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ABSTRACT

Electron Microscopes are sensitive to noise of all kinds : Alternating Current

(AC) Magnetic Fields, acoustic disturbances, temperature fluctuations and/or

disturbances caused by rapid air flow in clean rooms. Therefore, existing and

potential room locations need quick and reliable characterization methods for

all these parameters. AC noise, in particular, is characterized today by either

specialized instruments and handheld meters dedicated to the purpose. Our

aim is to find a suitable substitute for these instruments by making an appli-

cation that uses the in-built magnetometer in smartphones to measure electro-

magnetic fields.

Our research is motivated by the fact that smartphones with considerable

computing ability have become ubiquitous enough that they become a viable

alternative to some dedicated characterization instruments. Furthermore, a

method to characterize these fields can also extend to other applications, such

as finding and mapping electrical faults, and touchless 3-D interaction.

We will discuss the development process of an iPhone application for quick

analysis and recording of electromagnetic noise in equipment rooms for the in-

stallation of sensitive equipment. This will cover the suitability of the hardware

to the purpose, the sensitivity of the hardware to our measurement criteria, our

methods for data analysis and the associated software visualization techniques,

and comparison to existing methods. Finally, we cover the limitations and po-

tential applications of the software developed.
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CHAPTER 1

INTRODUCTION & MOTIVATION

With the growth of electron microscopes in size and sensitivity, there has

been a concurrent growth in the requirements for the laboratories that house

them [1]. Though there is considerable expertise and knowledge in the con-

struction industry in building quiet rooms and many microscope facilities have

taken advantage of this knowledge, the impact of the residual noise sources

such as AC fields is varying and requires rapid characterization at any given

point in time. This need is currently served by dedicated handheld meters,

which, though fairly widespread, may still not be the most convenient or most

ubiquitous devices available on hand, so our motivation is to find a method

that will allow a more convenient means of measuring magnetic fields using

widespread technology. The motivation for our research is to find a convenient,

cost-effective and easy-to-use alternative to the dedicated handheld field meters

that are used to measure noise in microscope rooms. Electron Microscopes sense

noise of all kinds [2] which means they need quick and reliable characterization

methods.

Smartphones today possess considerable computing ability, and are ubiqui-

tous enough that they become a plausible alternative to some dedicated scien-

tific instruments. The focus of our research is to adapt iPhones as utilizable AC

Field Meters using the Hall probes built into them for their magnetometers.

We attempt to develop such a method using an iPhone, which can then also

be extended to other applications (A screenshot of our current application is

1



Figure 1.1: A snapshot of our iPhone application in operation. Each color of
line corresponds to readings from one of the three axes - x, y and z - from the
magnetometer.

shown in Figure 1.1).

We will cover the science of the signal processing behind the application

in Chapter 2, where we will also discuss the framework of software that makes

our application possible. Having established our motivation and scientific back-

ground, we shall cover our experimental process and the building of the appli-

cation in Chapter 3, and finally discuss the outcomes of our process, the per-

formance of the application and our results in Chapter 4, concluding with our

summary in Chapter 5.
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CHAPTER 2

THEORETICAL BACKGROUND

In this chapter, we shall cover some of the fundamentals behind the scientific

methods we use in the application.

2.1 Why is magnetic noise important in electron microscopy ?

Electron microscopes are sensitive to electromagnetic noise. Electromagnetic

interference can cause beam deflections in both the scanning system and the

spectrometer [2]. The most common sources of AC electromagnetic interference

are unbalanced electrical loads. These are illustrated by Ampere’s law. Am-

pere’s Law states that for any closed loop path, the sum of the length elements

times the magnetic field in the direction of the length element is equal to the

permeability times the electric current enclosed in the loop.∮
C

B · dl = µ0I (2.1)

B × 2πr = µ0I (2.2)

B =
(
µ0

2πr

)
I (2.3)

Here, B is the electromagnetic field, I is the current in the conductor and r

is the distance from the conductor. The sensitivity of electron microscopes is

illustrated by the following ground rules : A 0.3 mG r.m.s. field can be detected

in a 0.3-nm Scanning Transmission Electron Microscope (STEM) image. Less

than 0.2 mG r.m.s is needed for clean 0.2-nm STEM images. A single metre of

separation from a straight wire carrying just 500 µA of current, causes a mag-
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netic field of about 1 mG. This is enough to degrade a 0.3-nm resolution STEM

performance.

Ideally, this should not mean that flicking a switch in the room should de-

grade all STEM images as the fields from the supply and return currents should

cancel each other. It is only when some of the return current finds another path

to ground (for instance, through a wiring mistake in the circuit) that a net field

will be generated. This is the case for a common 2-phase wiring mistake where

the neutral and the ground lines are accidentally bonded at conduit junctions

or at the load, instead of only at the source. These mistakes are easy to fix, but

can be difficult to isolate. The same thing can occur as an analogous problem

for three-phase electrical supplies.

2.1.1 The need for a handheld field meter

There are thousands of Scanning Electron Microscopes (SEMs) sold each year,

and not each and every one of them is set up in a perfectly electromagnetically

shielded environment. In addition, there may simply be factors that had not

come under the room constructor’s purview at the time of construction, and

are influencing the electromagnetic fields in the room at the time of measure-

ment [1]. As such, the microscopist can always find use for an instrument to

characterize the field in the room at any given time.

The current de facto instruments used to characterize electromagnetic fields

are handheld low frequency gauss meters with 30Hz - 300 Hz bandwidth and

0.1 mG r.m.s. sensitivity. These meters are widespread in use. However, as is

the case with cameras - The best camera to capture any given moment is the
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one you have on your person - so is the case with field meters. The number

of users of field meters, while large, is still lower than the number of users of

smartphones within the scientific community. This makes smartphones a viable

option to turn into instruments of use to us. Although it is not designed to detect

AC fields, with a little bit of clever signal processing and patience, we can turn

a smartphone into a fairly capable field meter.

2.2 Hall probes

The magnetometer in an iPhone is a Hall probe [3]. One of the primary reasons

for our selection of the iPhone as the first instrument to test our theory was

that the hardware is fairly standardized across various models, and thus less

divergent in results for the same environment. The working methodology of

Hall probes and the specifications of the models in the iPhones are discussed

forthwith.

2.2.1 Theoretical background

Hall effect sensors are transducers that vary their output voltage in response to a

magnetic field. They are used for proximity switching, positioning, speed detec-

tion, and current sensing applications. Electricity carried through a conductor

will produce a magnetic field that varies with current, and a Hall sensor can be

used to measure the current without interrupting the circuit [4]. Typically, the

sensor is integrated with a wound core or permanent magnet that surrounds the

conductor to be measured. In its simplest form, the sensor operates as an analog
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transducer, directly returning a voltage. With a known magnetic field, its dis-

tance from the Hall plate can be determined. Using groups of sensors, the rela-

tive position of the magnet can be deduced. The Hall effect is the production of

a voltage difference (the Hall voltage) across an electrical conductor, transverse

to an electric current in the conductor and a magnetic field perpendicular to the

current, and it is seen when a conductor is passed through a uniform magnetic

field [5].

2.2.2 Principle and Construction

When electrons (or holes) move in a conducting plate that is immersed in a

magnetic field, they experience a Lorentz force.

FLorentz = q(E + v × B) (2.4)

Here, q is the charge, E is the electric field, v is the velocity, and B is the mag-

netic field. The second term is transverse to velocity and to the magnetic field.

Consequently, if sensing electrodes are placed across the transverse dimension

of the plate, a voltage, called the Hall voltage, will appear. Hall Effect Sensors

consist basically of a thin piece of rectangular p-type semiconductor material

such as gallium arsenide (GaAs), indium antimonide (InSb) or indium arsenide

(InAs) passing a continuous current through itself [6]. A simple cartoon of the

Hall Effect Sensor is shown in Figure 2.2.

When the device is placed within a magnetic field, the magnetic flux lines

exert a force on the which deflects the charge carriers, electrons and holes, to

either side of the semiconductor slab. This movement of charge carriers is a re-

sult of the magnetic force they experience passing through the semiconductor

6



Figure 2.1: An illustration of the Hall effect. Image source : [6]

material. As these electrons and holes move side wards a potential difference is

produced between the two sides of the semiconductor material by the build-up

of these charge carriers. Then the movement of electrons through the semicon-

ductor material depends on the strength of the external magnetic field which

is at right angles to it. This effect is observed to be greater in a flat rectangular

shaped material.

2.2.3 Applications of Hall sensors to sense magnetic heading in

smartphones

Electronic compasses determine their magnetic heading by measuring the

earths horizontal magnetic field. Maximum heading accuracy is achieved by

keeping the two-axis modules approximately level. For applications where

compass modules will not be level, a three-axis, tilt compensated compassing

method is used. These three-axis compass modules perform an electronic gim-
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baling function by adding the third magnetic axis and a tilt sensor for a gravity

vector reference. Tilt sensors are made of either fluidic sensors or MEMS ac-

celerometers. The quality of the tilt measurement contributes to the precision of

the compass outputs.

2.2.4 Magnetometer hardware in the iPhone

The magnetometer is a magnetoresistive permalloy sensor found in all current

models of the iPhone and iPad[3]. The iPhone 3GS uses the AN-203 integrated

circuit produced by Honeywell, while the newer iPhones and iPads make use of

the AKM8975 produced by AKM Semiconductor. The sensor is located towards

the top right hand corner of the device, and measures fields within a 2 gauss (200

microtesla) range, and is sensitive to magnetic fields of less than 100 microgauss

(0.01 microtesla).

Figure 2.2: A simple schematic of the axes on the iPhone (Source : [3])

The magnetometer measures the strength of the magnetic field surrounding

the device. In the absence of any strong local fields, these measurements will be

8



of the ambient magnetic field of the Earth, allowing the device to determine its

heading with respect to the geomagnetic North Pole and act as a digital com-

pass. The geomagnetic heading and true heading relative to the geographical

North Pole can vary widely, by several tens of degrees depending on your loca-

tion.

Further specifications for the iPhone magnetometer are detailed in the

AKM8975 specification guide. Our main interest lies in the fact that the sam-

pling rate is 128 samples per second, which is just above what we need to reli-

ably and unambiguously detect and characterize AC field signals (which are at

60Hz in the United States and 50Hz elsewhere in the world).

2.2.5 Repurposing the Magnetometer as an AC Field meter

The basic premise of our iPhone application is that we are able to use the mag-

netometer to continuously take magnetic readings. We subsequently perform

various signal analyses on the data thus generated to characterize and analyze

the magnetic field strength in the area, and this is what we shall discuss further

in this thesis.

2.3 Sampling from Fourier Transforms, Nyquist limits and

Windowing

Our data analysis method extensively uses Fast Fourier Transforms [7][8]. The

Fast Fourier Transform (FFT) is an algorithm for transforming data from the
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time domain to the frequency domain as follows :

Xk =

N−1∑
n=0

xne−i2πk n
N k = 0, . . . ,N − 1 (2.5)

Here, Xk is the discrete Fourier transform and N is the number of data points

with n being the point under consideration in the current calculation. This sep-

arates out the values (magnitude) at each frequency. Since this is exactly what

we want our spectrum analyzer to do, it would seem straightforward to imple-

ment a Dynamic Signal Analyzer based on the FFT. Moreover, signal averaging

in the frequency domain is also extremely effective. By averaging a set of identi-

cal measurements, the signal-to-noise ratio (SNR) will be improved (increased),

ideally in proportion to the square root of the number of measurements.

The question of long FFTs (a large number of data points) versus short FFTs

(fewer data points) also comes into play with this method of signal analysis.

While long FFTs offer better frequency resolution (the more the number of data

points within a specified window, the more precisely one can tell frequencies

apart), we achieve a much better SNR by summing several short FFTs in the

same time. If there are N FFTs summed over, then the SNR improves by a factor

of
√

N [9]. If we were able to measure for indefinite time periods, having a long

FFT summed repeatedly would give us excellent SNR as well as resolution, but

within a finite time-frame, summing over several short FFTs for a better SNR is

the practical option for our application.

However, we will see that there are many factors which complicate this

seemingly straightforward task. Note that we cannot now transform to the fre-

quency domain in a continuous manner, but instead must sample and digitize

the time domain input. This means that our algorithm transforms digitized

samples from the time domain to samples in the frequency domain. Because
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we have sampled, we no longer have an exact representation in either domain.

However, a sampled representation can be as close to ideal as we desire by plac-

ing our samples closer together. There are also various limits inherent in sam-

pling that must be dealt with in analyzing an FFT. One of the primary limita-

tions posed on our data analysis from the iPhone readings is the Nyquist limit,

a fundamental parameter of signal analysis and sampling theory, which limits

the maximum frequency of field we can distinguish unambiguously using our

hardware.

2.3.1 Nyquist limits - A quick recap of sampling theory

The signals we use in the real world, such as our voices, are called ”analog”

signals. To process these signals in computers, we need to convert the signals to

digital form. While an analog signal is continuous in both time and amplitude, a

digital signal is discrete in both time and amplitude. In order to convert a signal

from continuous time to discrete time, a process called sampling is used. The

value of the signal is measured at certain intervals in time. Each measurement

is referred to as a sample.

When the continuous analog signal is sampled at a frequency F, the resulting

discrete signal has more frequency components than did the analog signal. In

the discrete frequency response, the components of the original analog signal

in each frequency are seen at their original position, and are also seen centered

around +/- F, around +/- 2F, and subsequent harmonic multiples.

If the signal contains high frequency components, we will need to sample

at a higher rate to avoid losing information that is in the signal. In general, to
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preserve the full information in the signal, it is necessary to sample at twice

the maximum frequency of the signal. This is known as the Nyquist rate. The

Sampling Theorem states that a signal can be exactly reproduced if it is sampled

at a frequency fNyquist, where fNyquist is greater than twice the maximum frequency

in the signal fS ignal.

fNyquist ≥ 2 × fS ignal (2.6)

Aliasing

What happens if we sample the signal at a frequency that is lower that the

Nyquist rate ? When the signal is converted back into a continuous time sig-

nal, it will exhibit a phenomenon called aliasing. Aliasing is the presence of

unwanted components in the reconstructed signal. These components were not

present when the original signal was sampled. In addition, some of the fre-

quencies in the original signal may be lost in the reconstructed signal. Aliasing

occurs because signal frequencies can overlap if the sampling frequency is too

low. Frequencies ”fold” around half the sampling frequency - which is why this

frequency is often referred to as the folding frequency.

2.3.2 Data windowing

There is a property of the Fast Fourier Transform (FFT) which affects its use

in frequency domain analysis. We recall that the FFT computes the frequency

spectrum from a block of samples of the input called a time record. In addition,

the FFT algorithm is based upon the assumption that this time record is repeated

throughout time. So, what happens when we are measuring a continuous signal
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like a sine wave? If the time record contains an integral number of cycles of the

input sine wave, then the input waveform is said to be periodic in the time

record. However, the FFT algorithm is computed on the basis of the highly

distorted waveform. We know that the actual sine wave input has a frequency

spectrum of single line. This is, however, not always the case in the FFT of

a continuous signal. It shows a smearing of energy throughout the frequency

domains, a phenomenon known as leakage. We will see energy leak out of one

resolution line of the FFT into all the other lines.

It is important to realize that leakage is due to the fact that we have taken a

finite time record. For a sine wave to have a single line spectrum, it must exist

for all time, from minus infinity to plus infinity. If we were to have an infinite

time record, the FFT would compute the correct single line spectrum exactly.

However, since we are not willing to wait forever to measure its spectrum, we

only look at a finite time record of the sine wave. This can cause leakage if the

continuous input is not periodic in the time record. The problem of leakage is

severe enough to entirely mask small signals close to any periodic input. As

such, the FFT would not be a very useful spectrum analyzer. The solution to

this problem is known as windowing.

If the FFT could be made to ignore the ends and concentrate on the middle

of the time record, we would expect to get much closer to the correct single

line spectrum in the frequency domain. If we multiply the time record by a

function that is zero at the ends of the time record and large in the middle, we

would concentrate the FFT on the middle of the time record. Such functions

are called window functions because they force us to look at data through a

narrow window. Typically, we get vast improvement by windowing data that
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is not periodic in the time record. However, it is important to realize that we

have tampered with the input data and cannot expect perfect results. Also,

the windowed data does not have as narrow a spectrum as an unwindowed

function which is periodic in the time record. Windowing, however, is probably

the best way in which we can get close to an ideal match for the signal in the

frequency domain.

2.4 Apple’s iOS Framework for the iPhone, and its use in de-

velopment

No discussion on an iPhone application would be complete without referring to

Apple’s software framework for the applications. Our application was created

using the Objective-C language within Apple’s Cocoa Framework for iOS. We

shall discuss very briefly the details and implementation of this framework in

our application.

2.4.1 The iOS Development Framework

The iOS development framework is based on the same framework that Apple

uses for its Macintosh line of personal computers. The language for develop-

ment is Objective-C with support for Objective-C++, and the integrated devel-

opment environment is XCode for Mac. The fundamental building block of all

iPhone applications is the Cocoa Touch Framework[10] which controls all the

standard input and output parameters of Apple’s touchscreen devices.
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2.4.2 Accessing Magnetometer Readings

The built-in interface to call the magnetometer within Apple’s devices is known

as Location Manager. This is the function we call within our application in order

to operate and access data from the magnetometer. This interface contains cus-

tomizable options for sampling rate and a built-in warning for environments

which are extremely noisy electromagnetically. This latter functionality can

cause some hindrances in the functioning of our application, as we will discuss

later. This framework makes building the application possible.

