The Solution of Simgular-Value and
Symmetric Eigenvalue Problems o=
Multiprocessor Arrays

R.P. Brent and F.T. Luk’

TR 83-562
July 1983

Department of Computer Science
Cornell University
Ithaca, New York 14853

*Supported in Part by the U.S. Army Office under grant DAAG 29-79-C0124
and the National Science Foundation under grant MCS-8213718, and in part
by the Mathematical Sciences Research Centre and the Centre for
Mathematical Analysis, Australian National University.

THE SOLUTION OF SINGULAR-VALUE AND SYMMETRIC EIGENVALUE

PROBLEMS ON MULTIPROCESSOR ARRAYS

by
Richard P. Brent Franklin T. Luk*
Centre for Mathematical Department of
Analysis, Computer Science,
Australian National and Cornell University,
University, Ithaca, N.Y.,
G.P.O. Box 4, Canberra, 14853, U.S.A.

A.C.T. 2601, Australia.

*

Ssupported in part by the U.S. Army Office under grant
DAAG 29-79-C0124 and the National Science Foundation
under grant MCS-8213718, and in part by the Mathematical
Sciences Research Centre and the Centre for Mathematical
Analysis, Australian National University.

o det ety o Y

A

ABSTRACT

Parallel Jacobi-like algorithms are presented for computing
a singular-value decomposition of an m x n matrix (m=Zn) and an
eigenvalue decomposition of an n x n symmetric matrix. A linear
array of O(n) processors is proposed for the singular-value problem
and the associated algorithm requires time O(mnS), where S |is
the number of sweeps (typically S=10). A square array of O(n2)
processors with nearest-neighbor communication is proposed for the

eigenvalue problem; the associated algorithm requires time 0O(nS).

KEY WORDS AND PHRASES

Multiprocessor arrays, systolic arrays, singular-value
decomposition, eigenvalue decomposition, real symmetric matrices,
Hestenes method, Jacobi method, VLSI, real-time computation,

parallel algorithms.

1. INTRODUCTION

A singular-value decomposition (svD) of a real m x n (m=n)

matrix A is its factorization into the product of three matrices:

(1.1) A=UZ vV,

where U 1is an m X n matrix with orthonormal columns, Y 1is an
n x ﬁ nonnegative diagonal matrix and the n x n matrix V is
orthogonal. This decomposition has many important scientific and
engineering applications (cf. [1,11,26,27]1) .

If the matrix A 1is square (i.e., m = n) and symmetric, we may
adjust the sign of the elements of I so that U = V. we then

obtain an eigenvalue decomposition:

(1.2) A=UDU ,

where U 1is orthogonal and D diagonal. The advent of massively
parallel computer architectures has aroused much interest in parallel
singular-value and eigenvalue procedures, e.g. (2,4,5,6,7,9,13,14,16,
19,20,22,23,24,25]. such architectures may turn out to be indispensable
in settings where real-time computation of the decompositions is

required (26,27]. Speiser and Whitehouse [26] survey parallel
processing architectures and conclude that systolic arrays offer the
best combination of characteristics for utilizing VLSI/VHSIC technology

to do real-time signal processing. (see also [17,271.)

[PTRYN

In this paper we present an array of O(n) linearly-
connected processors which computes an SVD in time O(mnS). Here S
is a slowly growing function of n which is conjectured to be
O(logn); for practical purposes S may be regarded as a constant
(see [21] and the Appendix). Our array implements a one-sided
orthogonalization method due to Hestenes [15]. His method is
essentially the serial Jacobi procedure for finding an eigenvalue
decomposition of the matrix ATA, and has been used by Luk [20]
on the ILLIAC IV computer. We also describe how one may implement
a Jacobi method on a two-dimensional array of processors to compute
an eigenvalue decomposition of a symmetric matrix. Our array
requires O(n2) processors and O(nS) wunits of time. Assuming
that S = O(log n), this time requirement is within a factor
O(log n) of that necessary for the solution of n linear equations
in n unknowns on a systolic array [2,3,17,18].

Results similar to ours have been reported in the
literature. For computing the SVD, Sameh [23] describes an
implementation of Hestenes method on a ring of 0O(n) processors.
Suppose n is even (the result is similar for an odd n). At
each orthogonalizaticn step % column rotations are performed.
Sameh's permutation scheme requires 3n - 2 steps to ensure the
execution of every possible pairwise rotation at least once; our
permutation scheme (presented in Section 3) requires only n - 1

steps.

parallel Jacobi methods for computing eigenvalues are
given in [7,16,22]. However, the procedure of Sameh [22] may be
unsuitable for multiprocessor arrays. For simplicity, assume again

. n .
that n 1is even, so > off-diagonal elements can be set to zero

e Y

at each elimination step. Let us compare the number of permutations
necessary for the annihilation of each off-diagonal element at least
once. Our procedure (see Sections 3 and 6) requires n -1
permutations, which is optimal; that of Chen and Irani [7] requires

n permutations. The scheme of Kuck and Sameh [16] is much worse.

Their basic scheme appears to cycle every 2n - 2 steps and to miss
some off-diagonal elements. A modification ("the second row and

column are shifted to the n-th position after every (n - 1) orthogonal
transformations") can be made to overcome this problem, but

the modified scheme requires (n - 1)2 permutations [7].

