated typically much earlier

than their data. As a result, we “pre-issue” stores (with no delinking) for the

13This is simply achieved by writing the current IQ Tail value into the entry pointed by VQ
Tail. Then VQ Tail gets this value as well.

14Notice that VQ Delink pointer is used to delink the next entry in the VQ.

51

purpose of address calculation only, pre-filling a write-buffer entry as well. Pre-

filling uses an auxiliary write buffer tail pointer which is reset to the actual tail

pointer on entering/exiting LE mode. In case a store cannot resolve its address,

subsequent loads are not issued. If an issued load matches any of the pre-issued

stores in the write buffer, the load operation is cancelled; hence is the need to

delay delinking from the VQ. Otherwise, the load completes successfully. Fi-

nally, we do not allow a Checkpoint instruction to issue in LE mode if there is a

prior store or fence in the VQ, not to update the speculative level in the write

buffer while there is still non-issued prior stores (Section 4.2.4).

Typically, VQ Issue skips an instruction that cannot issue, advancing to the

next instruction in the VQ. However, it stalls on instructions whose non-ready

operands are likely to be resolved soon through local bypassing.15 Nonetheless,

VQ Issue can eventually reach VQ Tail, unless LE terminates earlier.

In-order report to the SMU: WB stage is not suitable anymore to report

to the SMU any flush request, Checkpoint acknowledgment, or exception (Sec-

tion 4.2.4). This is also the case for register recycling (Section 4.2.5).

We introduce a second RAM array, again extending the issue queue, to tem-

porarily save these information for each instruction passing through the WB

stage. Clearly, entries can be updated out of order. However, they are processed

in order: Any relevant information is sent to the SMU, registers are marked

ready-to-recycle if indicated (Section 4.2.5), and the issue queue entry is released

by sending credit back to the SMU. We employ this mechanism regardless of the

execution mode.
15We wait the Ready bit of the local operands to be set, except if the producer is still non-

issued. We track the latter by annotating the destination of the previously skipped instructions
while issuing from the VQ in an additional bit vector.

52

Exiting lookahead execution: LE mode is terminated either when the end

of the VQ is reached by VQ Issue, or earlier if the blocking event that triggered

LE resolves. In-order issue resumes from IQ Head, which advance on the linked

list to skip already issued instructions. Before another LE can start, any delayed

delinks are awaited a few cycles to complete.

Register replication

A simple extension to our design allows increasing source-operand locality,

which in turn reduces the copy instructions and their associated overhead.

Recall that a register allocated for a remote operand is not reflected in the

LRT mapping, as well as in the logical register-to-core mapping in the SMU

(Section 4.2.3). Thus, this register replica is unusable by subsequent instruc-

tions. By simply having the SMU and LRT reflect the new mapping for a remote

operand, a logical register can be made globally visible in multiple cores. For

this, the SMU tracks multiple core locations per logical register using a bit vec-

tor, instead of a single core id. It also annotates the remote operand to update the

LRT as well. Notice that, on a checkpoint allocation, replicas will be included

in the partial checkpoints in cores. This technique, though, increases register

pressure. We alleviate it by allowing only at most one register replication per

instruction. This adds only one write port to the mapping tables per replica.

When the SMU performs register balancing for a core (Section 4.2.8), it clears

the extra core mappings before generating move instructions if still necessary.

53

Copy-out queue optimization

Since copy instructions in the copy-out queue are all register reads, in principle,

they can issue in any order with respect to each other, even if queue entries are

released in order. We have observed a significant performance gap between a

strictly in-order issue and an ideal selection that always picks the oldest ready

instruction for issue. We propose a simple mechanism to partially bridge this

gap. We increase the candidate copy instructions for selection to three–the two

oldest non-issued copy instructions in the queue plus the new incoming copy

instruction that bypasses the queue. The oldest one is already at the head of

the queue. Then, we use a second pointer on the copy-out queue that points to

the second non-issued instruction (initially the next instruction). If the instruc-

tion at the head pointer issues, the head pointer gets the value of the second

pointer, and the second one is advanced one entry. If the instruction at the sec-

ond pointer issues, then that pointer advances to the next entry, while the head

pointer remains the same. In case none of the two instructions can issue, the

pointers are preserved. In Section 5.5.2, we evaluate these selection polices.

All three instructions check the scoreboard for operand readiness, but only

the oldest ready one issues. These operations require two additional read ports

to the scoreboard, and an extra read port in the copy-out queue.

54

CHAPTER 5

EVALUATING FUSION OF IN-ORDER CORES

5.1 Experimental Setup

We evaluate a 4-way core-fusion architecture (ioCF) and compare it to three

other configurations: single-, dual-, and quad-issue in-order cores, which we

refer as BaseCore, IO-2i, and IO-4i, respectively. Core and memory system pa-

rameters are summarized in Table 5.1. Resource counts/sizes within cores are

increased proportionally to issue width, except for write buffer and RAS. The

memory system below private caches is the same for all configurations. Cache

access latencies are estimated using CACTI 5.3 [56]. Parameters specific to ioCF

are provided in Table 5.2. Notice that each core in ioCF has an issue queue size

of 24, whereas the single-issue baseline has eight issue queue entries. A larger

issue queue is essential to the success of our lookahead execution, and we ac-

count for that area overhead properly. We did verify that providing the base

cores with a 24-entry issue queue did not yield significative performance bene-

fits, and thus provide the baseline with the configuration that yields the smallest

area overhead.

We use the SESC [43] simulator to model all configurations. We do not model

wrong-path execution due to branch mispredictions. However, we model in-

struction re-fetch and re-execution (and the associated time penalty) due to

flushes in ioCF.

55

Table 5.1: Core and memory-system parameters. In the table, FX, GHR,
BHR, BTB, RAS, MSHR, WrBuff stand for fixed-point, global his-
tory register, branch history register, branch target buffer, return
address stack, miss-handling status register, and write buffer,
respectively. Cycle counts are in processor cycles.

In-order Cores
1-issue 2-issue 4-issue

Frequency 4GHz 4GHz 4GHz
Branch min. cycles 5 5 5
Issue queue entries 8 16 32
FX/Branch units 1 2 4
FP / Ld/St units 1/1 2/1 4/2
WrBuff entries/fwd. delay 24/2 24/2 24/2
IL1/DL1 cache size 16KB 32KB 64KB
MSHR entries 8 16 32
Branch predictor (Hybrid of GAg + SAg)
GHR/BHR bits 12/10 13/10 14/10
BHR entries 1K 2K 4K
Chooser entries 4K 8K 16K
BTB/RAS size 2KB/32 4KB/32 8KB/32

L1 L2 L3
Cache size 2MB 32MB
Cache associativity 4 8 16
Cache access cycles 2 9 70
Cache writeback policy WT WB WB
Cache block size 32B 64B 64B
Cache MSHRs 32 32
Stream prefetcher 16 streams, 1 depth
Memory bus bandwidth 1×64GB/s
Memory latency 200 cycles

Applications

We evaluate sequential-thread performance of ioCF, hence we use we use ten

integer and nine floating-point applications from the SPEC CPU2000 suite [22]

(our simulation infrastructure currently does not support the remaining appli-

cations). We use MIPS binaries compiled with -O3 optimization level. We fast-

56

Table 5.2: ioCF specific parameters. Cycle counts are in processor cycles.

Core Fusion Parameters
Extra pipeline stages 4
SMU steering width 4
SMU output buff. size 3 copy + 3 inst
SMU to core BW 1 inst/cycle
Checkpoints 4
Branch confidence estimator 4K-entry
Branch confidence threshold 15/15, -7 penalty
Operand Xbar latency 1 cycle
FMU latency 1 cycle
Issue queue size 24
Copy-out queue size 12

forward two billion instructions to pass the initialization phase (after which we

start modeling timing and collecting statistics) and execute one billion commit-

ted instructions. We use ref input data sets.

5.2 Area and Delay Estimations

We estimate the areas of all configurations using the methodology described

below. We list the end results in Table 5.3.

Table 5.3: Area-estimation results for in-order cores as well as the core-
fusion architecture.

Relative Area
BaseCore 1 (0.3mm2 @32nm)
IO-2i 1.98
IO-4i 5.12
ioCF 4 cores + 0.60

Area estimation: We estimate the areas of storage arrays using

CACTI5.3 [56] for 32nm technology node, carefully setting their input/output

57

port requirements. These include L1 i- and d-cache, i- and d-TLB, branch-

predictor components, decode ROMs, issue queue, register file and scoreboard,

and write buffer. On top of these, we add the areas of fixed-point execution

unit(s) and double-precision floating-point unit(s) extrapolated from data on

SPE element of CELL processor [40, 35]. In addition, we account for a PC logic

and branch-target-address-calculator area per fetched instruction, equal to the

area of an adder. We also assume that 10%, 15%, and 20% of the core area with

no caches is other related logic and latches for BaseCore, IO-2i, and IO-4i, respec-

tively, as superscalar designs introduce increasing logic and latching complex-

ity.