2.4.3 Visualizing the data

Sampling data at such rapid rates can be quite overwhelming for the default

graphing system on the iOS Cocoa Touch framework [11]. Therefore, in order

to overcome this limitation, our application uses an open-source graphing in-

terface called Core-Plot. Along with support for fast drawing rates, Core-Plot

also brings several additional features such as touch manipulation, zooming

and real-time plotting, which makes it ideal for our purposes.
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CHAPTER 3

THE EXPERIMENTAL PROCESS

With the basic theoretical background for the application ready, it was time for

the experimental process to begin. In this chapter, we shall detail the com-

plete process of experimentation, the findings and setbacks encountered, and

the methodology we followed, culminating in our results.

3.1 Building the application

To explain briefly our starting point for development, the software framework

used to build the first working prototype of the iPhone application was a sam-

ple program provided by Apple on its website. This application, called the ‘Tes-

lameter’ [12], plots the readings from the magnetometer in each of the three

axes in a real-time graph. It also displays the values at each instance of mea-

surement, and the total magnitude of the field that it measures. A screenshot of

this application is shown in Figure 3.1.

3.2 Initial experiments at sampling in the time domain

The first attempts made at measuring fields were using a real space solution.

This would be a quick & easy method to evaluate the application. This process

comprised of simply sampling input data from magnetometer and writing code

to analyze it in the time domain, where the application would measure the Root

Mean Square (RMS) values and the standard deviation. The thinking behind
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Figure 3.1: A screenshot of the demo Teslameter application provided by Apple.
Each of the colored lines responds to an axis in the magnetometer. the readings
are in microTesla (µT), and the large bold number indicates the total magnitude
of the field (

√
x2 + y2 + z2) in µT.

this method was that the mean of the data would be the DC field generated by

the device, and due to the alternating nature of the field, the standard deviation

should give us the AC field.

3.2.1 Limitations of sampling in the time domain

Our initial procedure method led to unexpected values in testing. In fact, the

results were never anything outside 5mG to 10mG under any conditions, be it

in low noise or in close proximity to a strong 60Hz electromagnetic field. This

was due to various factors that had not yet been considered in the early stages

of measurement. The inherent noise in the time domain is high due to both the

nature of the chip and the fact that the screen of the phone updates itself at 60

frames a second, which makes it generate a 60Hz field of its own.
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There is an inbuilt low pass filter in the magnetometer to filter out high-

frequency fields. This is because the magnetometer is built mainly to serve as

a compass and global positioning system, which means it must respond to the

user’s movement and not to other random noise around it. This leads to the

device being made to block high-frequency signals. This low-pass filter would

need to be compensated for. Secondly, there was an alternating field gener-

ated by continuously updating display, which was also influencing the mea-

surements shown in the device. Thirdly, a very long sampling time would be

needed for any reasonable output, even assuming the absolute correctness of

our methods, simply due to the nature of the signal analysis methods. This

made the measurement in time domain impractical. Therefore, we took fur-

ther steps to find a method of compensating for these limitations, and finding a

method of measurement that would be practical.

3.2.2 Finding alternatives - Measurement in the frequency do-

main

Subsequent to the results of our experiments in measuring the signal in the time

domain, and the limitations produced therewith, we decided that measurement

in the frequency domain would be a practical method of measurement. Firstly,

it would make the mapping of frequencies of the signals easier, leading to easier

identification of AC noise. Secondly, signal averaging is easier - summing sev-

eral short FFTs is faster and more computationally efficient than taking one long

FFT or data sample. In Fourier space, it would also be much easier to measure

the response of the magnetometer in a quiet area. This would help us deduce the
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low pass filter function and compensate accordingly in our application. More-

over, implementing an FFT for Apple devices is fairly straightforward, since

Apple’s own frameworks for digital signal processing are extremely fast and

efficient. The combination of these factors made sampling in the frequency do-

main the most suitable solution for our endeavor.

3.3 Estimating the low pass filter built into the magnetometer

chip

The iPhone’s magnetometer chip, as previously mentioned, contains its own

analog to digital converter to supply magnetic heading data to the phone. This

filter was built in mainly to cater to the intended application of the device, which

was to sense changes in the user’s direction by determining the magnetic head-

ing. This translates into a use case wherein the filter must place an emphasis

on heading changes which are relatively low frequency (i.e., direction changes

by the user), while filtering away any unwanted noise that might factor in the

measurement. Typically, this noise is from electromagnetic fields of higher fre-

quency, and typically from electronic devices and AC power sources, which are

50Hz in most regions in the world, and 60Hz in the United States. Therefore, the

built-in filter in the device is designed to nullify the noise generated by these fre-

quencies. This is counter-productive to our requirements, therefore, we needed

to characterize this filter and compensate for it.
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3.3.1 Measuring data in low-noise conditions

Fortunately, the Cornell campus has just the right kind of places in which to de-

duce the filter functions we wanted. Our reasoning was that, given an environ-

ment with very low electromagnetic noise across all the frequencies measured

by the magnetometer, a measurement made by the magnetometer, when ana-

lyzed in the frequency spectrum, would exhibit the functional form of the filter

itself.

To deduce this filter, each model of the iPhone available was set up in a zero

electromagnetic noise shielded microscope room, and the corresponding data

was recorded. This was then exported and analyzed using a Fourier Transform

averaged over 10 cycles, with a sample length of 256 data points and the sam-

pling rate equal to the the maximum sampling rate (128 Hz). The data thus

recorded is shown in Figure 3.2.

Figure 3.2: The consolidated baselines exhibited by the various devices under
low-noise conditions

Each of the devices was found to correspond to a sinc function with a pe-
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riodicity of 25Hz. This indicates that the magnetometer chip samples using a

rectangular window with a sampling time interval corresponding to 25Hz, the

Fourier transform of which is a sinc function. Using a Least-Squares fit, each of

the sinc functions was found to correspond to the form

F(x) = a ×
∣∣∣∣∣sin(πx/b)

πx/b

∣∣∣∣∣ + c (3.1)

Here, F(x) is the low-pass filter function, a is the scale factor, b is the digital

sampling frequency inherent to the chip and c is the offset. Our fit (illustrated

for one of the devices in Figure 3.3) also allowed us to deduce the values of each

of these parameters, as listed in Table 3.1.

Device model Scale Factor a (mG) Digital Sampling Frequency b (Hz) Offset c (mG)
iPhone 3GS 40 25.91 0.0018
iPhone 4S 50 25.91 0.0009
iPhone 5 20 25.91 0.0035

iPad 30 25.91 0.0018

Table 3.1: Parameters of the low pass filter function for each device

Using these parameters, it was now possible to compensate for the filter in

each device. Dividing by the appropriate filter function for each device should

theoretically result in a flat curve in the frequency domain given a low-noise

environment.

After adding this compensation in the code for the application, we returned

to test the devices in the microscope room again, looking to see a reasonably

flat response curve from the device (with exceptions at the minima of the sinc

response since we were dividing by a small number at those points, which led

to large noise values), and this was precisely the outcome. This compensated

curve, though not without noise, formed the first step of our noise reduction

measures. A sample of our compensated output is provided in Figure 3.3.
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Figure 3.3: A comparison of the generated curves after compensating and nor-
malizing for the filter function in an iPhone 5. The red curve shows the compen-
sated curve. As we can see, there is noise around the minima in the compen-
sated frequency spectrum since we compensate by dividing by a small number
at these points. It is also evident that we do not encounter an exact zero at the
25Hz periodicity of the signal. This is due to the unavoidable presence of white
noise in any environment.

Why is the low-pass filter in the form of a sinc function ?

The magnetometer in the iPhone was included in the hardware to sense changes

in the user’s direction by means of the the magnetic heading. This requires it

to heavily weight low frequency changes, while simultaneously filtering higher

frequencies so that the low-frequency signal is relatively noise-free.

In most use cases, the most likely source of noise is from electromagnetic

fields, and electronic devices and AC power sources. These sources generate

fields of frequency 50Hz in most of the world, and 60Hz in the United States.

The low-pass filter, therefore, must place the least emphasis on these frequen-

cies. The magnetometer unit in the iPhone is of Japanese make. Japan uses 50Hz

AC power supplies, so this is taken as the reference frequency to blank in the
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low-pass filter.

The sinc function behavior is realized, as we have discussed earlier, by the

magnetometer chip performing its digital sampling using a rectangular window

with a sampling time interval corresponding to 25Hz, the Fourier transform of

which is a sinc function. Sinc functions are ideal low-pass filters since they fall

quickly in magnitude and can be easily tuned in frequency to create zeros where

required. In this case, the zero is set at 50Hz by tuning the sinc function’s pe-

riodicity to 25Hz. This could also be achieved by setting it to 50Hz, but that

would result in a much slower fall in amplitude, which is undesirable for the

chip’s primary function. Thus, the sinc function is the ideal filter for the magne-

tometer’s intended use, and this explains why we see this behavior.

3.3.2 Enabling visualization of data in the frequency domain

Having established that frequency domain signal analysis was the way to go,

we now needed an effective means of visualizing the data. Due to the iPhone’s

default graphing framework being limited in its capabilities and ease-of use for

such high sampling rates, we turned to the open-source software community

for answers. This led us to the utilization of Core Plot, a plotting framework

created by Drew McCormack and Barry Wark [13], a custom plotting environ-

ment for Apple devices which enabled us to create touch-enabled, interactive

and most importantly, fast-updating plots that we could use to visualize our

data in the frequency domain, and this would prove significant in our moving

forward with the application.
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3.4 Real-world performance using measurements in the fre-

quency domain

With the additional compensation for the low-pass filter incorporated into our

application, we were ready to test it out again in a real-world setting. The first

step was to validate the filter function itself, and confirm that the response curve

was now flat instead of a sinc shape. This was achieved by incorporating the

filter function into the iPhone and then taking it back to the quiet environment

and observe the response of the system. Our methods were validated when we

observed the response illustrated in Figure 3.4.

Figure 3.4: The flat response curve of the device in a quiet environment (Cornell
Plantations) after the filter compensation, showing the different fields in each of
the three axes
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3.4.1 Comparison of our device performance with existing in-

struments

After verifying our calculations for the adjustment for the low-pass filter, the

next step was to correlate the response of the application to that of standard

measurement devices. Our standard devices were the Extech handheld me-

ter, and for calibration, a Spicer Consulting Spectrum Analyzer unit (hereafter

referred to as the Spicer unit) hooked up to a computer with the associated Fre-

quency Spectrum Analyzer software.

With these units in hand, the testing of the application was made in two

parts. The first part would be to qualitatively assess whether the application

picked up a peak at the 60Hz frequency when within a strong field of 60Hz.

If a peak were to be detected, another factor of interest would be how quickly

the frequency spectrum would converge to show that peak after throwing away

much of the noise. This would also allow us to understand the background

noise and estimate a good background subtraction method for the application.

With this objective in mind, the application was run with the iPhone next to a

standard 60Hz source from the AC mains of the microscope chamber, an ex-

tremely strong electromagnetic field with no noise in the surrounding frequen-

cies. The application quickly showed a peak at 60Hz which was very visible

even above the noise generated, and within two runs of sampling and data ac-

quisition (256 samples each), was able to produce a pronounced peak at 60Hz

with a fair amount of noise reduction (illustrated in Figure 3.5). This showed

that even with the inherent noise generated, it would be possible to identify

strong 60Hz fields, and with good background subtraction, fields of lower mag-

nitudes could be identified as well.
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Figure 3.5: A plot of the response to a strong 60 Hz field from the iPhone 5
after the signal compensation. There is now a strong, clearly visible peak at the
frequency of the strong field around 60Hz.

Our setup to calibrate the application was very simple. First, the strongest

60Hz source in the room was identified. Then, using graph paper glued on to

a platform at the same height as the source, the instruments would be moved

each time by the unit distance marked on the graph paper, from the point clos-

est to the source to the farthest possible point from the source. This would give

us a coherent picture of how the electric field would fall off with distance from

the source, and by correlating the measurements from each of the three measur-

ing devices (hand-held meter, Spicer unit and iPhone application), we would

be able to understand if our application was giving us measurement that made

sense physically. If the three devices followed the same general trend, then we

would be able to find the scale factors that would allow us to convert the read-

ings from the iPhone application into measurable values in milliGauss. A very

brief review of our electromagnetism theory would say that since our source is a

dipole, the potential is inversely proportional to the square of the distance from

the source [14]. In essence, if φ(R) was the potential as a function of the distance
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R from the source, then

φ(R) =
1

4πε0

p · R̂
R2 (3.2)

Here, ε0 is the permittivity of free space, p is the dipole moment and R̂ is the

unit vector in the direction of R. The electric field E of the dipole is the negative

gradient of the potential, which means we can derive it to be :

E =
3p · R̂
4πε0R3 R̂ −

p
4πε0R3 (3.3)

The important trend to note here is that the electric field for a dipole falls off as

the cube of the distance i.e. E ∝ 1
R3 . This means that for our experiment to be

valid, we first had to confirm this trend with the data collected from the field

meter and the Spicer, and then verify that the iPhone application also followed

the same trend, from which we could deduce the scaling factors.

As we computed the results of the experiments, we found that, as expected,

the handheld meter and the Spicer did, indeed, fall off as expected. However,

this was with a small variation : Since the magnetometer in each of them is

not perfectly at the boundaries of the instruments, there was a small offset. This

meant that our fit fell off as E ∝ 1
(R+a)3 instead of E ∝ 1

R3 where a is the offset of the

magnetometer element in each of the devices. The constant of proportionality

was deduced by using a Least-Squares curve fitting tool in the Matlab software

package. As an illustration, the curve fit thus obtained for the hand-held meter

is shown in Figure 3.6. The fit parameters and fitting function are detailed in

Table 3.2 and Equation 3.4.

Once the hand-held meter and the Spicer were recorded and the data fitted

to a function of this form, the iPhone data was plotted and found to correspond

roughly with this form as well. However, the iPhone data was found to be be-

sotted with noise. This was unsurprising, since we were already dividing by the
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fitting function. In addition, we were also not compensating for the noise added

at higher frequencies since the iPhone will pick up noise at the other harmonics

of the signal as well, and measure them with ambiguity. In order to better sep-

arate the signal from the noise, a background subtraction technique was used,

subtracting the values around the frequency to be monitored (60Hz). This gave

us a much cleaner dataset that we could fit with higher confidence, as illustrated

in Figure 3.7. Summing and background subtraction of the frequencies around

the ones in question gives us a much better idea of the actual field picked up and

alleviates some of the possible quantitative disparity present when we measure

from only one data point at 60Hz.

Figure 3.6: The comparison of the obtained data from the hand-held meter and
the corresponding curve fit from Table 3.2 and Equation 3.4.

The functional form of E for each of the devices was found to be

E(R) =
k

(R + a)3 +C (3.4)

Here, k is the constant of proportionality, a is the offset in distance and C is the

offset which the field reading approaches as the device becomes distant from
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Figure 3.7: The comparison of the iPhone data before and after background
subtraction. The background subtraction enables a better curve fit.

the source. The values of each of these factors deduced from the curve fitting

are detailed in Table 3.2.

Device Scale Factor k (mG cm3) Constant Reading C (mG) Offset a (cm)
Hand-held meter 1.0 × 105 0.3341 12.00

Spicer unit 1.258 × 106 0.7656 13.02
iPhone 1.912 × 107 1.0105 15.6

Table 3.2: Parameters of the Field function for each device

Using these parameters, it was now possible to deduce the scaling factors

to incorporate into our application, by means of which we would be able to

achieve quantitative parity with the Spicer unit or the hand-held meter (de-

pending on our choice of scaling factor), as illustrated in Figure 3.8. As we

can see, the sensitivity is quite comparable at low fields, which is essential for

our intended operation. As the magnitude of the the field increases, so does

the noise, which is expected given the limitations of the device and our scaling

methods. However, at such high field values, one would be quite unwise to be

operating an electron microscope in any case, which means that this limitation
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of our device will not impact our intended use. This left us only to characterize

Figure 3.8: The comparison of the scaled data from the iPhone and the corre-
sponding readings from the field meter.

the response time of our application and how long it took to achieve parity with

the readings from the hand-held meter. In order to achieve this, we carried out a

series of tests on the application in low fields (between 0.5mG and 10mG) in var-

ious environments around the Cornell campus, and it was deduced that with a

sample size of 256 readings per FFT averaging cycle (the sampling rate remains

fixed at 128Hz throughout), the reading on the iPhone converged close to the

reading on the hand-held meter within three to five cycles (an effective time of

six to ten seconds), similar to the time taken for a sample size of 512 readings

per FFT averaging cycle. Thus, we were also able to reinforce confidence in our

method, since summing several shorter FFTs faster gave us results equal to or

better than larger FFTs summed together (The SNR scales as the square root of

the number of data samples summed over). In fact, if one were willing to extend

one’s waiting time indefinitely, we would be able to gain a little more accuracy,

but for all practical purposes, our application converges quickly (within 3 - 5
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cycles) to a value accurate to within 5% - 15% of that given by a dedicated de-

vice. These results, when combined, brought us to realising our goal of creating

an accessible, easy-to-use electromagnetic field meter embedded in our mobile

devices, and we shall further discuss them in the next chapter.
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CHAPTER 4

RESULTS AND PERFORMANCE OF THE APPLICATION

In this chapter, we shall discuss the results and the salient points that the

experimental process brought to note about our application. To briefly recap

our goals for the project, we set out to build a convenient and simple method of

characterizing electromagnetic fields form our iPhones using some clever signal

averaging techniques and the powerful software framework that made it pos-

sible to build such applications. To this end, we were able to build a prototype

application to achieve this, a working screenshot of which is shown in Figure

4.1, so our broadest goal was achieved. Our main interests were to compare the

results in terms of sensitivity and quickness of convergence.