Let us generalize the notionof a "sweep" and use it to
denote a minimum- length sequence of rotations that eliminates each
off-diagonal element at least once [7]. It is probably fair to assume
that the Jacobi procedures in [7, 16] and in this paper require an
equal number (say S) of sweeps for convergence. For the algorithms
presented in this paper a sweep always consists of n(n - 1)/2
rotations (the minimal number possible), but this is not the case
for the Chen and Irani or Kuck and Sameh algorithms mentioned above.

The architecture proposed in [7] is a linear array of 0O(n) processors;
the associated Jacobi method requires time O(nzs). The architecture
described in [16] is a square array of O(n) processors, with boundary
wraparounds and a broadcast unit. The associated algorithm requires
time O(n3S). In comparison, our procedure requires O(nz) processors
and O(nS) wunits of time.

The principal results of this paper were first reported in
[4,5]. A related SVD algorithm is presented by the authors and Van Loan
in [6]. It requires O(nz) processors and O(nS) time to compute the

singular values of an n x n matrix.

P TSN . |

This paper is organized as follows. Sections 2-4 are

devoted to the singular-value problem and Section 5-8 to the eigenvalue

problem. Hestenes method is reviewed in Section 2. The new ordering

is described in Section 3 and the corresponding SVD algorithm in Section 4.

The serial Jacobi method is outlined in Section 5. Details are filled in

and some variations and extensions of the basic algorithm are given in

Sections 7 and 8. The results of some numerical simulations are presented

in the Appendix.

The SVD algorithm described in Sections 3-4 below is being

implemenﬁed on an experimental 64-processor systolic array by Speiser

at the Naval Ocean Systems Center (San Diego) .

2. HESTENES METHOD

We wish to compute an SVD of an m x n matrix A, where
m =Zn. An idea is to generate an orthogonal matrix V such that
the transformed matrix AV = W has orthogonal columns. Normalizing
the euclidean length of each nonnull column to unity, we get the

relation

(2.1) W = UZ,

where 7 1is a matrix whose nonnull columns form an orthonormal set of
vectors and I 1is a nonnegative diagonal matrix. An SVD of A is

given by

(1.1'") A=UZZV.

As a null column of U is always associated with a zero diagonal

element of I , there is no essential difference between (1.1) and (1.1').

» v

A P —————— e e

Hestenes [15] uses plane rotations to construct V. He

generates a sequence of matrices {Ak} using the relation

S o

_ . . - (k) (k)
where Al = A and Qk is a plane rotation. Let Ak = (al roeeoy an)
and Qk = (qrék)) , and suppose Qk represents a rotation in the (i,3)

plane, with i< j, i.e.

k) _ x) _ .
4 = cos 0 , qij = sinf ,
2.2
() q..(k) = -sin 6, q.sk)= cos B .
J1 33
o as . (k) (k)
We note that postmultiplication by Qk affects only a, and a, ’

and that

a.(k+1), a$k+1)) _ (a.(k), E;k))c cosb sine).

(2.3) (~1 25 %4 -sinB cosb

The rotation angle € is chosen so that the two new columns are orthogonal.

Adopting the formulas of Rutishauser [21], we let

_ k)2 _ oLk 2 _ ()T (k)
(2.4) o= fla; Ny 8= ey N5 y=a; 2y -

We set O =0 if Yy =0; otherwise we compute

. _B-a
g_z.Y ’
(2.5) ¢ = —sign (o) :
el + /1 + &
cosB = 1 ,

/1 + t2

and sin = t.cosb .
The rotation angle always satisfies
i
< —_
(2.6) le] = 3

However, there remains the problem of choosing (i,3J), which is usually
done according to some fixed cycle. An objective is to go through all
column pairs exactly once in any sequence (a sweep) of n((n - 1)/2

rotations. A simple sweep consists of a cyclic-by-rows ordering:
(2.7) (1,2),(1,3),...,(1,n),(2,3),...,(2,n),(3,4),...,(n—1,n).

Forsythe and Henrici [10] prove that, subject to (2.6), the cyclic-by-rows
Jacobi method always converges. Convergence of the cyclic-by-rows Hestenes
method thus follows.

Unfortunately, the cyclic-by-rows scheme is apparently not
amenable to parallel processing. In Section 3 we present an ordering
that enables us to do L%J rotations simultaneously. The (theoretical)
price we pay is the loss of guaranteed convergence. Hansen [12]
discusses the convergence properties associated with various orderings
for the serial Jacobi method. He defines a certain "preference factor"
for comparing different ordering schemes. Our new ordering is in fact
quite desirable, for it asymptotically optimizes the preference factor
as n = o . Thus, although the convergence proof of [10] does not apply,
we expect convergence in practice to be faster than for the cyclic-by-
rows ordering. Simulation results (presented in the Appendix) support

this conclusion.

0 ta N e A

PR VUT W)
X¢]

§ To enforce convergence, we may choose a threshold approach
iE [29, pp-277-278). That is, we associate with each sweep a threshold

i value, and when making the transformations of that sweep, we omit any
rotation based on a normalized inner product

A00T 00
] ~l "'J

? Faf, Hal i,

which is below the threshold value. Although such a strategy guarantees
convergence, we do not know any example for which our new ordering fails
to give convergence even without using thresholds. Our method, like

the cyclic-by-rows method, is ultimately quadratically convergent [28].