We find the base core area to be 0.3mm2 at 32nm process technology. (IO-2i

and IO-4i turn out to be 1.98 and 5.12 times larger than the base in-order core.)

We estimate that an ITRS [26] projected 310mm2 die can fit 92 cores plus 23 L2

caches (one for every four cores), assuming half of the die is dedicated to these,

leaving enough additional space for other components including interconnect,

L3 cache and memory controllers. We find the L2 cache area using CACTI5.3.

For the core-fusion design, we use updated port counts for the storage ar-

rays, and add the areas of newly introduced structures within each core and

globally shared. For global structures, we account for communication fabrics

to/from FMU and SMU, operand crossbar, and array structures in SMU such

as the logical register-to-core mapping, its checkpoints and output buffers. In

wiring-area estimations, we assume 96nm minimum global-wire pitch [26] and

that wires start/end at half width of a core.

The core fusion overhead corresponds to a 15% area increase per core, or

60% over four cores excluding their shared L2 cache. Of that 60% aggregate

58

overhead, 35% is due to the shared structures, with the operand crossbar being

the largest contributor. Within a core, the major contributor is the extra read port

in the register file. The other significant overheads come from the confidence

estimator in the branch predictor, larger issue queue, and the LRT. When core-

fusion support is added, the same 310mm2 die area can fit 88 cores plus 22 L2

caches.

Delay estimation: We estimate global wire delay assuming 96nm minimum

global wire pitch and ITRS device performance and interconnect projections [26]

for power-performance optimized repeatered global wires, using the method-

ology in Ho et al. [24]. We find the wire delay to be 100ps/mm. Accounting

for a worst-case wire length of four core widths and 4FO4 latching delay, a trip

through any cross-core link fits in one cycle at 4GHz operating frequency.

5.3 Base-Core Performance

Figure 5.1 shows the execution-time breakdown based on issue outcome each

cycle in BaseCore. The issue logic may issue an instruction successfully (No Stall),

stay idle or process later-to-be-flushed instructions (Idle/Flushed), or encounter

a stall reason, which we further break into multiple categories: RAW-Ready Bit

(source value not ready for bypassing), RAW-Load miss (non-ready source value

is a result of a load miss), and Other stalls such as WAW hazard on a load result,

and no space in write buffer or MSHR. We check the stall reasons in the listed

order, and a cycle is counted for at most one stall reason. No Stall gives the IPC

for each application. Overall, BaseCore is generally utilized efficiently.

Furthermore, we evaluate BaseCore with L1 d-cache and MSHR four times

59

0
10
20
30
40
50
60
70
80
90

100

Ex
ec

ut
io

n
Ti

m
e

(%
)

bz
ip2

cra
fty ga

p
gz

ip mcf
pa

rse
r

pe
rlb

mk
twolf

vo
rte

x vp
r

am
mp

ap
plu ap

si art

eq
ua

ke
mes

a
mgri

d
sw

im

wup
wise

Other
RAW−load miss
RAW−Ready bit
Idle/Flushed
No Stall

Figure 5.1: BaseCore execution-time breakdown based on issue outcome
each cycle.

as large, to see what fraction of the benefit comes from constructing such effec-

tively larger structures via core aggregation. The results show that the impact

is actually small: 1.6% on average across all applications, with the largest im-

provement being 3.9% for mcf. This indicates that enlarging such structures

alone is not the reason behind the speedups of ioCF, which we discuss next.

5.4 In-order Core Fusion Performance

Figure 5.2 shows the performance of ioCF with all the performance optimiza-

tions described in Section 4.2.9 relative to BaseCore for Int (top plot) and FP (bot-

tom plot) applications. It is also compared to other in-order cores (IO-2i and

IO-4i). The IO-2i and the IO-4i are set up somewhat optimistically, by assuming

the same number of pipeline stages as in BaseCore and no timing penalties.

ioCF achieves significant speedups, 37.3% (53.8%) for Int (FP) applications

on average, with maximum of 85.1% (108%) for crafty (art), despite the over-

60

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

bzip2
crafty gap gzip mcf

parser
perlbmk

twolf
vortex vpr

geomean

2.38

 S
pe

ed
up

 R
el

at
ive

 to
 B

as
eC

or
e

IO−2i
IO−4i
ioCF

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

ammp
applu apsi art

equake
mesa

mgrid swim
wupwise

geomean

2.08

 S
pe

ed
up

 R
el

at
ive

 to
 B

as
eC

or
e

IO−2i
IO−4i
ioCF

Figure 5.2: Speedup of core fusion (ioCF) relative to BaseCore for SPECINT
(top) and SPECFP (bottom) applications. It is also compared to
other in-order cores.

heads of distributed execution. When compared to the other in-order cores, ioCF

achieves higher performance than IO-2i for Int applications, and significantly

better than both IO-2i and IO-4i for FP applications. Besides the computation-

intensive applications such as crafty, vortex, wupwise, it significantly benefits the

memory-intensive applications, such as mcf, art, and swim.

When core-fusion architecture is put into context of a dynamically recon-

61

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

 S
pe

ed
up

 R
el

at
ive

 to
 B

as
eC

or
e

bz
ip2
cra

fty ga
p
gz

ip mcf
pa

rse
r

pe
rlb

mk
twolf

vo
rte

x vp
r

am
mp
ap

pluap
si art

eq
ua

ke
mes

a
mgri

d
sw

im

wup
wise

ge
om

ea
n

2.08
2.08

2.55
2.53

No LE
LE
Oracle

Figure 5.3: Speedup of core fusion with no lookahead execution (No LE),
with lookahead execution (LE), and oracle instruction selec-
tion, relative to BaseCore.

figurable CMP architecture, this improved single-thread performance can be of

great benefit, while maximizing thread-count for parallel application regions.

5.5 Performance Analysis

Next, we analyze the effectiveness of the performance optimizations described

in Section 4.2.9.

5.5.1 Lookahead Execution

In Figure 5.3, the first two bars compare the performance of ioCF without

and with LE, respectively. Clearly, LE is critical to performance. Several

computation-intensive applications, such as crafty, vortex, mesa, and wupwise do

62

0
10
20
30
40
50
60
70
80
90

100

Ex
ec

ut
io

n
Ti

m
e

(%
)

bz
ip2

cra
fty ga

p
gz

ip mcf
pa

rse
r

pe
rlb

mk
twolf

vo
rte

x vp
r

am
mp

ap
pluap

si art

eq
ua

ke
mes

a
mgri

d
sw

im

wup
wise

IO−Issue LE−Issue Idle IO−Stall LE−Stall

Figure 5.4: Issue-time breakdown in core fusion when running SPEC ap-
plications, averaged over four cores.

well even with no LE support. To assess the opportunity for further improve-

ment over LE, we evaluate an optimistic configuration where cores always select

instructions from the issue queue using oracle knowledge of the oldest instruc-

tion that can issue successfully, subject to the same issue constraints as in LE,

and assuming perfect memory-dependence knowledge in the issue queue. The

results are shown in Figure 5.3, third bar. ioCF falls short of Oracle selection by

20.5% on average. The gap is larger in FP applications, 28.2%, while it is 13.7%

in Int applications.

Figure 5.4 shows the issue-time breakdown in fused mode averaged over

four cores. A core’s issue logic is either issuing in order (IO-Issue) or in LE mode

(LE-Issue), or is idle (Idle)1, or is stalling/skipping in in-order (IO-Stall) or LE

mode (LE-Stall). Except in ammp application, all four cores demonstrate similar

breakdown as the average. In ammp we observe a great load imbalance, with

the core-0 executing most of the time, and the other cores being idle for 88% of

the time. This must be due to the steering policy that insists on chaining depen-

1Execution down a branch misprediction path falls into this category.

63

0.9
0.95

1
1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

bzip2
craftygapgzipmcf

parser
perlbmk

twolf
vortexvpr

ammp
appluapsi art

equake
mesa

mgridswim
wupwise

geomean

Sp
ee

du
p

Re
la

tiv
e

to
 B

as
eC

or
e

LE Off
LE On

Figure 5.5: Speedup of a base core enhanced with LE relative to BaseCore
for SPEC applications, with LE disabled (LE Off) and LE en-
abled (LE On).

dent instructions in the same core. Cores remain more idle on Int applications

relative to the FP applications. This can be a result of larger number of branch

mispredictions or of load imbalance due to the steering policy as in ammp. An-

other observation is that Int applications spend less time in lookahead execution

than FP applications. In return, FP applications successfully issue larger fraction

of instructions in LE mode. Applications that perform well even without LE in

Figure 5.3 (crafty, vortex, mesa, and wupwise) already issue in order mode most

of the time.

