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Abstract

Conditions are given for the formal posterior of an improper prior to be
coherent in the sense of [4] and applied to translation models. An example is
given of a proper countably additive statistical model and a finitely additive

prior for which there is no posterior.



1. Introduction.

A notion of coherence for statistical inferences was introduced in a
previous paper [4]. It was shown that an inference is coherent if and only if
it corresponds to the posterior of a finitely additive pricr. A similar result
was proved for predictions and predictive inferences in [el.

In practice many Bayesians use improper, countably additive priors to

represent diffuse prior knowledge rather than finitely additive priors. There

(0]

are several reascns for this including the relatively easy calculation and the

essential uniqueness of the formal posterior of an improper prior and the lack

jon

of familiarity witn the finitely additive theory. As was shown by examples in

(4], the use of an improper prior sometimes results in a coherent inference and
sometimes not. The obvious problem is tc find an effective criterion for
determining when an inference from an improper prior will be coherent.

Bayesians have long justified their use of improper priors by arguing that
they can be approximated in some sense by proper priors. A useful discussion is
given by Stone [8] who defines a notion of approximation which we adopt for our
purposes. Our first result (Theorem 3.1) is that an improper prior leads to a
coherent inference if and only if it can be approximated by proper priors in
this sense. Even this result is difficult to apply in specific examples.
However, it can be used to derive a sufficient condition for coherence which 1s
often easy to verify. This condition is presented in Theorem 3.2 and applied in
several examples.

There is another difficulty with the characterization of coherent inferences

as posteriors of finitely additive priors. Namely, not every finitely additive

2]



prior has a posterior. Examples of this phenomenon presented heretofore have
involved finitely additive conditionals as well as a finitely additive prior.
An example is presented below in which the conditionals are countably additive
with finite support. Thus it can happen that, even for a standard statistical
model, a finitely additive prior leads to no inference.

The next section contains the necessary definitions and preliminary results.

2. Preliminarlies.

For any set S, P(S) denotes the collection of finitely additive probability
measures defined on all subsets of S. If f is a2 noundad, real-valusd functlion
defined on S and Y € P(S), then the Y-integral of £ will be written Y(f), [fadr,
or [f(s)Y(ds). o

Let © and X be nonempty sets corresponding to the set of possible states of
nature and the set of possible outcomes for a certain experiment, respectively.
A statistical model p is a mapping which assigns to each 8 € O an element Py of
P(X). An inference q assigns to each x € X an element q, of P(8). (In our
earlier paper [5] we did not require each gx to belong to P(0Q) and considered
the more general notion of a "oonditional odds function." We impose the new
restriction here in order to simplify the exposition and also becuase it is a
natural requirement recommended by de Finettl (3, p. 339].) Thus p is &
conditional probability distribution on X given 9 and q is a conditional
distribution on O given X. Let B(@) and B(X) be given g~-fields of subsets of ©

and X, respectively. The model p (inference q) is called measurable if every p



(qx) is countably additive on B(X) (B(©)) and p (q) is a regular conditional
distribution. The standard models and inferences of statistices are, of course,
measurable.

An inference might correspond in practice to a system of confidence
intervals, a posterior distributlion, or a fiducial distribution. For an
operational interpretation, regard a, as a conditional odds function used by the
statistician to post odds on subsets of © after observing X. The inference g is
called coherent if it is impossible for a gambler to devise a system based on q,
which consists of placing a finite number of bets on subsets of @ after x is
observed and which attains an expected payoff greater than some positive
constant for every 8 € ©. (See [5] for the preclse definition.)

An element w of P(8) will be called a prior. A prior m and model D

determine a marginal m ¢ P(X) by the formula

(2.1 m(¢) = jpe(qs)n(da)

for bounded functions ¢: X —> R. Let B = B(€)xB(X) be the product c-fieid on
0xX. An inference q is call a posterior for the prior w, the model p being

understood, if

(2.2) jg @(S,X)pa(dx)n(ds) = { a(e,x)qx(de)m(dx)

J

[¢Y)

for all bounded, B-measurable functions $: OxX —> R. In other words, q is



conditional distribution for © given X under the measure on B determined by w
and p as defined by the left-hand-side of (2.2).

The model p and inference q are called consistent if there exist 7 ¢ P(8)
and m e P(X) such that (2.2) holds for all bounded, B-measurable .

The following proposition summarizes a few results from [5] and [el.

Proposition 2.1. The focllowing are equivalent statements about an inference q

relative to a given model p:
(a) q is coherent
(b) g is the posterior of some priocr w,
(¢) p and g are consistent,

(d) For every bounded, real-valued §~measura§le functionwé on 9xX,

inf p6(¢8) < sup qx(éx),
6 X
where 9, (x) = 0(8,x) = 0”(8).
The results of the proposition are stated as in [5] and [6] for general p

and q which are not necessarily measurable. Thus the inner integrals in (2.2),
corresponding to p6(¢8) and qx(¢x), need not be measurable functions of & and x,
respectively. This is the reason why 7 and m must be defined on all subsets of
their respective spaces O and X. Now if p and g are measurable, then so are the
functions pe(¢8) and qx(éx) and we need only specify m and m on B(@) and 3(X),

respectively, for (2.2) to make sense. It is also easy to see that the



proposition remains true for measurable p and g if we consider priors and
marginals to be defined only on the appropriate o-fields.
Let M(@) and M(X) be the collections of countably additive measures defined

on B(8) and B(X), respectively. By an lmprooer prior is meant an element m of

£y

M(8) such that w(@) is infinite. Suppose that, for a given statistical model p,
thers is a reference measure v & M(X) such that every pg is absolutely
continuous with respect to v. Let f(-ie) be the density for Pg- For x = X,

define

f(xle)m(as)

f(x|t)w(de)

whenaver the denominator is finite and not zero and let qx be an arbitrary fixed

element of P(9) otherwise. The inference g is called the formal posterior of

the improper prior w. If f(-i-) is B-measurable and if the dencminator above is
v-almost everywhere finite and positive, then g is a measurable inference. OF
course, if m is proper and countably additive on B(9), then the g given by (2.3

is 2 genuine posterior for w and 1is coherent by Proposition 1.

3. Aporoximation by proper priors.

Let ¢ and 8 be measurss on 8(8) and define the total variation distance by

(3.1) | {a-g]] =
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where L_(0) is the space of bounded, real-valued, B(9)-measurable functicns on
0. Next consider an inference g and a prior w € P(9) which has marginal m and

posterior q. Define

(3.2) d (a,0) = | |a,~q | |mCax),

which can be thought of as the sxpected distance between the inferences g and g
when the expectation is calculated from the marginal of the prior m.

Definition. The inference q is acoroximable by prover priors (a.p.p.) if

7

(3.3) inf d“<q,5,> =0

where the infimum is over all w, gq such that m e P(Q) and q is the posterior of
. If T is an improper prior with formal posterior a, we say that T is

aporoximable by propver priors {(a.p.p.) if q is.

As was mentioned in the introduction, this notion of approximation was

inspired by Stone [9] who did not, however, consider finitely additive priors.

Theorem 3.1. An inference g is coherent if and only if it is approximable by

proper priors.

Proof: If q is coherent, then, by Proposition 1, there exists 7 ¢ P(Y) with



posterior q = a and dw(q,a) = 0.

Suppese now that a is a.p.p.. We will use Proposition 1 (d) to show that i

is coherent.

Let ¢ € L_(0xX) and € > 0. Set b = sup|o|. Choose m & P(©) with posterior

q such that

d (q,q) < e/b.
kil

Then
I[ qx(ax)m(dx) - { ax(¢x)m(dx){
s fth<mx> - q,(6™) [m(ax)
< (sup)¢l)dﬂ(q,a) < e.
Hence

{ De(éa)ﬂ(dﬁ)

#

f qx(¢x)m(dx)

78

[ ix(¢x)m(dx) v e

and consequently,

sup 5X(¢x) 2 inf p () - e
X 8



Because € 1s arbitrary a satisfies (d) of Proposition 1. ©

Suppose now that w is an improper prior, pa(dx) = f(x{e)v(dx) for every
6 ¢ 0, and ™ nas formal posterior g as in (2.3). The natural and often used way
to attempt an approximation of q by proper priors is to truncate m to a set of
finite measure. To be precise, let K ¢ B(9) satisfy 0 < w(K) < = and define the

truncation of m to K as the proper prior Ty where
\ 1

2 T &) =
(3.4 WK(?/

& g 3(9)w{ds), ¢ e L_(9).

=5

S

Let qK and m, be the posterior and marginal determined by T respectively.