¢ The plane rotations are accumulated if the matrix V is

desired. We compute

ik = xS

with V1 = I. Denoting the r-th Column of Vk (respectively Vk+1)

(k) . (k+1)
by v, (respectively v,)y, we may update both Ak and Vk
simultaneously:
3 { (
a$k+1) a€k+1) a?k) agk) cos® sinb
~1i by | ~1 ~3
(2.8) = v .
v‘(k+1) V§k+1) V(k) V(k) sinf cosb

~1 ~J ~1i ~3

10

3. GENERATION OF ALL PAIRS (i,J)

In this section we show how O(n) linearly-connected

processors can generate all pairs (i,j), 1 =i < J=nm, in O(n)

steps. The application to the computation of the SVD and of the
symmetric eigenvalue decomposition is described in Section 4 and in
Sections 6-8, respectively.

First, suppose n 1is even. We use n/2 processors

Pl’ ceey Pn/2 , Where Pk and Pk+l communicate (k =1,2,...,

n/2 - 1). Each processor P has registers Lk and Rk , output

k

lines outh and outRk, and input lines 1nLk and 1an, except

outR and inR are omitted. The

that outl 1nLl, n/2 n/2

1'

output outRk is connected to the input inLk'_,_1 as shown in

Figure 1.

PRV ST

11
out:R1 inL2 outR2 inL3 outR3 1r1L4
R . L R . L R X L R
1 1an outh 2 2 1nR2 outL3 3 3 1nR3 0utL4 4 4
4———-————'__—+——————-—‘—‘—+——————————'
P2 P3 P4

Figure 1: Inter—-processor connections for n = 8

P

k

Initially L =2k - 1 and Rk = 2k . At each time step processor

k

executes the following program:

if Lk < R then process (Lk’Rk) else process (Rk,Lk);
if k=1 then outRk:=Rk

else if k < n/2 then outRk:=Lk;
if > :=R 3
if k 1 then outh Rk
{wait for outputs to propagate to inputs of adjacent processors}
if k < n/2 then Rk:=1an else Rk:=Lk;

if k > 1 then Lk:=1nLk;

Here "process (i,j) means perform whatever operations are required on

the pair (i,j), 1 <1i < j <n . The operation of the systolic array

is illustrated in Figure 2.

We see that the index 1 stays in the register L of

1
processor Pl . Indices 2, ..., n travel through a cycle of
length n-1 consisting of the registers L2,L3, .y Ln/Z’Rn/Z’
Rn/2—-l’ eees Rl . During any n-1 consecutive steps a pailr (i,3)

or

(j,i) can appear in a register pair (Lk’Rk) at most once. A

parity argument shows that (i,j) and (j,i) can not both occur

(see Figure 2). Since there are n/2 register pairs at each of n-l

time steps, each possible pair (i,j) , 1 i <j<sn, 1is processed

exactly once during a cycle of n-1 consecutive steps.

L et adve S T I

el

12
step 0 1 2 3..4 5. 6 7 8
' A S s~ ~ Yy -
1 N e = I ~ -
. 7 ~ - ~ -~ \
! A ~7 ~ \
| N VR PN
1 e - = s N
~ d ~
step 1 147 2. 6 3.8 5.7
' N Ve ~ e \\ A
, AR L7 ORI
' ' g N
a s \\ // N N \
s N - N X
A - N ~
step 2 1 6 %, 8 2.7 3.5
: \\ -~ ~ - \\ //
i N7 ~ L7 ~J)
! // .. /\\\ ‘ % N s
step 3 1 8 6. 7 4 5 2. 3
] N ~N , A
1 N — -
X N N - ~ P \
; N - N // ‘\ L
1 \\ \/(\\
Ve
) \ _ N // \\ e N
. N N P
step 4 1 7 8..5 6_.3 4 2
! -~ PR -
B AN e ~ e N P
, N 7 N - .7 \
\ A et XN
T e N 7 ~ - ~ A\
» 1 ~ P ~ \
step 5 1 57 7..3 ~8. .2 \Q 4
' g N > -
T N ra = < .
1 N e S - ~ //
' N e ~ e \
) e > ~
" oD P PR A
; A~ \T\ // I~ g \\ '
step 6 1 3 5 2 7 4~ 8 6

Figure 2: Full cycle of the systolic array for n = 8

If n is odd, we use {B/—] processors but initialize
Lk =2k - 2, Rk =2k -1 for k=1, ..., [%1 and omit any ''process"
calls from processor Pl .

It is interesting to note that similar permutations are "well

known" for use in chess and bridge tournaments, but have apparently
not been applied to parallel computation.

4. A one-dimensional systolic array for SVD computation

Assume that n 1is even (else we can add a zero column to A
or modify the algorithm as described at the end of Section 3). We
use n/2 processors Pl’ ey Pn/2’ as described in Section 3,

except that Lk and Rk are now local memories large enough to store

a column of A (i.e.,L, and Rk each has at least m floating-point

k

LEVY SVRLVEY |

words) .

suffici

column

13

shift registers or other sequential access memories are
ent as we do not need random access to the elements of each row.

. c .
Suppose processor Pk contains column ai in Lk and

a? in Rk' It is clear that Pk can implement the column

orthogonalization scheme in time O(m) Dby making one pass through

c
a. and

~

perform

c .
aj to compute the inner products (2.4), and another pass to

the transformations (2.3) or (2.8). Adjacent processors can

then exchange columns in the same way that the processors of Section 3

exchange indices. This takes time O(m) if the bandwidth between

adjacent processors is one floating-point word. (Alternatively,

exchanges can be combined with the transformations (2.3) or (2.8).)

full sw

in tota

Consequently, we see that n/2 processors can perform a
eep of the Hestenes method in n - 1 steps of time O(m)each, i.e.,

1 time O(mn). Initialization requires that the (2k-1)-th

and 2k-th columns of A be stored in the local memory of processor

Pk for

O(mn) .

k=1, ..., n/2; clearly this can also be performed in time

The process is iterative. Suppose S sweeps are required to

orthogonalize the columns to full machine accuracy. We then have a

systolic array of n/2 processors which computes the SVD in time O(mnS).

By comp.

simulat

purpose

. . . . 2

arison, the serial Hestenes algorithm takes time O(mn S). Our
jon results suggest that S 1is O(log n), although for practical
s we can regard S as a constant in the range six to ten [21].

After an integral number of sweeps the columns of the matrix

W = AV (see (2.1)) will be stored in the systolic array (two per

process

that W

or). If V |is required, it can be accumulated at the same time

is accumulated, at the expense of increasing each processor's

local memory (but the computation time remains O(mnS)): see (2.8).

ot s e xS

14

5. SERIAL JACOBI METHOD

We now consider the related problem of diagonalizing a

given n x n symmetric matrix A = Al. The serial Jacobi method

generates a sequence of symmetric matrices {Ak} via the relation

_ AT
+1 k k
%(- Q AkQ ’

' . . - (k)
where Qk is a plane rotation. Let Ak = (ars) and suppose Qk

represents a rotation through angle 8 in the (i,j) plane, with i<j

(see (2.2)). We choose the rotation angle to annihilate the (i,3)

element of Ak' If A.gk) = 0, we do not rotate, i.e., 6 = 0. Otherwise

1]

we use the formulas in [21] to compute sinB and cosf

S
E = ——
2a$5)
ij
t = _sign &) tanb ,
(5.1) el + 1+ "
cosb = 1 , and
Y1+ t°
sin® = t.cosB

Note that the rotation angle 60 may be chosen to satisfy
L
< —_
[6[= 7

The new matrix Ak+1 differs from Ak only in rows and columns i

and j. The modified values are defined by

ol bl s A3 WIS

15
LD) ()
ii ii Tiy
D00 00
il ii ij
(5.2) a§§+l) = a§§+1) = 0,
a§k+1) = a(g+l) = cosa.agk)— sinG.agk)
iq qi iq J
(q # 1i,3)
a?k+1) = a(%+l) = sine.agk)+ cos@.agk)
Jq q] 1q]

Again we choose (i,j) in accordance to the new ordering introduced

in Section 3. The comments that were made in Section 2 concerning
various aspects (convergence proof, convergence rate, threshold approach,
etc.) of the Hestenes method apply equally well here to the Jacobi

procedure.

6. AN IDEALIZED SYSTOLIC ARCHITECTURE

In this section we describe an idealized systolic architecture
for implementing the Jacobi method to compute an eigenvalue decomposition
of A. The architecture is idealized in that it assumes the ability to
broadcast row and column rotation parameters in cpnstant time. In Section
8 we show how to avoid this assumption, after showing in Section 7 how to

take advantage of symmetry, compute eigenvectors, etc.

Assume that the order n 1is even and that we have a square

array of n/2 by n/2 processors, each processor containing an 2 x 2

submatrix of A = (ajj) . Initially processor Pij contains
a,. . a,. o
a21—1,2]—1 a21—1’23 for i,j =1, ...,n/2 , and Pi' is connected
2i,23-1 2i,27]
to its nearest neighbors Pitl,j and Pi,jtl (see Figure 3). 1In
o . Bi‘
general Pij contains four real numbers) s] ,

|
[Yij ij |
)

e A

16
where aij = aji’ aij = éji and Bij = in by symmetry.
The diagonal processors Pii (i =1,...,n/2) act differently
from the off-diagonal processors Pij (L #3, 1% % € n/2). Each time
c. s.
step the diagonal processors Pii compute rotations t + * to
-s. C,
annihilate their off-diagonal elements Bii and Y ,l +
. 2 _
(actually Bii = Yii)' i.e., so that cy + s.l =1 and
a1 312 J 213 314 %15 %16
P P12 Pi3
421 822 K 223 824 K 425 226
A
N N
331 332 333 334 a a
P v p 35 36
21 22 P23
i 341 342 243 R %45 246
: N N
5 a a a a a a
1 51 52 | —— °s3 54 , 955 56
! Py P P33
361 362 363 364 6 265 366
Figure 3: Initial configuration (idealized, n =A6)
c. =-s.] [o., B.. c; 8 aii 0
l 1 it 1l = is diagonal. From (5.1) and (5-.2)
- 0 '
s; o) lrgg 8540 781 &y 614

with a change of notation we find that

ci 1 1
6.1 =
(6.1) s /1+ti'" .
i i

17

and
aii ail -1
vl T MRTLIT ’
6ii 6ii 1
where
jo if B, =0
6. =
(6.2) ti t sign(gi)
if B,, #0
1 . s
‘El‘ + /1 + glz i1
ii ~ %id
and Ei = T
ii

To complete the rotations which annihilate Bii and Yii ,

i=1,...,n/2 , the off-diagonal processors Pij (i # j) must perform
a, . Bis ai. B s
the transformations J I« J J , where
Yoo 6. Wl 8]
1] 1] 1] 1]
o By ey sil %5 B, c, s,
] J = 1 J J J J| . We assume that the diagonal
1 \J -
Tij °ij sy o) Wiy Si5) %50 5y

processor P‘i broadcasts the rotation parameters C. and s to processors
i
Pij and Pji (j =1,...,0/2) 1in constant time, so that the off-diagonal

processor Pij has access to the parameters o s> Cj and sj when required.
(This assumption is removed in Section 8.)