Lookahead execution in a base core: It would be interesting to see whether

LE could be as effective alone in a single base core without core aggregation.

We evaluate a base core enhanced with LE and all the necessary mechanisms

from our architecture. We provide enough registers to eliminate any lack of free

registers. We also increase the issue queue size to 24 as in the case of ioCF.

Figure 5.5 provides the performance results of the enhanced base core, rel-

ative to the plain base core. We also provide the performance of the enhanced

64

core with LE disabled to show the overheads that are mainly due to additional

rename stage, delaying recovery from branch mispredictions at least until WB

stage, and checkpoint rollback penalties. The enhanced core with LE off has

3.5% degradation in Int applications, and with LE execution on, it can barely

exceed the base core performance on average. For FP applications, LE achieves

9.3% average improvement. Memory-bound applications (mcf, art, and swim)

benefit more than 20%. As seen in Figure 5.1, most of the Int applications al-

ready spend little time stalling due to dependences to load misses (RAW-load

miss category). As a result, little time is spent in LE mode (on average 11.2%

with mcf and 6.5% without mcf), where successful issue time is even less (on av-

erage 2.8% with mcf and 2.12% without mcf). For FP applications on the other

hand, more time is spent in LE (on average 21.8%), and 4.8% of the total time LE

issues instructions successfully.

We experimented with LE and an even larger window, and found that

speedups fell still well short of ioCF. This experiment clearly shows that the

proposed LE mechanism makes sense in the core fusion context only.

5.5.2 Copy-out Queue Optimization

In Figure 5.6, we show results for copy-out queue optimization (Section 4.2.9).

We evaluate various combinations: selecting the oldest non-issued instruction

in the copy-out queue, without and with support for copy-out queue bypass

(1i/no-bypass and 1i/bypass), and selecting from the oldest two non-issued in-

structions, again without and with support for queue bypassing (2i/no-bypass

and 2i/bypass).

65

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

bz
ip2
cra

fty ga
p
gz

ip mcf
pa

rse
r

pe
rlb

mk
twolf

vo
rte

x vp
r

am
mp
ap

pluap
si art

eq
ua

ke
mes

a
mgri

d
sw

im

wup
wise

ge
om

ea
n

2.08
2.32

 S
pe

ed
up

 R
el

at
ive

 to
 B

as
eC

or
e

1i/no_bypass
1i/bypass
2i/no_bypass
2i/bypass
Oracle

Figure 5.6: Speedup of core-fusion architecture with different policies for
issuing copy instructions from the copy-out queue, relative to
BaseCore performance.

Including all of the copy-out queue optimizations increases the speedup of

ioCF on FP applications by 25.9% on average, and on Int applications by as much

as 11.3%. Involving the second oldest non-issued copy instruction alone pro-

vides most of the benefit for Int applications. For FP applications, both opti-

mizations bring significant improvements. We would like to point out that all

this additional benefit comes at relatively low-cost.

In the figure, we also show the speedup obtained when an oracle selection

policy is used in the copy-out queue (Oracle), which selects the oldest ready

instruction. Across the board, the gap between our simple selection mechanism

and the oracle selection is very small. Only three applications (art, mgrid, and

swim) have significant potential for further improvement. The overall result is

very encouraging.

66

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1

 S
pe

ed
up

 R
el

at
ive

 to
 B

as
eC

or
e

bz
ip2
cra

fty ga
p
gz

ip mcf
pa

rse
r

pe
rlb

mk
twolf

vo
rte

x vp
r

am
mp
ap

pluap
si art

eq
ua

ke
mes

a
mgri

d
sw

im

wup
wise

ge
om

ea
n

2.18

No replica
1 replica
2 replicas

Figure 5.7: Speedup of core-fusion architecture with no, with up to one,
and up to two register replications per instruction, relative to
BaseCore performance.

5.5.3 Register Replication

In Figure 5.7, we show the impact of register-replication optimization (Sec-

tion 4.2.9) on ioCF performance. We provide results for no, up to one, and up

to two replications per instruction. Results suggest that up to one replication

per instruction is clearly beneficial. Allowing a second replica even slightly de-

grades performance on FP applications due to the SMU stalls or rename failures

in response to increased register pressure. This justifies our decision of support-

ing up to one replica per instruction in our design.

5.6 Comparison to Out-of-Order Cores

In this section, we compare the performance and area of ioCF to single-threaded

single- and dual-issue dynamically scheduled out-of-order cores (OOO-1i and

67

Table 5.4: Out-of-order core parameters. In the table, FX, GHR, BHR, BTB,
RAS,WrBuff stand for fixed-point, global history register, branch
history register, branch target buffer, return address stack, and
write buffer, respectively. Cycle counts are in processor cycles.

Out-of-order Cores
1-issue 2-issue

Frequency 4GHz 4GHz
Fetch/issue/commit 1/1/1 2/2/3
ROB entries 32 64
Register file size 96 128
IQ entries 24 48
LQ/SQ entries 12/24 24/24
Branch min. cycles 7 7
FX/Branch units 1 2
Ld/St units 1 1
FP/Mul/Div units 1 2
SQ forward delay 2 2

OOO-2i, respecitively). We use the SESC simulator’s original out-of-order core

models. They assume perfect memory disambiguation, that is, ready load in-

structions do not issue if there is a prior conflicting address-unresolved store in

the instruction window, which assumes oracle knowledge.

Table 5.4 lists the core parameters. The branch predictor and memory sub-

system of the out-of-order cores are the same as their in-order core counterparts

(Table 5.1). To note a few details, the out-of-order cores have extra rename stage

and register read stage (after issue). Although in the area estimation we assume

a unified register file, which holds the architectural register values, of size given

in the table, the simulations assume separate integer and floating-point register

files, each having the same amount of free registers as in the unified register file.

Performance evaluation: Figure 5.8 shows the performance of OOO-1i and

OOO-2i relative to BaseCore performance. For comparison, we also provide the

68

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2

bzip2
crafty gap gzip mcf

parser
perlbmk

twolf
vortex vpr

geomean

 S
pe

ed
up

 R
el

at
ive

 to
 B

as
eC

or
e

ioCF
OOO−1i
OOO−2i

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2

ammp
applu apsi art

equake
mesa

mgrid swim
wupwise

geomean

2.41 2.54 3.15

 S
pe

ed
up

 R
el

at
ive

 to
 B

as
eC

or
e

ioCF
OOO−1i
OOO−2i

Figure 5.8: Speedup of ioCF, OOO-1i, and OOO-2i configurations relative
to BaseCore performance for SPECINT (top) and SPECFP (bot-
tom) applications.

performance of ioCF. OOO-1i, similarly to the results of enhanced BaseCore with

lookahead execution support (Section 5.5.1), has limited potential, and helps

mainly in the memory-bound applications. The speedups larger than ones ob-

tained with lookahead execution may come mainly from the following: out-

of-order issue can better hide multi-cycle execution latencies, executed instruc-

tions free-up the issue queue entry leaving room for subsequent instructions,

69

and more efficient memory operation handling. However, OOO-1i has signifi-

cantly inferior average performance than ioCF configuration. On the other hand,

OOO-2i has on average 1.82 and 2 times speedup over BaseCore for Int and FP

applications, respectively. ioCF obtains about half of these speedups.

Area estimation: We estimated the area overhead of realizing out-of-order

execution on top of the single-issue BaseCore and dual-issue IO-2i. We keep the

front-end and cache areas the same. We re-estimated areas of larger register

files. Using CACTI5.3 [56] again, we added the areas of reorder buffer (ROB),

rename table, commit-time rename table, register free-list, and load queue. Fi-

nally, to estimate the area for out-of-order issue queue together with wakeup

and selection logics, we scaled down (using 0.5 area scaling factor per technol-

ogy generation) the area of the 20-entry collapsing issue-queue implementation

of Alpha 21264 processor [19], and optimistically doubled the result for OOO-2i.

This part turn out to constitute 21.3% area in both out-of-order cores. As a re-

sult, we estimate the OOO-1i configuration to be 1.31 times the area of BaseCore,

and OOO-2i configuration area to be 1.39 times the area of IO-2i and 2.75 times

the area of BaseCore.

As a means of verification of our area estimations, we also estimate the areas

based on empirical relation that relates performance to area stated long ago by

Pollack [47]. According to Pollack’s Rule, in the same technology generation,

integer performance is roughly proportional to the square root of core’s area.

