SOME IDEAS ON DATA TYPES

IN HIGH LEVEL LANGUAGES

David Gries and Narain Gehani

TR 75-244

May 1975

This research was supported by NSF Grant GJ-42512. We are grateful to
the members of IFIP working group 2.3 on progrémming methodology for

several discussions held at the December 1974 meeting.

SOME IDEAS ON DATA TYPES
IN HIGH LEVEL LANGUAGES

David Gries and Narain Gehani
Department of Computer Science
Cornell University

 Ithaca, N.Y.

Abstract:

We explore some new and old ideas concerning data types;
what a data type is, overloading operators, when and hoﬁ implicit
conversions. between programmer data types should be allowed and so
forth. The current notion that a data type is a set of values
together with basic operations on that set leads us to conclude
that formal parameter types need not be so explicitly stated. Given
a formal parameter X with operations Oqrees O being performed on
X within a procedure, one should be able to supply , as actual
parameter in call, a variable of any type which has operations
Oprevcer G defined on it. We introduce a notation for this, using
PASCAL as a base language, illustrate the added flexibility it

gives us, and show briefly how to implement the idea efficiently.

I. Introduction

A current notion in programmifig language research is that
a data type is not only a set of values, but consists also of a
set of basic, primitive operations on these values. This notian
will eventually find its way into general purpose languages. In
this paper we explore some ideas which will have to be considered,
such as overloading operators and procedures, and describing
conversions between types.

One of our new ideas is that the domain of an array A, i.e.
the set of legal subscript valués of A, should be a data type, and
that one should be able to declare.variables of that type. This
addition makes processing of array elements, or iterating over all
array elements, simpler in that the same notation is used whether

. A has one, two, or more dimensions. Stated andther way, nested
loops are no longer neéessary to iterate over the elements of a
two or three dimensional array. The new notation is simple and
frees the user from having to deal with unnecessary details.

A second new notion generalizes procedures and calls on
them. We want to make the type of a formal parameter of a procedure
depend on a particular call of that procedure. Thus, for one call
P(1.0) of procedure P with formal parameter X, X has type real, while

for another call P(l), X has type integer.

If used correctly, this notion of procedure parameters
with "variable" types is a useful abstraction. In general, we are
not interested in what type a parameter X has, but instead, we are
concerned with the operations preformed on X within the procedure.
Thus, when we write a procedure to sort an array A, we really are
concerned only with the fact that the operations := and < are
defined for array elements of A and not whether we are sorting
integers, reals or strings.

This‘Abstraction from data type to the set of operations
performed on the data type within a procedure is so iﬁportant that
a high level language should support it. The main difficulty is
in embedding it in a high level language in a clean, natural,

' systematic manner which does not decrease runtime efficiency (if
possible!). The only language we felt we could possibly do this
with is PASCAL [7,10] (and languages based on PASCAL). In pérticular,
the subrange types, the scalar types and the simple record types
(no variants) are important and necessary in our work. Beyond
this, we assume that our PASCAL-like base language is more "dynamic"
than PASCAL; we assume ALGOL-like block structure, arrays whose
bounds are determined when the blocks in which they are declared
are entered, subrange types like 1l..N where N is a variable, and

so on. We will use different syntax notations at times; we rely

on the reader's knowledge of Programming languages to understand
our meaning.

Throughout, it should be remembered that the effects on all
parts of the language have not been fully considered, and might
change or restrict our ideas somewhat. We are not proposing a
fixed extension to PASCAL to be implemented immediately; we are
exploring some useful ideas to be used in future languages. Many
ideas are only briefly explained here and are covered in more
detail in the second authors' thesis [4].

Section 2 is devoted to several aspects of data types:
programmer defined data types, defining operations on them through
"overloading", implicit conversions between data types, and the
doﬁain of an array as a data type. The idea of "overloading” is
not new; the MAD language used thé notion [9], and Hoare (6] also
discusses it.

In Section 3 we discuss the general problem of iteration
ang notations for it, while Section 4 introduces our generalized
probedure, where the type of a formal parameter is not fixed.
Section 5 briefly discusses implementation of our ideas. In nost
cases no runtime efficiency is lost when using the new features.

Section 6 contains a discussion of some problems, such as

misuse of these features and proving programs correct.

*ut dosxd S9TOUSTOTIISUT SWIFUNI pue

SIOXI® JJOPUNOX SSTMISY3IO °XoTdwod 03 Teax Woij pue ‘Teax o3 19693UT

woxy ‘I2H693UT 03 OT°°T WXOJ ‘OTdWexX® I0F -- IoU3loue JO JoSqns © ST

9aA3 SUO UBYM INDDO0 ATUO PINOYS UOTSABAUOCD FTOTTAWT ‘ISADMOI]

cx9ba3ur adk3 sey I JT G°G =: I 93TIm TebsT 3T 9yew 03 IIPI0 Ut

{(X)ounx3 =: UOTSI2AUOD-3TOTTdWT
{19693 UT : (TEOI:X)UOTSIDAUOD-3TOTTAWT UOTIOUNF

93TIM pTnOM

Jauwexboxd 2yl ‘soniea I19693UT 03 T2AI WOXJ UOTSISAUOD 3FTOTTdWT

8qraosap of ‘osodind STY3 I0J PIAIISII ST UOTSISAUCO-3TOTTAUT Sweu

ayl eéoddns ;sesooqa 2y sadk3y om3 Aue U99M39Qq UOT SISAUOD 1raprdmt
' QUTIIP 03 Isuwwexboad SY3z MOITR® 03 ST UOTINTOS PuUODIS YT