K

Formulas (2.1) and (2.3) specialize to give

m (¥) = “1 [ { w(x)p (dx)m(dd), b e L _(X),
(3.5) { g)f(x]e)m(ds)
ake) = .o e L (o).
J f(x|8)w(ds)

It seems likely that, for measurable models, whenever q is a.p.p., i1t can be
approximated by truncations. However, we have not proved such a result.

For a certain class of group invariant problems, M. Stone [9] showed that
Haar measure used as an improper prior, could be approximated in a sense close
to the present one by truncations. A similar result was cobtained for amenable,

locally compact groups in [5]. Suppose X = @ = G is such a group and the model



p is a generzlized translation family pe(dx) = f(8-1x)v(dx), where v 1s right

Haar measure. If v is used as an imprcper prior, the corresponding inference is
\ 21 .
(3.6) qx(de) « £(s8 x)v(ds)

and is coherent by [4, Theorem 3]. Stone [9] nas also given examples wnich
illustrate that this inference need not be coherent if G is not amenzable.

In general, the criterion of approximability by proper priors seems
difficult to apply directly. For example, 1t follows from the discussicn above
that, if p is a translation family on the line such as the N(8,1), then Lebesque
measure, d8, gives a cohersnt infersnce. however, it remains unclear whether

improper priors such as 5%an or le[_1d9 will do so. The next

esult gives a

ey

sufficient condition for coherence which allows us to check that the
corresponding inferences are coherent.
Suppese w is an improper prior with formal posterior g. For each K ¢ B(0)

such that 0 < w{K) < =, define

\ Yy C
(3.7 B(K) = [ qX(K )mK(dx).

Here m, is the marginal on X determined by the truncated prior The number

K K*

3(K) is the posterior probability under m that © £ K averaged under the
runcation of m to K. More crudely, 8(K) is the chance that q 3ays & ¢ K given

that 6 ¢ K.
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Theorem 3.2. 1f

(3.8) inf{g(K):

then 7 is approximable by proper

0 < T(K) < =, B(K) £d_ (q,q) ¢
T

Procf: It suffices to prove the

0 < w(K) < =}

0,

priors. Indeed, given K € B(g) with

inequalities.

that, for all x, qi(Kc) = 0 and so, by (3.1),

K
la, ~a |

2 q (KC).
X

Fo

v
i

the first inequality,

The first inequality now follows from (3.2) and (3.7).

To prove the seccnd inequality, let ¢ € L_(8) and sup|s] € 1. The

inequality will follow from (3.1), (3.2), and (3.7) once it is shown that

K
(3.9) la, (o) = a, ()

| s 2qX(KC) m, - a.s.

To verify (3.9), first use the triangle inequality to see

| K, .
(3.10) la, (o) = a ()] =

Because sup[@} < 1, the first term on the right side of (3.9) is obviously

JRCEE
K

11

odqx - J
K

sdas |
K X

notice



bounded by QX(KC). To obtain the same bound for the second term on the right

side of (3.10), use (2.2) and (3.5) to rewrite it as

{ £(x]e)m(ds)
K

£(x]6)w(de)

o [ . nK —
(3.11) || oaay] |

[&5]

f‘(xge)w(d

Jl’

; )

SO

< qi(K) € =1k (). o
‘ £(x|g)m(ds)

.8) is a sufficient condition for the

(O8]

By Theorems 1 and 2, condition (
formal posterior g to be cohersnt. Again we do not know whether it is
necessary. The condition can often be checked as will be illustrated in the

next section with two examples.

4. Two applications to translation families.

, . . da .. . . .
In this section, @ = X = R, d-dimensional Euclidean space, and d6 or dx has

its usual interpretation as Labesgue measure. The prior w will be a fixed

improper prior

m(ds) = gl8)as

where the prior "density" g is nonnegative, and Borel measurable. The model p

is assumed to be a measurable translation family given dy a family of densitlies



pe(dx) = f(x-8)dx

where f is Borel measurable. Assume also that the denominator on the right side
of (2.3) is Lebesgue almost everywhere finite and positive so that formula

(2.3), wnicnh gives the formal posterior g of m, can be rewritten as

f{x-8)g(8)
f(x-¢)glo)dd

(4.1) nis|x) =

where n(s|x) is a density for q . Write |a] for the Euclidean norm of § ¢ R

and let 7_ be th
n

[0

truncation of m to the ball B = {8: le] £ n}. Let g be the

. . . . . n
posterior for L and Bayes formula then gives the density bealow for qX

f(x-8)g(8) B

(8.2) hn(Glx) = ‘ . < n.

f(x-0)glo)de

‘B
n

So that (4.2) will be valicd, assume w(Bn) < » for all n. For simplicity assume
n(Bn) > 0 also. However, there is no real loss in generality because we will
only need below that n(Bn) is positive for n large and this follows from our
assumpticn that n(9) = =,

If the tails of the prior density g grow too rapidly, the inference g need

not be coherent even for quite well-behaved translation models.

Example 4.1. (Stone [10]) Suppcse @ = X = R1, Py is N(5,1), and g(8) = exp(a3s)



where a > 0. Use (4.1) to see that q, is N(x+a,1). In Proposition 2.1 (d),

take ¢ to be the indicator function of the set S = {(8,x): 8 < x+a} and notice

that
1
= re— o] = |- [+ —
pa(%) pgle-a,=] = pyl-a, 1> 3
while
X = — 0 “+ = - 5] = l
qx(@ ) = qx[ ,x+a] qO[ al = 3.

Tnus q is incoherent.

The eritical feature of this example is the exponential growth of the prior
density g. The normal model could be replaced by many translation families
including, for example, the uniform translation model where Py is the uniform
distribution on the interval [8,8+1]. Thus the exponential growth of g 1s too

much even when the pe have compact support. Here is a condition which rules out

such growth for g.

(B )
+
(GC) Growth Condition: For every a > 0, lim R L= 1.

n—->® TT(Bn)

Notice that a prior density which behaves asymptotically like a polynomial

will satisfy (GC).

14



The next lemma gives another sufficient condition for coherence when 7@
satisfies (GC). In 1ltus statement m, denotes the marginal determined by the
truncated prior nq and the model p.

i
Lemma 4.1. Assume 7 satisfies (GC) and let a 2 0. Then the following are tru

_— as n —> *®,
(a) TT'I(BH‘ ) 1 as n

(4.3) sup[

Proof: (a) This is obvious if a = 0 and immediate from (CC)Y if a > 0.
{b) Let e > 0. choose b > 0 such that pO(Bb) > 1—-e. Then pa(Bb+e) =

pO(Bb) > 1-e for all 8. HNecw calculate.

.
= = 5 7 (dg) 2 ' 7 13
mn(Dn—a) J pe(nn—a)ﬁn‘d ) ” pa(ar"al).rrl(G )
B 3
n n-a-b
2 +8 {(dg) 2z (1- 3 .
JB pe(Bb g)w (d ( s)wn( n-a-b)
n-a-b
{The next toc last inequality nolds because 3+ 8 <B for 8 ¢ B . .) Now
b - n-a n-a-b

use part (a).

(¢} Let £ > 0. By (3.7) and part (b,

—
U1



c 4
B(BU) = { qX(Bn)mn(dx) < €+ JB qX(Bn)mn(dx)
n-a

for n sufficiently large. By Theorem 3.1 and 3.2, the coherence of g will be

established if we show

3 3 c v} = ‘
(4.4) lim [B qX(Bn)mn(cx, 0.

n—>®
n-a

To see this, let fn be the density for mn whnich is given by

f f(x-8)g(e)de
B

n

1

W(Bn)

f (x) =
n
and use (4.1) to write

! £(x-8)g(5)ds
BC

q(BC)= L .
xn ( £(x-9)g(8)co

Hence

C j fr
fa qX(Bn)mn(dx) S IED § fao £(x=9)g(9)dodx

n-a n-a n



Thus, (4.4) follows from (4.3) because n(Bn) —> =, O

The final condition of Lemma 4.1 can be viewed as a joint growth condition
on the densities for the prior and the model. We will now apply it to two

special situaticns.

Theorem 4.1. Suppose § = X = R‘. Assume w(dg) = g{8)dé is an improper prior
with g uniformly bounded and pa(dx) = f(x-8)dx is a translation family such that

flx{f(x)dx ¢ =, Then the formal posterior q is coherent.

Proof: Because g is bounded, it satisfies (GC) and it suffices by Lemma 4,1 (e)

to show that

n
(4.5) [ { o f(x-8)dsdx s 2E z|
-n Bn

where Z is a random variable with density f(x).

Us the fact that -Z has density f(-x) and calculate as follows:

e n
{ F{x=-g)de + f f{x-8)ds
n -0

i

[ . f{x-8)do
B

n

it

J £(-g)ds + f r(e)ds

n—x n+x

P[-Z 2 n-x] + P[Z 2 n+x].

b
-~



Hence,

rn T
j f _ f{x-3)dedx = j [P[-Z 2 n=x] + P[Z 2 n+x]}dx
-n’3’° -n
n ~
"(.ﬂ'
- | {pr-z 2yl - PLZ 2 ylay
0
2n
- 2| erjzf = vlay
0
< 2E|Z]. @

Thecrem 4.2. Suppose @ = X = R~ and p is a normal translation family p, ~
P Ui S et : 5
Nd(e,z) where I is nonsingular, positive definite. If w(ds$) = g(8)de is an

. . - . - , N o L

improper prior satisfying (GCY and g{3) £ x%c} for some positive constants K

and r, then the formal posterior g is ccherent.

Proof: Let f be the density for Py ~ N(0,T). It is easy to check that, for
every s > 0, there is an & > 0 such that £(x) = 1{x}-s. Thus the theorem

follows from the next lemma.

Lemma 4.2. If w satisfies (GC), g(8) = O(|s] ) for scme r > O, and flx) =

~r

-3 . . .
A[ ) for some s > r+d, then the formal posterior g 1s ccherent.

Proof: By Lemma 4.1 (c), it suffices to sacwW the following expr=ssion is

i

bounded in n.

G



(4.5) j f le]" |x-8] Sasax
B_’8°

n n s
i f [ lovx|" o] “doax
B, [o+x|>n
T ey r-k | k~s
<y (%j [ | x| J lo]" “dedx.
k=0 B, |o+x|>n
Now evaluate the inside integral.
[T I
lo+x|>n B
n
k;S k-s k=5-] ( J .
s 1 (%0 | o Islas
j=0 B
n - [
Change to polar coordinates to see that
j . {e}jde - end™ g en™E, =!
B

n

Botn Theorem 4.1 and Theorem 4.2 illustrate that coherence of an inference
from an improper prior depends on the relationship between the prior and the
model, and not on the prior alone. In fact, given any improper prior w{(d3) =
g(8)ds, there is a model p for which the formal posterior q is incocherent. For

example, if O = R1 and g is locally integrable and everywhere positive, then

¥

simple transformation ¢ = ¢(8) gives a prior 7'(dd) = e®d@ and the normal model

of example 4.1 will lead to an incoherent inference.



5. A measurable model and finitely additive prior for which there is no

coherent inference.

Let X = 9 =2 = {

(@]

,+1,%+2,...} and let p be the translation model such that
p.{8+1} = p_ {8-1} = 1/2
8 8

for all 8, Take the prior 7 to be of the form

where p is countably additive with support the set A of intege;s divisible by 4
and v is purely finitely additive and supported by the set B of integers equal

to 2 modulo 4. Thus n(A) = 1 and pi{n} > 0 for n ¢ A; v(B) = 1 and vi{n} = 0 for
all n. (This example is related to cne of Dubins [3, p. 205]).

Lemma 5.1. Tnere is no posterior for the prior m.

Proof: Assume, to get a contradiction, that w has a posterior g and let m be
the corresponding marginal on X. Let O be the set of odd integers. Clearly,
pa(O) =1 for 5 ¢ E = AU B and, by (2.1), m{0) = 1 also.

The key point is that qX(A) = 1 for all x € 0. To see this, suppose
X = 4n + 1, write P for the joint distribution and calculate.

P{s {in+1} = u{dn}/4,

L

vy
jo)
~

i}
fog
o}

+
L.

]
=]

TR R
{4nip

i4n

[)e]
@]



Also,

P[(s = U4n,x = Un+1] = m{4n+1}qx{un} = u{un}qx{ﬁn}/u.

Hence,

it

QX(A) qx{ﬂn} = 1,

Similarly, if x = in + 3,

]

q, (&) qx{4n+4} = 1.

Thus
P(AxX) = { qX(A)m(dx) = 1.
But
P(AxX) = w(A) = 1/2,
a contradiction., o

One can use a finitely additive Radon-Nikodym theorem to see that, given g >

21



0,

within € of each other for all B-measurable & with values in [0,7]. (In th

there is an g-posterior g for 7 in the sense that the two sides of (2.2) are

P

[0

-

terminology of [1], the distribution of (x,9) is nearly strateglc but not

strategic.) It would be interesting to xnow whether there are a measurable p

&

and a finitely additive w for which there is ne g~posterior. Thls can happen

for finitely additive p as is shown in [4] and [31.
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