Using this relation and average speedups for Int applications obtained relative

to the BaseCore (Figure 5.8), we find OOO-1i and OOO-2i to be 1.30 and 3.3 times

larger than BaseCore, respectively. It is very encouraging to see that the area we

calculate for OOO-1i closely matches the area estimated from Pollack’s Rule.

70

On the other hand, it seems we have underestimated the area for OOO-2i. We

observe that our estimation yields a linear increase form OOO-1i to OOO-2i,

while it is known that out-of-order execution structures scale quadratically [45]

with issue width. Thus, we believe, the area for OOO-2i is between 2.75 and 3.3

of the BaseCore area.

OOO-1i has both higher area per core and worse average performance than

ioCF, so it is clearly not a good design choice. OOO-2i, on the other hand, has

higher single-thread performance, but its larger area compromises core/thread

count on the chip. ioCF would be favorable design choice in throughput ori-

ented designs providing good sequential performance as well. The power as-

pect needs to be taken into account to reach more comprehensive conclusions.

71

CHAPTER 6

BANKING MEMORY OPERATIONS IN IN-ORDER CORE FUSION

Store-instruction replication in in-order core fusion is a lightweight approach

with low hardware overhead for distributed memory-operation disambiguation

across cores. However, it significantly increases the number of processed in-

structions (e.g. 30% increase assuming 10% of instructions are stores), increases

the pressure on the write-buffers, and results in more L1 d-cache accesses. The

flexibility of steering a load instruction to any of the cores may also reduce the

d-cache hit rates.

In this chapter, we study an alternative mechanism for distributed memory-

operation handling. Similar to the out-of-order core fusion design in Chapter 4,

we bank memory operations into different cores based on lowest bits of cache-

line addresses, and use the same modified L1 d-cache indexing and tagging

scheme to achieve effectively larger cache, while avoiding flushing the caches

on reconfiguration. One downside of banking memory operations, though, is

increased load imbalance across cores, due to steering successive operations to

the same cache line to the same core.

In the rest of the chapter, we first describe the banking-based memory-

operation handling mechanism that we implement in in-order core fusion.

Then, we estimate its hardware overhead, and evaluate its performance rela-

tive to the store replication mechanism. Finally, we study a dynamic scheme to

switch between store replication and banking based on application behavior.

72

6.1 Mechanism for Memory-Operation Banking

Since effective addresses are not known at the time of steering, we use bank pre-

dictor to predict the bank of a memory operation and steer accordingly. Upon

address calculation, the bank prediction is verified. Correctly predicted mem-

ory operations proceed to the memory system as usual. Memory operations to

the same cache line are naturally ordered within the same core. A mispredicted

memory operation cannot issue to the memory system. Due to lack of a load

queue in cores, the correction mechanism in out-of-order core fusion of send-

ing the operation to the correct core, disambiguating it there, and issuing it to

the memory system (Section 2.1.2) is not applicable in this context. Instead, we

leverage the checkpointing support in in-order core fusion, and trigger recovery

to the last committed checkpoint in the same way as branch mispredictions do.

In this respect, the average penalty of a bank misprediction is much higher than

in out-of-order core fusion.

To reduce bank mispredictions and the associated penalty, we employ con-

fidence estimation. We steer a memory instruction with high-confidence pre-

diction to the predicted core. Otherwise, we replicate a memory instruction to

all cores, which we call guarding. With guarding, one of the replicated memory

instruction instances is known to be in the correct core, so the other replicated

instances do not trigger checkpoint recovery. The one in the correct core issues

to the memory system as usual, and the other instances turn into NOP upon ad-

dress calculation and bank verification. Nullified load instructions mark their

destination ARF register as bogus.

While guarding a load instruction, the SMU does not know the correct lo-

73

cation of the load’s destination register. It is not informed later either by the

cores. Subsequent consumer instructions of that register still need to obtain

their source operand from the correct core. We achieve this by adding support

for unknown register locations: Each entry in the steering table is extended with

an uncertain flag to indicate that only one of the cores has the correct register

value, but its exact id is unknown. A guarded load’s result register is marked

as uncertain at the time of steering. Later, on an instruction with an uncertain

source operand, the operand is considered as remote, and a copy instruction

is generated and replicated to all cores. All instances of the copy instruction

are identical with the same remote-operand id. Copy instructions that find their

source ARF register as bogus turn into NOP. Eventually, only the replicated copy

instruction in the core with the true register value will survive and transfer the

value to the destination core.

When a non-guarded instruction updates the steering table for its destina-

tion register, it clears the uncertain flag. Also, when register replication (Sec-

tion 4.2.9) is applied on an uncertain remote operand of an instruction, the new

mapping for the source register becomes the destination core of the instruction

and the uncertain flag is cleared.

Uncertain bits are included in the steering-table checkpoints. On a check-

point allocation, the SMU includes the logical registers with uncertain flag set

in all cores’ checkpoint register lists sent along Checkpoint instructions (Sec-

tion 4.2.4), so that all possible mappings are checkpointed. In the cores, the bogus

bit for a register is not cleared until the register is freed. Thus, on a checkpoint

recovery, the SMU and LRT mappings for uncertain registers in the checkpoint

are restored, and their bogus bits are preserved.

74

Bank Predictor
&

Condence
Estimator

Spec.
Update
Table

Core0 Core1 Core2 Core3

n updates

Updates

Core-update order
Correct bank

Index Info.

Bank
Prediction

Reuse

New

Record
Order

Stall

Figure 6.1: Bank predictor and interface to the SMU.

For maintaining forward progress on checkpoint recoveries due to bank mis-

predictions, we use the guarding mechanism. In the checkpoint interval right

after a recovery, the first encountered memory operation is always guarded fol-

lowed by a new checkpoint allocation.

6.2 Hardware Support for Bank Prediction

Figure 6.1 depicts the main hardware support that we introduce. There is a

bank predictor enhanced with confidence estimation, support for speculative

update at prediction time in a Speculative Update Table (SUT), in-order update

using a FIFO buffer that holds expected core order for updates, and support

for reusing verified updates when re-executing instructions after a checkpoint

recovery. Predictor update information from a core is processed from an input

buffer per core.

75

6.2.1 Choice of Bank Predictor

We propose a novel bank predictor that has higher prediction accuracy and

sharper confidence estimation. It has two levels of tables. The first-level table

is indexed with instruction address bits, and maintains the bank and cache-line

offset most recently accessed by a memory instruction. This data is hashed with

the instruction address to form the index to the second-level table. The second-

lavel table gives the next bank and cache-line offset the instruction is expected to

access given the current bank and cache-line offset. The data in the second-level

table is directly used as the speculative update for the first-level table entry in

the SUT.

Owing to the cache-line access locality, especially for regular patterns, the

prediction principle of our predictor works quite well. It can correctly capture

most stride-based patterns without requiring adder/subtractor as in the stride-

two delta predictor. It also does not keep bank histories, and therefore, is more

scalable as the number of banks increases than the local bank-history based pre-

dictor in terms of storage requirement.

The second-level table has a saturating counter per entry for confidence es-

timation. On a correct prediction, a counter is incremented by one, and on a

misprediction it is decremented by two. We employ 3-bit counters, and only the

maximum value of seven corresponds to high-confidence.

Finally, we observe that, in most cases, a significant portion of the predic-

tions exhibit a constant-bank pattern. Trying to predict such sequences with a

bank predictor targeted for other non-constant patterns, may lead to wrong pre-

dictions due to the limited predictor size, aliasing, or even irregularities in the

76

effective address sequences that still fall into the same bank. For this reason, we

first filter the memory instructions using a constant-bank filter before accessing

the actual predictor. It initially assumes constant pattern for each memory in-

struction. On the first wrong prediction the entry is identified as non-constant.

To prevent aliasing from interfering with a constant pattern, we add a few bits

(3) as tag to each entry. Only after the third constant-bank occurrence of a mem-

ory instruction we assign high-confidence to its subsequent constant-bank pre-

dictions.

The constant filter can be embedded into the first-level table of our bank pre-

dictor, as it has enough storage and already maintains the last-bank information.

A bit per table entry is used to determine whether a constant-bank prediction

or normal bank prediction should be performed.

6.2.2 Speculative Update

It is possible to have multiple outstanding instances of a memory operation until

the oldest is verified. Late updates reduce the prediction accuracy. To mitigate

this, we perform speculative update at the time of prediction for the first level

table. To contain the complexity, we do not perform the speculative updates on

the predictor table itself, but we maintain them in a separate Speculative Up-

date Table (SUT). It is accessed in parallel with the predictor table. On a match,

the speculative update is used to obtain the prediction, otherwise data in the

predictor entry is used. Each entry in the SUT keeps count of the unverified

predictions to a predictor table entry and the most recent speculative update

to that entry. On the first outstanding speculative update, a new entry is allo-

77

cated, and its counter is initialized. On a verification, the count is decremented,

and when it reaches, zero the SUT entry is invalidated. The SUT can be imple-

mented as a (set)associative table indexed with the lower bits of the predictor

table index, and tagged with the remaining bits of the index. On a checkpoint

recovery, all entries in the SUT are invalidated. Notice that, no action is needed

on the actual bank predictor on speculative updates or checkpoint recovery. It

is only updated at verification time.

6.2.3 In-order Update

Each new bank prediction for a memory instruction is inserted into the FIFO

buffer in order, together with the id of the core the instruction is steered to. Up-

date information for memory operations are sent back from a core to the SMU

in oder. Updates from different cores, however, can potentially come out of or-

der. The bank predictor performs the updates in the steering order maintained

in the FIFO buffer.

6.2.4 Reusing Verified Bank Predictor Updates

In the context of a checkpointed architecture, even verified updates to the pre-

dictor may need to be undone on a checkpoint recovery. We find it both simpler

and beneficial to reuse verified updates when re-executing instructions after a

flush and checkpoint recovery. For this, the FIFO buffer is also updated with

the correct bank on a misprediction, and entries are released form the buffer

only when their corresponding checkpoint is released (this requires tracking

78

checkpoint boundaries in the buffer). On a recovery to the oldest committed

checkpoint, any verified predictions starting from the head of the FIFO buffer

are traversed and used as predictions. The actual bank predictor is not inquired

or updated on prediction reuses. Prediction reuses are considered to have high-

confidence.

Steering in the SMU is stalled in case there is no free entry in the in-order

update buffer, input buffer, or the SUT.

6.3 Evaluation of Memory-Operation Banking

In this section, we estimate the hardware overhead needed for memory-

operation banking, and we evaluate its performance. We assume 4K entry for

the first-level table, and 8K entry for the second-level table. We also have 64-

entry in-order update FIFO buffer, and 64-entry SUT.

6.3.1 Hardware Overhead Estimation

We first estimate the total hardware overhead of memory banking. In addition

to bank predictor structures, we account for a 16-entry input buffer per core

in the SMU, as well as a RAM array extending the issue queue in a core to

keep the bank predictor update information (lower bits of effective addresses).

This information is sent to the SMU in order. We estimate the core fusion total

overhead to increase from 60.5% to 84% of a base core area. We conclude that

banking adds significant overhead to the fusion mechanism.

79

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2

bz
ip2

cra
fty ga

p
gz

ip
mcf

pa
rse

r

pe
rlb

mk
tw

olf
vo

rte
x vp

r

am
mp

ap
plu ap

si art

eq
ua

ke
mes

a
mgri

d
sw

im

wup
wise

ge
om

ea
n

2.21 2.23

 S
pe

ed
up

 R
el

at
iv

e
to

 B
as

e
C

or
e

Store replication
Banking−real
Banking−oracle

Figure 6.2: Speedup for SPEC applications of in-order core fusion with
store replication, memory banking with realistic bank predic-
tor, and memory banking with oracle bank predictor relative
to the base in-order core performance.

6.3.2 Performance Evaluation

Figure 6.2 shows the performance results for SPEC applications of core fusion

with store replication, memory banking with realistic bank prediction mecha-

nism explained before, and memory banking with steering memory operations

always to their correct core. The speedups are all relative to the base in-order

core performance.

There is a trade-off between different mechanism. At one hand, with store

replication, there is no misprediction and flush due to memory operations,

and there is better load balancing. On the other hand, with banking, there is

higher cache locality. In both approaches there is memory replication overhead.

Though, its extend depends on store instruction percentage in applications or

bank prediction accuracy and confidence estimation. It is challenging to achieve

the best of both worlds.

80

Results show that store replication seems to work very well, closely follow-

ing the ideal banking for many of the applications. vortex, applu, equake, mesa,

and swim applications show very significant gap that may worth improving

over the store replication mechanism by introducing extra overhead and com-

plexity. On average, store replication falls short of ideal banking by about 12%.

Realistic banking using bank predictor and confidence estimation performs

fairly poor in Int applications. FP applications show more regular and pre-

dictable access patterns, and therefore, banking performs very close or better

than store replication for these applications. swim , for example, benefits signif-

icantly from banking.

To better understand the realistic banking results, Figure 6.3 breaks down

the predictions made by the block-offset predictor into four categories based

on accuracy and confidence. Wrong but high-confidence predictions cause ex-

ecution rollback. Unconfident predictions also incur penalty due to replicating

memory operations to all cores. However, they do not result in rollback.

On top of each bar is the percentage of memory operations that are provided

prediction by the bank predictor. The rest either reuse the previous updates on

re-execution or are mostly filtered by the constant filter. Constant filter provides

effective filtering with almost hundred percent accuracy. It also guards the first

three occurrences of memory instructions, the first time they are encountered or

after they have been evicted due to aliasing.

As expected, FP applications exhibit higher prediction accuracies and rela-

tively less low-confidence predictions. For Int applications on the other hand,

the predictor provides in most cases less than 50%, and for several applications

81

0
10
20
30
40
50
60
70
80
90

100

Ba
nk

 P
re

di
ct

io
ns

 (%
)

bz
ip2

cra
fty ga

p
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

am
mp

ap
plu ap

si art

eq
ua

ke
mes

a
mgri

d
sw

im

wup
wise

53
.6

%

36
.6

%

77
.8

%

68
.2

%

86
.0

%

70
.9

%

51
.1

%

58
.7

%

61
.8

%

46
.8

%

23
.8

%

51
.5

%

58
.9

%

56
.8

%

42
.9

%

12
.9

%

85
.9

%

99
.4

%

66
.8

%

Wrong−Confident
Wrong−Unconfident
Correct−Unconfident
Correct−Confident

Figure 6.3: Breakdown of bank predictions by the block-offset predictor
based on accuracy and confidence. Percentage numbers on top
of each bar represent memory operations that use the bank pre-
dictor to obtain a prediction. Update reuses and constant-bank
predictions constitute the remaining fraction.

less than 20%, correct and high-confidence predictions. Although the predic-

tor successfully keeps the wrong high-confidence predictions low, it results in

a lot of guarding on low-confidence predictions. Notice, however, that the re-

sults are only for the fraction of memory operations provided on the top of

each bar. Most of the remaining predictions can be considered correct and high-

confidence.

6.4 Dynamic Policy for Memory-Operation Handling

Results clearly show that realistic banking approach performs worse than store

replication for applications that have significant amount of low-confidence pre-

dictions. Indeed, for Int applications, low-confidence predictions cause several

82

times more instructions to be replicated than just store instructions. On top,

there are still some bank mispredictions that cause rollback and re-execution.

As a result, a dynamic policy that switches between store replication and bank-

ing based on application behavior seems an attractive approach that can bring

the benefits of both worlds.

Initially, we start with memory banking off. Periodically, just before a check-

point allocation at the end of a period, we evaluate which scheme is expected

to be more beneficial to performance. If the number of stores in the last period

is less than the number of unconfident predictions (that would cause guard-

ing) then store replication is suggested policy for the next period. We count

an unconfident load instruction as two, and an unconfident store instructions

as one, since load instructions have destination registers and bring more over-

head when being guarded. Otherwise, banking is suggested. We switch to the

suggested policy if it was suggested for at least two times in a row. The bank

predictor needs to be updated at all times for this dynamic scheme. (Note that,

only one of the replicas of a memory instruction should attempt to update the

predictor.)

Differently than stores in store-replication intervals, stores in banking inter-

vals do not update the store counter in the L2 cache, they always perform to the

L2 cache, and invalidate any cache-line copies in the other L1 d-caches, as in

the baseline coherence scheme. Also, there is no need to delay releasing stores

in a checkpoint interval with banking on from the write-buffer to the memory

system upon commit of the checkpoint.

To preserve correct memory dependences on transitioning from banking to

replication and vice versa we do the following: We constrain the transitioning

83

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

bzip2
crafty gap gzip mcf

parser
perlbmk

twolf
vortex vpr

geomean

 S
pe

ed
up

 R
el

at
iv

e
to

 B
as

e
C

or
e

Store replication
Banking−real
Dynamic
Banking−oracle

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2

ammp
applu apsi art

equake
mesa

mgrid swim
wupwise

geomean

2.212.21
2.23

 S
pe

ed
up

 R
el

at
iv

e
to

 B
as

e
C

or
e

Store replication
Banking−real
Dynamic
Banking−oracle

Figure 6.4: Speedup for SPEC Int (top) and FP (bottom) applications, rela-
tive to base in-order core, of in-order core fusion with dynamic
policy to select between store replication and banking mecha-
nisms. We also provide results for each mechanism alone.

from replication to banking to happen only if there is at least one (replicated)

store instruction in the last checkpoint interval. This ensures that subsequent

non-replicated stores will not race with any outstanding prior load misses to

the same cache-line from other cores in reaching the L2 cache. The replicated

stores in the last checkpoint interval already will not be released to the memory

system until all primary load misses from all cores from that and prior check-

point intervals are seen by the L2 cache (Section 4.2.7).

On transitioning from banking to replication, on the other hand, the SMU

generates a fence operation replicating it to all cores, just before allocating the

84

checkpoint. The fence operation ensures that all prior non-replicated stores are

made visible to all cores before any subsequent possibly conflicting load or store

operation issues to the memory system from any of the cores.

Figure 6.4 shows performance results of in-order core fusion with dynamic

policy to select between store replication and banking, relative to base core for

SPEC Int and SPEC FP applications. We again provide the results with store

replication and banking alone, for comparison.

We see that, for Int applications we were able to obtain results very close to

those with store replication, since for these applications clearly it is the favorable

policy. Interestingly, gap achieves higher performance with dynamic policy than

both static polices. For several FP applications, the dynamic policy exceeds the

performance of both static policies. This shows that these applications have dis-

tinct phases where each of the policy is better, and our dynamic selection policy

is good at identifying the correct approach. Only for apsi and equake, the dy-

namic policy has performance of the lower performing approach. For example,

in Figure 6.3, we see that apsi has high prediction accuracy, however, it has rel-

atively large number of wrong high-confidence predictions as well, which may

be the reason for the performance degradation. The dynamic scheme improves

the average performance on FP applications relative to base core from 53.8% to

57%, while mostly preserving the Int performance.

85

CHAPTER 7

RELATED WORK*

7.1 Reconfigurable Architectures

Smart memories [36] is a reconfigurable architecture capable of merging in-

order RISC cores to form a VLIW machine. The two configurations are not ISA-

compatible, and the VLIW configuration requires specialized compiler support.

In contrast, core fusion merges cores while remaining transparent to the ISA,

and it does not require specialized compiler support.

TRIPS [52] is a pioneer reconfigurable computing paradigm that aims to

meet the demands of a diverse set of applications by splitting ultra-large cores.

TRIPS and core fusion represent two very different visions toward achieving a

similar goal. In particular, TRIPS opts to implement a custom ISA and microar-

chitecture, and relies heavily on compiler support for scheduling instructions to

extract ILP. Core fusion, on the other hand, favors leveraging mature microar-

chitecture technology and existing ISAs, and does not require specialized com-

piler support. Composable Lightweight Processors [27], which is based on out-

of-order cores implementing the EDGE ISA [8], can put together a large number

of execution units, thanks in part to EDGE’s compiler and hardware support for

block-atomic execution and explicit encoding of instruction dependences.

In Voltron [58], four VLIW cores can selectively execute in lockstep to behave

like a wide-issue multicluster VLIW processor. The architecture depends on

∗ c© ACM, 2007. Partly reprinted, with permission, from ”E. Ipek, M. Kırman, N. Kırman,
J. F. Martı́nez. Core Fusion: Accommodating software diversity in chip multiprocessors.
In Intl. Symp. on Computer Architecture (ISCA), pages 186-197, San Diego, CA, Jun. 2007.
http://doi.acm.org/10.1145/1250662.1250686”

86

compiler support to partition single-thread work among cores, schedule execu-

tion on each core, and orchestrate communication and synchronization between

cores.

Tarjan et al. propose Federation [55], which strives to partially leverage two

single-issue in-order cores to construct a two-issue out-of-order CPU. At a high

level, their approach is to incorporate centralized, area-conscious structures for

out of order processing, which bypass those in the in-order cores, essentially

using the two in-order cores as clustered execution units. It is unclear how sen-

sitive Federation is to resource provisioning in the base cores (e.g., the paper

assumes sufficient storage to support four hardware threads), or to close inte-

gration of the base cores (e.g., one cycle to bypass an operand over to the other

core’s register file, or a “cache controller” of unspecified latency to forward re-

quests to, and collect replies from, both cores’ L1 caches).

7.2 Clustered Architectures

Out-of-order core fusion borrows from some of the mechanisms developed in

the context of clustered architectures [4, 5, 7, 12, 13, 14, 18, 45, 59]. Our proposal

is closest to the recent thrust in clustered multithreaded processors (CMT) [15,

16, 34]. In this section, we give an overview of the designs that are most relevant

to our work, and highlight the limitations that preclude these earlier proposals

from supporting workload diversity effectively. Table 7.1 provides an outline of

our discussion.

El-Moursy et al. [16] consider several alternatives for partitioning multi-

threaded processors. Among them, the closest one to our proposal is a CMP

87

Table 7.1: Comparison to recent proposals for clustered processors. FE and
BE stand for front- and back-end, respectively. NS stands for not
supported.

Performance Potential Throughput Modularity Reconfigurability
Architecture Sequential Parallel Potential FE BE Caches FE BE Caches

[15] Low High High Yes1 Yes No No Yes No
[16] (Shared Banks) High Low Low Partial1 Yes Yes No Yes No
[16] (Private Banks) Low NS High Partial1 Yes Yes No Yes No

[34] (Fewer, large FEs) High Low Low Partial1 Yes Yes No Yes Yes
[34] (More, small FEs) Low High High Yes1 Yes Yes No Yes Yes

[46] High NS NS Yes2 Yes No No Yes No
Core Fusion High High High Yes Yes Yes Yes Yes Yes

1Modules cannot collectively support one thread
2Modules do not support more than one thread

that comprises multiple clustered multithreaded cores (CMP-CMT). The au-

thors evaluate this design with both shared and private L1 data cache banks,

finding that restricting the sharing of banks is critical for obtaining high per-

formance with multiple independent threads. However, the memory system

is not reconfigurable; in particular, there is no mechanism for merging inde-

pendent cache banks when running sequential code. Consequently, sequen-

tial regions/applications can exploit only a fraction of the L1 data cache and

load/store queues on a given core. Similarly, each thread is assigned its own

ROB, and these ROBs cannot be merged. Finally, neither coherence nor mem-

ory consistency issues are considered. Hence, the lack of reconfigurability in the

memory system and the front-end, coupled with the lack of coherence and con-

sistency support makes this architecture inadequate for supporting workload

diversity.

Latorre et al. [34] propose a CMT design with multiple front- and back-ends,

where the number of back-ends assigned to each front-end can be changed at

runtime. Each front-end can fetch from only a single thread, and front-ends

cannot be merged or reconfigured. When running a single thread, only one of

88

these front-ends is active. As a result, each front-end has to be large enough to

support multiple (potentially all) back-ends, and this replication results in sig-

nificant area overheads (each front-end supports four-wide fetch, has a 512-entry

ROB, a 32k-entry branch predictor, a 1k-entry i-TLB and a trace cache with 32k

micro-ops). Stores allocate entries on all back-ends, and these entries are not

recycled. This requires the store queue in each back-end to be large enough

to accommodate all of the thread’s uncommitted stores. Inevitably, these inef-

ficiencies limit the total number of threads that can be supported on the same

die, thereby prohibiting the exploitation of high levels of TLP and making this

architecture inadequate for supporting workload diversity.

Collins et al. [15] explore four alternatives for clustering SMT processors.

Among them, the most relevant to our work is a processor with clustered front-

ends, execution units, and register files. Each front-end is capable of fetching

from multiple threads, but the front-ends are not reconfigurable, and multiple

front-ends cannot be merged when running a single thread. As the authors

explain, the reduced fetch/rename bandwidth of each front-end can severely

affect single-thread performance. Hence, this architecture is also inadequate for

supporting workload diversity.

Parcerisa [46] partitions the front-end of a conventional clustered architec-

ture to improve clock frequency. The front-end is designed to fetch from a single

thread: parallel or multiprogrammed workloads are not discussed and recon-

figuration is not considered. The branch predictor is interleaved on high-order

bits, which may result in underutilized space. Mechanisms for keeping consis-

tent global history across different branch predictor banks are not discussed.

Chaparro et al. [14] distribute the rename map and the ROB to obtain tem-

89

perature reductions. Fetch and steering are centralized. Their distributed ROB

expands each entry with a pointer to the ROB entry (possibly remote) of the

next dynamic instruction in program order. Committing involves pointer chas-

ing across multiple ROBs. In out-of-order core fusion, we also fully distribute

our ROB, but without requiring expensive pointer chasing mechanisms across

cores. In their architecture, although the rename tables are distributed, renam-

ing destination registers of instructions and maintaining free-register lists are

still centralized. In our in-order core fusion even these functionalities and struc-

tures are distributed.

Prior works on distributed/clustered architectures that try to enable out-of-

order execution using multiple in-order processing elements [28, 42, 57] have

several common features. First, they employ two-level hierarchical register files

both in the ISA and in the microarchitecture: a local register file [42, 57] or accu-

mulator [28] per processing element and a centralized global register file. This

hierarchy is exposed to the ISA (although each work assumes different ISA).

Second, compiler forms dependence chains that execute contiguously and in or-

der on a processing element. Instructions in a chain are dependent on each other

through local register/accumulator, while inter-chain dependences are satisfied

over global register file. The compiler accordingly extracts the chains and per-

forms register renaming. Chains in [42] are typically much longer than ones in

[28, 57], which are few instructions long.

Salverda and Zilles [51] investigate the fundamental performance challenges

of single-threaded execution on clustered in-order processors, using a model

where many clustering overheads are idealized. They conclude that, despite

the absence of important clustering overheads, a design with a realistic imple-

90

mentation of instruction steering would fall well short of the performance of a

typical out-of-order processor. However, they do show that potential for higher

performance exists in theory, and as a result they encourage research in alterna-

tive mechanisms for core aggregation, or in creative ways to provide the base

in-order cores with some out-of-order execution capability.

7.3 Scalable Issue-Queue Designs

Reducing the complexity of issue queues in dynamically scheduling proces-

sors has drawn significant attention. Several works apply prescheduling among

in-flight non-issued instructions, which reorders instructions based on depen-

dences or estimated/predicted latencies, and confines selection to relatively

small number of instructions that are ready or close-to-ready. Palacharla et

al. [45] propose employing multiple FIFO queues each feeding exclusive func-

tional units, and only instructions at FIFO heads are considered for issue. The

prescheduling (steering) logic tries to chain dependent instructions consecu-

tively in a queue, and if not possible waits for an empty queue. This policy

to steer instruction to multiple FIFO queues remains the state-of-the-art. [1]

modifies this steering policy for FP applications to take into account their esti-

mated issue times when inserting into the issue queues. In another approach,

they modify the selection from a queue to consider expected issue time and in-

struction age information. Other proposals [10, 11, 38, 48] employ at least one

smaller conventional issue queue in their prescheduling designs. In the first

three, prescheduling is done through a RAM-based array with in-order entry

release, while in the last approach, smaller conventional issue queues are used.

91

To reduce wake-up complexity in issue queues, [10, 11] propose a RAM

queue indexed with register identifier to wake up the first consumer [10] or at

most N consumers [11] of a register. Huang et al. [25] propose a hybrid approach

for wakeup logic by handling the common case of one in-flight consumer by

enabling only its comparator in the issue queue, while in case of multiple con-

sumers all or a part of comparators in the issue queue are enabled. This requires

consumer instructions to subscribe into the producer’s issue queue entry.

The overall distributed issue logic employed in our in-order-core-based

work is based on the design in [45]. On top of that, lookahead execution is a

prescheduling technique that tries to select only one instruction from a queue

to be considered for issue. However, it is simpler than prior prescheduling pro-

posals as it is based on a single issue queue design, does not need to compute or

predict issue times, and does not assume anything for instruction dependences

in a queue.

7.4 Other Related Work

Trace Processors [49] overcome the complexity limitations of monolithic proces-

sors by distributing instructions to processing units at the granularity of traces.

The goal is the complexity-effective exploitation of ILP in sequential applica-

tions. Other types of workloads (e.g., parallel codes) are not supported. Multi-

Scalar processors [53] rely on compiler support to exploit ILP with distributed

processing elements. The involvement of the compiler is prevalent in this ap-

proach (e.g., for register communication, task extraction, and marking potential

successors of a task). On the contrary, core fusion does not require specialized

92

compiler support. Neither multiscalar nor trace processors address the issue of

accommodating software diversity in CMPs.

93

CHAPTER 8

CONCLUSIONS

Inferior sequential-code performance in future’s highly-parallel CMPs is an im-

portant problem when executing future’s dynamic and diverse set of applica-

tions, ranging from purely sequential to highly parallel, and everything in be-

tween. To address this problem, in this dissertation, we have proposed a novel

reconfigurable CMP architecture that we call core fusion. It allows relatively sim-

ple CMP cores to dynamically fuse into larger, more powerful processor in order

to speedup sequential-code. The result is a flexible CMP architecture that can

adapt to a diverse collection of software. It does so without requiring higher

software complexity, a customized ISA, or specialized compiler support.

We propose and evaluate solutions for both out-of-order and in-order base

cores. For each case, we respect the inherent capabilities of the base cores and

their independent nature. While out-of-order base cores provide the design

with valuable opportunities for latency hiding, minimally-provisioned in-order

base cores leave little margin for inefficiencies. We have demonstrated that core

fusion concept can be carried out effectively in the domain of simple in-order

cores, despite the fact that the base in-order cores have very limited latency-

hiding ability. Overall, very significant differences exist between both solutions.

The modular and distributed mechanisms require little central processing

and functional replication. In the course of formulating our in-order core fusion

solution, we devise: (1) A distributed checkpoint-based mechanism for book-

keeping of the program state; (2) a distributed register renaming mechanism;

(3) a lightweight approach for distributed memory disambiguation, and (4) a

lookahead execution within each base core to partially hide cross-core commu-

94

nication an other latencies. Our evaluation shows that a four-way fused config-

uration delivers a 45% performance gain over a single in-order core, at the cost

of 15% hardware overhead per core.

95

BIBLIOGRAPHY

[1] J. Abella and A. González. Low-complexity distributed issue queue. In
International Symposium on High-Performance Computer Architecture, pages
73–82, Madrid, Spain, February 2004.

[2] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint processing and
recovery: Towards scalable large instruction window processors. In In-
ternational Symposium on Microarchitecture, pages 423–434, San Diego, CA,
December 2003.

[3] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact of perfor-
mance asymmetry in emerging multicore architectures. In International
Symposium on Computer Architecture, pages 506–517, Madison, Wisconsin,
June 2005.

[4] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi. Dynamically
managing the communication-parallelism trade-off in future clustered pro-
cessors. In International Symposium on Computer Architecture, pages 275–287,
San Diego, CA, June 2003.

[5] A. Baniasadi and A. Moshovos. Instruction distribution heuristics for
quad-cluster, dynamically-scheduled, superscalar processors. In Interna-
tional Symposium on Microarchitecture, pages 337–347, Monterey, CA, De-
cember 2000.

[6] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L. Rappoport,
A. Yoaz, and U. Weiser. Correlated load-address predictors. In Interna-
tional Symposium on Computer Architecture, pages 54–63, Atlanta, GA, May
1999.

[7] R. Bhargava and L. K. John. Improving dynamic cluster assignment for
clustered trace cache processors. In International Symposium on Computer
Architecture, pages 264–274, San Diego, CA, June 2003.

[8] D. Burger, S. Keckler, K. McKinley, M. Dahlin, L. John, C. Lin, C. Moore,
J. Burrill, R. McDonald, and W. Yoder. Scaling to the end of silicon with
EDGE architectures. IEEE Computer, 37(7):44–55, July 2004.

[9] J. Burns and J.-L. Gaudiot. Area and system clock effects on SMT/CMP
processors. In International Conference on Parallel Architectures and Compila-
tion Techniques, page 211, Barcelona, Spain, September 2001.

96

[10] R. Canal and A. González. A low-complexity issue logic. In International
Conference on Supercomputing, pages 327–335, Santa Fe, NM, May 2000.

[11] R. Canal and A. González. Reducing the complexity of the issue logic. In
International Conference on Supercomputing, pages 312–320, Sorrento, Italy,
June 2001.

[12] R. Canal, J.-M. Parcerisa, and A. González. A cost-effective clustered archi-
tecture. In International Conference on Parallel Architectures and Compilation
Techniques, pages 160–168, Newport Beach, CA, October 1999.

[13] R. Canal, J. M. Parcerisa, and A. González. Dynamic cluster assignment
mechanisms. In International Symposium on High-Performance Computer Ar-
chitecture, pages 132–142, Toulouse, France, January 2000.

[14] P. Chaparro, G. Magklis, J. González, and A. González. Distributing the
frontend for temperature reduction. In International Symposium on High-
Performance Computer Architecture, pages 61–70, San Francisco, CA, Febru-
ary 2005.

[15] J. D. Collins and D. M. Tullsen. Clustered multithreaded architectures -
pursuing both IPC and cycle time. In International Parallel and Distributed
Processing Symposium, Santa Fe, New Mexico, April 2004.

[16] A. E.-Moursy, R. Garg, D. H. Albonesi, and S. Dwarkadas. Partitioning
multi-threaded processors with a large number of threads. In International
Symposium on Performance Analysis of Systems and Software, pages 112–123,
Austin, TX, March 2005.

[17] P. Bai et al. A 65nm logic technology featuring 35nm gate length, enhanced
channel strain, 8 Cu interconnect layers, low-k ILD and 0.57µm2 SRAM
Cell. In International Electron Devices Meeting, Washington, DC, December
2005.

[18] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The Multicluster archi-
tecture: Reducing cycle time through partitioning. In International Sympo-
sium on Microarchitecture, pages 149–159, Research Triangle Park, NC, De-
cember 1997.

[19] J. A. Farrell and T. C. Fischer. Issue logic for a 600-MHz out-of-order execu-
tion microprocessor. IEEE Journal of Solid-State Circuits, 33(5):707–712, May
1998.

97

[20] J. González, F. Latorre, and A. González. Cache organizations for clustered
microarchitectures. In Workshop on Memory Performance Issues, pages 46–55,
Munich, Germany, June 2004.

[21] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Elsevier Science Pte Ltd., third edition, 2003.

[22] J. L. Henning. SPEC CPU2000: Measuring CPU performance in the new
millennium. IEEE Computer, 33(7):28–35, July 2000.

[23] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. IEEE
Computer, 41(7):33–38, July 2008.

[24] R. Ho, W. Mai, and M. A. Horowitz. The future of wires. Proceedings of the
IEEE, 89(4):490–504, April 2001.

[25] M. Huang, J. Renau, and J. Torrellas. Energy-efficient hybrid wakeup logic.
In International Symposium on Low Power Electronics and Design, pages 196–
201, Monterey, CA, August 2002.

[26] The ITRS Technology Working Groups, http://www.itrs.net. International
Technology Roadmap for Semiconductors (ITRS) 2007 Edition.

[27] C. Kim, S. Sethumadhavan, D. Gulati, D. Burger, M. S. Govindan, N. Ran-
ganathan, and S. W. Keckler. Composable lightweight processors. In In-
ternational Symposium on Microarchitecture, pages 381–394, Chicago, IL, De-
cember 2007.

[28] H.-S. Kim and J. Smith. An instruction set and microarchitecture for in-
struction level distributed processing. In International Symposium on Com-
puter Architecture, pages 71–81, Anchorage, AK, May 2002.

[29] N. Kırman, M. Kırman, M. Chaudhuri, and J. F. Martı́nez. Checkpointed
early load retirement. In International Symposium on High-Performance Com-
puter Architecture, San Francisco, CA, February 2005.

[30] A. KleinOsowski and D. Lilja. MinneSPEC: A new SPEC benchmark work-
load for simulation-based computer architecture research. Computer Archi-
tecture Letters, 1, June 2002.

[31] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen.
Single-ISA heterogeneous multi-core architectures: The potential for pro-

98

cessor power reduction. In International Symposium on Microarchitecture,
pages 81–92, San Diego, CA, December 2003.

[32] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas. Single-ISA heterogeneous multi-core architectures for multi-
threaded workload performance. In International Symposium on Computer
Architecture, pages 64–75, München, Germany, June 2004.

[33] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in multi-core
architectures: Understanding mechanisms, overheads and scaling. In In-
ternational Symposium on Computer Architecture, pages 408–419, Madison,
Wisconsin, June 2005.

[34] F. Latorre, J. González, and A. González. Back-end assignment schemes
for clustered multithreaded processors. In International Conference on Su-
percomputing, pages 316–325, Malo, France, June–July 2004.

[35] N. Mäding, J. Leenstra, J. Pille, R. Sautter, S. Büttner, S. Ehrenreich, and
W. Haller. The vector fixed point unit of the synergistic processor element
of the Cell architecture processor. In Design, Automation and Test in Europe,
pages 244–248, Munich, Germany, March 2006.

[36] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart
Memories: a modular reconfigurable architecture. In International Sym-
posium on Computer Architecture, pages 161–171, Vancouver, Canada, June
2000.

[37] J. F. Martı́nez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas. Cherry:
Checkpointed early resource recycling in out-of-order microprocessors. In
International Symposium on Microarchitecture, Istanbul, Turkey, November
2002.

[38] P. Michaud and A. Seznec. Data-flow prescheduling for large instruction
windows in out-of-order processors. In International Symposium on High-
Performance Computer Architecture, pages 27–36, Nuevo Leone, Mexico, Jan-
uary 2001.

[39] M. Moudgill, K. Pingali, and S. Vassiliadis. Register renaming and dy-
namic speculation: An alternative approach. In International Symposium on
Microarchitecture, pages 202–213, Austin, TX, December 1993.

[40] S. M. Mueller, C. Jacobi, H-J. Oh, K. D. Tran, S. R. Cottier, B. W. Michael,
H. Nishikawa, Y. Totsuka, T. Namatame, N. Yano, T. Machida, and S. H.

99

Dhong. The vector floating-point unit in a synergistic processor element of
a CELL processor. In IEEE Symposium on Computer Arithmetic, pages 59–67,
Cape Cod, MA, June 2005.

[41] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead execution: An
alternative to very large instruction windows for out-of-order processors.
In International Symposium on High-Performance Computer Architecture, pages
129–140, Anaheim, CA, February 2003.

[42] S. Narayanasamy, H. Wang, P. Wang, J. Shen, and B. Calder. A dependency
chain clustered microarchitecture. In International Parallel and Distributed
Processing Symposium, Denver, CO, April 2005.

[43] University of Illinois at Urbana-Champaign.
http://sesc.sourceforge.net, 2005.

[44] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The
case for a single-chip multiprocessor. In International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 2–11,
Cambridge, MA, October 1996.

[45] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective super-
scalar processors. In International Symposium on Computer Architecture,
pages 206–218, Denver, CO, June 1997.

[46] J.-M. Parcesira. Design of Clustered Superscalar Microarchitectures. Ph.D. dis-
sertation, Univ. Politecnica de Catalunya, April 2004.

[47] F. Pollack. New microarchitecture challenges in the coming generations
of CMOS. In International Symposium on Microarchitecture, Haifa, Israel,
November 1999. (Keynote presentation).

[48] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt. A scalable instruction
queue design using dependence chains. In International Symposium on Com-
puter Architecture, pages 318–329, Anchorage, AK, May 2002.

[49] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E. Smith. Trace processors. In
International Symposium on Microarchitecture, pages 138–148, Research Tri-
angle Park, NC, December 1997.

[50] E. Safi, A. Moshovos, and A. Veneris. A physical level study and opti-
mization of CAM-based checkpointed register alias table. In International

100

Symposium on Low Power Electronics and Design, pages 233–236, Bangalore,
India, August 2008.

[51] P. Salverda and C. Zilles. Fundamental performance constraints in horizon-
tal fusion of in-order cores. In International Symposium on High-Performance
Computer Architecture, pages 252–263, Salt Lake City, UT, February 2008.

[52] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W.
Keckler, and C. R. Moore. Exploiting ILP, TLP, and DLP with the polymor-
phous TRIPS architecture. In International Symposium on Computer Architec-
ture, pages 422–433, San Diego, CA, June 2003.

[53] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors.
In International Symposium on Computer Architecture, pages 414–425, Santa
Margherita Ligure, Italy, June 1995.

[54] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. Con-
tinual flow pipelines. In International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 107–119, Boston, MA,
October 2004.

[55] D. Tarjan, M. Boyer, and K. Skadron. Federation: Out-of-order execution
using simple in-order cores. Technical Report CS-2007-11, University of
Virginia, August 2007.

[56] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI 5.3,
HP Laboratories Palo Alto,
http://quid.hpl.hp.com:9081/cacti/, 2009.

[57] F. Tseng and Y. N. Patt. Achieving out-of-order performance with almost
in-order complexity. In International Symposium on Computer Architecture,
pages 3–12, Beijing, China, June 2008.

[58] H. Zhong, S. A. Lieberman, and S. A. Mahlke. Extending multicore ar-
chitectures to exploit hybrid parallelism in single-thread applications. In
International Symposium on High-Performance Computer Architecture, pages
25–36, Phoenix, AZ, February 2007.

[59] V. V. Zyuban and P. M. Kogge. Inherently lower-power high-performance
superscalar architectures. IEEE Transactions on Computers, 50(3):268–285,
March 2001.

101

