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The Mars Odyssey Gamma Subsystem (GS) underpins most of this narrative,
sensing the planetary subsurface y photons. Midlatitudinal maps of Ca, Cl,
Fe, K, H,O, Si, and Th mass fractions have been generated with the GS. We
tirst determine whether GS estimates represent chemical composition on the
ground by computing representative in situ compositions for Pathfinder, Spirit,
Opportunity, and Viking 1 landing sites. GS estimates compare favorably with
the in situ estimates for Cl and K. However, the GS-determined Fe content at
each landing site is consistently higher than the in situ value. Nevertheless,
these comparisons reassure us that the GS data are indeed representative of the
actual surface of Mars.

Next, we describe statistical analysis methods with particular emphasis on
comparing distributions, computing multivariate correlations, and modeling
optimal predictor sets hierarchically. Examples of their application using the
GS data set clarify their use in the geochemically oriented chapters that follow.
Multivariate analyses indicate a remarkable correlation among K, Th, and the
areal fraction of the mineralogically distinct surface type 2 (ST2).

With our chemical insight into ST2, we consider the likelihood of different
genetic scenarios that have been proposed previously. Consistent with the mul-
tivariate results, we observe significant enrichment of both K and Th in regions
representative of ST2. In addition, Si does not appear to be significantly en-

riched in ST2. These results are more consistent with ST2 originating from a



compositionally distinct mantle source than the aqueous alteration of basalts.
Lastly, we delineate chemically striking regions to be analyzed with data
from other missions. We also examine a Tharsis region marked by the enrich-
ment of Cl and depletion of Fe and Si, and find it to overlap significantly with
a radar stealth region. Surface dust observed at the two rover sites mixed with
and indurated by Ca-bearing sulfate salts would be a reasonable chemical and
physical analog to meter-scale depths. The sulfates may have been produced by

regional-scale activity of ground-ice driven brines.
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CHAPTER 1
INTRODUCTION

Until recent human history, the exploration of Mars has been fueled more by
imagination, hope, and fear than information and reason. Around twelve
hundred years ago, Mars was a beneficent god of war to the Roman civ-
ilization (http://www.britannica.com/eb/article-9106271) and the
ruddy, malefic god Angaraka to the even more ancient Indus civilization (Kief-
fer et al., 1992, p. 2). Traces of such hopes and fears of our ancients survive to
this day even in contexts as commonplace as naming of the days. Mars marks
one day of the week in diverse languages - indirectly Tuesday in English (“Tues-
day” Etymology Durkin, 2008), Mardi in French (“Tuesday” Etymology Durkin,

2008), Angaharuvada in Sinhala, and Sevvaai-kizhamai in Tamil.

Even as recently as a century ago, Giovanni Schiaparelli’s map of Mars that
helped ignite scientific exploration of the planet was misunderstood by English-
speakers to show canals. The pioneering American planetary explorer, Percival
Lowell, subsequently succumbed to the difficulties of optically observing Mar-
tian features across our planetary atmosphere and claimed that the canals on
Mars were sustaining a tool-using civilization. Ironically, if not for the public-
ity he brought upon his imagined discovery, Mars may not have captured the

imagination of the public as it does to this day.

Thanks in part to the seed of exploratory urge that Lowell instilled, a vir-
tual armada of satellites and landers have explored Mars over the last forty
years. Nevertheless, a clear first order sense of the planet’s bulk properties were
not established until as recently as the early 90’s - thanks in great part to the

Mariner and Viking missions. While the bulk planet may be known, the surface



of Mars remains an enigma. Even the most basic surficial material that we take
for granted on Earth, soil, remains a source of lively discussion among Martian

explorers (Banin, 2005).

My participation in this great journey of attempting to understand the up-
per few meters of Mars at local and regional scales has been supported primarily
by the Gamma Subsystem (GS) of the Mars Odyssey Gamma Ray Spectrome-
ter (GRS) instrument suite. With its sensitivity to y photons emanating with
characteristic energies from nuclear reactions, the GS has been able to identify
and map the mass fractions of several key elements - CI, Fe, H (as stoichiometri-
cally equivalent H,0), K, Si, and Th with reasonable uncertainties (Boynton et al.,
2007). Ca was finalized recently, while work is currently underway to finalize
the maps of Al and S as well. The GS is in fact the first instrument to gener-
ate maps of elemental mass fractions throughout the midlatitudes of Mars, and
also helped to confirm the presence of significant mass fractions of H,O at

both poles.

As with the earlier missions, we have been able to interpret surficial pro-
cesses on this planet only by utilizing the synergy of the GS with many oth-
ers. The missions that have aided me greatly in a synergistic manner include
the now defunct Viking orbiters (and the thermally-derived attribute maps that
they helped to generate), Mars Pathfinder, and Mars Global Surveyor (MGS) as
well as the currently active Mars Express, Mars Exploration Rover (MER), and
Mars Reconnaissance Orbiter (MRO). Each has had a large suite of instruments
aboard, and the chapters that follow illustrate how combinations of particular
instruments are particularly insightful in the characterization of specific chemi-

cal properties and potential processes in the Martian surface.



Since the GS is a primary source of data and a key motivator of questions
in the succeeding chapters, we begin by summarizing the operational details
of the GS in Chapter 2. We then compare the GS data with in situ observa-
tions, analogous in some sense to a “calibration” of the GS. Such comparisons,
or normalizing the GS data to in situ compositional data is difficult due to is-
sues such as dramatic differences in spatial resolution; difficulties in convolving
densities, abundances, and compositions of different regolith components; and
a limited number of elements observed in common. We address these concerns
in the context of the GS, using Si at Pathfinder to normalize remote data. In
addition, we determine representative in situ compositions for Spirit (both with
and without Columbia Hills rocks), Opportunity, and Viking 1 landing sites us-
ing GS-derived H content to hydrate the soil component. The estimate of the Si
mass fraction at Pathfinder, with 13 % areal fraction of rocks, is 21 %. The com-
position of major elements, such as Si and Fe, is similar across the four land-
ing sites, while minor elements show significant variability. Areal dominance
of soil at all four landing sites causes representative compositions to be driven
by the soil component, while proportionally large uncertainties of bulk densi-
ties dominate the net uncertainties. GS compositional determinations compare
favorably with the in situ estimates for Cl and K, and for Si by virtue of the
normalization. However, the GS-determined Fe content at each landing site is
consistently higher than the in situ value. Nevertheless, these comparisons en-
able us to explore the planetary surface with some reassurance that the GS data

are indeed representative of the actual surface of Mars.

Following the “grounding” of the GS data “in truth,” we proceed to lay
the statistical foundation - in the form of recipes of established statistical anal-

ysis methods - that is required to substantiate the inferences made in subse-



quent chapters. The statistical framework consists of two chapters. Chapter 3 is
mostly an overview of exploratory statistical techniques to compare one region
of Mars with another and also includes a summary of data processing specific
to the GS. Specifically, instruments such as the GS typically assign the value of
a continuous-valued geospatial attribute to a uniform latitude-longitude grid
of bins that covers the surface without overlap. Typical attributes include
elemental-mass fraction, areal fraction of a mineral type, altitude, areal frac-
tion of rocks, thermal inertia, albedo, etc. The fineness of the grid is chosen
according to the spatial resolution of the orbiter and concomitant data process-
ing. The bins act as locational indices, yielding insight on spatial variation. In
addition, the Mars Odyssey mission also estimates compositions within spheri-
cal polygonal regions on Mars independent of the bin data. We describe meth-
ods to maximize the information extracted from both bin and regional data.
Rigorous use of statistical parameters and related methods for inter- and intra-
regional comparisons are also discussed. While the Mars Odyssey mission pro-
vides the exploratory context, the techniques we discuss are applicable in any
situation where continuous-valued attributes of a planet’s surface are charac-
terized with bins and regions. The treatment also highlights the applicability
of economic, environmental, and social spatial data analysis methods in plan-
etary exploration. Our goal is to distill the simplest statistical methods for re-
gional comparisons, from the extensive field of Exploratory Spatial Data Anal-

ysis (ESDA), that would be intuitively accessible to planetary geologists.

The second discussion of statistical methods in Chapter 4 is essentially an al-
gorithm - albeit one needing human judgment calls - to identify sets of attributes
that show the most meaningful covariability at global scales and to quantify the

strengths of the interdependencies, without ignoring numerical and spatial un-



certainties. We also describe how to address the effects of spatial smoothing and
variability of uncertainties, assign statistical confidence to regression and corre-
lation coefficients, and implement method/fit diagnostics. Spatial autocorrela-
tion is a key concern when analyzing most types of spatial data due to the mu-
tual dependence of adjacent data from smoothing, while heteroscedasticity is an
issue when numerical uncertainties vary with location and observational dura-
tion. The Mars Odyssey and MGS missions provide the exploratory context in
the discussion, but the techniques we discuss are applicable whenever the inter-
relationships of spatially binned data of continuous-valued planetary attributes
are sought. The treatment also extends the applicability of economic, environ-
mental, and social spatial data analysis methods to planetary exploration. Our
goal is to provide an intuitively accessible and application-oriented summary of
the simplest multivariate regression and correlation analyses methods from the
extensive field of Explanatory Spatial Data Analysis (ESDA). The discussion is
structured to enable the direct implementation of a corresponding algorithm in
mathematical array-handling software such as IDL®, Mathematica®, MatLab®,
and R®. It should also enable users of commercial multivariate analysis soft-

ware to decipher underlying algorithms and realize associated limitations.

The methods outlined in Chapter 4 are utilized directly in Chapter 5 to
explore the chemical underpinnings of mineralogically interesting regions in
the northern lowlands of Mars, evident even from Earth on account of low
albedo. Specifically, analysis of data acquired by the MGS Thermal Emission
Spectrometer (TES) instrument led to the identification of two distinct surface
types.”“Surface type 1,” lying mostly within southern low albedo terrain, is
likely to be composed of basalt. However, there are several competing min-

eralogical models for “surface type 2,” which is found primarily in northern



low albedo terrain. We attempt to identify which models better agree with ele-
ment concentrations determined through the GS. We have binned GS data over
threshold regions derived from maps of surface types 1 and 2, and examined
the spatial correlation of element concentrations with surface type 2. The re-
sults show that K concentration, Th concentration, and the areal abundance of
surface type 2 are strongly correlated, with significant enrichment of both K and
Th in regions representative of surface type 2. In addition, Si does not appear
to be significantly enriched in surface type 2. These results are more consistent
with surface type 2 originating from a compositionally distinct mantle source,

than the aqueous alteration of basalts.

Lastly, we turn the methodology of Chapter 6 on its head by using the GS
to delineate regions of interest to be explored by other instruments. The de-
lineation method and chemical comparisons rely extensively on the statistical
foundation established in Chapters 3 and 4. In this work, we establish regions
of unusual chemical composition relative to average Mars primarily on the basis
of Cl, Fe, H,0, K, Si, and Th, along with the recently finalized Ca. Al is consid-
ered a candidate for future study. As a case study demonstrating the synergy
of independent observation methods - Mars Odyssey, Mars Exploration Rover,
Mars Reconnaissance Orbiter imaging, and radar observations from Earth in
particular - we examine a chemically striking ~ 2. x 10° km? region and find it to
overlap significantly with a radar stealth region on Mars. It is remarkably en-
riched in Cl and depleted in Fe and Si - along with minor variations in H, K, and
Th - relative to average Mars. Surface dust observed at the two rover sites mixed
with and indurated by Ca-bearing sulfate salts would be a reasonable chemical
and physical analog to meter-scale depths. We describe potential scenarios that

may have contributed to the unique properties of this region. Hydrothermal



acid fog reactions on the flanks of nearby volcanoes may have generated sul-
fates with subsequent deflation and transport. Alternatively, the sulfates may
have been produced by low temperature regional scale activity of ground-ice

driven brines and/or regional scale deposition of acidified H,O snowfall.

In Chapter 7, I summarize the current phase of my Martian Odyssey in the
context of the preceding chapters, and consider future investigations that would
proceed directly from the present work. The surface of Mars may always remain
an enigma for humanity, but that will only sharpen the collective human mind

with the challenge of the unknown.



CHAPTER 2
GROUNDED IN TRUTH"

2.1 Of Goals and Instruments

The Mars Odyssey GRS is the first to provide global data of elemental concen-
trations as mass fractions in the Martian subsurface to several tens of centimeter
depths. In addition to the GS, this suite consists of a High Energy Neutron De-
tector (HEND) and Neutron Spectrometer (NS). The three instruments, particu-
larly the NS and GS, are complimentary in their determination of H, with differ-
ent sensitivities to variability as a function of mass fraction as well as different
sampling depths (Boynton et al., 2004). While the NS is capable of indirectly es-
timating the mass fractions of elements such as H that affect the neutron energy
spectrum, only the GS provides direct estimates for multiple elements. There-

fore, we exclusively employ GS data.

The sensor of the GS is an n-type-ultrahigh-purity Ge crystal (HPGe) at 3kV
reverse bias and passive cooling to 85 K (Boynton et al., 2004). The low operating
temperature minimizes loss in energy resolution and alteration of the recorded
¥ spectrum from exposure to high fluxes of energetic particles (Briickner et al.,
1991) under normal galactic-cosmic ray (GCR) fluxes as well as coronal-mass
ejections (CMEs). In spite of the low operating temperature, several anneals,
where the HPGe was heated to = 345K, were needed over the course of the

mission to recover from radiation damage during CMEs and sun pointing “safe

*Originally published by Karunatillake, S., J. M. Keller, S. W. Squyres, W. V. Boynton, ].
Briickner, D. M. Janes, O. Gasnault, and H. E. Newsom (2007), Chemical compositions at Mars
landing sites subject to Mars Odyssey Gamma Ray Spectrometer constraints, . Geophys. Res.
Planets, 112, E08590, doi:10.1029/2006JE002859.



mode” orientations of the spacecraft (Boynton et al., 2007). Since annealing
doesn’t fully restore the original energy resolution, data collected after anneals
postdating Apr 2005 have been treated as separate epochs. The signal-to-noise
ratio is also maximized by cumulating spectra over the duration of each epoch.
Except where noted otherwise, we restrict the GS examples to the primary map-
ping period from 08 Jun 2002 (00:00 UTC) to 02 Apr 2005 (20:20 UTC), treated
as the first epoch (Boynton et al., 2007, Para. 6).

In analyzing the GS data, a model composition is used to predict expected
y spectral peak intensities for each element subject to atmospheric corrections.
The ratio of expected to observed intensities enables scaling of the model com-
position to represent the actual surface composition. Intermediate steps and
assumptions therein introduce the potential for systematic errors, the presence
or absence of which may be verified by comparing remotely determined ele-
mental mass fractions with corresponding in situ values. Instruments similar to
the Mars Odyssey GS (i.e., Ge based) are already en route to orbit Mercury (e.g.,
McNutt et al., 2006) and planned for the Moon (Kobayashi et al., 2005). The future
may hold similar missions to other solar system bodies and surface missions
as well. Consequently, an effective approach to compare and normalize remote
data with in situ estimates of a representative regolith composition could be
useful even beyond Mars. In essence, such comparisons act as “reality checks”
for remote observations, making the computation of representative in situ com-

positions a primary goal of our discussion.

As described below, the effective instrumental spatial resolution of the GS
is ~ 3.7°(~ 220km) arc radius. In situ measurements at landing sites, on the

other hand, involve samples of only centimeter and tens of centimeter spatial



extent. Furthermore, lateral spacing of samples is only on the order of kilome-
ters even for the Mars Exploration Rover (MER) mission, the most mobile mis-
sion to date. Additional concerns include dramatic differences in the sampling
depths between remote instruments (the GS, for example) and surface instru-
ments (the Pathfinder Alpha Proton X-ray Spectrometer, for example), a limited
set of elements observed in common between them, and difficulties in convolv-
ing bulk densities and areal fractions of different regolith components with their

compositions.

Given the underlying issues, is it reasonable to compare the GS data with in
situ data? In spite of all the caveats, there is a correspondence between these
data sets in that the y photons are produced in the upper few tens of centime-
ters of the Martian surface, which includes the surficial materials investigated
by the landers and rovers. Furthermore, the nature of surficial material at the
landing sites can be extrapolated to the GS spatial resolution scales with remote
sensing data such as thermal inertia — sensitive to thermophysical properties of
the upper surface such as thermal conductivity, bulk density, and heat capacity
— mineralogic information (e.g., Bibring et al., 2006b), and future visual observa-
tions at fine spatial resolution (cf., Mustard and Cooper, 2005; Bibring et al., 2006a;
Shkuratov et al., 2005). However, the massive difference in spatial resolution
implicitly applies representative in situ compositions over GS footprint spatial
scales whenever the GS data are compared or normalized with in situ values.
We address this issue by using a weighted mean of rock and soil component

compositions at landing sites, considered the “ground truth” composition.

Elemental mass fractions determined with the GS are spatially binned on a

uniform latitude-longitude grid, typically at 5° X 5° resolution. Since the compo-
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sition is estimated with the relative intensities of spectral peaks, only mass frac-
tions, not absolute masses, of elements and oxides are estimated directly. This
is different from wet chemical analysis of terrestrial rocks, for example, where
ideally the total mass of all elements present must equal the known mass of the
sample. In this case the oxidation states of important elements such as Fe may be
determined directly. Other types of analyses, such as electron induced X-ray mi-
croanalysis (e.g., electron microprobe analysis at the micron scale), and remote
and in situ spectral observations do not allow such rigor, and generally require
reasonable oxidation states and absence of X-Ray invisible elements/minerals
to be assumed for mass fraction normalization, as done by missions involving
Alpha Particle X-Ray Spectrometers (APXS) of the MERs (Gellert et al., 2006), Al-
pha Proton X-Ray Spectrometer (APXS) of the Mars Pathfinder Sojourner rover
(Rieder et al., 1997), and X-Ray Fluorescence Spectrometers (XRFS) of the Viking
Landers (Clark et al., 1977). Nevertheless, Mossbauer spectrometers enable the

MER mission to determine Fe oxidation states.

Where systematic differences between in situ and remote compositions are
evident it is possible to normalize the remote data with in situ values. Insuffi-
cient information, on the galactic cosmic ray (GCR) flux, neutron energy distri-
bution, and y photon production factors (Evans et al., 2006, Masarik and Reedy,
1996) to rigorously model all nonlinear relationships between composition and
¥ photon production necessitates this normalization for the GS. Abundances of
radioactive elements such as K and Th are unaffected by such issues and do not

require normalization with in situ measurements.

Normalization with in situ data would be reasonable only for elements that

do not show much variability in mass fractions across landing sites. As such, Si,

11



the most abundant element that is in situ and GS detectable, is the best choice for
the GS normalization. An additional benefit of normalizing Si is that it has both
capture and scatter derived y peaks (refer to the work of Evans et al. (2006) for
identification of individual peaks), while Cl, Fe, and H are primarily estimated
with capture peaks. As discussed in Section 2.3, the relationship between the
normalized scatter-derived Si concentration and that derived via capture can
indirectly resolve issues with capture-derived elemental concentrations. Given
the importance of normalization to an in situ result, selecting a suitable value

for the Si normalization is also a key goal of our work.

We calculate representative in situ compositions at the Pathfinder Sojourner
(at Ares Vallis), Spirit (at Gusev crater), Opportunity (at Meridiani Planum),
and Viking 1 (at Chryse Planitia) landing sites. The Viking 2 landing site is
excluded, given its proximity to the extreme latitude regions with elevated H

and consequent exclusion from reported GS results (Section 2.3.4).

2.2 General Processing and Terminology

The GS records y photon interactions as counts assigned to 2'* discrete-energy
bins in the range 0.1 MeV — —10MeV, with each spectrum generated in ~ 20s
called a “pixel.” Calibrated energies of spectral peaks help to identify elements
on the basis of known nuclear processes (typically natural radioactivity, neu-
tron inelastic scatter, and neutron capture) and the counts above the continuum
within peaks correlate with the concentration of elements (Evans et al., 2006).
Several factors necessitate the spatial and temporal summing of pixel spectra to

limit relative uncertainties of peak areas above the continuum to ~ 10 %. Key
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among them are: detection efficiencies, interferences among neighboring peaks,
photons from the continuum, and photons from the spacecraft material. The
latter is minimized by deploying the GS at the end of a 6 m boom. Cumulative
spectra are typically obtained over uniform latitude-longitude grids at 2° x 2°

and coarser resolution, called “bins.”

An additional 0.5° x 0.5° grid with each areal unit termed a “cell” serves
three functions. One is to identify pixels over spherical polygonal regions of
Mars with which to generate cumulative spectra. These summed spectra are
processed to directly estimate mean elemental mass fractions representative of
a region. The second use is to assign the elemental concentration at each bin
to each cell within it and subsequently process the grid of cells with a constant
arc radius mean filter. The mean filter reduces significant random fluctuations
(i.e., noise) present in the bin data, consequently reducing the dynamic range of
mass fractions while retaining geospatially meaningful variations. The filtered
mass fractions at the cells are subsequently rebinned to coarser bins, typically
at 5° x 5° resolution. This bin size, though finer than the spacecraft footprint,
is a qualitative compromise between maximizing the data available for intrare-
gional and correlation analyses, and minimizing spurious spatial effects of the

mean filter.

Lastly, the cells are used in the forward model. The forward model is a key
component in the processing of spectra to generate elemental-mass fractions. It
accounts for atmospheric attenuation, subsurface attenuation, neutron-nuclear
interaction cross sections for nonradioactive elements, the omnidirectional sen-
sitivity of the GS to y photons, etc. While involving many steps and stochastic

simulations, the forward model is summarized in Section 2.3.1.
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2.3 Key GS Data Processing Steps

There are numerous intermediate steps to generating mass fractions with the
GS, which are discussed in detail by Boynton et al. (2007), Evans et al. (2006),
and Kim et al. (2006b). We focus only on those immediately relevant for the
comparison between remote and in situ compositions. Key among them, in the
general order in which they are applied, are: model composition grid, scatter
corrections, spatial filter, normalization of Si mass fractions (w(Si)) to an in situ

value, and capture corrections.

2.3.1 Model Composition Grid and Instrumental Spatial Reso-

lution

The model composition grid is the starting point for GS determination of the
Martian regolith composition. The grid consists of 0.5° x 0.5° cells, with each as-
sumed to be compositionally homogeneous at the few tens of centimeter sam-
pling depth scale of the GS (the model composition is described by Boynton
et al. (2007)). The y photon count rates in orbit due to each cell and a given nu-
clear reaction may be predicted with neutron production simulations, stochastic
parameters, regolith attenuation coefficients, and atmospheric attenuation coef-
ticients (Boynton et al., 2007; Evans et al., 2006; Kim et al., 2006b). Even though
the Martian atmosphere acts as a weak collimator, since the GS is an uncol-
limated instrument, it receives y photons from limb to limb at the nominal
400km altitude mapping orbit (e.g., Boynton et al., 2004). Therefore, the set of

cells within which > 99 % of the signal originates is used for predictive model-
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ing, corresponding to a nadir-centered signal contribution region (SCR) of ~ 17°

(i.e., 1000 km) arc radius (Kim et al., 2006b).

For a given nuclear reaction of each element, the ratio of predicted y pho-
ton counts to the observed is computed within the SCR. This ratio scales the
model composition, yielding an estimate of the actual composition. The esti-
mated composition is assigned to the cell at nadir, and the process repeated for
each cell of the 0.5° x 0.5° grid. Such a fine grid is appropriate for data process-
ing and display, but does not represent the actual footprint of the GS, which is
defined by the set of cells that contribute more than 50 % of the signal. While
dependent on photon energies, the typical footprint is = 440 km, corresponding

to ~ 7.4° arc diameter (e.g., Boynton et al., 2004; Boynton et al., 2007).

When photons of differing energies are emitted by a single element, a
weighted mean of corresponding mass fractions is generally used to represent
the true composition of the element (Boynton et al., 2007). The large number of
cells within each SCR and the use of epochal y spectra yield statistically rigor-
ous uncertainties that are primarily functions of counting statistics and smaller

than model composition uncertainties (Boynton et al., 2007; Evans et al., 2006).

The regolith model may introduce systematic errors for all elements, while
the model composition may do so for elements determined with capture or scat-
ter processes. The GS regolith model for the midlatitudes assumes composi-
tional homogeneity at GS sampling depths. It also assumes lateral composi-
tional homogeneity within each cell. Significant deviations from lateral homo-
geneity have the potential of seriously weakening the accuracy of GS composi-
tional estimates, as would the presence of compositional layering (e.g., Squyres

and Evans, 1992). We consider such deviations and explain what we classify as
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rocks and other material in Section 2.4.

2.3.2 Scatter Corrections, Spatial Filter, and Effective Spatial

Resolution

Scatter corrections constitute another important step in the reduction of GS data.
Si mass fractions derived from the 1779keV y flux are subject to the scatter cor-
rections, increasing the initial Si estimates by ~ X3 on average. These correction
factors, which account for variations in the fast neutron flux driven mainly by
Fe and H content in the regolith, precede the spatial filter application, Si nor-

malization to an in situ value, and capture correction determination (Boynton

et al., 2007).

The third processing step, spatial filter application, is important in the con-
text of instrument detection efficiency and resolution. The choice of a gamma
ray spectrometer type is a trade off between the high efficiency of scintillators
and the high energy resolution of solid state detectors (Metzger and Drake, 1990;
Pirard et al., 2005). The latter option was appropriate for the Mars Odyssey GS,
where the ability to resolve and identify many of the lines that characterize
the Martian spectrum optimized the science return (Boynton et al., 2004; Boyn-
ton et al., 2007). Nevertheless, GS data have low signal-to-noise ratios at fine
spatial scale. This concern is addressed by first smoothing with a constant arc
radius mean filter. The mean filter is applied simultaneously, not iteratively, on
a 0.5° x 0.5° grid with the arithmetic mean of values within the filter window
assigned to the central cell. Boynton et al. (2007) discuss and illustrate the scatter

of values before and after the smoothing.
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To first order, the filter radius is greater for elements with smaller signal-
to-noise ratios. For nonradioactive elements in particular, the spatial filter is
applied at several processing steps (Boynton et al., 2007). The filter arc radii for
different elements at the final processing steps are: 5° for K; 10° for Ca, Cl, Fe,
H, and Th; and 15° for Al and Si. An unfortunate outcome of filtering is the in-
crease in spatial uncertainty in the form of spatial autocorrelation as discussed
in Chapters 3 and 4. Subsequent to the filter application, the data are binned
on fairly coarse latitude-longitude grids, typically at 5° x 5°. Rebinning further
increases the signal-to-noise ratio and provides the necessary oversampling to
account for the difference in shape between the response function of the GS,
which is circular, and of cells, which are rectangular. However, since the filter
window is much larger than an individual 5° x 5° spatial bin, spatial autocorre-
lation is aggravated in the GS data. Nevertheless, the filter enables a significant
increase in numerical precision as evident in relative root-mean-square uncer-
tainties of 10 % for Cl, 8 % for Fe, 11 % for H, 7 % for K, 2 % for Si, and 10 % for
Th.

A combined effect of the spacecraft footprint, the SCR, and the spatial filter
is a dramatic difference in spatial resolution between the GS and in situ instru-
ments. This difference necessitates careful selection of compositional attributes
from in situ missions for comparison with and normalization of the GS data. It
is particularly important as the GS is insensitive to the substantial variability at
small lateral spatial scales, in composition, density, and texture as seen by the

Viking, Pathfinder, and MER missions.
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2.3.3 Si Normalization, Capture corrections, and Feedback Ef-

fects

As described earlier, we select only one element, Si, for the normalization of GS
data. The normalization is achieved in several steps. First, the scatter-derived
1779k eV y photons from Si are used to estimate w(Si) subject to the scatter cor-
rections. These mass fractions are then smoothed with the mean filter. Next,
the filtered values are scaled by a constant so that the GS-derived w(Si) at the
coordinates of a chosen landing site equals the representative in situ w(Si). For
reasons discussed in Section 2.7.4, we chose the Pathfinder landing site for the

Si normalization.

Capture corrections are subsequently determined as the ratio of the capture-
derived w(Si) to the 1779keV scatter-derived (also scatter corrected and nor-
malized) w(Si) at each cell (e.g., Boynton et al., 2007). These ratios act as scaling
factors for mass fractions of all capture-derived elements (Cl, Fe, and H) (Boyn-
ton et al., 2007), increasing initial estimates by ~ x4 on average. Such scaling is
necessary to account for variations of the thermal neutron flux in the regolith
due to the presence of neutron moderators, such as H, even at low concentra-

tions (Boynton et al., 2007).

A slight feedback effect exists between the scatter and capture correction
steps, since Fe and H content, which are subject to the capture correction, affect
the scatter correction. Furthermore, as described in Section 2.6, we renormalize
the calculated in situ composition to allow for the presence of GS-determined
H, which in turn affects the Si normalization. However, these feedback effects

among the scatter correction, capture correction, and Si normalization are so
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subtle that the relative variation in estimated elemental mass fractions during

iterative processing was < 0.1 %.

2.3.4 Effects of H and Spatial Extent

As discussed in Sections 2.3.3 and 2.3.2, neutron moderation by H in particu-
lar introduces an additional complexity to the forward model by affecting the y
photon production via neutron capture and inelastic scatter in other elements.
Radioactive elements, Th and K, are not subject to the consequent scatter (Sec-

tion 2.3.2) and capture (Section 2.3.3) corrections.

An additional concern in estimating elemental mass fractions is the presence
of large amounts of H,O, toward the high latitudes. This dilutes other ele-
ments in the regolith, increases the likelihood of significant layering at depth,
and severely alters the neutron energy spectrum. The latter makes both scatter
and capture corrections unreliable, while the forward modeling also becomes

flawed with the violation of homogeneity assumptions at depth.

To avoid such issues, reported GS data on nonradioactive elements are cur-
rently constrained by an “Hmask.” The Hmask excludes poleward areas on
Mars that are dominated by H,O,, on the basis of the 2.223 M eV H line of the y
spectrum (Boynton et al., 2007, Para. 38 and Figure 2a). Though spherical polyg-
onal, not rectangular, in shape, the mask typically constrains global data for
all nonradioactive elements to within +45° latitude. Since dilution severely re-
duces count rates leading to relatively higher uncertainties, reliable global data
for even the radioactive elements are limited to within +75° latitude (e.g., Taylor

et al., 2006a,b; Boynton et al., 2007, Boynton para. 38).
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2.4 Summary of the Technique

As outlined in Section 2.1, since we compute a weighted mean of in situ rock and
soil compositions, it is important to classify regolith components into these two
categories. Throughout our discussion, “rocks” generally refer to 10 cm scale
and larger materials (e.g., fragments, breccia, and exposed outcrops) that have
high thermal inertia, have areal fractions consistent with the Viking Infrared
Thermal Mapper (IRTM) data (e.g., Christensen, 1986; Golombek et al., 2005), and
are immobile under current eolian conditions. The mean free path of neutrons is
~ 10cm (e.g., Squyres and Evans, 1992), ensuring that what we consider as rocks
appear distinct to the GS. “Soil” refers to all other, typically unconsolidated,
material including those sufficiently fine-grained to be mobilized by wind (e.g.,
Banin et al., 1992; Jerolmack et al., 2006). Soil consequently encompasses a variety
of regolith components identified at the five landing sites. Typical examples are:
bedform armor, clasts, concretions, drift, dust, rocky fragments, sand, and soil
(e.g., Fergason et al., 2006a; Golombek et al., 2005; Sullivan et al., 2005; Yen et al.,
2005).

While the classification of the regolith into rocks and soil is very broad, it
suits the GS data context, with the ~ 440km instrument footprint and upper
few tens of centimeter sampling depth as described in Section 2.3 (e.g., Boynton
et al., 2007). For example, the GS would be insensitive to the variability of rock
areal fraction by factors of two to four (e.g., Squyres et al., 2004b) as observed
in the km scale traverse of Spirit. Satisfactory agreement between average in
situ estimates and IRTM orbital estimates of the areal fraction of rocks further
support our simple classification (e.g., Golombek et al., 2005). However, the rock

size threshold assigns smaller rock fragments to the soil component, potentially
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making the areal fraction we assign to rocks less than their in situ value. In
addition, since the daily temperature variations do not penetrate very far into
rock, and less into soil, even a thin (> 1 cm) soil layer can conceal rocks from the

IRTM and lead to an underestimation of the rock abundance.

For a regolith with two key components, rock and soil materials, distributed
as a homogeneous mixture within a sample volume, we may compute the rep-

resentative mass fraction of an element or oxide as

CrArpr + Cs(l - Ar)ps
Arpr + (1 - Ar)ps

with C,, the representative in situ concentration of the element (or oxide) as a

Cn =

2.1)

mass fraction, A, the areal fraction of rocks, p; the density of rocks, p, the density
of soil, ¢; the mass fraction of the element (or oxide) in rocks, and ¢, the mass
fraction of the element (or oxide) in soil. Uncertainties are propagated for Cy,

and all other computed values with the standard formula (e.g., Young, 1962, pp.

(9 2
Sm = A Z‘a_)]: 2 (2.2)

where x; is the i variable of the function f, s, ., the standard error (i.e., net un-

96-101):

certainty defining 68 % statistical confidence under normality assumptions) of
x;, and sy, the standard error of the function. Therefore, under gaussian assump-
tions, f would be 68 % probable to be within 1s,,. Following the notation within
companion papers of the Mars Odyssey Special Issue (e.g., Boynton et al., 2007;
Keller et al., 2006b; Taylor et al., 2006a), we state uncertainties to 1s,, as also dis-
cussed in Chapter 5. In contrast, the MER team reports APXS data uncertainties
to 25y, (e.g., Gellert et al., 2006; Rieder et al., 2004).
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For a given soil type at each MER site, we estimate ¢, in Equation 2.1 as
the arithmetic mean ({t) of several samples identified in Sections 2.7.2 and 2.7.3.
The corresponding standard error (sm, = Smc) for use in Equation 2.2 is de-

. sxl _ Zi(t‘s,i—ﬁ)z s
rived from the standard deviation s = =235 as sy, = ﬁ,

number of samples and c; is the concentration in the i sample (e.g., Mandel,

where N is the

1964, pp. 35-41, 62-63, 106-110). The alternative of computing the maximum
likelihood mean and corresponding s, using the reported uncertainties is less
defensible in the rover context, since such samples generally present statisti-
cally inconsistent (e.g., Taylor, 1982, pp. 147-152) data even though they are
spatially indistinct from the GS perspective. We similarly utilize the standard
error of the arithmetic mean along with calibration uncertainties for Viking 1
data. In all other cases, we use the reported standard error as sy, which is
primarily driven by counting statistics for the GS data. In summary, the stan-
dard error of C,, is mostly a function of the following: (1) statistical uncertainties
in rock and soil densities as described in Section 2.5, (2) reported uncertainty in
rock areal fraction (Table 2.1), (3) reported uncertainties of in situ element/oxide
mass fractions (with the exception of MER soil data as described above), and (4)

the standard error of GS-derived w(H,0O) (Section 2.6).

A difficulty with Equation 2.1 is that density, areal fraction, and element con-
centration measurements are not simultaneously available for a given landing
site. In addition, Equation 2.1 is valid only where the regolith is a homogenous
mixture of rocks and soil across the y photon sampling depth, which, as dis-
cussed in Section 2.3, is also a primary assumption of all GS datasets. While this
assumption may be roughly true for the Gusev, Pathfinder, and Viking landing
ellipses (e.g., Moore et al., 1977; Golombek et al., 2005), Meridiani is a clear excep-

tion as noted in Section 2.7.3. The effect of rock/soil mixing geometries on mass
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Table 2.1: Areal fractions, as %, of rock (A;) and soil components at the
landing sites as discussed in Section 2.5. The reported relative
areal fractions of “drift” (A4) and “soil”(A;) are used in Equa-
tion 2.3. Note that the calculated composition at Opportunity
assumes a rock-free surface as described in Section 2.7.3.

Lander/Rover s, Rock areal fraction Soil areal fraction

Ay A,
Opportunity 9 91
Pathfinder 13 87
Spirit 5 6 94
Viking 1 13 18.+4. 66.+13.
Viking 2 16 30.£6. 54.+11.

fraction estimation has been modeled before (e.g., Squyres and Evans, 1992). Ad-
ditional studies are underway to quantify these effects for rocks embedded in a

soil matrix (e.g., Kim et al., 2006a).

2.5 Bulk Densities and Areal Fractions

An estimate of rock and soil bulk densities is key to evaluating Equation 2.1.
However, none of the in situ missions have been equipped with instruments
to directly determine bulk densities. Consequently, the most reliable density
estimates to date are from reasonable terrestrial analogues that utilize thermo-
physical, textural, and compositional information of the Martian regolith (e.g.,
Fergason et al., 2006a; Grant et al., 2004). While bulk densities of Martian rocks
would be consistent with those of Shergottite-Nakhlite-Chassignite (SNC) me-

teorites, it is important to note that SNC meteorites may not be petrologically
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representative of the general Martian regolith (e.g., McSween, 1994, 2002).

In the case of the MER, Rock Abration Tool (RAT) currents and Mossbauer
contact plate forces provide additional estimates of rock and soil properties, re-
spectively (e.g., Arvidson et al., 2004a,b; Squyres et al., 2006a). In addition, the
Panoramic Cameras (Pancams) (e.g., Farrand et al., 2006; Bell et al., 2004) and
Microscopic Imager (MI) (e.g., Sullivan et al., 2005; Cabrol et al., 2006; Herkenhoff
et al., 2006) yield detailed textural information. Overall, the MER mission has
provided evidence of much greater variability in bulk properties than recog-
nized on earlier missions (e.g., Fergason et al., 2006a). Nevertheless, in the con-
text of remote missions sensitive only to average physical properties at coarse
spatial resolution, detailed modeling of in situ bulk densities is unlikely to yield
useful insight. Therefore, we utilize the Viking regolith property observations
and corresponding terrestrial analogs as our primary sources of density infor-
mation, supplemented with evidence for heterogeneity as observed by the MER

mission.

The density of “average” Martian rocks, considered physically analogous to
terrestrial dense basalts (e.g., Fergason et al., 2006a; McSween et al., 2004), is taken
to be (2.6 + 0.5) x 10*kgm™ (Moore et al., 1977; Moore and Jakosky, 1989; Olhoeft
and Johnson, 1989). To account for significant variability in rock bulk densities,
we quote and substitute the standard deviation (s) instead of the standard error
of py In Smy, = Smy, Of Equation 2.2. Two soil components were identified at
the Viking 1 site: “drift” with a density of (1.15 £ 0.15) x 10° kgm™ and “blocky
soil” with a density of (1.6 + 0.4) X 10°kgm™ (Moore and Jakosky, 1989). While
the near-field analysis by Moore and Jakosky (1989) identified only a “crusty to
cloddy soil” with a density of (1.4 +0.2) x 10° kgm™ at the Viking 2 site, the far-
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field analysis by Moore and Keller (1991) verified the presence of “drift” as well.
Since soil densities at each site overlap within the uncertainties, we use their
far-field areal fraction weighted mean as the density of the soil in Equation 2.1.

The mean density of the soil, p;, may then be expressed as:

Agpaq + Aps
= % 2.3)
where d represents “drift” and s represents “soil” (“blocky” type at Viking 1
and “crusty to cloddy” type at Viking 2). The remaining symbols are analogous
to those of Equation 2.1, with the standard error of p; obtained by substituting

f = ps in Equation 2.2.

Since Viking 1 and 2 reported different relative areal fractions (Table 2.1)
and densities for the “drift” and “soil” components, p, differs slightly between
the two soil proxies. For the Pathfinder and MER landing sites where density
estimates have not been reported, the maximum-likelihood mean (e.g., Mandel,
1964, pp. 131-135) of the two, (1.34 £ 0.13) x 10 kgm™, was used as the mean
density, p, of the soil component. This approximation is further justified by
the favorable comparison of soil properties across Viking, Pathfinder, and MER
landing sites (e.g., Arvidson et al., 2004a). On the other hand, p; at the Viking 1

landing site was computed directly from Equation 2.3 to be (1.5+0.3)x10° kg m™.

In addition to the densities of the rock and soil components, Equation 2.1
requires the areal fraction of rocks, A;. As explained in Section 2.4, we rely on the
global rock areal fraction map at 1°x 1° resolution generated with thermal inertia
data from the IRTM (Christensen, 1986). We compute the mean of rock areal
fractions within a 15° arc radius circle, representative of the GS spatial filter and

centered at the coordinates of each landing site: Viking 1 (22.27° latitude, —47.94°
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east longitude) (Mayo et al., 1977), Pathfinder (19.13°, —33.22°) (Golombek et al.,
1999), Spirit (-14.57°, 175.47°) (Squyres et al., 2004b), and Opportunity (-1.95°,
—-5.53°) (Squyres et al., 2004a). The absolute, not relative, uncertainty of each
mean rock areal fraction is taken to be 5% (e.g., Christensen, 1986). These are

summarized in Table 2.1.

2.6 Oxidation and Hydration

we compare compositions across landing sites while conforming with wet
chemical analysis normalization of mass fractions at each site to unity. This
requires the oxidation state of a given element to be the same across all landing
sites for both rock and soil. Reported values satisfy this condition for most el-
ements, with the exception of Fe and S. We adjust the oxidation states of these
two elements in three steps. First, we stoichiometrically (atomic masses by Loss
(2003)) convert reported oxide mass fractions of all elements into the unoxidized
(i.e., elemental) mass fractions. Second, we convert the elemental mass fractions
back into oxide mass fractions assigning the same oxidation state to a given el-
ement across all regolith components and landing sites. Third, we separately

renormalize these mass fractions to unity for rock and soil.

Only Pathfinder data needed the oxidation state adjustment for S, by con-
verting rock composition from S to S°*. The adjustment for Fe is much more
complicated. To date, the MER Mdssbauer spectrometer is the only instrument
to measure in situ Fe oxidation states. While the MER data demonstrate sig-
nificant variability in the molar fraction of Fe’*, once the outcrop and hematitic

soils in Meridiani and the Columbia Hills rocks in Gusev are excluded, the mo-
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lar fractions are in rough agreement between the two sites (Klingelhofer et al.,
2004; Morris et al., 2004). It is important to note however, that the Fe oxidation

states observed in the Columbia Hills indicate much variability, with the molar

Fe3+
/7 Fe

fraction of Fe** , varying from approximately 0.2 to 0.9 (Morris et al., 2006).

toul
Columbia Hills rocks are also older than the plains rocks (e.g., Squyres et al.,
2006a), and may be comparable in age to the bedrock beyond the crater rim.
While these concerns indicate that using a mean of Fe oxidation states observed
across landing sites may be simplistic, as explained in Section 2.8, its effect on
the computed in situ composition is negligible due to the normalization of ox-

ides. In contrast, a major systematic error could occur if Fe and/or S existed in

sulfide or elemental form instead of as oxides.

Since Fe oxidation states vary significantly between and within the only two
sites where such data are available, we use the Gusev plains material to esti-
mate a mean molar fraction of Fe’" solely as a formalism. The arithmetic mean
and standard deviation of the Fe’* molar fraction of all measurements in the
Gusev plains is 0.28 + 0.01 (Morris et al., 2004). Consequently, we use a mean Fe
oxidation state of +2.28 as the standard in all representative in situ estimates.
The renormalizations of reported compositions to FeO, |, and SO, preceded all

other calculations.

While GS measurements include w(H) (reported as stoichiometrically equiv-
alent w(H,0)), H content has not been directly determined in situ (Rieder et al.,
2003; Gellert et al., 2006), with the exception of the Viking landers (e.g., Ander-
son and Tice, 1979). We model the rock component to be devoid of H,O, and
propagate the GS-derived w(H,O) into the soil component. This is achieved by

inverting Equation 2.1:
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C. = CGS {Arpr + (1 - Ar)ps}
’ (1 _Ar)ps

where ¢ is the estimated in situ w(H,O) in soil, and Cgs the GS-derived w(H,0)

(2.4)

at the landing site coordinates. Cgs values and corresponding standard errors
are listed in Table 2.2, and we compute the standard error of ¢ by substituting
f = ¢y in Equation 2.2. The in situ oxide and elemental mass fractions in soil are
renormalized to 1 — ¢ to allow for the presence of H,O. In spite of exceptions
(e.g., Clark et al., 2005) discussed in Section 2.7.3, assuming the rock compo-
nent to be free of H,O remains a reasonable approximation for the majority of
landing sites. As a concluding step, we convert the representative in situ com-
positions, renormalized for both uniform oxidation states and the presence of

H, into stoichiometrically equivalent elemental mass fractions.

In general, Cgs values (Table 2.2) are consistent with in situ estimates of
w(H,0) at Pathfinder, Spirit, and Viking 1. At pathfinder, the stoichiometric
w(H,0) is = 2% in soils and 0.1 % — —4.3 % in rocks as calculated via mass bal-
ance and subject to Fe and S oxidation state assumptions (Foley et al., 2003).
The re-analysis of Viking 1 data indicated that the soil at Viking 1 may con-
tain w(H,O) in the range 1.1 % — -3.0 % (Anderson and Tice, 1979). Mineralogic
modeling of H,O content at Spirit is difficult due to the large mineralogic vari-
ability of regolith components that contain H. Nevertheless, current modeling
tentatively suggests w(H,0) =~ 0.7 % as Goethite (o — FeOOH) in the most altered
Gusev rocks (Morris et al., 2006) and w(H,0) < 11 % as hydrated sulfates in sub-
surface soils (Wang et al., 2006). Furthermore, recently analyzed salt deposits in
the Columbia Hills, such as Paso Robles, may contain much higher amounts of
bound H,O (e.g., Johnson et al., 2007; Lane et al., 2007; Wang et al., 2007; Yen et al.,
2008).
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Table 2.2: Representative in situ mass fractions and their GS-derived
(Boynton et al., 2007) counterparts (as %). Net uncertainty of
each mass fraction is given parenthetically to one standard er-

ror (1sp).

Equation 2.2 and related text describe the uncer-

tainty estimation for calculated in situ mass fractions, while
Boynton et al. (2007) describe that for GS-derived concentrations.
SpiritHW uses an area-weighted mean of Humphrey and Wish-
stone compositions, while SpiritH only uses the composition of
Humphrey. Only four of the elements have both representative
in situ and GS-derived concentrations. Continued in Table 2.4.

Element Opportunity Pathfinder SpiritH  SpiritHW  Viking 1
Al 4.69(0.23)  4.5(0.3) 4.38(0.17) 4.6(0.3) 4.4(1.1)
Ca 4.53(0.03)  4.8(0.4) 3.99(0.16) 4.07(0.22)  4.6(0.6)
Cl 0.466(0.006)  0.49(0.07)  0.71(0.08) 0.72(0.07)  0.71(0.17)
GS-derived C1 ~ 0.59(0.06) 0.37(0.04) 0.68(0.06) 0.37(0.04)
Cr 0.303(0.007)  0.16(0.08)  0.26(0.02) 0.23(0.02) -

Fe 13.8(0.7) 14.6(09)  12.3(0.3)  11.8(0.3) 13.2(1.3)
GS-derived Fe  15.4(1.3) 17.3(1.3) 15.7(1.2) 15.4(1.2)
GS-derived H,O  5.4(0.6) 2.9(0.5) 7.4(0.6) 2.6(0.4)
K 0.336(0.016)  0.63(0.07)  0.25(0.02) 0.284(0.014) 0.22(0.13)
GS-derived K 0.316(0.023)  0.43(0.03) 0.328(0.020) 0.31(0.03)
Mg 4.18(0.13)  4.2(0.6) 5.36(0.18) 5.02(0.24)  3.3(0.6)
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2.7 In Situ Specifics

In spite of the generally similar methodology to estimate representative in situ
compositions, some differences arise in the calculation details at different land-
ing sites. These differences reflect the compositional diversity on Mars and dif-
ferences in instrumental capabilities. For example, the elemental composition
of the Viking 1 landing site is not as well characterized as the others, since the
XRFS had more limited elemental detection capabilities than the APXS used in
subsequent missions. Moreover, the MER mission provides additional informa-

tion due to a comprehensive suite of instruments and mobility.

MER instruments are sensitive to geochemical variations at spatial scales
vastly exceeding the sensitivities of remote (e.g., the GS) missions. For example,
the MERs have revealed striking morphological, textural, and compositional
variations (e.g., Arvidson et al., 2006; Cabrol et al., 2006; Grotzinger et al., 2005)
at centimeter to tens of centimeter scales with elemental and mineral detection
instruments — the APXS (e.g., Gellert et al., 2006), Miniature Thermal Emission
Spectrometer (Mini-TES) (Fergason et al., 2006a), and Miniature Mossbauer Spec-
trometer (MIMOS II) (Morris et al., 2006) — and at sub-millimeter scales with the
MI (e.g., Herkenhoff et al., 2006). As an additional complexity, Spirit has observed
chronological variability, including the removal of a thin dust cover by dust dev-
ils (e.g., Arvidson et al., 2006; Greeley et al., 2005). Consequently, while we use all
the samples of earlier in situ missions, only a carefully selected subset of the

MER data is used for remote comparisons.
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2,71 Viking1

All Viking data may be used in representative in situ estimations since major
compositional heterogeneities were inevident due to instrumental limitations
and lack of mobility. The absence of rock compositional data poses a challenge
at the Viking site. Given the general geological similarities and spatial prox-
imity of the regolith at Viking 1 and Pathfinder, we address this by using the
Pathfinder mean soil-free rock composition (Wiinke et al., 2001) as a proxy for the
rock composition at Viking 1. However, the apparent geological similarities may
conceal significant compositional differences, with the potential to invalidate
our choice of a proxy rock composition. Nevertheless, relative to Pathfinder,
rock compositions at either MER site are likely to be even more inappropriate

as proxies to rock at Viking (see below).

Besides the lack of rock analyses, the Viking 1 XRFS was also incapable of
detecting Cr, Min, Na, and P. Consistent with the approach by McSween and Keil
(2000), for example, we account for this issue by normalizing Viking 1 rock and
soil compositions to 97 %, the net mass fraction of Pathfinder soil-free rock at-
tributable to elements and oxides other than Na,O, Cr,0;, MnO, and P,0Os. Fur-
thermore, the mean K content based on the work of Clark et al. (1982) is below
the XRFS detection limit. We use the arithmetic mean of values reported by

Clark et al. (1982) to estimate the Viking 1 soil composition.

2.7.2 Spirit

we utilize the reported APXS data for Spirit (Gellert et al., 2006). The choice of a

suitable rock composition in the context of the GS footprint is somewhat com-

31



Table 2.3: Identification information of APXS samples at both MER loca-
tions extracted from the work of Gellert et al. (2006) for Spirit and
the Planetary Data System online for Opportunity. “R” refers to
abrasion with the RAT, while “T” refers to excavation with the
wheels. Sols are subsequent to landing at each site.

Rover Sol Sample type Integration Target name

time (h)
Opportunity 81 T soil 4.0 BeagleBurrow _Trench
Opportunity 368 T soil 3.0 Left_of _peanut_TrenchFloor
Spirit 49 T hollows soil 6.5 Road Cut_Floor3_
Spirit 50 T hollows soil 7.6 Road Cut-WallMIonl
Spirit 60  Runaltered rock 5.0 Humphrey RAT?2
Spirit 114 T typical soil 9.9 Bighole RS2
Spirit 115 T typical soil 4.0 Bighole_Trico
Spirit 140 T typical soil 8.3 Boroughs_Mills_bottom
Spirit 141 T typical soil 4.0 Boroughs_Hellskitchen_ side
Spirit 335 Raltered rock 33 Wishstone_chisel RAT

plicated at Gusev. The uncontaminated composition of rocks in the Gusev crater
floor could be represented effectively by the APXS measurements following the
second RAT application (RAT 2) on the plains rock “Humphrey” (Table 2.3)
(Gellert et al., 2004). Figure 2.1 includes a true color image of Humphrey courtesy
of NASA/JPL/Cornell as posted at http://marswatch.astro.cornell.
edu/pancam_instrument/true_color.html, along with other samples
used in this work as posted at http://marswatch.astro.cornell.edu/
pancam_instrument/mosaics.html. Bell et al. (2003), Bell et al. (2006a), and
Bell et al. (2006b) describe the image processing techniques and Pancam instru-

mentation in detail. Locational information shown in Figure 2.1 as labeled tra-
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Figure 2.1: Images of rocks and trenches at Gusev that were used to ob-
tain APXS data for our study as traverse map insets. Trenches
and wheel tracks are ~ 20 cm wide and RAT holes ~ 5 cm across.
The images are (sols parenthetical; ATCI: Approximate True
Color image, TCI: True Color image):(a)ATCI mosaic of the
“Road Cut” trench (47);(b)TCI of RATted “Humphrey” (60 se-
quence P2597). Humphrey is ~ 60cm tall;(c)ATCI mosaic of
the “Big Hole” trench (116);(d)ATCI mosaic of the “Boroughs”
trench (142). Boroughs is ~ 11 cm deep;(e)TCI of “Wishstone”
(342 sequence P2571). Note wheel tracks for scale. Additional
image information available in Section 2.7.2 and APXS sample
identification in Table 2.3.
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verse maps was adapted from Arvidson et al. (2006).

Unlike Humphrey, rocks in the “Columbia” Hills are chemically altered,
vary significantly in composition leading to at least five compositionally distinct
classes, and are inferred to be geologically older (possibly Noachian) than the
potentially Hesperian plains rocks (e.g., Arvidson et al., 2006; Cabrol et al., 2006;
Squyres et al., 2006a). While the Columbia Hills constitute < 5% of the area within
Gusev crater, the crater itself, with a diameter of ~ 160 km (Squyres et al., 2004b),
accounts for only ~ 13 % of the GS footprint. The bedrock beyond the crater is
more likely to be of a geological age comparable to the Columbia Hills than the
Gusev plains. Consequently, using only Humphrey RAT 2 data to represent the
rocks of Gusev may be more inappropriate than an areally weighted mean of
Gusev plains and Columbia Hills rock compositions. We consider both options,
as they reflect the complexity of Martian surface composition and the difficulty
of selecting a particular composition to represent even a single location at the
spatial scale of a GS footprint. Though found only as float, the composition of
“Wishstone” class brushed and abraded rock (Figure 2.1 and Table 2.3) is used
to represent the Columbia Hills rock composition as it has been fairly common
in the Columbia Hills, and is similar in elemental composition to the “Watch-

tower” class of outcrop (Squyres et al., 2006a; Gellert et al., 2006).

Compositional differences between the typical crater floor soils (sampled
with the “Boroughs” and “Big Hole” trenches, Figure 2.1 and Table 2.3) and
“hollows” (sampled with the “Road Cut” trench, Figure 2.1 and Table 2.3) com-
plicate the choice of a representative soil composition at Gusev. As discussed
for Equations 2.1 and 2.2, we use four samples from Boroughs and Big Hole

trenches to represent the typical soil, and two samples from the Road Cut trench
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to represent hollows soil. Hollows appear to be relatively young eolian infill of
small impact craters, while the surrounding plains contain mature soil material
(e.g., Haskin et al., 2005; Wang et al., 2006). Furthermore, in spite of the ubiquity
of hollows (Golombek et al., 2006), plains soils are areally dominant along the
rover traverse (Arvidson et al., 2004a; Grant et al., 2004). In light of these issues,
we compute a 9 to 1 ratio mean of plains to hollows as the representative com-
position of soil at Gusev, which is supported in part by areal evidence presented

by Golombek et al. (2006).

In spite of compositional complexities, trench data sampling up to ~ 11cm
deep in the making of Boroughs are much more relevant at GS sampling depth
scales than any surface soil measurement. The MER trench campaigns were
motivated primarily by this consideration (Wang et al., 2006), and have revealed
the presence of significant compositional layering at tens of centimeter depths
(e.g., Haskin et al., 2005; Soderblom et al., 2004; Wang et al., 2006). This observation
is not contradicted by the lack of evidence in GS data for Cl layering at large lat-
eral spatial scales (Keller et al., 2006a), since Br and Cl in particular have shown
highly localized vertical variations at both Gusev (e.g., Wang et al., 2006) and
Meridiani (e.g., Rieder et al., 2004).

2.7.3 Opportunity

In contrast to Gusev and other landing sites, the surface at Meridiani consists of
a layer of soil with variable thickness locally exceeding ~ 1 m (Soderblom et al.,
2004), overlying sulfate-rich sedimentary bedrock (e.g., Grotzinger et al., 2005;
Jolliff and McLennan, 2006; McLennan et al., 2005; Squyres et al., 2006b). There-
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fore, the soil and bedrock can each be deeper than the tens of centimeter GS
sampling depths, sometimes acting as a semi-infinite layer and sometimes not,
complicating the analysis. However, bedrock exposures are sparse along the
rover traverse and limited largely to craters (e.g., Victoria) and fractures (e.g.,

Anatolia) (Squyres et al., 2004a, 2006c¢).

With the exception of a lag deposit of hematite spherules derived mostly
from the bedrock, the soil is predominantly basaltic sand of potentially external
origin (Squyres et al., 2004a; Weitz et al., 2006; Soderblom et al., 2004). Furthermore,
w(H,0) may be elevated in Meridiani outcrops (with a modeled maximum of
~ 22 %) due to hydrated sulfate minerals, while it is probably less than 4 % in the
soil (Clark et al., 2005). If applicable at GS footprint scales, this would attribute
much of the GS-derived H content to the outcrop rather than the soil. Further-
more, with the exception of basaltic sands, the unique minerals at Meridiani
may make the densities of its regolith components differ significantly from den-
sity estimates based on Viking observations (Sullivan, personal communication,

2005).

Such issues considerably weaken the relevance of Equations 2.1 and 2.4
in estimating a representative composition at Meridiani. However, as a first-
order approximation to the representative Meridiani composition, we use Equa-
tion 2.1 assuming a rock-free surface (i.e., A, = 0) dominated by the (hematite-
free) basaltic component of the soil material. Even though the areal frac-
tion of soil as determined with IRTM data is not 100 % (Table 2.1), it is suf-
ficiently close to unity for our first-order approximation. As at Gusev, the
areally dominant soil component — in the context of the GS sampling depths

— was sampled by trenching experiments which also revealed the presence
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of finer grains at depth in addition to the volumetrically abundant basaltic
grains (Weitz et al., 2006; Sullivan et al., 2005). We represent this soil with
the arithmetic mean (refer Equation 2.2 and related text for uncertainty es-
timation) composition at depth in two trenches, “BeagleBurrow_Trench” and
“Left_of_peanut_TrenchFloor” (Table 2.3). The two trenches, inset in a tra-
verse map courtesy of NASA/JPL/OSU as posted at http://marsrovers.
nasa.gov/mission/tm-opportunity/images/MERB_481_br2. jpg, are
shown in Figure 2.2. As evident in the low areal fractions of hematite and
jarosite (Klingelhofer et al., 2004; Morris et al., 2006), these two trenches ef-
fectively exclude the lag deposit and other contributions from the outcrop
unlike those from sols 25 (“Trench_floor”) and 26 (“Trench_sidewall”). We
use the recalibrated APXS-derived mass fractions available in the Planetary
Data System (PDS) at http://pds-geosciences.wustl.edu/mer/merl_
mer2-m-apxs—5-oxide-sci-vl/merap_2xxx/data/apxs_oxides_merl.

csv) as an update to those given by Rieder et al. (2004).

Complicating matters further, outcrop sampled in the current km scale tra-
verse of Opportunity may not be representative of bedrock in the greater Sinus
Meridiani region (e.g., Edgett, 2005) and by extension, within the GS’s ~ 440 km
instrumental and =~ 1800km filter footprints. In addition, accurately model-
ing the compositional effect from rocks would require a checkerboard surface
model, given the distinctly layered nature to the regolith at Meridiani. Such
a model would consist strictly of weighting by the areal fractions of outcrop
and soil without the use of bulk densities, since each layer would usually ap-
pear infinitely thick to the GS. However, a checkerboard model is unlikely to
significantly improve the accuracy or precision of the calculated composition in

the context of GS comparisons, particularly since the variability in soil depth is
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Figure 2.2: Images of trenches at Meridiani that were used to obtain
APXS data for our study (Section 2.7.3) as traverse map
insets. The width of each trench is ~ 20 cm.(a)Approximate
true color mosaic of the sol 81 “BeagleBurrow_Trench”
area. The trench is ~ 1lcm deep. Image courtesy of
NASA /JPL-Caltech as posted at ht tp: //marsrovers. jpl.
nasa.gov/gallery/press/opportunity/20040428a/
09-SM-02-TrenchPan-B093R1. jpg;(b)Part of the sol 368
“Left_of_peanut_TrenchFloor” area in true color show-
ing a Mossbauer imprint within. Image courtesy of
NASA/JPL/Cornell as posted at http://marswatch.
astro.cornell.edu/pancam_instrument/images/
True/S0l373B_P2552_1_True_RAD. jpg.
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poorly known.

2.7.4 Pathfinder and the GS normalization

The reported geochemistry of rock and soil material at Pathfinder shows less
heterogeneity than those at either Gusev or Meridiani. In part this may be due
to the short Pathfinder traverse of about 100 m (since Sojourner rover remained
within ~ 10 m of the lander throughout the mission) (Golombek et al., 1999) rela-
tive to MER’s km scale traverse. Pathfinder also lacked the capability to brush
rock surfaces or abrade them, as the MER rovers have done with the RAT, which
may have potentially concealed compositional variations. For example, com-
plex alteration processes have produced both brushable surface accumulations
and abradable alteration zones on rocks at both MER sites (e.g., Hurowitz et al.,
2006), the compositional effects of which cannot be removed by the S extrapola-

tion method used at Pathfinder (Wiinke et al., 2001).

More important, the Pathfinder landing ellipse in Ares Vallis is larger
(Golombek et al., 1997) than those of either MER (Arvidson et al., 2003; Cabrol et al.,
2003; Golombek et al., 2003). While the landing ellipse is an engineering con-
straint, missions with smaller landing ellipses are capable of reaching landing
sites that are geologically homogeneous over smaller scales. Consequently, the
much larger Pathfinder landing ellipse — located in a region less diverse than
either MER site — and its immediate neighborhood present a geologically less
heterogeneous area that is better suited for comparison with the GS given its
coarse spatial resolution. Ironically, the advantage offered by the MER mission

with smaller landing ellipses is lost to the GS since both ellipses were chosen to
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lie within geologically heterogeneous regions at GS footprint scales. For exam-
ple — much as Lunokhod-2 was the first rover to traverse a geologic contact on
the moon (e.g., Basilevsky et al., 1977; Basilevsky and Linkin, 1996) — Spirit is the
first rover to traverse a geologic contact on another planet (e.g., Arvidson et al.,

2006; Crumpler et al., 2005).

The apparent compositional homogeneity at Pathfinder enables us to use
revised values for all samples, as reported by Wiinke et al. (2001), to estimate the
mean compositions of soil and rocks. Briickner et al. (2003) provide details of the
refined calibration that was used by Wiinke et al. (2001). Data from both these
papers are essentially in agreement. Foley et al. (2003) describe Pathfinder APXS
data that were derived from an independent calibration and are very similar
to those quoted by Wiinke et al. (2001) and Briickner et al. (2003) for the major

elements, while discrepancies exist for minor elements.

The representative composition at Pathfinder estimated from the work of Fo-
ley et al. (2003) is (50 + 20)% higher for Cl and (30 + 10)% lower for K than that
based on values by Wiinke et al. (2001). In spite of this, since all three works
overlap within net uncertainties for the major elements Fe and Si, we do not an-
ticipate significant changes to GS estimates should the data by Foley et al. (2003)
be used. The Cr estimate has a minor caveat as well, since soil-free rock has
been modeled without Cr (e.g., Briickner et al., 2003; Foley et al., 2003; Wiinke et al.,
2001). As a result, the estimate of Cr assumes a modeled zero content of Cr in

rocks, with only the uncertainty of w(Cr) in soil incorporated into Equation 2.2.
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2.8 Sensitivity of Representative Compositions to Unknowns

The accuracy and precision of representative compositions are important con-
siderations given the limited spatial sampling of in situ instruments, IRTM mod-
eling of rock areal fractions, and Viking density estimates. As expected, the
content of major elements, such as Si, is consistent across the landing sites and
APXS measurements have rigorously quantified uncertainties. Rock areal frac-
tion estimates from rovers and landers have been consistent with IRTM model-
ing as well. In addition, the density estimates are based upon reasonable paral-
lels with terrestrial material. Collectively, these suggest that the representative
compositions are sufficiently accurate for use at GS footprint scales and sam-

pling depths, barring unknown systematic errors in instrument calibrations.

However, there is some variability in rock abundance due to the massive
difference in sampling area between the surface instruments and GS. Density
uncertainties are poorly constrained, since none of the missions had the means
to determine densities. An additional uncertainty is introduced by the oxidation
state of Fe, though again, a reasonable value was used in the calculations. A final
uncertainty affecting the Gusev representative composition is the areal ratio of
typical soil to hollows soil. We estimated the effects of these uncertainties by
varying rock abundance, rock density, and soil density values by 50 %; varying
the Fe oxidation state as +2, +2.5, and +3; and using a typical soil to hollows soil
areal fraction ratio of 3 to 7. The alternative typical soil to hollows soil ratio was
selected as a potential value at GS footprint scale, which is much larger than the
Gusev crater, as well as to investigate compositional effects if hollows were to

be areally dominant.
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Table 2.4: Calculated representative in situ mass fractions and their GS-
derived (Boynton et al., 2007) counterparts (as %) at four landing
sites, continued from Table 2.2

Element Opportunity Pathfinder SpiritH SpiritHW Viking 1
Mn 0.273(0.011)  0.40(0.08)  0.252(0.008) 0.238(0.006) -

Na 1.58(0.05) 1.0(0.3) 1.70(0.03) 1.88(0.16) -

P 0.32(0.02) 0.42(0.07)  0.295(0.010) 0.49(0.15) -

S 2.1(0.4) 2.2(0.5) 3.4(0.5) 3.4(0.5) 2.7(0.7)
Si 20.2(0.6) 21.0(1.9) 18.5(0.5) 18.4(0.5) 22.6(1.6)
GS-derived Si 19.8(0.5) 21.0(0.5) 19.6(0.5) 20.9(0.5)
Ti 0.677(0.017)  0.55(0.10)  0.469(0.016) 0.59(0.08) 0.41(0.05)

The effect of the Fe oxidation state was minimal, changing the representative
composition by less than 1 %. Rock areal fraction and density variations caused
representative compositions to vary by less than 7 % at most. While affecting
only the Gusev representative composition the last issue, areal fraction ratio
of typical soil to hollows soil, altered the S content by as much as 26 %, even
though Si varied by only 6 %. This was a consequence of the elevated S levels
at mid-depth in the Boroughs trench wall (e.g., Wang et al., 2006). In summary
therefore, with the exception of Gusev, poorly constrained parameters in the
representative composition calculation are unlikely to cause more than a 10 %
relative uncertainty. While Gusev may be subject to a higher uncertainty, ma-
jor elements such as Si are still unlikely to vary by more than 15 %. We report
standard errors — computed with Equation 2.2 — in Tables 2.2 and 2.4 to one sig-

nificant figure with the exception of those with 1 or 2 as the leading digit where
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we report to two significant figures. We accordingly retain the last significant
tigure of the result to be of the same order of magnitude as the uncertainty (e.g.,

Taylor, 1982, pp. 15-21).

2.9 Discussion of Results

The representative in situ compositions as computed above are listed in Ta-
bles 2.2 and 2.4. As evident in Figure 2.3, the concentrations of major elements
vary less and have smaller relative uncertainties than those of many minor el-
ements. Consider for example the difference in variability and uncertainty be-
tween K (dynamic range approximately a factor of 3) and Si (dynamic range
approximately a factor of 1.2). Furthermore, the variability of K as represented
by the standard deviation of the mass fractions is 49 % of the (arithmetic) mean
w(K) of all landing sites, while the variability is only 9 % for Si and Fe. The sim-
ilarity in major elements across the four sites suggests that normalizing w(Si) to
Pathfinder is unlikely to introduce systematic errors. On the other hand, nor-
malization of minor elements to in situ values would have been more prone
to error, given the variability and associated uncertainties of their mass frac-
tions across the landing sites. The geochemical implications of representative in
situ compositions, particularly in terms of their comparison with GS data, are
discussed in Chapter 5 as well as by Boynton et al. (2007), Keller et al. (2006b),
Newsom et al. (2007), Taylor et al. (2006a), and Taylor et al. (2006b).

Comparison of the two representative in situ compositions estimated for Gu-
sev, as described in Section 2.7.2, provides insight into the impact on the repre-

sentative composition from the compositional variability of different rock types
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Figure 2.3: The variation in chemistry across the landing sites as the ra-
tio of the chemical composition at each site to that at the
Pathfinder site (data from Tables 2.2 and 2.4). Deviation of the
ratio from unity reflects differences with the Pathfinder com-
position. Error bars represent the standard error, s, of the
ratio as obtained by substituting the ratio for f in Equation 2.2.
The text related to Equation 2.2 identifies the uncertainties that
have been included in the error propagation. Note that Cr, Mn,
Na, and P data are unavailable for Viking 1. SpiritHW uses
an area-weighted mean of Humphrey and Wishstone composi-
tions while SpiritH only uses the composition of Humphrey.

at a single landing site. That the impact is minor is evident in Figure 2.3, where
the representative concentrations of most elements are similar even though
Humphrey and Wishstone are compositionally distinct even with respect to ma-
jor elements such as Fe (e.g., Gellert et al., 2006). The primary reason for the
subdued effect is the areal dominance of the soil component which, due to the

general absence of striking differences in soil composition between the plains

44



and Columbia hills (e.g., Arvidson et al., 2006), was taken to be compositionally
uniform both within and beyond Gusev crater. As we mention in Chapter 5,
since the soil component is areally dominant across much of Mars (e.g., Newsom
et al., 2007), the GS should also be more sensitive to compositional variations of
the Martian soils than of rocks. GS data indicate significant chemical variations
in soil (Newsom et al., 2007) in spite of evidence for compositionally similar soils

across landing sites (e.g., Yen et al., 2005).

The GS-determined K content at Pathfinder is higher at the 1s,, level relative
to the K content at the other sites, though not at the 2s,, level (Tables 2.2 and 2.4).
Si does not appear enriched at Pathfinder even at 1s,, (Table 2.4), which is consis-
tent with the absence of Si enrichment in surface type 2 material that we discuss
in Chapter 5. The GS estimates are compared with the representative in situ
estimates in Figure 2.4. In addition to the Si mass fractions, which approximate
in situ values by virtue of the normalization, Cl and K also compare favorably.
The favorable comparison for Cl (which overlaps with the GS value within 2s,,)
lends additional support for the Si normalization (Boynton et al., 2007). The fa-
vorable comparison for K — for which the GS and in situ values overlap within
sy at Opportunity and Viking — is specially significant, since K is a radioactive

element unaffected by capture and scatter processes.

However, the GS estimate of Fe content appears to be consistently higher,
even though the relative difference, varying from a low of 10 % at Meridiani
to a high of 20 % at Gusev, is always less than 3s,,. Since the disparity exists
across all landing sites in the same direction, it is unlikely to be an effect of the
simplifications and sample selections we made in calculating representative in

situ compositions at the four sites. Boynton et al. (2007) discuss the implications
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Figure 2.4: Representative in situ compositions compared with corre-
sponding GS estimates for the four elements observed in com-
mon (Tables 2.2, 2.2) as the ratio of the calculated in situ value
to the GS estimate at each landing site. Interpretation as in Fig-
ure 2.3. Note that the Si ratio for Pathfinder is unity by virtue
of the GS normalization.

of these comparisons in depth.

2.10 Conclusions

Our study estimating the representative in situ compositions at four landing
sites is an example of the synergy between remote sensing and surface missions
(cf., Bibring et al., 2006a). For example, the GS determination of H and IRTM de-
termination of rock abundance can be combined with surface data to derive

representative in situ chemical compositions across large areas even though
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data from surface instruments are inherently local in scope. This method of
estimating representative compositions at landing sites is applicable to future
remote sensing missions as well. In addition, the representative in situ compo-
sitions that we derive (Tables 2.2 and 2.4) may be used in the normalization and
“ground truth” comparisons of future remote sensing missions that have depth
and lateral spatial resolutions comparable to the GS. As expected at such spa-
tial scales the concentration of major elements tends to be similar across landing
sites. However, the compositional diversity evident at the MER sites should be

utilized for remote sensing missions with finer lateral spatial resolution.

Future constraints on Martian regolith mechanical properties would help in-
crease the precision of our estimates, since bulk density uncertainties (refer Sec-
tion 2.5) dominate the standard errors in Tables 2.2 and 2.4. Furthermore, as
revealed by the extreme cases in Section 2.8 and given the areal dominance of
soil, better constrained densities and areal fractions of regolith components, not
elemental oxidation states, would enhance the accuracy of our calculations. In
this respect, the future availability of high resolution images and spectral data
(such as the Mars Reconnaissance Orbiter data) for the different landing sites
would be very useful, since it would greatly enhance the estimates of relative
amounts of different regolith components over the entire GS footprint at each
landing site. In addition, improved remote sensing data may help reveal and es-
tablish the GS footprint most representative of a given landing site, even when
it is not centered at the site coordinates. Such improvements would be further
enhanced by more realistic modeling of material mixing geometries (e.g., Kim
et al., 2006a) by revealing the compositional effect of rocks in spite of their low
areal abundance. Better constraints on the surface GCR flux with the Mars Sci-

ence Laboratory Radiation Assessment Detector (Hassler et al., 2006; Cucinotta
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et al., 2007) may help refine the GS forward modeling as well.
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CHAPTER 3
RECIPES FOR SPATIAL STATISTICS

3.1 Core Concepts

While the processing methods will differ across missions, most global remote
sensing missions generate data types analogous to those of the GS discussed in
Section 2.2. User level data can be broadly divided into bin data and regional
data (Section 2.2). Bin data would necessarily be of global extent for the user
to freely select desired subsets. The fineness of a bin would invariably be a
compromise among the need to maximize data, to minimize spurious spatial

effects of data processing, and to minimize information redundancy.

Information redundancy occurs when the “actual” information content is
less than that implied by the amount of data. The most common cause of infor-
mation redundancy is spatial autocorrelation, the numerical similarity of spa-
tially adjacent values. While this is unavoidable in spatial data, spatial autocor-
relation is aggravated whenever convolution filters, such as mean filters (e.g.,
Section 2.2), are applied to the original data. The effect of spatial autocorre-
lation on key parameters is discussed in Section 3.2.1, and the implications of
spatial autocorrelation on spatial correlations among attributes is discussed in

Chapter 4.

In addition to the attribute values, each bin datum must also contain location
information (typically as latitude and longitude coordinates) and the numerical
uncertainty (i.e., standard error). The numerical uncertainty represents the ran-

dom statistical fluctuation that may occur in the attribute value at a bin due to
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limitations of the measurement technique under normality assumptions. For
an attribute, ¢, we represent the value at the i bin by ¢; and the corresponding

numerical uncertainty (standard error) by s;.

3.1.1 Sample Versus Population

The distinction between the population and sample for remotely sensed data
may seem a matter of semantics. That is not so. For both global and regional
datasets, be it from the Mars Odyssey or other missions, appropriate statisti-
cal analyses cannot be applied until the sample and population (also known
as “parent population” or “superpopulation”) are distinguished. Typically, the
population consists of all possible intrinsic values of the attribute under obser-
vation, while the sample consists of either experimental observations or a sub-
set of the dynamic range of the attribute. For example, several measurements
of the mass fraction of an element at a given location would constitute a sam-
ple. Instrumental uncertainties and sensitivity constraints always prevent exact
measurement of such a continuous valued attribute, whether the measurement
be made remotely, as with the GS, or locally, as with the MER APXS (Rieder et al.,
2003).

Remote-sensing maps of attributes remain estimates, not exact measure-
ments, of the intrinsic values. As a result, global binned datasets are typically
samples, not the populations, of the remotely observed attributes (mass fraction
of an element in the case of the GS). It is difficult to conjure examples where
the observations themselves could constitute the population for a continuous

valued geospatial attribute. Such cases are easier to realize for discrete val-
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ued attributes such as crater counts for a specified minimum diameter. Even
then, the observed may not be the true value or the only possible state (for ex-
ample, geologic processes subdue crater morphology over time). Consequently,
throughout this discussion we consider the observed to be a sample, rather than
the population, to ensure better determination of uncertainties in statistical in-
terences. More general discussions of populations and samples are available in

literature (e.g., Haining, 2003, pp. 51-54).

3.2 Key Parameters

A population or sample is described primarily in terms of its distribution. The
distribution describes the frequency of values in a dataset, consequently en-
abling probabilistic (i.e., stochastic) estimates. Statistical analyses frequently
require the distributional properties of the dataset to be summarized. This
is achieved by means of parameters (also called population statistics), which
characterize the population, and estimators (also termed sample statistics) of
these parameters as determined from the sample. The value of an estimator is
called an estimate. In most cases, the parameter values are unknown and their
(sample) estimates are used for analysis. This invariably involves a loss in the
degrees of freedom, typically negligible for large datasets, with the usual con-
vention a loss of one degree of freedom for each parameter estimated from the

sample (e.g., Young, 1962, pp. 4647).

Notational conventions help minimize confusion between references to the
population and to the sample. Three popular conventions are to denote popu-

lation statistics by Greek characters, sample statistics by Roman characters, and

51



estimate of a population statistic (value of an estimator when used to represent
the value of a parameter) by a caret above the Greek symbol. For example,
the population mean is given by u (i.e., a parameter or population statistic), the
sample mean by m (i.e., an estimator or sample statistic), and sample mean as an
estimate of the population mean by fi. Since m and fi are numerically identical,
only the first is used throughout this chapter for typographic ease. We use this
notation consistently, representing all sample statistics and estimates of the pop-
ulation statistics by roman characters. We adhere to these and other notational
conventions in statistical literature (e.g., Bevington and Robinson, 2003; Easton and
McColl, 1997; Haining, 2003; Upton and Fingleton, 1985; Rawlings et al., 1998) and
established stylistic forms such as those by Mills et al. (1993, p. 5, 44, 47, 59-62,
77,83) and Gobel et al. (2006, p. 130-135).

Properties of a random normal (i.e., Gaussian or bell-curve) data distribu-
tion are frequently understood in terms of the mean, u, and standard devi-
ation, o, parameters. The corresponding sample estimators are m and s, re-
spectively. s represents the dispersion as the square root of the variance (i.e.,
variability of values about the corresponding mean), with the implicit estima-
tion of u resulting in the loss of a degree of freedom in the calculation. Other
measures of dispersion include quartile deviation and median deviation (e.g.,
Bevington and Robinson, 2003). The dispersion is typically due to a combina-
tion of actual variation in the attribute and random statistical fluctuations in
the measurement. This may be conceptualized as an expression: spatial data =
large (macro) scale variability + small (meso) scale variability + error (Haining,
2003, p. 185). Macro-scale variability is typically evident at global scales, while
meso-scale variability occurs at the scale of the detector’s spatial resolution. Er-

ror represents the random statistical fluctuations, often due to instrumental lim-
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itations.

If the standard deviation, s, is primarily due to the error term, the appar-
ent variability of the attribute across the planetary surface becomes meaning-
less. This determination requires an independent measure of the contribution
to variability from numerical uncertainties. For the usual case, where each bin
of a global dataset contains location coordinates, the attribute value, and the
standard error of the value, the error term may be estimated directly as the root-
mean-square of standard errors (s,s) of all bins. As long as s is satisfactorily
greater than s.,,, we consider the dispersion of the data to be meaningful, en-
abling a meaningful characterization of the distribution. Given the importance
of the mean, standard deviation, and the root-mean-square of standard errors,

we discuss them in detail below.

3.2.1 Mean and Standard Error

When all the data are known to be sampled from distributions that have identi-
cal variances, i.e., when data are homoscedastic, the sample mean () is simply

the arithmetic mean:

N
m= l/NZ Ci (3.1)
i=1

where N is the number of data and c¢; is the value of the i datum. Homoscedas-
tic data are rare among geospatial attributes, since the standard errors typ-
ically vary across the bins leading to heteroscedasticity. It is possible to de-
rive an expression for the mean in the presence of heteroscedasticity by resort-

ing to the notion of maximum likelihood that the observed are the most likely
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data (Chapter4). By further assuming that each datum is sampled from a ran-
dom normal distribution (i.e., Gaussian distribution), which is a reasonable as-
sumption when the datum is based upon a large number of observations of a
continuous-valued variable, maximizing the probability for the entire dataset

yields:

N .
Zizl g_ﬁ
1

N 1
Zi:l ’_,2

where s, is the standard error of the i"* datum (e.g., Young, 1962, pp. 107-108). In

m =

(3.2)

this context, each datum is regarded as belonging to a gaussian with the proba-

bility density function (p;) given by:

pi(x) =

1
i ‘/ﬂ 25;'2

where x is continuous-valued. For example, the 68 % confidence interval of ¢;

exp (— = Ci)2) (3.3)

would be given by ¢; + ;. As such, the standard error (s;) of the bin value is com-
puted from counting statistics in the case of the GS and represents the precision
of each datum. For example, the standard errors of capture-derived elemental
mass fractions are computed by propagating the spectral fit uncertainties and

the uncertainties of the capture correction factors.

In addition to the issue of heteroscedasticity, the mean of a spatial dataset
may also be affected by the disparity between how the instrument observes the
planet (which is a nearly-invariant circular footprint for the GS, as discussed in
Section 2.2) and the simple cylindrical (i.e., Plate Carée) projection of data onto a
grid of bins. Since this projection distorts area by generating a rectangular map
on which the bin centroids are latitudinally and longitudinally equispaced, it

may be useful to compare the mean values from Equations 3.1 and 3.2 with one
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that assigns greater significance to bins that have greater area. The correspond-

ing expression is fairly straightforward for the arithmetic mean (Equation 3.1):

N a:
= — 4
m 2 ciy (3.4)
where g; is the area of the i bin and,
N
A= Z a; (3.5)
i=1

By assuming Mars to be spherical, a; may be computed as directly proportional

to a simple expression:

a =K (Sine(QDi,N) — sine(p;s )) (Gi,E - 9i,w) (3.6)

where K is the constant of proportionality, ¢; v is the latitude of the northern
boundary of the bin, ¢; s is the latitude of the southern boundary, 6; ¢ is the lon-
gitude of the eastern boundary, and 6, the longitude of the western boundary
(e.g., Thornton and Marion, 2003, p. 610). The area-weighted counterpart of the

maximum likelihood mean (Equation 3.2) is given by,

ZN a;ci
i=1 g2
1

T %
i=1 42

1

where g, is as given by Equation 3.6 and the remaining symbols are as previ-

(3.7)

m =

ously defined. It is important to note that equations 3.1, 3.2, 3.4, and 3.7 all as-
sume the absence of spatial autocorrelation (Section 3.1). Nevertheless, as the es-
timation of the mean is generally unbiased by the presence of spatial autocorre-

lation (e.g., Haining, 2003, pp. 273-286), these expressions usually approximate
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Table 3.1: Mean percentage mass fraction of Cl in the midlatitudes, subject
to the Hmask (Section 2.3.4), as estimated directly by cumulative
spectra (Keller et al., 2006b, Table 2), and by the arithmetic mean
(Equation 3.1), maximum likelihood mean (Equation 3.2), area-
weighted mean (Equation 3.4), and area-and-standard-error-
weighted mean (Equation 3.7). Note that the standard error is
reported only for the cumulative spectral estimate, as the stan-
dard error calculated with bin values would be highly biased
due to spatial autocorrelation.

Method Mean mass fraction
Cumulative spectrum 0.49 +£0.03
Arithmetic mean 0.48

Maximum likelihood mean 0.47

Area-weighted mean 0.49

Area and standard error weighted mean 0.48

direct regional spectral estimates of the mean for the GS-derived elemental mass
fractions (Section 2.2). For example, the midlatitudinal mean mass fraction of
Cl as estimated by a direct cumulative spectrum compares favorably with that
computed from the preceding equations as evident in Table 3.1. Nevertheless,
the direct determination of the regional average of a geospatial attribute would

be more robust than the bin-based computation of the same.

The issue of spatial autocorrelation is an important one for data sets that are
subject to spatially large filters, such as the mean filter applied to the GS-derived
data. While such filters help minimize noise (Section 3.2.3), they also induce sig-
nificant spatial uncertainty in the data. In essence, bin values that are spatially
proximate relative to the scale of the filter become mutually dependent, causing
the degrees of freedom of the data set to be less than the apparent number of

data. Fortunately, this does not induce a significant bias in the standard devia-
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tion or the mean calculated with bin data (e.g., Haining, 2003, pp. 273-286).

However, the calculation of the standard error (s,,) (i.e., uncertainty of the
mean) becomes difficult, as the standard formula in the absence of heteroscedas-

ticity,

Sm = \s/N (3.8)

where s is the standard deviation, as well as the maximum likelihood estimate,

N
1
Sm = 1/ Z ? (39)
i=1 i

where s; is the standard error of the iy, bin value, (e.g., Young, 1962, pp. 106,
108) both explicitly and implicitly use the number of bins as N. It is possible to
adjust N to account for spatial autocorrelation by estimating the degree of spa-
tial autocorrelation with a semi-variogram (Chapter4). However, due to issues
with scaling N (e.g., Dutilleul et al., 1993), a more robust approach is to estimate
the regional/global mean and the standard error by accumulating data over
the entire region/planet in question. For example, the most robust estimate of
the midlatitudinal mean mass fraction and corresponding standard error for an
element is obtained with the cumulative y photon spectrum over the midlati-
tudes. Particularly for the GS, we would discourage the estimation of standard
error by means of the bin values or their standard errors as either approach usu-
ally underestimates the actual standard error. For example, calculation with bin
values/standard errors underestimates the actual standard error of the midlati-

tudinal mean mass fraction of Cl by a factor of 10.
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3.2.2 Standard Deviation

As initially noted, the standard deviation (s) is the key measure of dispersion
in the distribution of attribute values. The expression for s is simplest under

homoscedastic conditions:

N
s = J ﬁ Z (m—c;)? (3.10)
i=1

where m is as determined by any one of the formulas in Section 3.2.1. While not
of any practical significance, N is reduced by one due to the use of the estimate
m as opposed to the (unknown) population parameter u (e.g., Young, 1962, pp.

46—-47). When area weighting is included, the formula is modified to:

1 N
s = J m ; ai(m - Ci)2 (311)

where q; is the area factor given by Equation 3.6, and A is given by Equation 3.5.
The two alternatives for s are often similar valued as long as the region in ques-
tion does not involve large variations in latitude particularly closer to the poles
where a; decreases most rapidly with latitude (Equation 3.6). For example, the
standard deviation of midlatitudinal Cl mass fractions (subject to the Hmask
as discussed in Section 2.3.4) from Equation 3.10 is 0.0950 %, while that from

Equation 3.11 is 0.0952 %.

Given the difficulty of decoupling the macro-scale variability from meso-
scale variability and numerical uncertainties, we do not discuss analogs of
Equations 3.2 and 3.7 in the calculation of s. Furthermore, since the mesoscale
variability invariably requires bin data, the regional s cannot be estimated di-

rectly with the instruments, unlike for the regional average in Table 3.1.
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3.2.3 RMS Standard Error

As previously discussed, the primary utility of the root-mean-square of stan-
dard errors (s,s) is to determine whether macro-scale variability is significant
despite the statistical variability due to numerical uncertainties of attribute val-
ues. As in sections 3.2.1 and 3.2.2, the calculation is straightforward when area

weighting is not a concern:

N 2
Srms = —Z’; S (3.12)

where the notation is as before. Even though it is also possible to compute the
arithmetic mean of the absolute standard errors, the root-mean-square calcula-
tion used here is more widely used (e.g., Young, 1962, pp. 14-15). It is possible

to modify this formula to adjust for area:

N
a;
Soms = Zl S (3.13)

where g, is given by Equation 3.6 and A by Equation 3.5. An important observa-
tion across all of Sections 3.2.1 through 3.2.3 is that the area-weighted equations
simplify to the unweighted counterparts in the ideal case where a; = a; for i # j,
as further reinforced by the similarity of differently computed mean values in

Table 3.1.

In essence, s,,,, represents the numerical uncertainty of a dataset on a per-bin
basis and can be used to indicate the precision with which an attribute has been
measured globally. For example, stated as a fraction of the corresponding global
mean (Section 3.2.1) subject to the Hmask (Section 2.3.4), s,,,, is 10 % for Cl, 8 %
tfor Fe, 11 % for H, 7% for K, 2 % for Si, and 10 % for Th. Obviously, the smaller
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the fraction, the greater the precision of the data. As discussed before, another
essential utility of s, is to determine whether the apparent spatial variability
of the data is meaningful. The greater the value of s relative to s,,,, the greater
the likelihood that dispersion is not solely due to numerical uncertainties. As
evident in Figure 3.1, and consistent with the discussions by Taylor et al. (2006a)
and Keller et al. (2006b), the standard deviation is sufficiently higher than s,
for all elements subject to the mean filter, satisfying this necessary condition for
spatial variations in composition to be meaningful. The enhanced variability
relative to the numerical uncertainty is a direct benefit of the mean filtering, as

Syqms generally approximates s prior to filtering.

3.3 What Distribution?

As discussed earlier, m and s are the key estimators that characterize a random
normal distribution and are most informative when the underlying distribu-
tion is random normal. We describe a few tests that may be used to determine
whether a distribution is random normal. The test results are utilized in works
that identify chemically distinct regions within the GRS data set (Karunatillake
et al., 2007, and Chapter 6). An attribute distribution may be characterized qual-
itatively with a kernel density plot (e.g., Sheather and Jones, 1991), and as shown
in Figure 3.2, elemental mass fractions are indeed approximately bell-curves
without strong evidence for multimodality and other deviations. The qualita-
tive observation of normality may be complemented by quantitative measures
such as kurtosis excess and skewness. Skewness is a measure of asymmetry in

the distribution relative to a random normal distribution, and may be computed
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Figure 3.2: Kernel density plots of midlatitudinal distributions of mean-
filtered elemental (and for the case of H, stoichiometrically
equivalent H,0) mass fractions. Mass fractions (as % with the
exception of Th as mg/kg) are the abscissa, while the proba-
bility densities are the ordinate. Note the nearly bell-shaped
curves, with only CI showing a slight hint of bimodality.
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as (e.g., Press et al., 2007, pp. 723-724):

skewness = W (3.14)
i=1 IV’

where the symbols are as before. A negative skewness indicates that relative to
a random normal distribution, the observed distribution has a long tail of values
less than the mean (i.e., skewed to the right), while a positive skewness indicates
the presence of a long tail of high values (skewed to the left). On the other hand,
kurtosis excess (y,) indicates the shape of the peak of the distribution relative to
that of a random normal distribution, and may be computed as (e.g., Press et al.,

2007, p. 724):

=¥ (eimm)?

"= (’Y_ el 3 (3.15)
(=5)

where the notation is as before. A positive y, indicates that the distribution is
more peaked than a gaussian distribution (i.e., leptokurtic), while a negative y,
indicates that the distribution has a flat peak relative to that of a gaussian (i.e.,
platykurtic) (e.g., Press et al., 2007, p. 724). However, it must be remembered that
as skewness (Equation 3.14) and excess kurtosis (Equation 3.15) are functions of
the third and fourth central moments, they have greater uncertainties than first
central moments such as the mean (e.g., Press et al., 2007, p. 723). In particular,
excess kurtosis is a poorly understood parameter (e.g., Dodge and Rousson, 1999).
Alternatives to Equations 3.14 and 3.15 are available in the literature (e.g., Joanes

and Gill, 1998).

In our case study with the elemental mass fractions, the skewness and excess
kurtosis coefficients do not suggest strong deviations from a random normal

distribution, even though some deviation is evident (Table 3.2). Given the dif-
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Table 3.2: Skewness and excess kurtosis coefficients for GRS-derived ele-
mental mass fraction distributions in the midlatitudes of Mars.
Positive skewness indicates a long tail of values greater than the
global mean, while a negative skewness indicates a long tail of
values less than the global mean. Positive excess kurtosis sug-
gests a distribution more sharply peaked than a Gaussian, while
a negative value would indicate a less sharply peaked distribu-
tion.

Element Skewness Excess kurtosis

Cl 0.39 -0.14
Fe 0.27 -0.27
H 0.48 -0.093
K 0.64 0.22
Si -0.12 -0.34
Th 0.18 -0.51

ficulty of making detailed interpretations on the basis of such deviations (e.g.,
Balanda and MacGillivray, 1988), we do not analyze these results further. Never-
theless, the approximation to a random normal distribution is also supported by
the Shapiro-Francia test of normality (Chapter4), since scatter plots of ordered
elemental mass fractions versus normal order statistics show strong correlations

without anomalous shapes to the curve (Figure 3.3).

3.4 Common Questions
Once the distribution of attribute values has been characterized using the tech-

niques outlined in the preceding sections, it is possible to answer several ques-

tions that commonly arise when attempting to determine the distinctness of a
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Figure 3.3: Plots of sorted elemental mass fractions versus normal order
statistics for the midlatitudes of Mars.

region of interest. These queries are: (1) Can we reject, to a desired degree
of confidence, the null hypothesis that the data within region A are from the
samedistribution as the data within region B?; (2) How does the distribution of
the attribute in region A compare qualitatively with that in region B?; (3) Can
we reject, to a desired degree of confidence, the null hypothesis that the mean
value of the attribute within region A is identical tothat within region B?; (4)
Is the attribute heterogeneous within region A?; and (5) How are the solutions

to the preceding questions altered when the ratio of two attributes is being in-
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vestigated? In these contexts, “A” would be the region of interest, and “B” the
one relative to which it is being evaluated. Obviously, “B” could also be the
global distribution, in which case the queries would describe how the regional

distribution compares with the global counterpart.

Before we lay out the statistical methods to address these questions, sev-
eral concepts on the efficacy of statistical tests need to be kept in mind. The
tirst, type 1 error, refers to a statistical test rejecting the null hypothesis even
though it happens to be true. Such errors are the gravest, causing the researcher
to favor an incorrect model. The second, type 2 error, occurs when the null
hypothesis is in fact false but the test fails to to reject it. The power of a test
is the probability that it will not cause a type 2 error. These concepts are dis-
cussed in detail by Easton and McColl (1997, http://www.stats.gla.ac.
uk/steps/glossary/hypothesis_testing.html) and Helsel and Hirsch

(2002, http://pubs.usgs.gov/twri/twrida3/pdf/chapterd.pdf).

3.4.1 A versus B: Distributions Compared

The comparison of the distribution of an attribute within one region to that of
another responds to questions 1 and 2 that we initially posed. For our case stud-
ies with the GS-derived mass fractions we use two regions that were deemed
striking on the basis of low thermal inertia, low areal fraction of rocks, Mars
Global Surveyor Mars Orbiter Camera (MGS-MOC) imagery, and mapped geo-
logic units: Amazonis and Tharsis (Figure 3.4) (Newsom et al., 2007). As Newsom
et al. (2007) summarize, we may conclude these two regions to be distinct in Th

composition. We now describe the underlying statistical tests that led to that
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Figure 3.4: Sketches of the Amazonis and Tharsis regions adapted from
the work by Newsom et al. (2007, Figures 8 and 9). Top image
shows their locations on Mars in the context of thermal iner-
tia, while the bottom figures show the surface extent of simpli-
fied mapped geologic units within each region as well as the
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conclusion. These tests can also be applied to compare the distribution within
a region to that of the entire planet, by using the whole planet as the reference

region.

Query 1: Is the Distribution in A Identical to that in B?

While several statistical tests are available to answer question 1, one of the

simplest is the Kolmogorov-Smirnov (KS) test. This test has the advan-
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tages of being non-parametric, robust with satisfactory power, and appli-
cable independent of the underlying attribute distribution as described by
Chakravarti et al. (1967, pp. 392-394), DeGroot and Schervish (2001, Chapter 9),
Press et al. (2007, pp. 736-740), Stephens (1970), and the NIST/SEMATECH
e-Handbook of Statistical Methods http://www.itl.nist.gov/div898/
handbook/eda/section3/eda35g.htm. While the higher power of this test
makes type 2 errors less likely (e.g., Helsel and Hirsch, 2002, p. 107), it is also
highly sensitive to even subtle differences of the centers of the cumulative dis-

tribution functions (e.g., Press et al., 2007, p. 738).

The application of the K-S test consists of five key steps (e.g., Chakravarti
et al., 1967, pp. 392-394)(e.g., Press et al., 2007, pp. 736-740): (1) Define the cu-
mulative probability as a function of the attribute values, ¢;, for each region; (2)
Compute the maximum value, D, of the absolute difference between the two cu-
mulative probability distributions (which, in our case study, would be Th mass
fraction distributions within Amazonis and Tharsis regions); (3) Determine the
degrees of freedom, N,; (4) Define a test parameter, A, with a known cumulative
probability distribution; and (5) Evaluate the probability (P) that A is at least as
extreme as the observed due to chance alone (For example, if P < 0.05, we can

reject the null hypothesis with 95 % confidence).

As described by (Press et al., 2007, pp. 736-740), we define the cumulative

probability function, S y(c), for each region as:

1 N ci<c=>1
Sne) = Z {c,- >c= o} (3.16)

i=1

where N is the number of data within the region in question and ¢; the attribute

value of the iy, datum. D, needed for the second step is computed as:
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D = Max |SN,A(C) — SN,B(C) (317)

where A denotes the region of interest (e.g., Amazonis), and B the reference
region (e.g., Tharsis). Note the use of the same ¢ value, which limits the com-

putation to the dynamic range of ¢ common to both regions A and B. Next, the

NaNp
Np+Np

value of N, is estimated with N, = where A is numerically approximated
by 4 = D(+/N, + 0.12 + 0.11/ v/N,). The final step of evaluating the value of P

utilizes the distribution of the A variable as follows:

P=2 i (-1 exp (-2,°2) (3.18)

J=1

which, though an infinite series sum, converges. For the GS data we modify this
basic test to account for heteroscedasticity by generating 100 simulated datasets
for each region where each datum is simulated from a random normal distribu-
tion as given by Equation 3.3. A separate cumulative probability function, S y(c),
is generated with Equation 3.16 in each case for each region, and P evaluated
accordingly. We take the average of the resulting P values as a more rigorous
measure than one from the original dataset alone. We also plot the standard de-
viation of Sy for each datum as an error bar. For the example of comparing the
Th content of Amazonis and Tharsis, the resulting comparative plot of cumu-
lative probability functions is as shown in Figure 3.5. The consequent P for Th
is (8 + 3) X 107°%, which is decisively less 5 %. Consequently, we may reject the
null hypothesis that Amazonis and Tharsis have identical distributions of Th at
better than 95 % confidence. As expected, the two appear even more distinct

under homoscedastic assumptions (Figure 3.6).

A less sensitive way to test whether two distributions are distinct may be
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Figure 3.5: Plots of the cumulative probability function (S y) of the mass
fraction of Th (refer to Equation 3.16 and related text) for Ama-
zonis and Tharsis regions. The mass fraction in mg/kg is the
abscissa, while the ordinate is S . Abscissa error bar is the stan-
dard error of the datum, s;, while the ordinate error bar is the
standard deviation of the S 5 at each datum. The latter was es-
timated by simulations involving s;, as discussed in the text.

devised, although it runs the risk of being simplistic. The fundamental notion
for the alternative test is that the mean (m) and standard deviation (s) estimates
(Section 3.2) fully characterize an assumed underlying gaussian distribution.

We may then compute a test parameter, ¢, as follows:

my —mp

NORE

where A and B signify the two regions, Amazonis and Tharsis, for example. m

and s need to be computed either with Equations 3.1 and 3.10, or with Equa-
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Figure 3.6: Plots of the cumulative probability function of the mass frac-
tion (S y) of Th (refer to Equation 3.16 and related text) for Ama-
zonis and Tharsis regions without accounting for numerical
uncertainties of the data (i.e., under homoscedastic assump-
tions). The mass fraction in mg/kg is the abscissa, while the
ordinate is S y.

tions 3.4 and 3.11. The latter set incorporates area-weighting. In either case,
the distributions are assumed to be random normal and the test parameter # is
assumed to follow a Student’s-t distribution with degrees of freedom (f) com-

puted as:

2 242
_ (s +5%)

f=—3+ (3.20)

SA SB

Na-1 7 Np-1
where A and B are as before. We then compute the two-tailed probability (P)
that 7 could be as extreme as observed due to chance alone and compare with

the desired statistical confidence. For example, if P < 0.05, we may reject the

null hypothesis that the attribute distributions in regions A and B are identical
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at 95 % confidence. As described for the K-S test, it is possible to incorporate the

numerical uncertainties (s;) of the data by simulating new datasets.

For our case study of the Th mass fraction distributions in Amazonis and
Tharsis regions, heteroscedastic simulations with Equation 3.19 yield an aver-
age P = (24+0.5)%, while P = 7% when numerical uncertainties are disregarded.
Figure 3.7 shows the Th mass fraction histograms under such homoscedastic
assumptions. Clearly, under either heteroscedastic or homoscedastic gaussian
assumptions, the null hypothesis cannot be rejected at 95 % confidence. There-
fore, while this alternative test may be useful to avoid type-1 errors, the K-S test
is recommended where a higher power is desired. Moreover, it is important to
note that the alternative test would be invalid when the underlying distribu-
tions are not gaussian. It also fails to distinguish distributions that differ greatly
in dispersions but not the means. In addition, the test is mostly an intuitive
modification of the common mean comparison (Section 3.4.2), and lacks a theo-

retical basis.

Query 2: A Compared Qualitatively with B

The second question, of how the distribution of the attribute in region A com-
pares qualitatively with that in region B, is best answered with a variant of the
box-and-whiskers plot. One method would be to compare the general variabil-
ity as represented by the 25" and 75™ percentiles of the attribute values. Specif-
ically, the ratio of the 25" percentile within region A to the 75" percentile within
region B would bound how low the attribute values within A can be relative to
those within B. Likewise, the ratio of the 75" percentile within A to the 25" per-

centile within B would bound how high the values within A can get relative to
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those within B. Lastly, the ratio of the 50™ percentiles (medians) would indicate
how the typical compositions compare to each other. To evaluate qualitatively
whether these variabilities are significant in the context of numerical uncertain-
ties (i.e., 5;), we compute each error bar by propagating the s,,,, (Equation 3.12)

as the error term of the ratio:

’ 2 2
be — mjx \/( Srm,sA) + (Srm,sB] (321)
Iy UON ny

where b, is one error bar, m’ denotes the median, “A” denotes region A, “B” de-

notes region B, and the remaining symbols are as before. For clarity, we center
the error bars about the ratio of the medians. The resulting graph for the case
of Amazonis (region A) and Tharsis (region B) is shown in Figure 3.8. From the
tigure, it is clear that the Th mass fractions within Amazonis are meaningfully
greater than those within Tharsis, as all the bar chart values exceed unity. For
example, Th mass fractions within Amazonis are typically greater than those
within Tharsis typically by 10 % or more, and may even be greater than the
Tharsis counterparts by up to 38 %. Therefore, the mass fraction distributions
are clearly different, with a typical enrichment of about 20 % relative to Tharsis
(ratio of the medians). It is also important to note that the collective dynamic
range within the two regions may be mostly due to numerical uncertainties
alone, as the error bars span the entire bar chart. This provides a qualitative
indication that any compositional heterogneity within either region may be in-
significant relative to the precision of the data as discussed in greater detail in

Section 3.4.3.
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Figure 3.8: The distribution of the Th mass fraction within Amazonis com-
pared graphically with that within Tharsis as discussed in Sec-
tion 3.4.1. The 25th percentile within Amazonis is divided by
the 75th within Tharsis to illustrate how low Amazonis val-
ues can get relative to those within Tharsis. The 75th percentile
within Amazonis is divided by the 25th within Tharsis to show
how high Amazonis values can get relative to those within
Tharsis. The ratio of the medians represents the typical dif-
terence. The error bars indicate the numerical uncertainty, not
the standard error of the median.

3.4.2 Query 3: Comparing Averages

In response to the third key query, one posed commonly in regional compar-
isons of Mars, it is possible to utilize a standard statistical test. As stated before,
the null hypothesis is that the average value of the attribute in region A is iden-
tical to that in region B. The parameters used for this test are the mean (m) and
standard error (s,,). In the absence of spatial autocorrelation in homoscedastic
data, it is possible to compute both from bin data with Equations 3.1 and 3.8,

respectively. When the data are heteroscedastic but spatial autocorrelation is
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negligible, the proper equations are 3.2 and 3.9. Unfortunately, as discussed
in Section 3.1, the GS-derived elemental mass fractions and other datasets that
are subject to extensive spatial filtering are significantly affected by spatial au-
tocorrelation. While techniques that account for the corresponding loss in the
degrees of freedom exist, we feel that the most robust choice is to obtain the
regional average and the standard error from direct instrumental observation

over the entire region (Section 2.2).

Once the regional mean and corresponding standard error of an attribute

have been estimated, it is possible to compute a test parameter, ¢, as follows:

[ = —— (322)

where the prefixes A and B denote the two regions, and other symbols are as
previously defined. r approximates a Student’s-t distribution (e.g., Helsel and
Hirsch, 2002; Press et al., 2007, former p. 126; latter p. 728) as long as the standard
errors are not extremely different. Thresholds for the significance of difference
are available in literature (e.g., Press et al., 2007, p. 730). The degrees of freedom

(f) for the Student’s-t distribution is given by

2 2 \2
_ (smA + SmB)

f=—pa—m (3.23)
mA mB
NmA_l AlmB_1

where N is the number of data. Once ¢t and f are known, we simply estimate
the two-tailed Student’s-t distribution probability (p) that the computed ¢ could
be at least as extreme as the observed due to chance alone. Should p < (1 —
7), where 7 is the desired statistical confidence, we may conclude that the two

regional means are distinct. For example, if p = 5%, we may be confident that
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the two regions have distinct average attribute values at 95 % confidence. The
tail probabilities may be obtained from tabulations or from commercial software

(e.g., Mathematica StudentTPValue function).

When the mean and standard error are estimated directly without using bin
data, it is possible to use the number of observations, spectral integration time,
or similar counting statistic in place of N. For our case study with the GS in-
volving Amazonis and Tharsis, the integration times are sufficiently large that
f is essentially infinite, causing ¢ to approximate a standard normal distribu-
tion. Substituting reported values (e.g., Newsom et al., 2007, Table 2) for the two
regions in Equation 3.22, we obtain ¢ = 2.46. The corresponding probability of
t in a standard normal distribution is 1 %. Clearly, and as summarized by New-
som et al. (2007), Amazonis and Tharsis have distinct average Th mass fractions

at 95 % confidence.

Alternative Tests

For situations where such rigor is unnecessary, two alternative tests can be used.
One simply consists of rephrasing the result of Equation 3.22 in terms of the
standard errors, i.e., the means are distinct to a confidence of ts,, (t-standard
errors). For our case study, we may state that the mean Th mass fractions within
Amazonis and Tharsis are distinct to 2.46-standard errors. By means of standard
uncertainty propagation (e.g., Bevington and Robinson, 2003; Young, 1962, pp. 96—
101), this may also be illustrated as in Figure 3.9, by using the denominator of
Equation 3.22 as the length of an error bar, and the difference between the two
mean values as the datum. The extent to which the difference exceeds zero

relative to the length of an error bar signifies the confidence with which the two
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Amazonis-Tharsis Amazonis/Tharsis

Figure 3.9: The directly estimated mean Th mass fraction within Amazo-
nis compared to that within Tharsis. Graph on the left shows
the difference between the two with the error bars as described
in Section 3.4.2. The extent to which this value differs from zero
reflects the significance. Graph on the right shows the ratio of
the two values. The difference of the ratio from unity indicates
the significance of the distinctness.

mean values may be considered distinct.

The second alternative test is to compute the ratio of the two mean values
and to apply standard uncertainty propagation (e.g., Bevington and Robinson,
2003; Young, 1962, pp. 96-101) to the ratio using the two standard errors, anal-
ogous to Equation 3.21. Next, we compute a parameter ¢ as the magnitude of
the difference of the ratio from unity divided by the propagated numerical un-
certainty. We may then state the two mean mass fractions to be distinct at a
confidence of t-standard errors. For our case study with Amazonis and Tharsis
the ratio of the mean mass fraction of Th within Amazonis to that within Thar-

sis is 1.21, and the propagated uncertainty is 0.09, yielding a 2.4-standard error
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confidence in the distinctness of the means. The graphical counterpart consists
of the ratio as the datum and the propagated uncertainty as the length of an
error bar (Figure 3.9). In this case, the emphasis is on the extent to which the
datum differs from unity relative to the length of an error bar. It is important
to note that both alternative tests are subject to the caveats of the standard test,
becoming less reliable when the standard errors of the attribute within the two

regions are strikingly different.

3.4.3 Query 4: Heterogeneity of the Regional Distribution

Particularly in geochemical investigations, it can be important to know whether
an attribute is distributed heterogeneously within a region of interest, or
whether it is essentially homogeneous. As the fourth of our five key queries, it
is especially relevant where the mean of an attribute within one region is com-
pared with that in another as in response to our third query in Section 3.4.2. We
may concoct three tests in response: comparison of simulated K-S distributions,
fraction of distinct data pairs, and apparent dispersion versus numerical preci-
sion. The first reveals whether the numerical uncertainties are sufficiently large
that they alone could cause the attribute distribution to vary. The second and
third tests reveal whether the apparent variations in the attribute are meaning-

ful in the context of numerical uncertainties.

Simulated K-S Distributions

We apply the K-S test (Section 3.4.1) to compare simulated distributions of the

sample to the sample itself. Analogous to Section 3.4.1, we generate each simu-
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lated distribution by randomly sampling each datum (c;) from a gaussian distri-
bution as given by Equation 3.3. If the probability (P) that the simulated distri-
bution could be as different from the sample due to chance alone (Equation 3.18)
is greater than the desired confidence level, we may be assured that the nu-
merical uncertainties are unlikely to cause significant variations in the attribute

within the region.

For greater confidence, we typically estimate P for 100 simulations to com-
pute the average of P (Equation 3.1) and its standard deviation, s (Equa-
tion 3.10). The standard error of the average P may then be computed with
Equation 3.8 where N = 100. As a conservative measure, we then require the
average P to exceed the desired statistical confidence by at least the standard
error of P. For example, if average P = 99%, and the standard error is 2 %, we
can be more than 95 % confident that the numerical uncertainties do not mean-

ingfully affect the observed distribution.

For our case study with Amazonis and Tharsis, the effect of the numerical
uncertainties on the distribution of Th may also be evaluated graphically using
the same approach as in Section 3.4.1 and Figure 3.5. In theory the resulting
Figure 3.10 is identical to Figure 3.5, while differences are due to the limited
number of simulations. As evident in Figure 3.10, the distribution is not af-
fected severely by the underlying numerical uncertainties. Nevertheless, the
average P and corresponding standard error for Amazonis is (48 + 3)%, which
while large, does not quite pass the conservative threshold of 95 %. The same
holds for Tharsis at (17 = 1)%. Therefore, we conclude that the heteroscedas-
ticity of Th within each region is significant at 95 % statistical confidence. The

implication is that numerical uncertainties may contribute significantly to the
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apparent variability (i.e., dispersion) of Th mass fraction within each region.