Figure 4.1: A screenshot of the application at work, showing measurement and
data visualization in the frequency domain. Each of the colored lines corre-
sponds to the readings from one of the the three axes (as labeled in the screen-
shot), while the vertical dotted lines are visual aids to indicate data between
55Hz and 64Hz - the region of greatest interest.
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4.1 Quickness of convergence

In terms of quickness of convergence, readings from the hand-held meter were

tested along with the application in low-field areas. With a fixed sampling rate

of 128Hz, a sample size of 256 readings per FFT averaging cycle, the reading on

the iPhone converged close to the reading on the hand-held meter within three

to five cycles (an effective time of six to ten seconds), similar to the time taken

for a sample size of 512 readings per FFT averaging cycle. The signal-to-noise

ratio scales as the square root of the number of samples summed over, i.e., if N

is the number of FFTs summed over, then

SNR ∝
√

N (4.1)

If one were willing to extend one’s waiting time indefinitely, we would be able

to gain a little more accuracy, but for all practical purposes, the application con-

verges quickly (within 3 - 5 cycles) to a value accurate to within 5% - 15% of that

given by a dedicated device.

Given these results as an indicator of the performance of the application, the

user can then modify the number of data points and use a longer or shorter FFT

to achieve their desired resolution in frequency with some idea of the trade-offs

involved in time and speed.

4.2 Sensitivity

In order to be useful for the characterization of magnetic fields within micro-

scope rooms, a field meter would have to be sensitive to fields of the order of

magnitude of a tenth of a milliGauss or less. For SEM, a sensitivity of 0.1 mG
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would be quite useful (if there were fields of that magnitude in a TEM room,

one would be in trouble). Our application shows a sensitivity on the order of

0.1 mG, especially for fields in the 30Hz - 60Hz bandwidth, which means we

can use it with some confidence to characterize fields for SEM. Of course, there

would be some associated error (an offset of between 0.5mG and 1mG) on the

field, but we account for that by providing a background subtraction function

which is user-adjustable inside the application itself, as shown in Figure 4.2, so

that each individual user can calibrate it for their device with a standard field

meter so they can trust the application’s accuracy for themselves.

Figure 4.2: A screenshot of the application’s settings page where the user can
customize the background noise subtraction. This is meant for advanced users.
In the typical use case, the offset for each device is obtained from our fitting
function, and remains fixed for each device.

4.3 Performance and possible issues

Another consideration for our application was to use extremely fast and effi-

cient computational techniques for all the calculations so as not to bottleneck the
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speed at which the compass takes readings. A slow Fourier Transform routine,

for instance, would stop the readings at every cycle of computation, thereby

affecting our sampling rate and potentially even causing ambiguity in our mea-

surements of frequency. This was continually checked at the addition of every

computation to the program to ensure the application remained speedy. This

was also enabled by Apple’s FFT routine which has been consistently tested to

be faster than FFTW, the fastest open-source FFT routine available [15]. This

raises confidence in our sampling rate and consequently our signal analysis.

Lastly, one persistent issue with the application is a precautionary measure

built into the iPhone by Apple itself. As discussed earlier in our theoretical

background of the iOS framework and the Location framework, Apple has im-

plemented a noise-checking routine that continually prompts the user to move

the iPhone in a figure-of-eight motion whenever it runs into large or noisy fields.

In our case, these may simply be the fields we want to measure, and this built-in

routine can hinder our measurements. This can of course be negated by mak-

ing the figure-of-eight motion that the prompt suggests and measuring the field

again, however, future iterations of the application will look for ways to bypass

this routine so that the user experience is consistent and reliably fast.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

With the results of our experiment, we were at a stage where we had proof-

of-concept of our methods, as well as a fair performance indicator of where

our application stood as a characterization method for electromagnetic fields in

the context of electron microscopy. Our conclusions were that our application

would be suitable for use for the desired purpose, especially in the context of

SEM rooms (which is where the handheld meters are most highly used as well).

Another important implication of our exercise was the effectiveness of our sig-

nal analysis methods, and how, in combination with good background subtrac-

tion and some effective signal averaging, even a fairly limited device could be

purposed to obtain good data and the inherent trends, both qualitatively and

quantitatively. All these factors, in combination, meant that our application was

effectively deployable to the public, and could facilitate quick electromagnetic

field characterization in applications from microscopy to garage laboratories,

especially if made free and open, which is our aim.

5.1 Future work on this project

As covered in the previous chapter, the future work on our project would in-

volve continuously improving our signal averaging methods as we receive user

feedback, improving our accuracy even further. Another important concern is

to bypass Apple’s inbuilt signal compensation prompt when the device encoun-

ters noisy fields. Correspondence has been made to Apple about this, and we

aim to take it forward with input from them.
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Our plans for the project also include improvements to the user interface of

the applications, such as easy switching of the parameters of the fit for the user,

and a customized pinch-scaling/zoom system for the visualization of the FFT

so that the user may better visualize trends in the signal, especially when the

trends are at frequencies other than 60Hz. We also aim to implement a moving

‘window’ wherein we use our signal averaging techniques to quantitatively an-

alyze any frequency measurable by the phone (i.e. ≤ 64Hz) , not just at 60Hz, so

that the user can characterize any frequency they desire.

5.1.1 Application of our signal averaging techniques to other

sensors

Another of the future aims of the project is to apply the same signal averaging

and background subtraction techniques used in our application to signals from

other sensors in the iPhone such as the accelerometer and the microphone. This

would enable us to create effective characterization techniques for vibration and

acoustic signals, allowing us to make a suite of characterization applications

that could be used by scientists both experienced and budding, with access to

just a smartphone. In fact, vibration and acoustic analysis would be even less

constrained than electromagnetic field analysis simply because the range of fre-

quencies that can be sampled by these sensors is much greater [3], rendering

them even more effective.
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5.2 Other applications of our software

In addition to scientific purposes, our software could be used for a number of

other possible applications. The two most exciting possibilities are discussed

forthwith.

5.2.1 Geolocation and wiring faults

Our software already uses the compass’ subroutine to access data, so if we were

able to add geolocation tagging to the data, we would, in effect, be able to cre-

ate a ‘heat map’ of electrical fields within a room, or, given enough users to

consolidate data from, even a locality. This data could then be transmitted in

real-time to a data center for an electrical grid/power supply company, which

could then monitor them to pinpoint points of possible failure in the electrical

grid or wiring within an area, leading to a fair saving of resources as well as

faster response. This would also be a simpler application since electrical faults

give out large fields at 60Hz, which means that our application would detect

them even quicker than it does low fields. In addition, all the software needs to

decide is whether the field value is above a threshold value, in which case we

could flag that point using a geolocation tag and send the data. This reduces the

need for absolute quantitative accuracy, laying the emphasis more on sensitivity

and quickness of response, which are strong points of our application.
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5.2.2 Touchless 3-D Interaction

There are potential applications of the magnetometer to enable three-

dimensional interaction with smartphone interfaces, rather than two-

dimensional touch interaction. One such application is MagiMusic [16], which

is a musical instrument simulator controlled using special magnetic gloves and

the interpretation of the signal generated by using them on the magnetometer.

Our signal averaging techniques would greatly increase the accuracy of such

applications and increase the scope of touchless interaction with smartphones.
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APPENDIX A

DEVICES USED IN THE MEASUREMENT PROCESS

This chapter offers a brief overview of the two devices used for the perfor-

mance comparison of our iPhone application.

A.1 Spicer Consulting Field Measurement Unit

Spicer Consulting’s SC11 unit used in measurement combines the measure-

ments and analysis of magnetic fields, vibrations and acoustics into a compact,

easy to operate system. is the simplest way to gain accurate usable data from

site surveys for SEMs and similar sensitive equipment. Based on a laptop com-

puter and operating under Windows XP/Vista/7 with accompanying Spectrum

Analyser software, the Spicer unit produces results displayed graphically.

A.2 Extech 480822 Field Meter

The instrument used in our handheld device comparison was the Extech In-

struments 480822 Electromagnetic Field Meter. It is a single axis meter which

samples every 0.4 seconds. It has a range from 0.1 to 199.9 mG with an over-

range indicator and measures ELF-EMF frequencies from 30 to 300 Hz with an

accuracy of 2% at 50/60 Hz.

For further details on both these devices, it is recommended to visit the cor-

responding manufacturer’s website.
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APPENDIX B

SPECIFICATIONS OF THE MAGNETOMETER USED IN THE IPHONE 4S

The following page details the specification of the Asahi Kasei AK8973 com-

pass chip used in the iPhone 4S. The AKM8975 chip’s (used in the iPhone 5)

specifications are proprietary and hence not available online.
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!ASAHI KASEI  [AK8973] 

MS0561-E-01 <Preliminary> - 1 - 2007/01 

 

 =Preliminary= AK8973 

  3-axis Electronic Compass  
 

 
 

1. Features 
 
! 3-axis electronic compass IC 

! Optimal built-in electronic compass for mobile phones and handy terminals 

! High sensitivity Hall sensors are integrated. 

! Functions 
! Built-in 8-bit ADC 
! Built-in amplifier for sensor signal amplification 
! Built-in 8-bit DAC for sensor signal offset compensation 
! Built-in EEPROM for storing individual adjustment values 
! Built-in temperature sensor 
! 8-bit digital output 
! Serial interface: I2C bus interface (supporting the low-voltage specification) 
! Automatic power-down function 
! Interrupt function for measurement data ready 
! Built-in master clock oscillator 

! Operating temperatures:  -30"C to +85"C 

! Operating supply voltage: +2.5V to +3.6V 

! Low current consumption/measurement time: 
! Power-down: 0.2#A typ. 
! Magnetic sensor driving: 6.8mA/12.6ms 

! Package: 16-pin QFN package: 4.0mm$4.0mm$0.7mm 
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APPENDIX C

SOURCE CODE

The following pages contain the source code of our application. Concessions

have been made in the text to follow the LATEXformatting methods. The aim of

this section is to provide a brief overview of how the software is written. Further

details and source code files can be obtained by emailing the author.

C.1 The application delegate

/* 1

File: AppDelegate.h 2

3

*/ 4

5

#import <UIKit/UIKit.h> 6

# 7

@class TeslameterViewController; 8

9

@interface AppDelegate : NSObject <UIApplicationDelegate> { 10

UIWindow *window; TeslameterViewController *viewController; 11

UINavigationController *navigationController; 12

} 13

}} 14

@property (nonatomic, strong) IBOutlet UIWindow *window; 15

@property (nonatomic, strong) IBOutlet TeslameterViewController 16

*viewController; 17

18

@end 19

/* 1

File: AppDelegate.m */ 2

3

#import "AppDelegate.h" import "TeslameterViewController.h" 4

# 5

//To remove error "implicit declaration of sysctlbyname" 6

#include <sys/types.h> include <sys/sysctl.h> 7

# 8

@implementation AppDelegate 9

10

@synthesize window; @synthesize viewController; 11

12

- (void)applicationDidFinishLaunching:(UIApplication 13

*)application { 14

15

[self.window setRootViewController:self.viewController]; 16

17

viewController.view.frame = CGRectMake(0.0, 0.0, 480.0, 18

320.0); [window addSubview:viewController.view]; [window 19
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makeKeyAndVisible]; 20

21

//To hide status bar - Change the property in the 22

//info.plist, the code below is less effective [application 23

//setStatusBarHidden:YES]; 24

// 25

//To adapt to bigger screens 26

//#warning Need to do more : 27

//#http://stackoverflow.com/questions/12395200/how-to- 28

//#develop-or-migrate-apps-for-iphone-5-screen-resolution 29

// [window setFrame:[[UIScreen mainScreen] bounds]]; 30

// 31

// 32

// } 33

// } 34

// } 35

// } 36

-(BOOL) application:(UIApplication *)application 37

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions { 38

39

[viewController setTitle:@"AC Field Meter"]; 40

navigationController = [[UINavigationController alloc] 41

initWithRootViewController:viewController]; 42

43

//[navig pushViewController:viewController animated:YES]; 44

//[self.window addSubview:navigationController.view]; 45

//[self.window makeKeyAndVisible]; 46

// 47

//This fixed the navigation issue 48

self.window.rootViewController = navigationController; 49

50

//Solving the auto-layout issue and unresponsiveness of 51

//buttons 52

//http://stackoverflow.com/questions/14345727/when-on-iphone 53

//-5-landscape-mode-the-button-on-the-right-of-navigation- 54

//bar-stops 55

// 56

NSLog(@"Device Model : %@", [self platformString]); 57

[[NSUserDefaults standardUserDefaults] setObject:[self 58

platformString] forKey:@"deviceModel"]; 59

60

return YES; 61

} 62

} 63

#ifdef IOS_OLDER_THAN_6 64

- 65

(BOOL)shouldAutorotateToInterfaceOrientation:( 66

UIInterfaceOrientation)toInterfaceOrientation{ 67

//[image_signature setImage:[self 68

//resizeImage:image_signature.image]]; 69

return (toInterfaceOrientation == 70

UIInterfaceOrientationLandscapeLeft); 71

} 72

#endif ifdef IOS_NEWER_OR_EQUAL_TO_6 73

-(BOOL)shouldAutorotate { return YES; 74

} 75

- (NSUInteger)supportedInterfaceOrientations { 76

//[image_signature setImage:[self 77

//resizeImage:image_signature.image]]; 78

return UIInterfaceOrientationMaskLandscapeLeft; 79

} 80

#endif 81

# 82
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- (NSString *) platform{ size_t size; sysctlbyname("hw.machine", 83

NULL, &size, NULL, 0); char *machine = malloc(size); 84

sysctlbyname("hw.machine", machine, &size, NULL, 0); NSString 85

*platform = [NSString stringWithUTF8String:machine]; 86

free(machine); return platform; 87

} 88

} 89

- (NSString *) platformString{ NSString *platform = [self 90

platform]; if ([platform isEqualToString:@"iPhone1,1"]) 91

{[[NSUserDefaults standardUserDefaults] setFloat:30.0 92

forKey:@"DeviceScaleFactor"]; return @"iPhone_1G"; } if 93

([platform isEqualToString:@"iPhone1,2"]) {[[NSUserDefaults 94

standardUserDefaults] setFloat:30.0 95

forKey:@"DeviceScaleFactor"]; return @"iPhone_3G"; } if 96

([platform isEqualToString:@"iPhone2,1"]) {[[NSUserDefaults 97

standardUserDefaults] setFloat:40.0 98

forKey:@"DeviceScaleFactor"]; return @"iPhone_3GS"; } if 99

([platform isEqualToString:@"iPhone3,1"]) {[[NSUserDefaults 100

standardUserDefaults] setFloat:30.0 101

forKey:@"DeviceScaleFactor"]; return @"iPhone_4"; } if 102

([platform isEqualToString:@"iPhone3,3"]) {[[NSUserDefaults 103

standardUserDefaults] setFloat:30.0 104

forKey:@"DeviceScaleFactor"]; return @"Verizon_iPhone 4"; } if 105

([platform isEqualToString:@"iPhone4,1"]) {[[NSUserDefaults 106

standardUserDefaults] setFloat:50.0 107

forKey:@"DeviceScaleFactor"]; return @"iPhone_4S"; } if 108

([platform isEqualToString:@"iPhone5,1"]) {[[NSUserDefaults 109

standardUserDefaults] setFloat:20.0 110

forKey:@"DeviceScaleFactor"]; return @"iPhone_5"; } if 111

([platform isEqualToString:@"iPod1,1"]) {[[NSUserDefaults 112

standardUserDefaults] setFloat:30.0 113

forKey:@"DeviceScaleFactor"]; return @"iPod_Touch_1G"; } if 114

([platform isEqualToString:@"iPod2,1"]) {[[NSUserDefaults 115

standardUserDefaults] setFloat:30.0 116

forKey:@"DeviceScaleFactor"]; return @"iPod_Touch_2G"; } if 117

([platform isEqualToString:@"iPod3,1"]) {[[NSUserDefaults 118

standardUserDefaults] setFloat:30.0 119

forKey:@"DeviceScaleFactor"]; return @"iPod_Touch_3G"; } if 120

([platform isEqualToString:@"iPod4,1"]) {[[NSUserDefaults 121

standardUserDefaults] setFloat:30.0 122

forKey:@"DeviceScaleFactor"]; return @"iPod_Touch_4G"; } if 123

([platform isEqualToString:@"iPad1,1"]) {[[NSUserDefaults 124

standardUserDefaults] setFloat:30.0 125

forKey:@"DeviceScaleFactor"]; return @"iPad"; } if 126

([platform isEqualToString:@"iPad2,1"]) {[[NSUserDefaults 127

standardUserDefaults] setFloat:30.0 128

forKey:@"DeviceScaleFactor"]; return @"iPad_2_(WiFi)"; } if 129

([platform isEqualToString:@"iPad2,2"]) {[[NSUserDefaults 130

standardUserDefaults] setFloat:30.0 131

forKey:@"DeviceScaleFactor"]; return @"iPad_2_(GSM)"; } if 132

([platform isEqualToString:@"iPad2,3"]) {[[NSUserDefaults 133

standardUserDefaults] setFloat:30.0 134

forKey:@"DeviceScaleFactor"]; return @"iPad_2_(CDMA)"; } if 135

([platform isEqualToString:@"i386"]) return 136

@"Simulator"; if ([platform isEqualToString:@"x86_64"]) 137

return @"Simulator"; else 138

return platform; 139

} 140

} 141

@end 142
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C.2 The application controller

/* 1

File: TeslameterViewController.h */ 2

3

#import "AppDelegate.h" import <CoreLocation/CoreLocation.h> 4

#import <MessageUI/MessageUI.h> import <Accelerate/Accelerate.h> 5

#//For vDSP code to use the Apple-approved FFT import 6

#"CorePlot-CocoaTouch.h" import "GraphObject.h" import "iToast.h" 7

# 8

#import "Stack.h" import "Queue.h" 9

# 10

//This is the fudge factor for the sinc fitting function taken 11

//from the measured values, where the array size was 128 - We 12

//will scale this according to the current array size// 13

#define fudgeFactorForAraySize_128 25.9100 define 14

#scaleFactorToConvertToSpicerRMSValues 19.12 15

# 16

# 17

@class GraphObject; 18

19

20

21

@interface TeslameterViewController : UIViewController 22

<CLLocationManagerDelegate, MFMailComposeViewControllerDelegate> 23

{ UILabel *magnitudeLabel; UILabel *xLabel; UILabel *yLabel; 24

UILabel *zLabel; 25

26

27

IBOutlet CPTGraphHostingView *graphHostingView; GraphObject 28

*graphObject; 29

30

CLLocationManager *locationManager; IBOutlet UIButton 31

*startButton; IBOutlet UIBarButtonItem *settingsButton; 32

IBOutlet UIBarButtonItem *sendMailButton; UISwitch 33

*fileSaveSwitch; IBOutlet UIButton *stopButton; 34

35

} 36

} 37

@property(nonatomic, strong)GraphObject *graphObject; 38

39

// IBOutlets 40

@property (nonatomic, strong) IBOutlet UILabel *xLabel; 41

@property (nonatomic, strong) IBOutlet UILabel *yLabel; 42

@property (nonatomic, strong) IBOutlet UILabel *zLabel; 43

44

45

@property (strong, nonatomic) IBOutlet UIButton 46

*xReadingDisplayTitleButton; @property (strong, nonatomic) 47

IBOutlet UIButton *yReadingDisplayTitleButton; @property 48

(strong, nonatomic) IBOutlet UIButton 49

*zReadingDisplayTitleButton; @property (nonatomic, strong) 50

IBOutlet UISwitch *fileSaveSwitch; @property (strong, nonatomic) 51

IBOutlet UISwitch *showDisplaySwitch; @property (strong, 52

nonatomic) IBOutlet UISegmentedControl *graphDisplayControl; 53

54

55

- (IBAction)startButtonPressed:(id)sender; - 56

(IBAction)stopButtonPressed:(id)sender; - 57

(IBAction)settingsButtonPressed:(id)sender; - 58

(IBAction)sendMailButtonPressed:(id)sender; - 59
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(IBAction)graphDisplaySwitch:(id)sender; 60

61

@property (nonatomic, strong) CLLocationManager 62

*locationManager; 63

64

65

@end 66

67

/* 1

File: TeslameterViewController.m */ 2

3

#import "TeslameterViewController.h" import "GraphObject.h" 4

#import "SettingsViewController.h" import "FFTAccelerate.h" 5

//#import "CodeTimestamps.h" 6

//# 7

//# 8

#include <sys/types.h> include <sys/sysctl.h> include 9

#<sys/time.h> 10

# 11

#include <stdio.h> include <math.h> 12

# 13

#import <mach/mach.h> import <mach/mach_time.h> 14

# 15

#include <stdlib.h> include <complex.h> include <math.h> include 16

#<algorithm> 17

# 18

# 19

@implementation TeslameterViewController{ 20

//Integers 21

int counter; int 22

fftCounterForGraph; int index; int 23

arrayCapacity; int 24

setNumberOfRunningUpdateValues; int 25

setNumberOfFFTsToSumOver; 26

27

//Conversion Factors 28

float conversionFactorMicroTeslaToMilliGauss; 29

float 30

conversionFactorNanosecondsToMilliseconds; 31

32

float initialX, initialY, initialZ; float 33

sum_FFT_X, sum_FFT_Y, sum_FFT_Z; 34

35

float *arrayOfXData, *arrayOfYData, 36

*arrayOfZData, *arrayOfMagnitudeData, *arrayOfForwardFFT_X, 37

*arrayOfForwardFFT_Y, *arrayOfForwardFFT_Z, 38

*arrayOfSummed_FFT_X, *arrayOfSummed_FFT_Y, 39

*arrayOfSummed_FFT_Z; 40

41

//long *arrayOfTimeInMilliSeconds; long 42

// conversionFactorForMachAbsoluteTimeToNanoseconds; 43

// 44

float deviceScaleFactor, fudgeFactor, 45

sincOffset; 46

47

48

UINavigationController *navController; 49

50

int functionCounter; 51

52

BOOL saveFiles; 53
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54

BOOL showDisplay; 55

56

BOOL checkStopButtonPressedConsecutively; //To make 57

sure we don’t dealloc unassigned memory for consecutive 58

presses of the stop button 59

60

int RMSCounter; 61

62

float RMSAddX, RMSAddY, RMSAddZ; 63

64

float FFTXValue, FFTYValue, FFTZValue, 65

baselineOffset; 66

67

int value58Hz, value64Hz; 68

69

70

} 71

} 72

@synthesize xLabel; @synthesize yLabel; @synthesize zLabel; 73

@synthesize graphObject = graphObject; @synthesize 74

xReadingDisplayTitleButton; @synthesize 75

yReadingDisplayTitleButton; @synthesize 76

zReadingDisplayTitleButton; @synthesize fileSaveSwitch; 77

@synthesize showDisplaySwitch; @synthesize graphDisplayControl; 78

79

80

@synthesize locationManager; 81

82

- (void)viewDidLoad { [super viewDidLoad]; 83

84

settingsButton = [[UIBarButtonItem 85

alloc]initWithTitle:@"Settings" 86

style:UIBarButtonItemStyleBordered target:self 87

action:@selector(settings)]; [[self navigationItem] 88

setRightBarButtonItem:settingsButton]; 89

90

settingsButton.target = self; settingsButton.action = 91

@selector(settingsButtonPressed:); 92

93

sendMailButton = [[UIBarButtonItem 94

alloc]initWithTitle:@"Email Data" 95

style:UIBarButtonItemStyleBordered target:self 96

action:@selector(sendMail)]; [[self navigationItem] 97

setLeftBarButtonItem:sendMailButton]; 98

99

sendMailButton.target = self; sendMailButton.action = 100

@selector(sendMailButtonPressed:); 101

102

[sendMailButton setEnabled:YES]; 103

104

//Get the scale factor for the device - This is not going to 105

//be changed, so we’ll just call it when the app is 106

//initialized 107

deviceScaleFactor = [[NSUserDefaults standardUserDefaults] 108

floatForKey:@"DeviceScaleFactor"]; NSLog(@"The device scale 109

factor = %g", deviceScaleFactor); 110

111

112

// setup the location manager 113

self.locationManager = [[CLLocationManager alloc] init]; 114

115

index = 0; 116

48



117

counter = 0; 118

119

fftCounterForGraph = 0; 120

121

conversionFactorMicroTeslaToMilliGauss = 10.0; 122

123

conversionFactorNanosecondsToMilliseconds = 1e-6; 124

125

functionCounter = 1; 126

127

graphObject = [[GraphObject alloc] 128

initWithGraphHostingView:graphHostingView]; 129

} 130

} 131

- (void)viewDidUnload { [self setGraphDisplayControl:nil]; 132

graphHostingView = nil; 133

// graphView = nil; 134

stopButton = nil; [self setShowDisplaySwitch:nil]; 135

startButton = nil; [self setZReadingDisplayTitleButton:nil]; 136

[self setYReadingDisplayTitleButton:nil]; [self 137

setXReadingDisplayTitleButton:nil]; 138

//[self setStopButtonPressed:nil]; 139

// 140

self.xLabel = nil; self.yLabel = nil; self.zLabel = nil; 141

self.graphObject = nil; 142

} 143

} 144

- (void)dealloc { 145

//Since ARC is now included in the project, this method 146

//exists simply to stop the compass 147

[locationManager stopUpdatingHeading]; 148

} 149

} 150

- (IBAction)settingsButtonPressed:(id)sender { 151

152

153

NSLog(@"Settings button pressed"); 154

155

[self.navigationController 156

pushViewController:[[SettingsViewController alloc] 157

init]animated:YES]; 158

159

} 160

} 161

- (IBAction)sendMailButtonPressed:(id)sender { 162

//NSLog(@"Send Mail button pressed"); 163

// 164

NSArray *paths = 165

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory , 166

NSUserDomainMask, YES); NSString *documentsDir = [paths 167

objectAtIndex:0]; NSFileManager *fileManager = 168

[NSFileManager defaultManager]; NSError *error = nil; 169

NSMutableArray *filePathArray = [[NSMutableArray alloc] 170

init]; 171

172

NSArray * files = [[NSFileManager defaultManager] 173

contentsOfDirectoryAtPath:documentsDir error:nil]; 174

175

if ([files count] == 0) { 176

//There are no files to be emailed 177

[[iToast makeText:NSLocalizedString(@"No files to 178

email.", @"")] show]; return; 179
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} 180

} 181

if ([MFMailComposeViewController canSendMail]) { 182

183

MFMailComposeViewController *composer = 184

[[MFMailComposeViewController alloc] init]; 185

composer.mailComposeDelegate = self; 186

187

[composer setSubject:[NSString 188

stringWithFormat:NSLocalizedString(@"Readings", nil), 189

@"ABC"]]; 190

191

int indexer = 0; 192

193

for (NSString *file in [fileManager 194

contentsOfDirectoryAtPath:documentsDir error:&error]) { 195

NSString *filePath = [documentsDir 196

stringByAppendingPathComponent:file]; [filePathArray 197

insertObject:filePath atIndex:indexer]; 198

199

NSData *fileData = [NSData 200

dataWithContentsOfFile:[filePathArray 201

objectAtIndex:indexer]]; 202

203

[composer addAttachmentData:fileData 204

mimeType:@"text/plain" fileName:[[filePathArray 205

objectAtIndex:indexer] 206

stringByReplacingOccurrencesOfString:documentsDir 207

withString:@""]]; 208

209

210

NSLog(@"File : %@", filePath); indexer++; 211

} 212

} 213

NSLog(@"File Path Array = %@", filePathArray); 214

215

// Fill out the email body text 216

NSString *emailBody = [NSString 217

stringWithFormat:NSLocalizedString(@"Readings from 218

Date", filePath), @"ABCD", @"ABCDE"]; [composer 219

setMessageBody:emailBody isHTML:YES]; 220

221

[self presentViewController:composer animated:YES 222

completion:NULL]; 223

224

225

} 226

}} 227

}} 228

}} 229

- (IBAction)graphDisplaySwitch:(id)sender { int dummyCounter = 230

index; 231

//NSLog(@"Dummy counter = %d", dummyCounter); 232

// 233

if(dummyCounter > 0) { //The process is running, and so 234

needs to be stopped 235

236

[locationManager stopUpdatingHeading]; 237

238

counter = 0; 239

240

fftCounterForGraph = 0; 241

242
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index = 0; 243

244

} 245

UISegmentedControl *segmentedControl = (UISegmentedControl 246

*) sender; NSInteger selectedSegment = 247

segmentedControl.selectedSegmentIndex; 248

249

if (selectedSegment == 0) { [[NSUserDefaults 250

standardUserDefaults] setInteger:1 251

forKey:@"SelectWhatToDisplay"]; 252

//NSLog(@"%ld", (long)[[NSUserDefaults 253

//standardUserDefaults] 254

//integerForKey:@"SelectWhatToDisplay"]); 255

[graphObject setShowFFTTo:NO]; 256

} 257

else{ [[NSUserDefaults standardUserDefaults] setInteger:2 258

forKey:@"SelectWhatToDisplay"]; 259

//NSLog(@"%ld", (long)[[NSUserDefaults 260

//standardUserDefaults] 261

//integerForKey:@"SelectWhatToDisplay"]); 262

[graphObject setShowFFTTo:YES]; 263

} 264

} 265

//Clear the graph before changing what to display 266

[graphObject clearDrawing]; 267

268

if(dummyCounter > 0) { //The process was already happening, 269

and so needs to be restarted after the selection has been 270

made [self startButtonPressed:nil]; 271

} 272

} 273

}} 274

}} 275

- 276

(void)mailComposeController:(MFMailComposeViewController*) 277

controller didFinishWithResult:(MFMailComposeResult)result 278

error:(NSError*)error { 279

280

switch (result) { case MFMailComposeResultCancelled: 281

NSLog(@"Result: Canceled"); break; case 282

MFMailComposeResultSaved: NSLog(@"Result: Saved"); break; 283

case MFMailComposeResultSent: NSLog(@"Result: Sent"); break; 284

case MFMailComposeResultFailed: NSLog(@"Result: Failed"); 285

break; default: NSLog(@"Result: Not Sent"); break; 286

} 287

} 288

[self becomeFirstResponder]; [self 289

dismissModalViewControllerAnimated:YES]; 290

} 291

} 292

#warning Sometimes this does not get an updated heading - This 293

#is causing problems 294

# 295

- (IBAction)startButtonPressed:(id)sender { 296

297

[graphObject clearDrawing]; 298

299

//NSLog(@"Start button pressed"); 300

// 301

[sendMailButton setEnabled:NO]; 302

303

304

if(index == 0){ 305
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306

[startButton setTitle:@"Reset" 307

forState:UIControlStateNormal]; 308

309

} 310

else if(index != 0){ [locationManager stopUpdatingHeading]; 311

index = 0; counter = 0; fftCounterForGraph = 0; 312

} 313

} 314

// check if the hardware has a compass 315

if ([CLLocationManager headingAvailable] == NO) { 316

// No compass is available. This application cannot 317

// function without a compass, 318

// so a dialog will be displayed and no magnetic data 319

// will be measured. 320

self.locationManager = nil; UIAlertView *noCompassAlert 321

= [[UIAlertView alloc] initWithTitle:@"No Compass 322

Available!" message:@"This device does not have the 323

ability to measure magnetic fields." delegate:nil 324

cancelButtonTitle:@"OK" otherButtonTitles:nil]; 325

[noCompassAlert show]; 326

327

} 328

else { //the hardware does have a compass 329

330

//initialize the array with the specified capacity 331

if ([[NSUserDefaults standardUserDefaults] 332

boolForKey:@"arrayCapacity"] != 0) arrayCapacity = 333

[[NSUserDefaults standardUserDefaults] 334

integerForKey:@"arrayCapacity"]; else{ arrayCapacity = 335

512; [[NSUserDefaults standardUserDefaults] 336

setInteger:arrayCapacity forKey:@"arrayCapacity"]; 337

} 338

} 339

NSLog(@"Array capacity = %d", arrayCapacity); 340

341

RMSAddX = 0.0; RMSAddY = 0.0; RMSAddZ = 0.0; RMSCounter 342

= 1; 343

344

345

arrayOfXData = new float[arrayCapacity]; 346

arrayOfYData = new float[arrayCapacity]; 347

arrayOfZData = new float[arrayCapacity]; 348

arrayOfForwardFFT_X = new float[arrayCapacity]; 349

arrayOfForwardFFT_Y = new float[arrayCapacity]; 350

arrayOfForwardFFT_Z = new float[arrayCapacity]; 351

arrayOfMagnitudeData = new float[arrayCapacity]; 352

353

354

arrayOfSummed_FFT_X = new float[arrayCapacity]; 355

arrayOfSummed_FFT_Y = new float[arrayCapacity]; 356

arrayOfSummed_FFT_Z = new float[arrayCapacity]; 357

358

arrayOfSummed_FFT_X[0] = 1.0; arrayOfSummed_FFT_Y[0] = 359

1.0; arrayOfSummed_FFT_Z[0] = 1.0; 360

361

for (int i = 1 ; i < arrayCapacity; i++) { 362

arrayOfSummed_FFT_X[i] = 0.0; arrayOfSummed_FFT_Y[i] = 363

0.0; arrayOfSummed_FFT_Z[i] = 0.0; 364

365

} 366

} 367

} 368
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if ([[NSUserDefaults standardUserDefaults] 369

boolForKey:@"numberOfSummations"] == 0) { 370

371

setNumberOfFFTsToSumOver = 0; [[NSUserDefaults 372

standardUserDefaults] 373

setInteger:setNumberOfFFTsToSumOver 374

forKey:@"numberOfSummations"]; 375

} 376

} 377

else{ setNumberOfFFTsToSumOver = [[NSUserDefaults 378

standardUserDefaults] 379

integerForKey:@"numberOfSummations"]; 380

} 381

} 382

NSLog(@"Number of FFTs to sum over = %d", 383

setNumberOfFFTsToSumOver); 384

385

if ([[NSUserDefaults standardUserDefaults] 386

boolForKey:@"baselineOffset"] == 0) { 387

388

baselineOffset = 1.0; [[NSUserDefaults 389

standardUserDefaults] setFloat:baselineOffset 390

forKey:@"baselineOffset"]; 391

} 392

} 393

else{ baselineOffset = [[NSUserDefaults 394

standardUserDefaults] floatForKey:@"baselineOffset"]; 395

} 396

} 397

NSLog(@"Device baseline offset = %f mG", 398

baselineOffset); 399

400

401

402

if ([[NSUserDefaults standardUserDefaults] 403

boolForKey:@"FudgeFactor"] == 0) { [[NSUserDefaults 404

standardUserDefaults] 405

setFloat:(fudgeFactorForAraySize_128 * [[NSUserDefaults 406

standardUserDefaults] integerForKey:@"arrayCapacity"] / 407

128.0) forKey:@"FudgeFactor"]; fudgeFactor = 408

[[NSUserDefaults standardUserDefaults] 409

floatForKey:@"FudgeFactor"]; 410

} 411

else { fudgeFactor = [[NSUserDefaults 412

standardUserDefaults] floatForKey:@"FudgeFactor"]; 413

} 414

} 415

NSLog(@"Fudge Factor (for array size %d) = %g", 416

arrayCapacity,fudgeFactor); 417

418

if ([[NSUserDefaults standardUserDefaults] 419

boolForKey:@"SincOffset"] == 0) { [[NSUserDefaults 420

standardUserDefaults] setFloat:0.0018 421

forKey:@"SincOffset"]; sincOffset = [[NSUserDefaults 422

standardUserDefaults] floatForKey:@"SincOffset"]; 423

} 424

else { sincOffset = [[NSUserDefaults 425

standardUserDefaults] floatForKey:@"SincOffset"]; 426

} 427

} 428

NSLog(@"Sinc Offset = %g", sincOffset); 429

430

//set up showing display according to user preferences 431
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if ([[NSUserDefaults standardUserDefaults] 432

boolForKey:@"showDisplaySwitchValue"] != 0) { switch 433

([[NSUserDefaults standardUserDefaults] 434

integerForKey:@"showDisplaySwitchValue"]) { case 3: 435

showDisplay = YES; break; 436

437

case 2: showDisplay = NO; break; 438

} 439

} } 440

} } 441

else { //default case showDisplay = YES; 442

[[NSUserDefaults standardUserDefaults] setInteger:3 443

forKey:@"showDisplaySwitchValue"]; 444

} 445

} 446

} 447

//set up file saving as per user preferences 448

if ([[NSUserDefaults standardUserDefaults] 449

boolForKey:@"fileSaveSwitchValue"] != 0) { switch 450

([[NSUserDefaults standardUserDefaults] 451

integerForKey:@"fileSaveSwitchValue"]) { case 3: 452

saveFiles = YES; break; 453

454

case 2: saveFiles = NO; break; 455

} 456

} } 457

} } 458

else { //default case saveFiles = NO; [[NSUserDefaults 459

standardUserDefaults] setInteger:2 460

forKey:@"fileSaveSwitchValue"]; 461

} 462

} 463

// heading service configuration 464

locationManager.headingFilter = kCLHeadingFilterNone; 465

466

// setup delegate callbacks 467

locationManager.delegate = self; 468

469

// start the compass 470

[locationManager startUpdatingHeading]; 471

472

[stopButton setEnabled:YES]; 473

474

} 475

} 476

}} 477

}} 478

// This delegate method is invoked when the location manager has 479

// heading data. 480

- (void)locationManager:(CLLocationManager *)manager 481

didUpdateHeading:(CLHeading *)heading { 482

483

//NSLog(@"Index = %d", index % arrayCapacity); 484

index = index % arrayCapacity; 485

486

487

// if(counter == 0) { NSLog(@"Time at 0 samples = 488

// %lu",getMStime()); } 489

if(index == 0){ initialX = (float)heading.x * 490

conversionFactorMicroTeslaToMilliGauss; initialY = 491

(float)heading.y * conversionFactorMicroTeslaToMilliGauss; 492

initialZ = (float)heading.z * 493

conversionFactorMicroTeslaToMilliGauss; 494
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495

//NSLog(@"initial X = %0.3f, Y = %0.3f, Z=%0.3f\n", 496

//initialX, initialY, initialZ); 497

// } 498

// } 499

arrayOfXData[index] = ( (float)heading.x * 500

conversionFactorMicroTeslaToMilliGauss ); //- initialX; 501

arrayOfYData[index] = ( (float)heading.y * 502

conversionFactorMicroTeslaToMilliGauss ); //- initialY; 503

arrayOfZData[index] = ( (float)heading.z * 504

conversionFactorMicroTeslaToMilliGauss ); //- initialZ; 505

506

if (index == (arrayCapacity - 1)) { //To average over the 507

whole of the array size 508

509

510

//NSLog(@"\nIndex = %d\nCounter = %d\n", index, counter); 511

// 512

//Do the FFTs 513

// 514

[self FFT_of_an_ArrayWithTheInputArray:arrayOfXData 515

theOutputArray:arrayOfForwardFFT_X 516

andTheNumberOfSamples:arrayCapacity]; [self 517

FFT_of_an_ArrayWithTheInputArray:arrayOfYData 518

theOutputArray:arrayOfForwardFFT_Y 519

andTheNumberOfSamples:arrayCapacity]; [self 520

FFT_of_an_ArrayWithTheInputArray:arrayOfZData 521

theOutputArray:arrayOfForwardFFT_Z 522

andTheNumberOfSamples:arrayCapacity]; 523

524

//Fit the function 525

[self 526

DivideByFittingFunctionWithTheInputArray: 527

arrayOfForwardFFT_X andTheNumberOfSamples:arrayCapacity 528

andTheNumberOfFFTsToSumOver:setNumberOfFFTsToSumOver]; 529

[self 530

DivideByFittingFunctionWithTheInputArray: 531

arrayOfForwardFFT_Y andTheNumberOfSamples:arrayCapacity 532

andTheNumberOfFFTsToSumOver:setNumberOfFFTsToSumOver]; 533

[self 534

DivideByFittingFunctionWithTheInputArray: 535

arrayOfForwardFFT_Z andTheNumberOfSamples:arrayCapacity 536

andTheNumberOfFFTsToSumOver:setNumberOfFFTsToSumOver]; 537

538

539

540

//I’m already summing the FFT here, should cut out the 541

//summing happening in the graph and save half the time. 542

//Discard the second half and the very first element 543

for (int i = 1 ; i < arrayCapacity/2; i++) { 544

//Here i : 0.....arrayCapacity, and j : fftCounter 545

//for the ith row and jth column 546

arrayOfSummed_FFT_X[i] = 547

((fabs(arrayOfSummed_FFT_X[i])*fftCounterForGraph + 548

arrayOfForwardFFT_X[i])/(fftCounterForGraph + 549

1))/scaleFactorToConvertToSpicerRMSValues; 550

//NSLog(@"Element (%d,%d) => %g\t",i,j, 551

//arrayOfSummed_FFT_X[i * (setNumberOfFFTsToSumOver 552

//+ 1) + j]); 553

arrayOfSummed_FFT_Y[i] = 554

((fabs(arrayOfSummed_FFT_Y[i])*fftCounterForGraph + 555

arrayOfForwardFFT_Y[i])/(fftCounterForGraph + 556

1))/scaleFactorToConvertToSpicerRMSValues; 557
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arrayOfSummed_FFT_Z[i] = 558

((fabs(arrayOfSummed_FFT_Z[i])*fftCounterForGraph + 559

arrayOfForwardFFT_Z[i])/(fftCounterForGraph + 560

1))/scaleFactorToConvertToSpicerRMSValues; 561

} 562

} 563

if (graphDisplayControl.selectedSegmentIndex == 1) { 564

//Display the FFT here. NSLog(@"fft counter for 565

//graph = %d", fftCounterForGraph); 566

[graphObject plotFFTwithX:arrayOfSummed_FFT_X 567

andY:arrayOfSummed_FFT_Y andZ:arrayOfSummed_FFT_Z 568

andCounter:fftCounterForGraph]; 569

570

571

value58Hz = ((arrayCapacity/2)/64 * 58) - 1; 572

value64Hz = (arrayCapacity/2) - 1; 573

574

//Update the value on the labels with the value at 575

//60Hz 576

FFTXValue = fabs((arrayOfSummed_FFT_X[value58Hz] + 577

arrayOfSummed_FFT_X[value58Hz - 1] + 578

arrayOfSummed_FFT_X[value58Hz + 1]) - 579

(arrayOfSummed_FFT_X[value64Hz] + 580

arrayOfSummed_FFT_X[value64Hz - 1] + 581

arrayOfSummed_FFT_X[value64Hz - 2]) - 582

baselineOffset); 583

584

FFTYValue = fabs((arrayOfSummed_FFT_Y[value58Hz] + 585

arrayOfSummed_FFT_Y[value58Hz - 1] + 586

arrayOfSummed_FFT_Y[value58Hz + 1]) - 587

(arrayOfSummed_FFT_Y[value64Hz] + 588

arrayOfSummed_FFT_Y[value64Hz - 1] + 589

arrayOfSummed_FFT_Y[value64Hz - 2]) - 590

baselineOffset); 591

592

FFTZValue = fabs((arrayOfSummed_FFT_Z[value58Hz] + 593

arrayOfSummed_FFT_Z[value58Hz - 1] + 594

arrayOfSummed_FFT_Z[value58Hz + 1]) - 595

(arrayOfSummed_FFT_Z[value64Hz] + 596

arrayOfSummed_FFT_Z[value64Hz - 1] + 597

arrayOfSummed_FFT_Z[value64Hz - 2]) - 598

baselineOffset); 599

600

//Display after subtracting the background and the 601

//average of the last three values 602

// FFTXValue = fabs((arrayOfSummed_FFT_X[value58Hz]) 603

// - (arrayOfSummed_FFT_X[value64Hz] + 604

// arrayOfSummed_FFT_X[value64Hz - 1] + 605

// arrayOfSummed_FFT_X[value64Hz - 2])/3.0 - 606

// baselineOffset); 607

// // 608

// FFTYValue = fabs((arrayOfSummed_FFT_Y[value58Hz]) 609

// - (arrayOfSummed_FFT_Y[value64Hz] + 610

// arrayOfSummed_FFT_Y[value64Hz - 1] + 611

// arrayOfSummed_FFT_Y[value64Hz - 2])/3.0 - 612

// baselineOffset); 613

// // 614

// FFTZValue = fabs((arrayOfSummed_FFT_Z[value58Hz]) 615

// - (arrayOfSummed_FFT_Z[value64Hz] + 616

// arrayOfSummed_FFT_Z[value64Hz - 1] + 617

// arrayOfSummed_FFT_Z[value64Hz - 2])/3.0 - 618

// baselineOffset); 619

// 620

56



// 621

// 622

[xLabel setText:[NSString stringWithFormat:@"%0.3f 623

mG", FFTXValue]]; [yLabel setText:[NSString 624

stringWithFormat:@"%0.3f mG", FFTYValue]]; [zLabel 625

setText:[NSString stringWithFormat:@"%0.3f mG", 626

FFTZValue]]; 627

628

} 629

} 630

fftCounterForGraph++; 631

632

//Add the FFTs to the sum 633

// 634

NSLog(@"The FFT counter = %d", fftCounterForGraph); 635

636

} 637

} 638

if(showDisplay) { 639

// Update the graph with the new magnetic reading. 640

// 641

if (graphDisplayControl.selectedSegmentIndex == 0) { 642

//Plotting values in time 643

644

[graphObject updateHistoryWithX:(arrayOfXData[index] 645

- initialX) y:(arrayOfYData[index] - initialY) 646

z:(arrayOfZData[index] - initialZ)]; 647

648

[xLabel setText:[NSString stringWithFormat:@"%0.3f 649

mG", [self returnRMSforvalue:(arrayOfXData[index] - 650

initialX) andIdentifier:0]]]; [yLabel 651

setText:[NSString stringWithFormat:@"%0.3f mG", 652

[self returnRMSforvalue:(arrayOfYData[index] - 653

initialY) andIdentifier:1]]]; [zLabel 654

setText:[NSString stringWithFormat:@"%0.3f mG", 655

[self returnRMSforvalue:(arrayOfZData[index] - 656

initialZ) andIdentifier:2]]]; 657

} 658

} } 659

} } 660

index++; RMSCounter++; 661

662

} 663

} 664

} 665

- (IBAction)stopButtonPressed:(id)sender { 666

667

//NSLog(@"%@", arrayOfData); 668

// while (index%arrayCapacity !=0 ) { 669

// // } 670

// // } 671

NSLog(@"\nIndex = %d", index); 672

673

if(index > 0){ 674

675

[locationManager stopUpdatingHeading]; 676

677

/*-------------------------- 678

//Test code for the circular shift function 679

float *dummyTestArray; dummyTestArray = 680

(float*)malloc(arrayCapacity * sizeof(float)); for (int 681

i = 0; i < arrayCapacity; i++) { dummyTestArray[i] = 682

(float)(i+1.0); 683
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} 684

for (int i = 0; i < arrayCapacity; i++) { NSLog(@"The 685

dummy array before shift, element %d = %f", i, 686

dummyTestArray[i]); 687

} 688

[self 689

circleShiftLeftTheElementsInTheFloatArray: 690

dummyTestArray byNumberOfElements:index 691

andArraySize:arrayCapacity]; for (int i = 0; i < 692

arrayCapacity; i++) { NSLog(@"The dummy array after 693

shift by %d, element %d = %f", index, i, 694

dummyTestArray[i]); 695

} 696

free(dummyTestArray); ---------------------------*/ 697

698

[self 699

circleShiftLeftTheElementsInTheFloatArray:arrayOfXData 700

byNumberOfElements:index andArraySize:arrayCapacity]; 701

[self 702

circleShiftLeftTheElementsInTheFloatArray:arrayOfYData 703

byNumberOfElements:index andArraySize:arrayCapacity]; 704

[self 705

circleShiftLeftTheElementsInTheFloatArray:arrayOfZData 706

byNumberOfElements:index andArraySize:arrayCapacity]; 707

708

// NSString *stringX = [[NSString alloc] init]; 709

// // 710

// for (int i=0; i<arrayCapacity; i++) { 711

// //NSLog(@"index: %d, amp: %.2f",i, 712

// //transformedArray[i]); 713

// stringX = [stringX 714

// stringByAppendingString:[NSString 715

// stringWithFormat:@"\n%0.2f", 716

// arrayOfXData[i]]]; 717

// // } 718

// NSLog(@"%@", stringX); NSLog(@"---"); 719

// 720

// 721

std::cout << "\nThe fitted arrays are \n"; for (int i = 722

0 ; i < arrayCapacity; i++) { std::cout << 723

arrayOfSummed_FFT_X[i] << "\t" << arrayOfSummed_FFT_Y[i] 724

<< "\t" << arrayOfSummed_FFT_Z[i] << "\t"; std::cout << 725

"\n"; 726

} 727

} 728

#warning Look at this again - Commenting it out for testing 729

#purposes at the moment. 730

//Alert the user when the FFT is not being 731

//written/summed when the compass shouts out interference 732

// if ((arrayOfSummed_FFT_X[arrayCapacity - 1] == 733

// 0)&&(arrayOfSummed_FFT_X[arrayCapacity - 2] == 734

// 0)&&(arrayOfSummed_FFT_X[arrayCapacity - 3] == 0)) { 735

// [[iToast makeText:NSLocalizedString(@"The saved FFT 736

// array may be corrupted.", @"")] show]; 737

// // } 738

// // } 739

// // } 740

#warning Need to clearly document what happend in the text file 741

#that this writes - whether it is summing up FFTs or not, and 742

#what options the user has chosen 743

if (saveFiles) { [self fileSaverforArrayX:arrayOfXData 744

arrayY:arrayOfYData arrayZ:arrayOfZData 745

summedFFTArray_X:arrayOfSummed_FFT_X 746
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summedFFTArray_Y:arrayOfSummed_FFT_Y 747

summedFFTArray_Z:arrayOfSummed_FFT_Z 748

fftarrayX:arrayOfForwardFFT_X 749

fftarrayY:arrayOfForwardFFT_Y 750

fftarrayZ:arrayOfForwardFFT_Z]; 751

} 752

} 753

} 754

} 755

//NSLog(@"The element at arrayCapacity %d is %f", 756

//arrayCapacity, arrayOfXData[arrayCapacity]); 757

// 758

counter = 0; 759

760

fftCounterForGraph = 0; 761

762

index = 0; 763

764

//Free all arrays 765

if (*arrayOfXData) delete [] arrayOfXData; if 766

(*arrayOfYData) delete [] arrayOfYData; if 767

(*arrayOfZData) delete [] arrayOfZData; 768

769

if (*arrayOfMagnitudeData) delete [] 770

arrayOfMagnitudeData; 771

772

if (*arrayOfForwardFFT_X) delete [] arrayOfForwardFFT_X; 773

if (*arrayOfForwardFFT_Y) delete [] arrayOfForwardFFT_Y; 774

if (*arrayOfForwardFFT_Z) delete [] arrayOfForwardFFT_Z; 775

776

if (*arrayOfSummed_FFT_X) delete [] arrayOfSummed_FFT_X; 777

if (*arrayOfSummed_FFT_Y) delete [] arrayOfSummed_FFT_Y; 778

if (*arrayOfSummed_FFT_Z) delete [] arrayOfSummed_FFT_Z; 779

780

781

NSLog(@"\nIndex = %d", index); 782

783

[sendMailButton setEnabled:YES]; 784

785

} 786

} 787

[startButton setTitle:@"Start" 788

forState:UIControlStateNormal]; [stopButton setEnabled:NO]; 789

790

} 791

} 792

} 793

-(void) 794

circleShiftLeftTheElementsInTheFloatArray:(float*)inputArray 795

byNumberOfElements:(int)numberOfElements 796

andArraySize:(int)sizeOfTheArray{ 797

798

/* 799

This algorithm shifts to the LEFT by numberOfElements 800

801

Starting Array: 1 2 3 4 5 6 7 802

803

After reversing the first three elements 3 2 1 4 5 6 7 804

805

After reversing the remaining elements 3 2 1 7 6 5 4 806

807

Finally reverse the entire array to get the final rotated 808

array 4 5 6 7 1 2 3 */ 809
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810

/* 811

IF you want to shift right 812

813

Rotating n elements to the left is the same as rotating 814

(size - n) elements to the right, which is what we want 815

816

So we set up the number of elements as sizeOfTheArray - 817

numberOfElements 818

819

*/ 820

821

std::reverse(inputArray, inputArray + numberOfElements); 822

std::reverse(inputArray + numberOfElements, inputArray + 823

sizeOfTheArray); std::reverse(inputArray, inputArray + 824

sizeOfTheArray); 825

} 826

} 827

// This delegate method is invoked when the location managed 828

// encounters an error condition. 829

- (void)locationManager:(CLLocationManager *)manager 830

didFailWithError:(NSError *)error{ if ([error code] == 831

kCLErrorDenied) { 832

// This error indicates that the user has denied the 833

// application’s request to use location services. 834

[manager stopUpdatingHeading]; 835

} else if ([error code] == kCLErrorHeadingFailure) { 836

// This error indicates that the heading could not be 837

// determined, most likely because of strong magnetic 838

// interference. 839

// } 840

// }} 841

// }} 842

//Return RMSValue so far 843

- (float)returnRMSforvalue:(float) valuePassed 844

andIdentifier:(int)identifier { float returnVal; 845

846

switch (identifier) { case 0: RMSAddX += 847

valuePassed*valuePassed; returnVal = 848

sqrt(RMSAddX/RMSCounter); break; 849

850

case 1: RMSAddY += valuePassed*valuePassed; returnVal = 851

sqrt(RMSAddY/RMSCounter); break; 852

853

854

default: RMSAddZ += valuePassed*valuePassed; returnVal = 855

sqrt(RMSAddZ/RMSCounter); break; 856

} 857

} 858

} 859

} 860

return returnVal; 861

} 862

} 863

} 864

//-----To get time in milliseconds---// 865

// 866

static unsigned long getMStime(void) { 867

868

struct timeval time; gettimeofday(&time, NULL); return 869

(time.tv_sec * 1000) + (time.tv_usec / 1000); 870

} 871

//----------------------------------// 872
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// 873

// 874

// 875

//To account for compass interference by using Apple’s standard 876

//figure-of-8 pattern cancellation, uncomment the following 877

//function 878

// 879

-(BOOL)locationManagerShouldDisplayHeadingCalibration:( 880

CLLocationManager *)manager{ return YES; 881

} 882

} 883

- (void)fileSaverforArrayX: (float *)arrayToBeSavedX arrayY: 884

(float *)arrayToBeSavedY arrayZ: (float *)arrayToBeSavedZ 885

summedFFTArray_X:(float *)summedFFTArrayX 886

summedFFTArray_Y:(float *)summedFFTArrayY 887

summedFFTArray_Z:(float *)summedFFTArrayZ fftarrayX: (float 888

*)FFTArrayToBeSavedX fftarrayY: (float *)FFTArrayToBeSavedY 889

fftarrayZ: (float *)FFTArrayToBeSavedZ { //withTimeArray: (long 890

*)timeArray { 891

892

NSArray *paths = 893

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 894

NSUserDomainMask, YES); NSString *basePath = ([paths count] 895

> 0) ? [paths objectAtIndex:0] : nil; 896

897

NSString *fileName = @"ReadingTest_"; 898

899

NSString *deviceModel = [[NSUserDefaults 900

standardUserDefaults] objectForKey:@"deviceModel"]; 901

902

//Add device model to filename 903

fileName = [fileName stringByAppendingString:deviceModel]; 904

905

// get the current date 906

NSDate *date = [NSDate date]; 907

908

// format it 909

NSDateFormatter *dateFormat = [[NSDateFormatter alloc]init]; 910

[dateFormat setDateFormat:@"_YYYY_MM_dd_HH_mm_ss_zzz"]; 911

912

// convert it to a string 913

NSString *dateString = [dateFormat stringFromDate:date]; 914

915

// free up memory 916

// 917

fileName = [fileName stringByAppendingString:dateString]; 918

fileName = [fileName stringByAppendingString:@".txt"]; 919

920

NSString *filePath = [basePath 921

stringByAppendingPathComponent:fileName]; 922

923

//NSLog(@"%@", filePath); 924

// 925

NSString *stringToWrite = [[NSString alloc] init]; 926

927

for (int i=0; i < arrayCapacity; i++) 928

929

{ stringToWrite=[stringToWrite 930

stringByAppendingString:[NSString 931

stringWithFormat:@"%g\t%g\t%g\t%g\t%g\t%g\n", 932

arrayToBeSavedX[i], arrayToBeSavedY[i], 933

arrayToBeSavedZ[i], summedFFTArrayX[i], 934

summedFFTArrayY[i], summedFFTArrayZ[i] 935
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]]; 936

]] 937

]] }938

]] }939

// NSLog(@"The function counter = %d", functionCounter); 940

// functionCounter += 1; 941

// 942

// 943

[stringToWrite writeToFile:filePath atomically:YES 944

encoding:NSUTF8StringEncoding error:nil]; 945

// NSLog(@"%@", stringToWrite); 946

// 947

// } 948

// } 949

/*This method returns the forward FFT array (using the 950

/accelerate framework) of an input array with 951

the number of samples being the size of the array*/ 952

953

- (void) FFT_of_an_ArrayWithTheInputArray:(float *)inputArray 954

theOutputArray:(float*)outputArray andTheNumberOfSamples:(int) 955

numSamples { 956

957

//Number of Samples must be a power of 2 958

// 959

//Output Array 960

float *transformedArray = (float 961

*)malloc(sizeof(float)*numSamples); 962

963

FFTAccelerate *fftAccel = new FFTAccelerate(numSamples); 964

fftAccel->doFFTReal(inputArray, transformedArray, 965

numSamples); 966

967

outputArray[0] = transformedArray[0] * 968

(float)numSamples;//Scaling factor : The first element is 969

scaled by N, the others are scaled by N/2 970

971

for (int i=1; i<numSamples; i++) { 972

//NSLog(@"index: %d, amp: %.2f",i, transformedArray[i]); 973

outputArray[i] = transformedArray[i] * 974

(float)numSamples/2.0;//Scaling factor : The first 975

element is scaled by N, the others are scaled by N/2 976

} 977

} 978

// NSLog(@"%@", stringToWrite); NSLog(@"---"); 979

delete(fftAccel); 980

} 981

} 982

} 983

} 984

} 985

/* Fitting function for the device */ 986

- (float) fittingFunctionForDevicesForElement : (float) x{ 987

988

float fittingFunctionValue; 989

990

if (x == 0) { fittingFunctionValue = 1; 991

} 992

} 993

else{ float sinc = (sin(M_PI * x/fudgeFactor))/(M_PI * 994

x/fudgeFactor); fittingFunctionValue = deviceScaleFactor * 995

sqrt(sinc*sinc) + sincOffset; 996

} 997

} 998
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return fittingFunctionValue; 999

} 1000

} 1001

- (void) DivideByFittingFunctionWithTheInputArray:(float 1002

*)inputArray andTheNumberOfSamples:(int) numSamples 1003

andTheNumberOfFFTsToSumOver:(int)numberOfFFTsToSumOver { 1004

//#warning Check for the log values and see if it’s 1005

//#necessary ! 1006

//Divide by the fitting function 1007

for (int i=1; i<numSamples/2; i++) { 1008

//Account for the division by a small number at 25 and 50 1009

if ((i == ((numSamples/2)/64) * 50)||(i == 1010

((numSamples/2)/64) * 25)) { break; 1011

} 1012

} 1013

//Compensate for the sinc function 1014

inputArray[i] = inputArray[i]/([self 1015

fittingFunctionForDevicesForElement:((i * 1.0) + 1)]); 1016

//For individual arrays which will later be summed. 1017

1018

} 1019

}} 1020

}} 1021

}} 1022

//Device orientation 1023

// 1024

#ifdef IOS_OLDER_THAN_6 1025

- 1026

(BOOL)shouldAutorotateToInterfaceOrientation:( 1027

UIInterfaceOrientation)toInterfaceOrientation{ 1028

//[image_signature setImage:[self 1029

//resizeImage:image_signature.image]]; 1030

return (toInterfaceOrientation == 1031

UIInterfaceOrientationLandscapeLeft); 1032

} 1033

#endif ifdef IOS_NEWER_OR_EQUAL_TO_6 1034

-(BOOL)shouldAutorotate { return YES; 1035

} 1036

- (NSUInteger)supportedInterfaceOrientations { 1037

//[image_signature setImage:[self 1038

//resizeImage:image_signature.image]]; 1039

return UIInterfaceOrientationMaskLandscapeLeft; 1040

} 1041

#endif 1042

# 1043

@end 1044

C.3 The graph subroutine

/* 1

File: GraphView.h Abstract: A custom view for plotting history 2

of x, y, and z magnetic values. Version: 1.2 3

4

*/ 5

6

#import "TeslameterViewController.h" import 7

#"CorePlot-CocoaTouch.h" import "Stack.h" import "Queue.h" 8
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# 9

@class TeslameterViewController; 10

11

@interface GraphObject : 12

NSObject<CPTPlotDataSource,CPTAxisDelegate,CPTPlotSpaceDelegate, 13

CPTScatterPlotDelegate> { NSUInteger nextIndex, 14

nextIndexCounter; 15

16

CPTGraphHostingView *graphHostingView; 17

18

CPTXYGraph *graph; 19

20

NSMutableArray *xDataForPlot, *yDataForPlot, *zDataForPlot; 21

22

NSMutableArray *xFFTPlot, *yFFTPlot, *zFFTPlot; 23

24

NSString *xPlotIdentifier, *yPlotIdentifier, 25

*zPlotIdentifier, *windowPlotIdentifier, 26

*windowPlotIdentifier2, *backgroundLinePlotIdentifier; 27

28

BOOL showFFT; 29

30

int plotLength; 31

32

TeslameterViewController *viewController; 33

} 34

} 35

@property (nonatomic, strong) CPTGraphHostingView 36

*graphHostingView; @property (nonatomic, strong) CPTXYGraph 37

*graph; 38

39

- (id)initWithGraphHostingView:(CPTGraphHostingView 40

*)hostingView; 41

42

43

- (void)updateHistoryWithX:(float)x y:(float)y z:(float)z; 44

45

- (void)plotFFTwithX:(float *)FFTx andY:(float *)FFTy 46

andZ:(float *)FFTz andCounter:(int)counter; 47

48

- (void)clearDrawing; 49

50

- (void)initPlot; 51

52

- (void)setShowFFTTo:(BOOL) yesOrNo; 53

54

55

56

@end 57

/* 1

File: GraphView.m Abstract: A custom view for plotting history 2

of x, y, and z magnetic values. Version: 1.2 */ 3

4

#import "GraphObject.h" 5

# 6

@interface GraphObject () 7

8

@end 9

10

const NSUInteger kMaxDataPoints = 200 + 1; 11

12
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@implementation GraphObject 13

14

@synthesize graphHostingView = graphHostingView; @synthesize 15

graph = graph; 16

17

-(id)initWithGraphHostingView:(CPTGraphHostingView 18

*)hostingView{ 19

20

self = [super init]; 21

22

if ( self != nil ) { graphHostingView = hostingView; graph = 23

nil; 24

} 25

} 26

xDataForPlot = [[NSMutableArray alloc] 27

initWithCapacity:kMaxDataPoints]; yDataForPlot = 28

[[NSMutableArray alloc] initWithCapacity:kMaxDataPoints]; 29

zDataForPlot = [[NSMutableArray alloc] 30

initWithCapacity:kMaxDataPoints]; 31

32

viewController = [[TeslameterViewController alloc] init]; 33

34

[self initPlot]; 35

36

return self; 37

} 38

} 39

} 40

#pragma mark - Chart behavior 41

-(void)initPlot { [self configureHost]; [self setUpGraph]; [self 42

changePlotRange]; 43

} 44

} 45

//Refer 46

//http://stackoverflow.com/questions/6533314/how-to-plot-a-graph 47

//-real-time-using-coreplot 48

// 49

-(void)configureHost { 50

51

graphHostingView.allowPinchScaling = YES; 52

} 53

} 54

} 55

-(void)setUpGraph { CGRect frame = [graphHostingView bounds]; 56

graph = [[CPTXYGraph alloc] initWithFrame:frame]; CPTTheme 57

*theme = [CPTTheme themeNamed:kCPTDarkGradientTheme]; [graph 58

applyTheme:theme]; graphHostingView.collapsesLayers = NO; // 59

Setting to YES reduces GPU memory usage, but can slow 60

drawing/scrolling graphHostingView.hostedGraph = graph; 61

62

graph.paddingLeft = 3.0; graph.paddingTop = 3.0; 63

graph.paddingRight = 3.0; graph.paddingBottom = 3.0; 64

65

66

xPlotIdentifier = [NSString stringWithFormat:@"x plot"]; 67

yPlotIdentifier = [NSString stringWithFormat:@"y plot"]; 68

zPlotIdentifier = [NSString stringWithFormat:@"z plot"]; 69

70

windowPlotIdentifier = [NSString stringWithFormat:@"Window 71

plot"]; windowPlotIdentifier2 = [NSString 72

stringWithFormat:@"Window plot 2"]; 73

74

backgroundLinePlotIdentifier = [NSString 75
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stringWithFormat:@"Background line plot"]; 76

77

78

79

// Setup plot space 80

CPTXYPlotSpace *plotSpace = (CPTXYPlotSpace 81

*)graph.defaultPlotSpace; plotSpace.allowsUserInteraction = 82

YES; 83

84

// Grid line styles 85

CPTMutableLineStyle *gridLineStyle = [CPTMutableLineStyle 86

lineStyle]; 87

88

89

CPTMutableLineStyle *majorGridLineStyle = 90

[CPTMutableLineStyle lineStyle]; 91

majorGridLineStyle.lineWidth = 0.75; 92

majorGridLineStyle.lineColor = [[CPTColor 93

colorWithGenericGray:0.2] colorWithAlphaComponent:0.75]; 94

95

CPTMutableLineStyle *minorGridLineStyle = 96

[CPTMutableLineStyle lineStyle]; 97

minorGridLineStyle.lineWidth = 0.25; 98

// minorGridLineStyle.lineColor = [[CPTColor whiteColor] 99

// colorWithAlphaComponent:0.1]; 100

// 101

CPTLineCap *lineCap = [CPTLineCap sweptArrowPlotLineCap]; 102

lineCap.size = CGSizeMake(10.0, 10.0); 103

104

// Axes Label with an automatic label policy. 105

// 106

CPTXYAxisSet *axisSet = (CPTXYAxisSet *)graph.axisSet; 107

108

CPTXYAxis *x = axisSet.xAxis; x.labelingPolicy 109

= CPTAxisLabelingPolicyAutomatic; x.minorTicksPerInterval 110

= 5; x.preferredNumberOfMajorTicks = 5; 111

x.majorGridLineStyle = majorGridLineStyle; 112

x.minorGridLineStyle = minorGridLineStyle; 113

x.axisConstraints = [CPTConstraints 114

constraintWithLowerOffset:43.0]; x.labelOffset 115

= -1.0; x.titleOffset = -0.5; 116

117

118

119

lineCap.lineStyle = x.axisLineStyle; lineCap.fill = 120

[CPTFill fillWithColor:lineCap.lineStyle.lineColor]; 121

x.axisLineCapMax = lineCap; x.axisLineCapMin = lineCap; 122

// Rotate the labels by 45 degrees 123

x.labelRotation = M_PI * 0.25; x.majorGridLineStyle = 124

gridLineStyle; 125

126

127

CPTXYAxis *y = axisSet.yAxis; y.labelingPolicy 128

= CPTAxisLabelingPolicyAutomatic; y.minorTicksPerInterval 129

= 5; y.preferredNumberOfMajorTicks = 5; 130

y.majorGridLineStyle = majorGridLineStyle; 131

y.minorGridLineStyle = minorGridLineStyle; 132

y.axisConstraints = [CPTConstraints 133

constraintWithLowerOffset:43.0]; y.labelOffset 134

= -1.0; y.title = [NSString 135

stringWithFormat:@"Magnitude (nT)"]; y.titleOffset 136

= -25.0; 137

138
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lineCap.lineStyle = y.axisLineStyle; lineCap.fill = 139

[CPTFill fillWithColor:lineCap.lineStyle.lineColor]; 140

y.axisLineCapMax = lineCap; y.axisLineCapMin = lineCap; 141

y.delegate = self; 142

143

// Set axes 144

graph.axisSet.axes = [NSArray arrayWithObjects:x, y, nil]; 145

146

// Create a red plot area for field value in x 147

CPTScatterPlot *xSourceLinePlot = [[CPTScatterPlot alloc] 148

init]; CPTMutableLineStyle *xlineStyle = 149

[CPTMutableLineStyle lineStyle]; xlineStyle.lineWidth 150

= 2.0f; xlineStyle.lineColor = [CPTColor 151

redColor]; xSourceLinePlot.dataLineStyle = xlineStyle; 152

xSourceLinePlot.identifier = xPlotIdentifier; 153

xSourceLinePlot.dataSource = self; [graph 154

addPlot:xSourceLinePlot]; 155

156

157

// Create a green plot area for field value in y 158

CPTScatterPlot *ySourceLinePlot = [[CPTScatterPlot alloc] 159

init]; CPTMutableLineStyle *ylineStyle = 160

[CPTMutableLineStyle lineStyle]; ylineStyle.lineWidth 161

= 2.0f; ylineStyle.lineColor = [CPTColor 162

greenColor]; ySourceLinePlot.dataLineStyle = ylineStyle; 163

ySourceLinePlot.identifier = yPlotIdentifier; 164

ySourceLinePlot.dataSource = self; [graph 165

addPlot:ySourceLinePlot]; 166

167

// Create a blue plot area for field in z 168

CPTScatterPlot *zSourceLinePlot = [[CPTScatterPlot alloc] 169

init]; CPTMutableLineStyle *zlineStyle = 170

[CPTMutableLineStyle lineStyle]; zlineStyle.miterLimit 171

= 1.0f; zlineStyle.lineWidth = 2.0f; 172

zlineStyle.lineColor = [CPTColor yellowColor]; 173

zSourceLinePlot.dataLineStyle = zlineStyle; 174

zSourceLinePlot.identifier = zPlotIdentifier; 175

zSourceLinePlot.dataSource = self; [graph 176

addPlot:zSourceLinePlot]; 177

178

// Window Lines 179

CPTScatterPlot *windowLinePlot = 180

[[CPTScatterPlot alloc] init]; windowLinePlot.identifier 181

= windowPlotIdentifier; 182

CPTMutableLineStyle *windowLineStyle = 183

[CPTMutableLineStyle lineStyle]; windowLineStyle.lineWidth 184

= 5.0; windowLineStyle.lineColor 185

= [CPTColor orangeColor]; 186

windowLineStyle.dashPattern = [NSArray 187

arrayWithObjects:[NSNumber numberWithInteger:10], [NSNumber 188

numberWithInteger:6], nil]; windowLinePlot.dataLineStyle 189

= windowLineStyle; 190

191

windowLinePlot.dataSource = self; [graph 192

addPlot:windowLinePlot]; 193

194

CPTScatterPlot *windowLinePlot2 = 195

[[CPTScatterPlot alloc] init]; windowLinePlot2.identifier 196

= windowPlotIdentifier2; 197

CPTMutableLineStyle *windowLineStyle2 = 198

[CPTMutableLineStyle lineStyle]; windowLineStyle2.lineWidth 199

= 5.0; windowLineStyle2.lineColor 200

= [CPTColor orangeColor]; 201
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windowLineStyle2.dashPattern = [NSArray 202

arrayWithObjects:[NSNumber numberWithInteger:10], [NSNumber 203

numberWithInteger:6], nil]; windowLinePlot2.dataLineStyle 204

= windowLineStyle2; 205

206

windowLinePlot2.dataSource = self; [graph 207

addPlot:windowLinePlot2]; 208

209

CPTScatterPlot *backgroundLinePlot = 210

[[CPTScatterPlot alloc] init]; backgroundLinePlot.identifier 211

= backgroundLinePlotIdentifier; 212

CPTMutableLineStyle *backGroundLinePlotStyle = 213

[CPTMutableLineStyle lineStyle]; 214

backGroundLinePlotStyle.lineWidth = 2.5; 215

backGroundLinePlotStyle.lineColor = [CPTColor 216

whiteColor]; backGroundLinePlotStyle.dashPattern 217

= [NSArray arrayWithObjects:[NSNumber 218

numberWithInteger:25], [NSNumber numberWithInteger:6], nil]; 219

backgroundLinePlot.dataLineStyle = 220

backGroundLinePlotStyle; 221

222

backgroundLinePlot.dataSource = self; [graph 223

addPlot:backgroundLinePlot]; 224

225

226

} 227

} 228

-(void)changePlotRange { 229

// Setup plot space 230

CPTXYPlotSpace *plotSpace = (CPTXYPlotSpace 231

*)graph.defaultPlotSpace; 232

233

if(showFFT) { 234

//Arjun : This is where the graph is initially positioned 235

plotSpace.xRange = [CPTPlotRange 236

plotRangeWithLocation:CPTDecimalFromFloat(30.0) 237

length:CPTDecimalFromFloat(34.0)]; plotSpace.yRange 238

= [CPTPlotRange 239

plotRangeWithLocation:CPTDecimalFromFloat(-30.0) 240

length:CPTDecimalFromFloat(60.0)]; 241

} 242

} 243

else { 244

//Arjun : This is where the graph is initially positioned 245

plotSpace.xRange = [CPTPlotRange 246

plotRangeWithLocation:CPTDecimalFromFloat(-6.0) 247

length:CPTDecimalFromFloat(16.0)]; plotSpace.yRange 248

= [CPTPlotRange 249

plotRangeWithLocation:CPTDecimalFromFloat(-30.0) 250

length:CPTDecimalFromFloat(60.0)]; 251

} 252

} 253

} 254

}} 255

}} 256

#pragma mark - pragma mark Plot Data Source Methods 257

# 258

-(NSUInteger)numberOfRecordsForPlot:(CPTPlot *)plot { if 259

(plot.identifier == windowPlotIdentifier) { return plotLength; 260

} 261

else if (plot.identifier == windowPlotIdentifier2) { return 262

plotLength; 263

} 264
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//NSLog(@"numberOfRecordsForPlot accessed"); 265

if (showFFT == NO) return [xDataForPlot count]; 266

267

//else 268

return [xFFTPlot count]; 269

} 270

} 271

-(NSNumber *)numberForPlot:(CPTPlot *)plot 272

field:(NSUInteger)fieldEnum recordIndex:(NSUInteger)index { 273

NSNumber *valueToBeReturned; 274

275

int plotPoint55 = (plotLength/64)*55 - 1; int plotPoint56 = 276

plotPoint55 + 1; int plotPoint63 = (plotLength/64)*63 - 1; 277

int plotPoint64 = plotPoint63 + 1; 278

279

if (showFFT == NO) { //Display the values, not the FFT 280

//NSLog(@"abcde"); 281

switch (fieldEnum) { case CPTScatterPlotFieldX: 282

valueToBeReturned = [NSNumber 283

numberWithUnsignedInteger:index + nextIndexCounter - 284

xDataForPlot.count]; break; 285

286

287

case CPTScatterPlotFieldY: if ([(NSString 288

*)plot.identifier isEqualToString:xPlotIdentifier]) 289

{ valueToBeReturned = [xDataForPlot 290

objectAtIndex:index]; 291

} 292

else if ([(NSString *)plot.identifier 293

isEqualToString:yPlotIdentifier]) { 294

valueToBeReturned = [yDataForPlot 295

objectAtIndex:index]; 296

} 297

else if ([(NSString *)plot.identifier 298

isEqualToString:zPlotIdentifier]) { 299

valueToBeReturned = [zDataForPlot 300

objectAtIndex:index]; 301

} 302

break; 303

304

default: break; 305

} 306

} } 307

} } 308

if (showFFT == YES) { //Display the FFT switch (fieldEnum) { 309

case CPTScatterPlotFieldX: valueToBeReturned = [NSNumber 310

numberWithFloat:((64.0*index/plotLength) + 1)]; break; 311

312

case CPTScatterPlotFieldY: if (index >= 313

plotLength/2) { //Return only the values that we 314

care about - between 32 & 64 Hz for now 315

316

if ([(NSString *)plot.identifier 317

isEqualToString:xPlotIdentifier]) { 318

valueToBeReturned = [xFFTPlot 319

objectAtIndex:index]; 320

} 321

else if ([(NSString *)plot.identifier 322

isEqualToString:yPlotIdentifier]) { 323

valueToBeReturned = [yFFTPlot 324

objectAtIndex:index]; 325

} 326

else if ([(NSString *)plot.identifier 327
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isEqualToString:zPlotIdentifier]) { 328

valueToBeReturned = [zFFTPlot 329

objectAtIndex:index]; 330

} 331

else if ([(NSString *)plot.identifier 332

isEqualToString:windowPlotIdentifier]) { if 333

(index == plotPoint55) { valueToBeReturned = 334

[NSNumber numberWithFloat:0.0]; break; 335

} 336

else if (index == plotPoint56) { 337

valueToBeReturned = [NSNumber 338

numberWithFloat:1000]; break; 339

} 340

} 341

//else 342

break; 343

} 344

else if ([(NSString *)plot.identifier 345

isEqualToString:windowPlotIdentifier2]) { if 346

(index == plotPoint63) { valueToBeReturned = 347

[NSNumber numberWithFloat:1000]; break; 348

} 349

else if (index == plotPoint64) { 350

valueToBeReturned = [NSNumber 351

numberWithFloat:0.0]; break; 352

} 353

} 354

//else 355

break; 356

} 357

} 358

// else if ([(NSString *)plot.identifier 359

// isEqualToString: 360

// backgroundLinePlotIdentifier]) { 361

// // 362

// if (index == 0) { valueToBeReturned = 363

// [NSNumber numberWithFloat:1000]; break; 364

// // } 365

// else if (index == plotPoint64) { 366

// valueToBeReturned = [NSNumber 367

// numberWithFloat:0.0]; break; 368

// // } 369

// // }// 370

// //else 371

// break; 372

// // } 373

// // } 374

// // } } 375

// // } } 376

default: break; 377

} 378

} } 379

} } 380

return valueToBeReturned; 381

} 382

} 383

} 384

- (void)updateHistoryWithX:(float)x y:(float)y z:(float)z { 385

386

// NSLog(@"Before increment -> nextIndex = %d, 387

// nextIndexCounter = %d", nextIndex, nextIndexCounter); 388

CPTPlot *xPlot = [graph plotWithIdentifier:xPlotIdentifier]; 389

CPTPlot *yPlot = [graph plotWithIdentifier:yPlotIdentifier]; 390
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CPTPlot *zPlot = [graph plotWithIdentifier:zPlotIdentifier]; 391

392

if ((xPlot != nil) && (yPlot != nil) && (zPlot != nil)) { 393

//NSLog(@"Log from plot check"); 394

// 395

if (xDataForPlot.count >= kMaxDataPoints) { 396

[xDataForPlot removeObjectAtIndex:0]; [yDataForPlot 397

removeObjectAtIndex:0]; [zDataForPlot 398

removeObjectAtIndex:0]; 399

400

[xPlot deleteDataInIndexRange:NSMakeRange(0, 1)]; 401

[yPlot deleteDataInIndexRange:NSMakeRange(0, 1)]; 402

[zPlot deleteDataInIndexRange:NSMakeRange(0, 1)]; 403

404

} 405

} 406

CPTXYPlotSpace *plotSpace = (CPTXYPlotSpace 407

*)graph.defaultPlotSpace; NSUInteger location = 408

(nextIndexCounter >= kMaxDataPoints ? nextIndexCounter - 409

kMaxDataPoints + 1 : 0); plotSpace.xRange = 410

[CPTPlotRange 411

plotRangeWithLocation:CPTDecimalFromUnsignedInteger( 412

location) 413

length:CPTDecimalFromUnsignedInteger(kMaxDataPoints - 414

1)]; 415

416

[xDataForPlot addObject:[NSNumber numberWithFloat:x]]; 417

[yDataForPlot addObject:[NSNumber numberWithFloat:y]]; 418

[zDataForPlot addObject:[NSNumber numberWithFloat:z]]; 419

420

// Advance the index counter. 421

nextIndexCounter ++; 422

423

[xPlot insertDataAtIndex:xDataForPlot.count - 1 424

numberOfRecords:1]; [yPlot 425

insertDataAtIndex:yDataForPlot.count - 1 426

numberOfRecords:1]; [zPlot 427

insertDataAtIndex:zDataForPlot.count - 1 428

numberOfRecords:1]; 429

} 430

}} 431

}} 432

- (void)plotFFTwithX:(float *)FFTx andY:(float *)FFTy 433

andZ:(float *)FFTz andCounter:(int)counter { 434

435

CPTPlot *xPlot = [graph plotWithIdentifier:xPlotIdentifier]; 436

CPTPlot *yPlot = [graph plotWithIdentifier:yPlotIdentifier]; 437

CPTPlot *zPlot = [graph plotWithIdentifier:zPlotIdentifier]; 438

439

if (counter == 0) { [xFFTPlot insertObject:[NSNumber 440

numberWithFloat:0] atIndex:0]; NSLog(@"xFFTPlot(%d) = %@", 441

0, [xFFTPlot objectAtIndex:0]); [yFFTPlot 442

insertObject:[NSNumber numberWithFloat:0] atIndex:0]; 443

[zFFTPlot insertObject:[NSNumber numberWithFloat:0] 444

atIndex:0]; for (int i = 1; i < plotLength; i++) { 445

//NSLog(@"xFFTPlot(%d) = %@ + %f", i, [xFFTPlot 446

//objectAtIndex:i], FFTx[i]); 447

float xf = (100*FFTx[i]); float yf = (100*FFTy[i]); 448

float zf = (100*FFTz[i]); [xFFTPlot 449

insertObject:[NSNumber numberWithFloat:fabs(xf)] 450

atIndex:i]; 451

//NSLog(@"xFFTPlot(%d) = %@", i, [xFFTPlot 452

//objectAtIndex:i]); 453

71



[yFFTPlot insertObject:[NSNumber 454

numberWithFloat:fabs(yf)] atIndex:i]; [zFFTPlot 455

insertObject:[NSNumber numberWithFloat:fabs(zf)] 456

atIndex:i]; 457

458

} 459

} 460

[graph reloadData]; 461

462

} 463

else { 464

465

NSLog(@"xFFTPlot(%d) = %@", 0, [xFFTPlot 466

objectAtIndex:0]); for (int i = 1; i < plotLength; i++) { 467

//NSLog(@"xFFTPlot(%d) = (%@ + %f) / %d", i, 468

//[xFFTPlot objectAtIndex:i], FFTx[i], counter + 1); 469

#warning We might need to incorporate a log scale or scaling 470

#factors of some sort 471

float xf = (100*FFTx[i]); float yf = (100*FFTy[i]); 472

float zf = (100*FFTz[i]); [xFFTPlot 473

removeObjectAtIndex:i]; [yFFTPlot 474

removeObjectAtIndex:i]; [zFFTPlot 475

removeObjectAtIndex:i]; [xFFTPlot 476

insertObject:[NSNumber numberWithFloat:xf] 477

atIndex:i]; 478

//NSLog(@"xFFTPlot(%d) = %@", i, [xFFTPlot 479

//objectAtIndex:i]); 480

[yFFTPlot insertObject:[NSNumber numberWithFloat:yf] 481

atIndex:i]; [zFFTPlot insertObject:[NSNumber 482

numberWithFloat:zf] atIndex:i]; 483

} 484

} 485

} 486

if ((xPlot != nil) && (yPlot != nil) && (zPlot != nil)) 487

{ 488

489

[graph reloadData]; 490

491

[xPlot deleteDataInIndexRange:NSMakeRange(0, 492

plotLength)]; [yPlot 493

deleteDataInIndexRange:NSMakeRange(0, plotLength)]; 494

[zPlot deleteDataInIndexRange:NSMakeRange(0, 495

plotLength)]; 496

497

[xPlot insertDataAtIndex:0 498

numberOfRecords:plotLength]; [yPlot 499

insertDataAtIndex:0 numberOfRecords:plotLength]; 500

[zPlot insertDataAtIndex:0 501

numberOfRecords:plotLength]; 502

} 503

} } 504

// [viewController.xLabel setText:[NSString 505

// stringWithFormat:@"%f", [self 506

// returnRMSForArray:xFFTPlot]]]; [viewController.yLabel 507

// setText:[NSString stringWithFormat:@"%f", [self 508

// returnRMSForArray:yFFTPlot]]]; [viewController.zLabel 509

// setText:[NSString stringWithFormat:@"%f", [self 510

// returnRMSForArray:zFFTPlot]]]; 511

//[graph reloadData]; 512

//} 513

//} 514

//} 515

//} 516
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//A function to clear everything such that the drawing is 517

//started from scratch again 518

-(void) clearDrawing { if ([xDataForPlot count] && [yDataForPlot 519

count] && [zDataForPlot count]) { [xDataForPlot 520

removeAllObjects]; [yDataForPlot removeAllObjects]; 521

[zDataForPlot removeAllObjects]; 522

} 523

} 524

if ([xFFTPlot count] && [yFFTPlot count] && [zFFTPlot 525

count]) { [xFFTPlot removeAllObjects]; [yFFTPlot 526

removeAllObjects]; [zFFTPlot removeAllObjects]; 527

} 528

} 529

graphHostingView.hostedGraph = nil; 530

graphHostingView.hostedGraph = graph; 531

532

if (showFFT) { plotLength = [[NSUserDefaults 533

standardUserDefaults] integerForKey:@"arrayCapacity"]/2; 534

535

xFFTPlot = [[NSMutableArray alloc] 536

initWithCapacity:plotLength]; yFFTPlot = 537

[[NSMutableArray alloc] initWithCapacity:plotLength]; 538

zFFTPlot = [[NSMutableArray alloc] 539

initWithCapacity:plotLength]; 540

541

for (int i = 0; i < [xFFTPlot count]; i++) { [xFFTPlot 542

addObject:[NSNumber numberWithFloat:0]]; [yFFTPlot 543

addObject:[NSNumber numberWithFloat:0]]; [zFFTPlot 544

addObject:[NSNumber numberWithFloat:0]]; 545

} 546

} 547

//NSLog(@"Array after values = %@", xFFTPlot); 548

// } 549

// } 550

[graph reloadData]; 551

552

nextIndex = 0; nextIndexCounter = 0; 553

554

} 555

} 556

- (void)setShowFFTTo:(BOOL)yesOrNo{ showFFT = yesOrNo; 557

558

CPTXYAxisSet *axisSet = (CPTXYAxisSet *)graph.axisSet; 559

560

CPTXYAxis *x = axisSet.xAxis; 561

562

if (showFFT) { x.title = [NSString 563

stringWithFormat:@"Frequency (Hz)"]; 564

} 565

} 566

else { x.title = [NSString stringWithFormat:@""]; 567

} 568

} 569

// CPTXYPlotSpace *plotSpace = (CPTXYPlotSpace 570

// *)graph.defaultPlotSpace; 571

// // 572

// if (showFFT == YES) { 573

// //Set up a log scale 574

// plotSpace.xScaleType = CPTScaleTypeLinear; // this 575

// is the default plotSpace.yScaleType = 576

// CPTScaleTypeLog; 577

// // } 578

// // } // 579
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// else { 580

// //Set up a linear scale 581

// plotSpace.xScaleType = CPTScaleTypeLinear; // this 582

// is the default plotSpace.yScaleType = 583

// CPTScaleTypeLinear; 584

// // } 585

// // } 586

// // }} 587

// // }} 588

// // }} 589

// // }} 590

// // }} 591

// // }} 592

#warning Need to set this up 593

//Touch interaction on plot points - 594

//(void)scatterPlot:(CPTScatterPlot *)plot 595

//plotSymbolWasSelectedAtRecordIndex:(NSUInteger)index 596

// 597

//{ 598

// if ([(NSString *)plot.identifier 599

// isEqualToString:kLinePlot]) 600

// // 601

// { touchPlotSelected = YES; [self 602

// applyHighLightPlotColor:plot]; if ([delegate 603

// respondsToSelector:@selector(linePlot:indexLocation:)]) 604

// [delegate linePlot:self indexLocation:index]; 605

// // } 606

// // }//} 607

// // }//} 608

#pragma mark - pragma mark Axis Delegate Methods 609

# 610

-(BOOL)axis:(CPTAxis *)axis 611

shouldUpdateAxisLabelsAtLocations:(NSSet *)locations { static 612

CPTTextStyle *positiveStyle = nil; static CPTTextStyle 613

*negativeStyle = nil; 614

615

NSNumberFormatter *formatter = axis.labelFormatter; CGFloat 616

labelOffset = axis.labelOffset; NSDecimalNumber 617

*zero = [NSDecimalNumber zero]; 618

619

NSMutableSet *newLabels = [NSMutableSet set]; 620

621

for ( NSDecimalNumber *tickLocation in locations ) { 622

CPTTextStyle *theLabelTextStyle; 623

624

if ( [tickLocation isGreaterThanOrEqualTo:zero] ) { if ( 625

!positiveStyle ) { CPTMutableTextStyle *newStyle = 626

[axis.labelTextStyle mutableCopy]; newStyle.color = 627

[CPTColor greenColor]; positiveStyle = newStyle; 628

} 629

theLabelTextStyle = positiveStyle; 630

} 631

else { if ( !negativeStyle ) { CPTMutableTextStyle 632

*newStyle = [axis.labelTextStyle mutableCopy]; 633

newStyle.color = [CPTColor redColor]; negativeStyle = 634

newStyle; 635

} 636

theLabelTextStyle = negativeStyle; 637

} 638

} 639

NSString *labelString = [formatter 640

stringForObjectValue:tickLocation]; CPTTextLayer 641

*newLabelLayer = [[CPTTextLayer alloc] 642
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initWithText:labelString style:theLabelTextStyle]; 643

644

CPTAxisLabel *newLabel = [[CPTAxisLabel alloc] 645

initWithContentLayer:newLabelLayer]; 646

newLabel.tickLocation = tickLocation.decimalValue; 647

newLabel.offset = labelOffset; 648

649

[newLabels addObject:newLabel]; 650

651

} 652

} 653

axis.axisLabels = newLabels; 654

655

return NO; 656

} 657

} 658

- (float)trapezoidalIntegrateDataFromArray:(NSMutableArray 659

*)theArray { 660

661

int plotPoint55 = (plotLength/64)*55 - 1; 662

//int plotPoint51 = plotPoint50 + 1; 663

int plotPoint63 = (plotLength/64)*63 - 1; int plotPoint64 = 664

plotPoint63 + 1; float retVal = 0.0; 665

666

for (int i = plotPoint55 ; i <= plotPoint64; i++) { retVal = 667

retVal + ([[theArray objectAtIndex:i] floatValue] - 668

[[theArray objectAtIndex:i-1] floatValue]); 669

} 670

} 671

} 672

} 673

return retVal*0.5; 674

} 675

} 676

- (float)returnRMSForArray: (NSMutableArray *)theArray { 677

678

float retVal = 0.0; 679

680

int i = (plotLength/64)*55 - 1; 681

682

while (i < plotLength) { retVal += [[theArray 683

objectAtIndex:i] floatValue] * [[theArray objectAtIndex:i] 684

floatValue]; 685

} 686

} 687

retVal = sqrtf(retVal/((plotLength - 688

((plotLength/64)*55)))); 689

690

return retVal; 691

692

} 693

} 694

} 695

} 696

} 697

@end 698
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C.4 The settings page

// 1

// SettingsViewController.h Teslameter 2

// // 3

// Created by Arjun Shivanand Kannan on 11/9/12. 4

// // 5

// Using the free framework In-App Settings Kit 6

// 7

//#import <UIKit/UIKit.h> import 8

//#"IASKAppSettingsViewController.h" import 9

//#"TeslameterViewController.h" 10

//# 11

@class TeslameterViewController; 12

13

@interface SettingsViewController : UIViewController{ 14

15

NSString *memorySizeLabelText; 16

17

NSString *windowSizeLabelText; 18

19

NSString *backgroundSubtractionLabelText; 20

21

int numberOfSamples; 22

23

IBOutlet UISlider *memorySizeSlider; 24

25

26

IBOutlet UISlider *backgroundSubtractSlider; 27

28

TeslameterViewController *teslameterViewController; 29

} 30

} 31

//Function to return the variables from the settings page to the 32

//main page + (SettingsViewController *) sharedInstance; 33

// 34

@property (strong, nonatomic) IBOutlet UISwitch *fileSaveSwitch; 35

@property (strong, nonatomic) IBOutlet UISwitch 36

*showDisplaySwitch; @property (strong, nonatomic) IBOutlet 37

UILabel *memorySizeLabel; @property (strong, nonatomic) IBOutlet 38

UILabel *backgroundSubtractionLabel; @property (strong, 39

nonatomic) TeslameterViewController *teslameterViewController; 40

@property (strong, nonatomic) IBOutlet UIScrollView 41

*settingsScrollView; 42

43

- (IBAction)clearDataButtonPressed:(id)sender; - 44

(IBAction)saveDataSwitchValueChanged:(id)sender; - 45

(IBAction)displayReadingsSwitchValueChanged:(id)sender; - 46

(IBAction)memorySizeSliderValueChanged:(id)sender; - 47

(IBAction)backgroundSubtractionSliderValueChanged:(id)sender; - 48

(IBAction)resetBackgroundSubtractButtonPressed:(id)sender; 49

50

@end 51

// 1

// SettingsViewController.m Teslameter 2

// // 3

// Created by Arjun Shivanand Kannan on 11/9/12. 4

// // 5

// //// 6
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// //// 7

#import "SettingsViewController.h" 8

//#import "iToast.h" import "TeslameterViewController.h" 9

//# 10

//# 11

//# 12

@interface SettingsViewController () 13

14

@end 15

16

@implementation SettingsViewController 17

18

@synthesize settingsScrollView; 19

20

21

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle 22

*)nibBundleOrNil { self = [super initWithNibName:nibNameOrNil 23

bundle:nibBundleOrNil]; if (self) { 24

// Custom initialization 25

// } 26

return self; 27

} 28

} 29

@synthesize memorySizeLabel; @synthesize showDisplaySwitch; 30

@synthesize fileSaveSwitch; @synthesize 31

teslameterViewController; @synthesize 32

backgroundSubtractionLabel; 33

34

35

- (void)viewDidLoad { [super viewDidLoad]; 36

// Do any additional setup after loading the view from its 37

// nib. 38

self.title = @"Settings"; 39

40

//---Set the viewable frame of the scroll view---Adapted to 41

//the various screens using 42

//http://stackoverflow.com/questions/12645506/xcode-4-5- 43

//iphone-5-breaks-my-uiscrollview 44

settingsScrollView.frame = CGRectMake(0, 0, [[UIScreen 45

mainScreen] bounds].size.height, [[UIScreen mainScreen] 46

bounds].size.width); 47

//interchanged height and width above for landscape 48

//scrollview 49

// 50

//---set the content size of the scroll view--- 51

[settingsScrollView setContentSize:CGSizeMake([[UIScreen 52

mainScreen] bounds].size.width, 700)]; 53

54

//Add the scroll view to the view 55

[self.view addSubview:settingsScrollView]; 56

57

// [[NSUserDefaults standardUserDefaults] 58

// setInteger:progressOfSlider 59

// forKey:@"memorySizeSliderPosition"]; 60

// 61

// 62

if ([[NSUserDefaults standardUserDefaults] 63

boolForKey:@"memorySizeSliderPosition"] != 0) 64

memorySizeSlider.value = [[NSUserDefaults 65

standardUserDefaults] 66

integerForKey:@"memorySizeSliderPosition"]; else{ 67

memorySizeSlider.value = 9; [[NSUserDefaults 68

standardUserDefaults] setInteger:(int)memorySizeSlider.value 69
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forKey:@"memorySizeSliderPosition"]; 70

} 71

} 72

} 73

if ([[NSUserDefaults standardUserDefaults] 74

boolForKey:@"arrayCapacity"] == 0) { 75

76

[[NSUserDefaults standardUserDefaults] setInteger:512 77

forKey:@"arrayCapacity"]; 78

} 79

} 80

memorySizeLabelText = [NSString stringWithFormat:@"Sample 81

history size = %d", [[NSUserDefaults standardUserDefaults] 82

integerForKey:@"arrayCapacity"]]; memorySizeLabel.text = 83

memorySizeLabelText; 84

85

if ([[NSUserDefaults standardUserDefaults] 86

boolForKey:@"baselineOffset"] == 0) { 87

backgroundSubtractSlider.value = 1.0; [[NSUserDefaults 88

standardUserDefaults] 89

setFloat:backgroundSubtractSlider.value 90

forKey:@"baselineOffset"]; 91

} 92

} 93

else{ backgroundSubtractSlider.value = [[NSUserDefaults 94

standardUserDefaults] floatForKey:@"baselineOffset"]; 95

} 96

} 97

backgroundSubtractionLabelText = [NSString 98

stringWithFormat:@"Background Subtraction from phone = %0.3f 99

mG", [[NSUserDefaults standardUserDefaults] 100

floatForKey:@"baselineOffset"]]; 101

backgroundSubtractionLabel.text = 102

backgroundSubtractionLabelText; 103

104

105

// If the defaults for the switches are not set, set them up 106

// here Avoids checking for Boolean of Boolean Value = 2 107

// <--> Switch OFF, Value = 3 <--> Switch ON 108

// 109

if ([[NSUserDefaults standardUserDefaults] 110

boolForKey:@"fileSaveSwitchValue"] == 0) { if 111

(fileSaveSwitch.on) [[NSUserDefaults standardUserDefaults] 112

setInteger:3 forKey:@"fileSaveSwitchValue"]; else 113

[[NSUserDefaults standardUserDefaults] setInteger:2 114

forKey:@"fileSaveSwitchValue"]; 115

} 116

} 117

else { switch ([[NSUserDefaults standardUserDefaults] 118

integerForKey:@"fileSaveSwitchValue"]) { case 3: 119

fileSaveSwitch.on = YES; break; 120

121

case 2: fileSaveSwitch.on = NO; break; 122

} 123

} } 124

} } 125

if ([[NSUserDefaults standardUserDefaults] 126

boolForKey:@"showDisplaySwitchValue"] == 0) { if 127

(showDisplaySwitch.on) [[NSUserDefaults 128

standardUserDefaults] setInteger:3 129

forKey:@"showDisplaySwitchValue"]; else [[NSUserDefaults 130

standardUserDefaults] setInteger:2 131

forKey:@"showDisplaySwitchValue"]; 132
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} 133

} 134

else { switch ([[NSUserDefaults standardUserDefaults] 135

integerForKey:@"showDisplaySwitchValue"]) { case 3: 136

showDisplaySwitch.on = YES; break; 137

138

case 2: showDisplaySwitch.on = NO; break; 139

} 140

} } 141

} }} 142

} }} 143

- (void)didReceiveMemoryWarning { [super 144

didReceiveMemoryWarning]; 145

// Dispose of any resources that can be recreated. 146

// } 147

// } 148

//Function to delete the documents when the clear data button is 149

//pressed 150

- (IBAction)clearDataButtonPressed:(id)sender { 151

152

NSArray *paths = 153

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory , 154

NSUserDomainMask, YES); NSString *documentsDir = [paths 155

objectAtIndex:0]; NSFileManager *fileManager = 156

[NSFileManager defaultManager]; NSError *error = nil; 157

158

for (NSString *file in [fileManager 159

contentsOfDirectoryAtPath:documentsDir error:&error]) { 160

NSString *filePath = [documentsDir 161

stringByAppendingPathComponent:file]; 162

163

BOOL fileDeleted = [fileManager 164

removeItemAtPath:filePath error:&error]; 165

166

if (fileDeleted != YES || error != nil) { 167

// Deal with the error... 168

// } 169

// } 170

// } } 171

[[iToast makeText:NSLocalizedString(@"All files have been 172

cleared.", @"")] show]; 173

//Acknowledge iToast in settings Page 174

//} 175

//} 176

#warning This could be useful --> 177

#http://stackoverflow.com/questions/7341859/how-to-check-if- 178

#folder-is-empty-and-instantiate-file-names-inside-the-folder-in 179

# 180

- (IBAction)saveDataSwitchValueChanged:(id)sender { if 181

(fileSaveSwitch.on) [[NSUserDefaults standardUserDefaults] 182

setInteger:3 forKey:@"fileSaveSwitchValue"]; else 183

[[NSUserDefaults standardUserDefaults] setInteger:2 184

forKey:@"fileSaveSwitchValue"]; 185

} 186

} 187

- (IBAction)displayReadingsSwitchValueChanged:(id)sender { if 188

(showDisplaySwitch.on) [[NSUserDefaults standardUserDefaults] 189

setInteger:3 forKey:@"showDisplaySwitchValue"]; else 190

[[NSUserDefaults standardUserDefaults] setInteger:2 191

forKey:@"showDisplaySwitchValue"]; 192

} 193

} 194

- (IBAction)memorySizeSliderValueChanged:(id)sender { 195
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196

UISlider *localSliderDeclaration = (UISlider *)sender; 197

//typecast slider progress 198

int progressOfSlider = (int)(localSliderDeclaration.value + 199

0.5f); [[NSUserDefaults standardUserDefaults] 200

setInteger:progressOfSlider 201

forKey:@"memorySizeSliderPosition"]; int 202

memoryCapacitySetByThisAction = (int) pow(2.0, 203

(double)[[NSUserDefaults standardUserDefaults] 204

integerForKey:@"memorySizeSliderPosition"]); 205

206

[[NSUserDefaults standardUserDefaults] 207

setInteger:memoryCapacitySetByThisAction 208

forKey:@"arrayCapacity"]; 209

210

memorySizeLabelText = [NSString stringWithFormat:@"Sample 211

history size = %d", [[NSUserDefaults standardUserDefaults] 212

integerForKey:@"arrayCapacity"]]; 213

214

memorySizeLabel.text = memorySizeLabelText; 215

216

[[NSUserDefaults standardUserDefaults] 217

setFloat:(fudgeFactorForAraySize_128 * [[NSUserDefaults 218

standardUserDefaults] integerForKey:@"arrayCapacity"] / 219

128.0) forKey:@"FudgeFactor"]; 220

} 221

} 222

} 223

} 224

- (IBAction)backgroundSubtractionSliderValueChanged:(id)sender { 225

226

UISlider *localSliderDeclaration = (UISlider *)sender; 227

228

float progressOfSlider = localSliderDeclaration.value; 229

230

[[NSUserDefaults standardUserDefaults] 231

setFloat:progressOfSlider forKey:@"baselineOffset"]; 232

233

backgroundSubtractionLabelText = [NSString 234

stringWithFormat:@"Background Subtraction from phone = %0.3f 235

mG", [[NSUserDefaults standardUserDefaults] 236

floatForKey:@"baselineOffset"]]; 237

238

backgroundSubtractionLabel.text = 239

backgroundSubtractionLabelText; 240

241

} 242

} 243

- (IBAction)resetBackgroundSubtractButtonPressed:(id)sender { 244

245

backgroundSubtractSlider.value = 1.0; 246

247

[[NSUserDefaults standardUserDefaults] 248

setFloat:backgroundSubtractSlider.value 249

forKey:@"baselineOffset"]; 250

251

backgroundSubtractionLabelText = [NSString 252

stringWithFormat:@"Background Subtraction from phone = %0.3f 253

mG", [[NSUserDefaults standardUserDefaults] 254

floatForKey:@"baselineOffset"]]; 255

backgroundSubtractionLabel.text = 256

backgroundSubtractionLabelText; 257

258
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} 259

} 260

- (void)viewDidUnload { [self setFileSaveSwitch:nil]; [self 261

setShowDisplaySwitch:nil]; [self setMemorySizeLabel:nil]; 262

memorySizeSlider = nil; [self setSettingsScrollView:nil]; 263

settingsScrollView = nil; [self 264

setBackgroundSubtractionLabel:nil]; backgroundSubtractSlider = 265

nil; [super viewDidUnload]; 266

} 267

} 268

//Device orientation 269

// 270

#ifdef IOS_OLDER_THAN_6 271

- 272

(BOOL)shouldAutorotateToInterfaceOrientation:( 273

UIInterfaceOrientation)toInterfaceOrientation{ 274

//[image_signature setImage:[self 275

//resizeImage:image_signature.image]]; 276

return (toInterfaceOrientation == 277

UIInterfaceOrientationLandscapeLeft); 278

} 279

#endif ifdef IOS_NEWER_OR_EQUAL_TO_6 280

-(BOOL)shouldAutorotate { return YES; 281

} 282

- (NSUInteger)supportedInterfaceOrientations { 283

//[image_signature setImage:[self 284

//resizeImage:image_signature.image]]; 285

return UIInterfaceOrientationMaskLandscapeLeft; 286

} 287

} 288

-(void)willAnimateRotationToInterfaceOrientation:( 289

UIInterfaceOrientation)toInterfaceOrientation 290

duration:(NSTimeInterval)duration { [super 291

willAnimateRotationToInterfaceOrientation:toInterfaceOrientation 292

duration:duration]; if (toInterfaceOrientation == 293

UIInterfaceOrientationLandscapeLeft 294

|| toInterfaceOrientation == 295

|| UIInterfaceOrientationLandscapeRight) 296

{ CGRect rect = self.view.frame; rect.size.width = 297

self.view.frame.size.width+245; rect.size.height = 298

self.view.frame.size.height+245; 299

self.settingsScrollView.frame = rect; 300

} 301

}} 302

#endif 303

# 304

@end 305
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