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1. INTRODUCTION

As pointed out by White and Hultduist [1965] the construction of confounding
plans for mixed factorials breaks down when the Galois field approach is taken.
They generalized this approach to mixed factorials by presenting a techniqﬁé
of combining.elements from distinct prime fields. Raktoe [1968] presented a
new and equivalent methbd‘ of combining elements from k istinct prime fields
and in a recent paper [1969] he extended this method to k finite field; , not
necessarily associated with distinct primés but these may bé prime powered.

‘ White and Hultquist [1965] in solving the confeunding problem in mixéd factorials
did not follow the exact same approach as done in the symmetrical fac'toriai .case,
as for example mentioned in Kempthorne [1952]. TFor a list of references con= °
cerning the problem of confounding in mixed factorials or symmetrical factorials,

the reader is referred to «hite and Hultquist's paper.
The aim of this paper is:
(i) To discuss the construction of confounding plans for the mixed

factorial using the classical incomplete block design approach.

(ii) To present some enumeration results on the number of confounding

plans for given block sizes.

(1i1) To generalize the construction of lattice designs to the "mixed

lattice" case in the sense of Raktoe [1967].

‘ * On leave from the Department of Mathematics and Statistics, University of Guelph,
Guelph, Ontario, Canada.



2. FPRELIMINARIES AND BACKGROUND

We adopt the notation and results obtained by Raktoe [1969]. In summarized

form these are:

(i) GF(sl=p§?),GF(32=pge),'°',GF(sk=p§f) are distinct prime or prime powered

fields, in the sense that the pj's are distinct.
(i1) “Pl(x),ge(x),°°°,Pk(x) are the prime irreducible polynomials used in con-

structing GF(sl),GF(se),'°',GF(sk) respectively.

k
(iii) R(p) is the commutative ring of integers modulus p = 'Hlpj .
J:

o ' K -1
(iv) I(v.) is the ideal in R(p) generated by b, = 1 + p.(_H,p.-p.> ,
. d J dMEF T T
§=1,2,+++,k .
(v) . Pg(x) = (bj)(Pj(x)) is the polynomial over I(bj) corresponding to Pj(x),

J=1,2,° ",k .

(vi) R(x,p) is thé ring of polynomials over R(p). -
(vii) 'R(x,bj) C:R(x,p),“is the ring of polynomials over I(bj), j=1,2,-+*,k .
(viii) R(x,bj,Pg(x)) is the residue class ring of R(x,bj) modulus Pg(x), |
§=1,2,++,k .
(ix) R(x,p,Pi(x),P%(x),‘",Pﬁ(x)) is the residue class ring of R(x,p) modulus
¥

Pi(x), modulus Pg(x), +++, modulus Pﬁ(x).

(x) R(x,p,Pi"(x),P"z*(x),'“,Pﬁ(x)) = jz P R(x,bj,P'S:‘(x)).

(xi) Definition: by € GF(sj), Hiw € GF(sj*) and r € R(x,p,Pf(x),"',Pﬁ(x))
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3F I u g = [0)0)] + [0 ()]

by bgs = D05 (DT = T(os) (uyy)] = 0
ro4ug o= ore [(bj)(uj)]
rospy o= T [(bj)(uj)] .

(1) RGP BE(x), o B0)) = 5 CF(s) -

(xiii) G is the multiplicative group consisting of elements in R(x,p,P‘l’_‘(x),--',

Pﬂ'(x)) , which have multiplicative inverses.

LY

(xiv) M = {Z"=(le)212:'°':zln&: 221’222’.."22m3’ i) Zkl’ZKE’...’kak)’

Zyy € R(x,p,Pf(x);“,Pi’;(x)), i=l,2,-~,mj, j=1,2,+-+,k}, is the module

over R(X,p,Pi(X),"',Pﬁ(X)) .

(xv) D¢ = {z*' = z¥ coe, gl gH_eee g

o 3 * 3% ves %*
(le) 100" ’Zlm{ 25722507 ;nge: Tt i Ppos kmk)’

z?i € R(x,bé,Pg(x)), i=l,2,°",mj, j=1,2,*++,k} is the submodule of M of

k
order O (= it sn.x‘> .
j=1J

(xvi) E¥* = {y*' = (Y§11V§2)"';Yfml; YSI:Y§2)"')y3ﬁ2) ttty Yﬁl)yﬁkzi'°°:Y§ﬁk)#O')
v e R(x,bj.,?’;?(x)) where y*' represents the class py*',p € G}, is a

m‘ m
(s, *-1) (s,'2-1)
11 1z
subset of T of order B (=z IT (s

o (sy-1) (Sig'l)
m, (1 :121 .’lt)
t-
(55 1)

— ), where (il,ie,°",it) is a subset of (1,2,**",k).
i,



We are now ready to proceed with the confounding problem in mixed factorials,

3. CONFOUNDING PLANS IN MIXED FACTORIALS
Consider the 'HIS?J mixed factorial , i.e. a factorial in which m'j factors
J:
are at Sj levels, these levels being marys of the field GF(sj), then we know that:

—_ | - e s o PP PR o0 e
(a) T={u'= (ull’ulZ’ ’ulml_’ !,1121)1122: ’u2mg’ ) ul;l’“kZ’ ’u'kmk)’

ug; € GF(sJ.), i=l,2,-",mj, j=1,2,+++,k}, is the classical way of writing
A k

out the « (= _Hls?ﬂ) treatment combinations in a mixed factorial.
j= . ) .

= | - e o o0 c oo oo e { 1
(b) E = {V —.(Vll’V12’A :Vlmlg Vo112 Vops ;V2m2) » Vi Vkoo )Vkmk) £ O,

VJ.i € GF(SJ)'§uch that v3 represents the calss ij., pj being a non-zero

[}

mark of GF(sj)}, is the classical representation of the B effects in a

mixed factorial.

k \ .
) mj)-tuples it can be easily shown

Under the operatibn'of addition of (_ X
J_

that:

(c) T is an Abelian group of order @ and in fact T = =
J:

1 EG(mj,sj), where

: EG(mj,sj) denotes the finite Euclidean geometry of dimension mj over

GF(SJ.), 1,2,k .

(d) E is a concrete representation of the Abelian group T of order & and in

.k , ‘
fact E = I o PG(mj-l,sj), where PG(mj-l,sj) denotes the finite projective
J=1

geometry of dimension (mj—l) over GF(sj), §=1,2,**,k .

The following theorem can be established easily:
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THEOREM 3.1. T and T* are isomorphic; also E and E* are isomorphic (EE that

any theorem derived for T and E have equivalent counterparts in T* and E*

respectively and vice-versa).

In the following we will henceforth disregard the cumbersome representations
T and E and we will work with T* and E¥* since all operations with the elements

of T# and E¥* can be carried out within the module E* or the larger module M.

The concept of generalized interaction for the mixed factorial is an important
one and we will define it as follows: If y®' and y¥**' are two elements of E¥* then

the generalized interaction of y*' and y™' is the set B:
(e) B = {(p¥y*' + pi#y¥#*T) % and o*¥* are elements of G} .

Another item especially useful in confounding is the concept of "level of
an effect". First of all,the levels of m, factors are elements of R(x,bj,Pﬁ(x)),
j=1,2,***,k. Now consider a set of v factors with levels in R(x,bi Ry (x)),

. 1 1

R(x,big,Pié(x)), ey R(x,biv,Piv(x)) respectively, then the product of thege

v
v factors will be defined to have levels in the ring I o R(x,bi ,Pf (x)).
ih =1 h h

The g'" level of an effect (= element of E*) is the following set treatment

combinations (= points of T*):

(£) yg' = {z*' such that y*' . z* = g, g an element of the direct sum of the
R(x,bj,Pg(x))'s corresponding to factors present in y*'}., Here y*' « z* ig
ordinary vector multiplication with prime denoting transpose.

k
Now, following Federer and Raktoe [1965] and Raktoe [1967] let I s?’ =
J=1

k T, k my-r,) k o
RUE-M ) . ( I 's.¢ ") denote the incomplete block design with I s.? treatment
j=14 j=14d j=14J
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- « — it
combinations in ( I s?3> blocks of T s™7Ts plots each, where 0 S r, s m,,
j=1 J j=1d = e g9

with not all rj‘s simultaneously equal to O or equal to mj, j=1,2,***,k. The
construction of such a design is equivalent to exhibiting ry generators (or
independent points) from EY, 1,

generators from E;, where E? = {0';Oé:"'

generators from EX, etc., and finally r

2 k

' ! cer O #*
’Oj-l’yj’oj+l’ {O } € E¥* . The
treatment combinations appearing in the blocks are then found considering com-
binations of levels of these generators. Before proceeding further it is a

convenient place now to go through a complete example.

L, A COMPLETE AND NON-TRIVIAL EXAMPLE

Consider the 32 x 43 mixed factorial, i.e. with 2 factors at 3 levels and

3 factors at 4 levels, then we have, according to sections 2 and 3:
(1) GF(3) and GF(2%) are the two distinct fields.

(i1) Pl(x) = x+1 and Pé(x) = ¥°+x+1 are the two irreducible polynomials used

to construct GF(3) = {0,1,2} and GF(2%)

{0,1,x,x+1} .

(iii) R(p) = R(6) = {0,1,2,3,4,5} .

(iv) I(by) = I(k) = {0,4,2} and I(b,) = I(3) = {0,3} .
(v) Pﬁ(x) = bxth, PE(x) = 3 +3x+3
(vi) R(x,6) = {anxn + an_lx.:n-l toeer taxtag, a e R(6)]} .
(1) ROxH) - A 4y s g, 4 € 10)) ama
R(x,3) = {7 + £ e oo v rxs £y, £, € I(3)} . Note that

R(x,4) < R(x,6) and also R(x,3) < R(x,6)} .



(viii) R(x,k,kx+k) = {0,4,2}, R(X,3,X2+X+l) = {0,3,3x%,3x+3} .
(ix) R(x,6,ux+u,3x2+3x+3) = {0,1,2,3,4,5,3x, 3x+1, 3x+2, 3x+3, 3x+4, 3x+5} .
(x) R(x,6,bx+k,3:2+3x+3) = R(x,4,bxth ) DR(x,3,85+x+1) .

(xi) If u e GF(3) and u* € GF(2%) and r € R(x,6,4x+h,3x%+3x+3) then the
‘Arules of additions and multiplications are:
u +ur =[(4)(u)] + [(3)(u*)]
u = [(%)(w)] - [(3)(u°)] =0
r ot L)@, +ur =+ [(3) ()]
re (M), r e ur=r - [(3)(u*)]..

r +u

LI}
1

r * u
(xii) Hence: R(x,6,kx+h,3x2+3x+3) = GF(3)@) aF(22) .
(xiii) G = {elements with multiplicative inverses in R(x,6,4x+h,3:%+3x+3)} .

{xiv): M= {z' = (le’ziZ’Z2l’Z22’Z23)’ 255 € R(x,6,kx+4,35%+3x+3)} .

(XV) ™ = {z%' = € R(X,)-#,LHHJ-F), Z2i € R(X,3,3X2+3X+3)}.

T ¢ s
(23,240,281, 280, 283)5 293
T is of order 3° x 42 = 576.
(xvi) B = {y*' = (y],9§5,98),95,,9%3) £ O', vi; € R(x, 4, hxth) and

ygi € R(x,3,3x2+3x+3); y*' represents py"-", p € G}; Note that E** is Of,

(32-1) . (43-1) . (3P-1)(43-1) _
(3-1) * (k-1) * G-L)(F-1) . 109.

order

(a) T={u'= (ull,ule,uzl,uzz,u23), w, € GF(3), i=1,2, wuy,.€ GF(22),
i'=1,2,3} . T is of order 3% x 4 = 576 .
(b) E = {v'= (v ll,Viz,Vél,Vég,Vé3) FO', vy; € GF(3), v,y € GF(22), such
|
that v) = (v Vi 12) represents the class by (v ’vl2) and vj = (v Vo1 Vops 23)

represents the class p, (v2l,v22,v23) with p) € GF(3) and o, ¢ GF(22)} -

E is of order 109.



(c) T is an Abelian group of order 576 under addition of 5-tuples and

T = EG(2,3) D) EG(3,2%).

(d) E is a concrete representation of T such that E = PG(1,3) 2 PG(2,22).

[

Theorem 3.1: T is isomorphic to T* and E is isomorphic to E*,

(e) B = {(pry*' + pxywet)  yit and y#* e E¥, p* and p** e G}, where y*' and

y¥%' and G are as above.

(£) wyi' = {z%' > y* . z*' = g}, for example: (K,4,3,3,3)5 = {e*' 3 hafy +

he¥y + 328y + 3z, + 328, = 5}

Consider the incompleie block design 3 - 43 = (3T1.472) . (32’r1.h3’r2),
i.e. a design consistiné of (371.4%2) plocks of (32—r1.43-r2) plots each with
0<r) s2and 08 r; = 3 excluding the cases(rl,re) = (0,0) and (rl,re) = (2,3).
Needless ‘to’ say that there are many possibilities here, e.g. 3° - 4% = (3:4%) -(3), '

3 e b% = (U%) . (3F), F - 4% = (3:4) « (3:4%), etc. To indicate how to exhibit
the generators for the design 3° .« 4° - (3+k%) - (3-&2),'we see that in this

instance we must confound 1 generator from E¥ = {yfl,yﬁé,o,o,o) #0'} and 1

1

of order 21 it follows that 84 choices are available in exhibiting such a pair

H = #* oy % ' i Lo ¥ 3
generator from EJ {(O,O,yEl,ygg,y§3) #0'}. since Ef is of order 4 and E} is

of generators. The block constituents are found by considering combinations of
levels (21,22) of generators, 4, from R(x;h,hx+h) and 4, féom R(x,3,%°+x+1) and
then solving for the treatmentvcombinations z#'1s (or equivalently by consider-
ing a level 4 of the resulting interaction of the generators, # € R(x,6,4x+:,

3x2+3x+3), and then solving for the treatment combinations). Thus, for example,
if a pair of generators was [(4,4,0,0,0),(0,0,3x,3x+3)], then the block consti-

tuents are found most easily by considering the levels of the interaction
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(4,4, 3x,3x+3), i.e. (4,4,3x,3x+3) ,, where &:¢ R(x,6,4%x+4,3x%+3x+3). Each
level would then represent the treatment combinations in a block, thus achiev-

ing the required 12 blocks.

In the next section we present some enumeration results on the number of

possible confounding schemes.

5. ENUMERATION OF CONFOUNDING SCHEMES

For the symmetrical s factorial, let EG(m,s) and PG(m-1,s) be the corres-
ponding finite Euclidean and finite projective geometries, then an incomplete
block design consisting of s¥ blocks of s™ % plots each, requires the exhibition
of an (r-l)-fiat of PG(m-1,s) (fogﬂégémgié*See Raktoe [1967]). We know (e.g.
see Mann [1949]) that the number of (;;i)-flats in PG(m-1,s) is given by the

formula:

- : _ §l+s+sz+...+s(m°1)) coene (S(r-l)+sz+,,,+s(m-l))
(g) ? ((r-l),(m-l),S) = (1+s+..-+s(r’l)) . (S(r-2)+s(r-1))s(r_1?

kK n k. k onor
Now, going back to our setting, let HlsjJ = (.ﬂlSJJ>. Is,? 4) denote
j: J= :

the incomplete block design, then we must ‘¢hoose from each Eg an (rj-l)-flat
since E¥ is isomorphic to PG(mﬁil;éi);*j=1,2,~-*,k. From (g) it follows then,
that we have precisely the following number of possible selections or confound-

ing schemes:

k

(1) 7o (0, @ym0),8,)
=1
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Hence we have generalized the construction of confounding plans from tﬁﬁi,
symmetrical factorial to the mixed factorial case, the first one being a
special case now. The important contribution of the results in section 2 is
that the Galois field approach used in the construction of symmetrical confounded
designs has been generalized to the mixed factorial case. The contribution of
the ideas of section 3 allows finite geometric results used in symmetrical fac-
torials to be generalized to mixed f§ct$rials. In other words, we have one

unified theory.

6. MIXED LATTICE DESIGNS

The ideas in this section will be highly correlated with the results of
a paper by Raktoe [1967} and Federer and Raktoe [1965]. For the s symmetrical
factorial the treatment combinations when identified with a set of v = s
varieties or_tgegtments lead to designs known in the literature as pseudo-
facto?iéibog‘ié£tiéé désigns. Eliéindtion-of‘block heterogeneity can be com-

bined with these designs to produce in general f-restrictional lattices. Using

the notation of Raktoe [1967], we may define the f-restrictional lattice design

for the symmetric sm case by writing sT = .Hlsri, where X r,=m with the
1= o i=1

to Z-restrictions, £ s m. Since in any f{-restrictional s =-'Hlsr‘ lattice
i=

design the pseudo-effects have no meaning we adopt the rule that with any such
design we will associate that PG(m-1,s) such that (s7-1)/(s-1) and (s* t-1)/(s-1),
i=1,2,+++,4, are relatively prime. Thus for the 2* = 2% . 2% lattice square we
would use the PG(1,2%) and not the PG(3,2). A balanced f-restrictional sym-

metrical lattice design is a minimal set of confounding schemes such that each



.

of theu(smel)/(s-l) pseudo-effects is confounded an equal number of times in
each of the #-restrictions. Raktoe [1967] has shown that for balance we need
(s™-1)/ (s-1) arrangements generated by a cyclic collineation of order (s'=1)/(s-1).
Let us now generalize the above concepts to the mixed lattice designs.

k k k r A

let I8 =(T1 s?31> ( s, 52) e oot IT's, z) denote’ the ‘f-restrictional

j=1 J J=1 J —l J J=1 J
mixed lattice design, where Z rji = mj, j=1,2,+++,k, then from the above and

, i=1 )
from section 5, we know that we must confound a k-tuple. of flats ((rli-l)-flat,

(rgi-l)-flat, cee, (rki-l)-falt) in the i*! restriction, such that:

(1) ' the (rji—l)-flat is in E:*]?, i=1,2,%°*,4, j=1,2,°°",k.
(ii) the 4-tuple of flats ((rjl-l)-flat, (rjg—l)-flat, v, (rJ. L-l)-flat)
exhaust Eg, J=1,2,°**,k.

These two conditions together imply then the fact that we have exhausted

k
J=1 J

Now, a balanced 4-restrictional lattice with respect to every point of Eg

requires (s?’-l)/(sj-l) confounding schemes given by a collineation in Eg of
order (s?j-l)/(sj-l), j=1,2,+++,k. Using these collineations we may construct
k . ’ -
.Hl(s?J-l)/(sj-l) confounding schemes for our mixed 4~restrictional lattice

design. This set of confounding schemes will be "balanced" in the sense that

each point of E§ will be confounded A, times in the i'" restriction, where

Ji
Ty £ om, .
AJi = [(Sj ‘l)/(sj‘l)} - [ H'(Sh 'l)/(sh“l)]) i=1,2,<*,4, j=1,2,***,k, and
J
k
all the remaining points of E*, (i.e. E# - _UlEg) will be confounded
J:
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k .
.Hl(s§3‘-l)/(sj-l) in the i'" restriction. Note that these remaining points
J= ,

of E* are precisely the generalized inféractions of points from the components
of the k-tuple of flats ((rli-l)-flat,‘(réi-l)-flat, cen, (rki—l)-flat>,
i=1,2,%, 4.
To illustrate the results of thié gééfion let us pursue the example initiated
'in section 4. Consider the two-restrictional mixed, lattice design 3° x 4° =
(3 x4) « (3 x4%), i.e. 576 treatment combinations to be allocated to a design
with 12 rows and 48 columns. Here r..=1, r

11 21 12
confound a 2-tuple of flats, namely, a <(rll-l)=0—flat,

=1, r,,=1, r22¥2 and £=2. We must

(r21—1)=0—f1at) in the

1%t restriction and a 2-tuple of flats ((r12-1)=o-f1at, (r22-l)=l-flat> in the
second restriction, where the (rji-l)-flat is in Eg, i=1,2 and j=1,2. The two

collineations involved in this instance are obtained frem Raktoe's [1967] paper,

i.e,:

_ 0 3 0

0O 4 : .
) ) in Ef and 0 0 3 in E§

3x 3x 3x

The first one is of order 4 and the second one of order 21. Hence we may con-

“struct 84 confounding schemes, such that each point of Ef is confounded All =21

times in the first restriction and A, , = 21 times in the second restriction,

12

also each point of Eg is confounded h21 = 4 times in the first restriction and

h22 = 20 times in the second restriction; finally every point of (E¥ - Ef U Eg)
is confounded once in the first restriction and five times in the second restric-~

tion.

From the above developments we see that the E-restr%gyional lattice design
of the type s* as discussed by Raktoe [1967] hes been extended to the mixed case.
One additional problem still remains concerning mixed lattices, namely, the ex-
tension of the analysis within the framework of the paper by Federer and Raktoe

[1965]. Tnis problem is currently under study by the authors.
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