*x97dwTs ueY3l I9Yjex

JITNOTIIITP. @I0w HuTuwezboxd oyew ued pue ‘STIIXSTIUT bue 30TI3S

003 ST uUOT3INTOS STY3 ‘xaded ay3 o pud ay3 zeau jusxedde oxow

uaA?2 99 TITM UDTUM SuOSeaX I0J °*STeS2I 2Y3 JO 3I=sqns e aze.szabaqup

ay3 esneoaqutdmxs ‘IedX ST ¥ 9I9YM T =: Y SMOTT® TYISYd uUaad ‘TTe

I933Y¢ *Axess909u 9q 3,UPTNOYS STY3 Iaqumu XaTdwod e Se papiebax

Kt{eqsn ST O 3T ‘yYsaey 003 ST STUL °(0‘0)X9Tdwoo =: § Se STY3

93TamM 03 zeuwexboad ayz o1Tnbox PTNOO 9M ‘3ISITJ ‘UOTSIDAUO0D adh3
3o wsTqoxd STY3l O3 3ISTXD (3ISBST 3IB) SUOTINTOS TeIdUSb 291YL

*Ioqumu xardwod e

9SU3S ® UT ST O @OUTS ‘9sed STY3 UuT 3ybTaTe ST 3T eyl burtkes jo

Aem swos aaey plnoys zsuwexboid a9yl *I2H693UT Ue ST O OTTUYM xaTdwod

adk3 sey s asnedsq PTTRAUT ST JusWe3IeL3S JudwubIsSse aya ! (£°7) WAS

aanpaooxd 3sel oyl ur sisTxa warqoxd y *sadikaqns buturjied ‘o7

*SSU9S saYew ,SIUSWITD JO ums,

uotriexado oyl yoTym uodn santea 3o shexxe aarv yotym sadiy xo3zswexed
30 39s XU® XOJ 3T SUTIOP O3 °Tqe oF PTNOYS aM pue ‘Aexze ue J0

sjusweTd® 9Y3 JO ums ay3 soonpoxd WAS uoTIdUNI eyl ST utod AYL

‘[I]J¥ + S = SOP N O3 T =t I 103
t0 = § UIhoq
txordwoo : g Iea
fx9593uUT : T Iea
{xoTdwod : (19633uT:N ‘xoTdwod Jo Xeixe:y)WAS uotzouny (£°2)

QuUTIop O3 9Tqe 99 PTNOYS BUC uayl

Pus s =! WAS
{{I]J¥ + S =t SOp N O3 T =% I 703
10 =t § uthaq

{x9bajuTis ‘I IeA

{x9b623uT : (I@BOIUTIN {I9H93UT JO ABIIR:Y)WAS uoT3louny (z2°2)

uoT3OoUny © pauTIOp
aaey oM asoddns ‘s1dwexs I0J ‘SwWeu uoIIdUNI IO danpadoxd Kue

PeOTIa®A0 03 9[Qe 9q pPINOYs auo os ‘sxozexsdo ,PeOTIBAO0, ©3F o9Tqe

9q PINOYS BUO Se 3Isny "HUTIPPOTISAQ UOTIDURG pue 2INPaooid °*qg

*ut+y JO DBuTuedwW BY3 ST Jeym ‘% pue X

Jo sadk3 umouy 9Y3z WOIF SUTWISF P Krénonﬁgqmeun 03 9Tqe 9q 3snuw 3Y

‘R + X UOTSsSaidx® ue speox (I9TTAWOO BY3 JIO) ISPRIX URUMY JYI UIYM

*sadk3 zo32wered Jo 39S Swes 9yl 9ARY SUOTITUTISP yons om3 ou eyl
peptacId ‘S9USTM 9y Se ua3JO se Io3eiado U PROTISAO UBRD QUQ

*2dX3 e3jep Zue

3o @2q Aew UOT3IOUNI B JO OSNTRA Y} {HBUTPROTIDIAO SIPTISSG UOTIOIITD

I9Yy3jour UT TYOSVd DUTPuUDSIX® OSTe 91 aM 1'Yl 230N ‘UOTIDURI oUI

Jo anyTea 3yl o3 Hbutubrsse 93rUHTSOP 03 posSn ST JFINSII dweu Y3
3ey3 3dsoxa ‘UOT3ITUTIOP UOTIOUNI Io9ylo Aue ST yonw ST UOTITUTIOP
sSTUL X c‘g) XoTdwod + X + X :°b°a ‘uor3iejou TeRUOTIUSAUOD Hutsn
I3y3abo3 sentea xo7dwoo om3 ppe 03 asuwexboxd Byl sSMOTTIe UdY3 STYL
pus
3xedr*x + 3xedr*X =: 3Iedr*3Insax
t3xedx*x + 3xeda*x =: 3xedi*3asax ulhaq
ixoTdwoo : (xordwod : x‘X) + uoT3jouny (1°2)
S3TT uoT3TUTFOp e Hursn “ozexado
ay3 butproTlioAo 3sobbns oM ‘STUYI Op OL °SINTEA yons uo / pue
s ‘= ‘4+ suotjexsdo TeRUOTIUSAUOD SY3 asn 03 9Tqe g PINOYS Su0 uaylz

xo1dwoo : X /X Tea

:saTqetraea xaTdwuod ssurjap ATpuodss pue

¢ xXoTdwoo, ® JO 9suss TedTIRWAYIRW Y3 UT USXe3l 99 03 ST Burtuesw asoym

pus Tesax : 3xedr ‘3aedx paiodax = xaTdwod

Kes ‘adX3 ejep MOU v SaUTISP duo FI °*burpeorasao xo3jexady ‘e

‘Butpeorieac - =2dA3 e3lep MAU B UO
. 203ex3d0 uUR JO UOTITUIIOP 9Y3z IOF UOT3ILIOU oTqTssod sUO 93eDOTPUT 03
3ng ‘adi3 e3jep M9U B HUTUTISP IOF UOTIBIOU STOUYM 8Y3} SSNOSTP 03
j0u st @19y 9sodand ano “*[g‘zZ‘T] 3Ideouod sseld s,¥INWIS uo paseq
{[T678 ‘saoyiro buoure] suorjerado OIseq .Syl JO SUOTITUTISP SpPNTOUT
pInoys adk3 ejep MdU ® JO UOTITUTISP oYyl 3Ieys eapT 9yl 3jzoddns

03 suorjejou doraasp 03 burjidwslle 91 SIBYDILSSDI [RIASBASS

*sadX3 paooax uo uotizexado 10 ‘sxojzeasdo IdY30 HUTUTISP

30 Aem Ased ou ST 2a9Y3z ‘ISASMOH *sI8693UT OY3 WOIF WSY3 O3

popu®3ix® sixojexado [Te aaey ArTeorzewo3lne (g°°T oTT) sadi3 abueraqng

‘woy3z o3 sxojexado uorjerax ATdde ued auo sSny3z pue pPIIIPI0

ATTeoT3iewo3ne aae (2aAoqe 3INs YTT) sadh3y xereds *(o7TF 3deoxa) sadiy
ejep ITe UO = pue =: SUOT3IeIado OM3 3SO9Y3 MOTIR S30P TVISYd

*9STMISYIO IO PIUTISP

-xoumexboxd ‘adX3 e3jep Aue 103 paurjyap ATTedoTiewolne 3q PINOYS
(A3T11enbs) = pue (juswubrsse) =: suo;qexadq 8yl 3ey3 3193 ST 3I

*Jou pue Yo ‘pue suoTiexado SY3 YT IdY3IdH03 {ona3 ‘osTey} 3es

ay3 st ueofoog {siojexado TRUOTIRTSI 8y} pue /‘,‘-‘+ suoriezado

9yl Y3ITM sI3623UT JO 39S 8Yyz ST a9bojur adik3 S8YyL °sanIea asoy3z o3

30q ‘Sanf{eA JO 395 ® A[UO 30U ST odX3 ©IEp B 3IBY3I UOISNTOUOD ayz
03 SWOD SARY S3ISTIUSTOS Iajnduwoo ‘ArezeT -odi3 3Iey; oAry YOTYM
sanTeA JO 39s 9y3 se (ATybnox) paurzep st adA3 e3lep yoex

pwo aebajur:jaedr !(axsbajur:jaedx pxoSéi:xaIdmoo '?éax; pIOOéi>(€)

6°°T =-6"037auo :adik3y abuerqns (Z)
(sopeds ‘s3jxesy ‘spuoweTp ‘sSqnid) = 3INS :2dX3 zereos (1)

toxe sardurexy *sadA3 jusxa33Tp Fo A1qissod ‘sjusuodwod Jo zaqmﬁu
POXTJ © JO BUT3ISTSUOD ain3ona3zs e - adhk3 pzoosx ay3z (g) pue ‘adi3
ejep xereds Aue jo sbueaqns ® - adky sbueaqns ay3z (zZ) ‘santea 3o
39s paiapxo ue - adA3 ejep xeTeds ayz (1) aIe sadi3 e3zep MaU JO
spuTy juelxodwt 3Fsow oy3l ‘skexxe soprsag °sadi3 e3lep mMauU SUTIIP

03 xsumrexboxd ay3 molTe (sabenbuel Iay3zo swos) pue qvoéva

sxojeaad0 burpeorasa0 pue sadil ejeq MeN °Z

Thus, it would be better to use another notation to indicate
that one type is a subset of another, and with this indication
allow the programﬁer to specify the conversion. We propose

subtype (id: type-1l): type_2j

{statement which indicates
how to convert from type_l to type.2}

Or, if you wish to use a more standard, function-like notation:

(2.4) function subtype (id: type.l): type.2;
’ {statement which indicates)
how to convert from type 1 to type 2} \
so that subtype is a standard function which can be overloaded.
For example:
function subtype(X:real): complex;
subtype := complex(X,0);
This at least gives the impression that one is defining how types
interact and not just how to convert from one type to another.
It is also easy to check for and warn against circularity, as for
example in
function subtype (X:real): complex;
subtype := complex(X,0);
function subtype (X:complex): real;
subtype := complex.rpart
Unfortunately, such circularity is not always a mistake,
although for purposes of clarity and efficiency we might not want
to allow it, Consider two types, rectangular coordinates and polar

coordinates, defined by

rectcoord = record xvalue, yvaluée : real end
polarcoord = record rho, theta : real end

These two types are equivalent in that you can transform a value
from one type to another and back again, but almost certainly _

some information (accuracy) will be lost in doing so on any computer.

2d. A New Data Type: The Domain of an Array. Quite often a program

must iterate over elements of an array, performing some operation
on each. The notation for doing this depends on the array in
question - a single loop for a one-dimensional array, two nested
loops for a two-dimensional array, etc. However, since the task -
to be performed - iterating over the elements of an array - are
the same in all cases, we should be able to use the same ndtation.

We introduce a new data type here which will facilitate this.
The full usefulness and flexibility to be gained by it will not
become apparent until later in the paper. '

Consider any array A to be a function, from its domain of
possible subscript values to the corresponding array element valués.
In this case, the domain of A is a set of values, which we will
represent as domain(A),_and it can be considered to be a type.

Thus, given
var A : array(l..N] of integer
we can declare another variable I as .
var I : domain(a)

in which case I can be used as a subscript: A(I].

Let us consider another case:

v

suit = (clubs, diamonds, hearts, spades);
' var B: arrayl[suit,l..13] of integer
Here, B is a two-parameter function, accepting 2 arguments. If

we declare
var J: domain (B)

then Jlis a pair of variables; the first takes on values of type
suit, the second of type 1..13. 1In this case B(J] would be a
perfectly legal variable reference, as would Bfspades,l12].
What type does J really have, assuming we want to add this
feature to PASCAL? The revised PASCAL report says that
a record type is a structure consisting
of a fixed number of components, possibly
of different types.
This is exactly what the domain of an array must be, with one
component for each dimension of the array, and each
~ component having the type given to the corresponding subscript of
the array. To get a standard notation, we arbitrarily say that

for an array A declared by
var A: array[t,,t,,...,t] of ...
where the t; are types, declaring variable J as
var J: domain(a)

is exactly equivalent to

var J: record compl:tl; comp2:t2;....; compn:tn end

In order to be useful, one must be able to use records in

subscript positions. So let us extend our language to allow this.
Suppose we declare
var C: array[l..10,1..10,suit] of ... ;

var K: domain(C);

var L: 1..10;
var M: record compl: 1..10; comp2: 1..10 end;
var N: suit
Assuming that variables K, L and M have been assigned values, the
following are all legal references to indexed variables:
CI[K]
CfL, L, spades]
Cc[M, N]
Thus, one can mix simple variables and records in subscript positions,
as long ‘as the individual types of the components match. While
this feature can be used, it won't be used often. The primary
purpose of this added flexibility is to allow a variable I of type
domain (A) to be used as a subscript as A{Il, no matter how many
dimensions A has.
This introduction of the data type domain (A) brings to
light a minor mistake in the PASCAL manual [71 (not the report). -

The manual says that, for example.

var A: array([l..20] of array[l..10] of integer
and

var B: arrayfl..20,1..10] of integer

are equivalent (except for the name of the array); that the

notation used to declare B is just an abbreviation of the notation

12

used to declare A.
This is false; A is a one-dimensional array whose array

elements happen to be arrays, while B is a two-dimensional array.

Obviously,
var I: domain(A)
is equivalent to var I: record compl: 1..20 end
while var J: domain (B)
Ais eéuivalené to var J: record compl: 1..20; comp2: 1..1l0 ggg:

2e. Discussion. There are problems which should not be overlooked,
and the foregoing should not be taken as the end result-to be put
into a language. The effects on other parts of the language must
be completely understood. One problem arises with defining
subtypes. Suppose we define
function subtype(X: integer): complexi;
subtype := complexi (X,0);
function subtype (X: real): complexr;
subtype := complexr (X,0);

function subtype (X: complexi): complexr;
subtype := complexr (X.rpart,X.ipart)

Now suppose we have
var A: complexr; A := 0;
Should the integer O be converted via

integer + complexi -+ complexr, or via

integer » real + complexr

13

Should it matter which route is taken? Probably not, since we
are working only with subtypes and hence conversion implies no
loss of information. But the matter must be further studied.

One rather big point concerns the overloading of operators
and procedures. The programmer must be taught to use the over-
loading in a way which keeps programs understandable. For example,
defining addition + of a new data type polynomial as multiplication
"would be wrong".

We have the feeling that the same axioms should be used to
define + irrespective of the data type, and that these axioms should
be used in the proof of correctness. To illustréte what we mean,
consider the procedures SUM defined earlier in (2.2) and (2.3),

and suppose we see
ees X 3= SUM(A,10); ...

in a procedure. The assignment statement axiom used in understanding
this statement assumes some idea - an axiom if you will, of what

SUM does in terms of A and 10. This idea should be the same no

matter what the type of A is, so that we can prove the program
correct (and thus understand the program) irrespective of the type
of A.

We will discuss this more when introducing more general
procedures where the type of a parameter can be a parameter.

One reason that we have decided not to include a complete
notation for defining operations as part of the definition of a
data type is that this is a difficult problem. For example, one

idea that has been circulating is to use a syntax like

14

<type identifier> = begin <typical PASCAL-like type declaration>;
<definition of operation 1>

<definition of operation 2>
end
However, this has its problems. The defined operations are to
apply to values of the defined type. If this is so, then where
does one put a definition of an operation which includes as operands
values of two different types? For example, if exponentiation is
not defined, we might want to define it:

function exp(X: real; Y: integer): real;

{definition of X'}

We feel our notation for overloading operations and procedures
is a natural extension of the PASCAL procedure notation. It
should be easy to learn, easy to use naturally, and can be

implemented efficiently.
3. Iteration

There are essentially two types of iteration. One requires
us to iterate an unknown number of times until some condition is
met (e.g., the while loop). With the other, we iterate some
stéﬁement as some "index variable" takes on a set of fixed values,
known beforehand. Some examples of the latter are

for i := 1 to N do s;

for i := N downto 1 do s
for x in X do s (where X is a set variable)

49

Since all these different notations imply the same thing -
iteration over a known, fixed set - it would bé wise to have ju

one notation to represent them all, something like

for <variable> in <set of values> do S

where the <set of values> and <variable> have the same type. I
the <set of values> has an ordering, then this ordering is used
assigning values to the index variable <variable>; otherwise no
ordering is implied.
For example, the three loops above would be written as
for i in 1..N do S
for i in reverse 1..N do S
for x in X do S
where reverse 1..N is the set 1..N but with the conventional
ordering reversed.