Fraction of Distinct Data Pairs

This test applies the comparison of the mean attribute values within two regions
at the scale of individual bins (i.e., data). For a region of interest, we first par-
tition the data into all possible pairs, {c,-, c j} where i # j. The comparison of the
means test is then applied to each bin pair at the desired level of confidence, ex-
actly as described in Section 3.4.2. The number of bin pairs that pass the test at
the desired confidence is taken as a fraction of the total number of pairs, %(N -1),
where N is the number of data. This fraction is a rough indicator of the extent
to which the apparent variability of the data within the region is statistically
meaningful in the context of numerical uncertainties. For example, 3 % of the
data pairs of Th mass fraction are distinct within Amazonis at 95 % confidence,
and 1 % are distinct within Tharsis. Therefore, we may conclude that most of the
data are indistinct from each other within both Amazonis and Tharsis at 95 %
confidence. Stated differently, Amazonis and Tharsis are both homogeneous in

their Th content at 95 % confidence in light of numerical uncertainties.

Apparent Dispersion Versus Numerical Precision

As discussed in Section 3.2.2, the standard deviation (s) is the key measure of
dispersion (i.e., variability) of an attribute within a region of interest. A simple
measure of the meaningfulness of the apparent dispersion would be to com-
pute the ratio d = s/sms, where s is as given by Equation 3.10 and s, is as

given by Equation 3.12. By analogy to the discussion of the global midlatitudi-
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nal distributions in Section 3.2.3, we may consider a region to be meaningfully
heterogeneous when the ratio exceeds a desired value. A conservative approach
is to require the ratio to exceed 100 + 7, where 7 is the desired statistical confi-
dence (e.g., T = 95%). For the distribution of Th within Amazonis, d = 96%
and for that within Tharsis, d = 67%. Since both are considerably less than 195,
neither region shows unambigous evidence for compositional heterogeneity at
95 % confidence. In short, each appears to be homogeneous in Th within nu-

merical uncertainties.

3.44 Query 5: A Matter of Ratios

The final query we seek to answer in this chapter is whether our responses to
the preceding questions would be directly applicable when the ratio of two at-
tributes is being characterized within a region of interest. An example appli-
cation with the GS dataset is the ratio of K mass fraction to that of Th (Iay-
lor et al., 2006a). The primary issue with regard to attribute ratios occurs in
the uncertainty propagation. When values at individual bins are derived from
a multi-step process, such as the mass fractions of capture-derived elements
with the GS (Section 2.3.4), the ratio will eliminate any multiplicative terms of
the derivation. An example would be the CCF (Section 2.3.4) for the GS data
that are applied identically to all capture-derived elemental mass fractions as a
multiplicative term. While such terms will be eliminated implicitly in the ra-
tio of capture-derived elements, unless the corresponding uncertainty term is
removed from the standard errors, the computed standard errors of the ratios
would be unnecessarily large. In the GS context this becomes a simple rule of

thumb: Whenever the mass fractions of two capture-derived elements are ra-
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tioed over the same bins or region, the error propagation (which would be anal-
ogous to Equation 3.21) must use standard errors that exclude the uncertainty
due to the capture correction factors. In all other cases, it would be reasonable

to use uncertainties that include those due to capture correction.

An additional issue arises when the “average ratio” of two attributes is
sought, as it may be computed in two distinct ways. One is to compute the
ratio at each bin (¢;; ) where 1 and 2 denote the two attributes, and to calculate
the average of the ratios subsequently. The other is to compute the attribute
averages first, then their ratio. These two are always different, and ideally only
one should be used to avoid confusing the reader. Furthermore, one may be
more appropriate than the other depending on the context. For example, when
applying the alternative to the K-S test on the distinctness of distributions be-
tween two regions (Section 3.4.1), the average of the ratios needs to be used, not
the ratio of the averages. In contrast, when evaluating whether the mean value
of the ratio in one region is distinct from that in another, it is necessary to com-
pute the ratio of the averages within each region. In particular, it is important to
remember that directly estimated regional averages, i.e., those from cumulative

spectra over a region of interest, can only yield ratios of the mean values.

3.5 Conclusions and Future Work

In this chapter, we described simple tests that respond to commonly asked ques-
tions in investigations with remotely-sensed planetary data sets, and applied
those tests with the GS as a case study. These methods are also applicable for

data sets that are more local in scope, but still involve distinct regions of interest
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and a sufficient number of data. We considered two distinct groups in our work,
those consisting of one datum for a region and those consisting of data binned
on a uniform spatial grid. These provide distinct, but complementary perspec-
tives on regions of interest. The former is essential to estimate rigorously the
regional mean of an attribute and corresponding standard error. The latter is es-
sential to estimate the standard deviation (i.e., dispersion) and the distribution
of an attribute within a region. As such, it helps determine the degree to which
a single parameter for a region, such as the regional average, actually repre-
sents the region as a whole. For example, the usefulness of the regional average
becomes suspect for a region within which the attribute is significantly hetero-
geneous. Furthermore, while the bin data provide the most detailed insight into
the spatial distribution of attributes, the nature of their derivation may preclude
the computation of regional parameters from them, such as the standard error

in the case of GS data.

As observed in our case study with the GS data, the tests for distinct distri-
butions (Section 3.4.1) may sometimes converge with the tests for distinct means
(Section 3.4.2). However, that is by no means necessary. When the two do di-
verge, additional insight may be gained, mostly due to the difference in the
spatial impact of small-scale and large-scale geologic processes on the distri-
bution of planetary attributes. In such situations, the qualitative evaluation of

distributions as discussed in Section 3.4.1 can yield important insight.

As utilized and summarized by Hahn et al. (2007), Keller et al. (2006b), New-
som et al. (2007), and Taylor et al. (2006a) the techniques we describe can greatly
enhance the robustness of geochemical investigations while simultaneously en-

hancing analytical clarity. In addition to their utility in ongoing work (Chap-
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ter 6), we also anticipate their use in future missions of both global (such as the
MESSENGER Gamma-Ray and Neutron spectrometers, GRNS, at Mercury) and
local (such as the Mars Science Laboratory) scope. We also hope that this discus-
sion and its companion work (Chapter 4) demonstrate both the importance and
the ease of using well-established statistical techniques in geochemical analyses
and the ways in which to apply them. As Mars and other planets are scrutinized
with instruments of ever-increasing sophistication, such methods will enable us
to make fundamental statistics the reality check that moderates our exuberance
and creativity, not the “magic carpet” for flights of fancy. If so, we shall remain

safe beyond the reach of “lies, damn lies, and statistics.”
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CHAPTER 4
SEEKING MULTIVARIATE CORRELATIONS WITHOUT IGNORING
UNCERTAINTIES

4.1 Fundamentals, and Mars as Case Study

Mars is an excellent case study for the search of correlations among many vari-
ables, as planetary missions have observed an array of surficial variables at
global scales. As mentioned in the preceding chapters, some examples include
elemental mass fractions from the GRS instrument suite’s GS (Boynton et al.,
2007), areal fractions of surface types from the MGS-TES (Bandfield et al., 2000),
and thermal inertia from the Viking IRTM (Christensen and Malin, 1988). Such
data are typically assigned to spatial bins that define a latitude-longitude grid
covering the planetary surface without overlap. Attribute values are usually
associated with the spatial centroid of each bin. Bin sizes may be modified to
obtain spatially corresponding bins across different datasets, which is essential
to investigate the relationships among different attributes. Such “rebinning”
into similar grids is often necessary in the search for attribute correlations that

help constrain models of surface evolution.

we first introduce the basic mathematical concepts in the following subsec-
tions, then discuss the relevant equations for multivariate analyses in detail
(Section 4.2). Sections 4.3 and 4.4 describe diagnostics of the fits and analyses.
The last three sections consist of real-life applications of these methods with

planetary data.
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4.1.1 Linear Relationships

Several commonly used statistical terms need to be described in the context of
this chapter before we explore attribute relationships. The strength and direc-
tion of interdependence (i.e., covariability) among attributes is known as corre-
lation. When line or planar fits in two dimensions or multiple dimensions are
in use, we identify them as linear fits, since they involve first-degree polynomi-
als (e.g., y = by + by x; + by x;). Such fit procedures constitute regression, as one
attribute is expressed as an optimized function of several others. The selection
of one or more subsets of correlated attributes on the basis of relative statistical
significance is designated as hierarchical. A fit in two dimensions also involves
exactly two variables and is identified by the term bivariate, while a fit involving
many attributes would be multivariate. Two terms that are conceptually distinct
but often notationally similar are the standard error indicating the net (combined
instrumental and statistical) numerical uncertainty of a value and variance indi-
cating the variability of values about the mean. The latter is usually computed
as the average of squared differences from the mean. Cohen and Cohen (1983,
pp- 3-24) and Stuart et al. (1999, pp. 466-533) present a lucid discussion of these

terms, concepts, and their origins.

Bivariate scatter plots and their linear bivariate (also known as sample-
linear, product-moment, zero-order, and Pearson’s) correlation coefficients are
the simplest methods to identify first-order relationships among attributes (e.g.,
Bevington and Robinson, 2003, pp. 197-203). Unfortunately, such analysis yields
an incomplete picture, since planetary subsurface properties are often depen-
dent on simultaneous relationships among many attributes, which can lead to

misleading apparent correlations when only two variables are considered at a
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time (e.g., Davis, 1985; Blalock, 1964). Furthermore, as commonly evaluated,
bivariate correlations fail to consider the effect of spatial autocorrelation: the
mutual dependence of spatially proximate values (e.g., Haining, 2003, p. 74—
88, 273-324). Lastly, such analyses are often reported without the diagnostics
that test the effectiveness of results and appropriateness of the methods. These
weaknesses can be overcome effectively with hierarchical linear multivariate

correlation analyses and their detailed diagnostics.

Linear multivariate analyses offer the ability to identify relationships among
attributes that are otherwise hidden in bivariate analyses while discarding ap-
parent bivariate relationships that have originated solely due to covariability
with a third variable. Meanwhile, the hierarchical approach selects subsets of
attributes with the most significant correlations. With the increasing availabil-
ity of global data for many planetary bodies, multivariate correlation methods
can be “power tools” for the planetary scientist and exploit the synergy among
different missions and datasets. We discuss the simplest and most intuitively
accessible multivariate methods in an application-oriented manner, with refer-

ences to literature for more advanced treatment.

It is possible to model only the spatial variability with multivariate corre-
lations, that is, exploratory analysis (e.g., Haining, 2003, p. 181-270, 292-311,
325-349) as Gasnault et al. (2008, Quantitative Geochemical Mapping of Mar-
tian Provinces, in preparation) are applying for Mars. We do not discuss that
approach, since our interest is in describing global variations in one attribute
(e.g., mass fraction of K) in terms of others (e.g., mass fraction of Th and areal
fractions of surface types with distinct infrared spectral features), that is, ex-

planatory analysis (e.g., Haining, 2003, 312-324, 350-378). The attribute whose
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variability is being modeled is termed the response (or dependent), variable,
while the others are appropriately termed the predictor (independent, input, or

regressor) variables.

4.1.2 The Power Tool Trio

Three distinct and complementary techniques are available to estimate correla-
tions among variables. The simplest among them, Ordinary Linear Regression
(OLR), evaluates the unique correlation of the response variable with each pre-
dictor variable. Spatially Weighted Linear Regression (SWLR) modifies OLR to
account for spatial autocorrelation. The third and most numerically intensive
method, Heteroscedastic Response Linear Regression (HRLR), accounts for the
variation of uncertainties in the response variable from one datum to the next.
We discuss the application of these methods in detail after a summary introduc-

tion.

The relationship between the response variable and each predictor variable
can be estimated as an individual regression coefficient defining the functional
dependence. The corresponding unique interdependence — that is, correlation —
between the response-predictor pair as all other predictors are held constant is
a partial correlation coefficient, ;, of the response (e.g., Cohen and Cohen, 1983,
p- 91-92, 102-103). Ordinary Linear Regression (OLR) directly evaluates these
parameters. The consequent optimal correlation between the whole set of pre-
dictors and the response variable is given by the multiple correlation coefficient,
R. Its square, R?, known as the coefficient of determination, indicates the extent

to which the variability of the response variable is associated with the entire set
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of predictors. For example, R* = 0.8 would imply that 80 % of the response vari-
ance is attributable to the set of predictors as modeled by the regression (e.g.,

Stuart et al., 1999, p. 523-533).

Global binned data used in correlation analyses are typically from orbiters,
not flyby spacecraft, landers, or rovers. As a result, the spacecraft footprint may
necessitate bins of coarse spatial scales. For example, the GS footprint, defined
as the nadir-centered region within which = 50 % of the signal originates has
a 3.7° radius (corresponding to 220km linear radius) (Boynton et al., 2007, and
Chapter 2). This footprint and spatial effects of data reduction (e.g., Boynton
et al., 2007) cause significant spatial autocorrelation at bin resolutions finer than
5°x5°. The resulting mutual dependence of spatially proximate attribute values
is evident even at 5° x 5° bin scales, much of it contributed by the spacecraft
footprint (e.g., Boynton et al., 2004; Boynton et al., 2007; Evans et al., 2006; Kim
et al., 2006a) and the processing of mass fractions with a constant-arc radius

mean filter as discussed elsewhere (e.g., Boynton et al., 2007, and Chapter 2).

Unlike the GS, remote instruments with collimating devices, such as the
MGS-TES and IRTM, typically have much smaller footprints enabling finer bin
scales. For example, bin scales as fine as 1° x 1° are available for MGS-TES
derived areal fractions, IRTM-derived thermal inertia, and IRTM-derived rock
areal fractions. Even though the global coverage is not as extensive, several
other instruments are capable of mapping at spatial resolutions much finer
by orders of magnitude, such as the Mars Odyssey Thermal Imaging System
(THEMIS) at 100 m (Christensen et al., 2003), the Mars Express Observatoire pour
la Minéralogie, ’Eau, les Glaces, et 1’Activité (OMEGA) at 5km (Bibring et al.,

2005), and the Mars Reconnaissance Orbiter Compact Reconnaissance Imaging
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Spectrometer (CRISM) at 200 m (Pelkey et al., 2007).

In the context of multivariate correlation analyses, spatial autocorrelation
presents two key effects: spatial clustering of attribute values and reduction
in the degrees of freedom. The former may often be an intrinsic property of
the planetary subsurface, and warrant the investigation of correlations within
subregions or of correlation variations as continuous functions of location (e.g.,
Gasnault et al., 2002, Section 3 and Figure 4). As Haining (2003, p. 312-316)
and Jones and Casetti (1992) discuss, estimating the correlation as a function of
location, also known as the “expansion method”, sheds local insight on global
relationships among attributes. Even though we do not discuss the expansion
method since it would digress from our emphasis on global relationships, we

present quantitative and visual tests for clustering effects.

Spatial autocorrelation reduces the degrees of freedom as a consequence of
information redundancy. In practical terms, if the spatial dataset has N data,
spatial autocorrelation would reduce the number of statistically independent
data to N* < N. This biases correlation coefficients leading to type 1 errors as
discussed by Bivand (1980) and Haining (2003, p. 273-274). Type 1 errors occur
when the null hypothesis, the absence of correlation, is rejected even though the
data are consistent with the null hypothesis at the desired level of confidence
(e.g., Easton and McColl, 1997). As explained by Easton and McColl (1997) and
Helsel and Hirsch (2002, p. 106-107) such errors are considered more serious
than type 2 errors, where the null hypothesis is not rejected even though the

data are inconsistent with it.

Analysts consequently strive to regulate for the presence of spatial autocor-

relation using one of two distinct approaches: adjusting the correlation coeffi-
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cients to account for spatial autocorrelation, or applying filters (i.e., prewhiten-
ing) to reduce spatial autocorrelation. Prewhitening can cause undesirable loss
of information (Clifford et al., 1989), so we utilize adjustments to the estimated
correlations instead. This may be achieved either by estimating the true number
of independent data, N” as discussed by Clifford et al. (1989), Dutilleul et al. (1993),
and Haining (2003, p. 278-279), or by employing a spatial adjacency weights
matrix (i.e., spatial proximity weights matrix), W (Upton and Fingleton, 1985, p.
176-186, 277-312). Since computation methods for the former can be controver-
sial (e.g., Dutilleul et al., 1993), we utilize the W matrix instead. Throughout the
chapter, we refer to this as the Spatially Weighted Linear Regression (SWLR)
method (Section 4.2.2).

The SWLR method does not account for variation in the standard error from
one datum to the next. This variation is termed heteroscedasticity and affects
instruments such as the GS and NS where variations in atmospheric thickness,
composition, and duration of observation contribute to measurement uncertain-
ties. Heteroscedasticity makes the erroneous rejection of the null hypothesis
(i.e., type-1 errors) more likely (e.g., Rawlings et al., 1998, p. 412-417, 507-508).
Nevertheless, Ordinary Liner Regression (OLR) may be easily adjusted when
only the response variable is heteroscedastic, which we describe in detail as
the Heteroscedastic Response Linear Regression (HRLR) method (Section 4.2.1).
However, the predictor variables can be heteroscedastic as well. Representing
the net uncertainty (i.e., standard error estimate) of the i bin by &, a predictor
variable by x, and the response variable by y, predictor heteroscedasticity has
an insignificant effect on the reliability of OLR as long as the standard errors
of each predictor variable (&m) are less than that of the response (é'y,i) by much

more than the regression coefficient, %' Analytically, we may express this as
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A Oy

O iz < 0y, for all i (Bevington and Robinson, 2003, p. 102).

Unfortunately, the condition above is not realized for the datasets of some
instruments, the GS being an example for which &; ~ ;. In such cases, addi-
tional insight into multivariate relationships can be gleaned by modifying OLR
to account for heteroscedasticity in all variables (Press et al., 2002, p. 666-670).
We describe this as the Heteroscedastic Linear Regression (HLR) method. While
offering additional insight, HLR is computationally intensive due to heavy re-
liance on simulations. In addition, confidence intervals from HLR are frequently
unreliable due to the lack of analytically distributed uncertainties, reducing
the usefulness of HLR as a distinct method of evaluating multivariate corre-
lation coefficients. Therefore, we recommend HLR mostly as a supplementary
diagnostic tool to evaluate results from Spatially Weighted Linear Regression

(SWLR) and Heteroscedastic Response Linear Regression (HRLR).

we utilize additional diagnostic tools to evaluate both the effectiveness of the
regression and violations of methodology assumptions. The former is expressed
in terms of R?, confidence intervals for regression coefficients, and probability
estimates for correlation coefficients. The confidence intervals and probability
estimates use Student’s-t (for OLR and HRLR) and standard normal (for SWLR)
distributions. While the Student’s-t distribution is more rigorous as it avoids
the use of standard deviation and average estimated from the sample, the diffi-
culty of properly accounting for degrees of freedom makes the standard normal

distribution preferable for SWLR.

For OLR and HRLR, it is possible to estimate both univariate and Bonfer-
roni confidence intervals for the regression coefficients with Student’s-t distri-

butions. As discussed in the text accompanying Equation 4.20, the univariate
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confidence intervals are determined separately for each coefficient. In contrast,
the Bonferroni confidence intervals, which are discussed in the text attending
Equation 4.25, reflect how effectively the entire model fits the data. We discuss
only the univariate intervals for the SWLR method as given by Equation 4.21,
since Bonferroni confidence intervals would be less reliable due to the difficulty
of estimating the actual degrees of freedom, N’. Several additional diagnostics
of the effectiveness of regression are available to evaluate the OLR and HRLR
methods: R? adjusted for the degrees of freedom; expected R? if the response
variable were uncorrelated with any of the predictors; and a one-tailed proba-

bility estimate for R? based on the Fisher-Snedecor distribution (F-distribution).

Our use of three different test parameters based on Student’s-t (in Equa-
tions 4.20 and 4.25), Standard Normal (in Equation 4.21), and Fisher-Snedecor
(in Equation 4.24) probability density functions (pdfs) enables the statistical con-
fidence values and intervals to be determined in a manner most appropriate for
the corresponding correlation and regression parameters. Since the probabil-
ities and confidence intervals based on the three distributions are commonly
available in software and a detailed discussion of integrating pdfs is beyond the

scope of this work, we refer the reader to tables and software as appropriate.

Diagnostics to identify violations of methodology assumptions consist of
visual and quantitative components. Visual diagnostics include: scatter plot
of the residuals (i.e., difference between the modeled and observed response,
the i of which is given by &;) versus modeled response (§;); global maps of
¢;; Durbin Watson test for the presence of serial correlations among residuals;
Shapiro-Francia test to determine whether the residuals are random normal;

and Moran’s I test to reveal spatial autocorrelation and the possibility of hid-
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den predictors. The latter three include quantitative results as well. The purpose

and implementation of each test are discussed in succeeding sections.

4.2 Multivariate Methods

A key aim of all multivariate analysis methods is to determine the regression
coefficient for each predictor. This also yields the partial correlation coefficient
between the response and each predictor variable. Given our aim to describe
the simplest possible techniques without sacrificing rigor, we do not discuss
nonlinear multivariate regression. Nevertheless, linear regression methods can
be generalized for the nonlinear regime (Press et al. (2002, p. 671-689), Rawl-
ings et al. (1998, p. 235-268, 485-544), and Upton and Fingleton (1985, p. 312-329)
provide detailed derivations). Three primary methods of linear correlation anal-
ysis are at our disposal: OLR, HRLR, and SWLR. As summarized in Section 4.1,
each has its strengths and weaknesses. The OLR and HRLR methods are intu-
itively appealing, since they are conceptual extensions of line fits to bivariate
scatter plots. Without supplemental information from the SWLR method how-
ever, both OLR and HRLR estimates for spatial data may be significantly in

error.

A few concepts need to be summarized before we discuss the techniques
(refer to Upton and Fingleton (1985, p. 264-312) and Rawlings et al. (1998) for de-
tails). Among them, the distinction between population and sample is key. In
the current context, we may regard the population as the (unknown) complete
range of values for each variable, while the sample is what we have observed

subject to numerical and spatial uncertainties (e.g., Haining, 2003, p. 51-54). Pa-
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rameters such as regression coefficients, determined from the sample are con-
sidered estimates, which are indicated by circumflexes. Another key concept
is the symbolic form of the response and predictor variable relations involving
regression coefficients, b;. For each modeled (i.e., estimated) response value,
$;, and each value of the j™ predictor variable, X; ;, the symbolic relationship is
i =bo+ b1 Xiy + bo2Xin + -+ b;X;; + - + b1 Xiy—1. The index, i, refers to the
i"™ spatial bin, so for N data (bins), i varies from 1 to N. k — 1 is the number of

predictor variables in the model.

ay
0X."
J

In essence, for j > 0, each regression coefficient, b;, is a constant and b; =
In other words, the regression coefficient represents the change in y per unit
change in X;, when all other predictors are held constant. In three dimensions
(i.e., two predictors) b, is the intersection of the model-fit plane with the y axis.
For the multivariate case b, generalizes as the expected value of y when the pre-
dictor variables are all identically zero. Using matrix notation, which is simpler

than algebraic notation, we may write the relationships discussed so far (with

matrices indicated in boldface and transpose denoted by ’) as:

y=V+e=Xb+e (4.1)
Y1
Y2

where y is an N X 1 column matrix of all N sample data such thaty =
Yi

YN

X is an N X k matrix containing the values of all the predictor variables at
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I X Xip X1, X1
I Xon Xop X5 X k-1
each spatial bin, X =
I X Xio -+ Xy - X
I Xy1 Xn2 -+ Xnj -0 Xnaar
b is an N X 1 column matrix of the k¥ unknown regression coefficients, b =
bo
by
bi
by
€]
€
Lastly, e is an N x 1 column matrix of N unknown statistical errors, e =
€
en

Equation 4.1 is the basis of OLR and entails the unobserved regression co-
efficients b and errors e. The former are key parameters of interest for a given
model. There are two intuitive and established methods for seeking a solu-
tion. One, known as least squares, is to minimize the sum of squared residu-
als, A = Zﬁl ¢? = &, where & = y — §. Clearly, minimizing A maximizes the

agreement between y and § (Stuart et al. (1999, p. 97-98, 538-557) and Upton
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and Fingleton (1985, p. 266-283) describe least squares in detail). The second
method, known as maximum likelihood, is to consider the set of observed val-
ues, {y;}, as the most likely response values and maximize an expression, L, that
represents their joint probability density function. Given its direct association
with the probabilistic context, we utilize the maximum likelihood method in

our derivations.

Both least squares and maximum likelihood methods are known to yield
the optimal regression and correlation results as long as criteria of the Gauss-
Markov theorem are satisfied (e.g., Rawlings et al. (1998, p. 325-339), Stuart et al.
(1999, p. 542-543), and Upton and Fingleton (1985, p. 266)). The primary criterion
of the theorem is for {y;} to be mutually independent and subject to identical un-
certainties (i.e., Independent and Identically Distributed: IID). This ensures that
the residuals {e;} are mutually independent with each belonging to a random
normal distribution with zero mean and variance (i.e., dispersion, the square
of standard deviation) 0. In statistical notation, this criterion is often stated as
the “variance-covariance” matrix of {e;} taking the form V = oI, where I the
identity matrix. Secondarily, {X,; j} are to be mutually independent exact mea-
surements constituting the complete set of predictors. Once these conditions
are satisfied, the estimators of the regression coefficients (b j), denoted as the
set {13 j}, become the most precise and unbiased (i.e., b = b) estimates (i.e., Best

Linear Unbiased Estimators: BLUE).
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4.21 Ordinary and Heteroscedastic Response Linear Regres-

sion

As discussed above, the OLR method yields rigorous regression and correlation
coefficients whenever the Gauss-Markov conditions are satisfied. Furthermore,
the response variable is Independent and Identically Distributed (IID) in such
cases. Consequently, the probability distribution for the unknown error at the
i" bin, ¢; (Equation 4.1) is also standard normal. The probability density func-

tion, P, which is the likelihood of observing an error between ¢; and e; + h is

PR

2
then given by P (e;) = —5=CXP (202 ), where o is the unknown standard deviation

(i.e., square root of the Varlance) of {e;}. Therefore, the joint probability density
N

N 2
1 —e;
function becomes L = | | P(e) = | | eXp( )
i=1 i=1 O N21 20°

In vector notation:

L= ! exp ( —e’e) (4.2)

O_N (271_)]\//2 20-2

L and its natural logarithm, In(L), have coincident maxima. Substituting for
e with b, X, and y using Equation 4.1, we obtain: e’e = (y — Xb)' (y — Xb). We

may consequently write:

N 2 1 ’ A 1A 4
1n(L):c—51n(o')—rﬂ(yy—Zbe+bXXb) (4.3)

Treating { ; J} and {y;} as observables and o as a constant, we maximize L

by estimating b for IH(L) —2X"y + 2X’Xb = 0. Consequently, the OLR estimate
of b is:
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b=XX)"Xy (4.4)

Under Gauss-Markov conditions, the variance-covariance matrix of {b j} is
determined as a k x k matrix E = 02 (X’X)"". The unknown o is estimated with

the sum of squared residuals and degrees of freedom as

F =@ /N-l={(y-9 -9} /N -k (4.5)

Therefore, the estimated variance-covariance matrix of {b j} takes the form of:
B=— (-9 y-nxx" (4.6)
N -k '

Equations 4.4 and 4.6 lead us to ratios, {t j}, of particular significance in both

multivariate correlation coefficients and diagnostics:

t;=(b;=0)/Ej; (4.7)

where E;; from Equation 4.6 is the estimated variance of the regression co-
efficient b i (Rawlings et al. (1998, p. 17, 121-123, 165-167), Stuart et al. (1999,
p- 735-738), and Upton and Fingleton (1985, p. 270-272) provide detailed deriva-
tions). With {t j} determined, it is possible to estimate the multivariate correlation

coefficients as:

rp= ——— (4.8)
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where r; denotes the partial correlation coefficient between the response
variable and the j* predictor variable (i.e., the unique correlation between the
response and a given predictor) (e.g., Cohen and Cohen, 1983, p. 107, 483). 1t is
also possible to determine the partial correlation coefficients without using {tj}

(e.g., Stuart et al., 1999, p. 510-523).

As discussed in Section 4.1, spatial datasets can deviate from Gauss-Markov
conditions due to heteroscedasticity in the response variable. As long as that
is the only deviation from Gauss-Markov conditions, a modification to the
variance-covariance matrix of error as V = oD with D, a diagonal matrix
unequal to I, enables transformation of variables to satisfy Equation 4.1 with
{e;} remaining IID. This constitutes HRLR. The transformation gives greater
significance to data with less uncertainty (containing more information) than
to those with greater uncertainty (containing less information). When the
net uncertainty of the response variable at each bin, &, is known explic-
itly (such as the data from MGS-TES, NS, GS, and IRTM instruments) it is

possible to implement the transformation by defining the D matrix as D =

2,0 0 .. 00 0
0 62, 0 ... 0.0 0
. In order to retain the regression coefficients
0 0 &, ... 0 0
0 0 0 ... 0 0 62

in terms of the original variables, Equation 4.4 is modified as (e.g., Press (1982,

pp- 218-229) and Rawlings et al. (1998, pp. 414-417)):

b= (XD'X) XDy (4.9)
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The resulting estimate for o is given by

% = (y - Xb) D' (y - Xb) ﬁ (4.10)

A A -1
The variance-covariance matrix for {bj} is estimated as E = o (X’D‘IX) . Sub-

stituting the estimate for o> we obtain:

£ = (y - Xb) D! (y - xb) —— (xD'x) (4.11)

By substituting the values of {E“j,j} (Equation 4.11) and {Ej} (Equation 4.9) in
Equation 4.7, the {tj} ratios are determined as before. Partial correlation coeffi-

cients then follow from Equation 4.8.

4.2.2 Spatially Weighted Linear Regression

In the presence of spatial autocorrelation, the error terms in Equation 4.1 cease
to be mutually independent. Stated differently, errors corresponding to spa-
tially proximate bins become mutually dependent relative to those that are dis-
tant. Given the benefits of satisfying Gauss-Markov conditions, we may express
such errors in terms of their transformation into a mutually independent set by
utilizing the W matrix. For this purpose, we assume that two other criteria are
satisfied: homoscedasticity of the response variable (i.e., the net uncertainty is
the same across all bins, as opposed to varying from one bin to the next as hap-
pens in heteroscedastic data) and exact-valued predictors. The transformation
takes the form of e = pWe + u, with p an optimizing scalar. This allows {u;} to

be from a standard normal distribution (i.e., zero mean and variance o) with
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u = (I- pW)e. It is then possible to express the maximum likelihood function,

L, by modifying Equation 4.2 as:

1 —(Ae) Ae
L =1A] oV 2P exp { } (4.12)

202

where A = (I-pW). Analogous to Equation 4.3, In L can then be used to

estimate both b and o
b = (X’A’AX) ' X’A’Ay (4.13)

L, (YA’Ay) - 2B'X'A’Ay + (B'X'A’AXD)
B N

(4.14)

Once Equation 4.14 is evaluated, it is possible to determine E analogous to
Equations 4.6 and 4.11. Given the complexity introduced by the spatial weight-
ing, the matrix cannot be simplified to the level of Equations 4.6 or 4.11 (e.g.,

Upton and Fingleton, 1985, p. 299):

N/2 &2tr (U) 0
E=6*6%U) ¢ {tr(UU) - ) 0 (4.15)
0 0 X A’AX
where U = WA™!, “tr” is the trace of a matrix, k = — Y)*, v/ (1 - ov;)?, and v;

is the i eigenvalue of the W matrix. The £;; values from Equation 4.15 may be
substituted in Equation 4.7 to obtain the 7; parameters. Substitution of ¢; values

in Equation 4.8 yield the partial correlation coefficients (r j) as before.
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p is implicit in Equations 4.13, 4.14, and 4.15. Maximum likelihood deriva-
tion enables this parameter to be estimated by minimizing a new scalar, M(p) =
In (y’A’PAy) — %. Since local minima are generally not a concern in the mini-
mization of M, one of many minimization algorithms may be used. We utilize
an adaptation of the “Golden Section” minimization method (e.g., Press et al.,
2002, p. 397-402). First, we evaluate M for equispaced values of p. Based on our
case studies, a spacing of p,; x 0.01, where p;, is the dynamic range of p, appears
to be sufficient. Second, M values are partitioned as triplets. Third, any triplet
satisfying M (p1) = M (p2) < M (p3), where p; < p, < p; is selected. These three

steps are repeated for the selected triplet at each iteration, with the spacing as

n X &= (where n is the iteration and p; is the dynamic range of p) to prevent

meaninglessly fine precision.

Multiple trials convinced me that four iterations are usually sufficient to
identify the value of p that minimizes M. The minimization is also visualized
with a graph of M versus p at each iteration. This estimation method for p re-
quires the dynamic range of p to be known. Fortunately, as long as all the rows
of W are normalized to unity, the dynamic range is constrained to (-1, +1) (e.g.,
Upton and Fingleton, 1985, p. 282). Upton and Fingleton (1985, p. 281-297) and
Doreian (1980) derive, in detail, the SWLR method and corresponding parame-

ters.

Spatial weights matrix: W

The primary goal of W is to assign a weight to the spatial proximity between a
bin of interest and any other bin. For N bins, this leads to an N X N matrix, with

the i row containing weights for the spatial proximity of all other bins to the i
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bin. While in theory all the weights could be non-zero, in practice only a limited
number of bins would be mutually dependent. This is observed to be true in
the GS context where typically less than 10 % of the bins are meaningfully de-
pendent. When the grid data are at a resolution similar to or coarser than that
of the instrument, such for the IRTM and MGS-TES, the fraction of dependent
bins would be even less. We consider the region of meaningful spatial depen-
dence to be the neighborhood (Equation 4.16 and related text) of the i bin and
assume it to be independent of all bins that are beyond the neighborhood. The
W matrix is consequently sparse, greatly easing the computational burden of a

matrix that would otherwise contain as many as ~ 7 x 10° elements.

Besides the row normalization of W and exclusion of each bin as its own
neighbor (i.e., W;; = 0), there is much leeway in assigning values to its elements.
In the binned planetary data context, it is meaningful to define functions of ei-
ther angular or linear separation as the spatial weights, W, ;. These can still take
many different forms (refer to Doreian (1980), Haining (2003, p. 83-87), and Up-
ton and Fingleton (1985, p. 176-185)). Nevertheless, when the planet is assumed
to be a sphere, the angular and linear separations are directly proportional and
may be determined with direction cosines. For example, when the spatial de-
pendence is reasonably isotropic (i.e., independent of direction) a suitable func-

tion for the spatial weights for neighbors of the i bin is given by:

wii, j) = (1 - 6,;) exp {s((di @) - 1)} (4.16)

where 6; ; is the Kronecker delta and j varies as the index of any bin in the
neighborhood of bin i. d; is the direction cosine vector of the centroid of bin i,

while d; is that of bin j. The scalar, s, varies the rate of decay of spatial proximity
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weights with angular separation. We define the boundary (i.e., angular radius
of a neighborhood) as the angular separation from the iy, bin, 6,, beyond which
spatial dependence is considered negligible. Consequently, w(i, j) = 0 for bins
beyond the boundary of the neighborhood of i. While inessential, s may be

chosen to minimize discontinuity across the boundary such that w(i, /) ~ 0.

Lim

For the calculation of w(i, j), the latitude (¢;) and longitude (4;) coordir?a’ges of
the centroid of a bin i are converted to the corresponding cartesian direction
cosine vector as d; = {cos ¢; cos 4;, cos ¢; sin A;, sin ¢;}’ (e.g., Arfken and Weber (2005,
p- 123-133) and Bugayevskiy and Snyder (1995)). The row-normalized form of W

is computed as W, ; = =3

J=1

wij’

Proper determination of W also requires the boundary, 6, to be quantified
for each bin. When the dominant cause of spatial autocorrelation is known, it
is possible to model the boundary. In the GS data context, the dominant fac-
tors are the instrument footprint and the application of a mean filter of constant
radius (Chapter 2), which introduce an isotropic and locationally invariant spa-
tial autocorrelation. While the radius differs from one chemical element to the
next, for the sake of simplicity without significant loss of accuracy, we define
the boundary to be 10° (i.e., 6, = 10°) throughout the planet. Our choice is an
intermediate value considering the 3.7° footprint radius and the radii of mean
tilters for the majority of elements: 15° for Si; 10° for Cl, Fe, and H; and 5° for K.

Similar reasoning may be used to estimate 6, for other instruments.

Where needed however, as long as the spatial autocorrelation is isotropic
and locationally invariant, it is also possible to estimate the boundary by means
of a global semi-variogram. The semi-variogram, as a plot of the similarity of

values (¥) versus angular separation (), effectively reveals the angular separa-
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tion (i.e., 6,) at which values of an attribute become mutually independent. The
similarity function, ¥, which relies on the sum of squared differences between

the values of bin pairs at a given separation, is formulated as:

N
v (o) =5 (9 ZZ,: c(i) = c(j)y’ (4.17)

where j varies as the indices of bins that are at an angular separation 6 from
bin i, n () is the number of bin pairs that are 6 apart, c is the attribute value,
and N is the total number of bins (e.g., Haining, 2003, pp. 74-79). 6, may then

be evaluated such that y (6) = C, where C is a constant. While this method

6—64
rigorously identifies the boundary, 6,, it can be computationally costly, even for

datasets with only thousands of bins unless 6 is restricted to a reasonable range.
Alternatives to ¥, which convey the same information, such as the autocovari-
ance are equally costly. Furthermore, ¥ (6) has to be used with care as it could
reflect spatial autocorrelation due to intrinsic properties of the regolith, in addi-

tion that from data reduction.

4.3 Hierarchical Modeling and Fit Diagnostics

Evaluating the degree to which the model, consisting of the predictor variables,
can describe the global variations of the response variable is an essential step
for hierarchical modeling. As discussed in Section 4.1, several diagnostic tools
to evaluate the fit are common to OLR, HRLR, and SWLR: coefficient of deter-
mination (R?), probability estimates for correlation coefficients, and confidence
intervals for regression coefficients. The first two are also the key parameters in

hierarchical modeling.
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In the absence of collinearity, the direct linear dependence among two or
more predictors, the coefficient of determination as well as the probability es-
timates for correlation coefficients can be very effective at identifying the most
statistically significant predictors for the global variability of the response vari-
able (e.g., Rawlings et al., 1998, pp. 197-200). While unguided hierarchical
modeling based solely on statistical parameters is possible (e.g., Rawlings et al.,
1998, pp. 208-231), in the planetary context investigators can typically use their

knowledge of surface properties to guide the selection of predictor subsets.

In hierarchical modeling, subsets of predictors are selected iteratively from
a given set (e.g., the set of all predictors). For the j® candidate predictor we first
evaluate the probability (p j) that a sample of N data from a parent population
where the response is uncorrelated with the predictor could yield a partial cor-
relation (rj) at least as extreme as the observed. Conceptually, this reveals the
statistical significance of the unique correlation between the j predictor and
the response variable. For example, p; = 0.05 would mean that we have a 95 %
statistical confidence in the observed partial correlation, r; (Equation 4.8). In
some cases, one or more predictors would fail to be significant at a commonly
used level of confidence (e.g., 68 % or 95 %). However, for large N in the order
of 10%, it may be difficult to eliminate most predictors on the basis of the con-
fidence threshold. Nevertheless, the p; values may differ by several orders of
magnitude from one predictor to the next. We exploit such differences and se-
lect predictors that have p; values at least an order of magnitude or two smaller
than the rest. In our case studies with GS and other remote data of Mars, this

difference was typically two to three orders of magnitude.

we analyze the subset of predictors selected with p; values to determine R
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for the new model. Should it remain comparable with that of the parent set, we
compute p; values for the new model to select the next subset. The process is
repeated until all predictors are equally significant within an order of magni-
tude, or R? decreases significantly for the new subset. It is possible to frame the
optimal hierarchical subset selection in a quantitative context, by plotting the
coefficient of determination against the reduction in predictor variables with
each subset. If so done, one may choose a threshold value beyond which R?
begins to decrease rapidly. However, in our case studies the optimal subset was
usually apparent enough that a quantified approach was not worth the addi-
tional effort. In essence, our method of hierarchical modeling is a simplified
adaptation of stepwise regression by backward elimination (e.g., Rawlings et al.,

1998, p. 213).

Given our focus on the correlations as opposed to the linear multivariate
tit, we do not utilize the regression coefficients in further study. However, we
review their univariate and Bonferroni confidence intervals as a supplementary
method to eliminate predictor attributes for which the regression coefficients
straddle zero even though the correlation coefficients satisfy the p; threshold.
Where possible, two additional fit diagnostics, the F-test for R* and expected
R? (R(z)) for the sample when the response is uncorrelated with all predictors in
the population, are reviewed to confirm the validity of the predictor model. As
a conservative measure, we also report R? adjusted for the degrees of freedom

(Rﬁf) where feasible.
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4.3.1 Fit Diagnostics

we compute the coefficient of determination, R?, simply as the square of the mul-
tiple correlation coefficient between the modeled () and observed (y) response
(Upton and Fingleton, 1985, pp. 271-272). Stated in this manner, the analytical

expression takes the form:

2
NZZ Vivi — Zﬁ Vi Zﬁi Yi
R = (WP RPN (4.18)

2 2
(N5 - (s Hv et - (2]
(e.g., Young, 1962, p. 130). The definition of R makes it a nonnegative quantity,

with the range [0, 1]. The conceptual use of R* as the fraction of the variability
(i.e., variance) of the response contributed by the model is evident in an alter-
native expression (e.g., Upton and Fingleton, 1985, pp. 271-272) that yields the

same value as the above:

R B i-y) - 2e
Zf\i 1 O - y)z
where y is the arithmetic mean of {y;} and the remaining symbols are as defined

(4.19)

in Section 4.2. In OLR (i.e., when spatial autocorrelation and heteroscedasticity
are assumed absent), the coefficient of determination also equals the sum of
partial correlation coefficients, R* = Z’j‘;{ (r,)z (e.g., Cohen and Cohen, 1983, pp.
86-89).

The estimate of p;, introduced earlier, utilizes the parameter ¢; (Equation 4.7).
In OLR and HRLR analyses, ¢; follows a Student’s-t distribution with N — k de-
grees of freedom (e.g., Cohen and Cohen, 1983), while in SWLR a standard nor-

mal distribution may be used as a rough approximation (e.g., Upton and Fingle-
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ton, 1985, pp. 298-300). When the confidence of both the sign (i.e., positive or
negative) and magnitude of r; is important, p; is estimated as a one-tailed prob-
ability for ¢; with either distribution. When only the magnitude of the partial
correlation (]rj|) is of interest, p; is computed as a two-tailed probability. These
probabilities are readily available in lookup tables (e.g., Mascagni et al., 2002)
and software (Appendix B)

The univariate confidence interval for the j" regression coefficient (b j) is es-
timated using the corresponding standard deviation, 4/E;;, and an appropriate
probability distribution. For both OLR and HRLR the confidence interval may

then be stated using the Student’s-t distribution as

A~ A

bj % tappn-k \ Ejj (4.20)

where @ = 1-7 with 7 the desired statistical confidence (e.g., for 95 % confidence,
7 =0.95 and @ = .05). #(4/2.n-k) is the value of the Student’s-t distribution variable
with an upper tail probability of a/2 for N — k degrees of freedom (e.g., Rawlings
et al., 1998, pp. 135-139). The univariate confidence interval for SWLR with a

Standard Normal distribution yields

bj % zap \ E;; (4.21)

where z(,/2) is the value of the Standard Normal variable with an upper tail prob-
ability of a/2 (e.g., Upton and Fingleton, 1985, p. 298). twuo.n-k and z(,2) values
are readily available in literature (e.g., Mascagni et al., 2002) and from software

(Appendix B).
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OLR and HRLR fit diagnostics

Additional fit diagnostics are available for both OLR and HRLR analyses. As
mentioned in Section 4.1 these are three-fold for the coefficient of determination:
R? adjusted for the degrees of freedom (Rflf), expected R? if the response were
uncorrelated with any of the predictors (R(z) ), and the F-distribution one-tailed

probability of R? (pr). The first is expressed as (e.g., Cohen and Cohen, 1983):

N-1
Ri=1-( —Rz)m (4.22)

As evident in the expression, R%, asymptotically approaches R* as + 2 0. Con-
sequently, for a given number of predictors, R, is significantly less than R* only
for smaller N. In such cases, R, is valuable not only as a better estimate of ef-
fectiveness of the model fit, but also as a measure of the usefulness of linear

regression.

The second parameter, (RS ), also helps to establish whether linear regression
is meaningful for the given dataset and number of predictors. R} is expressed

as (e.g., Cohen and Cohen, 1983):

k—1

Therefore, even when the response is uncorrelated with the model in the pop-
ulation, the sample may yield a non-zero correlation. Rj quantifies the expec-
tation value of such an apparent correlation, which may be conceptualized as
the mean of the coefficient of determination for all possible samples of a given
size from the uncorrelated response-predictor population. That linear regres-

sion/correlation (be it bivariate or multivariate) would be meaningless in some
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cases can be demonstrated by considering an extreme example of three data
(N = 3) and one predictor (k = 2), which yields R; = 0.5. In other words, two
uncorrelated variables are likely to indicate an apparent Pearson’s correlation
of V0.5 = 0.7 if only three data are used for regression, no matter how precise

the values may be! However, R is not as informative for very large N since

The third goodness-of-fit parameter associated with R? is the measure of its
probability (pr) estimated in a manner analogous to p; (Section 4.3.1). pg is
the probability that a sample of N data from a population where the response is
uncorrelated with the set of predictors could yield a coefficient of determination
at least as extreme in magnitude as the observed. Only the magnitude is of
concern, since both R and R? are nonnegative as apparent in Section 4.3.1. The

probability (pr) is estimated with a variable, #, that follows the F-distribution:

_ RWN-k
(=R k-1)

(4.24)

Ir

where the numerator has N — k degrees of freedom and the denominator k — 1
degrees of freedom (refer to Upton and Fingleton (1985, pp. 271-272) and Cohen
and Cohen (1983) for details). The probability, pg, is evaluated as the one-tailed
F-distribution probability for ;. Software often contain functions to evaluate
F-distribution probabilities (Appendix B), while lookup tables are also available
(e.g., Mascagni et al., 2002).

The final goodness-of-fit parameters relevant for OLR and HRLR are the
Bonferroni confidence intervals (e.g., Rawlings et al., 1998, pp. 137-143). These
confidence intervals of the regression coefficients {b J-} ensure that the statistical

confidence of the overall fit is maintained at the desired 7 value. As a result,
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the dynamic range for each coefficient is usually larger than the corresponding
univariate confidence interval. The smaller range of the univariate confidence
intervals usually lead to less than 7 confidence in the overall fit. The Bonferroni

confidence interval for the j™ regression coefficient estimate (l;;) is given by:

—_ —

bj £ Ha/2k,N=-k) Ej,j (425)

4.3.2 HLR as a Fit Diagnostic

Even though HLR is essentially a regression method, given inherent difficulties
in establishing confidence intervals, we describe it primarily as a tool to deter-
mine whether regression results from other methods are significantly skewed
due to heteroscedasticity (e.g., Section 4.1). It is important to reiterate that HLR
is unnecessary whenever the uncertainties of the predictor values are much
smaller than those of the response. We do not report HLR results in the case
studies of Section 4.6 as several sample analyses did not indicate it to be partic-

ularly informative.

The underlying concept of HLR is to weight each value, of response and
predictors, by its standard error, which ensures that values with proportionally
higher uncertainties are given less significance than those with lower uncertain-
ties. Besides the weighting, HLR follows the same principles as OLR by seeking
to minimize the sum of squared differences between the observed and modeled

response as denoted by the merit function x? (e.g., Press et al., 2002, p. 666):
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where 7 ; is the estimated standard error of the i datum for the ;" predictor,
and remaining symbols are as defined previously. Since y* cannot be minimized
analytically, one of many well-established numerical minimization techniques
such as Nelder — Mead, differential evolution, simulated annealing, random
search etc., needs to be used. The algorithms and underlying reasoning of these
methods are available in literature (e.g., Press et al., 2002), and are also built
into most mathematical software (Appendix B). A significant drawback to the
HLR technique is that numerical minimization techniques can converge to local,
instead of global, minima due to the effect of the {b j} initialization values. In
order to avoid this possibility, the OLR estimates of the {b j} coefficients may be
used as initialization values, at the expense of mutual independence from OLR

nevertheless.

Since the numerical minimization of y* does not yield analytical uncertain-
ties for the standard errors of {b j} in the presence of heteroscedasticity, we use
a Monte Carlo Bootstrap (MCB) simulation method to estimate the standard er-
rors (e.g., Press et al., 2002, pp. 691-693). The MCB method consists of sampling
the response variable, each of the predictor variables, and the standard errors
of each with replacement as discrete uniform distributions. For example, x;, the
Jj™ predictor, would be sampled by generating a list of random uniform integers
from the interval [1, N] which act as the {i} indices of a simulated {x,; j} dataset.
The values and standard errors of x; which define each set of MCB simulated
data for x; are extracted with the {i} indices, and the process repeated for the

desired number of simulations, M (we typically use M = 300).
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Each of the MCB simulated datasets — consisting of a response variable, pre-
dictor variables, and corresponding standard errors — is then used to generate
a set of simulated regression coefficients, {b;}, by minimizing the correspond-
ing x*. The distribution of the M simulated b; — b values represent the uncer-
tainty of the b; coefficient, with the 7 confidence interval for b; estimated using
the (0.5 - %)th quantile as the lower bound and (0.5 + g)th quantile as the upper
bound. Joint confidence intervals may be obtained with scatter plots of the b, -5}
for two regression coefficients at a time. The confidence intervals may be com-

pared with univariate OLR and SWLR confidence intervals for agreement, with

greater M producing more rigorous results.

4.4 Analysis Diagnostics

While Section 4.3.1 discussed methods to evaluate the effectiveness of the model
in describing the variability of the response variable, the current section fo-
cuses on identifying potential violations of assumptions inherent to the OLR
and HRLR methods, with a qualitative diagnostic (bivariate plot of residuals
versus response) for the SWLR method. As outlined in Section 4.1 there are two
main components to these diagnostics: visual and quantitative. These often
complement each other to give the analyst a comprehensive intuitive sense as
to the validity of the analysis given the data at hand. On the other hand, using
only one of the two may lead to premature rejection of the analysis. It is im-
portant to note that should significant violations of methodology assumptions
be present, all regression and correlation parameters become suspect, even if
model fit diagnostics suggest otherwise. We discuss visual and quantitative di-

agnostics below in terms of residuals versus response, map of residuals, Durbin-
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Watson, Shapiro-Francia, and Moran’s-I;. Most of these tests make extensive use

of residuals.

4.4.1 Residuals Versus Response

The most general visual diagnostic of methodology assumptions is the scatter
plot of ¢; (Equation 4.1) versus'y; (e.g., Rawlings et al., 1998, pp. 342-350). When
the data satisfy the analysis assumptions, ¢; varies randomly (about zero) with
yi. However, statistical effects of a finite N may cause the residuals to deviate
slightly from a standard normal distribution (e.g., Upton and Fingleton, 1985, p.
340), which we account for by standardizing the residuals. Standardization uses

the regular z-score conversion given by:

— € —¢;

Oe

where’e_} = ZALTI?, and ¢ is the standard deviation of the residuals. An example
of a scatter plot with simulated data that satisfy methodology assumptions for
OLR and HRLR (i.e., IID response and exact-valued mutually independent pre-
dictors) is shown in Figure 4.1. Figure 4.1 also illustrates a simulated case where

assumptions are violated.

4.4.2 Map of Residuals

A global map of residuals is another essential visual diagnostic tool. Its key
utility is to highlight the presence of spatial clustering effects in the data (e.g.,

Haining, 2003), which would encourage regression analysis within subregions
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for additional insight. Such evidence may also indicate that the set of predictors
lacks one or more statistically significant variables (e.g., Upton and Fingleton,
1985, pp. 336-349). Usually, mapping the sign of the residuals would be suffi-
cient, even though the relative variations may also be plotted to further discern
patterns to the variability. Figure 4.2 contrasts global maps of both sign and
relative variations of residuals for simulated data that satisfy analysis assump-
tions with those that violate the assumptions. The difference between the two
can be muted in the presence of isotropic spatial autocorrelation, though it is
usually quite apparent in the presence of clustering and/or anisotropic spatial

autocorrelation.

4.4.3 Durbin-Watson

As the plot of each residual (E) versus its immediate predecessor (’5,-_1), this
test often reveals serial correlations among residuals. Most often, serial correla-
tions result from time series effects in data that vary as a function of time (e.g.,
Rawlings et al., 1998, pp. 354-355). However, other factors may also cause se-
rial correlation in geospatial data. For example, the mean filter used to process
the GS data can introduce a serial effect, due to the large overlap of consecu-
tive filter windows. In the presence of serial correlation, the scatter plot would
yield a clear positive slope. A simulated example of serial correlation is given in
Figure 4.3 along with one where it is absent. While a minor correlation would
not undermine linear regression results, a strong correlation would call for the

underlying factor to be included in the model or to be mentioned as a caveat.

The quantitative component of the Durbin-Watson test uses a parameter, d,
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Figure 4.3: Scatter plot of (Z) versus (?,-_1) for two predictors using simu-
lated data with N = 648. The random variations in the absence
of serial correlation is shown at the top, while the positive slope
in the presence of serial correlation is shown at the bottom.
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with a range [0, 2] varying inversely with serial correlation among residuals

(e.g., Rawlings et al., 1998):

2
N ([~ —
Zizz (ei - ei—l)

N =2
2ic1 €

d =

(4.27)

This parameter approximates twice the difference of the serial correlation of
residuals from unity. As a result, the closer d is to 2, the less likely that the
residuals are serially correlated. While d does not easily lend itself to a statement
of statistical confidence, the fractional difference of d from 2 can be used as a
proxy measure of confidence. Therefore, if ¢ < «, (@ as defined in Section 4.3.1)
we could state that serial correlation of residuals is not evident at roughly t

confidence. For example, if d = 1.90 the serial correlation of residuals is not

evident at ~ 95 % confidence (i.e., 7 = 0.95 and a = 0.05).

4.4.4 Shapiro-Francia

The visual component of the Shapiro-Francia test consists of a scatter plot of
sorted residuals versus sorted values of a standard normal variable, z. As dis-
cussed in Section 4.2, if the Gauss-Markov conditions are satisfied by the data,
residuals would also belong to a standard normal distribution. In such cases, the
scatter plot would yield a correlation that approximating unity at the desired
statistical confidence. Finite sample sizes would cause deviations from a per-
fect correlation, making the plots uninformative for datasets with small N. For
larger datasets, major deviations from a correlation of unity would indicate that
the residuals are non-normal (i.e., not IID). Such deviations constitute serious

violations of analysis assumptions leading to biased confidence intervals and

123



Diagqno=stic: Re=zidual=s H{0,T)?

o] -
1 1

I
I
Shapira Francia

ordered rae=idual=

I
o

-2 -z -1 0 1 Z .
normal order =tati=tic
Diggnostic: Besidual= H{0O,dJ)17

50 e

40 .

aorderad re=iduaal=
SJhapiro Francia

ok Ll ]

-2 -z -1 ] 1 z 2
normal order =tati=tic

Figure 4.4: Scatter plot of sorted residuals (E) (for two predictors using

simulated data with N = 648) versus normal order statistics (Z)
IID residuals are shown at the top, while non-normal residuals
are shown at the bottom.

probabilities for regression/correlation parameters (e.g., Rawlings et al., 1998).
Examples of scatter plots for both normal and non-normal simulated residuals
are given in Figure 4.4. Rawlings et al. (1998, pp. 356-359), for example, discuss

such plots in detail, including inferences from the manner of deviation from
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normality.

The sorted values of z are termed normal order statistics, while the sorted
residuals are termed sample order statistics. Since N residuals are being eval-
uated, the sample size of the {z;} would also be N. There are two ways to gen-
erate the set, {z;}. One is to utilize a pseudorandom algorithm (e.g., Press et al.,
2002) or software to generate M samples of size N of a standard normal variable

(Appendix B). Once sorted, the mean of values with the same index across all

Z;Zl il
M 4

sets, generates the /™ normal order statistic. The second method to gen-
erate normal order statistics uses the inverse cumulative distribution function
(CDF) for a standard normal distribution, which is available in most mathemat-

ical software (Appendix B). For samples with N > 5, such software can generate

the normal order statistics as z; = ¢~ (p;) where ¢! is the inverse CDF, and

_i-3/8
Pi = Nt

(e.g., Rawlings et al., 1998). Note that i is the index of sorted residuals,

varying as ordinals 1 to N.

The Shapiro-Francia test proper, the quantitative test for normality of resid-
uals, is presented in detail by Upton and Fingleton (1985, pp. 332-336). The test
utilizes a variable, H, derived from the Pearson’s correlation coefficient between

the sample order and standard normal statistics, rv. We compute ry with a sim-
o e
Zﬁl Z? Z?il ?12

where 7 = —0.048 16+0.019 725 -0.011 9153

plified formula for Pearson’s correlation, ry = where z; is as defined

(1-r)1-1
n 7

earlier. H is estimated as H =
and S = InN - 5. The variable H follows a normal distribution with ex-
pectation H = —exp (1.693 +0.1442S - 0.01849S52 + 0.031 075" + 0.005 57254) and
variance o3, = exp (—0.5107 —0.1160S —0.006702S2 + 0.054 47S° + 0.008 740S4).
With these two values, we may estimate the probability that a sample of size

N from a population where ry = 1 could yield an H at least as extreme as the
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observed. The probability, py, is evaluated as the two-tailed probability for the

standard normal variable z = ’z;f If py > 7, the residuals are IID at 7 confi-

dence. The data would then satisty Gauss-Markov conditions at T confidence as

well.

4.4.5 Moran’s I

The Moran’s I; coefficient is one of the most suited parameters to determine the
presence of spatial autocorrelation (e.g., Upton and Fingleton, 1985, p. 336). For a

given set of residuals, the coefficient is computed as:

_@We

[, = ——
KT oWe

(4.28)

where all the symbols are as defined in preceding sections. The visual diag-
nostic compares the [; for the given set of residuals with I; coefficients from
sets of simulated IID residuals. Each set of simulated IID residuals are com-
puted by first generating N simulated values, z;, from a standard normal dis-
tribution (refer to Press et al. (2002) for an algorithm and Appendix B for soft-
ware commands). These yield simulated residuals, ¢;, by means of € = Mz,
where M = I — X(X’X)' X’. The simulated residuals are transformed to zero

N =
Z:Tle The transformed residuals are sub-

mean values with ¢; — Zz where e =
stituted in Equation 4.28 to compute an ;. The distribution of /; for random
samples from a population that satisfies analysis assumptions may be approx-
imated with ~ 1000 simulated /; values. A plot of these versus an unranked

index illustrates the ideal distribution of I; values, and plotting the sample I;

in the same figure visualizes whether it is typical or atypical of expected values
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(Figure 4.5). If the sample /; is atypical, strong spatial autocorrelation in the data
may be suspected. Alternatively, analogous visual comparisons may be made

by plotting the sample ; on a histogram of the simulated I, values.

The comparison may also be quantified by estimating the probability, pi,
that a random sample from a parent population without spatial autocorrelation
could yield an [ at least as extreme as the observed. If p; > 7, we may consider
the data to be consistent with the absence of spatial autocorrelation at 7 confi-
dence. p; may be approximated as the proportion of simulated /; values that are
at least as extreme as the observed. More detailed discussion and derivation of

the Moran’s-I; is provided by Upton and Fingleton (1985, pp. 336-340).

4.5 Guide to Implementation

Given the variety of symbols and terminology that has been introduced in the
preceding sections, we first present them in summary form with appropriate
references to the text in Appendix A. Some commercially available function

modules are noted in Appendix B.

In spite of the focus of our work on multivariate correlations, it is reason-
able to ask what, if any, of the techniques discussed in the previous sections are
applicable in the bivariate case. Even though bivariate analyses have signifi-
cant shortcomings when a multivariate dataset is available, it is clearly the only
viable approach when only two attributes are known. Furthermore, since the
geochemical community frequently uses bivariate scatter plots, they are useful
for comparisons with literature. Indeed, the techniques we have discussed so

far are applicable without modification in the bivariate case with the sole, and
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Figure 4.5: Distribution of I, coefficients corresponding to simulated IID
data as a plot of [; versus an unranked index with the 95 %
confidence interval in blue. In the top figure, the [; in red rep-
resents one from a simulated IID dataset. I, for the simulated
spatially autocorrelated dataset is beyond the bounds of the IID
I values as evident by its absence in the bottom graph.
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obvious, exception of hierarchical modeling.

A researcher attempting to elucidate the unique correlations of one variable
with each of a set of others can obviously select just one of OLR, HRLR, and
SWLR methods. Nevertheless, these methods are also complementary, as the
strength of each lies in how it accounts for a particular aspect of the instru-
mentation and data reduction. A reasonable approach to using the available
methods is to first utilize OLR, its fit diagnostics, and its method diagnostics, as
it is by far the simplest even though it assumes the data to be IID. The sets of
predictors required for this step can consist of all available predictors, those that
are striking in bivariate scatter plots, or those that are anticipated to be relevant
geochemically. Clearly, all the data sets need to consist of spatially correspond-

ing points.

The primary diagnostic of the meaningfulness of apparent correlations - be
they from bivariate or multivariate analyses - is the fit diagnostic, R;. A suf-
ficiently small value of R would confirm that there are enough data (i.e., N
is sufficiently large) to evaluate multivariate correlations. As a conservative
measure, any apparent correlation may be considered insignificant if R} exceeds

0.10. While an arbitrary constraint, the particular threshold reduces the likeli-

2

ar would

hood that the apparent variance contribution of any selected model, R
exceed 10 % should the response and predictors be uncorrelated in the popu-
lation. Generally speaking, this would help researchers to avoid reporting cor-
relations in support of geochemical interpretations unless the correlations are
actually meaningful. Even if the analysis meets the threshold condition, it must

additionally satisfy pg < @, which would indicate whether the overall model

is statistically significant at the desired 7 confidence.lness of apparent correla-
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tions - be they from bivariate or multivariate analyses - is the fit diagnostic, R;.
A sufficiently small value of R} would confirm that there are enough data (i.e.,
N is sufficiently large) to evaluate multivariate correlations. As a conservative
measure, any apparent correlation may be considered insignificant if R exceeds

0.10. While an arbitrary constraint, the particular threshold reduces the likeli-

2

i would

hood that the apparent variance contribution of any selected model, R
exceed 10 % should the response and predictors be uncorrelated in the popu-
lation. Generally speaking, this would help researchers to avoid reporting cor-
relations in support of geochemical interpretations unless the correlations are
actually meaningful. Even if the analysis meets the threshold condition, it must

additionally satisfy pr < @, which would indicate whether the overall model is

statistically significant at the desired r confidence.

Once the statistical usefulness of apparent correlations is established in the
OLR context, further analyses with HRLR and SWLR are also more likely to
yield meaningful results. On the other hand, if OLR shows the model and data
to be unsuitable for correlation analyses, the researcher may simply avoid the

effort of HRLR analyses, SWLR analyses, and hierarchical modeling.

Even when the response appears to correlate meaningfully with the over-
all model, additional analysis diagnostics are required to determine the appro-
priateness of OLR. Among them, the visual diagnostics of residuals versus re-
sponse (discussion: Section 4.4.1; example: Section 4.6.1) and map of residuals
(discussion: Section 4.4.2; example: Section 4.6.1) provide the qualitative context
in which to understand the quantitative evaluations from the Shapiro-Francia
(introduction: Section 4.4.4) and Durbin-Watson (introduction: Section 4.4.3)

tests. Collectively, these tests identify the caveats that must be mentioned in a

130



rigorous discussion of multivariate or bivariate correlations using OLR.

Once OLR analysis is verified to be sufficiently robust for the data at hand,
the resulting partial correlations may be used in interpretations subject to de-
tailed fit diagnostics. The key fit diagnostic for the ;" correlation coefficient
(r;) is pj. For OLR and HRLR in particular, this is complemented by the uni-
variate confidence intervals, Bonferroni confidence intervals, and HLR-based
confidence intervals for the regression coefficient, ;. These fit diagnostics in
general, and the p; values in particular, drive the hierarchical modeling with

OLR, HRLR, and SWLR as discussed in Section 4.3.

The nature of the dataset can be used to further constrain the relevance of
HRLR and SWLR analyses. Though unlikely for planetary data, if the response
variable is known to be homoscedastic, HRLR would clearly be unnecessary.
In contrast, SWLR would almost invariably be necessary for correlation anal-
yses with mapped data from remote sensing instruments such as the MErcury
Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mis-
sion’s Gamma Ray and Neutron Spectrometer, Mercury Laser Altimeter, and

X-Ray Spectrometer (e.g., McNutt et al., 2006).

However, when the data are from locations spatially separated by much
more than the resolution limit of the corresponding instrument, SWLR would
be unnecessary. For example, SWLR would not shed much insight into corre-
lations involving elemental mass fractions derived from the Alpha Particle X-
ray Spectrometer (APXS) of the Mars Exploration Rovers (MER), since any two
samples are usually separated by more than the diameter of the APXS turret. In
contrast, correlation analyses involving thermally-derived variables estimated

from (locally) remote-sensing instruments such as the MER Miniature Thermal
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Emission Spectrometer are likely to benefit from SWLR. Even when the instru-
mental spatial resolution relative to the spatial separation of data is unknown,

the Moran’s-I; diagnostic will usually reveal the need for SWLR.

The implementation of HRLR and SWLR, should they appear necessary on
the basis of the previous considerations, is essentially a repeat of the OLR steps
above with appropriate modifications as outlined in Sections 4.2.1 and 4.2.2, re-
spectively. A suitable W matrix is needed for the SWLR method, where estimat-
ing the scale of spatial autocorrelation would be the greatest challenge. While
a modeled value would be reasonable when it is known relatively well as for
the GS and Neutron Spectrometers of Mars Odyssey, a semi-variogram may be

needed in most other cases.

Itis important to note that OLR, HRLR, and SWLR correlation results and the
consequent relative statistical significance of predictors will typically diverge
depending on how heteroscedasticity and spatial autocorrelation cause the data
to deviate from IID assumptions. While such disparities would not make the
data unsuitable for correlation analyses, it is essential to account for them dur-

ing hierarchical modeling.

Occasionally, all three techniques will identify the same key predictors, fa-
cilitating the modeling process. When the three methods do not offer any key
predictor in common, it is possible to select predictors that are not rejected by
any as candidate subsets. Should that also be impractical, several models may
need to be considered at each hierarchical step and the final subset chosen on
the basis of variance contribution (i.e., the highest value of R?). The correlation
coefficients and other parameters of the final hierarchical model can be sum-

marized as the average of their values derived from OLR, HRLR, and SWLR,
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emphasizing the complementary nature of the analyses.

However, should it appear that the three techniques lead to distinct final
models, it would be best to present the models separately instead of attempting
to force a convergence. In our experience with the GS and TES datasets, such
scenarios appeared more likely whenever the response had a low R* irrespective
of the model or analysis method. All these consideration are an added process-
ing burden. Nevertheless, our methodology reflects a more nuanced approach
to correlation analysis that accounts for the effects of spatial autocorrelation and
heteroscedasticity and provides a much more robust understanding of variable
correlations than afforded by bivariate regression and scatter plots in general,

and those without statistical confidence estimation in particular.

4.6 Application: Case Study with K

We now apply the methods developed so far, with a set of Martian geospatial
data as an example and Section 4.5 as a general guide. The data are: (1) mass
fraction of Cl (2) mass fraction of Fe (3) mass fraction of H as represented by
the stoichiometrically computed mass fraction of H,O (4) mass fraction of K (5)
mass fraction of Si (6) mass fraction of Th (7) areal fraction of surface type 1
(ST1) (8) areal fraction of surface type 2 (ST2) (9) thermal inertia (TI) (10) albedo
(alb) (11) rock areal fraction (roc). We conduct the analyses in a Mathematica®©
version 5.2, Windows XP Professional®, 2.8 GHz processor, and 1 GB random

access memory software/hardware environment.

The first six attributes were determined with the GS as reported and illus-

trated by Boynton et al. (2007). The next two are based on the derived data from
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the MGS-TES instrument (e.g., Bandfield et al., 2000), subject to a 10° constant arc-
radius median filter to reduce noise as described and illustrated in Chapter 5.
The last three attributes are from the Viking IRTM as reported by Christensen
and Malin (1988), Christensen (1988), and Christensen (1986), respectively. For the
case study, we consider the spatial variability of the concentration of K in terms
of the remaining ten variables. The challenge at hand is to select the optimal
set of predictors for the response variable, K, in a multivariate space of eleven

dimensions.

As outlined in Section 4.5, the case study follows the steps described in Sec-
tions 4.2 through 4.4, and we include specific section and equation references as
needed. The first, and essential, step is to bin the values of each attribute into
spatially corresponding grids. In this process, the attributes determined with
the coarsest spatial resolution dictate the bin size. Since the GS has the coarsest
spatial resolution, we use 5° x 5° bins for all datasets. This step precludes ad-
ditional insight from the recent high resolution mapping of albedo (Christensen
et al., 2001), rock areal fraction (Nowicki and Christensen, 2007), and thermal iner-

tia (Christensen et al., 2001; Putzig et al., 2005).

The second step is to constrain the spatial extent of all datasets to that with
the most limited spatial extent. The two datasets with the most limited spa-
tial extent are the GS elemental data (variables 1-6) and the rock areal fraction
data (variable 11). The former do not include the extreme latitudes for non-
radioactive (e.g., Cl, Fe, H, and Si) elements primarily due to the difficulty of
accounting for the effect of neutron moderation, by elevated H content, on the
derived compositions. While K and Th data are available at the extreme lati-

tudes, their concentrations are diluted by the high H concentrations in the polar
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Figure 4.6: Map of the “regression mask” that constrains the spatial extent
of all geospatial variables in this case study.

regions as well. Therefore, as Boynton et al. (2007) describe, the midlatitudinal
region within which all elemental abundances could be accurately determined
with the GS is defined by an “H-mask”. Meanwhile, reported rock areal fraction
data also exclude the extreme latitudes, but more so in the southern hemisphere
relative to the GS. Therefore, for this study we delineate the excluded regions
by combining the spatial constraints of the two, termed the “regression mask”

as illustrated in Figure 4.6.

The next step of multivariate regression is to determine the nature and extent
of spatial autocorrelation as discussed in Section 4.2.2. As with the regression
mask, the GS data, which have the most severe spatial autocorrelation at the
chosen 5° x 5° bin resolution, dictate the model that we use. As discussed in
Section 4.2.2, it is possible to rigorously quantify the extent of spatial autocor-
relation with the semi-variogram. However, since the primary source of spatial
autocorrelation for the GS data is known, we instead assign 6, = 10° as described
in Section 4.2.2. In order to facilitate computational work, we also use s = 10* in

the spatial weights function (Equation 4.16).
With the datasets assigned to spatially corresponding bins, the spatial extent
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constrained, and the spatial autocorrelation quantitatively expressed, it is pos-
sible to apply the multivariate correlation analyses methods proper. In order to
develop a sense of the basic correlation structure present among our datasets,
we begin by visualizing pairwise correlations in the form of a correlation matrix
(Figure 4.7) and computing the corresponding Pearson’s correlation coefficients.
It is immediately apparent that most elements do not demonstrate compelling
correlations even in bivariate space, with the exception of K and Th. With the
aid of this figure and the differences among data sources we can consider two
broad categories of predictors for the mass fraction of each element: (1) mass
fractions of the other elements and (2) thermally-derived attributes. We apply
OLR, HRLR, and SWLR to these two subsets and the complete set of predictor-

response combinations, with our desired statistical confidence as 7 = 0.95.

we discuss the case study of K, which shows one of the strongest global-scale
correlations with any another attribute, as a detailed example. Multivariate cor-
relations results for Cl are presented summarily by Keller et al. (2006b), while

those for all the elements are summarized in Chapter 5.

4.6.1 All Predictors Model for K: Results and Fit Diagnostics

As evident from Pearson’s correlation coefficients and the bivariate correlation
matrix (Figure 4.7), Th mass fraction and rock areal fraction are the two vari-
ables with which the K mass fraction shows the greatest magnitude bivariate

correlations.

The results of OLR are shown in Figures 4.8 and 4.9. Partial correlations

with ClI and H fail the 95 % confidence threshold (Figure 4.8) while the regres-
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Figure 4.7: Scatter plot matrix of all data as constrained by the regression
mask. Elemental mass fractions notated as Cl, Fe, H (repre-
sented by stoichiometrically equivalent H,0), K, Si, and Th.
Thermally-derived attributes are albedo (Alb), rock areal frac-
tion (Roc), median-filtered surface type 1 areal fraction (ST1),
median-filtered surface type 2 areal faction (ST2), and thermal
inertia (TI). Axes units suppressed for qualitative emphasis.
The Pearson’s correlation coefficient is noted in each graph,
with anti-correlations indicated in red.
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Figure 4.8: OLR correlation results with K as the response and the remain-
ing 10 attributes as predictors. Regression results are shown in
Figure 4.9. Predictor variable name abbreviations are as in Sec-
tion 4.6. r; is the value of partial correlation shown as a solid
column, denoting the unique correlation between the predic-
tor and the response. ¢ — P is the probability that the unique
correlation could be as extreme as the observed when sampled
from an uncorrelated population. ¢ — P values failing to meet
the 95 % confidence level are outlined squares, while the rest
are solid squares. The results are interpreted in Section 4.6.1.

sion coefficients of ST1 and ST2 fail the Bonferroni confidence interval (Fig-
ure 4.9). There are a few attributes with unusually high statistical confidence
(corresponding to the smallest “t-P” values) in Figure 4.8. While Th is by far the
most significant among them, rock areal fraction, Fe, and thermal inertia also

appear viable as members of the next predictor subset.

The variance contribution of the model as given by R?, is 66 % under OLR
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Figure 4.9: OLR regression results with K as the response and the remain-
ing 10 attributes as predictors. Correlations results are shown
in Figure 4.8. B; denotes the regression coefficients with er-
ror bars at one standard error (1s,). The constant of regres-
sion is identified as “C”. 95 % univariate (U95%) and bonfer-
roni (B95%) confidence intervals are shown as bounding lines.
The results are interpreted in Section 4.6.1. Regression coeffi-
cients are dimensionless except that of thermal inertia in units
of cal”'em?Ks"?, which we denote as 2.39 x 107° tiu™! following
the notation of Putzig and Mellon (e.g., 2007, Eq 4).

analysis. As anticipated, it is statistically significant in excess of 95 % confi-
dence since the F-distribution probability of the R* test parameter, with a value
of 1 x 107", is essentially zero. We have verified that the size of our datasets
with N = 1237 is sufficiently large and every predictor model sufficiently effec-
tive to yield a statistical significance of essentially 100 % for R?. Furthermore,

the expected R? for a population where none of the predictors correlate with
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Figure 4.10: SWLR correlation results with K as the response and the re-
maining 10 attributes as predictors. Regression results are
shown in Figure 4.11. Predictor variable name abbreviations
are as in Section 4.6. Most symbols are analogous to those of
Figure 4.8, with N — P the Gaussian analog to r— P. The results
are interpreted in Section 4.6.1.

the response, with a value of 0.01, is insignificant relative to the observed for
our predictor models. Therefore, we omit the diagnostics of R? in the remaining

discussion.

SWLR analysis paints a slightly different picture than OLR as shown in Fig-
ures 4.10 and 4.11.  On the basis of both the statistical confidence of partial
correlation coefficients and the univariate confidence intervals of the regression
coefficients, the attributes Fe, Si, albedo, rock areal fraction, and thermal inertia

may be rejected. However, as before, Th remains strikingly significant. Among
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Figure 4.11: SWLR regression results with K as the response and the re-

the rest, ST1, ST2, and Cl are tentatively more significant. R? indicates a varia-

maining 10 attributes as predictors. Correlation results are
shown in Figure 4.10. Predictor variable name abbreviations
are as in Section 4.6. Most symbols are analogous to those
of Figure 4.9. “Model o” is the uncertainty of the overall
spatial autocorrelation fit, and p is the scalar of the spatial
weights matrix (Section 4.2.2). The results are interpreted in
Section 4.6.1.

tion contribution of 60 %.

HRLR reveals (Figures 4.12 and 4.13) Th to be the most significant predictor
with rock areal fraction, albedo, and ST2 as the other key variables. Cl, Fe, H,

and ST1 fail to meet the statistical confidence criteria. The variance contribution

is 66 %.

The exclusion of some predictors in favor of others has to reflect the out-
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Figure 4.12: HRLR correlation results with K as the response and the re-
maining 10 attributes as predictors. Regression results are
shown in Figure 4.13. Predictor variable name abbreviations
are as in Section 4.6. Symbols are the same as in Figure 4.8.

comes of all three methods. As expected, the results of the three methods show
significant disparities (Section 4.5), and we select attributes for the next hierar-
chical model after first tabulating the results in Table 4.1. As noted before, the
key goal is to reduce the number of predictors without severely degrading the
model’s variance contribution. Clearly, Th must be retained as a predictor. The
results in Table 4.1 also allow limiting the variables to those that are evaluated

as key predictors by any one method and rejected by none, yielding Th and ST2

The results are interpreted in Section 4.6.1.

as the predictors for the hierarchical model.
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Figure 4.13: HRLR regression results with K as the response and the re-
maining 10 attributes as predictors. Regression results are
shown in Figure 4.12. Predictor variable name abbreviations
are as in Section 4.6. Symbols are the same as in Figure 4.9.
The results are interpreted in Section 4.6.1.

Method diagnostics

Three primary qualitative diagnostics of OLR, normalized residuals versus §, i
residual versus i — 1 residual, and ordered residuals versus normal order statis-
tics are shown in Figure 4.14. If OLR method assumptions (Section 4.2.1) were
completely satisfied, as outlined in Section 4.4.1 the top graph would show the
residuals to vary randomly with §. While this is not realized, neither are obvi-
ous trends evident. However, the middle graph indicates a visually strong serial
correlation of residuals. As described in Section 4.4.3, while such co-dependence

is usually a sign of time series effects, we attribute it to spatial autocorrelation
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Figure 4.14: Qualitative diagnostics of the OLR analysis with K as the re-
sponse and the remaining 10 attributes as predictors. Top:
Normalized residuals versus $; Middle: i residual versus

i— 1" residual; Bottom: ordered residuals versus normal order

statistics.
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Table 4.1: Key predictors, rejected predictors, and variance contribution
(as %) in the modeling of the K mass fraction with all other at-
tributes. Predictors are rejected if the partial correlation coeffi-
cient, univariate interval of the regression coefficient, or Bonfer-
roni interval of the regression coefficient fails at 95 % confidence.
Those listed as key predictors are significant in excess of 99 %
confidence and listed in the order of relative significance. The
selection of key predictors relies on relative differences of sta-
tistical significance among the different predictors. Rock areal
fraction is denoted by roc, thermal inertia by TI, and albedo by
alb.

Method Key predictors  Rejected predictors Variance contribution

OLR Th, roc, Fe, T1 H, CI 66
SWLR Th, ST1,ST2,Cl Fe,Si, alb, roc, T1 60
HRLR  Th, roc, alb,ST2 Cl, Fe, H, ST1 66

from the mean filter application for the GS data (e.g., Section 2.3.2). As seen in
the bottom graph, ordered residuals correlate strongly with normal order statis-
tics, indicating that the residuals mostly belong to a random normal distribution
(Section 4.4.4). Therefore, the overall qualitative diagnostics suggest that OLR

method assumptions are satisfied approximately, though not perfectly.

The quantitative counterpart of the residual serial correlation plot of Fig-
ure 4.14, the Durbin-Watson parameter, is 0.4. Based on the rule-of-thumb
threshold we established in Section 4.4.3, the OLR method fails the Durbin-
Watson test at our desired 95 % confidence level. This quantitative confirmation
of residual serial correlation reinforces the qualitative observation (Figure 4.14),
while its probable origin from spatial autocorrelation necessitates the compari-

son of OLR results with SWLR results at all steps of hierarchical modelling.

The quantitative counterpart of the bottom graph of Figure 4.14 is the

145



Shapiro-Francia test of normality (Section 4.4.4). Even though the correspond-
ing correlation coefficient of 0.997 is essentially unity, the test is very conserva-
tive for large N and the residuals fail to demonstrate normality at 95 % confi-
dence (i.e., the two-tailed probability for A to be as extreme as the observed is
only 2. x 10™*). Nevertheless, on the basis of the value of ry and the qualitative
evaluation, we may consider the residuals to be approximately random normal
with OLR yielding meaningful correlation coefficients. The net evaluation from
qualitative and quantitative diagnostics of the OLR method is that SWLR results

are essential, even though OLR yields fairly reliable results.

The effect of spatial autocorrelation is illustrated and the possible presence
of unknown variables revealed by the global maps of residuals in Figure 4.15.
These maps reveal distinct regional clusters of positive and negative residuals.
While the relative variations in the residual values are somewhat less strongly
clustered, they reinforce the general pattern observed in the sign. Qualitatively,
this hints of regional variations to the global scale correlations while indicating
the presence of spatial autocorrelation and the possibility of unknown predic-
tors. Additional verification of spatial autocorrelation is provided by the po-
sition of the observed I, = 0.79 relative to simulated I, values that are free of
spatial autocorrelation (Section 4.4.5). As evident in Figure 4.16, the observed I,
does not even plot within the dynamic range of the simulated /;s. This obser-
vation is reinforced by the comparison of observed I; with the 95 % confidence
interval —8.4 x 107 — —5.2 x 107 in the absence of spatial autocorrelation, indi-
cating that spatial autcorrelation, if present at the 10° arc-radius spatial scale,

cannot be ignored.

HRLR method diagnostics yield conclusions consistent with those of OLR:
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Figure 4.15: Global maps of residuals from OLR analysis with K as the re-
sponse and the remaining 10 attributes as predictors. Top:
Spatial distribution of the sign of residuals. Bottom: Spatial
distribution of the residual values.
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Figure 4.16: Visual application of Moran’s I test to evaluate the presence
or absence of spatial autocorrelation for the case of K as the re-
sponse and the remaining 10 attributes as predictors. Bound-
ary between blue lines indicate the 95 % confidence interval.

The method is fairly robust even though spatial autocorrelation effects are too
severe to be ignored. For example, the HRLR counterpart of Figure 4.14 is Fig-
ure 4.17, which indicates that the residuals are nearly random normal in spite of
the significant serial correlation due to spatial smoothing. This is reinforced by
the quantitative Moran’s I, test (observed I, = 0.80 with the 95 % confidence in-
terval —9.8 x 107 — —6.4 x 107*), Durbin-Watson test (0.4), and Shapiro-Francia
test (ry = 0.994 in spite of failing to be significant at 95 % confidence). Lastly,
the plot of normalized residuals versus y for the SWLR method - the need for
which is reinforced by the OLR and HRLR diagnostics - indicates nearly ran-
dom residuals as seen in Figure 4.18. Note however, that the dynamic range of
residuals is significantly more pronounced than for either OLR (Figure 4.14) or
HRLR (Figure 4.17). The increased dynamic range may reflect issues with our

estimate of the nature and severity of spatial autocorrelation in the datasets.
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Figure 4.17: Qualitative diagnostics of the HRLR analysis with K as the
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1" residual; Bottom: ordered residuals versus normal order
statistics.
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Figure 4.18: Qualitative diagnostics of the SWLR analysis with K as the
response and the remaining 10 attributes as predictors. Nor-
malized residuals versus j.

4.6.2 Thermally-Derived Predictors Model for K: Results and

Fit Diagnostics

The results of OLR are shown in Figures 4.19 and 4.20. Albedo fails the uni-
variate 95 % confidence interval for regression (Figure 4.20). ST1 and ST2 are the
attributes with highest statistical confidence corresponding to the smallest “t-P”
values in Figure 4.19, even though thermal inertia is also highly significant. The
variance contribution of the model is 27 % under OLR analysis. This low value

is nevertheless statistically significant as discussed in Section 4.6.1.

SWLR analysis yields slightly different significant attributes as shown in Fig-
ures 4.21 and 4.22.  On the basis of both the statistical confidence of partial
correlation coefficients and the univariate confidence intervals of the regression

coefficients, the attributes albedo, rock areal fraction, and thermal inertia may
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Figure 4.19: OLR correlation results with K as the response and the 5

be rejected. However, as before, ST1 and ST2 are the most statistically significant

thermally-derived attributes as predictors. Regression results
are shown in Figure 4.20. Predictor variable name abbrevia-
tions are as in Section 4.6. Symbols are the same as in Fig-
ure 4.8. The results are interpreted in Section 4.6.2.

attributes. R? indicates a variation contribution of 15 %.

HRLR reveals (Figures 4.23 and 4.24) ST2, ST1, thermal inertia, and albedo
to be the most significant attributes in the order of decreasing significance. Rock

areal fraction fails to meet the statistical confidence criteria. The variance con-

tribution is 26 %.

As before, the selection of predictors has to incorporate the results from all

three methods. Since the three methods show significant disparities, we select
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Figure 4.20: OLR regression results with K as the response and the 5
thermally-derived attributes as predictors. Correlation results
are shown in Figure 4.19. Predictor variable name abbrevia-
tions are as in Section 4.6. Symbols are the same as in Fig-

attributes for the next hierarchical model after first tabulating the results in Ta-
ble 4.2. As noted before, the key goal is to reduce the number of predictors
without severely degrading the model’s variance contribution. We restrict the
model to variables that are evaluated as key predictors by any one method and
rejected by none: ST1 and ST2. However, since the thermally-derived predictors
consistently contribute less than 27 % of the variance of K unlike the elemental
predictors which contribute more than 50 %, it is clear that the elemental predic-

tors must take precedence over thermally-derived predictors during hierarchi-

ure 4.9. The results are interpreted in Section 4.6.2.

cal modeling.
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Figure 4.21: SWLR correlation results with K as the response and the 5
thermally-derived attributes as predictors. Regression results
are shown in Figure 4.22. Predictor variable name abbrevia-
tions are as in Section 4.6. Symbols are identical to those of
Figure 4.10. The results are interpreted in Section 4.6.2.

Table 4.2: The key predictors, rejected predictors, and the variance con-
tribution (as %) in the modeling of the K mass fraction with
thermally-derived attributes, selected and listed as outlined in

Table 4.1.
Method Key predictors  Rejected predictors Variance contribution
OLR ST2,ST1, TI 27
SWLR  ST1,ST2 Alb, Roc, T1 15
HRLR  ST2,ST1,TL Alb Roc 26
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Figure 4.22: SWLR regression results with K as the response and the 5
thermally-derived attributes as predictors. Correlation results
are shown in Figure 4.21. Predictor variable name abbrevia-
tions are as in Section 4.6. Symbols are identical to those of
Figure 4.11. The results are interpreted in Section 4.6.2.

Method diagnostics

The diagnostics are generally consistent with those of OLR in Section 4.6.1. For
example, while the residuals do not vary randomly with §, neither are obvious
trends evident (Figure 4.25). Furthermore, the middle graph of Figure 4.25 indi-
cates a visually strong serial correlation of residuals, again consistent with the
discussion in Section 4.6.1. As before, we attribute it to spatial autocorrelation
from the mean filter application on the GRS data (Section 2.3.2) and conclude

that the residuals are mostly random normal on the basis of the bottom graph
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Figure 4.23: HRLR correlation results with K as the response and the 5
thermally-derived attributes as predictors. Regression results
are shown in Figure 4.24. Predictor variable name abbrevi-
ations are as given at the start of Section 4.6. Symbols are
the same as in Figure 4.12. The results are interpreted in Sec-
tion 4.6.2.

(Figure 4.25). Therefore, the overall qualitative diagnostics suggest that OLR

method assumptions are satisfied approximately, though not exactly.

The effect of spatial autocorrelation is illustrated and the possible presence
of unknown variables revealed by the global maps of residuals in Figure 4.26.
These maps, as well as the Moran’s [, comparison where the observed is be-
yond the dynamic range of the simulated (Figure 4.27) are consistent with the
observations involving all variables in Section 4.6.1 indicating that spatial auto-

correlation at 10° arc-radius spatial scales cannot be ignored.
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Figure 4.24: HRLR regression results with K as the response and the 5
thermally-derived attributes as predictors. Correlation results
are shown in Figure 4.23. Predictor variable name abbrevi-
ations are as given at the start of Section 4.6. Symbols are
the same as in Figure 4.13. The results are interpreted in Sec-

The quantitative tests consisting of the Durbin-Watson parameter (0.2) and
Shapiro-Francia test of normality (ry = 0.999) reveal the residuals to be approx-
imately random normal with OLR yielding meaningful correlation coefficients.
As observed in Section 4.6.1, the net assessment from qualitative and quanti-
tative diagnostics of the OLR method is that SWLR results are essential, even
though OLR yields fairly reliable results. As before, HRLR method diagnos-

tics yield conclusions similar to those of OLR: The method is fairly robust even

tion 4.6.2.

though spatial autocorrelation is too severe to be ignored (e.g., Figure 4.28).
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Figure 4.25: Qualitative diagnostics of the OLR analysis with K as the re-
sponse and the 5 thermally-derived attributes as predictors.
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versus i — 1" residual; ordered residuals versus normal order
statistics.
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Figure 4.26: Global maps of residuals from HRLR analysis with K as the

response and the 5 thermally-derived attributes as predictors.
Top: Spatial distribution of the sign of residuals. Bottom: Spa-
tial distribution of the residual values.
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Figure 4.27: Visual application of Moran’s I, test to evaluate the presence
or absence of spatial autocorrelation for the case of K as the
response and the 5 thermally-derived attributes as predictors.
Boundary between blue lines indicate the 95 % confidence in-
terval. Note that the observed I, is beyond the simulated dy-
namic range.

4.6.3 Elemental Predictors Model for K: Results and Fit Diag-

nostics

The results of OLR are shown in Figures 4.29 and 4.30. Fe and H fail at 95 %
confidence levels (Figure 4.29, “t-P” outlined squares; Figure 4.30, univariate
and Bonferroni 95 % confidence intervals). Th has the highest statistical signifi-
cance (corresponding to the smallest “t-P” value) in Figure 4.29, even though Cl
and Si are also highly significant. The variance contribution of the model is 62 %
under OLR analysis. This high value is also statistically significant as discussed
in Section 4.6.1, and significantly exceeds the relatively low contribution from

the model of all thermally derived variables (Section 4.6.2).

SWLR analysis yields slightly different attributes as shown in Figures 4.31

and 4.32.  On the basis of both the statistical confidence of partial correlation
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Figure 4.28: Qualitative diagnostics of the HRLR analysis with K as the re-
sponse and the 5 thermally-derived attributes as predictors.
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order statistics.
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Figure 4.29: OLR correlation results with K as the response and the 5 ele-

coefficients and the univariate confidence intervals of the regression coefficients,
Fe and Si may be rejected. Th is the most significant attribute, while Cl and H
are also highly significant. R* indicates a variation contribution of 59 %. HRLR
reveals (Figures 4.33 and 4.34) Th and Si to be the most significant variables,

while all others fail the statistical confidence criteria. The variance contribution

mental attributes as predictors. Regression results are shown
in Figure 4.30. Predictor variable name abbreviations are as in
Section 4.6. Symbols are the same as in Figure 4.8. The results
are interpreted in Section 4.6.3.

as determined by HRLR is 61 %.

As noted in the preceding sections, a subset of predictors has to be selected
by incorporating the outcomes of all three methods. With the results of the

three methods showing significant disparities as before, we select attributes for
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Figure 4.30: OLR regression results with K as the response and the 5 ele-
mental attributes as predictors. Correlation results are shown
in Figure 4.29. Predictor variable name abbreviations are as in
Section 4.6. Symbols are the same as in Figure 4.9. The results

the next hierarchical model after tabulating the results (Table 4.3). The key
goal remains to reduce the number of predictors without severely degrading
the model’s variance contribution. Th is consistently identified as the key vari-
able, while the significance of the remaining elements differs somewhat from
one method to the next. Nevertheless, as evident by R* > 0.59, the elemental

attributes clearly contribute much more to the variance of K than the thermally-

are interpreted in Section 4.6.3.

derived variables.
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Figure 4.31: SWLR correlation results with K as the response and the 5 ele-
mental attributes as predictors. Regression results are shown
in Figure 4.32. Predictor variable name abbreviations are as in
Section 4.6. Symbols are identical to those in Figure 4.10. The

results are interpreted in Section 4.6.3.

Table 4.3: The key predictors, rejected predictors, and the variance contri-
bution (as %) in the modeling of the K mass fraction with the
mass fractions of other elements, selected and listed as outlined

in Table 4.1.
Method Key predictors Rejected predictors Variance contribution
OLR Th, Si, C1 H, Fe 62
SWLR Th,CLH Fe, Si 59
HRLR  Th,Si ClL Fe, H 61
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Figure 4.32: SWLR regression results with K as the response and the 5 ele-
mental attributes as predictors. Correlation results are shown
in Figure 4.31. Predictor variable name abbreviations are as in
Section 4.6. Symbols are identical to those in Figure 4.11. The
results are interpreted in Section 4.6.3.

Method diagnostics

The method diagnostics for the elemental attributes are consistent with those
determined earlier for all variable and thermally-derived variable models. In
summary, the qualitative and quantitative diagnostics suggest that OLR method
assumptions are satisfied approximately, though not exactly. However, spatial
autocorrelation cannot be ignored and insight from SWLR is essential. Since
the method diagnostics remain consistent as hierarchical modeling is applied

using the results from Sections 4.6.1, 4.6.2, and 4.6.3, we do not discuss method
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Figure 4.33: HRLR correlation results with K as the response and the 5 ele-
mental attributes as predictors. Regression results are shown
in Figure 4.34. Predictor variable name abbreviations are as
in Section 4.6. Symbols are the same as in Figure 4.12. The
results are interpreted in Section 4.6.3.

diagnostics in the succeeding sections.

4.6.4 Modeling K Hierarchically

As discussed in Section 4.6.1 the optimal subset of variables for the hierarchical
model from the all-attribute initial model would be Th and ST2 (Table 4.1). This
is reinforced by the consistent evaluation of Th as the key predictor in the model
of all elements (Section 4.6.3). However, given the highly restrictive nature of

such a model, the determination that Fe is key predictor in OLR analysis of
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Figure 4.34: HRLR regression results with K as the response and the 5 ele-
mental attributes as predictors. Correlation results are shown
in Figure 4.33. Predictor variable name abbreviations are as
in Section 4.6. Symbols are the same as in Figure 4.13. The
results are interpreted in Section 4.6.3.

the all-variable model (Table 4.1), and the high variance contribution of the all-
elements model (Section 4.6.3), we also include Fe. Furthermore, both ST1 and
ST2 are consistently selected as key variables of the thermally-derived variable
models (Section 4.6.2 and Table 4.2). Therefore, our hierarchical Model 1 consists

of Th, Fe, ST1, and ST2.

On the other hand, if we were to rely solely on the largest-magnitude bivari-
ate correlations as revealed qualitatively by the bivariate correlations matrix and
quantitatively by the Pearson’s correlation coefficients (Figure 4.7), a hierarchi-

cal Model 2 would consist of Th and rock areal fraction. As in the preceding
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Table 4.4: Key predictors, rejected predictors, and variance contribution
(as %) in Model 1 for the K mass fraction consisting of Th, Fe,
ST1, and ST2. Selection process is as outlined in Table 4.1.

Method Key predictors Rejected predictors Variance contribution

OLR Th, ST2, ST1 Fe 62
SWLR  Th, ST1, ST2 Fe 56
HRLR  Th,ST2,ST1 Fe 62

Table 4.5: Key predictors, rejected predictors, and variance contribution
(as %) in Model 2 for the K mass fraction consisting of Th and
rock areal fraction (roc). Selection process is as outlined in Ta-
ble 4.1.

Method Key predictors Rejected predictors Variance contribution

OLR Th, roc 65
SWLR Th roc 61
HRLR  Th, roc 65

sections, we analyze each model with OLR, HRLR, and SWLR, the results of
which are summarized in Tables 4.4 and 4.5 for Models 1 and 2, respectively. In
the progression of hierarchical modeling that follows, we keep in mind the ini-
tial observation that the model of all thermally-derived attributes (Section 4.6.2)
contributes much less to the variance of K than the model of all elements (Sec-

tion 4.6.3). Therefore, we retain at least one element in each hierarchical model.

Results from Model 1 (Table 4.4) yield the hierarchical Model 3 consisting of
Th, ST1, and ST2. Results from Model 2 (Table 4.5) are more ambiguous, with
SWLR indicating that Th should be the only key variable. However, Model
2 contributes slightly more to the variance of K than Model 1. Therefore, we

construct hierarchical Model 4 with Th, rock areal fraction, ST1, and ST2. The
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Table 4.6: Key predictors, rejected predictors, and variance contribution
(as %) in Model 3 for the K mass fraction consisting of Th, ST1,
and ST2. Selection process is as outlined in Table 4.1.

Method Key predictors Rejected predictors Variance contribution

OLR Th, ST2, ST1 62
SWLR  Th, ST1, ST2 52
HRLR  Th,ST2,ST1 62

Table 4.7: Key predictors, rejected predictors, and variance contribution
(as %) in Model 4 for the K mass fraction consisting of Th, rock
areal fraction (roc), ST1, and ST2. Selection process is as outlined
in Table 4.1.

Method Key predictors Rejected predictors Variance contribution

OLR Th, roc ST2 65
SWLR  Th,ST1,ST2 roc 56
HRLR  Th, roc, ST1 ST2 65

results of Model 3 are summarized in Table 4.6, and consistently indicate that
Th, ST2, and ST1 - in that order — are the key predictors for the variability of K

across the Martian surface.

However, inconsistencies among the results of Model 4 (Table 4.7) suggest
several additional predictor models that should be considered before we may
conclude that Model 3 is the optimal hierarchical choice for K. We compose Th
and ST1 as Model 5 by selecting the variables that do not evaluate false in Ta-
ble 4.7. Combining the summary results in Table 4.7 with the consistent message
from the elemental (Section 4.6.3) and thermally-derived (Section 4.6.2) models,
we select Th and ST2 as Model 6. Model 7 consists of Th, ST1, and rock areal
fraction to reflect the OLR and HRLR results for Model 4 in Table 4.7, while
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Model 8 consists of Th, ST2, and rock areal fraction as a possible alternative. Fi-
nally, Model 9 is Th alone given that it is consistently assessed as a key variable

in all models that include it.

We evaluate the additional candidate models as before. Model 5 results are
inconclusive, but consistently highlight Th as the key predictor with a maxi-
mum model variance contribution of 60 %. Model 6 is similar with variance
contribution at 61 %, and also reveals Th to be the key predictor. Model 7, with
a maximum variance contribution of 65 %, consistently identifies Th and ST1 to
be key predictors, but places the significance of the rock areal fraction in doubt.
Model 8 suggests a maximum variance contribution of 65 % and identifies Th
as the key predictor, but places the significance of both ST2 and rock areal frac-
tions in doubt. Lastly, Th is consistently significant in Model 9, with a variance
contribution of 60 %. Therefore, the overall conclusion we may reach from these
alternative models is that Th has to be present in the final hierarchical model.
The variance contribution of Models 7 and 8 containing rock areal fraction is
marginally (= 7 %) greater than than that of the Th-ST1-ST2 Model 3. However,
the model predictors do not consistently evaluate true for either case, signifi-
cantly undermining the increased variance contribution due to the rock areal

fraction.

4.7 Discussion of K and Beyond
Given the outcome of alternatives to Model 3 above, we conclude that Model 3 —

consisting of Th, ST1, and ST2 - is indeed the optimal set of predictors that relate

to the variability of K on the surface of Mars. To account for the variability of

169



Table 4.8: Candidate predictors, statistically most significant predictors,
partial correlation coefficients (r), and total variance contribu-
tion (R?) in the optimal hierarchical model (Section 4.6.4 and Ta-
ble 4.6) for K. Note that the sum of the squares of the partial
correlation coefficients does not equal R* due to the modeling of
heteroscedasticity and spatial autocorrelation.

Candidates Key predictors r R?

0.6
Cl mass fraction
Fe mass fraction
H mass fraction
Si mass fraction
Th mass fraction Th 0.5
Albedo
Rock areal fraction
ST1 areal fraction  ST1 -0.2
ST2 areal fraction  ST2 0.2

Thermal inertia

estimated partial correlations, we report the average of OLR, HRLR, and SWLR
output as our K hierarchical modeling results in Table 4.8. These results validate
the correlation of K with Th and ST2 as anticipated intuitively from the global
maps (e.g., Boynton et al., 2007). They also reveal how some apparent bivariate
correlations, such as that between K and rock areal fraction, may be misleading.
Therefore, multivariate correlation analyses are not only effective at untangling
the numerous potential relationships among globally observed attributes, but
are also essential in avoiding misconceptions that arise from qualitative visual

observations and bivariate analysis. However, as with any form of correlation
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analysis, it is important to remember that correlation does not indicate causation

and to assiduously avoid inferring causation on the basis of correlation.

As exemplified by the work of Keller et al. (2006b) and Chapter 5, even though
correlation does not imply causation, multivariate correlation analyses are in-
dispensable to constrain geochemical models for the evolution of the Martian
surface. But is it worth the effort evident in the preceding modeling steps for K?

we feel that the answer is a resounding “yes.”

Why so? In the case of K for example, the final hierarchical model discussed
here (Table 4.8) enables us to conclusively state that K and Th have not fraction-
ated from each other at global spatial scales in Chapter 5. It implies either that
geologically recent geochemical process on the Martian surface have subdued
earlier fractionation, or that the dominant processes have not fractionated the
two elements in the first place. Sustained aqueous alteration at neutral to high
pH, for example, is effectively excluded. While additional subtleties arise un-
der low pH conditions (e.g., Taylor et al., 2006a), the strong correlation between
K and Th will need to be addressed in any future work that proposes extensive
and temporally sustained aqueous alteration of the Martian surface. Moreover,
multivariate correlation analyses identify K, Th, ST1, and ST2 as a strikingly
correlated group of variables, consequently constraining geochemical processes
that would yield an ST2-type mineralogy to those that also cause the simulta-
neous enrichment of K and Th (e.g., Wyatt, 2007; Rogers et al., 2007b). As such,
multivariate correlation analyses have provided key insight into the origin of

ST2.

Subsequent to the Karunatillake et al. (2006, and Chapter 5) tabulation of key

predictors using the methodology highlighted in the preceding sections, two
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additional elements have been mapped by the GRS at comparable spatial reso-
lution. Preliminary multivariate analyses do not indicate that the two, Al and
Ca, are key predictors for the remaining elements. Furthermore, detailed multi-
variate analyses described in the preceding sections with Al and Ca each as the
response variable only indicate weak correlations with the six elemental (Cl, Fe,
H, K, Si, and Th mass fractions) and four thermally-derived (albedo, rock areal
fraction, ST1 areal fraction, ST2 areal fraction, and thermal inertia) attributes.
Therefore, we leave the multivariate hierarchical modeling of Al and Ca corre-

lations for future work until the data sets are refined further.

4.7.1 Future Applications

Further insight into surficial processes of Mars may be gleaned by including ad-
ditional continuous-valued and globally mapped attributes, such as elevation,
in multivariate correlation analyses. Regional insight may also be obtained by
limiting the analyzed areas to those for which infrared spectral indices are avail-
able. Spectral indices of Fe**, nanophase ferric oxide, pyroxene (e.g., Poulet et al.,
2007), and olivine (e.g., McSween et al., 2006) may be used in such investigations.
Such data and future orbiter missions with both finer spatial resolution and
global coverage will further refine the multivariate correlations that we have

presented in this and previous work.

The methods that we have described and applied with MGS-TES, Viking
IRTM, and Mars Odyssey GS data as a case study with Mars are directly appli-
cable to other planetary datasets as well. Mercury would be an excellent candi-

date once the MESSENGER mission enters the science orbit in 2011, particularly
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since data from some of its instruments, such as the Gamma Ray and Neutron
Spectrometer (GRNS) (e.g., Solomon et al., 2007), will share many of the proper-
ties of the GS data. The multivariate methodology can also be applied with data
from the SELenological and Engineering Explorer (SELENE) “Kaguya” Lunar
mission, given its extensive instrumentation including the Lunar Magnetome-
ter, Laser Altimeter, X-Ray Spectrometer, Gamma Ray Spectrometer, and Spec-
tral Profiler (Kato et al., 2007). We foresee an increasingly important role for
multivariate correlation analyses as robust techniques providing insight into
the relationships among an ever-increasing number of surficial attributes that
are being mapped from orbit and measured in situ for the planetary bodies of

our solar system.
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CHAPTER 5
RIDDLE OF THE NORTHERN LOWLANDS*

5.1 Nature of the Riddle

Mid-infrared spectra from the Mars Global Surveyor Thermal Emission Spec-
trometer (TES) instrument indicated two distinct mineralogical units concen-
trated respectively in northern and southern low albedo regions of Mars, in ad-
dition to a pervasive surface fine component (dust) (Bandfield et al., 2000). Mate-
rial comprising “surface type 1”7 (S5T1) is found primarily in low albedo regions
in the southern hemisphere. TES spectra of this material, referred to as “Syr-
tis type” spectra (Ruff, 2003; Wyatt and McSween, 2002), have been compared to
the spectra of terrestrial volcanic rocks, leading to the interpretation that ST1 is
dominated by minimally weathered basalt, although recent investigations sug-
gest some heterogeneity (Rogers, 2005; Rogers et al., 2007a; Rogers and Christensen,
2007).

However, spectral comparisons with terrestrial mineral mixtures have not
yielded a unique composition for the material concentrated within northern
low albedo regions, collectively named “surface type 2” (ST2). Several candi-
date mineral mixtures give equivalently good fits to portions of these “Acidalia
type” spectra not obscured by atmospheric absorptions. In principle, some min-
eral mixtures might be distinguished from one another by examining variability
in the 500 — 800 cm™ region, but a strong atmospheric CO, absorption band ob-

scures this part of the spectrum.

*Originally published by Karunatillake, S., et al. (2006), Composition of northern low albedo
regions of Mars: Insights from the Mars Odyssey Gamma Ray Spectrometer, |. Geophys. Res.
Planets, 111(E3), E03505, doi:10.1029 /2006JE002675.
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Models for the mineralogy of ST2 that appear consistent with TES data in-
clude oxidized Shergotty—Nakhla—Chassigny (SNC) type basalts, silica-coated
basalts, igneous processes related to basaltic andesite, aqueous weathering pro-
cesses of basalts, and palagonitized basalt (e.g., Ruff, 2003; Ruff and Christensen,
2007). Among these candidates, the basaltic andesite model has received the
most attention, in large part because of data from Mars Pathfinder. Pathfinder
Alpha Proton X-Ray Spectrometer (APXS) data yielded a SiO, mass fraction,
w(SiO,), of 0.57 with a net uncertainty, (s,,), of 0.06 (i.e., w(SiO,) = (57 = 6)% at
68 % confidence; refer to Mills et al. (1993); Gaobel et al. (2006) for conventions on
uncertainty, units, and symbols used throughout this chapter) for several boul-
ders at the site (Winke et al., 2001), consistent with an andesitic composition.
Recent analyses of Mars Odyssey Thermal Emission Imaging System (THEMIS)
and MGS-TES spectra also suggest that evolved high silica lava could be an im-
portant component of ST2 materials (Christensen et al., 2005). A large expanse
of basaltic andesite on Mars would have interesting geophysical implications,
since it might imply that some form of crustal recycling process has been at
work. The weathered basalt model is subject to some constraints as well, since
Ca montmorillonite, Na montmorillonite, and Fe smectite appear to be excluded
as potential weathering products on the basis of TES data (Ruff, 2003; Ruff and
Christensen, 2007). Ongoing analyses of OMEGA data may alter some of these
constraints, as apparent in the tentative identification of nontronite that was not

evident in TES spectra (Bibring et al., 2005).

In addition, ST2 terrain may have significant contributions from the ancient
crust and younger volcanic provinces. Such mixing may be due in part to late-
stage, Tharsis (and to a lesser extent, Elysium (Tanaka et al., 2003))-related flood
inundations (Baker et al., 1991; Dohm et al., 2001a,b), which Fairén et al. (2003) hy-
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pothesized to be transient, be laden with sediments, and postdate a more exten-
sive Noachian-era ocean. The post-Noachian inundations may have involved
aqueous environments significantly different from the later—stage inundations
(e.g., difference in acidity (Fairén and Dohm, 2004; Fairén et al., 2004)). Evaporites
may have formed in such environments from flood and spring-fed brines (from
leached highland crustal materials) and potentially contribute to the observed

GS signature.

5.2 Data Processing

In this chapter, we attempt to establish additional constraints on candidate mod-
els for ST2 using data from the GS subject to the details of operation and data
processing that were discussed in Chapter 2. Boynton et al. (2007); Boynton et al.
(1992); Evans et al. (2006) describe the processing steps applied to GS data in

detail.

As in Chapter 2, “rocks” refer to material > 0.1 m in size (e.g., loose blocks
and exposed outcrops) that have high thermal inertia, have abundances con-
sistent with the Viking Infrared Thermal Mapper (IRTM) data (e.g., Christensen,
1986; Golombek et al., 2005), and are immobile under current eolian conditions.
“Nonrocks” refer to fine materials that are mobilized by wind, and encompass a
variety of regolith components identified at the five landing sites. Typical exam-
ples are: bedform armor, clasts, concretions, drift, dust, rocky fragments, sand,
and soil (e.g., Golombek et al., 2005; Sullivan et al., 2005; Yen et al., 2005). While
our classification of the regolith into rocks and nonrocks is very broad, it suits

the GS data context, given the hundreds-of-kilometer scale instrument footprint
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and upper few tens of centimeter sampling depth (e.g., Boynton et al., 2007, and
Chapter 2).

We processed GS data in two distinct ways to perform our study. First, we
determined the mean element concentrations in regions dominated by ST1 and
ST2, enabling a direct compositional comparison between the two units. We
selected ST1 and ST2 regions for our summations by first applying a circular
median filter to TES-derived maps of ST1 and ST2 abundances (reported as
areal fractions) shown in Figure 5.1 (Christensen, 2003, personal communica-
tion). The primary aim of the filter was to smooth and clearly delineate the
boundaries of the two surfaces; a median filter was chosen for its strength at
removing impulse noise while preserving edges (Pitas, 2000). Circular filter
windows of 10° arc-radii were applied simultaneously over the entire planet,
replacing the value of the pixel at the center of each window with the median of
the values within the window (Figure 5.2). Smoothing was applied at 0.5°x0.5°
grid resolution. The 10° arc-radius was chosen to reflect the effective GS spatial

resolution after smoothing as summarized in Section 2.3.2.

Next, we selected threshold values to delineate ST1 and ST2 regions on the
smoothed maps. These values were chosen with the competing goals of max-
imizing the areal extent of each region and minimizing areal overlap between
the two regions. The threshold selection algorithm optimized a function of areal
overlap between, and areal extent of, the regions. The function also applied a
numerical factor to represent the importance given to minimizing overlap over
maximizing spatial extent. We first verified that resulting mean element abun-
dances were consistent for several numerical factors. Since we desired to iden-

tify the elemental differences between the two surface types without ambiguity,
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we chose a factor that eliminated overlap. The resulting thresholds were ST1
areal fractions exceeding 17 %, and ST2 areal fractions exceeding 36 %. The rel-
ative change in areal extent due to the filter and thresholds was a 70 % loss for
ST2 and a 17 % gain for ST1. As evident by comparing Figure 5.2 with 5.3, this
difference is mostly due to the narrower threshold range for ST2 (36 — 100 %)
relative to ST1 (17 — 100 %).

We computed mean element concentrations over threshold regions after ap-
plying the Hmask to remove any effects of polar ice. These Hmasked regions for
ST1 and ST2 are “region type 1”7 (RT1) and “region type 2” (RT2), respectively
(Figure 5.3). We verified that areal sampling issues from the resulting 94 % rel-
ative loss in areal extent of ST2 were less grave than data accuracy issues of
retaining the higher latitudes (Boynton et al., 2007). We computed mean mass
fractions and instrumental uncertainties of the mean mass fractions (s,,) for Cl,
Fe, H,O (computed stoichiometrically from H), K, Si, and Th in the two regions
using cumulative y spectra that originated from within region boundaries (Ta-
ble 5.1). As described in Section 3.4.2, we also computed the ratios of mean
element concentrations, %2, and propagated corresponding s,, to estimate the

net uncertainty of each ratio (Figure 5.4).

In the second form of data processing, we created global maps of element
concentrations, spatially binned at a latitude-longitude resolution of 5°x5°, with
the same processing and spatial constraints as discussed, for the case of K, in
Section 4.6. With the consequent global maps (Figures 5.5- 5.7), we rigorously
determined correlations among various element concentrations, abundances of

ST1 and ST2, and other variables of interest.

As described in Chapter 4 our correlation coefficient algorithm was based on
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Table 5.1: GS derived mean mass fractions for Cl, Fe, H,0O—equivalent H,
K, Si, and Th (as % with the exception of Th) in region type 1
(RT1) and region type 2 (RT2). Ratio of the mean K (mx) to Th
(mm) in each region is also given. s, is the net uncertainty of
each value.

Element mass fractions and K/Th ratio to 1s,,

RT1 RT2
Cl  046+0.03 0.42 + 0.04
Fe  13.5+0.8 16.0+ 1.3
H,0 3.39 +0.20 3.7+04

K  0.3195+0.0014 0.433 + 0.008
Si  209+03 214 +0.7

Th  (0.633 +0.023)mg/kg  (0.94 + 0.05)mg/kg
m(505+0.18)x 100 (4.6+0.3) x 10°

MTh

three distinct methods of linear multivariate regression analysis: ordinary lin-
ear regression (OLR), heteroscedastic response linear regression (HRLR) (Cohen
and Cohen, 1983; Press, 1982; Rawlings et al., 1998) and spatially weighted linear
regression (SWLR) (Haining, 2003; Upton and Fingleton, 1985). We also imple-
mented hierarchical modeling to eliminate redundant predictor variables and
generate a limited set that would correlate significantly with the response vari-

able at confidence levels > 95 % as discussed in Section 4.6 for the case of K.

As in Section 4.6, the variables of our regression analyses were mean-filtered
global element concentrations (Figures 5.5- 5.7); median-filtered ST1 and ST2
abundances (Figure 5.2); albedo (Christensen, 1988); thermal inertia (Christensen
and Malin, 1988); and rock areal fraction (Christensen, 1986). All variable values

were binned at 5°x55° and subject to the regression mask (Figure 4.6 in Sec-
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tion 4.6) to establish spatially corresponding points across the datasets.

For each element, we used its global concentration data (Figures 5.5- 5.7)
as response variable values. In each case, the concentrations of the remaining
elements, thermal inertia, rock abundance, albedo, ST1 abundance, and ST2
abundance formed one initial set of predictor variables. The thermophysical
variables alone (thermal inertia, rock abundance, and albedo) constituted an-
other set, while the elements alone formed the third. These three initial mod-
els were necessary as the variance contributions from thermophysical variables
and elements were frequently lopsided as evident in our case study with K (Sec-

tion 4.6).

We employed the same approach as in Section 4.6 to identify an optimal
subset of predictors for each element. Consequently, each element generally re-
quired six to seven steps including comparisons (primarily of the variance con-
tribution, i.e., the coefficient of determination, R?) of different predictor variable
subsets to establish a final subset of predictor variables. We used this select set
as predictor variables for a final regression analysis to yield “final” correlation
coefficients (Table 5.2). The unique spatial correlation coefficients (r) and co-
efficients of determination (R?) in Table 5.2 are averages of results from OLR,
HRLR, and SWLR analyses and includes the results presented earlier for K in
Table 4.8. The “Key” column lists the final subset of predictor variables for each

element.

Many factors can reduce the usefulness of multivariate regression. Our pri-
mary concerns were collinearity, strong spatial autocorrelation, missing pre-
dictor variables, and serial correlation of residuals (e.g., Rawlings et al., 1998;

Upton and Fingleton, 1985). While methodology diagnostics described in de-
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Table 5.2: Unique spatial correlation (r), of each element with each mem-
ber of the set of most significant predictor variables (“Key”)
from all potential predictors (“Entire”). r is statistically signif-
icant in excess of 95 % confidence. R? is the coefficient of deter-
mination. Both r and R? are averages of OLR, HRLR, and SWLR
analyses. See text for analysis methods, selection of predictor
variables, and significance of unique correlations. Continued in
Table 5.3.

Element Entire Key r R?

Cl 0.4

Fe

K

Si Si -0.2
Th

Albedo

Rock abundance

ST1 abundance

ST2 abundance

Thermal inertia

tail in Sections 4.6 and 4.7 indicated the presence of issues at 95 % confidence
levels, none were sufficiently severe to compromise regression results. Further-
more, collinearity, which would have necessitated exploration of the correla-
tional structure with principal component analysis and Gabriel’s biplots, was

not evident in our data.

Even though RT1 and RT2 appear mineralogically distinct, in the context of
eolian and other processes that modify the surface of Mars, they each contain

mixtures of rock and nonrock regolith. Therefore, as a supplement to our re-
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Table 5.3: Unique spatial correlation (r), of each element with each mem-
ber of the set of most significant predictor variables (“Key”)
from all potential predictors (“Entire”) continued from Table 5.2.

Continued in Table 5.4.

Element Entire Key

r R?

Fe

Cl

H

K

Si Si
Th

Albedo

Rock abundance
ST1 abundance  ST1 abundance
ST2 abundance

Thermal inertia

0.3

0.3

-0.3

Cl Cl
Fe

K

Si

Th

Albedo

Rock abundance

ST1 abundance

ST2 abundance

Thermal inertia

0.2
0.3
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Table 5.4: Unique spatial correlation (r), of each element with each mem-
ber of the set of most significant predictor variables (“Key”)
from all potential predictors (“Entire”) continued from Table 5.3.

Continued in Table 5.5.

Element Entire Key

r R?

K

Cl

Fe

H

Si

Th Th
Albedo

Rock abundance
ST1 abundance  ST1 abundance
ST2 abundance  ST2 abundance

Thermal inertia

0.6

0.5

-0.2
0.2

Si

Cl Cl
Fe Fe
H

K

Th

Albedo

Rock abundance
ST1 abundance
ST2 abundance  ST2 abundance

Thermal inertia  Thermal inertia

0.5
-0.3
0.3

0.2
0.2
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Table 5.5: Unique spatial correlation (r), of each element with each mem-
ber of the set of most significant predictor variables (“Key”)
from all potential predictors (“Entire”) continued from Table 5.4.

Element Entire Key r R

Th 0.6
Cl
Fe
H
K K 0.5
Si
Albedo
Rock abundance
ST1 abundance  ST1 abundance -0.1
ST2 abundance  ST2 abundance 0.2

Thermal inertia

gion analysis, we also analyzed element concentrations within areas of lower
nonrock areal fractions and those of higher nonrock areal fractions in non-polar
regions of Mars as identified by the Hmask. These region categories were qual-
itatively defined by collectively considering rock (Christensen, 1986), ST1, and
ST2 (Figure 5.2) abundances. The resulting mean element concentrations are

listed in Table 5.6.
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Table 5.6: Mean elemental mass fractions (as %, with the exception of Th)
in lower nonrock abundance (R) and higher nonrock abundance
(NR) regions in the mid-latitudes. Uncertainty is given to 1s,,
the net uncertainty of the mean.

Combined NR Combined R

Cl 0.58 +£0.04 0.45+£0.03
Fe 142+ 0.8 14.1+0.8
H,O 45+03 322+0.2

K 03146+0.0021  0.3319 +0.0022
Si  19.9+03 212+0.3
Th  (0.64 +0.03)mg/kg (0.67 = 0.03)mg/kg

5.3 Results

An important result of our analysis is that RT2 is enriched in K and Th by more
than 30 % relative to RT1 (Figure 5.4). Interestingly, the mean K to mean Th ra-
tios, %, for RT2 and RT1 overlap within propagated uncertainties of the mean
values. We may complement this direct compositional comparison with results
from our multivariate regression analyses (Table 5.2). As we initially discussed
in Section 4.7, the correlation of the spatial distribution of K at the highest statis-
tical significance levels with only Th concentration (unique correlation, r = 0.5),
ST2 abundance (r = 0.2), and ST1 abundance (r = —0.2) is among the most
striking. Similarly, the statistically most significant variables for the spatial dis-
tribution of Th are K (r = 0.5), ST2 (r = 0.2), and ST1 (r = —0.1). Furthermore, the
fractional variance of Th and K accounted for by each “statistically best” set of

predictor variables is nearly 60 %. This is significantly higher than the 20 - 50 %

range for other elements, and suggestive of a more limited set of dominant geo-
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chemical processes leading to the current spatial distribution of K and Th. Fig-

ures 5.2 and 5.5- 5.7 visually reinforce these results.

As we discussed in Chapter 2, comparison of GS data with landing site com-
positions is subject to severe spatial resolution concerns. However, as consid-
ered in Section 2.7 .4, relative to other landing sites the Pathfinder site is subject
to such issues the least. Therefore, we compared the mean composition of RT2
with that of the Pathfinder landing site computed in Section 2 and presented in

Tables 2.2 and 2.4. The results are discussed in Section 5.4.3.

5.4 Interpretation

Important instrumental limitations must be kept in mind in reaching conclu-
sions with our results. In particular, we did not investigate kilometer depth
scale processes on Mars since GS data are limited to upper few tens of cen-
timeter depths (Boynton et al., 2007). Many Martian geomorphic features orig-
inate from much deeper processes, including the Vastitas Borealis formation
(Greeley and Guest, 1987; Scott and Tanaka, 1986; Tanaka et al., 1992, 2003, 2005)
that shows significant spatial overlap with RT2. This formation could poten-
tially consist of a low percentage of extremely ancient crustal rocks mixed with
dominant basaltic material from relatively younger volcanic provinces, which
include Tharsis (Scott and Tanaka, 1986) and Elysium (Greeley and Guest, 1987;
Tanaka et al., 1992).

One factor that must be considered when interpreting any observed spatial
variability in element concentrations on Mars is that the Martian surface is a

mix of rock and nonrock of differing compositions (e.g., Yen et al., 2005). These
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differences are evident in our analysis involving the mid-latitudes of Mars clas-
sified into regions as R (lower areal fraction of nonrock) and NR (higher areal
fraction of nonrock) (Table 5.6). Physical processes like impact gardening and
wind transport that vary the nonrock/rock ratio could account for variations in
bulk elemental composition. Our regression analyses test this idea by the use of
albedo, thermal inertia, and rock abundance as predictor variables. All of these
physical variables might reasonably be expected to vary with the nonrock/rock

abundance ratio over the depth range relevant to the GS.

However, as revealed in Table 5.2 these are not key predictor variables for
most of the elements, including K and Th, indicating that variations in compo-
sition are not strongly coupled with variations in the nonrock/rock ratio. Non-
rocks are areally dominant on Mars, as evident in the IR-TM 5°x5° dataset’s mean
global nonrock/rock ratio of ~ 10 and in case studies by Newsom et al. (2007).
Should nonrocks be globally homogeneous, dilution effects could then mask
the compositional variability due to rocks. This is unlikely, since, as evident in
both our multivariate correlation analyses and ST1 and ST2 abundance variabil-
ity, regolith elemental and mineralogical compositions both vary meaningfully

across the planet.

Furthermore, significant compositional variability is evident even among re-
gions potentially dominated by nonrocks (e.g., Newsom et al., 2007) while in situ
observations suggest that nonrocks may be compositionally much less variable
than rocks (e.g., Yen et al., 2005). This reinforces the possibility that while phys-
ical processes may vary the relative areal fractions of rocks and nonrocks, geo-
chemical processes determine compositional variability, such as the strong co-

variance among K, Th, ST1, and ST2. Therefore, we conclude that a suitable
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model for ST2 must explain K and Th enrichment relative to the basalts of ST1
on the basis of rock composition rather than variations in nonrock/rock ratio.
Due to the significant mixing depths by eolian, impact gardening, and other
physical processes in the Martian surface over geologic time scales, the relative
difference between GS and TES sampling depths should not affect our infer-

ences.

Among the models for ST2 mentioned in Section 5.1, the leading candidates
are basalts altered by aqueous processes (Wyatt and McSween, 2002) and unal-
tered basaltic andesite (Bandfield et al., 2000). We discuss each possibility below.
We do not include CI and H in our interpretation, since the latter is affected by
the presence of subsurface ice and an unknown amount of bound water, while
the former may be influenced by the mobile component of the regolith (Keller

et al., 2006b).

5.4.1 Alteration by Water

Fresh basaltic lavas may be altered by subaerial weathering and by subaque-
ous water-rock reactions. A subaqueous weathered basalt model for ST2 (Wyatt
and McSween, 2002) may be consistent with K enrichment if the water chemistry
were similar to terrestrial ocean water. The elemental concentration changes
that occur during submarine basalt weathering on Earth are driven by the el-
emental composition of seafloor basalt, chemical composition and pH of wa-
ter, temperature, and water/rock volume ratio. Ocean water is rich in K
~ 400 mg/kg (Drever, 1997)) and severely depleted in Th < 0.5 ng/kg, leading to

very high K/Th in ocean water > 8 x 10® compared to K/Th in the continental
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crust (2600; Taylor and McLennan (1985)).

The large increase in K/Th in ocean water is not caused simply by dissolu-
tion of high-K continental rocks because continental rocks are also enriched in
Th. Instead, it is due to the higher solubility of K compared to Th in approx-
imately neutral water. Dissolution of typical Martian crust would still lead to
high K/Th in Martian surface water. If the water/rock ratio were high, the am-
bient temperature were low < 150°C, and the subaqueous environment were
chemically similar to terrestrial oceans (high K/Th), alteration in the northern
plains may resemble that in terrestrial seafloors. Such alteration would enrich
the rocks in K (e.g., Honnorez, 1981), while the Th content would remain unaf-
fected, as shown by studies of altered Mid-Ocean Ridge Basalt (MORB) (Jochum
and Verma, 1996; Staudigel et al., 1996). For example, Staudigel et al. (1996) show
that K/Th in altered basalt is 3 to 90 times greater than in typical unaltered
MORB. Therefore, the concentration of K, decoupling of K and Th distributions,

and the K/Th ratio are good markers for submarine alteration.

Our data indicate a 30 % higher mass fraction of K in RT2 compared to RT1,
but the K/Th ratio is indistinguishable in the two regions (Table 5.1, Figure 5.4).
The clear coupling of K and Th distributions with each other and ST2, as evident
in our regression analyses (Table 5.2), reinforces these results. In contrast, if
chemical conditions in a Martian sea were comparable to those in terrestrial
oceans, we would have expected a decoupling of K and Th distributions along
with a strong enhancement in the K/Th ratio. The absence of either scenario
suggests that submarine aqueous alteration of basalt, at least under terrestrial
submarine chemical and thermal analogs, is unlikely to explain the difference

between ST1 and ST2.
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On the other hand, subaerial aqueous alteration under approximately neu-
tral conditions (pH of 5-8, normal for terrestrial weathering) would lead to
different compositional expectations. Studies of terrestrial weathering profiles
show that K is mobile while Th, because of the low solubility of Th complexes, is
relatively immobile, although it can be carried away as colloids (e.g., Daux et al.,
1994; Nesbitt and Markovics, 1997; Nesbitt and Wilson, 1992; Patino et al., 2003). For
example, Nesbitt and Wilson (1992) show that K/Th varies from about 2300 in the
least weathered basaltic rock to less than 100 in the most weathered. If ST2 were
a result of normal weathering, one would expect that K would be preferentially
removed and that K/Th would be lower than elsewhere on Mars. This is not
observed, although it is possible that K redistribution was local on a scale much

smaller than the GS spatial resolution, and consequently undetectable.

Furthermore, common Earth analogs may not provide the best guide to al-
teration processes on Mars. Analyses of MER data and corresponding labora-
tory simulations suggest that the outcrops in at least 2 x 10° km? (Christensen and
Ruff, 2004) of Meridiani, and rocks within the ~ 150 km diameter Gusev Crater
may have formed under acidic geochemical conditions rare on earth (e.g., Clark
et al., 2005; Hurowitz et al., 2006; McLennan et al., 2005; Tosca et al., 2005). The
fluid that evaporated to produce the Meridiani outcrops was likely dominated
by aqueous Fe?*, Mg2+, Si0,, SOﬁ_, and Ca*" at low pH (Tosca et al., 2005). This
fluid chemistry, a result of basaltic mineral dissolution in H,SO, and HCl acid-
rich waters (e.g., Rieder et al., 2004), contrasts with typical terrestrial weathering
regimes at pH of 5-8. As a consequence, unlike in terrestrial evaporite forma-
tion, Na and K ions may not play a dominant role in Martian evaporite forma-

tion.
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Under acidic conditions, as described by Taylor et al. (2006a), both Th solubil-
ity and the dissolution rate of phosphate minerals, a major host for Th, increase,
fractionating K from Th. Unpublished experiments by G. Dreibus show that at
pH of 3 to 4 solutions in contact with crushed samples of the Zagami shergottite
have K/Th of 181 (versus 3160 in fresh Zagami) after 14 hours of reaction time.
The altered Zagami residue had K/Th of 10*. This leaching of Th was probably
caused by a combination of rapid dissolution of merrillite, the main carrier of
Th in Zagami, and enhanced solubility of Th at low pH. In contrast, K is concen-
trated partly in residual Si-rich glass and in plagioclase, both of which dissolve
slower than does merrillite (see summary by Taylor et al. (2006a)). Therefore, if
most rocks on Mars have similar host minerals for K and Th as found in SNC
meteorites, K/Th might increase by subaerial weathering at low pH more effec-
tively than it would decrease by weathering under neutral conditions. We do
not know if the K and Th carriers in the Martian crust are like those in SNC me-
teorites. However, Mars appears to be enriched in moderately volatile elements
(Dreibus et al., 1996), elevating the modal abundances of phosphate minerals
by a few percent and increasing the likelihood for the bulk of the Th to reside
in phosphate minerals. The high K/Th ratio on Mars compared to Earth (Tay-
lor et al., 2006b) demonstrates the enrichment of moderately volatile elements.
The slight enrichment of Fe in RT2 (Figure 5.4), though essentially inconclusive
within 1s,, (propagated net uncertainty of the mean value ratio) error bars, is
consistent with low pH evaporitic processes at Meridiani. Nevertheless, ter-
restrial submarine, neutral-pH subaerial, low-pH subaerial, and low-pH SNC
alteration analogs all suggest that aqueous alteration under a range of physical
conditions and durations is likely to fractionate K from Th, which we do not

observe.
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Alternatively, the weathering profile may have been homogenized by im-
pact gardening (Hartmann et al., 2001). Nevertheless, as seen in Figure 5.4, the
similarity of K/Th in RT2 to the value in RT1 (and to the average crustal value
(Iaylor et al., 2006b)) as well as their striking spatial correlation (Table 5.2) sug-
gests that weathering under conditions that lead to the fractionation of K from
Th did not cause the apparent difference between the two surface types. Other
weathering models such as silica-coated basalt and oxidized basalt (McLennan,
2003; Minitti et al., 2002) do not account in any simple way for the enrichment

of Kin RT2.

5.4.2 Igneous Processes

Remaining models for ST2 composition, such as basaltic andesite, also suffer
from disparities between the expected and observed behavior of elements. Ter-
restrial basaltic andesites and basalts are distinguished primarily on the basis
of Si concentration. The concentration of K can be higher for some basaltic an-
desites than basalts, but these two rock types generally overlap in K concentra-
tion. However, the statistically significant K enrichment we observe does not

immediately exclude a basaltic model for ST2.

One igneous mechanism that could enrich K and Th in ST2 is fractional crys-
tallization of basaltic magma (Minitti and Rutherford, 2000). However, our abso-
lute Si measurements are tied to Pathfinder measurements (Boynton et al., 2007,
and Chapter 2), so we cannot meaningfully determine whether ST2 is andesitic
on the basis of GS-derived Si concentration. This is reinforced by the dispar-

ity between TES-derived SiO, mass fractions for ST1 and ST2 of = 53 % and
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~ 57 % (McSween et al., 2003), respectively, and GS-derived mean Si content (Ta-
ble 5.1, Figure 5.8) corresponding to SiO, mass fractions of (44.7 + 0.6)% for RT1
and (45.8 £ 1.4)% (uncertainty quoted as standard error of the mean, 1s,) for
RT2. While these absolute value differences may in part be a consequence of the
dramatic sampling depth difference between the TES and GS, evidence for Si
enrichment in RT2 is inconclusive within 1s,, error bars (Figure 5.4). In light of
these issues, in spite of the similarity of K and Th content in RT1 to the global av-
erage (Taylor et al., 2006b), we cannot utilize an RT1 composition as proxy to the
parent magma of ST2. Without a presumed source composition, it is unfeasible

to test the possibility of fractional crystallization with our data.

Citing geological and geophysical evidence, several authors have suggested
that plate tectonics (Connerney et al., 1999; Nimmo and Stevenson, 2000; Sleep, 1994)
may have occurred during an extremely ancient phase of the evolution of Mars
(Baker et al., 2002; Fairén et al., 2004, 2002). Could ST2 be a calc-alkaline magma
formed by subduction? Our data seem inconsistent with plate tectonics involv-
ing subducting slabs rich in fluids and hydrously altered basaltic rocks as they
are on Earth. First and foremost, as discussed above, we do not see strong evi-
dence for Si enrichment in ST2 (Figure 5.4). Since the Pathfinder normalization
is a constant factor across the global Si dataset, GS estimates of relative varia-
tion (e.g., enrichment) in Si content are rigorous, while estimates of absolute Si
content are not. As a result, we cannot meaningfully evaluate processes that

require accurate knowledge of absolute Si content.

The chief characteristic of subduction zone magmatism on Earth is the
formation of calc-alkaline magmas by hydrous partial melting of the mantle

wedge above the wet subducting oceanic slab. Initial melts tend to be basaltic,
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Figure 5.8: Comparison of Pathfinder and region type 2 (RT2) mean com-
positions. H,O mass fractions are GS estimates. Fe, Cl, and K
mass fractions are the only values for which Pathfinder and GS
estimations are mutually independent. Error bars are shown to
1s,,.
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with basaltic andesite and andesite forming by fractional crystallization of the
basaltic magma, accompanied by assimilation of the overlying silicic continen-
tal crust (Grove et al., 2003, 2002; Hawkesworth et al., 1997; Rudnick, 1995; Stolper
and Newman, 1994). McSween et al. (2003) also provide a concise summary of
the compositions and origin of calc-alkaline magmas. Major elements seem to
be contributed by hydrous partial melting of the mantle wedge, whereas trace

elements appear to come dominantly from the slab (e.g., Grove et al., 2002).

Most important, the fluid fractionates the trace elements. K is distinctly en-
riched in the fluid from the water-rich oceanic slab. Many arc magmas are con-
sequently enriched in K. Th appears less soluble in the fluid phase, so K/Th
would be high (Hawkesworth et al., 1997). In spite of some evidence for the
mobility of Th and its accumulation in the fluid phase (Brenan et al., 1995),
Hawkesworth et al. (1997) convincingly argue that the way Th forms complexes
in aqueous solutions prevents it from concentrating in the fluids rising from the
slab. Thus, if a similar process operated on Mars, we might be able to detect
it by anomalously high K content and high K/Th. On Earth, in spite of some
variability, many arc magmas have K/Th ranging from two to five times the
bulk silicate Earth value of 2900 (Taylor and McLennan, 1985). RT2 is enriched
in K (Figure 5.4), but its K/Th ratio (Table 5.1) is typical for the Martian surface
Taylor et al. (2006a,b). Therefore, decisive evidence for areally (not necessarily
volumetrically) widespread formation of calc-alkaline andesite is lacking within
ST2. Should ST2 material contain calc-alkaline andesites, it would probably be

at spatial scales less than the GS’s 440 km diameter footprint (Section 2.3.1).

An alternative to both localized fractional crystallization and plate subduc-

tion mechanisms is initial bulk differentiation processes on Mars producing
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compositionally distinct magma source regions in the mantle. If that were true,
and present crustal dichotomy generally follows the source regions, northern
and southern basaltic provinces of distinct trace element compositions, includ-
ing K and Th, could be produced. Differences in isotopic and trace element
abundances, as well as oxygen fugacities in SNC meteorites are consistent with
distinct source magmas (e.g., Borg and Draper, 2003; Borg et al., 2003; Herd, 2003).
The wide range in eyq suggests that these sources remained separate at least un-
til the magmatic production of SNC material (e.g., Brandon et al., 2000; Borg et al.,
2003).

In addition, simulations of whole-mantle magma oceans, i.e., those in ex-
cess of 1500 km depths, on early Mars predict differentiation of the mantle into
lateral components with distinct compositions. In these magma oceans, the cu-
mulate vertical density profiles invariably become non-monotonic, leading to
compositional differences. Such density profiles precipitate mantle overturn to
yield the laterally heterogeneous compositions (e.g., Elkins-Tanton et al., 2005b).
Furthermore, among many simulations involving magma oceans with varying
depth on early Mars, only those with whole mantle magma oceans yield crustal
composition predictions consistent with surface and orbital data (Elkins-Tanton
et al., 2005a). Even though current simulations also predict differences in Si con-
tent (Elkins-Tanton et al., 2005a), which we do not observe, the difference in K
and Th content between RT2 and RT1 is generally consistent with whole man-
tle magma ocean models. Magma ocean crystallization and overturn would
not significantly fractionate K from Th because both elements are incompatible
(Borg and Draper, 2003), consistent with the uniformity in K/Th between ST1
and ST2. The extent of enrichment in Si (if any), K, and Th depends on a com-

plex interplay of the bulk composition of each mantle source that gave rise to
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ST1 and ST2, its mineralogy, and amount of partial melting. In general, magma
ocean modeling is consistent with the idea that ST1 and ST2 are derived from

compositionally distinct mantle sources.

5.4.3 Pathfinder Comparison

The Mars Pathfinder rocks have compositions consistent with basaltic andesite
(e.g., Wiinke et al., 2001). With TES-derived ST1 and ST2 areal fractions of 13 %
and 21 %, respectively, the Mars Pathfinder landing site is only a few degrees
southwest of our RT2 boundary. Given the spatial proximity, it may be useful
to compare the GS-derived composition of RT2 with APXS-derived Pathfinder
landing site composition as ground truth. Any comparison must keep in mind
that the spatial resolution of the GS is = 440 km (Boynton et al., 2007, and Chap-
ter 2) while the Pathfinder APXS examined “dusty” surfaces only a few cm in

diameter within a ~ 100 m? region (Golombek et al., 1997).

Given the enormous difference in effective spatial resolution, GS-derived el-
ement concentrations for RT2 should correspond to some weighted average of
the compositions of Pathfinder rock, Pathfinder nonrock, and probably other
materials as well. Such a composition was estimated as described in Sec-
tion 2.7.4 and summarized in Section 5.3. Furthermore, since the GS-derived Si
concentration was normalized to a Pathfinder mean value (Boynton et al., 2007,
and Chapter 2) at the lander coordinates, comparisons are robust only for Cl, Fe,
and K. As evident in Figure 5.8, the mean concentration of K at the Pathfinder
landing site exceeds the GS-derived K concentration for RT2. This may indicate

that rock surface compositions at the Pathfinder landing site are not representa-
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tive of the bulk of ST2.

5.5 Conclusions and Future Work

Our investigation relied on elemental concentrations derived from Mars
Odyssey GS data along with synergistic use of information from a variety of
instruments such as MER, Pathfinder Sojourner APXS, MGS-TES, Viking Lan-
ders, and Viking IRTM, to evaluate geologic models for the origin of ST2. A
key result is that K, Th, ST1, and ST2 are the most spatially correlated variables
among these datasets. Consistent with this observation is the significant enrich-
ment of K and Th in ST2, along with a K/Th ratio that is similar to the bulk
planet. These observations collectively suggest that ST2 materials may be char-
acterized by geochemical processes that enrich both K and Th, but not by those
that fractionate K from Th. Both TES mineral library fits and Pathfinder APXS
estimation of Si content suggest that ST2 is Si-enriched. However, GS data do
not reveal a meaningful enrichment of Si in ST2 relative to ST1, and suggest that

ST1 and ST2 may instead be distinct on the basis of K and Th content.

Silica coated basalt and oxidized basalt models do not explain the enrich-
ment of K and Th in ST2, and the former is inconsistent with the similarity in
Si content between ST1 and ST2. In addition, the behaviors of K and Th do not
suggest typical terrestrial subaerial aqueous alteration. Given the similarity of
K and Th spatial distributions, a Martian analog of terrestrial submarine aque-
ous alteration or alteration by low-pH fluids enriched with basaltic minerals is
also unlikely as the dominant process that produced ST2. Instead, igneous envi-

ronments, such as compositionally distinct magma sources, may have produced
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the differences between ST1 and ST2. However, we do not observe compelling

evidence for analogs of terrestrial plate tectonics.

Relative weakness of y spectral intensities at spatial resolutions finer than
5°x5° and the = 440km diameter GS footprint (Boynton et al., 2007) preclude
mean element concentration calculations for ST1 and ST2 on a bin-by-bin basis.
This necessitated the 17 % and 36 % thresholds that we employ. Since threshold
regions exclude nearly 70 % of the original ST2 areal extent, they may conceal
some compositional features of ST1 and ST2. However, by exclusively employ-
ing regions free of overlap between ST1 and ST2, we have ensured that the el-
emental distributions we observe enable unambiguous comparisons between
the two surface types. Furthermore, our methods provide consistent results for
different thresholds, minimize statistical error that would have otherwise pre-
vented meaningful comparisons, and are consistent with multivariate regres-
sion analyses in the absence of thresholds. As such, we are confident that our
conclusions reflect the best available data from the Mars Odyssey GS instru-

mentation.

At present, we are compelled to restrict our analyses to the mid-latitudes
primarily due to the difficulty of accurately modeling heterogeneities in the dis-
tribution of hydrogen with depth. Modeling y spectra to account for the phys-
ical mixing scale of different materials (Squyres and Evans, 1992), as well as em-
ploying layered-regolith models of differing compositions may complement our
current approach to elemental concentration calculations. That may in turn al-
low us to make a more exhaustive comparison between ST1 and ST2 by includ-
ing higher latitudes where ST2 dominates (Compare Figure 5.2 with 5.3). Even

though recently mapped Ca (Chapter 6) within RT2 is similar to average Mars,
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future improvements to elemental mass fraction estimation methods may pro-
vide additional insight from significant elements such as S and U at 5°x5° grid
resolution. In addition, current ambiguities in Si and differences between ST1
and ST2 in Fe content may be reduced or eliminated, enabling better determina-
tion of compatible igneous models. Chemically striking regions on the surface
discussed in Chapter 6 hint that the geochemistry of ST1 and ST2 may be charac-
terized further by analyzing the extensive area of overlap between ST1 and ST2
as well. Occurring primarily in the 23° to —45° latitudes with moderate-to-low
areal fraction (< 36 %) of ST2 and moderate-to-high areal fraction (> 25 %) of

ST1, this area has the added benefit of freedom from the polar H,O ice regimes.
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CHAPTER 6
CHEMICALLY STRIKING REGIONS AND STEALTH REVISITED

6.1 Goals

The primary goal of our work is two-fold: to identify regions on Mars that are
chemically striking and to describe one of them as a case study motivating fu-
ture analysis of the remaining regions. We define a chemically striking region
(CSR) as one where the mass fractions of two or more elements are significantly
different from their midlatitudinal averages. We delineate these regions with
the global midlatitudinal maps of elemental mass fractions generated by the
Mars Odyssey team. Our case study also relies on several other missions -
the MER, MGS-TES, and MRO High Resolution Imaging Science Experiment
(HiRISE) key among them.

The primary instrumentation and data generation by the Mars Odyssey GRS
is summarized in Chapter 2 and described in detail by Boynton et al. (2007); Evans
et al. (2006); Boynton et al. (2004). We described the key statistical techniques to
analyze remote sensing data on a global scale in Chapters 3 and 4. As men-
tioned before, the three instruments of the GRS, particularly the NS and GS, are
complementary in their determination of H, with different sensitivities to mass
fraction variabilities as well as different sampling depths (Boynton et al., 2004).
While the NS is capable of indirectly estimating the mass fractions of elements
that affect the neutron energy spectrum, only the GS provides direct estimates
for multiple elements by means of characteristic energies of y photons emitted
during nuclear de-excitations. For this reason and the focus of this work on

defining CSRs, we rely solely on elemental mass fraction maps generated with
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the GS data.

6.2 Delineating Chemically Striking Regions

We delineate chemically striking regions using the mass fractions of the seven
elements for which uncertainties are reasonably small. These are Ca, Cl, Fe, H,O
(as the stoichiometric equivalent of the GS’s H estimates), K, Si, and Th. While
the uncertainties in the values and methodology of Al mass fraction estimates
are being refined, we present regions that include Al for future study. The CSRs
are delineated in two steps, beginning with the definition of significant deviations

from bulk Mars for a single element - a gaussian tail cluster (GTC).

6.2.1 GS Mapping Summary

As we discussed in Chapter 2, the GS bin data subjected to temporal cumulation,
multiple processing steps, and a mean filter to maximize signal-to-noise ratios,
yield global maps of elemental mass fractions. We utilize the most extensive
cumulation period currently available consisting of epochs 1 and 2 correspond-
ing to the combined primary and extended mapping periods from 08 Jun 2002
(00:00:00) UTC to 02 Apr 2005 (20:20:00) UTC, and 30 Apr 2005 (00:00:00) UTC
to 22 Mar 2006 (07:54:00) UTC, respectively. We choose a bin size of 5° x 5° for
the mass fraction maps to partially address spatial uncertainty in the form of
spatial autocorrelation (Section 4.2.2) introduced primarily by the mean filter,

the arc radius of which varies as discussed in Section 2.3.2.
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6.2.2 Step 1: Delineating Gaussian Tail Clusters (GTCs)

An unfortunate consequence of the nearly gaussian distribution of the elemen-
tal mass fractions (Section 3.3) is that robust outliers do not exist in the distri-
butions. However, spatially extensive regional variations in GS-chemical maps
make a strong case for treating them as such, the lack of outliers notwithstand-
ing. Therefore, we utilize an improvised test parameter, ¢, as a measure of de-
viation from the bulk of Mars for each element. For any given element, the test

parameter evaluated at the i bin is:

ci—m

l = ——— (6.1)
o T 82

where ¢; is the mass fraction of the element at the i bin, m is the global
arithmetic mean mass fraction, s, ; is the numerical uncertainty of ¢;, and s is the
standard deviation of the mass fractions. The key difference between #; and the
commonly used Student’s-t parameter (e.g., Helsel and Hirsch, 2002; Press et al.,
2007, former p. 126; latter p. 728) is the inclusion of s,; in the denominator.
This term ensures that the significance of deviations from the global mean is
evaluated in the context of numerical uncertainties. Since the GS data follow
gaussian distributions to first order (Section 3.3), our parameter is effective at
identifying data in the distributional tails, i.e., the gaussian tail clusters (GTCs)
of an element. In addition, the standard deviation (s) exceeds the root-mean-
square uncertainty (sms) by more than 20 % for the elements (Section 3.2.3 and
Figure 3.1), confirming that numerically meaningful deviations from the mean

exist.
Due to the lack of outliers in the data and the use of s,,; to enhance rigor, the
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Table 6.1: The statistical significance of a given deviation from the mean
computed as the cumulative tail probability of a Student’s-t dis-
tribution. The significance of the magnitude of deviation (Pp,,)
is usually less than that of the directional deviation (P), as the
former is bidirectional. s denotes the standard deviation and ¢ is
the test parameter in Equation 6.1.

t Deviation exceeds  Ppge P

1 Ls 68% 84 %
1.5 1.5s 87% 94 %
2 25 95% 98 %
25 2.5s 9% 99 %

magnitude of #; does not exceed 3 in any of the elemental mass fraction maps.
Therefore, the thresholds we utilize to identify GTCs are #; no less than 1, 1.5, 2,
and 2.5 which correspond to better than 1s, 1.5s, 2s, and 2.5s confidence, respec-
tively. Corresponding statistical confidence based on a Student’s-t distribution

is listed in Table 6.1.

The GTCs that result from two of the ¢ thresholds are illustrated in Fig-
ures 6.1- 6.8. The preservation of GTC interiors at ¢ > 1 (e.g., Figure 6.1,
left) when the threshold is increased to 2 (e.g., Figure 6.1, right) is evidence that
the GTCs are spatially meaningful. Those of Cl have been analyzed by Keller
et al. (2006b), with particular emphasis on the Cl-enriched regions that extend
west from the Tharsis area and overlap considerably with the Medusae Fossae
Formation (MFF). As evident in the discussion in Chapter 5, GTCs that mark the
enrichment of K and Th overlap strikingly with higher areal fractions of surface
type 2 material (Rogers et al., 2007a; Rogers and Christensen, 2007). Spatial coinci-
dences of GTCs with secular units have been discussed by Hahn et al. (2007) and
with Northern lowlands by Dohm et al. (2008, GRS Evidence and the Possibility
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Table 6.2: Arc-radius, linear radius, and approximate surface area of
the mean filter used to generate the global map of each ele-
ment/oxide. The linear radius and surface area assume Mars to
be an exact sphere and utilize the MGS95] model 3.396 x 10° km
planetary radius (Konopliv et al., 2006).

Element/Oxide Arc-radius Linear radiuskm Surface area km?

Al Ca, Si 15 8.9 x 10? 2.5 x 10°
Cl, Fe, H,O, Th 10 5.9%x10% 1.1 x 108
K 5 3.0 x 10? 2.8 x10°

of Ancient Oceans on Mars, submitted to Plant. Space Sci.). Given our empha-
sis on the spatial overlap of GTCs to define CSRs, we do not discuss GTCs of

individual elements further in this work.

6.2.3 Step 2: Spatial Overlap of GTCs and Area Threshold

As described in the introduction, the chemically striking regions are defined to
be those of overlap among the GTCs of multiple elements. Even when underly-
ing GTCs are spatially expansive, uncertainties in the form of spatial autocorre-
lation (Chapter 4) may place their physical significance in doubt. As an analogy,
any region that is smaller than the areal extent of the = 7.4° GS footprint may
be considered as tenuous as a feature smaller than the = 1.5 pixel point spread
function (PSF) of an image generated by the HiRISE (e.g., McEwen et al., 2007,
Para. 18 and Fig. 9). For any given set of elements, we reduce the impact of this
concern conservatively by identifying the CSRs that equal or exceed the area of
the largest mean filter (Table 6.2). The area calculation is approximate, not ex-

act, since it does not account for topography and assumes Mars to be a sphere.
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Furthermore, as Gasnault et al. (2008, Quantitative Geochemical Mapping of
Martian Provinces, in preparation) discuss, even our conservative constraints
may not completely localize the proper area for study. Nevertheless, even a
small CSR contained within those that show consistent chemical trends and sat-
isfy area thresholds may prove insightful, as we will demonstrate below with

our case study.

For the sake of consistency and simplicity, we delineate CSRs for each of the
247 possible sets of elements taken two or more at a time, including Al, using
GTCs defined with the same statistical threshold, such as ¢t = 1. Only seven
sets, all two elements each, survive the thresholds as given in Table 6.3. We do
not impose additional constraints - such as eliminating sets of elements that are
unknown to show chemical covariability on Earth - in order to identify CSRs

free of terrestrial bias.

The CSRs subsequent to area threshold application are illustrated in Fig-
ure 6.9. Comparisons with Figures 6.1- 6.8 reveals that while GTCs overlap
spatially across most statistical confidence thresholds for sets of two elements,
few actually exceed the area of the largest corresponding mean filter (Table 6.2).
As a case in point, Figure 6.10 illustrates the region delineation steps for Cl and
Siatt > 1.5. We also make a minor refinement to the area threshold method
by discarding any bins with fewer than three edge or corner sharing neighbors.
This effectively eliminates any narrow regions that are only a bin across with
consequently higher spatial uncertainties. The delineation of GTCs, delineation
of overlap, elimination of narrow regions, and the application of area thresh-
olds for the 247 sets of elements were all implemented algorithmically without

manual intervention. While many CSRs overlap with each other as evident in
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Table 6.3: Key to the numerical code of Chemically Striking Regions

(CSRs) in Figure 6.9. Each CSR is denoted by the correspond-
ing set of elements in curly braces, confidence (Table 6.1) as
an approximation to a multiple of the standard deviation (s),
enrichment (E) and/or depletion (D) in element order, and
arc radius of the area threshold (Table 6.2). For example,
{CI,Si}1.5sED15° would denote a bin belonging to a single CSR
marked by the enrichment of ClI and depletion of Si at better
than 1.5s confidence and exceeding a 15° radius area. On the
other hand, {Cl,H}1sEE15°{CI,Si} 1sED15° identifies a bin of
overlap between two CSRs: One {Cl, H} 1sEE15° and the other
{CL,Si} 1sED15°. Note that such bins generally do not delineate
a sufficiently large contiguous area to be classified as a CSR in
its own right. CSRs of Si and Th overlap completely with the
CSRs of K and Th albeit at different statistical confidence levels.
The one region on the basis of Al is solely to motivate future in-
vestigations as the Al map is being refined. Higher numerical
uncertainties and weak correlation with other elements caused
the absence of Ca-based CSRs. Continued in Table 6.4.

Key Value
Unclassified 0

{Al, Fe} 1SEDI15° 5
(CL,H} 1SEE15° 10

{Cl,H} 1sEE15°{CL,Si} 1sED15° 15

{CL,Si}1.5sEDI15° 20

{Cl,Si}1sDE15° 25

{CL,Si}1sDE15°{K, Th} 1sEE15° 30

{CL,Si}1sED15° 35

{Fe,Th} 1sEE15° 40
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Figure 6.10: Illustration of the CSR delineation steps using Cl (left), Si
(right), and 7 > 1.5 as an example. Note how the element with
the smaller GTCs constrains the areal extent of the resulting
CSRs.
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Table 6.4: Key to the numerical code of Chemically Striking Regions
(CSRs) in Figure 6.9 continued from Table 6.3.

Key Value

{Fe,Th} 1sEE15°{K, Th} 1.5sEE10° 45
{Fe, Th} 1sEE15°{K, Th} 1.5sEE10° {Si, Th} 1sEE15° 50
{Fe,Thy 1sEE15°{K, Th} 1 sSEE15° 55
{Fe,Thy 1sEE15°{K, Th} 1sEE15°{Si, Th} 1sEE15° 60

{Fe,Th) 1sEE15°{Si,Th} 1sEE15° 65
{H,Si} 1sDE15° 70
{H,Si}1sDE15° {K, Th} 1sDD10° 75
{K,Th} 1.5sEE10° 80
(K, Th}1.5sEE10° {Si, Th} 1sEE15° 85
(K, Th} 1sDD10° 90
(K, Th}1sDD15° 95
(K, Th}1sEE15° 100

Figure 6.9 and Table 6.3, we are unable to classify the resulting sub-regions as

CSRs since they fail to satisfy the area thresholds.

6.3 Overview of the Chemically Striking Regions

To first order, two other independent methods of defining regions on the basis of
elemental mass fractions - one a combination of principal component analysis,
cluster analysis, hierarchical modeling, and a field-of-view filter (Gasnault et
al., 2008, in preparation) and the other a combination of principal component

analysis and cluster analysis implemented in ENVI (Taylor et al., 2008, JEFF,
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WHAT IS THE TITLE?, in preparation) - also highlight the same broad regions
of the planet as our approach. As discussed in the two companion papers, this

reinforces the geochemical significance of CSRs in spite of spatial uncertainties.

As evident in Figure 6.9, several CSRs marked by enrichments involving
Fe, K, Si, and Th occupy Chryse Planitia northward to Acidalia. Several other
CSRs, involving the enrichments of K, Si, and Th, and depletion of Cl, exist in
the regions NE of both Isidis and Arabia and the western perimeter of Utopia
into Vastitas Borealis. Collectively, these regions are suggestive of strong chem-
ical variations marking the lowlands proximate to the lowlands margin. Ac-
cordingly, they may help to constrain models that relate lowland geochemistry
dominantly to aqueous alteration (e.g., Dohm et al., 2008, submitted) or domi-

nantly to igneous processes (e.g., Chapter 5).

Several regions of high southern latitudes, mostly beyond the midlatitudinal
constraint of the other elements (Section 6.2.1), are marked by the mutual deple-
tion of K and Th which may be influenced in part by mass dilution effects of H
enrichment closer to the polar regions. Two areas of the midlatitudinal south-
ern highlands are also highlighted by the CSRs. One lies immediately south
of Valles Marineris overlapping with Syria, Solis, and Thaumasia plateaus cor-
responding to CSRs delineated by the enrichment of Si and depletion of H, K,
and Th. The second, marked by the mutual enrichment of K and Th, occupies
the vicinity of Sirenum Terra and Terra Cimmeria. Tentatively, a third area de-
lineated by the depletion of Fe and enrichment of Al on the NW perimeter of

Hellas may provide useful insight once the Al map is refined further.

SE Elysium lava flows constitute nearly 70 % of the underlying surface in

one of smallest CSRs, delineated by the simultaneous depletion of K and Th, as
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mentioned later in Section 6.3.2. Abutting this region is the last broad area on
Mars that is identified by the CSRs. It extends westward from the Tharsis bulge,
through the MFF, and into Elysium Planitia. As mentioned in Section 6.2.2, the
key underlying GTCs for this broad expanse are those of Cl enrichment. The
individual CSRs essentially identify chemical heterogeneities within it. Those
of Si depletion are limited to the Tharsis construct, while the western section is

marked by H enrichment.

In our case study we focus on the chemical signatures evident in the east-
ern portion of the broad region, where the most expansive CSR consists of
{CISilsED15°} (Table 6.3 and Figure 6.9) denoting (E)nrichment of Cl and
(D)epletion of Si at 1s confidence exceeding the area of a 15° radius cap (Ta-
ble 6.2). Abundances of these elements differ from global averages by over
1.5s throughout most of its SW portion. In turn, within the SW portion of the
{CISi1.5sED15°} CSR lies a region also depleted in Fe at better than 1s confi-
dence. In spite of being smaller than the area threshold (Table 6.2) by = 20 %,
we choose this smaller region for our case study due to two key reasons: (1)
Consistent chemical trends in a spatially nested pattern that highlight the re-
gion; and (2) The marked depletion of both major elements detected by the GS,
Fe and Si, making the region particularly unusual. This region, along with the

larger CSRs that contain it, is illustrated in Figure 6.11.

Do the CSRs conform with the global correlations that we identified in mul-
tivariate space (Chapter 5)? To first order, they do. For example, the presence of
CSRs delineated by the enrichment of both K and Th and the absence of those
marked by the enrichment of one and depletion of the other is consistent with

the strong positive correlation that exists globally between them as discussed
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Figure 6.11: Sketch of our case study region (sky blue outline) that is
marked by Cl enrichment and Fe, Si depletion along with
the CSRs that surround it: {CISiED1.5s15°} in lime and
{CISiED15s15°} in purple. Consistent chemical trends of Cl en-
richment and Si depletion highlight our region. CSR to the
west outlined in red is {CIHEE1s15°}. Overlain on the MOLA
elevation map from PIGWAD at 1: 2.8 x 10" lateral scale. Red-
dish hues indicate higher elevation while bluish hues indicate
lower elevation in the MOLA map. HiRISE images that are
used to characterize the surface in Section 6.4.3 are also indi-
cated by numerical tags corresponding to Table 6.5. The pos-
sibility of HiRISE sampling bias is noted in Section 6.4.3.

in Chapters 5 and 4. Global correlations and the CSRs are similarly consistent
even for elements that are not as strongly correlated, such as Cl and Si. As was
anticipated by the anticorrelation between Cl and Si (Keller et al., 2006b, and
Chapter 5), all of the CSRs delineated with CI and Si show enrichment of one
and depletion of the other. The CSRs delineated by Cl and H, such as those
in the western MFF area, are consistent with their positive correlation (Keller

et al., 2006b, and Chapter 5) in multivariate space as well. Lastly, Ca, which
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shows only weak multivariate correlations with others in preliminary analyses

(Section 4.7), does not yield any CSRs that satisfy our area thresholds.

Summary comparisons with the global distributions of surface type 2,
mapped geologic units, thermal inertia, albedo, and rock areal fractions in the

following sections complete our overview of the CSRs.

6.3.1 Surface Type 2 Reconsidered

On the basis of a strong positive correlation among K mass fractions, Th mass
fractions, and surface type 2 areal fractions, in Chapter 5 we favored igneous
processes over aqueous alteration for the origin of surface type 2. Do the north-
ern CSRs encourage our overall interpretation to be revisited? We consider this
possibility using the same smoothed rebinned surface type 1 and 2 areal fraction
datasets that were used in Chapter 5. In general, the CSRs are consistent with
the global-scale positive correlation of K and Th mass fractions with surface type
2 areal fractions. Specifically, northern Chryse-Acidalia and Utopia-Vastitas Bo-
realis CSRs of K and Th enrichment (Figure 6.9) are also those with the highest
average areal fractions of surface type 2 (Figure 6.12) and lowest average areal

fractions of surface type 1 (Figure 6.13).

Furthermore, Si enrichment does not distinguish surface type 2 from 1, as
regions with a high areal fraction of each type overlap with high-Si CSRs. For
example, the Syria-Solis-Thaumasia CSR of Si enrichment (Figure 6.9) has a par-
ticularly high average areal fraction of surface type 1 (Figure 6.13), while the Si-
enriched Utopia-Vastitas Borealis CSR (Figure 6.9) has an unusually high areal

fraction of surface type 2 (Figure 6.12). Nevertheless, the CSRs do indicate het-
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Figure 6.12: Qualitative comparison of the average surface type 2 areal

fraction within each CSR with the global distribution. Data
sources are identified in Sections 6.3.1 and 6.3.3. The “Global”
box-plot marks the 25% percentile, median, and 75 percentile
of the global distribution. Regional averages at or above the
75™ percentile are identified by black columns, intermediate
by light-gray, and at or below the 25" percentile by solid out-
lines. Each CSR is also tagged with the name of a nearby ge-
ographic feature to facilitate identification in Figure 6.9. Col-
umn charts are omitted for CSRs that lie mostly beyond the
areal bounds of corresponding datasets. Figures 6.13— 6.18
similarly illustrate surface type 1 areal fraction, albedo, ther-
mal inertia, and rock areal fraction, respectively.
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fraction within each CSR with the global distribution as de-

scribed in Figure 6.12.



erogeneities at smaller spatial scales such as the enrichment of Fe, K, Si, and Th
in Chryse-Acidalia areas with high surface type 2 areal fractions (Figure 6.12),
and the enrichment of K and Th in Sirenum-Terra Cimmeria areas with a high
surface type 1 areal fraction and moderate-to-high surface type 2 (Figures 6.13

and 6.12).

In summary, the CSRs that we have delineated do not contradict what makes
areas with surface type 2 distinct from their surface type 1 counterparts: a re-
markable enrichment of K and Th, but not of Si (Chapter 5). Nevertheless, as
anticipated in Chapter 5, they reveal regional exceptions to these general trends,
particularly in equatorial regions where the areal fractions of surface types 1 and
2 are both high relative to their global distributions. A detailed investigation
comparing and contrasting the eleven potential (Rogers et al., 2007a) mineralogy
type distributions (e.g., Rogers and Christensen, 2007) with these and other CSRs
may yield a better understanding of surficial processes and their variation at
depth. Taylor et al. (2008, in preparation) provide an overview of such com-
parisons in the context of vastly different sampling depths of the underlying
instruments - the GRS at tens of centimeters, and the TES from 50 um (Chris-
tensen et al., 2004, Section 3.1.4 Para. 2) to probably no more than the Visible
Near Infrared (VNIR) limit of 100 u m (Poulet et al., 2007, Para. 21).

6.3.2 Geologic Overview

It is intriguing that the CSRs do not qualitatively appear to follow the spatial
patterns of mapped geologic units (e.g., Skinner Jr. et al., 2006), perhaps with

the tentative exception of the planetary dichotomy (e.g., Dohm et al., 2008, in
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preparation) as discussed earlier. Since the GS is only sensitive to compositions
at tens of centimeter depths, this may indicate that the surficial processes and

compositions reflected in the GS data are not closely linked to the underlying

geology.

Given the GS’s inherently coarse resolution (Section 6.2.1), we compile the
areal fractions of mapped geologic units at 0.5° X 0.5° spatial resolution within
each CSR to evaluate the extent of direct spatial overlap between CSRs and par-
ticular geologic units. Since the CSRs are binned at 5° x 5°, we minimize the
loss of geologic information by simply re-binning them at 0.5° x 0.5°. We use a
sinusoidal equal area projected digital atlas of geologic units with a maximum
resolution of 0.0625° x 0.0625° at the equator (Ed Guinness, 2003, personal com-
munication) linearly interpolated by row to a 0.5° x 0.5° equi-rectangular grid

(e.g., Snyder, 1987, p. 248) at zero interpolation order.

Our geologic atlas is based on the Viking legacy 1-1802 series (available on-
linehttp://webgis.wr.usgs.gov/pigwad/down/mars\_geology.htm\
#Mars\%$20Global)and lacks recent updates/revisions with MOLA and other
datasets (e.g., Skinner Jr. et al., 2006). However, preliminary comparisons indi-
cate that at the coarse spatial resolution of the GS, area calculations with the
updated maps would converge with the old. Therefore, we present our results
based on the I-1802 series in Figures 6.14— 6.15, both for relative age and mapped

geologic units.

As evident in Figure 6.14, one age unit typically dominates areally over oth-
ers within most CSRs. However, we do not observe a consistent association of
particular sets of elements or of particular CSRs with specific age units. Given

the contiguous spatial extent of each age unit, this suggests that the apparent
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Figure 6.14: The areal fractions of relative geologic age and volcanic units
of the I-1802 series within each CSR. Data source and process-
ing are described in Section 6.3.2. The relative areal fractions
of temporal and volcanic units within each CSR are shown in
the top figure. “N” indicates Noachian, “H” Hesperian, and
“A” Amazonian. The prefix “V” indicates the corresponding
volcanic units. The area of the volcanic units corresponding
to each temporal unit is shown in a lighter fill color. The total
area often does not sum to 100 % since some units are uncate-
gorized.

areal dominance of one within a particular CSR may just be coincidental instead
of reflecting chemical processes representative of a particular era. Nevertheless,
the dominant geologic age group may provide general constraints on surficial
processes in detailed investigations, such as the area we selected for our case

study (Figure 6.11).

As shown in Figure 6.14 the areal fractions of geologic units and secularly
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categorized volcanic units are even less insightful than the relative ages since
the areal dominance of a single unit within a CSR is quite rare. In fact, most
CSRs contain similar areal fractions of many different units. The {K, ThDD1s10°}
CSR in the vicinity of Elysium (Figure 6.9) is a possible exception where nearly
90 % of the surface is underlain by Amazonian units of which ~ 80 % consists
of Elysium lava flows (Figures 6.14 and 6.15). Similarly, nearly 90 % of the
{K,ThDD1510°} CSR in the vicinity of Syria-Solis-Thaumasia plateaus is under-
lain by Hesperian volcanic units. These are also the only CSRs in which the three
geologic units with the greatest areal fractions constitute nearly 90 % of the to-
tal area (Figure 6.15). It is possible that detailed analyses of such CSRs would
provide insight into igneous processes. The CSR in the vicinity of Thaumasia
may be particularly insightful, as relatively low albedo (Figure 6.16) along with
high thermal inertia (Figure 6.17) and rock areal fractions (Figure 6.18) suggest
that the underlying bedrock may contribute meaningfully to the GS signal. In
addition, detailed studies of geomorphology analogous to the work by Dohm

et al. (2008) may reveal trends that are not apparent in our overview.

6.3.3 Overview of Thermally Derived Attributes

Remote sensing observations at Thermal InfraRed (TIR) wavelengths by the
Viking missions first enabled detailed characterization of key surficial prop-
erties of the Martian surface, including albedo and thermal inertia. The latter
was used in conjunction with radar reflectivity variations to estimate the areal
fraction of fragments no smaller than 0.1 m, termed “rocks” (Christensen, 1986).
While the spatial resolution and estimation methods have been refined with

more recent instruments such as the Mars Global Surveyor Thermal Emission
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Figure 6.16: Qualitative comparison of the average albedo of each CSR

with the global albedo distribution, as described in Figure 6.12
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ure 6.12.
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Figure 6.18: Qualitative comparison of the average rock areal fraction

within each CSR with the global distribution as described in

Figure 6.12.



Spectrometer (TES) (e.g., Putzig et al., 2005; Christensen et al., 2001), the resulting
maps are generally consistent with their predecessors. In light of this and the
context of our general discussion at the coarse spatial resolution of the GS, we
use thermal inertia, albedo, and rock areal fractions derived with the Viking In-
fraRed Thermal Mapper (IRTM) (Christensen, 1986) as described in Chapter 5.
The average value of each - computed as the arithmetic mean - relative to the
corresponding global distribution is qualitatively illustrated in Figures 6.16—

6.17.

In general, apparent rock areal fraction, thermal inertia and albedo values
within CSRs are consistent with the observations in multivariate space (e.g.,
Keller et al., 2006b, and Chapters 4, 5). For example, the northern CSRs with
K and Th enrichment also feature higher rock areal fraction and thermal iner-
tia values, along with low albedo values (Figures 6.16, 6.18, and 6.17). On the
other hand, the CSRs in SW Tharsis with Cl enrichment and Si depletion have
high albedo, low thermal inertia, and low rock abundance. It is also intriguing,
and perhaps indicative of primary mineralogic effects, that the majority of the
CSRs are relatively high thermal inertia and low albedo regions (Figures 6.16
and 6.17). Our subsequent case study involving the region of Cl enrichment
and Fe, Si depletion (Figure 6.11) demonstrates how these attributes - specif-
ically thermal inertia - can act as important constraints for candidate surficial
processes. Nevertheless, it is important to recall that even the areas with the
highest rock abundances are dominated by fine material, and as such, the chem-
istry may be more indicative of variations in the fine component than of under-

lying bedrock (Newsom et al., 2007).
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6.4 Region Among Volcanic Edifices (RAVE): A Case Study

In Section 6.3, we presented the key chemical reasons for selecting the only re-
gion on Mars with a remarkable enrichment of Cl and depletion of Fe and Si
(Figure 6.11) for our case study. As one that does not quite satisfy our conser-
vative area thresholds (Table 6.2), the insight we glean from this region further
reinforces the utility and significance of the (larger) CSRs in general. For con-
ciseness, we refer to it as RAVE (Region Among Volcanic Edifices) throughout

the rest of this work.

6.4.1 Radar Stealth and Bulk Density

Even though we selected RAVE (Figure 6.11) solely due to spatially convergent
chemical signatures across several CSRs (Section 6.3), it overlaps notably with
a region highlighted by two independent datasets: radar reflectance observa-
tions from Earth at 1.35cm (Ivanov et al., 1998) and 3.5 cm (Edgett et al., 1997)
wavelengths. At both wavelengths, much of this region is an efficient absorber
producing the classic signature of Stealth. The visually impressive nature of this
overlap illustrated in Figure 6.19 is particularly relevant as the free-space verti-
cal resolution at 1.35cm and 3.5 cm wavelengths is comparable to the GS sam-
pling depths. In fact, the bulk of the Stealth region at 3.5 cm overlaps much more
compellingly with RAVE than it does with the easternmost MFF (Figure 6.19).
In contrast, the Stealth features apparent across the broad MFF at much longer
wavelengths of 13 cm (Harmon et al., 1999), 15 m (Carter et al., 2008), and = 150 m
(Picardi et al., 2005) do not overlap with RAVE.
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The spatial overlap between RAVE and 3.5 cm Stealth (Edgett et al., 1997) has
significant implications for the physical properties of the bulk material. Specif-
ically, bulk density constrained by the real component of the dielectric constant
is 0.4 x 10’ kgm™ (Ivanov et al., 1998). This is consistent with the 1.9 x 10 kg m™
upper bound for bulk density in the MFF (Watters et al., 2007; Keszthelyi and
Jaeger, 2008). Such low bulk densities are indicative of either high porosity or a

matrix of H,O, and fine material (Watters et al., 2007; Keszthelyi and Jaeger, 2008).

Compaction modeling with potential terrestrial analogs, such as reticulite,
indicates that high porosities may be sustained to kilometer depths (Keszthelyi
and Jaeger, 2008). Similar stealth properties have been observed of the much
smaller scale Mauna Kea scoriaceous deposits with 23 cm synthetic aperture
radar (Gaddis et al., 1989) on Earth, and of Montes Jura fine ejecta deposits at
3.8cm, 70 cm, and 7.5 m wavelengths on the Moon (Thompson et al., 2006). Nev-
ertheless, the radar loss tangent (Watters et al., 2007; Carter et al., 2008) has been
used in conjunction with pedestal craters at the MFF perimeter and morpho-
logic similarities with polar layered deposits to favor a km scale deep H,Oy -

fine material matrix model (e.g., Schultz, 2007).

6.4.2 Thermal Observations

The bulk physical properties inferred for RAVE with radar reflectivity may be
characterized more descriptively with observations at Thermal Infrared (TIR)
and VNIR wavelengths. As expected, the TIR rock areal fraction, albedo, and
thermal inertia maps, which we discussed in Section 6.3.3, highlight RAVE and

the surrounding CSRs as those dominated by fine material. That is, the general
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Figure 6.20: Sketch of RAVE (sky blue line) overlaid on the thermal inertia
- albedo unit map (Putzig et al., 2005, adapted from Figure 5).
RAVE is contained entirely within the low thermal inertia -
high albedo unit (blue) as is the bulk of the two surround-
ing CSRs. These are {CISiED1.5515°} outlined in lime and
{CISiED15s15°} outlined purple. The {CIHEE1s515°} to the west
is outlined red. The nearby high thermal inertia and medium
albedo unit is colored green.

area is marked by very low rock abundance, thermal inertia, and very high
albedo. In particular, RAVE is entirely contained within one of the low thermal
inertia - high albedo units as delineated with the TES (Figure 6.20) (Putzig et al.,
2005). On the basis of apparent thermal inertia, Putzig et al. (2005, Sec. 3.2.1
and Fig 5 unit A) infer the fine material on the RAVE surface to be particles
no greater than 40 um across. We loosely call this coarse-to-medium silt on the

Wentworth scale (http://search.eb.com/eb/art-61244) “dust”.

Diurnal and seasonal variations in apparent thermal inertia have indicated
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that hardpan, and perhaps even duricrust, is ubiquitous on the planet at ~ 3km

spatial resolution occur

6.4.3 Surficial Morphology

We utilize HiRISE images to further characterize the radar and thermal impli-
cations that bulk RAVE has a low density (Section 6.4.1) with indurated mate-
rial shallowly buried beneath dust (Section 6.4.2). The spatial distribution of
the 50 HiRISE images that we viewed within RAVE is shown in Figure 6.11
along with identifiers in Table 6.5. Even though HiRISE images are available
over most GS bins within RAVE, the sampling frequency is non-random (Fig-
ure 6.11) as the targeting was guided not by our work, but by research interests
of the HiRISE team. Targeted imaging at additional locations within RAVE in
the future should reveal whether there has been a resulting sampling bias. Nev-
ertheless, the morphology of the broader region (Figure 6.11) has already been
discussed by others, including Bridges et al. (2007); Bridges et al. (2008); Keszthelyi
et al. (2008). In general, the tens-to-hundreds of meter scale topography of the
broader area is obscured by a mantle of material of particles too fine to be re-
solved by HiRISE (Bridges et al., 2007; Keszthelyi et al., 2008) and its predecessor,
the Mars Orbiter Camera (MOC) (e.g., Bradley et al., 2002).

A bedform that is ubiquitous in the broader area resembles a fishing net
draped over the surface (Figures 6.21 and 6.22), and is consequently coined a
“reticulate bedform” (Bridges et al., 2008) and (Bridges, Nathaniel T. et al., 2008b,
“Dust Aggregate Bedforms and “Duststone” in Low Pressure, Low Gravity En-

vironments: Evidence From High Resolution Imaging of Mars”, submitted to
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Table 6.5: HiRISE image identifiers, approximate coordinates (East longi-
tude), image tags used in all figures and tables of this work, and
map projected scale (resolution). North is up in all HiRISE fig-
ures. Continued in Table 6.6.

HiRISE identifier Latitude Eastlongitude Imagetag Resolution

(cm/pixel)
PSP 0015111730 -7° -129.6° 1 25
PSP_001656_1835 3.3° -126.3° 2 25
PSP_002157_1715 -8.4° -119.9° 3 50
PSP_002289_1725 -7.3° -123.8° 4 25
PSP_002764-1800 0° -133.1° 5 25
PSP_002922 1725 -7.3° —-123.8° 6 25
PSP_003410.1840 3.8° —-129.9° 7 50
PSP_003647_1745 -5.5° —118.6° 8 25
PSP_003832_1840 3.8° —129.9° 9 50
PSP_004056_1735 —6.4° —125.4° 10 25
PSP_004201_1735 —6.6° —123.9° 11 25
PSP_ 0043461755 -4.3° -121.8° 12 25
PSP_004412_1715 -8.6° —-123.6° 13 25
PSP_004570_1705 -9.6° -116.9° 14 50
PSP_004689_1765 -3.6° —125.8° 15 25
PSP_004702_1705 -9.4° -120.6° 16 25
PSP_004768_.1705 -9.4° —121° 17 25
PSP_004781_.1710 -9° -117.5° 18 50

246



Table 6.6: HiRISE image identifiers, approximate coordinates, image tags
in our work, and map projected scale (resolution) continued
from Table 6.5. Continued in Table 6.7.

HiRISE identifier Latitude Eastlongitude Imagetag Resolution

(cm/pixel)
PSP_004847_1745 -5.5° -118.6° 19 25
PSP_004913_1735 -6.3° —121° 20 25
PSP_005058_1720 —7.8° —-119.7° 21 25
PSP_005071.1775 -2.7° -115° 22 25
PSP_005124_1705 -9.2° -120.3° 23 25
PSP_005203_1730 -6.7° —-119.5° 24 25
PSP_005256_1735 —6.6° -123.9° 25 25
PSP_005296_1705 —9.3° —137.8° 26 25
PSP_005349_1665 —13.4° —143.9° 27 50
PSP_005375_.1675 —12.5° —134.8° 28 25
PSP_005414_1735 -6.5° —120° 29 25
PSP_005467_1700 -9.8° —-125.7° 30 50
PSP_005612_1700 -9.9° —-125.5° 31 50
PSP_005625_1730 -6.7° —-119.5° 32 25
PSP_005665-1800 0° —-133.1° 33 25
PSP_005691_1685 —11.3° —121.1° 34 25
PSP_005770_1745 -5.5° —-118.6° 35 25
PSP_005783_1775 -2.7° -115° 36 25
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Figure 6.21:

Examples of reticulate bedforms within RAVE in grayscale,
continued in Figure 6.22. Image tags identify the approxi-
mate locations in RAVE as shown in Figure 6.11, with cor-
responding HiRISE image details in Table 6.5. Coordinates
of each excerpt indicate its approximate location within the
larger HiRISE image. Solid black circles are 10 m across while
the glassy circles are 20 m across. Excerpt tagged 40 shows the
generally subdued nature of reticulate bedforms away from
Arsia, unlike surfaces on the flanks and caldera shown in the
excerpts tagged 3, 8, and 16. Excerpt 3 is also a good exam-
ple of prominent “honey-comb” shaped reticulate bedforms,
while 8 shows the “accordion” distortion. The close spatial
association of potential star dunes and reticulate bedforms on
a crater (560 m across) floor just south of RAVE is apparent in
the excerpt tagged 51.

248



249

le

in graysca

late bedforms within RAVE

continued from and as described in Figure 6.21.

1cu

: Examples of ret

Figure 6.22



Table 6.7: HiRISE image identifiers, approximate coordinates, image tags
in our work, and map projected scale (resolution) continued
from Table 6.6.

HiRISE identifier Latitude Eastlongitude Imagetag Resolution

(cm/pixel)
PSP_005836_1735 —6.3° —-121° 37 25
PSP_005902_1700 —10° —-122° 38 50
PSP_005915_1720 -7.8° —117° 39 25
PSP_005916_1665 —13.3° —143.7° 40 25
PSP_005942_1825 2.5° -135.9° 41 25
PSP_005995_1700 -9.7° —141.8° 42 25
PSP_006192.1700 -9.8° -120.4° 43 25
PSP_006601_1825 2.4° —-129.3° -+ 25
PSP_006680-1740 —6.2° —125° 45 25
PSP_006693_1755 —4.3° —-120.8° 46 25
PSP_006759_1700 —9.9° —121.1° 47 25
PSP_006773_1735 —6.4° —144.2° 48 25
PSP_006878_1805 0.3° —132.1° 49 25
PSP_006904_1755 —4.3° —-120.8° 50 25
PSP_003331_1580 -21.6° —-130° 51 50

the Geological Society of America Joint Session - Developments in Aeolian Re-
search: Bridging the Interface between Soil, Sediment, and Atmosphere). The
ridges delineate nested patterns, leading to reticulation at meter, tens of meter,
and hundreds of meter size scales as described by Bridges et al. (2008). This bed-
form type is present almost exclusively within low thermal inertia regions that

include RAVE, and resembles the surficial morphology of some yardangs such
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Table 6.8: Long and short axis lengths of lenticular bedforms estimated us-
ing the samples shown in Figure 6.23. The image tag identifies
detailed information of each HiRISE image in Table 6.5 and the
location in Figure 6.11.

Lenticular type Image tag Long axis (m) Short axis (m)

Smallest 7 8-9 3-4
Small 7 10-13 7-8
Typical 7 29-39 12-13
Largest 26 134-199 44-60

as those in Valles Marineris and White Rock within Pollack Crater (Bridges et al.,
2008; Keszthelyi et al., 2008). The association with low thermal inertia surfaces
and yardangs has been interpreted to indicate an eolian origin to reticulate bed-
forms (Bridges et al., 2008). The similarity with yardangs and some light-toned
bedrock (Bridges, 2008b, submitted) may indicate that reticulate bedforms are
indurated, perhaps to the point of being duricrust (e.g., Pain et al., 2007). While
present throughout RAVE, we find this bedform to be pervasive and more eas-
ily discernable primarily on the flanks and caldera of Arsia Mons. Farther out,

it becomes more subdued by a veneer of fine material as shown in Figure 6.21.

A second type of bedform, more common within RAVE than reticulate bed-
forms, consists of en echelon (with parallel long axes) teardrop to lens shaped
hollows, such as the examples in Figure 6.23. We term these “lenticular bed-
forms.” Nested lenticular bedforms are present in some localities, while others
contain degraded ones. We use the samples in Figure 6.23 to estimate the long
and short axes lengths of these bedforms as listed in Table 6.8. If eolian in ori-
gin, these bedforms could be deflation hollows. At 1:8 and coarser scale, sur-

faces dominated by lenticular bedforms bear a braided appearance, remarkably
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Figure 6.23: Examples of lenticular bedforms that occur at varying size

scales within RAVE. Solid black circle is 20 m across, the glassy
circle 40 m across, and the dimpled solid circle 160 m across.
Excerpt tagged 7 illustrates the transitions among typical
(marker 1), small (marker 2), and smallest (marker 4) lenticu-
lar bedforms. The surface texture of the same excerpt at coarse
scale on the right is comparable to the bidirectional yardangs
in the MFF as viewed by the MOC (Bradley et al., 2002, Fig 10),
and indicates that the long axes are oriented parallel to the
fossae. For correspondence, dark ovals identify the same loca-
tion in the fine (left) and coarse (right) scale excerpts. Excerpt
tagged 26 contains some of the largest lenticular bedforms in
RAVE.

252



similar to those in the MFF that Bradley et al. (2002, Section 5 Para. 22, 26 Fig 10)
analyzed as bidirectional yardangs (Figure 6.23). They inferred that should the
MFF be primarily composed of scoriaceous deposits, the bidirectional yardangs

reflect cooling joints controlling eolian erosion in places.

In addition to the reticulate and lenticular bedforms, we are able to iden-
tify three other types of surface morphologies within RAVE. All three bear a
strong similarity to terrestrial eolian formations - linear, barchanoid /transverse
ridges, and ripples - as illustrated in Figure 6.24. The ripples are particularly
difficult to discern due to their small size (ripple wavelengths average 1.7 m)
except where illuminated obliquely. Could all five types be primarily eolian
in origin? The last three appear clearly eolian due to their strong similarity
to terrestrial dune formations, with the barchanoid/transverse ridges in par-
ticular comprising the largest equatorial dune field on the planet (Edgett, 1997,
Fig 1 Item B). These three are sometimes interspersed with the two dominant
bedforms - lenticular and reticulate as in Figure 6.25. Such a nearly seamless
transition from barchanoid, to ripples, to reticulate bedforms that we observe
reinforces the possibility that reticulate bedforms are eolian in origin, which
is likewise supported by a transition between linear and reticulate bedforms
(Figure 6.25). Lastly, the transition between lenticular and reticulate bedforms
across a narrow gap connecting two pits shown in Figure 6.25 is consistent with
an eolian origin to the lenticular bedforms. Such gaps are particularly likely to

exert local topographic control on eolian turbulence.

The distribution and variations of lenticular bedforms lend additional sup-
port to an eolian origin. Where present among fossae, their long axes are gen-

erally oriented parallel to topographic ridges (Figure 6.23), consistent with the
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Image tag: 20 (excerpt; 12345,73d39

R
Image tag: 10 (excerpt: 10200, 51688)

Figure 6.24: Examples of additional surface morphologies within RAVE.
Solid black circles are 10m across. Excerpt tagged 20 shows
tentatively linear bedforms, 44 shows barchanoid ridges, and
10 shows ripples. The distinction between 20 and 10 is subtle,
suggesting that what we consider to be linear bedforms may
in fact be large scale indurated ripples instead of true linear
dunes.

dominant wind direction. Their seamless transition from typical sizes (Table 6.8)
to smaller sizes, separated by degraded ones of the former (Figure 6.23) may
also reflect eolian modification at several different spatial scales. Variations of
reticulate bedforms, typically between symmetric “honeycomb” and distorted
“accordion” shapes (Figure 6.21) (Bridges et al., 2008) as well as potential simi-
larities with star dunes further reinforce an eolian origin. In fact, a crater floor

about 7° south of the RAVE perimeter shows tentative evidence of a transition

254



Figure 6.25: Potential transitions among bedforms. Solid black circles are
10m across. Excerpt tagged 20 indicates a potential transi-
tion between reticulate and linear bedforms, and 22 between
lenticular and reticulate bedforms across a topographic gap
(imperceptible at fine resolution). Excerpt tagged 44 is a
potential transition area among barchanoid ridges with rip-
ples on their lee sides, and reticulate bedforms, with the
barchanoid type dominating toward the NW beyond the ex-
cerpt border, while reticulate dominates to the SE.
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between star dunes and reticulate bedforms (Figure 6.21).

Even though all five bedform types would be consistent with eolian origins,
whether the requisite eolian conditions have existed at these high elevations
(mostly > 2.5km) is less clear. If the bedforms were to consist entirely of (un-
consolidated) dust, current models of wind speed versus grain size to initiate
saltation (e.g., Almeida et al., 2008; Merrison et al., 2007) pose a significant hurdle
to forming any bedforms. Even electrostatic aggregation may be insufficient,
as such aggregates tend to disaggregate upon entrainment (e.g., Sullivan et al.,
2008) leading to suspension. A reasonable possibility is that dust grains ce-
mented into aggregates, e.g., by salts, saltated to generate the bedforms. Higher
wind speeds needed in the rare atmosphere of RAVE to initiate saltation (Greeley
et al., 1976) may be achieved by a combination of turbulence due to local topog-
raphy, katabatic winds from nearby volcanoes (e.g., Bridges, 2008b, submitted),
and equatorial east-to-west winds (e.g., Benson et al., 2006, Section 3.2) that are
independent of obliquity (e.g., Keller et al., 2006b, para 45). Nevertheless, recent
models indicate that once initiated, saltation of sand-sized particles/aggregates
may be sustained at speeds as low as 1 ms™ (Almeida et al., 2008; Merrison et al.,

2007).

Presuming an eolian origin to all five bedforms in RAVE, are they currently
active or inactive? Edgett (1997) inferred that the barchanoid/transverse dune
tield within RAVE is inactive due to burial by dust. Alternatively, armoring or
exhaustion of particles suitably sized for saltation (e.g., Sullivan et al., 2008) may
have inactivated these bedforms. Another possibility is that the dune analogs
are not measurably active over the lifetime of Martian missions, since the time

scales for dune migration on Mars may be longer by a factor of 10* than their ter-
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restrial counterparts (Claudin and Andreotti, 2006, Section 4). While poorly con-
strained, this translates to migration times as long as tens (Claudin and Andreotti,
2006, Section 4) to several thousand (Almeida et al., 2008, p. 6225) years per meter.
It may also explain why only a few active dunes have been observed on Mars
in recorded history in spite of their ubiquity (Bourke et al., 2008). Obviously, a
spatially varying combination of indurated bedforms, inactivated dunes, and

active dunes is also possible.

However, we find a different scenario to be more likely within RAVE at least
for the first four bedform types (reticulate, lenticular, barchanoid, and linear):
induration of earlier bedforms at the level of hardpan to duricrust as opposed
to just inactivation. One indication of this possibility is the similarity of reticu-
late bedforms to those found on the surfaces of probable duricrust such as White
Rock (Ruff et al., 2001) that we mentioned before. More compelling is the resis-
tance of the bedforms to disruption by meter scale craters that postdate them
(Figure 6.26). Where bedforms are disrupted by fresh impact craters, arcuate
overhanging ridges are generated at least on occasion (Figure 6.26), suggesting
induration to meter scale depths. These potentially indurated bedforms are un-
likely to be thicker than 2 m, as Fergason et al. (2006b, Section 5.1) infer given the
visibility of underlying decameter scale degraded impact craters. This is consis-
tent with the protrusion of meter scale blocks in places, particularly where the

bedforms appear to postdate block slides as shown in Figure 6.27.

Induration would certainly not be unusual, since duricrust in excess of many
meters (Pain et al., 2007) to in situ hardpan only centimeters thick (e.g., Schatz
et al., 2006, Para. 9) have been observed across a variety of Martian locations.

Local relief related to duricrust has been identified at places as disparate as the
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Figure 6.26: Examples that illustrate the strength of hardpan/duricrust
within RAVE. Solid black circles are 10m across, and the
glassy circle is 160 m across. Excerpts tagged 2 and 28 show
bedforms remaining intact subsequent to the formation of
fresh impact craters (crater cluster in 2; crater ~ 5m across
in 28). Even when bedforms were disrupted by meter scale
crater forming impacts (bottom left tagged 41 at coarse scale),
overhanging arcuate ridges had formed (bottom right at fine
scale), indicating significant induration at meter scale depths.
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flanks of Olympus Mons, Valles Marineris, and Arabia (Pain et al., 2007, Fig 3).
Such observations are bolstered by TIR observations as well, as we discussed in

Section 6.4.2.

We posit further that what we infer to be hardpan/duricrust bedforms are
likely buried beneath a veneer of dust, as evident in the low apparent thermal
inertia of the RAVE surface (Section 6.4.2). The presence of km scale albedo
banding, kilometers long potential dust devil tracks (active dust devils have
been imaged in the general area as described by Cantor et al. (2006) and Cantor
(2007) even though most dust devils occur within the 45 — =75 N/S latitude
bands (Whelley and Greeley, 2008)), and slope streaks of varying length scales that
do not disrupt the bedforms make a strong case for such a veneer. As evident in
Figure 6.28, these features generally fail to show discernable topographic effects
in HiRISE images despite some exceptions (Figure 6.28, top left), suggesting
that the dust veneer is unlikely to be thicker than some fraction of the 37.5cm —

—75 cm HiRISE PSF (Section 6.2.3).

The surficial morphology that we have discussed so far with HiRISE images
appears to converge with inferences made with radar reflectivity (Section 6.4.1)
and TIR observations (Section 6.4.2) that RAVE may consist mostly of one to
two meter thick hardpan/duricrust - possibly with sulfate salts as cementation
agents (consider Pain et al., 2007, p. 486) - bedforms that are buried by dust
shallower than the tens of centimeter sampling depth of the GS. In subsequent
sections, we seek to constrain induration processes and the origin of the overall
subsurface within RAVE by considering potential roles of volcanism, glaciation,

and climate in the context of GS-derived chemistry.
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Figure 6.28: Examples of surficial features distinguishable only by albedo
with little if any distinctive textures in HiRISE images within
RAVE: Albedo banding oriented W-NW and E-SE visible in
excerpt tagged 1, dust devil tracks in 45, and slope streaks
in 48. However, potential avalanche scars that are distinct in
topography but not albedo are also present as identified in ex-
cerpt tagged 2. Solid black circles are 10 m across, the dimpled
solid circle is 40 m across, and the glassy solid circle is 160 m
across.

6.4.4 Age of Volcanism

As shown in Figure 6.11, the closest volcanoes to RAVE are Arsia Mons, Biblis
Patera, Pavonis Mons, Ulysses Patera, Olympus Mons, and Ascraeus Mons, in
the order of increasing distance. With the exception of Biblis Patera and Ulysses

Patera, which are inferred to be no younger than Hesperian in age (older than
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~ 1.9 Ga) (Plescia, 1994), volcanism in the remaining edifices may be as recent
as late Amazonian (e.g., Neukum et al., 2004). However, late-stage volcanism
was probably not as extensive or voluminous as it was in Late Hesperian/Early
Amazonian (Dohm et al., 2002; Scott and Dohm, 1997). RAVE is essentially sur-
rounded by the largest cluster of the highest volcanoes on the planet. Given the
low areal density of impact craters (e.g., Edgett, 1997, p. 108) within RAVE, the
younger Amazonian volcanic events may be more relevant to the evolution of

its surface.

In fact, most of the underlying mapped geologic units of RAVE are Ama-
zonian in age and volcanic in origin (Figures 6.14 and 6.19) with the possible
exception of slide deposits on the W flanks interpreted by some to be of an Ama-
zonian glacial origin (Section 6.4.5) suggesting that the surficial bedforms over-
lying them are even more recent. Specifically, sections of the Olympus Mons
and Ascraeus caldera floor complexes may be as young as 100 Ma, and that of
Arsia ~ 130 Ma (Neukum et al., 2004). While significant uncertainties exist (e.g.,
McEwen et al., 2005), some of the lava flows on the Olympus Mons scarp have
been estimated to be as recent at 2.5 Ma (Neukum et al., 2004). The large-scale
shape of most of these volcanic edifices and lava flow morphologies suggest
that they are shield volcanoes with low-viscosity lava flows akin to the Hawai-

ian type (e.g., Dohm et al., 2008, Section 2.3).

However, a host of features including putative cinder cones at the Pavo-
nis Mons summit (Mouginis-Mark, 2002, Para. 3) and southern flank (Keszthelyi
et al., 2008, para 30-31 and Fig 6(c)), pit craters at elevations 5km — 7km be-
low caldera rims (Mouginis-Mark, 2002, Table 1) (Figure 6.29), and edifice mor-

phometry along with theoretical implications of magmatic gas expansion in a
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Figure 6.29: Examples of pit craters within RAVE, about 314m across
tagged 46 and ~ 200m across tagged 20. Solid black circles
are 20 m across.

low-density atmosphere suggest that the Tharsis/Olympus volcanoes may be
composite volcanoes (synopsis by Hiesinger et al., 2007). In addition, deposits
within the MFF, Candor chasm, Ophir chasm, and Arabia Terra have been inter-
preted to be constructs of Tharsis basaltic plinian eruptions occurring as recently
as the late Amazonian (Hynek et al., 2003). Olympus Mons eruptions may have
also transitioned from less viscous, stable, and long-lived tube-forming systems
to more viscous, episodic, and less stable channel-forming systems in the late
Amazonian (Bleacher et al., 2007). A higher abundance of channels relative to
tubes is often characteristic of pyroclastic eruptions entailing greater volatile
content (Bleacher et al., 2007, Para. 30). Consistent with such inferences, lentic-
ular bedforms in RAVE may reflect physical strength variations due to cooling

joints in tephra (Section 6.4.3).

If explosive basaltic volcanism is a main contributor to the surficial mate-
rial within RAVE, theoretical clast sizes upon eruption would be tens of um to
a few mm, while accretion (along with significant hydration) may lead to sizes

between 0.1 and 1 mm upon deposition with less welding than on Earth (Wil-
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son and Head, 2007, Section 5, 7). The scoriaceous tephra/ash would grade to
more sorted finer and thinner deposits with distance from the vent or eruptive
column with dispersal varying from 20km (for mm clasts) to > x 10*km (for
clasts < 50 um) (Wilson and Head, 2007, Section 6, 7). Even though source vents
have not been identified, Hynek et al. (2003) infer the layers to get thinner with
distance from Tharsis. Another possible source of surficial material could be
similar fragments produced through the massive flank failure processes which
are interpreted to have occurred to Olympus Mons flanks producing its aure-
ole deposits (Morgan and McGovern, 2005; McGovern et al., 2004; Tanaka, 1985).
Such massive movements would produce tremendous amount of material of
the spatial extent discussed earlier, which could then be transported aerially to

our region of interest.

Even if only some of the preceding interpretations were correct, significant
pyroclastic deposits such as scoria and basaltic ash may have been present sur-
ticially, reworked chemically (particularly given significant hydration of lapilli)
and mechanically into fine material, and distributed regionally from the flanks
of the volcanoes into our region. Such regional dispersal would also be con-
sistent with the current GCM simulations (Section 6.4.6). While such surficial
volcanic contributions may be possible, it is important to remember that the
volcanic units underlying RAVE (Figure 6.19) are probably too deeply buried to
generate a signature in the y or TIR spectra (Sections 6.4.2 and 6.4.3). Neverthe-
less, chemical composition of the overlying deposits may be influenced by these

units (cf. Newsom et al., 2007).
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6.4.5 Glaciation

Akin to volcanic units in RAVE, any glacial H,O, units are likely buried too
deep to be evident as a strong enrichment in the GS stoichiometric H,O map.
In fact, RAVE is not particularly remarkable in H,O (Figure 6.9) as we discuss
later in Section 6.5 and only a tenuous spatial link exists between putative relict
glaciers and interpolation of NS-based H maps (Elphic et al., 2005, Fig 1). Nev-
ertheless, any relict glaciers that are present nearby may have indirect chemi-
cal and physical effects though perhaps not as pronounced as inferred on the
basis of long-wavelength radar reflectivity at km depth scales for the MFF (Sec-
tion 6.4.1).

Relict glaciers have been hypothesized to exist primarily NW of each of the
volcanoes, consistent with precipitation under higher obliquity (e.g., Forget et al.,
2006, Fig 1) and with compelling morphologic similarities to Antarctic piedmont
glaciers (e.g., Shean et al., 2007; Russell and Head, 2007, p. 327). The largest among
them, extending 350km (e.g., Head et al., 2005, p. 348 bottom) along the NW
flank of Arsia, lies in the SW portion of RAVE and may have formed as recently
as 65Ma ago (Shean et al., 2007). The corresponding surface area and volume
are estimated to be 166 x 10* km? and 3 x 10° km?, respectively (Shean et al., 2007,
Para. 16).

As discussed in Section 6.4.1, incidental evidence for much larger ice-rich
deposits encompassing the MFF include pedestal craters, radar loss tangent val-
ues, and layered terrain - all of which show more than a passing similarity to
their counterparts in the polar layered terrain (e.g., Schultz, 2007). RAVE does
contain pedestal craters at the periphery, examples of which are shown in Fig-

ure 6.30. Kadish et al. (2008) have argued that pedestal craters form only on
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Figure 6.30: Example of pedestal craters at the southwestern periphery of
RAVE may imply the presence of ground ice (Kadish et al.,
2008). Solid black circle is 80 m across.

volatile-rich substrates, on the basis of morphologic evidence and their occur-
rence only at high latitudes, except for the examples in RAVE and in the adjacent
MFF.

Large scale flow features associated with the largest graben in RAVE have
been interpreted by Shean et al. (2007, Fig 4) to indicate underlying relict pied-
mont glaciers. They also estimated that a meters-thick debris cover could have
prevented significant sublimation of an underlying ice matrix as thick as 300 m
over the last 50 Ma (Shean et al., 2007, Para. 65). Features on the flank of Olym-

pus Mons have also been interpreted as evidence of hydrothermal activity in
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the presence of H,O\, (Neukum et al., 2004, p. 977). Such hydrothermal activ-
ity could have generated a regional supply of sulfates and other salts, perhaps
analogous to the Paso Robles soils on the Columbia Hills in Gusev Crater (Yen
et al., 2008), that were episodically transported and incorporated into the surfi-

cial material of RAVE.

6.4.6 Climate

Glacial hypotheses are underpinned by the Martian climate cycle which is in
turn significantly affected by the obliquity cycle. While the temporally chaotic
nature of Martian obliquity prevents precise retrograde modeling to Hesperian
and older eras, variations within the last tens of Ma relevant to our investi-
gation of RAVE (Section 6.4.4) may be modeled quite precisely (Laskar et al.,
2004). Such modeling indicates that obliquities of 42° and higher were more
likely than the current value, with the most recent such occurrence = 5Ma ago
(Laskar et al., 2004, Section 3.2.1, 3.2.2, Fig 9, 10a). Assuming an atmospheric
volatile budget including polar volatiles similar to that of current Mars, Forget
et al. (2006, p. 370) model global circulation to estimate that 20 um — 50 um scale
H,O (cf. 6 um — 8 um in current Tharsis clouds) would precipitate at column
rates of 30 mm/a-70 mm/a. Such high rates of precipitation would be capable
of generating hundreds of meters thick glaciers within a few ka (Forget et al.,
2006, p. 370). Global Circulation Models (GCMs) would be consistent with the
hypothesized relict glaciers particularly since the predicted precipitation is lo-
calized over them (Forget et al., 2006, p. 370). Given these retrograde predictions
of high precipitation rates, it is quite likely that regionally pervasive ground ice

would have accumulated throughout RAVE in addition to the spatially local-
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ized glaciers.

In conjunction with high precipitation, instances of higher obliquity on Mars
would have caused net deposition of atmospheric dust throughout RAVE and
the broader Tharsis region (Figure 6.11) as predicted by GCMs (Haberle et al.,
2006, Para. 14). Along with dust deposition, high precipitation may have con-
tributed to glaciation, aqueous chemical processes, and the formation of com-
plex surficial bedforms such as those potentially buried beneath a veneer of
dust that we discussed in Section 6.4.3. Such formation would have been facil-
itated by a significantly denser atmosphere lowering the threshold speeds for
entrainment and saltation of particles (Greeley et al., 1976) - even if the current
polar deposits were the sole sources of CO, - under higher obliquities as well

(Manning et al., 2006).

The current 25° Martian obliquity does not lead to high precipitation within
or in the neighborhood of RAVE. Nevertheless, present atmospheric conditions
entail perennial H,O, cloud cover over the SW flank of Arsia Mons (Noe Dobrea
and Bell, 2005), orographic H,O, clouds over neighboring Olympus, Pavonis,
and Ascraeus summits (Benson et al., 2006), ground H,O fog (Feldman et al., 2005,
para 27), and GCM prediction of light H,O, precipitation (Feldman et al., 2005,
Fig 5). Consistent with the persistence of regional E to W winds (e.g., Benson
et al., 2006, Section 3.2), the H,O clouds are distributed W-NW over Olym-
pus, Ascraeus, and Pavonis Mons showing interannual and seasonal variability
(cloud activity between L, = 0, Northern spring, and L, = 220, before winter,
with peak area near L, = 100 just after summer solstice) (e.g., Benson et al., 2006,
Section 3.2). The collective effect of these conditions, though probably insuf-

ficient to generate pervasive aqueous solutions within the surficial material of
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RAVE, may nevertheless be sufficient to create occasional concentrated brines.

Could the limited activity of any concentrated brines be affected by the
precipitation or formation of CO, under current conditions? Precipitation
is unlikely as CO,, clouds are limited to the mesosphere in the midlati-
tudes (Montmessin et al., 2006). We obtained seasonal pressure and tempera-
ture estimates from the Martian Climate Database (http://www-mars.1lmd.
jussieu.fr/mars/access.html) as developed by Forget et al. (2007) and
Spiga et al. (2007) to evaluate the possibility of CO, frost. Seasonal frost appears
to be unlikely because the temperature at which CO, would condense (~ 142K
in the Arsia Mons Caldera and ~ 146K in the region as a function of surface
pressure (e.g., Hourdin et al., 1995; Mellon et al., 2000; Wing and Austin, 2006, Eq
2; Table 1; Eq 4, respectively)) is lower than average seasonal temperatures in
this area (= 186 K in the caldera and ~ 198 K elsewhere). Additionally, non-polar
CO, ) deposits observed to date have all been south of ~ —33° (Schorghofer and
Edgett, 2006). Nevertheless, diurnal CO, frost may form at the lowest observed
overnight temperatures in RAVE, since apparent “nightside” thermal inertia in
some locations is less than the threshold 56 Jm™ K~! s7%5 above which CO, frost

is unlikely to form (Putzig and Mellon, 2007, Fig 8).

In contrast to the net deposition of atmospheric dust over Tharsis at higher
obliquities, GCMs predict a somewhat complicated dust exchange between the
surface and atmosphere under the current obliquity. The flanks of the Tharsis
volcanoes, of Olympus Mons, and the broader Tharsis low thermal inertia re-
gion are net deflation areas at about 1 uma~' (Kahre et al., 2006, Para. 46), while
RAVE is mostly a net deposition area (Kahre et al., 2006, Para. 44, Fig 7). Based

on results at 22.5ka and 72.5ka, GCMs also predict these conditions to prevail
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over the orbital precession cycle on the order of 50ka (Haberle et al., 2006). These
inferences are directly relevant to the dust veneer within RAVE in terms of par-
ticle sizes, since 1 um — 10 um (Kahre et al., 2006, Para. 21) dust used in the GCMs
is consistent with the 3 um atmospheric dust (e.g., Lemmon et al., 2004) and the

< 40 um surficial material (Section 6.4.2).

In summary, the climatic conditions during the late Amazonian are likely
to have produced complex eolian and aqueous processes. Overall, the eolian
processes have led to net dust deposition on most RAVE surfaces, with per-
haps some of the dust derived regionally via deflation from the flanks of nearby
volcanoes and surroundings. While localized H,O-glaciers and regionally per-
vasive ground ice may have persisted before 5 Ma, the recent climate has been

mostly arid though moderated by ground fog and local frost.

6.4.7 Synopsis of Overviews

The preceding overviews of geology (Section 6.4.4), thermally-derived at-
tributes (Section 6.3.3), surficial morphology at high resolution (Section 6.4.3),
ground ice/glacial conditions (Section 6.4.5), and climatic conditions (Sec-
tion 6.4.6) over RAVE are consistent with hardpan/duricrust bedforms that may
be a meter or two thick overlain by a veneer of dust. Such bedforms could form
in any one of several different ways: fine material that originated as atmospheric
dust subject to cyclical deflation and deposition, though mostly deposition, over
obliquity cycles; basaltic ash and chemically/mechanically altered scoriaceous
deposits on the flanks of nearby volcanoes transported by regional winds; lag

deposits from the sublimation of relict glacial ice and dust matrices; remnants
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of regionally expansive ash fall from basaltic plinian eruptions in Tharsis; or

combinations thereof.

Our overview does not effectively constrain the composition of the material
cementing the bedforms, or the processes that formed them. In fact, a broad
range of processes could yield the indurating salts, such as leaching alteration of
dust by low-pH brines derived from volcanic degassing (i.e., acid-fogs); eolian
deflation of salts that were generated under hydrothermal acid-fog conditions
on the flanks of volcanoes and their subsequent deposition in RAVE; significant
concentrations of salt in atmospheric dust; local production of salts via aqueous
processes facilitated by buried ground ice, relict glaciers, dehydration of sulfates
(e.g., Tosca et al., 2008, Fig. 18), or a combination thereof as H,O sources; and
local production of salts in isochemical alteration of basaltic lapilli deposited

from plinian eruptions.

Clearly, additional information is needed to elucidate and evaluate candi-
date processes for the origin of RAVE. To this end, we discuss chemical consid-

erations in the succeeding sections.

6.5 Origin of RAVE: What is the Bulk Component?

The chemical constraints on the bedform material and cementation processes
that we just discussed can be established by considering the distribution of GS-
derived elemental mass fractions within RAVE. The first order chemical prop-
erties are obviously those of Cl enrichment and Fe and Si depletion relative to
the global average. Tentatively, this may reflect a mass dilution effect since Cl

can be a proxy for salts, at least on Earth, and shows a statistically significant

271



anticorrelation with both thermal inertia and Si mass fractions at global scales
(Keller et al., 2006b, and Tables 5.2 and 5.3). However, this possibility is con-
siderably weakened by the potential dominance of sulfates, rather than halides,
under Martian low-pH aqueous conditions (e.g., Tosca et al., 2005, p. 129) and
the lack of a strong correlation of Cl with potential cations at either Meridiani
(Clark et al., 2005, sec 4.2.3, 4.2.4 ) or Gusev (Clark et al., 2007a). 1t is also possible
that a significant fraction of the CI substitutes into sulfate or mixed anion salts
rather than forming pure chlorides. While halides have been identified tenta-
tively with TIR spectra (Osterloo et al., 2008, Fig 2), their distribution appears
decoupled from and their spatial extent minute relative to the GS Cl-enriched

regions.

Since the primary chemical signature of RAVE does not lead us conclusively
to either minerals or chemical processes, we compare elemental mass fraction
ratios within RAVE with those for the Rest Of Mars (ROM) and for several types
of material that have been analyzed in situ. We retain the ROM distributions as
points of reference in comparisons involving all other types. The in situ types
we use are those classified as “soils” at both MER sites, including surface dust;
the rocks at both MER sites; and the Shergottite-Nakhlite-Chassignite (SNC)
meteorites. To ease detailed comparisons, we divide each type of material into

the classes and subclasses defined by the MER team.

The primary reasons we use ratios of mass fractions in lieu of the mass frac-
tions themselves are to circumvent any systematic differences between the GS
and MER Alpha Particle X-ray Spectrometer (APXS) data (e.g., Chapter 2), and
the effectiveness of ratios when comparing different material as developed by

Pearce (e.g., Winter, 2001, p. 180). To facilitate comparisons with other chem-
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ical analyses in the literature, such as Total Alkali Silica (TAS) diagrams (Bas,
2000), we use SiO, (renormalized to an H,O-free composition for the GS) as the
abscissa in our comparative plots. Unfortunately, robust comparisons are cur-
rently limited to CaO, Cl, FeO, and K,O as the ordinates. We do not compare
Al,O, since its GS-derived values are being refined, H,O as it has only been
estimated indirectly by the MER mission, and Th as it is undetectable by the
MER APXS. The lack of robust S estimates with the GS and Th estimates with
the APXS are particularly challenging, since both elements are important when

evaluating the possibility of aqueous processes (e.g., Taylor et al., 2006a).

We begin our comparisons of elemental ratio distributions with the soils of
Mars. Since soil and dust are loaded terms, we limit ourselves to the abiogenic
definition of soil by Banin (2005), and our definition of dust on the basis of par-
ticle size (Section 6.4.2), which are also consistent with the terminology used by

the MER team.

6.5.1 Soils of Mars

The soil classes that we use, the sols on which they were sampled by the
APXS, and the literature upon which the sample selection is based - in-
cluding the work by Ming et al. (2008, submitted, Geochemical Proper-
ties of Rocks and Soils in Gusev crater, Mars: Results of the Alpha Parti-
cle X-ray Spectrometer from Cumberland Ridge to Home Plate, submitted
to the J. Geophys. Res., http://www.astro.cornell.edu/team/Ming_
JGRO5_08SpiritAPXSmerged.pdf) - are listed in Table 6.9. It is im-

portant to note that the chemical differences among some of these classes,
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Table 6.9: Soil classes used, the sols on which they were sampled by the
APXS, and legend key for Figures 6.31- 6.34. Symbolic su-
perscripts identify the references that we used to associate the
particular samples with a given class as: (unmarked)Yen et al.
(2005, Table 1), (x)Morris et al. (2006, Fig 1, Table 1), (¢)Morris
et al. (2006, Table 4), and (p)Ming et al. (2008, submitted, Ta-
bles 3 and 6). Gusev samples are prefixed “G”, Meridiani sam-
ples “M.” The trench samples that helped to validate GS esti-
mates (¢)(Table 2.3), average Laguna-class soil (p)(Ming et al.,
2008, submitted, Table 6), average Panda class soil at Gusev
(o)(Morris et al., 2006, Table 9), average Panda class soil at Merid-
iani (¢)(Morris et al., 2006, Table 9), and average Pathfinder soil
(X)(Foley et al., 2003, Table 7) are included for completeness.
Continued in Table 6.10.

Soil class Legend key APXS sampling sol

Berry class, Mooseberry subclass BMSoil *M80, °M9I1,
*M100, *M416,
°M420,°M420B,
*M443

Berry class, Nougate subclass BNSoil *MO023, *M090,
*M369, *M509

Eileen Dean class ESoil ?(G1239, YG1246

such as surface dust (Yen et al., 2005) and Laguna Class - Panda Subclass
soil, are subtle (e.g., Gellert et al., 2006, sec 11.2 — 11.4). Nevertheless, the
classification appears reasonable given its utilization of the combined con-
straints from Mossbauer spectra, Miniature Thermal Emission Spectrome-
ter (Mini-TES) spectra, and MI textural information, as has been used suc-
cessfully for rocks (e.g., McSween et al., 2008). Pending an update to the
PDS files for Gusev http://pds—geosciences.wustl.edu/mer/merl_
mer2-m-apxs—5-oxide—-sci-vl/merap_2xxx/data/apxs_oxides_mer2.

csv and Meridiani http://pds—geosciences.wustl.edu/mer/merl_
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Table 6.10: Soil classes used, legend key for Figures 6.31-6.34, and the sols
on which they were sampled by the APXS continued from Ta-
ble 6.9. Continued in Table 6.11.

Soil class Legend key APXS sampling sol

Gertrude Weise class GSoil ?(G1190, (1194,
?G1199

Laguna class, Boroughs subclass  LBSoil °G113, °G114, °G140,
°G141

Laguna class, Doubloon subclass LDSoil G502, YG611

Laguna class, Liberty subclass LLSoil *G47, *G135, *G280,

*G315, *G428, *G477,
vG814, ¥G847, ¥G831,

?G1017, °M123,
°M368
Laguna class, Panda subclass LPSoil *G43, *G49, *GbhO,

*G74A, *G158, G167,
*G342, G457, *G709,
?G710, °M11, *M166,
°*M237A, °*M237B,
°M249

MER sufacE dusT (MERET) Dust G14, G65, G71, G126,
v(G823, ¥G1352, M25,

M60, M90, M123
Paso Robles class PSoil *G401, *G427, *G723,
?G1013, *G1098
GS validation trenches GRSSoil £G049, £G050, G115,
¢MO081, *{M368
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Table 6.11: Soil classes used, legend key for Figures 6.31-6.34, and the sols
on which they were sampled by the APXS continued from Ta-
ble 6.10.

Soil class Legend key APXS sampling sol

Averages LPPFSoil ?Laguna, °GPanda,
°*MPanda,
NPathfinder

mer2-m-apxs—5-oxide—-sci-vl/merap_2xxx/data/apxs_oxides_merl.
csv we obtained the data for sols 14——1512 (Gusev) and sols 11 ——1481 (Merid-

iani) from Ralf Gellert (05 May 2008, personal communication).

We make two key observations after considering all in situ soil classes, in-
cluding the trench samples that were used to validate the GS estimates and av-
erage Pathfinder soil: (1) The absence of a consistent overlap with any class
(or even with a single sample) across the four ratios highlights the chemical
uniqueness of RAVE; and (2) The most consistent differences of oxide : SiO,
ratios with RAVE counterparts are shown by MER surfacE dusT (MERET). Fig-
ures 6.31- 6.34 emphasize this consistency by juxtaposing the comparison of
all classes with one of only MERET and ROM. In theory, the sol 1352 capture
magnet dust sample that we include as a datum of MERET would have repre-
sented the composition of atmospheric dust. However, as discussed by Ming et
al. (2008, submitted, Sec 9 Table 6), the capture magnet preferentially sequesters
the titanomagnetite component of atmospheric dust, the sample may be insuf-
ficiently thick for accurate APXS analysis, and the bulk of the material may in
fact be similar to Laguna class soil. Consistent with these issues, the capture
magnet sample remains the outlier in MERET data across all four ratio types

(Figures 6.31- 6.34) and we do not consider it further in our work.
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Figure 6.35: Modified box plots comparing the RAVE distribution to the
ROM distribution for each element, and for ratios of particu-
lar elements of interest. Section 6.5.1 summarizes the features
of the plot and the significance of the error bars.

An additional observation from Figure 6.32 is that, while strikingly enriched
in Cl relative to the ROM, RAVE'’s Cl mass fractions are generally less than those
of MERET. This yields the similar C1/SiO, ratio between the two, which, along
with the similar FeO/SiO, (Figure 6.33) and K,0O/SiO, (Figure 6.34) ratios and
depletion of SiO, in RAVE would be consistent with a simple mass dilution ef-
fect on MERET as discussed in detail below. Since the GS-derived S map is
still tentative, we are unable to investigate whether sulfates could be a dilut-
ing agent. Nevertheless, the significantly higher CaO/SiO, ratio in RAVE (Fig-
ure 6.31) could act as a proxy for sulfates, such as CaSO, -H,O (gypsum) or
CaSO, (anhydrite). Hydrated salts would also explain the slight enrichment of
H,O in RAVE relative to the ROM that is evident in Figure 6.35. These observa-

tions help to constrain our conjectures on the origin of RAVE in Section 6.7.

That an analog of MER soils could be a key chemical component of RAVE

is reinforced by the RAVE oxide ratios lying within the extremes of soil classes
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Figure 6.36: Paso Robles and Gertrude Weise samples visible from or-
bit as excerpts from HiRISE infrared-red-bluegreen enhanced
color image PSP_003834_1650. As discussed in Section 6.5.1,
their visibility in disturbed surfaces across a range of loca-
tions is consistent with a subsurface, perhaps even spatially
widespread, presence.

(Figure 6.31), such as Paso Robles of a potentially hydrothermal origin (e.g., Yen
et al., 2008) and Berry dominated by hematite spherules of aqueous origin (e.g.,
Morris et al., 2006). RAVE also appears roughly intermediate in composition rel-
ative to MERET and sulfate-rich Paso Robles soil for the case of FeO/SiO, and
CaO/S5i0,. While such extreme soils with substantially higher CaO content than
RAVE is reassuring for a dust-salt mixing model, the spatially isolated in situ de-
tection and significant chemical variability (e.g., K,O/SiO,) of Paso Robles type

soils precludes additional inferences. Nevertheless, as shown in Figure 6.36, the
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presence of this soil class across a range of elevations (e.g., Yen et al., 2008, Sec-
tion 2, Para. 73), detection only in excavated surfaces (e.g., Yen et al., 2008, Para.
4), and the presence of hydrous Fe’*-sulfates that would dehydrate rapidly in
the current atmosphere (e.g., Lane et al., 2008, Section “Discussion” Para. 3) sug-
gest that the Paso Robles class may be spatially more extensive beneath a veneer

of other soils (e.g., Lane et al., 2008, last para.).

We explore the feasibility of a MERET and salt mixing model further with
tirst order estimates of the mass fraction of salts in a mixture that would yield
the typical (median) mass fraction of FeO, Cl, K,O, and SiO, within RAVE.
With mass balance as the sole constraint, the mass fraction of salt in the mixture
would vary between 5 % and 15 %, with the best agreement across elements for
surface dust samples that appear to be composed of the finest material in Mi-
croscopic Imager (MI) images (e.g., sol 60 at Meridiani). Across all samples, the
mass fraction of CaSO, only needs to be 3 %—5 % to account for the enrichment
of Ca in RAVE relative to surface dust. That would amount to physically feasi-
ble bounds of 20 %—100 % of the diluting salt, with the rest unconstrained. For
comparison, the areal fraction of cementing salts in the surface of White Rock
duricrust, which we mentioned as a possible analog to the RAVE bedforms in

Section 6.4.3, is estimated to be less than 15 % (Ruff et al., 2001, Sec. 3 Para. 1).

A possible alternative RAVE composition to MERET is the ROM itself. Given
the large number of ROM data, we may supplement the qualitative information
in the ratio scatter plots (Figures 6.31- 6.34) with a more quantitative compar-
ison of distributions using modified box plots as discussed in Section 3.4.1. In
essence, we compare the low values within RAVE with the high values of ROM

(25th percentile of RAVE divided by the 75th percentile of ROM), high values
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of RAVE with low values of ROM (75th percentile of RAVE divided by the 25th
percentile of ROM), and typical RAVE with typical ROM (median RAVE by me-
dian ROM). We estimate error bars conservatively as the per bin RMS uncer-
tainty of RAVE and ROM propagated for the ratio of medians. The resulting

plots are shown in Figure 6.35.

The qualitative comparison between RAVE and ROM (Figures 6.31- 6.34)
suggests that CaO/SiO, and K,0/SiO, are similar, while the RAVE FeO/SiO,
values are significantly low. Even more striking, though already discussed in
the delineation of RAVE, is the remarkably low SiO, mass fractions and remark-
ably high CI mass fractions in RAVE relative to ROM. These observations are
consistent with the quantitative comparisons (Figure 6.35) suggesting a typical
(median) enrichment of Cl by about 50 %, depletion of Si by about 8 %, and de-
pletion of the Fe/Si ratio by ~ 10 %.

As discussed earlier, the enrichment of Cl and depletion of Si could be at-
tributed to mass dilution by salts, much as we inferred for MERET in the case of
Ca and Si. However, cations for potential halides are poorly constrained as the
enrichment of K is tentative and Ca is, if anything, depleted (Figure 6.35). In ad-
dition, as discussed initially and elaborated further in Section 6.6.1, sulfates, not
halides, are expected to be the typical salts in Martian surficial material. The
biggest challenge of all to a salt dilution model of a ROM composition is the
lower Fe/Si ratio in RAVE. While the preferential leaching of Fe under low-pH
conditions (Section 6.6.2) is a possible resolution, the similarity of K/ Th between
RAVE and ROM (Figure 6.35) remains difficult to explain under any pH (Tay-
lor et al., 2006a). Lastly, ROM is chemically, geologically and mineralogically

heterogeneous. It seems unlikely that such a heterogeneous surface could be
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the source for the remarkably coherent chemical signature within RAVE and its
neighborhood. Given these reasons we do not consider ROM to be a viable al-
ternative to MERET either in a mass dilution scenario or in a chemical alteration

scenario.

In summary, our comparison of the chemical distribution within RAVE with
the various in situ soils of Mars and ROM hints that MERET (and Laguna class
soil) may be a reasonable analog to the bulk material of RAVE. Dilution of such
a composition by salts (< 15 %) with a significant Ca-cation component would
yield the RAVE composition to first order. Such salts may also be hydrated,
given the typical enrichment of H,O in RAVE relative to ROM by ~ 10 % (Sec-
tion 6.7). If instead ROM were the primary source material, two key disparities
that are somewhat difficult to resolve would arise: a lower Fe/Si ratio and a
similar K/Th ratio (Figure 6.35). Therefore, we pursue the MERET analog in
our conjectures on the origin of RAVE (Section 6.7), but first we also consider
the in situ rocks observed by the MER mission and SNC meteorites as potential

bulk candidates.

6.5.2 MER Rocks

The rock classes that we use, the sols on which they were sampled by the APXS,
and the literature upon which the sample selection is based are listed in Ta-
ble 6.12. The compositional consistency across Eagle, Fram, and Endurance
craters (Clark et al., 2005, sec 4.1) supports the use of seven stratigraphic layers
(Clark et al., 2005, Fig 2, Table 4) of the Burns class (Morris et al., 2006, Table 4)

to represent the typical compositional variations of outcrops across Meridiani.
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Table 6.12: Rock classes used, legend key for Figure 6.37, and the sols on

which they were sampled by the APXS. The symbolic super-
scripts identify the work that helped to associate the particular
samples with a given class as: (+)Clark et al. (2007b, Table 1),
(W)Clark et al. (2005, Fig 2, Table 4,5), (x)Morris et al. (2006, Fig
1, Table 1), (¢)Morris et al. (2006, Table 4), (p)Ming et al. (2008,
submitted, Table 1, 1b, 2), ({)McSween et al. (2008, Table 1). Sam-
ples were limited to those that were either brushed or abraded
to avoid surficial contamination and alteration effects, which
excluded Everett; Fuzzy Smith; Good Question; Halley; Inde-
pendence class, Assemblee subclass; and Other class, Joshua
subclass rock types. Gusev samples are prefixed “G,” Meridi-
ani samples “M.” Continued in Table 6.13.

Rock class Legend APXS sampling sol

Algonquin class Algon ‘G660, ‘G675, *G688, G700

Adirondack class Adiro  “G34, ‘G60, “‘G86, ¢G100, ¢G1341

Backstay class Back ‘G511

Barnhill class, Barn- BaBa G754, vG763, G764

hill subclass

Barnhill class, Pe- BaPe 9(G1206, #G1209, G1211, #G1216

sapallo subclass

Burns class Burns  ®¥M139, *YM145, °“M147, °YM149,
“M153, *YM155, °*/M162, *YM178,
*/M180, *YM184

Clovis class, Clovis CICl *G216, *G225, *G231, *G291, *G300,

subclass

*G304
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Table 6.13: Rock classes used, legend key for Figure 6.37, and the sols on
which they were sampled by the APXS continued from Ta-
ble 6.12.

Rock class Legend APXS sampling sol

Descarte class Desc ?G553

Elizabeth Mahon EIEI ?G1216, *G1226

class, Elizabeth

Mahon subclass

Elizabeth Mahon Elln G1251, *G1252

class, Innocent By-

stander subclass

Independence class, Inln ?*G429B, 9*G542, ¥*G533

Independence  sub-

class

Irvine class Irvi ¢G600, *G1055

Peace class Peac *G374, *G377, *G380, *G385B
Montalva class Mont ?G1072, G1079

Other class, Pot of OtPo *G172

Gold subclass

Torquas class Torq ?G1143

Watchtower class, WaWa  *(G416, **G417, **G496, *?(G499
Watchtower subclass

Watchtower class, WaKe G646

Keel subclass

Wishstone class Wish ¢G335, G357
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We use ten corresponding samples as well as a potential precursor composition
(Clark et al., 2005, Table 5) in our comparisons. It is important to note that the
MER rock classes are chemically quite distinct (e.g., Squyres et al., 2006a,c) unlike
the soil classes. This is reinforced by the principal component analysis of APXS
data for rocks as well (e.g., Tréguier et al., 2008, Overview of Mars surface geo-
chemical diversity through APXS data multidimensional analysis: First attempt

at modeling rock alteration, submitted to the J. Geophys. Res.).

Our ratio scatter plots of rock classes in Figures 6.37 and 6.38 do not
show the consistent differences that were apparent for the case of MERET (Fig-
ures 6.31- 6.34). For example, a cursory look suggests that Adirondack class
with its lower C1/5iO, and K,0/SiO, ratios could be diluted by KCl to give
the composition of RAVE. However, FeO/SiO, of the Adirondack class is at the
high end of RAVE, leading to issues similar to that for ROM in Section 6.5.1.
Unlike for soils, the CaO/SiO, in RAVE also appears elevated relative to most
rocks - including the sedimentary Burns formation - to the point of making the

region an outlier.

While complex alteration processes in conjunction with mass dilution by
salts may be contrived to infer a genetic association of RAVE with some ig-
neous rocks, we do not find any parallels to the simpler possibilities that exist
in the case of soils. We may have perhaps anticipated this given the dominance
of fine material over rocks in the near surface of RAVE (Section 6.4.3). If a rock
analog is sought in spite of these issues, the classes to show the most consistent
differences would be the Adirondack class (picrobasalt-basalt in the TAS dia-
gram (McSween et al., 2006, Fig 7)) and the Barnhill-Pesapallo class of putative

pyroclasts (Ming et al., 2008, submitted). We consider whether SNC meteorites
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could be better analogs in the next section.

6.5.3 SNC Meteorites

We use the summary tabulation of chemical compositions of the Martian
Meteorite Compendium (http://curator. jsc.nasa.gov/antmet/mmc/
index.cfm) by Charles Meyer, limiting ourselves to the samples for which
bulk compositions have been reported. The corresponding source files are listed
in Table 6.14.  As expected of minor elements in igneous material, meteoritic
bulk compositions have far too low C1/SiO,. In addition, the SNC meteorites
- possibly sourced from a depleted mantle (e.g., Taylor et al., 2006b, Sec. 5, 7.2)
- have very low K,0/S5iO, ratios (Figures 6.39 and 6.40) for a mix with salt to
be plausible, unless mineral assemblages present in alteration veins (Rao et al.,

2005, 2008) were considered representative of the bulk.

Even if we disregard Cl as a mobile component and K in SNCs as unrepre-
sentative of the crust (Taylor et al., 2006b), a simple scenario of diluting the sub-
stantially higher mass fraction of S5iO, in the majority of SNCs by salts would
be difficult. Others such as Lherzolites, that have SiO, content comparable with
RAVE, have higher FeO/SiO, ratios posing the same challenges as for ROM
(Section 6.5.1). Alternatively, the igneous evolution of possible SNC parent mag-
mas may possibly yield the Fe and Si mass fractions observed in RAVE, as has
been considered by El Maarry et al. (2008, Gamma-ray constraints on the chem-
ical composition of the Martian surface in the Tharsis region: A signature of

partial melting of the mantle?, submitted to the J. Volcanol. Geoth. Res.).

We feel that of all three candidate material types just discussed, MER soils
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Table 6.14: SNC classes, corresponding legend in Figure 6.39, and file
names and tables of bulk compositions in the Martian Me-
teorite Compendium by Charles Meyer. For example, the
URL for the file “any.pdf” would be http://curator. jsc.
nasa.gov/antmet /mmc/any.pdf The last column also in-
cludes an abbreviated reference to analysts who determined
the composition. Continued in Table 6.15.

SNC group Legend Sample Source

Basaltic Shergottite BS EETA79001_A  79001.pdf; Lithol-

ogy A, p. 11/26;
Burghele83

EETA79001_.B 79001.pdf;  Lithol-
ogy B, p. 12/26;
Burghele83

Los Angeles ~ XVLosAngeles03.pdf;
p- 5/5; Ruben2000

QUE9%4201 que94201.pdf; p-
5/13; Warren1999

RBT04262 RBT04261.pdf; p-
3/4; Anand2008

Shergotty que94201.pdf; p-
7/12; Laul1986

Zagami Zagami.pdf; p. 5/11;
Lodders1998
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Table 6.15: SNC classes, corresponding legend in Figure 6.39, and file
names and tables of bulk compositions in the Martian Me-
teorite Compendium by Charles Meyer continued from Ta-

ble 6.14. Continued in Table 6.16.

SNC group Legend Sample Source
Clinopyroxenite C Governador GovVal.pdf; p. 4/5;
(Nakhlite) Burragato1975
Lafayette Lafay.pdf;, p. 5/9;
Lodders1998
MIL03346 MIL03346e.pdf;  p.
6/10; Barret2006
Nakhla Nakhla.pdf; p. 9/14;
Lodders1998
Y000593 XXII-Y000593.pdf; p.

5/5; Oura2003

in general and MERET in particular would be the optimal analog for the bulk

component of RAVE, given consistent chemical differences, morphology partic-

ularly involving fine particle sizes at GS sampling depths (Sections 6.4.2, 6.4.1,

and 6.4.3), and the relative simplicity of processes that need to be invoked.

6.6 Origin of RAVE: What is the Minor Component?

On the basis of scatter plot comparisons of elemental ratios between RAVE and

each of ROM, Martian in situ soils, in situ rocks observed by the MER mission,

and SNC meteorites in the preceding sections, we concluded that the most rea-

sonable chemical analog for the bulk component of RAVE would be MERET.
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Table 6.16: SNC classes, corresponding legend in Figure 6.39, and file
names and tables of bulk compositions in the Martian Me-
teorite Compendium by Charles Meyer continued from Ta-
ble 6.15. Continued in Table 6.17.

SNC group Legend Sample Source
Dunitic shergottite D Chassigny Chassig.pdf; p. 7/8;
Lodders1998
NWA2737 Beck et al. (2006, Table
2 FeO computed
and normalized to
100.15 %)
Lherzolitic shergot- L ALH77005 Lodders (1998, Table 4,
tite Cl from Table 3)
LEWS88516 Lodders (1998, Table 4,
Cl from Table 3)
Y793605 Lodders (1998, Table
4)
Orthopyroxenite @) ALH84001 Lodders (1998, Table 4,
Cl from Table 3)
Olivine- 0/0) DarAlGani476 XIV-
Orthopyroxene Dar%20al%20Gani.pdf;
shergottite p- 5/6; Ziptel2000
Dho378 dho378.pdf; p. 3/4;

Ikeda2006
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Table 6.17: SNC classes, corresponding legend in Figure 6.39, and file
names and tables of bulk compositions in the Martian Me-
teorite Compendium by Charles Meyer continued from Ta-

ble 6.16.
SNC Legend Sample Source
group
Olivine- OP Dhofar(019 XVII-%20Dhofar.pdf;
phyric p- 5/5; Taylor2002
shergottite
EETA79001_A Lodders (1998, Table 4,
Cl from Table 3)
EETA79001_B Lodders (1998, Table 4,
Cl from Table 3)

SayhAlUhaymir005 Dreibus et al. (2000,
Table 1)

Y980459 XXVIL_Y980459.pdf;
p- 4/4; Shirai2004

The bulk analog also requires a minor component of mass dilution. As sum-
marized in Section 6.4.7 and reiterated in Section 6.5, the surficial properties are
consistent with a salty cementation matrix as the diluting component. The di-
luted nature of RAVE relative to our analog(s) also requires that any chemical
processes involved in the origin of the minor salt component not be isochemical

within the GS sampling depths.
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6.6.1 Could it be Sulfate(s)?

The higher CaO/SiO, ratio in RAVE relative to MERET and the ~ 10 % enrich-
ment of median H,O mass fraction in RAVE relative to that of ROM (Figure 6.35)
hint that a hydrated Ca-bearing salt may be a significant part of the cementing
salts. In fact, our first order estimate in Section 6.5.1 indicated that this may
exceed 20 % of the unknown salt, if the extra Ca were in the form of anhydrite.
Sulfate could also be a reasonable anion for the rest of the salt mixture due to

several reasons.

First, sulfates have been detected remotely on the surface as summarized by
Chevrier and Mathé (2007, Section 2.4 Para. 2) and Gendrin et al. (2005). Such
identifications include Gypsum-bearing outcrop surfaces and one dune field
(Olympia Undae), the latter of substantial spatial extent (Fishbaugh et al., 2007,
Para. 6). All surface missions have detected sulfates in situ: Viking, Pathfinder,
and MER (Chevrier and Mathé, 2007, Section 2.4 Para. 2). More specifically,
Meridiani is a site of sulfate-rich outcrops (Clark et al., 2005, Fig 12). Mineral
modeling for the Meridiani outcrops suggest ~ 7 % CaSO, (e.g., Clark et al., 2005,
Fig 12), with similar/greater enrichments in Boroughs soil within ~ 10 cm depth
(Haskin et al., 2005), Clovis outcrop, Peace outcrop, and Paso Robles soil (Ming
et al., 2006, Table 5). S enrichment can also be associated with surface dust (e.g.,

Knoll et al., 2008, Para. 9).

Second, the identification of sulfates in significant amounts across widely
separated localities is consistent with the higher concentration of volatile el-
ements in bulk Mars relative to Earth (Dreibus and Wanke, 1985). In fact, mass-
independent depletion of **S in SNC meteorites suggests sustained S cycling be-

tween the atmosphere and the crust (Farquhar et al., 2000) making sulfate anions
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globally available for surficial processes over geologic time even in the absence
of sustained volcanic exhalations. Furthermore, Halevy et al. (2007) estimate
(volcanic - primarily Tharsis) S outgassing to be roughly twice that of Earth and
suggest the control of aqueous conditions on early Mars by S-driven chemical
pathways leading to the widespread formation of sulfites, which would cause
a surficial prevalence of sulfates under the geologically more recent oxidizing

atmosphere.

Third, mineralogic modeling of TES spectra using the methodology devel-
oped by Cooper and Mustard (2002) provides tentative evidence of cemented sul-
fates on the flanks of nearby Olympus Mons (10° N of the RAVE perimeter)
and Ascreaus Mons (10° E) (Cooper and Mustard, 2001). It is possible that more
definitive observations in these localities with TIR have been prevented by is-
sues such as fine-particle volume scattering /non-linear mixing (e.g., Christensen
et al., 2001), detection difficulties when particle sizes are below ~ 100 um (Poulet
et al., 2007, sec 4.3.4), low surface temperatures, and spectral similarities be-

tween surface particles and atmospheric dust.

6.6.2 How would Sulfates Form?

Given the collective reasons to favor sulfates as cementation agents and key mi-
nor components within RAVE, an evaluation of chemical processes that form
sulfates locally may help us identify reasonable conjectures for the genetic pro-
cesses of RAVE. Experimental alteration of Hawaiian (plagioclase feldspar rich)
basaltic tephra and (olivine-rich) sands by S-rich acidic vapors under hydrother-

mal conditions (145°C) - simulating an acid fog scenario with very low wa-
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ter /rock ratios - causes the isochemical precipitation of sulfates, primarily Mg
and Ca sulfates, and the formation of amorphous silica (Golden et al., 2005, Sec-
tion 5.1, Para. 46). In contrast, high water : rock ratios under high temperature
acid-fog conditions would cause significant leaching of cations from the host
material (sand and tephra) (Golden et al., 2005, Para. 30). Leaching is more likely
for tephra than for sand (Golden et al., 2005, Para. 31 Table 2). Of the Fe®* sulfates
that form under these conditions, jarosite is usually the only one to remain in

the residue (Golden et al., 2005, Table 2).

The results of hydrothermal high water : rock acid-fog experiments are con-
sistent with low temperature counterparts that Tosca et al. (2004) conducted with
synthetic Martian basalts, as well as the theoretical analyses by Tréguier et al.
(2008, submitted). In particular, Fe, Mg, and Ca cations are released into solu-
tion (Tosca et al., 2004) with subsequent precipitation of sulfates at low pH (1 -
3), with modeled solubilities increasing in the order Ca < Fe < Mg (Tosca et al.,
2005, p. 124 last para., p. 130 top left, Figs. 3-8). As expected, the sole exception

is Jarosite which precipitates first.

McAdam et al. (2008, p. 93 last para) consider the possibility that the snow, ice,
and dust deposition under higher obliquities that we discussed in Section 6.4.6
may have effectively scavenged acidic aerosols from volcanic exhalations. If
so, the resulting ground ice (that may have been pervasive across RAVE) could
have easily facilitated low pH alteration of fine material and rocks by acidic thin
brine films, more effectively than by acid-fog alone (McAdam et al., 2008, p. 93

last para).

Even in the absence of acid-fog related aerosols, Chevrier and Mathé (2007,

Section 2.4) hypothesize that chemical alteration mediated by thin films of wa-
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ter could yield sulfates isochemically as long as sulfide-bearing minerals (e.g.,
pyrrhotite) and suitable cation (e.g., Ca) bearing minerals (e.g., diopside) are
available. However, aqueous conditions with high water : rock ratios (Chevrier
and Mathé, 2007, Fig 8) are probably necessary to generate sulfate deposits on the
scale of the Olympia Undae dune formation regardless of whether they formed
by precipitation from percolating groundwaters (Fishbaugh et al., 2007, Para. 32,
33) or some other mechanism. If deposited in place, the required Ca could still
be locally derived from high-Ca pyroxenes or calcic-plagioclase feldspars (Fish-
baugh et al., 2007, Section 3.2.2), of which the former is also more likely to dis-

solve under low-pH conditions (McAdam et al., 2008, p. 93 top right).

Perhaps more feasible at the large spatial scale of RAVE would be mediation
of low-pH chemical processes in fine material by a sustained S-cycle between
the atmosphere and the near surface of Mars (Section 6.6.1). For example, as
Tosca et al. (2008) discuss in the Meridiani context, oxidation and dehydration
processes involving hydrous Fe-sulfates may help to sustain low-pH brine films
in Martian dust/soil. The acid-fog driven processes that we discussed at the

beginning of this section could then occur even without volcanic exhalations.

Assuming that sulfate-rich brine films were to form by processes just de-
scribed, in which direction are they likely to migrate within fine material de-
posits? Upward migration driven by a groundwater supply has been inferred
on the basis of variations in Al, Ca, Mg, Cl, Br, and S at * 10cm depths (e.g.,
Gellert et al., 2006; Haskin et al., 2005, Gel06 sec 11.4 Has05 p 68 right col). How-
ever, at sites considered by some to be terrestrial analogs for Martian soil for-
mation, such as Antarctica and the Atacama desert, upward migration of brines

driven by groundwater is rare (Amundson et al., 2008, p. 16 top). Accordingly,
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Amundson et al. (2008, p. 15 line 19 - p. 16) suggest that brine formation by atmo-
spherically derived solutes followed by downward migration may be a more
likely scenario and consistent with the salt enrichment in the walls of * 10cm

deep excavations at Gusev.

6.7 Synthesizing the Origin of RAVE

First order estimates of volume and mass may help develop a sense of scale
for the salts and fine material involved in the formation of RAVE. RAVE has a
surface area of roughly 2. x 10° km?, approximating that of the Medusae Fossae
Formation (MFF) (Bradley et al., 2002, Section 7). Assuming a 2m depth (Sec-
tion 6.4.3), 1.2 x 10* kg m™ bulk density (Section 6.4.1), and 12.5 % mass fraction
of salt (Section 6.5.1) yields a total 6. x 10'* kg mass of salts, roughly equivalent
to a 2. x 10? km® volume if it were a mixture of gypsum (30 % mass fraction) and
kieserite (70 %). The total mass of salt would exceed that of gypsum at Olympia
Undae by a factor of 10, the volume by a factor of 8, and the area by a factor
of 100 according to the Olympia Undae mass, volume, and area estimates by

Fishbaugh et al. (2007, Para. 50, 51).

While the total volume of RAVE is smaller than what (Bradley et al., 2002,
Section 7) estimate for the MFF by a factor of 10?, RAVE is still enormous by ter-
restrial standards at roughly 20 % of the land area of the USA. Terrestrial analogs
even at the scale of Olympia Undae are rare, with the White Sands dune forma-
tion only 7 x 10> km? in extent Fishbaugh et al. (2007, Para. 4). Sulfate deposits as-
sociated with volcanism, such as the Julcani (Peru) and Creede (CO) formations

(e.g., Rye, 2005) are even less than 1 x 10> km? in extent. These bulk comparisons
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suggest that the chemical processes that helped to form the cementation salts in

RAVE are likely to have been regional, rather than local, in scale.

6.7.1 General Inferences

While our chemical observations are currently too limited to fully constrain po-
tential formation scenarios for RAVE, the preceding discussions may be used
to guide a few conjectures. These generally share the same inference on the
production of bedforms and the veneer of dust: Surficial salts in association
with fine material were mobilized by thin films of water within RAVE during
typical 42° and higher obliquities that last occurred ~ 5Ma ago (Section 6.4.6).
The evaporation of resulting brine films aggregated fine particles to sufficiently
large sizes to saltate (Section 6.4.3), particularly under denser atmospheres at
higher obliquities (Section 6.4.6). Regional eolian turbulence, driven in part by
katabatic winds at nearby volcanoes, formed the complex bedforms from the

aggregated particles (Section 6.4.3).

However, cementation by salts over time indurated most of the bedforms to
the point of hardpan to duricrust about 2 m thick in places, while others were ei-
ther inactivated by ongoing air fall dust or are still evolving albeit at slower rates
than can be observed over the lifetime of current missions (Section 6.4.3). The
present centimeter scale veneer of dust (Section 6.4.2 and 6.4.3) has accumulated
mostly under recent low-obliquity hyper-arid conditions (Section 6.4.6) that do

not mobilize salts as effectively.

Most of the conjectures also rely on the chemically and physically reason-

able assumption that the bulk of RAVE as seen by the GS is constituted of
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indurated fine material (Section 6.4.3 and 6.4.7) with a composition similar to
MERET (Section 6.5.1). The minor (mass fraction typically < 15 %) salt com-
ponent that helped to form the bedforms via aggregation and indurated them
subsequently is taken to be mostly sulfates with a significant mass fraction of
Ca (Section 6.6.1). The scenarios differ from each other in terms of two key is-
sues: (1) The primary source of the sulfates; and (2) The processes that produced

them.

6.7.2 Scenario 1: Atmospheric Dust with Sulfates

Our simplest conjecture is that atmospheric dust, the deposition of which per-
sisted across much of the region through obliquity cycles (Section 6.4.6), is com-
positionally similar to MER surface dust diluted by Ca-sulfate rich salts. The
sulfates have been deflated and transported from the numerous, albeit local-
ized, sulfate deposits on the planet (Section 6.6.1). An alternative atmospheric
dust composition in this scenario would be in relation to the ROM, enriched in
Cl, depleted in Si, and in Fe/Si. Either alternative under this conjecture would
address the chemical (Section 6.5) and bulk properties of RAVE. However, both
are inconsistent with the failure to detect significant sulfate concentrations in at-
mospheric dust via TIR spectral deconvolution (e.g., Hamilton et al., 2005, Para.
41, 42). In either case, source localities for the sulfates that dilute the MERET
would be mostly low-elevation regions with the nearest such deposit no closer
than Valles Marineris more than a thousand kilometers away. The ROM alter-
native lacks any known examples, be it atmospheric or surficial. Therefore, this

conjecture feels particularly contrived, and we consider it unlikely.
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6.7.3 Scenario 2: Airfall Dust, Ground Ice, and Widespread

Acid Fog

Our second conjecture invokes the chemical alteration of air fall dust by the
activity of thin films of brine under higher obliquities, sustained mostly by re-
gional scale ground H,O ice more than 5 Ma ago (Section 6.4.6) with a minor con-
tribution from long-term deep-seated interactions with relict H,O glaciers that
formed as recently as 65Ma ago on the Arsia Mons flanks (Section 6.4.5). The
low-to-moderate pH alteration mediated by this sustained source of groundwa-
ter formed regionally widespread sulfate salts that migrated to the surface by

evaporative wicking-up effects (Section 6.6.2).

Alternatively, sulfates may have formed via the chemical alteration of air fall
dust by regional scale acid fog (McAdam et al., 2008, p. 93 right, bottom). The
process may have been accelerated by the scavenging of acidic aerosols by H,O
snow at higher obliquities (Section 6.6.2). In either case, salts that had precipi-
tated nearest to the surface mixed with continuing air fall dust that was chem-
ically similar to MERET, eventually accumulating the meter-scale beds that we
now see. In both cases the Ca cations would originate by leaching from the

earliest dust deposits by the processes described in Section 6.6.2.

This conjecture, while invoking one additional step - the formation of salts
driven by regional scale groundwater, acid fog, dehydration/oxidation of salts,
or a combination thereof - relative to the simplest model (Section 6.7.2) avoids
its compositional pitfalls. Much like the first, the regional scale of the second
conjecture also accounts for the necessary bulk. A drawback to this scenario

is that chemical alteration mediated by thin films of water and/or acid fog at
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low temperature may require longer time scales than afforded by the < 65Ma
geologic age (Section 6.4.5) of RAVE. In addition, it is poorly known whether
regional scale acid fogs ever formed on Mars and whether regional scale salt
precipitation could occur via upward migration of brine films (Section 6.6.2).

Except for these concerns, the second scenario appears viable.

6.7.4 Scenario 3: Basaltic Plinian Deposits and Acid Fog

Our third conjecture utilizes the location of RAVE surrounded by some of the
largest volcanic edifices on the planet (Section 6.4.4). We propose that a few
basaltic plinian eruptions or numerous fire fountain and strombolian eruptions
during the late Amazonian deposited massive beds of unconsolidated mate-
rial including reticulite, lapilli, and scoriaceous ash both East and West of the
Tharsis construct (Section 6.4.4). The dominant wind direction westward from
Tharsis (e.g., Benson et al., 2006, Sec. 3.2) drove acid fog alteration under hy-
drothermal conditions (Section 6.6.2) forming sulfate deposits in southwestern
near surfaces. These were reworked mechanically by eolian activity and mixed

with ongoing air fall dust of a MERET composition.

Under this supposition, the chemical signature of RAVE would be best con-
served if the pyroclastics had a composition similar to the Barnhill class, Pe-
sapallo subclass (putative) pyroclastic rocks (Section 6.5.2 and Ming et al., 2008,
submitted, Section 6.6.2) on SE Home Plate in the Columbia Hills of Gusev
Crater (Squyres et al., 2007). Like the first two, the third conjecture also satis-
ties bulk and chemical constraints. However, the concomitant basaltic plinian

eruptions would have been at a scale much larger than their terrestrial analogs,
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such as the 1886 CE Tarawera and 122 BCE Etna eruptions (Houghton, 2004). Fur-
thermore, evidence for geologically recent explosive volcanism of such a mag-
nitude is tenuous at best (Section 6.4.4). In the absence of stronger geomorphic

evidence, our third surmise is probably untenable.

6.7.5 Scenario 4: Sulfates from the Flanks of Volcanoes

Our fourth, and last, conjecture invokes smaller magnitude volcanism than the
third. The volcanism would have been comparable to Hawaiian type fire foun-
tains or strombolian eruptions depositing large beds of scoriaceous ash and
lapilli on the flanks of the Tharsis volcanoes perhaps as recently as 100 Ma ago
(Section 6.4.4). These were exposed to local acid fog under hydrothermal con-
ditions (Section 6.6.2) akin to those inferred for the Paso Robles soils in general
and Tyrone Berkner Island /Tyrone Mount Darwin in particular (Yen et al., 2008,
Fig 14, Section 4.5, Para. 42). Although the scale of acid fog processes observed
in the Kau desert downwind from the Kilauea caldera (Schiffman et al., 2006) is
orders of magnitude smaller than RAVE, they may be analogs for the chemical

and mineralogical changes observed.

Resulting sulfate beds - particularly easily friable sulfates such as gypsum
(e.g., Fishbaugh et al., 2007, Para. 4) - would have been preferentially deflated
under katabatic winds, a net deflation environment, and prevailing east-to-west
winds, and deposited in the intervening topographic lows that include our re-
gion, perhaps throughout the last 0.1 Ma (Section 6.4.6). Meanwhile, ongoing
air fall dust deposition, chemically similar to MERET, has produced the bulk

component.
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Both the strength and weakness of this last surmise is the source of sulfates
- strength as it provides a regional source that is known to be undergoing de-
flation under the current obliquity, weakness as it invokes an eolian delivery
method requiring preferential deflation of sulfates. An additional concern is
with regard to bulk, as the original sulfate deposits need to be localized on the
flanks of volcanoes. First order calculations assuming the volcanoes to be right
cones suggest that if the sulfates accounted for no more than 5% of the total
surface area of flanks, the deposits would have been thicker than 10 m. At the
other extreme of occupying the complete surface area, they would be at least
0.5 m thick. Obviously, the pyroclastic beds within which these sulfates would
have been dispersed would need to be much thicker, perhaps by an order of
magnitude. While these are not unphysical values, they nevertheless pose a
considerable challenge for this conjecture. suggest that if the sulfates accounted
for no more than 5 % of the total surface area of flanks, the deposits would have
been thicker than 10 m. At the other extreme of occupying the complete surface
area, they would be at least 0.5 m thick. Obviously, the pyroclastic beds within
which these sulfates would have been dispersed would need to be much thicker,
perhaps by an order of magnitude. While these are not unphysical values, they

nevertheless pose a considerable challenge for this conjecture.

6.7.6 Favored Scenarios

In summary, we find the first and third surmises to be much less likely than the
second and fourth. However, the second may require regional scale ground ice
and/or acid fog. The evidence of such ice deposits in the past consists almost

entirely of geomorphic similarities to the polar layered deposits and equivocal
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inference of an ice-dust matrix at depth on the basis of radar loss tangents in
nearby regions (Section 6.4.1). Furthermore, any extant ground ice is likely to
be buried deeper than the GS can sense given the absence of a striking enrich-
ment of H,O within RAVE. The fourth conjecture is somewhat complicated by
the requirement for preferential deflation and transport of sulfates, and weak-
ened by bulk constraints. Nevertheless, both scenarios are reasonable educated
guesses upon which to base further investigations of this region that is striking
not only chemically, but also in radar stealth properties, unusual bedforms, and

proximity to some of the largest volcanic edifices on the planet.

6.8 Conclusions

The Chemically Striking Regions (CSRs) that we have delineated on Mars may
provide significant insight into surficial processes on the planet, and perhaps
even into deep seated igneous processes in areas such as Elysium and low
albedo surfaces in the North. They also show that the near surface of contigu-
ous geologic units, such as the MFF, may nevertheless be chemically heteroge-
neous. The CSRs represent the synthesis of all chemical maps that have been
finalized with the GS data, and supplement region delineations with Principal
Component-based cluster analyses of the companion papers. More important,
they demonstrate that the intensity and areal extent of chemical differentiation
in the Martian surface is sufficient to guide future explorations and comparisons

with other datasets.

We have demonstrated the synergy of the CSRs and other datasets with a

case study involving the one region of the planet, RAVE, that is enriched in Cl
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and depleted in both Fe and Si. The strong spatial overlap of RAVE with an
area of Stealth in radar reflectivity as observed from Earth validates the com-
plementary nature of Martian remote sensing observations. Meanwhile, the
chemical constraints that we were able to establish with MER datasets demon-
strate the utility of combining remote sensing and in situ data. Thermally de-
rived attributes, observation of morphology with HiRISE, and climate modeling
enabled us to further constrain potential formation scenarios of RAVE. While
additional chemical and/or mineralogic information may be needed to fully
constrain the processes that formed RAVE, we favor two of our four surmises,
which may help guide future investigations. The refinement of GS-derived Al
and S maps, as well as upcoming analyses of chemical layering with the NS data

(Diez et al., 2008) may be particularly useful in this regard.
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CHAPTER 7
A VOYAGE COMPLETED

In the preceding chapters, we explored the surface of Mars with the Mars
Odyssey GS complemented by an array of instruments. We began by examin-
ing whether the GS data were representative of the surface, and discovered that
they were, indeed. In the process, we also observed that serious sampling issues
in three dimensions had to be kept in mind whenever comparisons or extrapo-
lations were made between the GS and in situ data sets. With the caveats laid
bare, we proceeded to develop a statistical framework that would act as a real-
ity check to our interpretations in the rest of the narrative. Exploring regions of
Mars highlighted mineralogically by means of infrared spectra, we used the GS
to constrain their compositions more thoroughly and the interpretations more
robustly. Our final exercise, using the GS to identify regions of interest to be ex-
amined with other instruments, highlighted the utility of chemical information
of the surface even when limited to a few elements. It also demonstrated that
the GS can be as promising in characterizing the surface of Mars with y photons

as its predecessors have been with infrared light.

Even within the limited scope of our voyage on this planet, we are left with
more queries than answers: What exactly, drives the spatial association of K and
Th with surface type 2 mineralogy? Was any one geochemical process dominant
in the formation of RAVE? What causes the chemical heterogeneities between
eastern and western sections of the MFF? Beyond what we considered directly,
lie numerous other questions, including: What limited CSRs to a few locations
on the planet? What led to the association of many northern CSRs with the

planetary dichotomy? What are the geological implications of the compositional
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uniqueness to Elysium lava flows?

Such outstanding questions can help guide future exploration of the red
planet: The one terrestrial planet of the solar system that was scarred by floods
of mythological proportions, yet failed to become the veritable Eden that Earth
has been for life and humanity for more than 1Ga. It is my expectation that
our geochemically-oriented explorations and discoveries would help define the
path along which extraterrestrial life in the solar system may be found, or its
rarity may be determined. I have been fortunate to experience an Odyssey that
would have been fantasy a mere hundred years ago - It is my hope that the
quests of future generations would be beyond my wildest dreams for humanity

as a space-faring species!
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The

APPENDIX A
TERMINOLOGY LIST

following list contains key terms, symbols, acronyms, and notation that

have been used throughout Chapter 4 in roughly alphabetic order. Where ap-

propriate, corresponding sections and equations are identified.

1

2.

3.

10.

11.

12.

13.

14

. * Notation; Indicates an estimated parameter or sampled variable.
boldface font: Terminology; Indicates matrix of parameters or variables.
a: Parameter; Section 4.3.1; Identical to 1 — 7.

b;: Parameter; Section 4.2; Equations 4.1, 4.4, 4.9, 4.13; Regression coeffi-

cient.
. ¢;: Parameter; Section 4.2.2; Latitude of i bin’s centroid.
d: Parameter; Section 4.4.3; Equation 4.27; Durbin-Watson test.
;. Variable; Section 4.2; Residual.

. Matrix; Sections 4.2.1, 4.2.2; Equations 4.6, 4.11, 4.15; Variance-

covariance of b.
. HLR: Technique; Section 4.3.2; Heteroscedastic Linear Regression.

HRLR: Technique; Section 4.2.1; Heteroscedastic Response Linear Regres-

sion.

IID: Terminology; Section 4.2; Independent and Identically Distributed.
k — 1: Variable; Section 4.2; Number of predictors.

A;: Parameter; Section 4.2.2; Longitude of i bin’s centroid.

. N: Parameter; Section 4.1; Number of observed data.
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

OLR: Technique; Section 4.2.1; Ordinary Linear Regression.

p;: Parameter; Section 4.3; Probability estimate for j” predictor and the

key parameter in hierarchical modeling.
pr: Parameter; Section 4.3.1; Probability of R®.

6,: Parameter; Section 4.2.2; Spatial separation beyond which spatial auto-

correlation is insignificant.

rj: Parameter; Sections 4.2.1, 4.3; Equations 4.8; Partial correlation coeffi-

cient for j" predictors.

R: Parameter; Section 4.1; Multiple correlation coefficient.

R*: Parameter; Section 4.1, 4.3.1; Equations 4.18, 4.19; Squared multiple

correlation coefficient, i.e., coefficient of determination.

R3.: Parameter; Section 4.3.1; Equation 4.22; R? adjusted for the degrees of

freedom.

R(z): Parameter; Section 4.3.1; Equation 4.23; Expected R* when sampling

an uncorrelated population.

0: Parameter; Sections 4.2.1, 4.2.2; Equations 4.5, 4.10, 4.13; Estimated stan-

dard deviation.

0’ Variable; Section 4.1; Standard error of iy, response.

SWLR: Technique; Section 4.2.2; Spatially Weighted Linear Regression.
7: Parameter; Section 4.3.1; Statistical confidence fraction.

t;: Parameter; Section 4.2.1; Equation 4.7; Confidence test parameter for j*

predictor.

tg: Parameter; Section 4.3.1; Equation 4.24; Confidence test parameter for

R
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30.

31.

32.

33.

w; j: Parameter; Section 4.2.2; Equation 4.16; Weight for spatial proximity

between i" and j” bins and the i" row, j® column element of W matrix.
X ;: Variable; Section 4.2; i value of the j" predictor.

Y (6): Parameter; Section 4.2.2; Equation 4.17; Similarity of attributes at 0

angular separation.

9i: Variable matrix; Section 4.2; Equation 4.1; Modeled response.
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APPENDIX B
SOFTWARE FUNCTION MODULES

We list some functions and procedures that relate sections of Chapter 4 to com-
mercial mathematical software. The list includes the names of function mod-
ules, some of which are distributed in special packages (indicated in paren-
thesis). Descriptions of these functions is beyond the scope of this work, but

“" 7

available in software documentation. indicates that a function module is

unavailable for the particular task.

1. Section 4.1

(a) Bivariate correlation with IDL: correlate; with R: cor (stats); with Mat-

Lab: corr; with Mathematica: Correlation.
2. Section 4.2

(@) Ordinary Linear Regression (OLR) with IDL: imsl regressors (Ana-
lyst); with R: Im (stats), glm (stats); with MatLab: regress ; with Math-

ematica: Regress.

(b) Variance-covariance matrix with IDL: imsl covariances (Analyst);
with R: var (stats), cov.wt (stats), vcov (stats); with MatLab: cov; with

Mathematica: Covariance.

(c) Semi-variogram with IDL: -; with R: Variogram (nlme); with MatLab:

- with Mathematica: -.
3. Section 4.3

(a) F-Distribution with IDL: f_pdf; with R: pf; with MatLab: fpdf; with

Mathematica: FRatioPValue.
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(b) x* merit function minimization with IDL: imsl_chisqtest (Analyst);

(©)

(d)

with R: chisq.test (stats); with MatLab: - ; with Mathematica: NMini-

mize.

Normal distribution with IDL: gauss_pdf; with R: pnorm (stats); with

MatLab: gausswin; with Mathematica: NormalPValue, NormalCI.

Student’s distribution with IDL: t_pdf; with R: pt (stats); with Mat-

Lab: tpdf; with Mathematica: StudentTPValue, StudentTCI.

4. Section 4.4

()

(b)

(d)

Standardization with IDL: standardize; with R: scale (base); with

MatLab: - ; with Mathematica: -.

Cumulative distribution function with IDL: binomial; with R: ecdf
(stats); with MatLab: normpdf; with Mathematica: Quantile and In-

verseCDF functions for the inverse cumulative distribution.

Pseudorandom generator with IDL: randomu with normal keyword;
with R: rnorm; with MatLab: random; with Mathematica: Random

with NormalDistribution as an input.

Spatial autocorrelation using Moran’s formula with IDL: imsl_auto
correlation (Analyst) with se_option=2; with R: -; with MatLab: -;

with Mathematica: -.

317



BIBLIOGRAPHY

Almeida, M. P, E. J. R. Parteli, J. S. Andrade, Jr., and H. ]J. Herrmann (2008),
Giant saltation on Mars, P. Natl. Acad. Sci. USA, 105(17), 6222-6226, doi:10.
1073 /pnas.0800202105.

Amundson, R., S. Ewing, W. Dietrich, B. Sutter, ]. Owen, O. Chadwick, K. Nishi-
izumi, M. Walvoord, and C. McKay (2008), On the in situ aqueous alteration
of soils on mars, Geochim. Cosmochim. Acta, p. in press, doi:10.1016/j.gca.2008.
04.038.

Anderson, D. M., and A. R. Tice (1979), The analysis of water in the Martian
regolith, |. Mol. Evol., 14, 33-38, d0i:10.1007 /BF01732365.

Arfken, G. B., and H. J. Weber (2005), Mathematical Methods For Physicists, 6 ed.,

1200 pp., Elsevier Academic Press, Burlington, MA.

Arvidson, R. E,, I. Seelos, F. P, K. S. Deal, W. C. Koeppen, N. O. Snider, J. M.
Kieniewicz, B. M. Hynek, M. T. Mellon, and J. B. Garvin (2003), Mantled and
exhumed terrains in Terra Meridiani, Mars, |. Geophys. Res., 108(E12), 8073,
doi:10.1029/2002JE001982.

Arvidson, R. E,, et al. (2004a), Localization and physical properties experiments
conducted by Spirit at Gusev crater, Science, 305(5685), 821-824, d0i:10.1126/
science.1099922.

Arvidson, R. E., et al. (2004b), Localization and physical property experiments
conducted by Opportunity at Meridiani Planum, Science, 306(5702), 1730-
1733, d0i:10.1126/science.1104211.

Arvidson, R. E,, et al. (2006), Overview of the Spirit Mars Exploration Rover

318



Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia hills,

J. Geophys. Res. Planets, 111, doi:10.1029 /2005JE002499.

Baker, V. R,, R. G. Strom, V. C. Gulick, J. S. Kargel, G. Komatsu, and V. S. Kale
(1991), Ancient oceans, ice sheets and the hydrological cycle on Mars, Nature,

352(6336), 589-594, d0i:10.1038/352589a0.

Baker, V. R., S. Maruyama, and J. M. Dohm (2002), A theory for the geological
evolution of Mars and related synthesis (GEOMARS), Meteorit. Planet. Sci., 33,
Abstract 1586.

Balanda, K. P, and H. L. MacGillivray (1988), Kurtosis: A critical review, Am.
Stat., 42(2), 111-119, do0i:10.2307 /2684482.

Bandfield, J. L., V. E. Hamilton, and P. R. Christensen (2000), A global view of
Martian surface compositions from MGS-TES, Science, 287(5458), 1626-1630,
do0i:10.1126/science.287.5458.1626.

Banin, A. (2005), Planetary science - The enigma of the Martian soil, Science,

309(5736), 888-890, d0i:10.1126/science.1112794.

Banin, A., B. C. Clark, and H. Wanke (1992), Mars, chap. 18, pp. 594-625, Uni-

versity of Arizona Press.

Bas, M. J. L. (2000), Iugs reclassification of the high-Mg and picritic volcanic
rocks, J. Petrology, 41(10), 1467-1470.

Basilevsky, A. T, and V. M. Linkin (1996), Lunar rover sample return:
Lunokhod/Luna heritage and perspectives, Adv. Space Res., 18(11), 83-83, doi:
10.1016/0273-1177(96)00106-8.

319



Basilevsky, A. T., C. P. Florensky, and L. B. Ronca (1977), Possible lunar outcrop
- study of lunokhod-2 data, The Moon, 17(1), 19-28, d0i:10.1007 /BF00566850.

Beck, P, et al. (2006), Petrography and geochemistry of the chassignite North-
west Africa 2737 (NWA 2737), Geochim. Cosmochim. Acta, 70, 2127-2139, doi:
10.1016/j.gca.2006.01.016.

Bell, J. F, J. Joseph, J. N. Sohl-Dickstein, H. M. Arneson, M. J. Johnson, M. T.
Lemmon, and D. Savransky (2006a), In-flight calibration and performance of
the Mars Exploration Rover Panoramic Camera (Pancam) instruments, J. Geo-

phys. Res. Planets, 111(E2), E02S03, doi:10.1029 /2005JE002444.

Bell, J. E, D. Savransky, and M. J. Wolff (2006b), Chromaticity of the Martian sky
as observed by the Mars Exploration Rover Pancam instruments, J. Geophys.

Res. Planets, 111(E12), E12505, doi:10.1029/2006JE002687.

Bell, J. E, et al. (2003), Mars Exploration Rover Athena Panoramic Camera
(Pancam) investigation, |. Geophys. Res. Planets, 108(E12), 8063, doi:10.1029/
2003JE002070.

Bell, ]. F,, et al. (2004), Pancam multispectral imaging results from the Opportu-
nity Rover at Meridiani planum, Science, 306, 1703-1709, doi:10.1126/science.
1105245.

Benson, J. L., P. B. James, B. A. Cantor, and R. Remigio (2006), Interannual vari-
ability of water ice clouds over major martian volcanoes observed by MOC,

Icarus, 184(2), 365-371, d0i:10.1016 /j.icarus.2006.03.014.

Bevington, P. R., and D. K. Robinson (2003), Data Reduction and Error Analysis for
the Physical Sciences, 3 ed., 336 pp., McGraw Hill, New York, NY.

320



Bibring, J. P., S. W. Squyres, and R. E. Arvidson (2006a), Merging views on Mars,
Science, 313(5795), 1899-1901, d0i:10.1126/science.1132311.

Bibring, J. P, et al. (2005), Mars surface diversity as revealed by the
OMEGA /Mars Express observations, Science, 307(5715), 1576-1581, doi:10.
1126 /science.1108806.

Bibring, J. P, et al. (2006b), Global mineralogical and aqueous mars history
derived from OMEGA /Mars express data, Science, 312(5772), 400-404, doi:
10.1126/science.1122659.

Bivand, R. (1980), A Monte Carlo study of correlation coefficient estimation with

spatially autocorrelated observations, Quaestiones Geographicae, 6, 5-10.

Blalock, H. M., Jr. (1964), Causal Inferences in Nonexperimental Research, Univer-

sity of North Carolina, Durham, NC.

Bleacher, J. E., R. Greeley, D. A. Williams, S. C. Werner, E. Hauber, and
G. Neukum (2007), Olympus Mons, Mars: Inferred changes in late Amazo-
nian aged effusive activity from lava flow mapping of Mars Express High
Resolution Stereo Camera data, |. Geophys. Res. Planets, 112, E04,003, doi:
10.1029/2006JE002826.

Borg, L. E., and D. S. Draper (2003), A petrogenetic model for the origin and
compositional variation of the martian basaltic meteorites, Meteorit. Planet.

Sci., 38(12), 1713-1731.

Borg, L. E., L. E. Nyquist, H. Weissman, C.-Y. Shih, and Y. Reese (2003), The age
of Dar al Gani 476 and the differentiation history of the martian meteorites

inferred from their radiogenic isotopic systematics, Geochim. Cosmochim. Acta,

67(18), 3519-3536, d0i:10.1016/S0016-7037(03)00094-2.

321



Bourke, M. C,, K. S. Edgett, and B. A. Cantor (2008), Recent aeolian dune change
on Mars, Geomorphology, 94(1-2), 247-255, do0i:10.1016/j.geomorph.2007.05.
012.

Boynton, W. V,, et al. (1992), Science applications of the Mars-Observer Gamma-
Ray Spectrometer, ]. Geophys. Res. Planets, 97(E5), 7681-7698.

Boynton, W. V., et al. (2004), The Mars Odyssey Gamma-Ray Spectrome-
ter instrument suite, Space Sci. Rev., 110(1-2), 37-83, do0i:10.1023/B:SPAC.
0000021007.76126.15.

Boynton, W. V., et al. (2007), Concentration of H, Si, Cl, K, Fe, and Th in the
low- and mid-latitude regions of Mars, J. Geophys. Res. Planets, 112, 12—+, doi:
10.1029/2007JE002887.

Bradley, B., S. Sakimoto, H. Frey, and ]. Zimbelman (2002), Medusae Fossae
Formation: New perspectives from Mars Global Surveyor, J. Geophys. Res.

Planets, 107(E8), 5058, d0i:10.1029 /2001JE001537.

Brandon, A. D., R. J. Walker, J. W. Morgan, and G. G. Goles (2000), Re-Os iso-
topic evidence for early differentiation of the Martian mantle, Geochim. Cos-

mochim. Acta, 64(23), 4083—4095, do0i:10.1016/50016-7037(00)00482-8.

Brenan, J. M., H. F. Shaw, E J. Ryerson, and D. L. Phinney (1995), Mineral-
aqueous fluid partitioning of trace elements at 900 celsius and 2.0 GPa:
Constraints on the trace element chemistry of mantle and deep crustal flu-
ids, Geochim. Cosmochim. Acta, 59(16), 3331-3350, do0i:10.1016/0016-7037(95)
00215-L.

Bridges, N. T., P. E. Geissler, A. S. McEwen, B. J. Thomson, F. C. Chuang, K. E.
Herkenhoff, L. P. Keszthelyi, and S. Martinez-Alonso (2007), Windy Mars:

322



A dynamic planet as seen by the HiRISE camera, Geophys. Res. Lett., 34(23),
L.23,205, d0i:10.1029/2007GL031445.

Bridges, N. T., E. Gorbaty, R. A. Beyer, S. Byrne, B. . Thomson, J. Wray, and
Hirise Team (2008), Low Thermal Inertia and High Elevation Bedforms as
Seen by the HiRISE Camera, in 39th Lunar and Planetary Science Conference,

Lunar and Planetary Inst. Technical Report, vol. 39, p. Abstract 2108.

Briickner, J., M. Koerfer, H. Wanke, A. N. F. Schroeder, D. Filges, P. Dragovitsch,
P. A.]. Englert, R. Starr, and J. I. Trombka (1991), Proton-induced radiation

damage in germanium detectors, IEEE Trans. Nucl. Sci., 38(2), 209-217, doi:
10.1109/23.289298.

Briickner, J., G. Dreibus, R. Rieder, and H. Wanke (2003), Refined data of Alpha
Proton X-ray Spectrometer analyses of soils and rocks at the Mars Pathfinder
site: Implications for surface chemistry, J. Geophys. Res. Planets, 108(E12), 8094,
doi:10.1029/2003JE002060.

Bugayevskiy, L. M., and J. Snyder (1995), Map Projections, 248 pp., Taylor & Fran-
cis, Philadelphia, PA.

Cabrol, N. A, J. D. Farmer, E. A. Grin, L. Richter, L. Soderblom, R. Li, K. Herken-
hoff, G. A. Landis, and R. E. Arvidson (2006), Aqueous processes at Gusev
crater inferred from physical properties of rocks and soils along the Spirit tra-

verse, . Geophys. Res. Planets, 111(E2), E02520, d0i:10.1029/2005JE002490.

Cabrol, N. A., et al. (2003), Exploring Gusev Crater with Spirit: Review of

science objectives and testable hypotheses, |. Geophys. Res. Planets, 108(E12),
8076, doi:10.1029 /2002JE002026.

323



Cantor, B. A. (2007), Present-Day Martian Weather - 5 Mars Years of Observa-
tions by MGS-MOC and MRO-MARCI, LPI Contributions, 1353, 3063—+.

Cantor, B. A, K. M. Kanak, and K. S. Edgett (2006), Mars Orbiter Camera obser-
vations of Martian dust devils and their tracks (September 1997 to January
2006) and evaluation of theoretical vortex models, |. Geophys. Res. Planets,

111(E12), E12,002, d0i:10.1029/2006]JE002700.

Carter, L. M., et al. (2008), SHARAD Sounding Radar Observations of the
Medusae Fossae Formation, Mars, in 39th Lunar and Planetary Science Con-

ference, Lunar and Planetary Inst. Technical Report, vol. 39, p. Abstract 1721.

Chakravarti, I. M., R. G. Laha, and J. Roy (1967), Handbook of methods of applied
statistics: Techniques of computation, descriptive methods, and stistical inference,

Wiley series in probability and mathematical statistics, vol. 1, John Wiley and Sons.

Chevrier, V., and P. E. Mathé (2007), Mineralogy and evolution of the surface of
Mars: A review, Plant. Space Sci., 55, 289-314, d0i:10.1016 /j.pss.2006.05.039.

Christensen, P, et al. (2004), The Thermal Emission Imaging System (THEMIS)
for the Mars 2001 Odyssey Mission, Space Sci. Rev., 110(1-2), 85-130, doi:10.
1023 /B:SPAC.0000021008.16305.94.

Christensen, P. R. (1986), The spatial-distribution of rocks on Mars, Icarus, 68(2),
217-238, d0i:10.1016/0019-1035(86)90020-5.

Christensen, P. R. (1988), Global albedo variations on Mars-implications for ac-
tive aeolian transport, deposition, and erosion, |. Geophys. Res. B Solid Earth

Planets, 93(B7), 7611-7624.

Christensen, P. R., and M. C. Malin (1988), High resolution thermal imaging of
Mars, Lunar Planet. Sci., 19, 180-181.

324



Christensen, P. R., and S. W. Ruff (2004), Formation of the hematite-bearing unit
in Meridiani Planum: Evidence for deposition in standing water, J. Geophys.

Res. Planets, 109(E8), E08,003, doi:10.1029/2003JE002233.

Christensen, P. R,, et al. (2001), Mars Global Surveyor Thermal Emission Spec-
trometer experiment: Investigation description and surface science results, J.

Geophys. Res. Planets, 106(E10), 23,823-23,871, doi:10.1029 /2000JE001370.

Christensen, P. R., et al. (2003), Morphology and composition of the surface of
Mars: Mars Odyssey THEMIS results, Science, 300(5628), 2056-2061, doi:10.
1126 /science.1080885.

Christensen, P. R., et al. (2005), The igneous diversity of Mars: Evidence for

magmatic evolution analogous to Earth, Lunar Planet. Sci., 36, abstract 1273.

Clark, B. C., A. K. Baird, R. J. Weldon, D. M. Tsusaki, L. Schnabel, and M. P.
Candelaria (1982), Chemical composition of Martian fines, |. Geophys. Res., 87,
10,059-10,067.

Clark, B. C., R. Gellert, A. Yen, and Athena Science Team (2007a), The Gusev
Geochemical Zoo: Compositional Diversity of Rocks and Sediments, from
Subclass to Superclass, with Indicators for Aqueous Activity, LPI Contribu-

tions, 1353, 3232—+.

Clark, B. C,, et al. (2005), Chemistry and mineralogy of outrcrops at Meridiani
Planum, Earth Planet. Sci. Lett., 240(1), 73-94, d0i:10.1016/j.epsl.2005.09.040.

Clark, B. C,, et al. (2007b), Evidence for montmorillonite or its compositional
equivalent in Columbia Hills, Mars, J. Geophys. Res. Planets, 112, E06501, doi:
10.1029/2006JE002756.

325



Clark, B. C., I1I, et al. (1977), The viking x ray fluorescence experiment - analyti-
cal methods and early results, |. Geophys. Res., 82, 4577-4594.

Claudin, P., and B. Andreotti (2006), A scaling law for aeolian dunes on Mars,
Venus, Earth, and for subaqueous ripples, Earth Planet. Sci. Lett., 252(1-2), 30—
44, doi:10.1016/j.epsl.2006.09.004.

Clifford, P, S. Richardson, and D. Hémon (1989), Assessing the significance of

the correlation between two spatial processes, Biometrics, 45(1), 123-134.

Cohen, J., and P. Cohen (1983), Applied Multiple Regression/Correlation Analysis

for the Behavioral Sciences, 2 ed., L. Erlbaum Associates, Hillsdale, N.]J.

Connerney, J. E. P, et al. (1999), Magnetic lineations in the ancient crust of Mars,

Science, 284(5415), 794-798, doi:10.1126 /science.284.5415.794.

Cooper, C. D., and J. F. Mustard (2001), TES Observations of the Global Distri-
bution of Sulfate on Mars, in Lunar and Planetary Institute Conference Abstracts,

Lunar and Planetary Inst. Technical Report, vol. 32, pp. 2048—+.

Cooper, C. D., and J. F. Mustard (2002), Spectroscopy of Loose and Cemented
Sulfate-Bearing Soils: Implications for Duricrust on Mars, Icarus, 158, 42-55,

doi:10.1006 /icar.2002.6874.

Crumpler, L. S,, et al. (2005), Mars Exploration Rover Geologic traverse by the
Spirit rover in the Plains of Gusev Crater, mars, Geology, 33(10), 809-812, doi:
10.1130/G21673.1.

Cucinotta, F. A., M.-H. Kim, S. I. Schneider, and D. M. Hassler (2007), De-
scription of light ion production cross sections and fluxes on the Mars sur-
face using the QMSFRG model, Radiat. Environ. Biophys., Proceedings of the 4th
IWSRR, d0i:10.1007 /s00411-007-0099-y.

326



Daux, V., J. L. Crovisier, C. Hemond, and J. C. Petit (1994), Geochemical evolu-
tion of basaltic rocks subjected to weathering: Fate of the major elements, rare
earth elements, and thorium, Geochim. Cosmochim. Acta, 58(22), 4941-4954,
doi:10.1016/0016-7037(94)90223-2.

Davis, J. A. (1985), The logic of causal order, no. 07-055 in Quantitative Applica-

tions in the Social Sciences, 71 pp., Sage, Thousand Oaks, CA.

DeGroot, M. H., and M. ]. Schervish (2001), Probability and Statistics, 3 ed., Ad-

dison Wesley.

Diez, B., S. Maurice, O. Gasnault, C. D’Uston, W. C. Feldman, D. Baratoux, and
N. Mangold (2008), Mars Odyssey GRS Results at the Cerberus Plains, in Lu-
nar and Planetary Institute Conference Abstracts, Lunar and Planetary Institute

Conference Abstracts, vol. 39, pp. 1642—+.

Dodge, Y., and V. Rousson (1999), The complications of the fourth central mo-
ment, Am. Stat., 53(3), 267-269, d0i:10.2307 /2686108.

Dohm, J., S. Maruyama, V. Baker, R. Anderson, and J. Ferris (2002), Evolution
and traits of tharsis superplume in mars, in Superplume International Workshop

Abstracts with Programs, pp. 406-410, Tokyo.

Dohm, J. M,, et al. (2001a), Latent outflow activity for western Tharsis, Mars:
Significant flood record exposed, |. Geophys. Res. Planets, 106(E6), 12,301-
12,314, d0i:10.1029/2000JE001352.

Dohm, J. M., et al. (2001b), Ancient drainage basin of the Tharsis region,
Mars: Potential source for outflow channel systems and putative oceans
or paleolakes, J. Geophys. Res. Planets, 106(E12), 32,943-32,958, d0i:10.1029/
2000JE001468.

327



Dohm, J. M., et al. (2008), Recent geological and hydrological activity on Mars:
The Tharsis/Elysium corridor, Plant. Space Sci., 56, 985-1013, doi:10.1016/].
pss.2008.01.001.

Doreian, P. (1980), Linear models with spatially distributed data: Spatial distur-
bances of spatial effects?, Socio. Meth. Res., 9(1), 29-60.

Dreibus, G., and H. Wanke (1985), Mars, a volatile-rich planet, Meteoritics, 20,
367-381.

Dreibus, G., E. Jagoutz, B. Spettel, and H. Wanke (1996), Posphate-mobilization
on Mars? implication from leach experiments on SNCs, Lunar Planet. Sci., 27,

323-324.

Dreibus, G., B. Spettel, R. Haubold, K. P. Jochum, H. Palme, D. Wolf, and J. Zipfel
(2000), Chemistry of a New Shergottite: Sayh Al Uhaymir 005, Meteorit. Planet.
Sci., 35, Supplement A49.

Drever, . I. (1997), Geochemistry of Natural Waters: Surface and Groundwater Envi-

ronments, 3 ed., Prentice Hall, Upper Saddle River, N.J.

Durkin, P. (2008), Oxford English Dictionary Online, 2" 1989 ed., Oxford Univer-

sity Press.

Dutilleul, P, P. Clifford, S. Richardson, and D. Hémon (1993), Moditying the
t test for assessing the correlation between two spatial processes, Biometrics,

49(1), 305-314.

Easton, V. ]., and J. H. McColl (1997), Statistics glossary, Tech. Rep. 1.1, Statistical
Education through Problem Solving Consortium (STEPS), UK.

328



Edgett, K., B. Butler, J. Zimbelman, and V. Hamilton (1997), Geologic context
of the Mars radar “Stealth” region in southwestern Tharsis, J. Geophys. Res.

Planets, 102(E9), 21,545-21,567, d0i:10.1029 /97JE01685.

Edgett, K. S. (1997), Aeolian dunes as evidence for explosive volcanism in the

Tharsis region of Mars, Icarus, 130(1), 96-114, doi:10.1006 /icar.1997.5806.

Edgett, K. S. (2005), The sedimentary rocks of Sinus Meridiani: Five key obser-
vations from data acquired by the Mars Global Surveyor and Mars Odyssey
orbiters, Mars, 1, 5-58, doi:10.1555/mars.2005.0002.

Elkins-Tanton, L. T., P. C. Hess, and E. M. Parmentier (2005a), Possible formation
of ancient crust on Mars through magma ocean processes, |. Geophys. Res.,

110(E12), E12501, doi:10.1029/2005JE002480.

Elkins-Tanton, L. T., S. E. Zaranek, E. M. Parmentier, and P. C. Hess (2005b),
Early magnetic field and magmatic activity on Mars from magma ocean over-

turn, Earth Planet. Sci. Lett., 236(1-2), 1-12, d0i:10.1016 /j.epsl.2005.04.044.

Elphic, R. C., W. C. Feldman, T. H. Prettyman, R. L. Tokar, D. J. Lawrence, J. W.
Head, I1I, and S. Maurice (2005), Mars Odyssey Neutron Spectrometer Water-
Equivalent Hydrogen: Comparison with Glacial Landforms on Tharsis, in
36th Annual Lunar and Planetary Science Conference, Lunar and Planetary Inst.
Technical Report, vol. 36, edited by S. Mackwell and E. Stansbery, p. Abstract
1805.

Evans, L. G., R. C. Reedy, R. D. Starr, K. E. Kerry, and W. V. Boynton (2006),
Analysis of gamma-ray spectra measured by Mars Odyssey, |. Geophys. Res.,
111, E03504, doi:10.1029/2005JE002657, [printed 112(E3), 2007].

329



Fairén, A. G., and J. M. Dohm (2004), Age and origin of the lowlands of Mars,
Icarus, 168(2), 277-284, d0i:10.1016 /j.icarus.2003.11.025.

Fairén, A. G,, J. Ruiz, and F. Anguita (2002), An origin for the linear magnetic
anomalies on mars through accretion of terranes: Implications for dynamo

timing, Icarus, 160(1), 220-223, doi:10.1006 /icar.2002.6942.

Fairén, A. G., J. M. Dohm, V. R. Baker, M. A. de Pablo, J. Ruiz, ]J. C. Ferris, and
R. C. Anderson (2003), Episodic flood inundations of the northern plains of
Mars, Icarus, 165(1), 53-67, d0i:10.1016 /S0019-1035(03)00144-1.

Fairén, A. G., D. C. Fernandez-Remolar, J. M. Dohm, V. R. Baker, and R. Amils
(2004), Inhibition of carbonate synthesis in acidic oceans on early Mars, Na-

ture, 431(7007), 423-426, doi:10.1038 /nature02911.

Farquhar, J., J. Savarino, T. L. Jackson, and M. H. Thiemens (2000), Evidence of
atmospheric sulphur in the martian regolith from sulphur isotopes in mete-

orites, Nature, 404(6773), 50-52, d0i:10.1038 /35003517

Farrand, W. H., ]. F. Bell, J. R. Johnson, S. W. Squyres, J. Soderblom, and D. W.
Ming (2006), Spectral variability among rocks in visible and near-infrared
multispectral Pancam data collected at Gusev crater: Examinations using

spectral mixture analysis and related techniques, |. Geophys. Res. Planets,

111(E2), E02515, d0i:10.1029/2005JE002495.

Feldman, W. C,, et al. (2005), Topographic control of hydrogen deposits at low
latitudes to midlatitudes of mars, J. Geophys. Res. Planets, 110(E11), E11,009,
doi:10.1029/2005JE002452.

Fergason, R. L., P. R. Christensen, J. E. Bell, M. P. Golombek, K. E. Herkenhoff,

and H. H. Kieffer (2006a), Physical properties of the Mars Exploration Rover

330



landing sites as inferred from Mini-TES-derived thermal inertia, . Geophys.

Res. Planets, 111(E2), E02521, doi:10.1029/2005JE002583.

Fergason, R. L., P. R. Christensen, and H. H. Kieffer (2006b), High-
resolution thermal inertia derived from the Thermal Emission Imaging Sys-
tem (THEMIS): Thermal model and applications, |. Geophys. Res. Planets,
111(E12), E12,004, doi:10.1029 /2006JE002735.

Fishbaugh, K. E., F. Poulet, V. Chevrier, Y. Langevin, and J.-P. Bibring (2007), On
the origin of gypsum in the Mars north polar region, J. Geophys. Res. Planets,
112(E7), E07,002, d0i:10.1029 /2006JE002862.

Foley, C. N., T. E. Economou, R. N. Clayton, and W. Dietrich (2003), Calibra-
tion of the Mars Pathfinder alpha proton X-ray spectrometer, |. Geophys. Res.
Planets, 108(E12), 8096, d0i:10.1029/2002JE002019.

Forget, F.,, R. Haberle, F. Montmessin, B. Levrard, and J. Heads (2006), Formation
of glaciers on Mars by atmospheric precipitation at high obliquity, Science,

311(5759), 368-371, doi:10.1126/science.1120335.

Forget, E, et al. (2007), The New (Version 4.2) Mars Climate Database, LPI Con-
tributions, 1353, 3098—+.

Gaddis, 1., P. Mouginis-Mark, R. Singer, and V. Kaupp (1989), Geologic analyses
of shuttle imaging radar (sir-b) data of kilauea volcano, hawaii, Geol. Soc. Am.
Bull., 101(3), 317-332, d0i:10.1130/0016-7606(1989)101(0317:GAOSIR)2.3.CO;
2.

Gasnault, O., et al. (2002), Statistical analysis of thorium and fast neutron data
at the lunar surface, J. Geophys. Res. Planets, 107(E10), 5072, doi:10.1029/
2000JE001461.

331



Gellert, R., et al. (2004), Chemistry of rocks and soils in gusev crater from the
alpha particle x-ray spectrometer., Science, 305(5685), 829-832, doi:10.1126/
science.1099913.

Gellert, R., et al. (2006), Alpha Particle X-Ray Spectrometer (APXS): Results from
Gusev crater and calibration report, . Geophys. Res., 111(E2), E02S05, doi:10.
1029/2005JE002555.

Gendrin, A., et al. (2005), Sulfates in Martian Layered Terrains: The
OMEGA /Mars Express View, Science, 307, 1587-1591, doi:10.1126/science.
1109087.

Gobel, E., I. M. Mills, and A. J. Wallard (Eds.) (2006), The International System of
Units (SI), 8 ed., 130-135 pp., Bureau Inernational des Poids et Mesures, Paris,

France.

Golden, D. C., D. W. Ming, R. V. Morris, and S. A. Mertzman (2005), Laboratory-
simulated acid-sulfate weathering of basaltic materials: Implications for for-
mation of sulfates at Meridiani Planum and Gusev crater, Mars, |. Geophys.

Res. Planets, 110, E12507, doi:10.1029/2005JE002451.

Golombek, M. P, R. A. Cook, H. J. Moore, and T. J. Parker (1997), Selection of
the Mars Pathfinder landing site, J. Geophys. Res. Planets, 102(E2), 3967-3988,
do0i:10.1029/96JE03318.

Golombek, M. P, et al. (1999), Overview of the Mars Pathfinder mission: Launch
through landing, surface operations, data sets, and science results, |. Geophys.

Res., 104(E4), 8523-8554, d0i:10.1029/98JE02554.

Golombek, M. P, et al. (2003), Selection of the Mars Exploration Rover landing
sites, J. Geophys. Res., 108(E12), 8072, d0i:10.1029/2003JE002074.

332



Golombek, M. P, et al. (2005), Assessment of Mars Exploration Rover landing
site predictions, Nature, 436(7047), 44-48, doi:10.1038 /nature03600.

Golombek, M. P, et al. (2006), Geology of the Gusev cratered plains from the
Spirit rover transverse, |. Geophys. Res. Planets, 111(E2), E02507, d0i:10.1029/
2005JE002503.

Grant, J. A., et al. (2004), Surficial deposits at Gusev crater along Spirit rover
traverses, Science, 305(5685), 807-810, d0i:10.1126/science.1099849.

Greeley, R., and J. E. Guest (1987), Geologic map of the eastern equatorial region
of Mars, 1:15000000, U.S. Geol. Surv. Misc. Invest. Ser., Map 1-1802-A.

Greeley, R., R. Leach, B. White, J. Iversen, and J. Pollack (1976), Mars - Wind
friction speeds for particle movement, Geophys. Res. Lett., 3, 417420, doi:10.
1029/GL003i008p00417.

Greeley, R., et al. (2005), Martian variable features: New insight from the Mars
Express Orbiter and the Mars Exploration Rover spirit, |. Geophys. Res. Planets,
110(E6), E06,002, d0i:10.1029/2005JE002403.

Grotzinger, J. P, et al. (2005), Stratigraphy and sedimentology of a dry to wet
eolian depositional system, Burns formation, Meridiani Planum, mars, Earth

Planet. Sci. Lett., 240(1), 11-72, d0i:10.1016 /j.epsl.2005.09.039.

Grove, T. L., S. W. Parman, S. A. Bowring, R. C. Price, and M. B. Baker (2002), The
role of an H,O-rich fluid component in the generation of primitive basaltic
andesites and andesites from the Mt. Shasta region, N California, Contrib.

Mineral. Petrol., 142(4), 375-396.

Grove, T. L., L. T. Elkins-Tanton, S. W. Parman, N. Chatterjee, O. Miintener, and

G. A. Gaetani (2003), Fractional crystallization and mantle-melting controls

333



on calc—alkaline differentiation trends, Contrib. Mineral. Petrol., 145(5), 515-

533, d0i:10.1007 /s00410-003-0448-z.

Haberle, R. M., M. A. Kahre, J. R. Murphy, P. R. Christensen, and R. Greeley
(2006), Role of dust devils and orbital precession in closing the Martian dust

cycle, Geophys. Res. Lett., 33, L19504, d0i:10.1029 /2006GL026188.

Hahn, B. C,, et al. (2007), Mars Odyssey Gamma Ray Spectrometer elemen-
tal abundances and apparent relative surface age: Implications for Mar-
tian crustal evolution, |. Geophys. Res. Planets, 112(E3), E03511, doi:10.1029/
2006JE002821.

Haining, R. (2003), Spatial Data Analysis: Theory and Practice, Cambridge Univer-

sity Press.

Halevy, I, M. T. Zuber, and D. P. Schrag (2007), A Sulfur Dioxide Climate Feed-
back on Early Mars, Science, 318, 1903-1907, d0i:10.1126/science.1147039.

Hamilton, V. E., H. Y. McSween, and B. Hapke (2005), Mineralogy of Martian at-
mospheric dust inferred from thermal infrared spectra of aerosols, J. Geophys.

Res. Planets, 110, E12,006, doi:10.1029/2005JE002501.

Harmon, J., R. Arvidson, E. Guinness, B. Campbell, and M. Slade (1999), Mars
mapping with delay-Doppler radar, |. Geophys. Res. Planets, 104(E6), 14,065—
14,089, d0i:10.1029/1998JE900042.

Hartmann, W. K,, J. Anguita, M. A. de la Casa, D. C. Berman, and E. V. Ryan
(2001), Martian cratering 7: The role of impact gardening, Icarus, 149(1), 37—
53, d0i:10.1006/icar.2000.6532.

Haskin, L. A., et al. (2005), Water alteration of rocks and soils on Mars at

334



the Spirit rover site in Gusev crater., Nature, 436(7047), 66—69, do0i:10.1038/
nature03640.

Hassler, D. M., et al. (2006), The radiation assessment detector (RAD) on the
Mars Science Laboratory (MSL), in 36th COSPAR Scientific Assembly, abstract
2720.

Hawkesworth, C., S. Turner, D. Peate, F. McDermott, and P. van Calsteren (1997),
Elemental U and Th variations in island arc rocks: Implications for U-series

isotopes, Chem. Geol., 139(1-4), 207-221, d0i:10.1016 /50009-2541(97)00036-3.

Head, J. W., et al. (2005), Tropical to mid-latitude snow and ice accumulation,

flow and glaciation on Mars, Nature, 434, 346-351, d0i:10.1038 /nature03359.

Helsel, D. R., and R. M. Hirsch (2002), Statistical Methods in Water Resources,
Techniques of Water-Resources Investigations of the United States Geological

Survey, USGS.

Herd, C. D. K. (2003), The oxygen fugacity of olivine-phyric martian basalts and
the components within the mantle and crust of mars, Meteorit. Planet. Sci.,

38(12), 1793-1805.

Herkenhoff, K. E., et al. (2006), Overview of the Microscopic Imager Investi-
gation during Spirit’s first 450 sols in Gusev crater, |. Geophys. Res. Planets,
111(E2), E02504, d0i:10.1029/2005JE002574.

Hiesinger, H., J. W. Head, and G. Neukum (2007), Young lava flows on the
eastern flank of Ascraeus Mons: Rheological properties derived from High
Resolution Stereo Camera (HRSC) images and Mars Orbiter Laser Altimeter

(MOLA) data, J. Geophys. Res. Planets, 112, E05,011, d0i:10.1029 /2006JE002717.

335



Honnorez, J. J. (1981), The aging of the oceanic crust at low temperature, in The
Oceanic Lithosphere, The Sea, vol. 7, edited by C. Emiliani, pp. 525-587, John
Wiley & Sons Inc., New York, NY.

Houghton, B. (2004), The influence of conduit processes on changes in style of
basaltic Plinian eruptions: Tarawera 1886 and Etna 122 BC, ]. Volcanol. Geoth.

Res., 137,1-3, d0i:10.1016/j.jvolgeores.2004.05.009.

Hourdin, E, F. Forget, and O. Talagrand (1995), The sensitivity of the Martian
surface pressure and atmospheric mass budget to various parameters: A com-

parison between numerical simulations and Viking observations, J. Geophys.

Res., 100, 5501-5523, d0i:10.1029 /94JE03079.

Hurowitz, J. A., S. M. McLennan, N. J. Tosca, R. E. Arvidson, J. R. Michalski,
D. W. Ming, C. Schroder, and S. W. Squyres (2006), In situ and experimental
evidence for acidic weathering of rocks and soils on Mars, . Geophys. Res.

Planets, 111(E2), E02519, doi:10.1029 /2005JE002515.

Hynek, B. M., R. J. Phillips, and R. E. Arvidson (2003), Explosive volcanism in
the Tharsis region: Global evidence in the Martian geologic record, J. Geophys.
Res. Planets, 108, 5111—+, d0i:10.1029 /2003JE002062.

Ivanov, A., D. Muhleman, and A. Vasavada (1998), Microwave thermal mapping
of the Stealth region on Mars, Icarus, 133(2), 163-173, doi:10.1006/icar.1998.
5921.

Jerolmack, D. J., D. Mohrig, J. P. Grotzinger, D. A. Fike, and W. A. Watters (2006),
Spatial grain size sorting in eolian ripples and estimation of wind conditions
on planetary surfaces: Application to Meridiani Planum, Mars, J. Geophys.

Res. Planets, 111(E5), E12502, doi:10.1029,/2005]E002544.

336



Joanes, D. N., and C. A. Gill (1998), Comparing measures of sample skewness

and kurtosis, The Statistician, 47(1), 183-189, d0i:10.1111/1467-9884.00122.

Jochum, K. P, and S. P. Verma (1996), Extreme enrichment of Sb, Tl and other
trace elements in altered MORB, Chem. Geol., 130(3-4), 289-299, doi:10.1016/
0009-2541(96)00014-9.

Johnson, J. R., J. E. Bell, E. Cloutis, M. Staid, W. H. Farrand, T. McCoy, M. Rice,
A. Wang, and A. Yen (2007), Mineralogic constraints on sulfur-rich soils from
Pancam spectra at Gusev crater, Mars, Geophys. Res. Lett., 34, 113,202, doi:
10.1029/2007GL029894.

Jolliff, B. L., and S. M. McLennan (2006), Evidence for water at meridiani, Ele-
ments, 2, 163-167.

Jones, J. P, III, and E. Casetti (Eds.) (1992), Applications of the expansion method,
375 pp., Routledge, New York, NY, iSBN 0415034949.

Kadish, S. J., J. W. Head, N. G. Barlow, and D. R. Marchant (2008), Martian
pedestal craters: Marginal sublimation pits implicate a climate-related forma-

tion mechanism, Geophys. Res. Lett., p. in press, doi:10.1029/2008GL034990.

Kahre, M. A., J. R. Murphy, and R. M. Haberle (2006), Modeling the Martian
dust cycle and surface dust reservoirs with the NASA Ames general circula-

tion model, J. Geophys. Res. Planets, 111, E06,008, doi:10.1029 /2005JE002588.

Karunatillake, S., S. Squyres, J. Taylor, O. Gasnault, S. McLennan, and W. V.
Boynton (2007), The mars odyssey gamma ray spectrometer reveals chemi-
cally striking regions on mars, in 7th International Conference on Mars, p. Ab-

stract 3190, Lunar and Planetary Institute.

337



Karunatillake, S., et al. (2006), Composition of northern low albedo regions of
Mars: Insights from the Mars Odyssey Gamma Ray Spectrometer, |. Geophys.
Res. Planets, 111(E3), E03S05, doi:10.1029/2006JE002675.

Kato, M., S. Sasaki, K. Tanaka, Y. lijima, and Y. Takizawa (2007), The japanese
lunar mission selene: Science goals and present status, Adv. Space Res., in press,

d0i:10.1016/j.asr.2007.03.049.

Keller, J. M., W. V. Boynton, R. M. S. Williams, S. Karunatillake, and GRS science
team (2006a), Analysis of layering at Mars near-surface using attenuation of
chlorine gamma rays, in 37" Annual Lunar and Planetary Science Conference,
vol. 37, edited by S. Mackwell and E. Stansbery, p. 2343, Lunar and Planetary

Institute, League City, TX.

Keller, J. M., et al. (2006b), Equatorial and mid-latitude distribution of chlorine
measured by Mars Odyssey GRS, J. Geophys. Res., 111, E03508, d0i:10.1029/
2006JE002679, [printed 112(E3), 2007].

Keszthelyi, L., and W. L. Jaeger (2008), HiRISE Observations of the Medusae
Fossae Formation, in 39th Lunar and Planetary Science Conference, Lunar and

Planetary Inst. Technical Report, p. Abstract 2420.

Keszthelyi, L., W. Jaeger, A. McEwen, L. Tornabene, R. A. Beyer, C. Dundas, and
M. Milazzo (2008), High Resolution Imaging Science Experiment (HiRISE)
images of volcanic terrains from the first 6 months of the Mars Reconnaissance
Orbiter Primary Science Phase, J. Geophys. Res. Planets, 113, E04,005, doi:10.
1029/2007JE002968.

Kieffer, H. H., B. M. Jakosky, C. W. Snyder, and M. S. Matthews (Eds.) (1992),

Mars, University of Arizona Press.

338



Kim, K. J.,, W. V. Boynton, M. Finch, R. M. S. Williams, R. C. Reedy, and D. M.
Drake (2006a), Effects of rocks on neutron and gamma-ray production in Mar-
tian surface soil, in 37" Annual Lunar and Planetary Science Conference, vol. 37,

p- Abstract 2356, Lunar and Planetary Institute.

Kim, K. J.,, D. M. Drake, R. C. Reedy, R. M. S. Williams, and W. V. Boynton
(2006b), Theoretical fluxes of gamma rays from the Martian surface, J. Geo-

phys. Res., 111, E03509, doi:10.1029 /2005JE002655, [printed 112(E3), 2007].

Klingelhofer, G., et al. (2004), Jarosite and hematite at Meridiani Planum from
Opportunity’s Mossbauer Spectrometer., Science, 306(5702), 1740-1745, doi:
10.1126/science.1104653.

Knoll, A. H., et al. (2008), Veneers, rinds, and fracture fills: Relatively late alter-
ation of sedimentary rocks at Meridiani Planum, Mars, J. Geophys. Res. Planets,

113, E06516, d0i:10.1029 /2007JE002949.

Kobayashi, M., et al. (2005), Germanium detector with Stirling cryocooler for
lunar gamma-ray spectroscopy, Nucl. Instrum. Meth. Phys. Res. Sec. A, 548(3),
401-410, doi:10.1016/j.nima.2005.03.170.

Konopliv, A., C. Yoder, E. Standish, D. Yuan, and W. Sjogren (2006), A global
solution for the Mars static and seasonal gravity, Mars orientation, Phobos
and Deimos masses, and Mars ephemeris, Icarus, 182(1), 23-50, doi:10.1016/j.
icarus.2005.12.025.

Lane, M. D,, J. L. Bishop, M. D. Dyar, M. Parente, P. L. King, and B. C. Hyde
(2007), Identifying the phosphate and ferric sulfate minerals in the Paso Rob-
les soils (Gusev crater, Mars) using an integrated spectral approach, in Lunar

and Planetary Institute Conference Abstracts, abstract 2176.

339



Lane, M. D,, ]J. L. Bishop, M. D. Dyar, P. L. King, M. Parente, and B. C. Hyde
(2008), Mineralogy of the Paso Robles soils on mars, Am. Mineral., 93(5-6),
728-739, d0i:10.2138 /am.2008.2757.

Laskar, J., A. Correia, M. Gastineau, F. Joutel, B. Levrard, and P. Robutel (2004),
Long term evolution and chaotic diffusion of the insolation quantities of Mars,

Icarus, 170(2), 343-364, d0i:10.1016 /j.icarus.2004.04.005.

Lemmon, M. T., et al. (2004), Atmospheric Imaging Results from the Mars
Exploration Rovers: Spirit and Opportunity, Science, 306, 1753-1756, doi:
10.1126/science.1104474.

Lodders, K. (1998), A survey of SNC meteorite whole-rock compositions, Mete-
orit. Planet. Sci., 33, Supplement 183-190.

Loss, R. D. (2003), Atomic weights of the elements 2001 (IUPAC technical re-
port), Pure Appl. Chem., 75(8), 1107-1122.

Mandel, J. (1964), The Satistical Analysis of Experimental Data, 410 pp., Inter-

science, National Burea of Standards, Washington, D.C.

Manning, C., C. McKay, and K. Zahnle (2006), Thick and thin models of the evo-
lution of carbon dioxide on Mars, Icarus, 180(1), 38-59, d0i:10.1016/j.icarus.
2005.08.014.

Masarik, J., and R. C. Reedy (1996), Gamma ray production and transport in
mars, |. Geophys. Res. Planets, 101(E8), 18,891-18,912, d0i:10.1029 /96]JE01563.

Mascagni, M., W. C. Rinaman, M. Sousa, and M. T. Strauss (2002), Probability and
Statistics, chap. 7, pp. 615-727, 31 ed., Chapman and Hall/CRC.

340



Mayo, A. P., W. T. Blackshear, R. H. Tolson, W. H. Michael, G. M. Kelly, J. P. Bren-
kle, and T. A. Komarek (1977), Lander locations, Mars physical ephemeris,
and solar system parameters-determination from Viking lander tracking data,

J. Geophys. Res., 82, 4297-4303.

McAdam, A. C., M. Y. Zolotov, T. G. Sharp, and L. A. Leshin (2008), Preferential
low-pH dissolution of pyroxene in plagioclase-pyroxene mixtures: Implica-
tions for martian surface materials, Icarus, 196, 90-96, doi:10.1016/j.icarus.

2008.01.008.

McEwen, A., B. Preblich, E. Turtle, N. Artemieva, M. Golombek, M. Hurst,
R. Kirk, D. Burr, and P. Christensen (2005), The rayed crater Zunil and in-
terpretations of small impact craters on Mars, Icarus, 176(2), 351-381, doi:

10.1016/j.icarus.2005.02.009.

McEwen, A. S., et al. (2007), Mars Reconnaissance Orbiter’s High Resolu-
tion Imaging Science Experiment (HiRISE), |. Geophys. Res. Planets, 112(E5),
E05502, doi:{10.1029/2005JE002605}.

McGovern, P. ]., J. R. Smith, J. K. Morgan, and M. H. Bulmer (2004), Olympus
Mons aureole deposits: New evidence for a flank failure origin, J. Geophys.

Res. Planets, 109, E08,008, doi:10.1029/2004JE002258.

McLennan, S. M. (2003), Sedimentary silica on Mars, Geology, 31(4), 315-318,
do0i:10.1130/0091-7613(2003)031¢0315:SSOM)2.0.CO;2.

McLennan, S. M., et al. (2005), Provenance and diagenesis of the evaporite—
bearing Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett.,

240(1), 95-121, doi:10.1016 /j.epsl.2005.09.041.

341



McNutt, J., Ralph L., S. C. Solomon, R. E. Gold, J. C. Leary, and the MES-
SENGER Team (2006), The MESSENGER mission to Mercury: Develop-
ment history and early mission status, Adv. Space Res., 38(4), 564-571, doi:
10.1016/j.asr.2005.05.044.

McSween, H. Y., T. L. Grove, and M. B. Wyatt (2003), Constraints on the compo-
sition and petrogenesis of the Martian crust, J. Geophys. Res. Planets, 108(E12),
5135, d0i:10.1029 /2003JE002175.

McSween, H. Y., et al. (2004), Basaltic rocks analyzed by the Spirit rover in Gusev
crater, Science, 305(5685), 842-845, d0i:10.1126/science.3050842.

McSween, H. Y., et al. (2006), Alkaline volcanic rocks from the Columbia
Hills, Gusev crater, Mars, |. Geophys. Res. Planets, 111, E09591, d0i:10.1029/
2006JE002698.

McSween, H. Y., et al. (2008), Mineralogy of volcanic rocks in Gusev Crater,
Mars: Reconciling Mossbauer, Alpha Particle X-Ray Spectrometer, and Minia-
ture Thermal Emission Spectrometer spectra, J. Geophys. Res. Planets, 113,

E065S04, doi:10.1029/2007JE002970.

McSween, J., H. Y. (2002), The rocks of Mars, from far and near, Meteorit. Planet.
Sci., 37(1), 7-25.

McSween, J., H. Y., and K. Keil (2000), Mixing relationships in the Martian
regolith and the composition of globally homogeneous dust, Geochim. Cos-

mochim. Acta, 64(12), 2155-2166, d0i:10.1016/50016-7037(99)00401-9.

McSween, J., Harry Y. (1994), What we have learned about Mars from SNC me-
teorites, Meteoritics, 29, 757-779.

342



McSween, Y., et al. (2006), Characterization and petrologic interpretation of
olivine-rich basalts at Gusev Crater, mars, J. Geophys. Res. Planets, 111(E2),
E02510, d0i:10.1029 /2005JE002477.

Mellon, M. T., B. M. Jakosky, H. H. Kieffer, and P. R. Christensen (2000), High-
Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal
Emission Spectrometer, Icarus, 148, 437-455, d0i:10.1006/icar.2000.6503.

Merrison, J. P, H. P. Gunnlaugsson, P. Nornberg, A. E. Jensen, and K. R. Ras-
mussen (2007), Determination of the wind induced detachment threshold for
granular material on Mars using wind tunnel simulations, Icarus, 191(2), 568—

580, d0i:10.1016/j.icarus.2007.04.035.

Metzger, A. E., and D. M. Drake (1990), Identification of lunar rock types and

search for polar ice by gamma ray spectroscopy, J. Geophys. Res., 95, 449-460.

Mills, I, T. Cvitas, K. Homann, N. Kallay, and K. Kuchitsu (Eds.) (1993), Quan-
tities, Units and Symbols in Physical Chemistry (IUPAC, Physical Chemistry Di-
vision), Commission on Physicochemical Symbols, Terminology and Units, 2

ed., 5,44,47,59-62,77,83 pp., Blackwell Science, Malden, MA.

Ming, D. W,, et al. (2006), Geochemical and mineralogical indicators for aqueous
processes in the Columbia Hills of Gusev crater, mars, J. Geophys. Res. Planets,

111(E2), E02512, d0i:10.1029/2005JE002560.

Minitti, M. E., and M. ]J. Rutherford (2000), Genesis of the Mars Pathfinder
“sulfur—free” rock from SNC parental liquids, Geochim. Cosmochim. Acta,

64(14), 2535-2547, d0i:10.1016/S0016-7037(00)00366-5.

Minitti, M. E., ]. E. Mustard, and M. J. Rutherford (2002), Effects of glass content

343



and oxidation on the spectra of SNC-like basalts: Applications to Mars remote

sensing, |. Geophys. Res., 107(E5), 5030, d0i:10.1029/2001JE001518.

Montmessin, F, et al. (2006), Subvisible CO, ice clouds detected in the meso-

sphere of mars, Icarus, 183, 403410, doi:10.1016/j.icarus.2006.03.015.

Moore, H. J., and B. M. Jakosky (1989), Viking landing sites, remote-sensing ob-
servations, and physical-properties of martian surface materials, Icarus, 81(1),

164-184, d0i:10.1016/0019-1035(89)90132-2.

Moore, H. J., and J. Keller (1991), Surface-material maps of Viking landing sites
on Mars, in Planetary Geology and Geophysics Program Report, vol. 2005, edited
by T. A. Maxwell, pp. 160-162, NASA.

Moore, H. J., R. E. Hutton, R. E. Scott, C. R. Spitzer, and R. W. Shorthill (1977),
Surface materials of Viking landing sites, |. Geophys. Res., 82, 4497-4523.

Morgan, J. K., and P. J. McGovern (2005), Discrete element simulations of
gravitational volcanic deformation: 1. Deformation structures and geome-
tries, Journal of Geophysical Research (Solid Earth), 110, B05,402, doi:10.1029/
2004JB003252.

Morris, R. V., et al. (2004), Mineralogy at Gusev crater from the Mdssbauer spec-
trometer on the Spirit Rover, Science, 305(5685), 833836, doi:10.1126 /science.
1100020.

Morris, R. V., et al. (2006), Mossbauer mineralogy of rock, soil, and dust at Gusev
crater, Mars: Spirit’s journey through weakly altered olivine basalt on the
plains and pervasively altered basalt in the Columbia hills, J. Geophys. Res.
Planets, 111(E2), E02513, doi:10.1029/2005JE002584.

344



Morris, R. V., et al. (2006), Mossbauer mineralogy of rock, soil, and dust at
Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop,
basaltic sand and dust, and hematite lag deposits, |. Geophys. Res. Planets, 111,
E12515, doi:10.1029/2006JE002791.

Mouginis-Mark, P. ]J. (2002), Prodigious ash deposits near the summit of
Arsia Mons volcano, Mars, Geophys. Res. Lett., 29(16), 1768, doi:10.1029/
2002GL015296.

Mustard, J. E,, and C. D. Cooper (2005), Joint analysis of ISM and TES spectra:
The utility of multiple wavelength regimes for Martian surface studies, . Geo-

phys. Res. Planets, 110(E5), E05,012, d0i:10.1029/2004JE002355.

Nesbitt, H. W., and G. Markovics (1997), Weathering of granodioritic crust,
long-term storage of elements in weathering profiles, and petrogenesis of sili-
ciclastic sediments, Geochim. Cosmochim. Acta, 61(8), 1653-1670, d0i:10.1016/
S0016-7037(97)00031-8.

Nesbitt, H. W., and R. E. Wilson (1992), Recent chemical-weathering of basalts,
Am. . Sci., 292(10), 740-777.

Neukum, G, et al. (2004), Recent and episodic volcanic and glacial activity on
Mars revealed by the High Resolution Stereo Camera, Nature, 432(7020), 971-
979, d0i:10.1038 /nature03231.

Newsom, H. E,, et al. (2007), Geochemistry of Martian soil and bedrock in man-
tled and less mantled terrains with gamma ray data from Mars Odyssey, .

Geophys. Res. Planets, 112, E03512, doi:10.1029 /2005JE002597.

Nimmo, F.,, and D. J. Stevenson (2000), Influence of early plate tectonics on the

345



thermal evolution and magnetic field of Mars, |. Geophys. Res. Planets, 105(E5),
11,969-11,979, d0i:10.1029 /1999JE001216.

Noe Dobrea, E. Z., and J. F. Bell (2005), TES spectroscopic identification of a
region of persistent water ice clouds on the flanks of Arsia Mons Volcano,

Mars, |. Geophys. Res. Planets, 110, E05,002, doi:10.1029/2003JE002221.

Nowicki, S. A., and P. R. Christensen (2007), Rock abundance on Mars from
the Thermal Emission spectrometer, J. Geophys. Res. Planets, 112(E5), E05007,
d0i:10.1029/2006JE002798.

Olhoeft, G. R., and G. R. Johnson (1989), Practical Handbook of Physical Properties
of Rocks and Minerals, chap. Densities of rocks and minerals, pp. 139-175, 1
ed., Chemical Rubber Company.

Osterloo, M. M., V. E. Hamilton, J. L. Bandfield, T. D. Glotch, A. M. Baldridge,
P. R. Christensen, L. L. Tornabene, and F. S. Anderson (2008), Chloride-
Bearing Materials in the Southern Highlands of Mars, Science, 319, 1651-1654,
doi:10.1126/science.1150690.

Pain, C. E, J. D. A. Clarke, and M. Thomas (2007), Inversion of relief on Mars,
Icarus, 190(2), 478-491, doi:10.1016 /j.icarus.2007.03.017.

Patino, L. C., M. A. Velbel, J. R. Price, and J. A. Wade (2003), Trace element
mobility during spheroidal weathering of basalts and andesites in Hawaii
and Guatemala, Chem. Geol., 202(3-4), 343-364, do0i:10.1016/j.chemgeo.2003.
01.002.

Pelkey, S. M., et al. (2007), CRISM multispectral summary products: Parame-
terizing mineral diversity on Mars from reflectance, J. Geophys. Res. Planets,

112(E8), E08514, doi:10.1029/2006JE002831.

346



Picardi, G., et al. (2005), Radar soundings of the subsurface of Mars, Science,
310(5756), 1925-1928, d0i:10.1126/science.1122165.

Pirard, B., C. d’Uston, S. Maurice, and O. Gasnault (2005), Performance lim-
its on new generation scintillators for planetary gamma-ray spectroscopy, in
36™ Annual Lunar and Planetary Science Conference, edited by S. Mackwell and
E. Stansbury, p. 2187.

Pitas, 1. (2000), Digital image processing algorithms and applications, Wiley, New
York.

Plescia, J. B. (1994), Geology of the small Tharsis Volcanos - Jovis-Tholus,
Ulysses-Patera, Biblis-Patera, Mars, Icarus, 111(1), 246269, doi:10.1006/icar.
1994.1144.

Poulet, E, C. Gomez, ].-P. Bibring, Y. Langevin, B. Gondet, P. Pinet, G. Bel-
luci, and J. Mustard (2007), Martian surface mineralogy from Observatoire
pour la Minéralogie, I'Eau, les Glaces et I’ Activité on board the Mars Express
spacecraft (OMEGA /MEXx): Global mineral maps, |. Geophys. Res. Planets, 112,
E08502, d0i:10.1029/2006]JE002840.

Press, S. J. (1982), Applied Multivariate Analysis: Using Bayesian and Frequentist
Methods of Inference, 2 ed., R.E. Krieger Pub. Co.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2002), Numer-
ical Recipes in C the Art of Scientific Computing, 2 ed., Cambridge University

Press.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007), Numer-
ical Recipes in C the Art of Scientific Computing, 3 ed., Cambridge University

Press.

347



Putzig, N. E., and M. T. Mellon (2007), Apparent thermal inertia and the surface
heterogeneity of Mars, Icarus, 191(1), 68-94, doi:10.1016/j.icarus.2007.05.013.

Putzig, N. E., M. T. Mellon, K. A. Kretke, and R. E. Arvidson (2005), Global ther-
mal inertia and surface properties of Mars from the MGS mapping mission,

Icarus, 173(2), 325-341, d0i:10.1016 /j.icarus.2004.08.017.

Rao, M. N, S. R. Sutton, D. S. McKay, and G. Dreibus (2005), Clues to Martian
brines based on halogens in salts from nakhlites and MER samples, |. Geophys.

Res. Planets, 110, E12506, doi:10.1029 /2005JE002470.

Rao, M. N, L. E. Nyquist, S. J. Wentworth, S. R. Sutton, and D. H. Garrison
(2008), The nature of Martian fluids based on mobile element studies in salt-

assemblages from Martian meteorites, J. Geophys. Res. Planets, 113, E06,002,
d0i:10.1029/2007JE002958.

Rawlings, J. O., S. G. Pantula, and D. A. Dickey (1998), Applied Regression Anal-

ysis: A Research Tool, Springer texts in statistics, 2 ed., Springer, New York.

Rieder, R.,, H. Wianke, T. Economou, and A. Turkevich (1997), Determina-
tion of the chemical composition of Martian soil and rocks: The alpha pro-
ton X ray spectrometer, . Geophys. Res. Planets, 102(E2), 4027-4044, doi:
10.1029/96JE03918.

Rieder, R., R. Gellert, J. Bruckner, G. Klingelhofer, G. Dreibus, A. Yen, and S. W.
Squyres (2003), The new Athena Alpha Particle X-ray Spectrometer for the
Mars Exploration Rovers, J. Geophys. Res. Planets, 108(E12), 8066, doi:10.1029/
2003JE002150.

Rieder, R., et al. (2004), Chemistry of rocks and soils at Meridiani Planum from

348



the Alpha Particle X-ray Spectrometer, Science, 306(5702), 1746-1749, doi:10.
1126/science.1104358.

Rogers, A.D. (2005), Spatial and stratigraphic variations in Martain surface min-
eralogy determined from orbital thermal infrared data: Implications for up-

per crustal evolution and alteration, Dissertation, Arizona State University.

Rogers, A. D., and P. R. Christensen (2007), Surface mineralogy of Martian
low-albedo regions from MGS-TES data: Implications for upper crustal evo-
lution and surface alteration, J. Geophys. Res. Planets, 112(E1), doi:10.1029/
2006JE002727.

Rogers, A. D,, J. L. Bandfield, and P. R. Christensen (2007a), Global spectral
classification of Martian low-albedo regions with Mars Global Surveyor Ther-
mal Emission Spectrometer (MGS-TES) data, . Geophys. Res. Planets, 112(E2),
E02,004, d0i:10.1029/2006JE002726.

Rogers, A. D., P. R. Christensen, and J. L. Bandfield (2007b), Global composi-
tional heterogeneity on the Martian surface and key geologic interpretations
using MGS-TES and complementary data sets, in 7% International Conference

on Mars, p. Abstract 3303.

Rudnick, R. L. (1995), Making continental crust, Nature, 378(6557), 571-578, doi:
10.1038/378571a0.

Ruff, S., et al. (2001), Mars” “White Rock” feature lacks evidence of an aqueous
origin: Results from Mars Global Surveyor, J. Geophys. Res. Planets, 106(E10),
23,921-23,927, d0i:10.1029 /2000JE001329.

Ruff, S. W. (2003), Basaltic andesite or weathered basalt: A new assessment,

349



in Sixth International Conference on Mars, Abstract 3258, Lunar and Planetary

Institute, Pasadena, California.

Ruff, S. W., and P. R. Christensen (2007), Basaltic andesite, altered basalt, and a
TES-based search for smectite clay minerals on Mars, Geophys. Res. Lett., 34,
110,204, doi:10.1029/2007GL029602.

Russell, P. S., and J. W. Head (2007), The Martian hydrologic system: Multiple
recharge centers at large volcanic provinces and the contribution of snowmelt
to outflow channel activity, Plant. Space Sci., 55, 315-332, d0i:10.1016/j.pss.
2006.03.010.

Rye, R. O. (2005), A review of the stable-isotope geochemistry of sulfate minerals
in selected igneous environments and related hydrothermal systems, Chem.

Geol., 215(1-4), 5-36, d0i:10.1016 /j.chemgeo.2004.06.034.

Schatz, V., H. Tsoar, K. Edgett, E. Parteli, and H. Herrmann (2006), Evidence
for indurated sand dunes in the Martian north polar region, J. Geophys. Res.

Planets, 111(E4), E04,006, d0i:10.1029/2005JE002514.

Schiffman, P, R. Zierenberg, N. Marks, J. L. Bishop, and M. Darby Dyar (2006),
Acid-fog deposition at Kilauea volcano: A possible mechanism for the for-
mation of siliceous-sulfate rock coatings on Mars, Geology, 34, 921-924, doi:

10.1130/G22620A.1.

Schorghofer, N., and K. S. Edgett (2006), Seasonal surface frost at low latitudes
on Mars, Icarus, 180, 321-334, d0i:10.1016 /j.icarus.2005.08.022.

Schultz, P. H. (2007), Planetary science - Hidden Mars, Science, 318(5853), 1080—
1081, d0i:10.1126/science.1151412.

350



Scott, D., and J. M. Dohm (1997), Encyclopedia of Planetary Sciences, chap. Mars:

Structural Geology and Tectonics, pp. 461-463, University of Arizona Press.

Scott, D. H., and K. L. Tanaka (1986), Geologic map of the western equatorial
region of Mars, 1:15000000, U.S. Geol. Surv. Misc. Invest. Ser., Map 1-1802-A.

Shean, D. E., J. W. Head, ]. L. Fastook, and D. R. Marchant (2007), Recent glacia-
tion at high elevations on Arsia Mons, Mars: Implications for the formation
and evolution of large tropical mountain glaciers, J. Geophys. Res. Planets, 112,

E03,004, doi:10.1029/2006JE002761.

Sheather, S.J., and M. C. Jones (1991), A reliable data-based bandwidth selection
method for kernel density estimation, J. Roy. Stat. Soc. B Met., 53, 683-690.

Shkuratov, Y. G., V. G. Kaydash, D. G. Stankevich, L. V. Starukhina, P. C. Pinet,
S. D. Chevrel, and Y. H. Daydou (2005), Derivation of elemental abundance
maps at intermediate resolution from optical interpolation of lunar prospector
gamma-ray spectrometer data, Planetary Space Science, 53(12), 1287-1301, doi:
10.1016/j.pss.2005.07.001.

Skinner Jr., J. A., T. M. Hare, and K. L. Tanaka (2006), Digital renovation of the
atlas of mars 1:15,000,000-scale global geologic series maps, in 37th Lunar and

Planetary Science Conference, p. Abstract 2331.

Sleep, N. H. (1994), Martian plate tectonics, J. Geophys. Res. Planets, 99(E3), 5639—
5655, d0i:10.1029 /94JE00216.

Snyder, J. P. (1987), Map projections—a working manual, Washington.

Soderblom, L. A., et al. (2004), Soils of Eagle crater and Meridiani Planum at the
Opportunity Rover landing site, Science, 306(5702), 1723-1726, doi:10.1126/
science.1105127.

351



Solomon, S. C., R. L. McNutt, R. E. Gold, and D. L. Domingue (2007),
Messenger - Mission overview, Space Sci. Rev., 131(1-4), 3-39, doi:10.1007/
s11214-007-9247-6.

Spiga, A., et al. (2007), Remote sensing of surface pressure on Mars with the
Mars Express/OMEGA spectrometer: 2. Meteorological maps, J. Geophys. Res.
Planets, 112, E08516, d0i:10.1029/2006JE002870.

Squyres, S. W,, and L. G. Evans (1992), Effects of material mixing on planetary
gamma-ray spectroscopy, J. Geophys. Res. Planets, 97(E9), 14,701-14,715.

Squyres, S. W, et al. (2004a), The opportunity rover’s athena science investiga-
tion at meridiani planum, mars., Science, 306(5702), 1698-1703, do0i:10.1126/
science.1106171.

Squyres, S. W., et al. (2004b), The spirit rover’s athena science investigation at

gusev crater, mars., Science, 305(5685), 794-799, d0i:10.1126/science.1100194.

Squyres, S. W., et al. (2006a), Rocks of the Columbia hills, J. Geophys. Res. Planets,
111(E2), E02S11, doi:10.1029 /2005JE002562.

Squyres, S. W,, et al. (2006b), Planetary science: Bedrock formation at Meridiani
Planum, Nature, 443(7107), E1, d0i:10.1038 /nature05212.

Squyres, S. W, et al. (2006¢c), Two years at Meridiani Planum: Results from
the Opportunity rover, Science, 313(5792), 1403-1407, doi:10.1126/science.
1130890.

Squyres, S. W., et al. (2007), Pyroclastic activity at Home Plate in Gusev Crater,
Mars, Science, 316(5825), 738-742, d0i:10.1126 /science.1139045.

352



Staudigel, H., T. Plank, B. White, and H.-U. Schmincke (1996), Geochemical
fluxes during seafloor alteration of the basaltic upper crust: DSDP sites 417
and 418, in Subduction: Top to Bottom, Geophysical Monograph, vol. 96, edited
by G. E. Bebout, D. Scholl, S. Kirby, and ]. Platt, pp. 19-38, American Geo-

physical Union, Washington, D.C.

Stephens, M. A. (1970), Use of the kolmogorov-smirnov, cramer-von mises and
related statistics without extensive tables, J. Roy. Stat. Soc. B Met., 32(1), 115-
122.

Stolper, E., and S. Newman (1994), The role of water in the petrogenesis
of Mariana trough magmas, Earth Planet. Sci. Lett., 121(3-4), 293-325, doi:
10.1016/0012-821X(94)90074-4.

Stuart, A., J. K. Ord, and S. Arnold (1999), Kendall’s Advanced Theory of Statistics,
vol. 2A, 6 ed., 885 pp., Oxford University Press, New York, NY.

Sullivan, R., et al. (2005), Aeolian processes at the Mars Exploration Rover
Meridiani Planum landing site, Nature, 436(7047), 58-61, do0i:10.1038/
nature(03641.

Sullivan, R., et al. (2008), Wind-driven particle mobility on Mars: Insights from
Mars Exploration Rover observations at “El Dorado” and surroundings at

Gusev Crater, |. Geophys. Res. Planets, 113, E06507, doi:10.1029/2008JE003101.

Tanaka, K. L. (1985), Ice-lubricated gravity spreading of the Olympus Mons au-
reole deposits, Icarus, 62, 191-206, doi:10.1016/0019-1035(85)90117-4.

Tanaka, K. L., M. Chapman, and D. H. Scott (1992), Geologic map of the Elysium
region of Mars, U.S. Geol. Surv. Misc. Invest. Ser., Map 1-2147.

353



Tanaka, K. L., J. A. Skinner, T. M. Hare, T. Joyal, and A. Wenker (2003), Resur-
facing history of the northern plains of Mars based on geologic mapping
of Mars Global Surveyor data, J. Geophys. Res. Planets, 108(E4), 8043, doi:
10.1029/2002JE001908.

Tanaka, K. L., J. Skinner, J. A., and T. M. Hare (2005), Geologic map of the north-
ern plains of Mars, 1:15000000, U.S. Geol. Surv. Misc. Invest. Ser., Map 2888.

Taylor, G. J., et al. (2006a), Variations in K/Th on Mars, |. Geophys. Res., 111,
E03506, doi:10.1029/2006]JE002676, [printed 112(E3), 2007].

Taylor, G. ., et al. (2006b), Bulk composition and early differentiation of Mars, J.
Geophys. Res., 111, E03510, d0i:10.1029 /2005JE002645, [printed 112(E3), 2007].

Taylor, J. R. (1982), An Introduction to Error Analysis, 270 pp., University Science
Books.

Taylor, S. R., and S. M. McLennan (1985), The Continental Crust: Its Composition

and Evolution, Blackwell Science, Oxford.

Thompson, T. W., B. A. Campbell, R. R. Ghent, B. R. Hawke, and D. W. Lev-
erington (2006), Radar probing of planetary regoliths: An example from the
northern rim of Imbrium basin, |. Geophys. Res. Planets, 111(E6), E06514, doi:
10.1029/2005JE002566.

Thornton, S. T., and J. B. Marion (2003), Classical Dynamics of Particles and Sys-
tems, 5 ed., Brooks Cole.

Tosca, N. J., S. M. McLennan, D. H. Lindsley, and M. A. A. Schoonen (2004),
Acid-sulfate weathering of synthetic Martian basalt: The acid fog model re-
visited, J. Geophys. Res. Planets, 109, E05,003, d0i:10.1029/2003JE002218.

354



Tosca, N. J., S. M. McLennan, B. C. Clark, ]J. P. Grotzinger, J. A. Hurowitz, A. H.
Knoll, C. Schroder, and S. W. Squyres (2005), Geochemical modeling of evap-

oration processes on mars: Insight from the sedimentary record at meridiani

planum, Earth Planet. Sci. Lett., 240(1), 122, d0i:10.1016/j.epsl.2005.09.042.

Tosca, N. J., S. M. McLennan, M. D. Dyar, E. C. Sklute, and F. M. Michel (2008),
Fe oxidation processes at Meridiani Planum and implications for secondary
Fe mineralogy on Mars, |. Geophys. Res. Planets, 113, E05,005, doi:10.1029/
2007JE003019.

Upton, G. J. G., and B. Fingleton (1985), Spatial Data Analysis by Example: Point
Pattern and Quantitative Data, Wiley series in probability and mathematical statis-

tics, vol. 1, ]. Wiley, Chichester, New York.

Wang, A, ]J. E Bell, and R. Li (2007), Salty soils at gusev crater as revealed by
Mars Exploration Rover Spirit, in Lunar and Planetary Institute Conference Ab-

stracts, abstract 1196.

Wang, A., et al. (2006), Sulfate deposition in subsurface regolith in Gusev crater,

mars, . Geophys. Res. Planets, 111(E2), E02517, d0i:10.1029/2005JE002513.

Wiénke, H., J. Briickner, G. Dreibus, R. Rieder, and I. Ryabchikov (2001), Chemi-
cal composition of rocks and soils at the Pathfinder site, Space Sci. Rev., 96(1-4),

317-330, doi:10.1023/ A:1011961725645.

Watters, T. R, et al. (2007), Radar sounding of the Medusae Fossae Formation
Mars: Equatorial ice or dry, low-density deposits?, Science, 318(5853), 1125-
1128, d0i:10.1126/science.1148112.

Weitz, C. M., et al. (2006), Soil grain analyses at Meridiani Planum, mars, J.
Geophys. Res. Planets, 111(E12), E12504, d0i:10.1029/2005JE002541.

355



Whelley, P. L., and R. Greeley (2008), The distribution of dust devil activity on
Mars, J. Geophys. Res. Planets, 113, E07,002, doi:10.1029/2007JE002966.

Wilson, L., and J. W. Head (2007), Explosive volcanic eruptions on Mars: Tephra
and accretionary lapilli formation, dispersal and recognition in the geologic

record, J. Volcanol. Geoth. Res., 163, 83-97, doi:10.1016 /j.jvolgeores.2007.03.007.

Wing, D. R., and G. L. Austin (2006), Description of the University of Auck-
land global Mars mesoscale meteorological model, Icarus, 185, 370-382, doi:

10.1016/j.icarus.2006.07.016.

Winter, ]. D. (2001), An Introduction to Igneous and Metamorphic Petrology, Prentice
Hall.

Wyatt, M. B. (2007), The chemically altered basaltic northern plains of Mars:
TES, OMEGA, and GRS integrated data sets and conclusions, in 7 th Interna-

tional Conference on Mars, p. Abstract 3402.

Wyatt, M. B., and H. Y. McSween (2002), Spectral evidence for weathered
basalt as an alternative to andesite in the northern lowlands of Mars, Nature,

417(6886), 263-266, d0i:10.1038/417263a.

Yen, A. S, et al. (2005), An integrated view of the chemistry and mineralogy of
Martian soils., Nature, 436(7047), 49-54, doi:10.1038 /nature03637.

Yen, A. S, et al. (2008), Hydrothermal processes at Gusev Crater: An evaluation
of Paso Robles class soils, |. Geophys. Res. Planets, 113, E06510, doi:10.1029/
2007JE002978.

Young, H. D. (1962), Statistical Treatment of Experimental Data, 172 pp., McGraw-
Hill.

356