To complete a step, columns (and corresponding rows) are interchanged
between adjacent processors so that a new set of n off-diagonal elements is
ready to be annihilated by the diagonal processors during the next time istep.

This is done in two sub-steps. First, adjacent columns are exchanged as in the

SVD algorithm described in Sections 3-4 and as illustrated in Figure 2.

Next, the same permutation is applied to rows, so as to maintain symmetry.

Formally, we can specify the operations performed by a processor P with

i3

outputs outha,,,...,outhé__,outva,,,...,outvé,_, and inputs inha . .,...,inve . .
1] 1] 1] 1) 1] 1]

by Program 1. Note that outputs of one processor are connected to inputs of

adjacent processors in the obvious way, e.g. outhBij is connected to inha, 41
i,j

18

{subscripts (i,j) omitted if no ambiguity results}
{column interchanges}
if i = 1 then [outhBf « B; outhd + §]
else if i < n/2 then [outhf <« a; outhd + Yl;

if i > 1 then [outha <« B; outhy + §&];
{wait for outputs to propagate to inputs of adjacent processors}
if 1 < n/2 then [B <« inhB; & <« inh{]

else [B « a; § + ¥];
4 1 > 1 then [a < inha; Yy < inhyl;
{row interchanges}
if j = 1 then [outvy <« Y; outv$ « §]

else if j < n/2 then [outvy « a; outvd « B];

if j > 1 then [outva « Y; outvR « §8];
{wait for outputs to propagate to inputs of adjacent processors}
if j < n/2 then [y « invy; 6 « invd]

else [y « a; & « B];

if j > 1 then [a +« inva; B + invR];

Program l: Column and row interchanges for idealized processor Pii

(1 £4i€n/2, 15 3< n/2): see Figure 4. Note that, in Figure 4 and elsewhere,
we have omitted subscripts (i,j) if no ambiguity arises, e.g. inva is used
instead of dinvo_,
1]
The only difference between the data flow here and that in Section 4 is that
here rows are permuted as well as columns in order to maintain the symmetry of
A and move the elements to be annihilated during the next time step into the

diagonal processors. Hence, from Section 3 it is clear that a complete

sweep is performed every n - 1 steps, because each off-diagonal element of A
is moved into one of the diagonal processors in exactly one of the steps.

Each sweep takes time O(n) so, assuming that O(log n) sweeps are

19

required for convergence, the total time required to

diagonalize A 1is O(n log n).

outvd? l’inva outvg[J;ian

inho — s outhf

a B
outha ¢—) &— inhf

Pi'

inhy — J —> outhd

Y §
outhy €&— &— inhé

ianT louth invﬁ’[lputvd
Figure 4: Input and output lines for idealized processor Pij with

nearest-neighbour connections

7. Further details

Several assumptions were made in Section 6 to simplify the exposition.
In this section we show how to remove these assumptions (except for the
broadcast of rotation parameters, discussed in Section 8) and we also

suggest some practical optimizations.

7.1 Threshold strategy

It is clear that a diagonal processor Pii might omit rotations if

its off-diagonal elements Bii =Yy were sufficiently small. All that is

c, 1
required is to broadcast [sll = [0] along processor row and column 1
i

v U T2 e

20

As discussed in Section 2, a suitable threshold strategy guarantees
convergence, although we do not know any example for which our ordering

fails to give convergence even without a threshold strategy.

7.2 Computation of eigenvectors

If eigenvectors are required, the matrix U of eigenvectors can be
accumulated at the same time as A 1is being diagonalized. Each systolic
processor Pij (1L £ i,j € n/2) needs four additionai memory cells

Hi3 V13

. , and during each step sets

15 Tij

. s V.. . . V.. C. S,
u1J 1] < u1J 1] J J

a, . T,. g, . T,..||-s. C,
1] 1] 1] 1] J J

v
Each processor transmits its [§ T] values to adjacent processors in the

B

same way as its {? 6] values (see Program 1). Initially
Mig = Vi T Oyy T Tyy TO AE A AT and by Ty T L, 043 %V =0

After a sufficiently large (integral) number of sweeps, we have U defined

to working accuracy by

Uoi-1,25-1 U2i-1,2j ij Vij

"2i,25-1 921,25 ij ij

7.3 Diagonal connections

In Program 1 we assumed that only horizontal and vertical nearest-
neighbour connections were available. Except at the boundaries, diagonal

connections are more convenient. This is illustrated in Figures 5 and 6

(with subscripts (i,3) omitted).

Dl cmen WM

21
ina outf
outa /inB
P
iny outd
olity ind ™
Figure 5: Diagonal input and output lines for processor Pij
1y P12 P13 P14
Pa1 Po2 P23 2
i
Py P32 33 P34
P41 P42 P43 Fug
U
Figure 6: 'Diagonal' connections, n = 8
(here and below &—) stands forz‘_'))

Al W

22

Diagonal outputs and inputs are connected in the obvious way, as shown

in Figure 6,

lnYi—l,j+l if i >1, j <n/2
ina, . if i=1, j <n/2
e.g. outBij is connected to (¢ 1,3+l
ins, ., . if i>1, j =n/2
i-1,j3
inBi,j if i1 =1, j =n/2

Program 2 is equivalent to Program 1 but assumes a diagonal connection
pattern as illustrated in Figures 5 and 6. Subsequently we assume the diagonal
connection pattern for convenience, although it can easily be simulated if only

horizontal and vertical connections are available.

{subscripts (i,j) omitted for clarity}
if (4 = 1) and (j = 1) then outa < 0; outf < B;]

louty < Y; out$ « §

=

-
b

1 then louta « R; outB « a;

else if i

louty « §; out§ <+ y; |

else if j = 1 then louta « y; outf <« &;
louty « o outd « Bj |
else louta « &; outB < v;];

louty « B; outd « a; |
{wait for outputs to propagate to inputs of adjacent processors}

ina « a; inB « B;

iny « v; iné +« ¢.

Program 2: Diagonal interchanges for processor Pij

23

7.4 Taking full advantage of symmetry

Because A is symmetric and our transformations preserve symmetry, only

n

2 + 1) = n(n + 2)/8 systolic processors is necessary

a triangular array of %%(
for the eigenvalue computation. In the description above, simply replace any
reference to a below-diagonal element aij (or processor Pij) with i > j
by a reference to the corresponding above-diagonal element aji (or processor
Pji). Note, however, that this idea complicates the programs, and cannot be
used if eigenvectors as well .as eigenvalues are to be computed. Hence, for

clarity of exposition we do not take advantage of symmetry in what follows,

although only straightforward modifications would be required to do so.

7.5 0dd n

So far we assumed n to be even. For odd n we can modify the

program for processors P.. and Pi (i = 1,...,(%]) in a manner analogous

1i 1

to that used in Section 3, or simply border A by a zero row and column. For

simplicity we continue to assume that n 1is even.

7.6 Rotation parameters

In Section 6 we assumed that the diagonal processor Pii would compute
ci and si according to (6.1) | and then broadcast both ci and
s, along processor row and column i . It may be preferable to broadcast
only ti (given by (6.2)) and let each off-diagonal processor Pij compute
c, , S, s C and s. from t, and ¢t, . Thus communication costs are

i i 3 j i j

reduced at the expense of requiring off-diagonal processors to compute two
square roots per time step (but this may not be significant since the diagonal

processors must compute one Or two square roots per step in any case). In

what follows a 'rotation parameter' may mean either ti or the pair

. w .

S

24

8. Avoiding broadcast of rotation parameters

The most serious assumption of Section 6 is that rotation parameters
computed by diagonal processors can be broadcast along rows and columns in
constant time. We now show how to avoid this assumption, and merely transmit
rotation parameters at constant speed between adjacent processors, while
retaining total time O(n) for the algorithm.

Let Aij = |1 - j| denote the distance of processor Pij from the

diagonal. The operation of processor Pij will be delayed by Aij time

units relative to the operafion of the diagonal processors, in order to
allow time for rotation parameters to be propagated at unit speed along each
row and column of the processor array.

A processor cannot commence a rotation until data from earlier
rotations is available on all its diagonal input lines. Thus, processor Pij

Pic1,i41 » Paan,i-1 3™ Piyg g

if 1 <1i<n/2, 1< 3j<n/2 (for the other cases see Section 7.3). Since

needs data from processors P, X s
i-1,3-1

lAij - Aitl,jtll = 2

it is sufficient for processor Pij to be idle for two time steps while

waiting for the processors to complete their (possibly delayed)

Piel,je1
steps. Thus, the price paid to avoid broadcasting rotation parameters is
that each processor is active for only one third of the total computation
time. A similar inefficiency occurs with many other systolic algorithms,
{2,3,17,18] . (The fraction one-third can be increased almost to
unity if rotation parameters are propagated at greater than unit speed.)

A typical processor Pij (1 < j €1 < n/2) has input and output lines
as shown in Figure 7 (with subscripts (i,j) or (1,1) omitted). Figure 7
differs from Figure 5 in that it shows the horizontal and vertical lines

inht, outht, invt, outvt for transmission of rotation parameters. Processors

interconnect as shown in Figure 8.

L1 - Ve

25
: Subdiagonal (1 < j < i < n/2) Diagonal (1 < i < n/2)
ina invt outf i outvt outf

outa N ' inB outd " inB

outht €—— Pij k—— inht outht ¢&— Pii ——outht
/ _, / \
iny K outd iny z(//i \L r\\\ outd
outyY iné outy ind
outvt : outvt

Figure 7: Input and output lines for typical subdiagonal and diagonal

processors
2 3 3 4 4 5 5 6
P P P P
11 1 12 9 13 3 14
A=20 A =1 A =2 A =3
\
3 N 2 L 3 2 5 L3 5
3 1 2 3 3 4 4 b) 5
P P P P
21 1 22 1. 23 2 24
A=1 A =0 A=1 A =2
4 4 3 3 2 1 4 3 2 A
4 2 3 4 1 2 3 3 4 4
P P P P
31 2 32 1 33 1 34
A =2 A=1 A=0 A =1
5 4 4 3 3 2 1 3
5 3 4 S 2 3 4 1 2 3 3
P P P P
41 3 42 2 43 1 44
A =3 A =2 A =1 A =0
6 5 5 4 4 3 3 ii)
Figure 8: Interprocessor connections (n = 8)

(The first times at which inputs are available are indicated.)

Vel b -

2%
A A

Lvatl A

26

Assuming that the array (aij)l <i,j<n is available in the systolic
array at time T = 0 , the operation of processor Pij proceeds as described
by Program 3. We assume that each time step has nonoverlapping read and write
phases; the result of a write at step T should be available at the read
phase of steps T+ 1, T+ 2 and T+ 3 in a neighbouring processor, but
should not interfere with a read at step T in a neighbouring processor.

The first time steps at which data are available on various processors' input
lines are indicated in Figure 8.

?rogram 3 does not coﬁpute eigenvectors, but may easily be modified to
do so (as outlined in Section 7). We have also omitted a termination
criterion. The simplest is to perform a fixed number S (say conservatively
10) sweeps; then processor Pij halts when T = 3S(n - 1) + Aij + 3, since
a sweep takes 3(n - 1) time steps. A more sophisticated criterion is to

stop if no nontrivial rotations were performed during the previous sweep. This

requires communication along the diagonal, which can be done in n/2 time steps.

27

if (T 2 A) and (T - A = 0 (mod 3)) then

begin
a B
if T # A then [Y 6]

.

[iny snc]

if A = 0 then {diagonal processor}

begin
if 8

if &

t' « t;
a+o - t*3; ¢
B« 0; Y

_end

0 then t « 0 else t *

0 then £ « 0 else & « (& - o)/ (2*B);

sign(§))
le] + /1 +¢&2°

+ § + t*B;
<0

else {off-diagonal processor}

begin
t <« inht; t' «
c « 1/V1 + t%;
s € t#*c;
- Cl
Y § s ¢
end;
outht + t; outvt <« t'
if i > j then set out
if i < j then set out

end

else if (T 2 A) and (T - A

I\

begin

if (1 =1) or (j = 1)
if (1 = n/2) or (j =
end

else if (T 2 A) and (T - A
begin
if (L > 1) and (3 > 1

if 1 £ j then set out

invt;
' « 1/V1 + '3

g!' <« t'*C';
a B c' s'
Y §)|-s' '

B as in Program 2;

Y as in Program 2
= 1 (mod 3)) then

then set outd as in Program 2;

n/2) then set out$ as in Program 2

2 (mod 3)) then

) then set out®d as in Program 2;

B as in Program 2;

if i 2 j then set outY as in Program 2;

if (i < n/2) and (j < n/2) then set out$ as in Program 2

end

else {do nothing this time

stepl.

Program 3: Program for one time step of processor

P

ij

SR R]

RS

28

9. CONCLUSION

We have presented a linear array of [—g_] processors, each
able to perform floating-point operations (including square roots)
and with O(m) local storage which determines the SVD of a real m x n
matrix in time O(mn log n), with a small constant. We have also
described how a square array of {_%:‘ by rg— processors, each
with similar arithmetical capabilities but w.th only 0(1) 1local
storage, and having connections to nearest horizontal and vertical
(and preferably also diagonal) neighbors, can compute the eigenvalues
and eigenvectors of a real symmetric matrix in time Of(n logn) .
The constant is sufficiently small that the wethod is competitive
with the usual O(n3) serial algorithms, e.g., tridiagonalization
followed by the QR iteration, for quite small n. The speedup
should be significant for real-time computations with moderate of
large n.

The problem of computing eigenvalues and eigenvectors
of an unsymmetric real matrix on a systolic array is currently
being investigated; unfortunately, the ideas used for symmetric
matrices do not all appear to carry over to Eberlein's methods [8] in
an obvious way. However, everything that we have said concerning real
symmetric matrices goes over with the obvious changes to complex

Hermitian matrices.

10. ACKNOWLEDGEMENT

We thank the referees and the editor for their comments,
which helped to improve the presentation and make the list of references

more complete.

29

R e

Appendix: Simulation results

We have compared the ordering described in Section 3 with the cyclic-by-

rows ordering (2.7) by applying the Jacobi method with each ordering to random

) , where the elements a for 1 153 %n

i3

were uniformly and independently distributed in [-1,1] . (Other distributions

n X n symmetric matrices (aij

were also tried, and similar results were obtained.) The stopping criterion
. . 2 ; . -
was that thHe sum .2 .a,. -of off-diagonal elements was reduced to 10 12times its

i#j 13
initial value. Table 1 gives the mean number of sweeps S or S for
- row new
t the cyclic-by-rows ordering and the ordering of Section 3, respectively, where

a "sweep" is n(n-1)/2 rotations. The maximum number of sweeps required for

each ordering is given in parentheses in the Table.

? n trials Srow Snew
4 5000 2.96 (4.17) 2.64 (4.00)
6 5000 3.63 (4.87) 3.37 (4.40)
f 8 2000 4.07 (5.04) 3.79 (4.75)
] 10 2000 4.39 (5.56) 4.09 (5.47)
I 20 1000 5.23 (5.93) 4.94 (5.81)
| 30 1000 5.67 (6.62) 5.41 (6.49)
40 1000 5.92 (6.76) 5.74 (6.54)
50 1000 6.17 (7.13) 5.99 (6.78)
100 500 6.81 (7.42) 6.78 (7.32)

Table 1: Simulation results for row and new orderings

From Table 1 we see that our new ordering is better than the cyclic-by-
rows ordering, perhaps for the reason suggested in Section 2, although the
difference between the two orderings becomes less marked as n increases.

For both orderings, the number of sweeps S grows slowly with n . Empirically
we find that S = 0(logn) , and there are theoretical reasons for believing this,

although it has not been proved rigorously. In practice S can be regarded as

bt d e A

30

a constant (say 10) for all realistic values of n (say n < 1000): see [21].
More extensive simulation results for six different classes of orderings will

be reported elsewhere.

31

REFERENCES

[1]

[2]

[31

[41]

[51]

[6]

{71

(8]

H.C. Andrews and C.L. Patterson, "Singular value decomposition

and digital image processing", IEEE Trans. Acoustics, Speech

and Signal Processing ASSP-24 (1976), 26-53.

A. Bojanczyk, R.P. Brent and H.T. Kung, "Numerically stable
solution of dense systems of linear equations using mesh-

connected processors", SIAM J. Sci. Statist. Comput., to appear.

Also available as Tech. Report. TR-CS-81-01, Dept. of Computer

Science, Aust. Nat. Univ., 1981.

R.P. Brent and F.T. Luk,"Computing the Cholesky factorization using
a systolic architecture"”, Proc. 6-th Australian Computer Science

Conference (1983), 295-302.

R.P. Brent and F.T. Luk,"A systolic architecture for the singular
value decomposition",Tech. Report TR-CS-82-09, Dept. of Computer

Science, Aust. Nat. Univ., August, 1982.

R.P. Brent and F.T. Luk, "A systolic architecture for almost
linear-time solution of the symmetric eigenvalue problem",
Tech. Report TR-CS-82-10, Dept. of Computer Science, Aust. Nat.

Univ., 1982.

R.P. Brent, F.T. Luk and C. Van Loan, "Computation of the
singular value decomposition using mesh-connected processors”,
Tech. Report TR-CS-83-05, Dept. of Computer Science, Aust. Nat.

Univ., 1983.

K-W.Chen and K.B. Irani, "A Jacobi algorithm and its implementation
on parallel computers", Proc. 18-th Annual Allerton Conference

on Communication, Control and Computing (1980), 564-573.

P.J. Eberlein and J. Boothroyd, "Solution to the eigenproblem by

a norm reducing Jacobi type method", in [30], 327-338.

. RN s T TS

32

[9] A.M.Finn, F.T.Luk and C. Pottle, "Systolic array computation of
the singular value decomposition", Proc. SPIE Symp. East 1982,

Vol. 341, Real Time Signal Processing V (1982), 35-43.

[10] G.E. Forsythe and P. Henrici, "The cyclic Jacobi method for
computing the principal values of a complex matric"”, Trans.

Amer. Math. Soc. 94 (1960), 1-23.

[11] G.H. Golub and F.T. Luk, "Singular value decomposition:
applications and computations", ARO Report 77-1, Trans. of

22nd Conf. of Army Mathematicians (1977), 577-605.

[12] E.R. Hansen, "On cyclic Jacobi methods", J. Soc. Indust. Appl.

Math. 11 (1963), 448-459.

[13] D.E. Heller and I.C.F. Ipsen, "Systolic networks for orthogonal
equivalence transformations and their applications", Proc.

1982 Conf. on Advanced Research in VSLI, MIT (1982), 113-122.

[14] D.E. Heller and I.C.F. Ipsen, "Systolic networks for orthogonal

decompositions", SIAM J. Sci. Statist. Comput.4 (1983), 261-263.

[15] M.R. Hestenes, "Inversion of matrices by biorthogonalization

and related results", J. Soc. Indust. Appl. Math. 6 (1958),

51-90.

[16] D.J.Kuck and A.H. Sameh, "Parallel computation of eigenvalues

of real matrices", Information Processing 1971, North-Holland,

Amsterdam, (1972), 1266-1272.

[17] H.T. Kung, "Why systolic architectures", IEEE Computer 15, 1

(1982), 37-46.

[18] H.T. Kung and C.E. Leiserson, "Algorithms for VLSI processor arrays",

in Introduction to VLSI Systems (by C. Mead and L. Conway),

Addison-Wesley, Reading, Massachusetts, 1980, 271-292.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

33

S.Y. Kung and R.J. Gal-Ezer, "Linear or square array for eigenvalue and
singular value decompositions?", Proc. USC Workshop on VLSI and Modern

Signal Processing, Los Angeles, California (Nov. 1982), 89-98.

F.T. Luk, "Computing the singular-value decomposition on the

ILLIAC IV", ACM Trans. Math. Softw. 6, (1980), 524-539.

H. Rutishauser, "The Jacobi method for real symmetric matrices"”,

in [30]}, 202-211.

A.H. Sameh, "On Jacobi and Jacobi-like algorithms for a parallel

computer", Math. Comput. 25 (1971), 579-590.

A.H. Sameh, "Solving the linear least squares problem on a linear
array of processors," Proc. Purdue Workshop on Algorithmically-

specialized Computer Organizations (1982).

R. Schreiber, "Systolic arrays for eigenvalue computation”,
Proc. SPIE Symp.East 1982, Vol. 341, Real-Time Signal Processing

(1982).

R. Schreiber, "A systolic architecture for singular value
decomposition", Proc. 1lst Intern. Coll. on Vector and Parallel

Computing in Scientific Applications, Paris, France (Mar. 1983).

J.M. Speiser and H.J. Whitehouse, "Architecture for real-time
matrix operations", Proc. 1980 Government Microcircuits Applications

Conf., Houston, Texas (Nov. 1980).

H.J. Whitehouse, J.M. Speiser and K. Bromley, "Signal processing
applications of systolic array technology", Proc. USC Workshop on VLSI
and Modern Signal Processing, Los Angeles, California (Nov. 1982),

5-10.

[29]

{30]

34

J.H. WIlkinson, "Note on the quadratic convergence of the cyclic

Jacobli process", Numer. Math. 4 (1962), 296-300.

J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon

Press, Oxford, 1965.

J.H. Wilkinson and C. Reinsch (editors), Handbook for Automatic

Computation, Vol. 2 (Linear Algebra), Springer-Verlag, Berlin,

1971.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif

