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Abstract

The ordinary Singular Value Decomposition (SVD) is widely used in statistical and signal processing computation, both for the
insight it provides into the structure of a linear operator, and as a technique for reducing the computational word length required for least-
squares solutions and certain Hermitian eigensystem decompositions by roughly a factor of two, via computing directly on a data matrix,
rather than on the corresponding estimated correlation or covariance matrix. Although the SVD has long been utilized as a method of off-
line or non-real-time computation, parallel computing architectures for its implementation in near real time have begun to emerge.

The Generalized Singular Value Decomposition (GSVD) bears the same relationship to the computation of certain Hermitian general-
ized eigensystem decompositions that the ordinary SVD bears to the corresponding ordinary eigensystem decompositions.

This paper discusses methods for computing the GSVD via a sequence of more familiar computations and indicates the relation of the
GSVD to the MUSIC algorithm of R. Schmidt.
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Introduction

Numerical linear algebra forms a large part of the computational load for modern signal processing. Previous papers have discussed

the applications[ 1-2] and selected parallel implementations[ 1-8] for matrix-vector multiplication, matrix multiplication, orthogonal-
triangular factorization and least-squares solution, eigensystem solution, and singular value decomposition.

This paper considers the less familiar tasks of generalized eigensystem solution and computation of the generalized singular value
decomposition. In order to have a representative signal processing task to guide our computational considerations, we begin by examining a
representative classical and modern beamforming/direction finding techniques.

1. Beamforming

Classical beamforming

. *Classical delay-and-sum or phase-shift and sum beamforming beamforming provides both a baseline against which to compare more
recent techniques and a convenient context for introducing the signal propagation models used in beamforming. Figure 1 illustrates a signal
source located at position R, radiating a signal s(t). Receiving elements (antennas or acoustic transducers, as appropriate) are located at
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Figure 1. Propagation geometry for an arbitrary array.

This analysis will assume straight line propagation and equal attenuation to all array elements. The signal component at the nth
array element is

sp(t) =s(t- IR - Ry ll/c) (1-1)
It is desired to form

bty =X syt +iIR-Rpll/c)=T sp(t-Ty a-2)
n n

1)



IR - Ryll = (IR - Rp. R-RDY2 = (IRIZ - 2[R, Ry] + IR4ID1/2 (1-3)

From equa'(ion (1-3), it may be seen that a frequency-domain or phase-shift and sum beamformer requires primarily matrix-vector
multiplication for its implementation. For a broadband signal, S,(f) may be interpreted as the Fourier transform of the nth element output

at frequency f, and such a matrix-vector multiplication will be required at each resolved frequency. For a narrowband application, S(f)

may be replaced by the complex envelope of the nth element’s output. This complex envelope may be obtained from a quadrature demodu-
lator for each element output, with a common local oscillator used for all the quadrature demodulators.

Classical beamformers are relatively simple and robust with respect to assumptions about the signal and noise model, but they have
several well-known limitations: a) The array geometry and aperture shading force a tradeoff between resolution and sidelobe supression.
b) It is difficult to do any meaningful form of shading for an array with an irregular or time-variant geometry.

Adaptive beamformers provide for the cancellation of strong interfering signals. Typical recent approaches to adaptive beamforming
use the direct solution of a linearly constrained least-squares problem to provide a minimum variance distortionless-response estimate of the

arriving signal, with rapid adaptation(gl. However, adaptive interference cancellation per se does not provide improved spatial localization,
and it is therefore of interest to consider methods for improving angular resolution. Several such techniques have been derived by analogy
with corresponding spectral analysis methods such as the maximum likelihood, maximum entropy, and Pisarenko methods. The spectrum

analysis methods have been surveyed by Kay and Marple[ 10} and maximum-likelihood and maximum entropy methods have been applied to
beamforming/direction finding by McDonough[ 11 The eigenvector spectrum analysis method of Pisarenkol 12] has been extended and
applied to direction finding by Schmidt! 131, and others! 14-18] , and appears to offer better resolution than previous methods.

While classical beamforming provides no mechanism for utilizing prior knowledge about the signal and noise fields, the high resolu-
tion spectrum analysis methods and their beamforming analogs incorporate prior information concerning the signals, and Schmidt’s MUSIC
algorithm also incorporates prior information about the noise field.

The MUSIC direction finding method

The MUSIC method assumes that we have available estimates or measurements of two spatial covariance matrices: The total signal- '
plus-noise-plus-interference spatial covariance matrix, and the noise-plus-interference covariance matrix. The underlying signal model and
assumptions are:

X=Af+w
where

x = data vector = set of spatial observations (complex envelopes or one frequency bin)

{ = vector of source complex amplitudes

*A = phase shift matrix corresponding to the propagation geometry.

Ry=Ex EH = spatial covariance matrix for total array output

Rn =(IMEw v_vH = scaled noise covariance matrix

P=Eff H = source covariance matrix

EH denotes the Hermitian transpose of x, and E denotes statistical expectation.

It is assumed that:

"1) Pis positive definite

2) A isof full rank

3) The number of arriving signal wavefronts D, including multipaths, is less than the number of array elements M.

In this case, Schmidt has shown that the multiplicity N of the smallest generalized eigenvalue of Rye =ARNE is equal toM - D, and
that the corresponding generalized eigenvectors are orthogonal to the propagation phase shift vectors from the source arrival directions.

The procedure for MUSIC is then:
a) Collect data, estimate R, =E x 5“

b) Solve the generalized eigensystem R, e =ARN €

¢) Find the multiplicity N of the smallest generalized eigenvalue Amin and estimate the number of arriving signal wavefronts as
D=M-N
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d) Evaluate the so-called direction of arrival spectrum PMU(O)

Pay®)= 1/ 2 ey, a@)1%)

where the ey are an orthonormal basis for the generalized eigenvectors corresponding to the minimum generalized eigenvalues (the “noise
subspace™) and a(0) is the classical steering vector associated with a plane or spherical wave arriving from direction 6.

e) Pick b peaks of Ppy5(0), and identify 6y, . . ., 9]3 as the arrival directions. The arrival phase shift matrix can then be estimated as
A=(@(,),... |3(al.))

f) The source covariance matrix can be estimated as
-1 -1
p=@aHA)" AH R, -2 Ry AAHA)
The diagonal entries of P provide estimates of arrival power from the selected directions.

A performance comparison of MUSIC with other direction finding techniques using simulated datal13] reproduced in Figure 2
indicated substantial improvement in resolution compared to classical beamforming and the maximum likelihood method, without the bias
errors which can be observed in the maximum entropy method.
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Figure 2. Performance comparison of algorithms for direction finding.

Spatial covariance matrix estimation

In order to avoid measurement of the noise + interference only covariance matrix, some researchers have used a guess for Ry, typi-
cally assuming incoherent noise from element to element!17] However, this can provide false prior to the MUSIC algorithms, and can

induce a bias cn'or[”'ls] .

For this reason, it is preferable to estimate both R, and Ry from observed data. In an active echolocation system, Ry can be
estimated while not transmitting. In a passive system it may be desirable to estimate Ry using data from adjacent frequency bins.

In order to consider estimation of R,, we let x(t,m) denote the output (complex envelope or Fourier component) of the mth array
element at observation sample t, wherem=1..Mandt=1...T
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As an estimate of Rx. we use R(m]. m)=/T ¥ x(t,m}) x'(t,mz)
t=1

where the asterisk *, denotes complex conjugation.
If we define A(t,m) = (T~1/2) x*(t,m)

then l.lx = AHA. Do not confuse this matrix A with the arrival phase shift matrix used earlier in the paper. For the remainder of the paper,

A will denote a scaled, conjugated matrix of observed signal-plus-noise-plus-interference data. The corresponding noise-plus-interference
matrix data for use in estimating the spatial covariance of the noise-plus-interference will be denoted by B.

Computation Task
The preceding discussion leads to the following computational requirement:
a) find the smallest generalized eigenvalue of AHA e=A BHB e

b) find an orthonormal basis for generalized eigenvectors corresponding to this minimum generalized eigenvalue. In Schmidt’s
notation this orthonormal basis is used to form the columns of a matrix called Ey;, and Pyy@) =1 /(3“(0) ENE;} a(0)).

If we explicity multiply to form AHA = ﬁx and BHB = le, then the computation is called a generalized eigensystem — more

specifically a Hermitian symmetric generalized eigensystem. If we would like to perform the computation using A and B directly, we have
a generalized singular value problem.

Since high speed parallel implementations of the computation may force the use of a short computation word length, it is desirable
to avoid the potential loss of accuracy in the explicit computation of ABA and BHB.

For an ordinary eigensystem of the form AHA € =e, it is well known that one can utilize the singular value decomposition
A=US VH, where U and V are unitary matrices and S is diagonal. The columns of V are an orthonormal set of eigenvectors of AHA, and
the squares of the diagonal entries of S are the eigenvalues of AHA, since the AHA = v sHyHysvH = vs2vH

Numerically stable methods for computing the singular value decomposition are well known, and a substantial number of approaches

to its parallel computation are now known[S'Bl. The remainder of this paper deals with the extension of these techniques to the general-
ized singular value decomposition in the form needed for the MUSIC algorithm.

In section 2 we review the generalized singular value decomposition. A stable algorithm for computing A.. and Ey is then given
in section 3. Some concluding remarks are offered in section 4.

. _2. The'generalized singular value decomposition

The approach that we have taken to the multiple signal classification problem leads to a generalized eigenproblem of the form

AHag=BHp, . (eR))
This is referred to as the generalized singular value problem because it involves aspects of the (ordinary) singular value problem

AHax=xx A eCMXn (2-2)
and the generalized eigenvalue problem

Gx =AHx G, HeCcxn (23)

Stable methods for (2-2) avoid the formation of AHA because cross products can destroy valuable information. For exam ple, if

1 1
A= |{e 0 rank (A) =2
0 Ve

where ¢ is the machine precision, then the completed version of AHA, which we designate by ﬂZ[AHA], satisfies
r[AHA) = [,‘ }] ,

a singular matrix. For a given machine precision, cross-product techniques (because they square condition) narrow the class of solvable
problems. This can be an acute problem in many real-time signal processing situations where speed, size, weight, and power constraints may
force the use of a short word length. See [19, pp. 142ff] for a discussion of the numerical issues.

4)



Stable methods for (2-3) avoid the formation of H-!. For example, attempts to convert the symmetric generalized eigensystem
Gy = XHX to the standard eigenproblem (Hl"G)x =\ are prone to serious inaccuracies since H!Gis generally nonsymmetric and the
resulting eigensystem can be sensitive to perturbations. See [19, pp. 251-266, 313-321].

If H is ill-conditioned, then numerical difficulties may be encountered even with symmetric reductions such as
(H-l/2 GH"/Z) H‘/2_1= )‘Hl./zl
or
eyl LHy =aHy
where
H= I.Li'i .
Our experience with singular value and generalized eigenvalue problems suggests two things if we are to stably deal with (2-1):
— avoid the cross products of AHA and BHB
— avoid inverses that involve B such as (BHB)’].
This turns out to be possible by carefully exploiting the generalized singular value decomposition.
Theorem 2.1 tGSVD)
1f Ae E™*M (m > n) and Be C™X" (p > n) are given, then there exist unitary Uy e C™*™ and Ug e CPXD and nonsingular
X=[xy,...X,] xjeCh
such that _
Ul AX =D, =diag(c). ... ¢p)
Ul BX =Dg =diag (s, ..., sp)
ltcanbeassnmedthato<cl<‘,...,< cpands)>,...,>sp>owithe? +s2=1.
Proof

See [20]. The theorem also holds if p < n but since we are not interested in this case, it has been suppressed. 0

If we set B =1 in the GSVD then UHX = Dy

and so
ull aug=ullxpgh =p,pgl==.
This is just the “ordinary” singular value decomposition (SVD). See [19].
The GSVD displays quantities that are very important to us in “generalized MUSIC” algorithm. Since
XH@aHA) X = diag (c3,. . ., c2) e RPXD
and

xHBHB) X = diag (s, .. ., s2) e RTXD

it follows that

2
iYi

Hp x. =
ATAX=c
Hp 5. =52
BYB X =s{yi
where
My l=y=iy),. ..yl
Thus, if

yi=ci/si s:#0



then
A"A;}s u? BHBY; .
This is why th; 5, (the columns of X) are referred to as “generalized singular vectors” and the uj as “‘generalized singular values™.
Given our remarks earlier, let us evaluate the following procedure for computing generalized singular values and vectors:
(a) Compute the QR factorization
B=QR QHg = L, R e C™XM ypper triangular.
(b) Solve A\R=A  for A} e CX,
(c) Compute the SVD
UH AV =disg(uy,.. . ny) U,V unitary, ;>0
(d) Solve RX=V  forX =[x,..., X,]
Note that in principle this procedure should work so long as B has full rank:
xHHp)x = BR-IVHEBR-1V)=vH QHQ v =1
xH@aHAX = ARTIVH@AR 1Y) = VH@AHA)V = diag D).

Unfortunately, if B is ill-conditioned, then R will be ill-conditioned and a totally inaccurate Aj canresult. A way around this is given in
the next section.

3. An algorithmn”
A stable rendering of the GSVD can be had by the following two-step procedure:
_Sle_pl. Compute the SVD
- () (3) =
where X = diag (01, . . ., o), Z e C™*M is unitary, and Q € C™X™ and Q, ¢ CPX" satisfy Q‘]{Ql + Q?Qz =1,
M. Compute unitary Uy, U, and V such that
‘ ullQ) v=disg(c,....cp >0
UH Q; V=diag sy, .- 5p) 5>0
Step3. SetX=[x;...x,] =221V

The *“double” SVD computed in Step 2 is referred to as the *‘CS decomposition” of the pair (Qy, Q7). The stable computation of these
SVD’s is nontrivial; see [21] .

It is easy to show using Qll’l Q+ Q;’ Q, =1, that
2

Vc:"+s.=l c=1,...,n
1 1
Moreover,
Ul ax=utlQ zztx = Ul Qv =diag (e, .., cp)

Up BX = UFQ,2ZhX = Ul Qv = diag (s, ., sp).
Thus, the method indeed produces the GSVD. The generalized singular values are given by the quotients
pi=ci/si=ciA/l—ci2 Ci¢1

Now in our beamforming application, we do not need the “full” GSVD. Instead, for some designated subset of generalized singular
values {pil, -+ «Hj } we need orthonormal vectors w;, . . ., Wy such that
n a4

Span {w}, ... w,} =Span {5i1' <+ v Xin}
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This *lesser aim" enables us to simplify Steps 2 and 3 in the above procedure as follows:

Step 2’ Compute the SVD

o, v=digccy,....cp G>o
Step3' Form X~1 = VH 5 zH ¢ "XN and compute a unitary W such that
xlw=R
®
is upper triangular.

Note that this renders a QR factorization of the matrix of generalized singular vectors:
X =wr!
Since R is upper triangular, it follows that
Span{ltl,...,l(j]=Span{!l,...,1vj) ji=1,..,n
where
X=Ix},....%,]
and
Welw. o Wyl

Thus, if the c; are ordered in Step 2’ so that the space associated with

K= cip1-¢2 i=1,...k

is of interest, then Wis e Wi form the desired orthonormal basis. We mention that when computing SVD’s such as the one in Step 2,
it is always possible to order the singular values in any chosen fashion.
Regarding Step 3', the computation of W so (VH z ZH)W is upper triangular can be accomplished using Givens rotations:
T=vHgzZH
i ~Fori=n,...2
.

rForj=1,...i-1

Determine ¢ € R and s e C such that c2 + ISI2 =1and

CGitpjep) [ © ) =©°
-8 c

ForK=1,..,i
L L L ('kjtkjﬂ)::(tkjtk,jﬂ)(‘: _S>

-S c
This algorithm can be adapted to systolic array computation in the spirit of (3,221,
4. Comments

We close with some remarks concerned with the implementation of Steps 1, 2' and 3'. To begin with, rounding crrors must be dealt

N - ]
with when attempting to deduce the multiplicity of the minimum generalized singular value. Let ¢y, ..., ¢ be the computed singular
values obtained in Step 2'. Assume that

1<, .<Cp .
If € is the machine precision (or a small multiple thereof), and k is the largest integer such that

01<6%, .. <<yl +e)<Cpy < =,...,<Cp

then it is reasonable to regard

PS a a2
B;=ciA1-¢f i=1,...,k
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as repeated generalized singular values.

Another import'ant ?spect of our algorithm concerns its implementation on systolic arrays. Arrays currently exist for computing the
SVD and the QR factorization and for matrix multiplication. Our algorithm requires all of these operations. To avoid costly interfacing
between these arrays, we are in the process of devising a single array that is capable of performing all these basic matrix computations.

Ox.\c difficulty that arises in this context concerns the ordering of the singular values in Step 2'. To date, the systolic SVD algorithms
prod.uce smgu}ar values that are more or less randomly ordered. An open question to which we are devoting considerable time is how to
specify prescribed subsets of generalized singular values. Detecting multiplicities, for example, is a difficult thing to do in a *“nearest
neighbor” architecture.
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