Hoare [6] has already discussed such a general iteration

st

b4

in

Statement. His axiom for for x in X do S where X is an unordered

'

set is as follows (using his notation, [] denotes the empty se

and if s is a set, I(s) is an assertion about the set s):

s;cs, x€ (s - sy), {I(sl)} S {I(s1 v x)}

{I({ 1N}, for x in X do s {I(X)}
If X is an ordered set, we then use the following proof rule.

X = {xl,xz,...,xn} where IR Y 1 <i<n. Then

{ £i<n, {I([xl,...,xi])} S {I([xll....xiﬂl)}

{I(l 1N} for x in X do s {1(X)}

t,

Let

16

The neat thing about this is that we have one rather than
several iteration notations, and two iteration axioms (one for the
ordered, one for the unordered case) rather than several. 1In
effect, we have reduced the problem of defining different kinds of
iteration to the simpler problem of defining different sets of

values (and orderings on them). Some notations for <sets of values>

are
notation meaning
anj expression E the set consisting of the
current value of E. '
M..N the integers M, M+l,..., N,
natural orderina.
reverse SV where SV is any set of values
with an ordering; the result is
the same set with the ordering
reversed. For example, reverse
M..N = N, N-1,...,M+1, M.
X ' where X is a set variable. This
. set is unordered.
suit where suit is a data type defined as
suit = (clubs, diamonds, hearts, spades)
This set is ordered in PASCAL, in
the order given.
any finite data type the value of that data type, ordered
if the data type is ordered.
suit, defined above, is an example.
<SV1>,<SV2>,...,<SVn> where the <SV.> are sets of values,

each ordered.’ The resulting set
of values has the obvious ordering:
first those in <SV,>, in their order,

then those in <SV2; in their order, etc.

The example
for I in suit do s

illustrates a simple but useful and elegant extension to PASCAL.

17

Since a data type is, in part, a set of values, we can use any such
finite data type as a set of values. Note that, for example, l..5

is already a (subrange) type, and that PASCAL allows
for I in 1..5 do S (but written for I :=1 to 5 do S)

so that this extension is fairly natural.

Note that records are data types. Suppose we declare

suit (clubs,diamonds,hearts, spades) ;

card = record s: suit; value: 1..13 end;

var I: card

Then we can write a loop which iterates over all 52 possible card’

values of a deck:
for I in card do S
or perhaps j;st
for I in record suit; 1..13 ggg‘ do s

Finally, note that domain(A) is a type, and can thus be

used as a set of values. Hence, we can write

var A: array(l..N,l..M] gg integer;
var I: domain(A);
for I in domain(A) do A[I] :=0

and even

var B: array(suit,l..13] of integer;
var I: domain (B);
for J in domain (B) do B([J] :=0

Thus, the same notation can be used to iterate over the elements

of any array, regardless of the number of dimensions and the type

410

of the individual subscripts. Should one wish to specify a
definite ordering (remember, domain(A) is an unordered set), one
can resort to the old notation:

for J.compl in suit do-

for J.comp2 in 1..13 do ... B[J] ...
or

var L: suit
var K: 1..13;
for L in suit do
for X in 1..13 do BIL,K]

As a final example of this flexibility, the following can

be used to sum the.elements of any integer array A, no matter what

its dimension or the types of the subscripts.

var I: domain(A);

var S: integer;

S = 0;

for I in domain(A) do S := S + A[I]

4. Letting Types of Parameters be Parameters.

Current languages with types require that the type of
parameters of a procedure be fixed at compile-time -- at least a
procedure cannot one time return an integer and the next time a
real value. For example, a procedure

procedure SORT (A: array of integer, N: integer);
{body of procedure which sorts array A[l..N]}
cannot be used to sort an array of reals or an array of character

variables. Historically, ‘a.parameter was associated with an

argument of a particular fixed type. This was correct when we
viewed our data types as pure sets of values -- a procedure should
only work on one kind of value.

When we view a data type as a set of values, plus basic

operations on them, our view changes somewhat. We abstract away

from the idea of a procedure operating on a parameter of a

particular data type to the idea of a procedure operating on a

parameter of any data type for which certain basic operations have
been défined. This makes sense. For example, if we write a
procedure to sort an array of values, we are not interested in
whether the values are integers or reals or what have you, but
;nstead we are interested in - and our proof of correctness of the
sort procedure depends on - the fact that the assignment operator
:= and the ordering operator < afe defined on the type of array
values.

Thus, we should like our programming language to support
this abstraction from types to basic operators on values of a type,
té support the idea of letting types of parameters be parmeter.

One problem, of course, is efficiency. We want to introduce the
idea into the language so as not to worsen run-time efficiency.

We believe the notation and ideas described below satisfy this goal
to a large extent, although, of course, the compiler will have
more work to do.

First, let us summarize the context in wh}ch we'll be working.
To keep things simple we will only consider PASCAL variable

parameters (call by reference) whose types are programmer-defined

20

as standard scalar types, subrange types, array types and record
types without no variants. We will assume that arrays can be
more dynamic than in PASCAL, that the bounds of an array parameter

need not be given explicitly. For example, we use the notation

precedure X (var A: _EEEX} of integer, var B: EEEEXZ of rea});
to derote an array A of one dimension and an array B of two
dimensions.

We will assume that for a value parameter of type t, the
corréspondiné argument can be of an? subtype (for which implicitl
'conve:sion is defined). For a variable parameter (defined using
var), the argument must have the exact same type (except for array
bounds) .

To allow the programmer to-reference the bounds of an array‘

we use the standard functions

(4.1) 2Zbound(B) returns a record of type domain (B)
consisting of the lower bounds of
all subscript positions,

ubound (B) returns a record of type domain(B)
consisting of the upper bounds of
all subscript positions,

fbound (B, 1) returns the lower bound of the ith
subscript position,

ubound (B,1i) returns the upper bound of the ith
subscript position,

rank (B) returns the number of dimensions of
B (o if a scalar).

It may also be advantageous to allow the standard functions

(4.2) min(t) and max (t)

21

which return the lowest and highest values, respéctively, of the
finite, ordered type t.

Now let us indicate how types of parameters are made
themselves parameters. In the <formal parameter section>, any
(reasonable) part of the specification of a parameter type may be
replaced by an identifier within braces <> to indicate that the
type will depend on the call. This includes the type itself, a

subtype, or the number of dimensions of an array. For example,

(1) procedure X (var A: <z>);

(2) procedure X (var A: arraxz of <z>);

(3) procedure X (var A: arraz<N> of integer);

(4) procedure X (var M: record Cl: integer; C2: <z> end;

var N: <z>) '

The first case states that parameter A may have any type. The
second, that A is a 2-dimensional array of any array element type.
Procedure heading (3) indicates that parameter A is an array of any
number of dimensions, of type integer. Case four indicates that
component C2 of parameter M must have the same type as parameter
N.

Within the procedure itself, the identifier within braces
(e.g., z within <z>) may be used as any type.

To illustrate, we write a procedure which will interchange
the values of any two variables of the same type, no matter what

the type is.

{interchange the values of A and B}

procedure SWAP(var A,B: <type>);
var T: type;

begin T := A; A :=B; B := 7T end

Suppose we write a function which computes the greatest
common divisor of two integers, but leave the type variable:
function GCD(m,n: <type>): <type>;

begin if n = 0 then GCD := m else GCD := GCD(n,m mod n)

end
This function will produce the GCD of two values of any type on
which mod is suitably defined. 1In particular, this may be done
for polynomials. Let us define polynomials of degree 50 or less

by
polynomial = array[0..50] of integer;

where- the ith array element is the coefficient a; of x* in the

. ” .
polynomial a, + a;x + azx‘ +o.. + asoxso. We can indicate that

integers are polynomials by the definition

function subtype (X: integer): polynomial;
var i: integer;
begin subtype {01 := X;
for i in 1..50 do subtype (i]

end
Suppose we also suitably overload the mod function:

function mod(X,Y: polymonial): polynomial;
{body to compute mod of two polynomials}

Then the above procedure GCD will work correctly, without change,
for polynomials of degree 50 or less as well as integers. Thus,

if we declare
var A,B,C: polynomial

and suitably initialize them, we can execute

)

C := GCD(A,B)

Perhaps the most exciting extension is the variability of array
parameters. Consider the function

N>

(4.3) function MAX(X: arraz< of <type>): <type>

var I: domain (X);
var M: type;
begin M := min (type);
for I in domain(X) co
if M < X({I] then M := X[I};
MAX := M;
end

Note the use of min(tvpe). One may object'to this if type
is integer or real. But remember -that these types are finite on
any machine, and thus min(integer) and min(real) should return the -
lowest representable integer or real in this implementation. Cne
could also use X (2bound (X)) instead of min(type); this would be
the first array element value in the conventional sense.

This single function returns the maximum value in the array
for any array of any dimension, with any subscript types, and with
any ordered array element tyvpe. For example, if we have the
following variables initialized,

suit = (clubs, diamonds, hearts, spades);

var A: array([l..10] of suit;
var B: array(suit, 1..13] of integer

then the following are legal function designators
MAX (A) and MAX (B)

This truly reduces a lot of programming detail, and we believe

can be implemented efficiently.

24

5. Implementation

Questions of implementation boil down mainly to the
question of whether or not the compiler can determine the exact
type of every reference to a variable at compile time. If it can,
then generating the correct code for overloaded operations,
determining implicit conversions and inserting code for them, and
other such problems, are quite straightforward. If the compiler
can not determine the type of a variable, then information about
the type must be coded in some sort of dope vector and this dope
vector must be interpreted at runtime

We will show later on how the compiler can determine type
of variables in most cases -- pathological cases involving recursive
procedures are the ones which give trouble. But first let us
discuss some cases where some sort of interpretation is actually
more efficient. Consider the function to sum elements of an array
of inteéers:

function: SUM(var A: §££§X<N> of integer): integer;
var J: domain(A);

var S: integer;

begin S := 0;

for J in domain(A) do S := S + A[J]:
SUM := S; end;

Domain(A) is an unordered set, so that the compiler can determine
the order in which the various subscript values J should be used.
Whether the array has 1,2,3 or more dimensions, clearly the compiler

should implement this as a single loop, thinking of the array as

a one-dimensional array, and J as a single, simple integer variable.

25

The necessary information to do this (the number of array elements
and address of the first one) would appear in the dope vector passed .
to it for the array argument.

Note that with our new notation, subscript checking is not
needed; the compiler knows that J always contains a valid subscript
for A.

Of course, the compiler would have to check the procedure
body carefully; variable J can be used only as a subscript of A,
its components cannot be explicitly referenced, and so forth.

Some research is necessary to determine how much the compiler must
know to be able to perform such opfimizations, and to develop
algorithms for extracting such information from a program. But

this form of optimization would certainly increase runtime performance
. and reduce runtime storage requirements. .

Now let us consﬁder how a compiler can process procedures
with parameters of "variable" type, and calls on such procedures.

Let us, first of all, consider programs with no recursive procedures
and no procedure names as parameters. Consider the program given

below:

(5.1) .

var A,B: intéger;

var C: real;

procedure P(var X: <type>):;
var Y: type;
begin . . . end;

P(A); P(C); P(B):

The compiler can textually change this into the following program:

(5.2) .

var A,B: integer;

var C: real;

procedure Pl(var X: integer);
var Y: ‘integer;

begin . . . end;

procedure Pz(var X: real);
var Y: real;

begin . . . end;
pl@); 2%(0); tm);

Thus, we look at the original procedure P as a kind of macro. We
group'the calls on P together so that eaéh group has the same list
of argument types, and for each group we generate a procedure P'
from P, with the parameter types filled in.

This can be done since there is no recursion, in much the
same way that macros are handled in other languages.

At first glance, one might object to this extra processing
by the compiler. But remember this; without this generalized
procedure facility, the programmer would be writing and running
version (5.2) anyway. The use of generalized procedures could
lead to less use of auxiliary storage, fewer cards punched, and
less computer time, because the prograﬁmer works with shorter, less
detailed, more general programs.

Now let us consider tﬁe use of procedure names as parameters

(but no recursion), and where the names are of these general

procedures. The simplest way to see that this neeé not leaé to
decreased runtime efficiency is to note that the compiler can
delete the procedure name parameter as it is making a copy of the

procedure. For example,

procedure P (procedure X; ¥Y: integer);

begin . . . X(...) . . . end;

becomes

procedure P'(Y: integer);

begin . . . A(...) . . . end;

Of course, you may not want to do this in a compiler since it can
lead to a proliferation of procedures, but it shows in principlée
that all the work can be done at compile-time.

When we include recursion, the problem is that the macro-
type processing described earlier can be a non-terminating process,
because it may lead to an infinite number of procedures. Consider

the following:

28

procedure P(A: <type>; N: integer);
var B: array(l..10] of type; ,
begin ii N £ 10 then
begin . . . P(B,N+l)5. . . end
end

Any call of this procedure will eventually terminate at runtime
since the second argument is increased by 1 each time and
recursion stops when the second argument becomes greater than 10.

But for a call P(1,1) the above-described compile-time macro

Processing leads to an infinite number of procedures with headings
procedure Pl(A: integer; N: integer);
procedure P°(A: array of integer; N: integer);

- =

procedure P~ (A: array

IO

£ ar:azl of integer; N: integer);

In general, the problem of dete;mining whether (a program will
generate an infinite number of types at runtime is undecidable (4]
and herce we have nc general way of knowing when to stop generating
the above procedures Pl, P2, P3, . . . at compile-time. However,
the compiler can certainly detect the possibility of having an
infinite number of types, and refuse to compile such cases.

This infirite type problem arises in several cases; they
all boil down to the idea that a particular parameter of a recursive
procedurg is possibly called with either

(1) an array with higher dimensions,

(2) arrays of higher and higher nesting
(i.e., array of array cf ...),

(3) records whose component tvpes are themselves of
higher and hicher "complexity",

29

(4) subrange types of higher and higher cardinality
(e.g., 1..10, 1..11, 1..12, ees), OI

(5) mixtures of the above.

Some of these problems can be handled by considering
several similar types to be equivalent - treating all subrangé
types using a dope vector, and treating arrays of different
dimensions but of the same array element type as the same, using
a dope vector. The other problems can be resolved by restricting
somewhat the specifications of types of parameters, and how such
types can be used in declarations, and secondly by having the
compiler recognize the situations described above and stop compiling,
in effect making them illegal.

witﬁ these solutions, the compiler can then determine the

type of each variable reference in a program.

6. Summarv and Discussion

The main idea we started with in our work was that one
should be able to write procedures with parameters of variable
types. "Abstraction" can be thought of as a generalizing process
in which one concentrates on similarities between .things and
groups them based on these similarities. This is precisely what
we are trying to do by generalizing the procedure ccncept. And we
feel the idea is useful enough that it should be incorporated into
higher level languages at some point.

This led us to look at other problems -- a language in
which to embed the idea, how to do it clearly, overloading operators

and procedures, implicit conversion from sub- to super-types, a

SV

more uniform notation for the typical kind of iteration over a
fixed set. All these ideas are important; leave one out and you
have a less flexible system.

For example, we give below a subtype cdefiniticn which
encompasses almost all the ideas discussed. The definition allows

one tb use any value 1 as an array, all of whose elements contain

i. For example, one could write A := 0 where x is an integer
array.
. - <N>
function subtype (X: <type>): array of <type>;

var I: domain(subtype);
begin for I in domain(subtype) do subtype{I] = X end
This illustrates quite clearly the flexibility of the extensions,
but alsc indicates_that one must be quite. careful when extending
a language this way. The consequences of an extension are not
always seen at first sight.
There are, of course, many problems. Foremost is the fact
that a programmer can use these features in an awkward, inconsistent,
inefficient manner. For example, if he writes a SUM function to
sum elements of an integer array, and overloads it with a SUM
function which multiplies two polynomials together, he is being
inconsistent. He is not using abstraction correctly; he is not
using it to express the similarity of things.
" Let us state this in another way. Suppose we write a

procedure which uses the plus operator on parameters:

procedure’ P (X,Y: <type>);
eee XY ...

In producing a proof of correctness of the body of P -- in
terms of its outputs relative to its inputs -- we are making
certain assumptions about what + does. The operation "+" satisfies
certain axioms which are used in the procf of correctness. Our
contention is that there should be only one proof cf correctness
of the above procedure P, regardless of the <type> cf X and Ys
the programmer must insure that, if P is called with arguments
of type t, that the operator + defined over t satisfies the
necessary axioms. The proof of correctness is the thing which is
similar for all types <type>, and we can ignore any differences in
possible types which don't affect this proof.

One may argue that APL and SNOBOL, two typeless languages,
have just such a feature. Anything of any type can be passed as a
parameter. These languages are at a disadvantage from this stand-
.point. First of all, everything must be interpreted at runtime,
which is inefficient. Secondly, one cannot tell just by looking
at a procedure just what it does; it will depend too heavily on
the inputs to that procedure. One cannot even parse a simple
expression and understand an operator. For example, in APL the
expression B+A gets parsed differently depending on whether B is a
variable or a one-argument function.

Types are important when one considers reacdability, under-
standability, and proofs of correctness.

There are many unresolved issues in our extension; which
depend on the base language in question. One concerns iteration.

With our new notation there is, as yet, no good way of expressing

for i := 1 to Nby 2 do S

One way is to include sets of values in the language, using set .

notation such as
{2i41 | i in 0 .. N/2-1}

and {-i | iin1l .. N}

Here, the general form would be
{£(i) | i in <set of values>}

where f(i) is an expression in i. If the set of values is ordered,
Xl’ Xz, cer Xn’ then the new ordered set is f(Xl), f(xz), coey f(xn).
Care must be given to keeping this flexible, but yet efficient to
implement and efficient to execute.

The whole question of data ﬁypes arises. Is 1..10 a data
type, or is it just the data type integer with an extr& qualification’
which the ccmpiler should check (or not check if the user doesn't
want it checked; must like subscript checking)? If 1..10 is a
data type, why not also 1..10 union 15..20, or {1,3,5,7,9}? The
questions to be answered are: what, theoretically, is a data type,
and secondly what data types can we implement efficiently?

In section 2 we argued that programmer-defined implicit
conversion from a subtype to a supertype was necessary. There are
problems with this. For example, the programmer may be unaware of
hidden ihefficiences due to such conversions. This is a problem
for the compiler; it should warn the programmer of them. Also,
since many of such implicit conversions deal with constants, they

could be performed at compile-time; if possible, perform an in-line

33

‘macro-like substitutions and normal optimization will take care of
it.

A much more important problem is when the subset-superset
definitions of types lead to multiple paths of implicit conversions,
or even circular paths. Should the types rectangular coordinates
and polar coordinates be subsets of each other? Why not? We don't
have a satisfactory answer to this. In this case it seems all
right, but in general it can lead to inefficient, inconsistent
programs.

One idea we were toying with was using a different notation
for referencing fields of a record. Suppose we have

complex = record rpart, ipart: real end;

var A: complex
A.rﬁart seems like a good notation. But A(rpart) would be more
uniform, yielding the same notation for functions, arrays and
records. After all, the above variable A can be thought of.as a
function with domain {rpart, ipart}. This would allow us to
iterate over fields of a record A using domain(A) just.as we do
with arrays. However, implementation becomes quite inefficient,
with much interpretation at runtime, since the fieid of a record
can have different types.

In concluding, we feel the features described are useful
and flexible, and together represent a significant step forward
in programming language design. But much work needs to be done to

incorporate them clearly and efficiently into a language.

References

(1]

(2]

{31

(41
(51

[8]
9]
[10]

11]

Dahl, 0.J. and C.A.R. Hoare, Hierarchical Program Structures.
Structured -Programming, Dahl, Dijkstra and Hoare, Academic
Press, 1972, 175-220.

Dahl, 0.J. and K. Nygaard, "Simula - an Algol-based
simulation language", CACM 9 (Sept 1966), 671-678.

bahl, 0.J., B. Myhrhaug, and K. Nygaard, "The Simula 67
Common Base Language", Norwegian Computing Centre,
Forskningsveien 1B, Oslo 3.

Gehani, N., Ph.D. Thesis, Cornell University, August 1975.

Hoare, C.A.R., "A Note on the for Statement", BIT 12 (1972),
334-341. : :
Hoare, C.A.R., "iints on programming language Aesian.
Invited Address, SIGACT/SIGPLAN symposium, Oct. 1973.

Jensen, K. and N. Wirth. PASCAL User Manual and Report.
Springer Verlag Lecture Notes in Computer Science 18,

© 1975 (2nd edition).

Morris, J.H., "Types are not sets". SIGPLAN Symposium on
Principles of Programming Languages, (Oct. 1973).

Orcanick, E.I. A Computer Primer for the MAD Language.
Univ. of Mich., Ann Arbor, Mich. 1961, and Computer Data
Proc. Center, Univ. of Houston, Houston, Texas 1961.

Wirth, N. The programming language Pascal. Acta Informatica 1,
1971, 35-63. .

Wulf, W.A. ALPHARD: Towards a language to support structured
programs, Dept. of Comp. Science, Carnegie-Mellon, Pittsburgh,
Pa. (April 1974).

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif

