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This dissertation explores the interactions between spin-polarized currents and

individual nanoscale magnets, focusing on the microwave-frequency magnetization

dynamics these currents can excite. Our devices consist of two magnetic films (2-40

nm) separated by a nonmagnetic spacer (5-10 nm Cu or 1.25 nm MgO), patterned

into a “nanopillar” of elliptical cross-section ∼100 nm in diameter [1]. One mag-

netic layer (a thicker or exchange-biased “fixed” layer) polarizes electron currents

that then apply a spin transfer torque [2, 3] to the other “free” layer. We have

developed several high-frequency techniques in which we excite magnetic dynam-

ics with spin-polarized currents and detect the corresponding magnetoresistance

oscillations R(t). By applying a direct current I, we can excite both small-angle

and new types of large-angle spontaneous magnetic precession of the free layer,

inducing a microwave voltage V (t) = IR(t) across the junction that we measure

with a spectrum analyzer. By studying the linewidths of the corresponding spec-

tral peaks as a function of bias and temperature, we find the oscillation coherence

time (related to the inverse linewidth) is limited by thermal fluctuations: deflec-

tions along the precession trajectory for T < 100 K, and thermally-activated mode

hopping for T > 100 K. We have also developed a new form of ferromagnetic

resonance (FMR) in which we use microwave-frequency spin currents to excite dy-



namics, and a resonant (DC) mixing voltage to measure the response. With this

technique we can directly probe the magnetic damping in both layers, identify the

dynamical modes observed in the DC-driven experiment, observe phase locking

with these modes, and even probe the physical form of the spin transfer torque.

For metallic devices we find the torque is always confined to the plane of the layers’

magnetizations, while for (MgO) tunnel junctions we find a new component of the

torque perpendicular to this plane, appearing at higher bias voltages [4]. This new

FMR technique should be able to probe much smaller devices still, enabling new

fundamental studies of even smaller magnetic samples, someday approaching the

molecular limit.
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plane of the sample along ẑ and with an exchange bias direction
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Chapter 1

Introduction

1.1 Overview

In this dissertation, we explore the interactions between ferromagnetism and the

electron’s intrinsic spin in nanoscale systems.

Over the past decade, we have learned to not only control the average spin

carried by electrons flowing through nanoscale structures, but also how to use

this spin current to manipulate nanoscale magnets far more efficiently than is

possible with magnetic fields alone.1 As systems continue to shrink, the impact

of spin currents on nanomagnets (the “spin transfer” effect) increases, making it

attractive for future applications such as spin-transfer-driven magnetic RAM (ST-

MRAM) for computers. In one bit of ST-MRAM, spin currents are used to swap

the north and south poles of a nanomagnet. One orientation corresponds to the

logical bit state “1” and the other corresponds to “0”. The major advantage of this

technology is that the magnetic bits require no power to retain their information

(unlike leaky transistor-based RAM found in computers today). If one were to

unplug a computer equipped with ST-MRAM and then plug it back in a year

later, it would remember its previous state and not need to reboot.

We have also recently discovered that spin transfer from DC electrical currents

can be use to drive new types of spontaneous gigahertz-frequency2 magnetic os-

1Magnetic fields require relatively large currents to generate, and are not easy
to localize.

2One gigahertz (GHz) is 1,000,000,000 Hz, a billion cycles each second. The
highest frequency your ear can detect is about 20,000 Hz, FM radio is broadcast at
roughly 50,000,000 Hz, and computers process logic at a few gigahertz. We have
measured oscillations from our magnetic devices in excess of 35 GHz [5].

1
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cillations, and that these oscillations can in turn generate a reasonable amount

of microwave power (discussed in chapters 2 and 3). While practical applications

involving this effect are currently limited by the coherence time of the oscillations

(studied in chapter 3), similar devices may one day be used in communications

applications such as microwave sources and resonators.

We can also perform the inverse experiment; as described in chapters 4 and 5,

we can drive resonant magnetic oscillations with gigahertz-frequency spin currents,

and then measure the response through a DC voltage generated by our device.

With this technique we can now directly probe many physical parameters that

were previously hidden from us, such as the magnetic damping and the actual

form of the spin transfer effect itself. In addition, we can use this technique to

further understand the oscillations driven by DC currents and how they interact

with spin polarized current. The inherent ability of these devices to resonantly

convert microwave power into a DC voltage may very well be applied in microwave

signal processing applications such as frequency-tunable detection diodes or mixers.

1.2 Background Information: A Section for Parents

When electrical current flows into a magnetic material, the electrons are selectively

filtered or “polarized” based on the orientations of their spins (relative to the

direction the material is magnetized). The effect of central importance to this

dissertation occurs when these polarized electrons rush out of one magnet and

into another, causing the unique brand of mayhem termed “spin transfer”. Of

course, big chunks of magnetic material that you could hold in your hand will also

polarize electrical current, but due to various scattering mechanisms (electrons

bounce around a lot as they’re pushed through most wires), the polarization fades
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over very short distances once electrons leave a magnetic material. If we wish to

study these effects, we must therefore make the system small. Furthermore, the

smaller a magnet is, the fewer electrons are required to affect it, so we also make

the systems small in the interest of exploring this unique branch of physics without

dimming the lights in the building.

Before we continue, we should take a moment to introduce some of the basic

concepts we will need in our discussion. First of all, what is magnetism, exactly?

Generally we’re all familiar with the magnets we hold in our hands generating

magnetic fields that can push or pull on other magnets, but what is causing this

magnetic behavior in the first place? As mentioned above, electrons each carry

with them a small amount of angular momentum called “spin”. It’s the same stuff

that a spinning top or a rotating planet carry in bulk, only for an electron it is

such a small amount that quantum mechanical weirdness3 comes into play. Still,

as with a slowly rotating galaxy or a rapidly twirling Aaron Sankey, it is intuitively

useful to think of electron spin as representing some small amount of circulating

stuff. Some of this circulating stuff is (negative) charge, which generates a small

magnetic field. Electrons are fated to carry this field with them wherever they go.

In a ferromagnetic material such as iron, due to some of the aforementioned

quantum weirdness [6], the electrons feel a substantial amount of peer-pressure

to lock together with their spins aligned. To be an electron with spin aligned

in opposition to the neighborhood consensus requires quite a bit of extra energy.

Consequently, a lot of electrons whose spins would otherwise balance any net cir-

3For example, you, I and other large bulky things have well-defined logical
concepts like “up” or “down”. A top spins clockwise (rotation axis points up) or
counter-clockwise (rotation axis points down). Electrons, on the other hand, can
have their spin oriented up, down, or both simultaneously.
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culation in the system spontaneously choose to unbalance it.4 In such a material,

there is then a spin-dependent asymmetry in the number (and efficiency) of chan-

nels available for electron conduction, and so electrical currents flowing through

the material also carry some net spin with them. Furthermore, if an electron has

the wrong spin and tries to enter a material like iron, it will have much more

difficulty getting in than all the other, more popular spins. This spin-dependent

conduction is the root of everything we explore in this dissertation.

As emphasized above, the physical system we study is quite small. Figure 1.1

is a cartoon of one of our devices, which consists of two magnetic pancakes (the

darker layers in Fig. 1.1) roughly 5 nm thick, separated by a short (roughly 10 nm)

nonmagnetic spacer layer through which electrons pass without losing polarization.

This stack is patterned into a short wire of diameter roughly one thousand times

smaller than a human hair, about 100 nm across. We make electrical contact to

the two ends of the wire with normal metal leads (such as copper) so that we can

run current vertically through the stack. Spin transfer occurs when electrons, still

polarized from passing through one magnet, are forced through the other magnet.

In passing, they can deposit some of their angular momentum into the magnet,

causing the magnetization5 to rotate a little. Though this process is much more

efficient than trying to rotate it with an external magnetic field (which requires a

lot of current), and though the device is incredibly small, it still takes a substantial

electrical current for these interactions to become significant. Generally we push

4When this happens, all the little circulating currents can work together to
generate the macroscopic magnetic field that you feel tugging on your refrigerator
magnets.

5The magnetization is just an arrow pointing from the south pole to the north
pole.
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Figure 1.1: Cartoon of our devices, which consist of two elliptical magnetic pan-

cakes (roughly 5 × 50 × 100 nm3) separated by a non-magnetic spacer. Electrical

contact is made at the top and bottom of the device with normal metal leads.

Current flows vertically through the wire.
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currents on the order of a milliamp through these tiny wires.6

1.3 Spin Transfer Basics

Understanding the literature on spin transfer and nanoscale magnetism can be

quite challenging. By way of papers and talks, I personally suffered a barrage

of statements and intuitions that were often conflicting, misleading, and in some

cases, incorrect. Needless to say, there is a daunting amount of information to sift

through. This section attempts to arm new magnetists with the basic intuitions

we have constructed in the past years through numerous discussions, papers, and

hair pulling. Hopefully it will also give the reader enough qualitative intuition to

understand the rest of the dissertation.

1.3.1 Magnetoresistance and Spin Transfer

As discussed above, magnetic materials tend to filter passing electrons based on

their spins. The first interesting effect arising from this property is magnetore-

sistance; the resistance of the device depends on the relative orientations of the

two layers’ magnetizations. To motivate how this comes about, we appeal to the

commonly-used cartoon picture shown in Fig. 1.2. We assume for simplicity that

each magnet only allows through spins parallel to the magnetization, and rejects

all antiparallel spins. If the two magnetizations (denoted M and m in Fig. 1.2) are

in the parallel (P) configuration (Fig. 1.2a), half the spins are rejected at the first

layer and the other half are allowed through both layers, giving a relatively low

6If you were somehow able to scale the system to the size of an ordinary 12-
gauge wire running through your walls, this current density would correspond
to roughly a million amps. The study of such a device would require a small,
dedicated nuclear power plant.



7

unpolarized
electron

M

m

M

m

spin-polarized
electron

(a) (b)

high resistancelow resistance

Figure 1.2: An illustration of magnetoresistance in our devices (assuming magnetic

layers are perfect polarizers). (a) When the two magnetizations M and m are

parallel, electrons (labeled) of one spin can pass through both layers. This is the

low resistance configuration. (b) When the magnetizations are antiparallel, neither

spin is allowed through. This is the high-resistance configuration.
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value of resistance. In the antiparallel (AP) state (Fig. 1.2b), neither sign of spin

is allowed through the junction, giving a high value of resistance. As expected,

states in between P and AP have intermediate resistance values. This effect is

currently used in hard drives to sense the small fields generated by the disk’s mag-

netic domains; a small magnetic element with a freely rotating magnetization is

held closely above the disk, and its orientation, influenced by the small fields from

disk surface, is “read” resistively.

A second interesting effect arising from spin filtering is the spin-transfer torque.

Whereas magnetoresistance is the influence of magnetic materials on passing elec-

trons, spin transfer is the influence of passing electrons on magnetic materials.

To motivate this effect, we appeal once again to the simple physical picture de-

scribed above. As shown in Fig. 1.3a if a spin-polarized electron passing through

a magnetic layer has its spin at some finite angle θ (labeled) relative to the mag-

netization, then by decomposing this spin state relative to m (|θ〉 into |↑〉 and |↓〉

with quantization axis m), we see that the magnet will let through the part of

the electron that is parallel and reflect the part that is antiparallel. Interestingly,

the expected angular momentum of the electron before and after scattering is not

the same. Before scattering there is a spin component s⊥ (labeled) perpendicular

to m (of magnitude (h̄/2) sin(θ)), while after scattering the expected spin angular

momentum points either parallel or antiparallel to m. This perpendicular compo-

nent that seems to have vanished is actually deposited into the magnet, applying

a small torque7 (labeled τ) to the magnetization. Essentially, the magnetization

recoils a little whenever it rotates a passing electron’s spin.

Of course this simple model only qualitatively captures the physics of our sys-

7One electron carries very little angular momentum compared to the millions
of spins in our nanomagnets, which is why we require “large” currents.
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τ
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Figure 1.3: An illustration of the spin transfer torque in our devices. The mag-

netizations of the layers are labeled m and M. (a) A single magnetic layer with

a spin-polarized electron passing through it. The magnet transmits and scatters

the the collinear component of the spin (s||) and absorbs the transverse compo-

nent (s⊥). (b) Schematic of one of our devices, consisting of two magnetic layers

separated by a non-magnetic spacer. One magnetic layer (the layer that is less

susceptible to spin transfer, due to larger size or exchange bias) generates spin-

polarized electrons that then apply a spin transfer torque to the other magnetic

layer. This sign of current stabilizes the parallel configuration. (c) Spin transfer

for the opposite sign of current. The reflected electrons have the opposite spin,

so the free layer feels a torque in the opposite direction, destabilizing the parallel

configuration. This torque can work against the damping (labeled) to reverse m

or excite magnetic precession.
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tem. If we wanted to try and predict the quantitative details of magnetoresistance

and spin transfer, we would need to include a spin polarization that is less than

100% perfect8 along with the mixing conductances throughout the device. For

metallic spacers [7] we would also need to calculate the average effect of all the

electron wave functions including the boundary conditions from all the layers in

our devices. For tunnel junctions [4] we would need to include the effects of large

junction voltages and the density of states. To make the models very accurate9 we

would also have to take into account surface roughness, disorder, the finite spin

diffusion length, and edge effects, to name a few. It is very difficult to consider all

of these things together, but work has been done on spin transfer in the diffusive

transport limit for similar systems [8, 9].

In our devices, one magnetic layer is thicker than the other (or it is pinned

with an exchange biasing layer), making it less susceptible to spin transfer effects

for a given amount of current. We use this “fixed” layer to generate the polarized

electrons that can then apply torques to the thinner “free” layer as shown in Fig.

1.3b. By reversing the sign of the current (Fig. 1.3c), we can generate the opposite

sign of torque on the free layer, because in this case it is the reflected electrons

(which have the opposite spin) that carry the spin information from the fixed layer.

The direction of electron flow in Fig. 1.3c tends to destabilize the P state. It

points in a direction that opposes the magnetic damping (labeled, which always

pushes the system downhill in energy). If the current is large enough, it can

overcome the damping, and the free layer will begin to precess to increasing angles

(perhaps along the dotted line). If the AP state is stable, then beyond some critical

8It is more like 30-80% in our devices, depending on the materials.
9A theory with all these things included has not been assembled to my knowl-

edge.
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Figure 1.4: Hysteretic switching using spin transfer in device 1 of chapter 2 (no

applied magnetic field). Starting in the parallel state and increasing the current,

the system passes a critical point (0.75 mA) and switches to the antiparallel state,

which has higher resistance. Decreasing the current through a similar critical point

on the negative side, the system switches back.

angle m will reverse entirely. This sign of current (“positive” by our convention)

favors the AP state while the opposite current (Fig. 1.3b) favors the P state.

If both states are stable, this leads to magnetic hysteresis under applied currents

[10,11] and enables the ST-MRAM application mentioned above. Figure 1.4 shows

this hysteresis in action for one of our devices (device 1 of chapter 2). Starting in

the parallel state (labeled) and increasing the current, at a critical value of 0.75

mA, the free layer switches to the antiparallel state, marked by an abrupt jump

to higher resistance. Decreasing the current through a similar critical point on the

negative side, the free layer switches back to parallel.

If we apply enough of a magnetic field parallel to M so that the AP state is

no longer stable, then beyond the critical current the free layer magnetization can

spontaneously precess to very large angles at microwave frequencies. This new,
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steady-state dynamical regime full of interesting physics and possible applications

that we begin to explore in chapters 2 and 3. We can also apply high-frequency

currents to resonantly drive the precession, and then measure the response through

a DC voltage generated by mixing of the oscillating current and magnetoresistance.

This new form of ferromagnetic resonance (discussed in chapters 4 and 5) allows

us to directly measure the damping parameter and the actual form of the spin-

transfer torque itself, as well as helping us to understand the dynamical modes

driven by DC spin-polarized currents.

1.3.2 Spin Transfer’s Effect on Tiny Ferromagnets

Before we describe what spin transfer does to a nanomagnet, we first describe

what a nanomagnet does to itself. We begin by discussing a simple but excellent

question posed to me by my favorite magnetist, Ilya Krivorotov. Figure 1.5 shows

a very thin magnetic disc with an enormous radius, and a uniform magnetization

(arrows) pointing vertically out of the plane (no applied external field).10 Let

µ0H = B− µ0M (SI units) as defined in most introductory texts. The question is

this: In the limit where the disc is very large and flat, what is the direction and

magnitude of the real magnetic field (that you would measure with a hall probe) at

the center (a) inside the disc, and (b) just above the disc? I personally guessed the

wrong answer, and wish I had thought harder about the problem before blurting it

all over myself. The answer, as it turns out, is that both fields (a) and (b) are the

same, pointing vertically, with magnitude approaching zero. This can be explained

in several ways, but I feel the safest, most physical intuition comes from looking

10This configuration is often attained in neodymium magnets, which have strong
crystalline anisotropy.
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Figure 1.5: A very large, very flat magnetic disc, with the magnetization uniformly

pointed out of the plane under no applied field. What is the field at the center?

at the surface currents.11 With the magnetization uniformly pointing up, all the

spins point down.12 Stokes’ theorem says that all the internal circulating currents

associated with these spins cancel (more or less), and what remains is a loop of

current running around the outside edge of the disc. As the radius of this disc

approaches infinity, the field at the center (pointed vertically, as generated by this

current) approaches zero.

This simple question illustrates an important and often forgotten point. The

real magnetic field generated by a ferromagnet comes from the cooperating currents

of its constituent electrons. If the magnetization of Fig. 1.5 lies in the plane of

the disc, the surface currents along the top and bottom generate a much larger

internal field, and as a result, the spins all have a lower potential energy. This

real field generated by the geometry of the magnet is referred to as the “shape

anisotropy” field. When M points out of plane (along ẑ in Fig. 1.5), this field is

zero, and as M rotates into the plane (toward x̂), this field (always in the plane

for this geometry), increases toward a saturation value equal to µ0Ms
13, where

Ms is the saturation magnetization. The material parameter Ms (µ0Ms ≈ 1-2 T,

11I share in many people’s distaste for fictitious surface charges and the unphys-
ical quantities M and H that can lead to strange intuitions.

12They’re negatively charged after all, a point that is usually ignored in spin
transfer talks.

13This can quickly be shown by symmetry.
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depending on the ferromagnet) represents the maximum field the spins are capable

of generating by themselves. The surface current density in this geometry for M

= Mxx̂ + Mz ẑ is proportional to Mx, so the anisotropy field Banisotropy inside the

magnet is

Banisotropy = µ0Mxx̂. (1.1)

Or, for arbitrary M in Fig. 1.5,

Banisotropy/µ0 = (1.0)Mxx̂ + (1.0)My ŷ + (0.0)Mzẑ. (1.2)

We have written this equation in a way suggestive of the fact that this geometry

is a simple case of a more general formalism we will discuss shortly. Because

of this self-generated field, the magnet has potential energy density Uanisotropy =

−(1/2)M · Banisotropy.
14 We emphasize here that Banisotropy is the physical field

that the spins (and everything else in the neighborhood) experience.15 Due to the

spins’ own angular momentum, they tend to precess around this field, and through

various dissipation mechanisms (referred to as “magnetic damping”) they tend to

relax to the minimum-Uanisotropy configuration, as discussed momentarily.

The field Banisotropy is not what is quoted in literature, however. To put Eq. 1.2

in the traditional literature form, we introduce a fictitious field Bfiction = −µ0M

to the system, which exists only inside the ferromagnet (and somehow stops at its

boundaries). Since by our definition it always points antiparallel to M everywhere,

its only effect on the system is to redefine the zero point of the potential energy.16

14The factor of 1/2 comes from the fact that Banisotropy depends on M. An
externally applied field Bexternal does not, and the energy is −M · Bexternal.

15Outside a nanomagnet, this field (which can influence other nanomagnets
nearby) is often referred to as the “dipole field”.

16This trick of adding Bfiction will go a long way in converting between the
different notations in literature.
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Combining this with the real field Banisotropy defines the “demagnetizing” field17

Bdemag/µ0 = −NxxMxx̂ − NyyMyŷ − NzzMz ẑ, (1.3)

where Nxx = 0, Nyy = 0, and Nzz = 1 in this case. As it turns out, the N ’s

defined in this way are the diagonal elements of a very general anisotropy tensor

Nij describing the demagnetization field for any shape and arbitrary M.

For the simple case of a magnetic ellipsoid (which we generally use to approxi-

mate our magnetic layers), the anisotropy tensor is exactly diagonal and very easy

to deal with. We can quickly get intuition about the magnet by looking at the

relative magnitudes of the diagonal elements Nii. If Nxx is the smallest, M will

prefer the ±x̂-direction. If Nzz is the largest, the ±ẑ-direction will be the direction

of highest energy for M. Figure 1.6a shows a sketch of one of the magnetic layers

in our devices, an elliptical thin disc. For this geometry, Nzz is close to 1, Nxx is

less than Nyy, and M will prefer to lie along the long, magnetically “easy” axis, as

labeled. For M to rotate from +x̂ to −x̂, the smallest energy barrier to overcome is

along the ±ŷ, and it can be quickly shown that a coercive field of µ0Ms(Nyy −Nxx)

along ±x̂ is required to switch it.

It is also very illuminating to plot the contours of constant potential energy for

M, and project them onto the unit sphere, as shown in Fig. 1.6b. In the absence

of magnetic damping, these contours are precisely the trajectories along which M

will precess (Banisotropy cannot do work on M). Mathematically, this torque has

the form

∂m/∂t = −γ0m× Banisotropy (1.4)

17The term “demagnetizing” appeals to the notion that a given chunk of spins
of a ferromagnet always apply a field µ0Ms, and the geometry demagnetizes them
by applying an opposing field. Since this formalism includes Bfiction, we should
pay attention to possible pitfalls of intuition when dealing with it.
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Figure 1.6: (a) Sketch of one of the magnetic layers in our devices, with the

vector M denoting the magnetization. (b) The contours of constant magnetic

potential energy (for the nanomagnet above) projected on the unit sphere. The

magnetization M precesses along these contours, while while magnetic damping

slowly relaxes it to the energy minimum, wherein M points in either direction

along the long magnetic easy axis (labeled). Point A is a potential well, and point

B is a saddle point.
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where m is a unit vector pointing along M, and γ0 is a constant, the magnitude

of the gyromagnetic ratio18. If we now apply an external field Bexternal, we get a

different set of contours (a deformation of those in Fig. 1.6b), and

∂m/∂t = −γ0m ×Btotal (1.5)

with Btotal = Banisotropy + Bexternal. In addition to this precession torque there

is a magnetic damping torque that tends to relax the system. Damping points

perpendicular to the contours, always downhill in energy. Mathematically, this

behavior can be represented by a second, phenomenological term:

∂m/∂t = −γ0m× Btotal + αm × (−γ0m× Btotal) (1.6)

Here α is a unitless parameter that is generally much smaller than unity. It can

be shown that this form of the damping torque pushes M downhill at a rate

proportional to the potential gradient. Roughly speaking, 1/α ∼ 100 is the number

of precession cycles it takes for the magnetization to ring down. The damping is

also often written in a nearly equivalent “Gilbert” form

∂m/∂t = −γ0m ×Btotal + αm× ∂m/∂t, (1.7)

which is the “Landau-Lifshitz-Gilbert” (LLG) equation of magnetic dynamics

quoted in literature. While the damping parameter is phenomenological, I still

personally prefer the previous form, the Landau-Lifshitz (LL) equation. In the

LL form, the damping torque always physically represents energy dissipation, and

when we add other terms to ∂m/∂t, this meaningful behavior is not affected. Of

18Intuitively speaking, the gyromagnetic ratio γ = ge/2me (with e the electron
charge, me the electron mass, and g the Landau g-factor) is the conversion factor
between the torque on the electron’s circulating charge (∝ e) and this torque’s
effect on the electron angular momentum (∝ me).
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course, these are all generally small corrections (∼ α2) to the behavior of our sys-

tems, so I will not bore you further with my detailed feelings on the matter, except

to mention that Mark Stiles et al. have recently flushed out a theoretical argument

based on domain wall motion that predicts substantially different behavior from

the two forms, concluding that the LL interpretation is likely more accurate [12].

Finally, including the spin transfer torque τ discussed above, we have the gen-

eralized Landau-Lifshitz-Slonczewski “LLS” equation

∂m

∂t
= −γ0m ×Btotal − γ0αm× (m ×Btotal) + τ . (1.8)

At this point, we can begin to predict what will happen in our devices under

different bias conditions. All of the measurements reported in this dissertation

are performed at DC currents comparable to or less than the critical current, and

so the spin transfer torque is always comparable to or less than the damping.

Consequently, all of the torques in Eq. 1.8 are small compared to the precession

term, and any steady-state magnetic trajectories we expect to excite should be only

tiny distortions of the energy contours predicted by this formalism. This notion is

at the heart of a nice paper using bifurcation theory in our systems [13], which is

an excellent way to quickly understand our magnetic dynamics.

In chapters 2 and 3, we apply a magnetic field along the easy axis of the device

(in the x̂-direction of Fig. 1.6). At zero (net19) field, both directions along the

x-axis are stable, and we indeed see magnetic switching. Increasing the field from

zero, the potential well marked “A” in Fig. 1.6 deepens, and the saddle point “B”

(along with the one on the opposite side of the sphere) moves backwards along the

equator toward −x̂, shallowing the potential well at −x̂ until it finally becomes

19The fixed layer tends to apply a static fringe field on the free layer (the dipole
field) that favors the AP alignment.
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unstable. This generates a set of contours predicting small-angle precession as

well as the larger “clam-shell-shaped” and the out-of-plane trajectories discussed

in chapter 2. To find out if these trajectories are theoretically stable, we could

simply integrate the average effect of the damping and spin torque over each energy

contour, and construct a complete dynamical stability phase diagram as in Ref.

[13].

We can also use Eq. 1.8 to quickly estimate the small-angle dynamical behavior

by linearizing about the equilibrium. This is precisely what is done in chapters 4

and 5 to extract useful information from our ferromagnetic resonance spectra.

Finally, we should note that magnetic materials often also contain an additional

anisotropy energy due to the underlying atomic lattice’s effect on the electron

orbitals. In alloys like nickel-iron or cobalt-iron, this is not a large effect, so we

mostly ignore it. Just be aware that there are other sources of anisotropy that can

distort the energy contours of Fig. 1.6.

The picture outlined here is great for getting fast qualitative insight into the

system, but we should also keep in mind that the magnetization is generally not

uniform, and cannot be represented by a single vector M as we have assumed. In

reality, nanomagnets such as that of Fig. 1.6a consist of many strongly-coupled

spins distributed across the layer. Similar to a drumhead, the normal oscillatory

modes we expect from such a system are actually spin waves confined by the (open)

elliptical boundary conditions we define lithographically. Only the fundamental,

lowest frequency mode (which is the most uniform) behaves much like a single

spin on any quantitative level (chapters 4 and 5). The higher-order modes contain

more and more variations in M(x, y, z) and, due to the exchange field, precess

at higher frequency. Furthermore, complicated phase relationships can develop
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between different pieces of the magnet, which in turn can affect a mode’s coupling

to spin currents. Needless to say, a system of many coupled spins is quite difficult

to deal with, and the formalism presented above is only a starting point.

1.4 Context of This Dissertation

The field of spin transfer is full of rich and varied work in theory and experiment

alike. This section attempts to highlight some of the important developments in

the field, focusing specifically on work relevant to this dissertation. Hopefully

it will provide a reader new to the field with a reasonable understanding of the

predictions, questions, and answers central to our experiments.

In 1996, Slonczewski and Berger [2, 3] predicted a new effect in which elec-

trons flowing through nanoscale magnetic multilayers could transfer spin angular

momentum from one magnetic layer to another, thereby applying a substantial

torque to the magnetizations. The efficiency of this “spin transfer” process was

expected to increase as magnetic structures shrank, so that if the magnetic vol-

umes involved were small enough, a reasonable amount of electrical current could

reverse a magnetization entirely or excite spontaneous microwave-frequency mag-

netic oscillations. Two years after these initial predictions, the first experimental

demonstrations of this spin transfer began to appear.

In 1998, Tsoi et al. [14] drove large DC currents (up to 109 A/cm2, at 4.2 K)

through a needle-tip point contact to extended magnetic multilayers, and observed

peaks in the device’s differential resistance, appearing at bias values that shifted

linearly with the applied magnetic field. Based on this and a comparison with mi-

crowave absorption spectra on the thin films alone) they argued these changes in

resistance corresponded to spontaneous magnetic oscillations driven by spin trans-
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fer. The following year, J. Z. Sun demonstrated the first current-driven bistable

magnetic switching in magnetite trilayer junctions (patterned to several microns in

diameter) at < 20 K [15], and Myers et al. demonstrated the same effect in point

contacts to extended Py- and Co-based multilayers [10]. Myers et al. even ob-

served stable room-temperature switching in one Py/Cu/Co device, but generally

the active magnetic grains in such systems were thermally unstable, and varied

in character from sample to sample. In 2000, Katine et al. [11] demonstrated

current-driven switching at room temperature in magnetic Co/Cu/Co thin film

multilayers, patterned into well-defined “nanopillars” roughly 100 nm in diameter.

Similar results were subsequently seen by other groups in similar systems [16, 17]

the following year. These seminal experiments both demonstrated the validity of

spin transfer theory and demonstrated the possibility of such device applications

as ST-MRAM discussed above.

Both point contacts and nanopillars exhibited behavior like that observed by

Tsoi et al. At higher magnetic fields and large enough currents, the devices under-

went reversible transitions in resistance to values in between that of the antiparallel

and parallel configurations. At the time, such transitions were attributed to the

spontaneous magnetic oscillations driven by spin transfer, but there was no di-

rect evidence to support this. In the year 2000, Tsoi et al. [18] first began to

probe this regime by bathing their point contacts in microwave radiation, thereby

coupling ∼ 50-GHz microwave current into the contact via the antenna action of

the needle. By turning on the microwaves, new peaks in differential resistance

appeared that were associated with magnon excitations. This experiment demon-

strated that large DC current combined with microwave fields and currents could

excite magnetic oscillations in these systems, but did not directly prove that the
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system precessed spontaneously under DC current alone.

By this time it was generally accepted that spin transfer could be used to switch

and manipulate nanoscale magnets, and also that the intermediate resistance states

under high bias and field corresponded to changes in the magnetization. It was not

clear, however, whether these DC-driven states corresponded to steady magnetic

oscillations or something else entirely (perhaps rapid thermally-activated switch-

ing [19] or a static non-uniform magnetic state). Also, if this regime did in fact cor-

respond to magnetization dynamics it was not clear whether the oscillations were

spatially uniform and coherent [20] or non-uniform [21] and/or quasichaotic [22].

Additionally, there was still some confusion about the actual form of the spin

transfer torque, whether it pointed in the plane defined by the two magnetizations

involved [2, 3] or perpendicular to the plane [23].20

In order to test these different possibilities, in 2003 we developed a new mi-

crowave technique to unambiguously measure the magnetic oscillations in this

regime electrically (should they exist, of course). The technique was straightfor-

ward: We applied DC current through a Co/Cu/Co magnetic nanopillar (similar

in composition to Katine’s) and measured the spectrum of magnetoresistance os-

cillations induced by magnetic precession. Using only DC current and field, we

successfully demonstrated that the intermediate resistance regime corresponded

to spontaneous magnetic precession, expressed in our measurement as peaks in

the microwave spectra emitted by the sample. Furthermore, by comparing the

peak frequencies and amplitudes to the results of a uniform-magnetization simu-

lation, we were able to qualitatively identify steady-state small- and large-angle

magnetic precession. The peaks in differential resistance, however, turned out to

20See also Ref. [24] from 2004
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correspond to transitions between different dynamical and static magnetic states.

These results are the focus of chapter 2.

Our observation of coherent large-angle magnetic precession was quite a sur-

prising result, since magnetic precession in larger thin films was previously limited

to small angles due to the instability (where large-angle uniform precession para-

metrically pumps energy into higher-order spin waves) predicted by Suhl [25]. In

this experiment, we had directly observed a new type of magnetic oscillation never

seen before. Furthermore, a spin-transfer torque pointing entirely perpendicular to

the magnetization plane most likely would not have driven such oscillations, so we

had also indirectly provided evidence that there must be a substantial component

of the torque in the direction predicted by Slonczewski.

Our 2003 measurement raised a few new questions, too. First, our simulation

predicted two distinct types of large-angle dynamical modes, whereas we observed

only one experimentally. At fields and currents where the simulation predicted

the second large-angle mode we found only a strange intermediate-resistance state

that generated very little microwave signal. This could not be explained by our

macrospin model, and was most likely due to the non-uniform character of the

magnetization. Berkov et al. [26] has since made progress in explaining this regime

with full micromagnetic simulations, and more recent measurements on Py-based

samples has demonstrated the second large-angle mode [27].

Another discrepancy between our experiment and simulation was the coherence

time of the oscillations. The measured spectral peak linewidths (related to the in-

verse coherence time) were broad, between 0.5 and several gigahertz, while our

zero-temperature macrospin simulation predicted oscillations that were perfectly

coherent, with zero linewidth. In 2004, Rippard et al. performed this spectral
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measurement on point contact devices, and observed linewidths orders of magni-

tude narrower. It was not well understood why some devices or dynamical modes

exhibited more coherent dynamics than others, or what mechanisms were involved

in the decoherence. The origins could have been micromagnetic in nature, or due

to thermal fluctuations [28, 29], or both.

In order to try and understand what mechanisms were important in decoher-

ence, we studied the temperature (T ) dependence of the linewidth for small-angle

precession (discussed in chapter 3). The linewidth decreased substantially upon

cooling our samples from room temperature to 20 K. By including temperature in

the macrospin model, we derived two expressions for the contributions from ther-

mal fluctuations: one linear in T (negligible in this case, arising from a random

walk along the precession trajectory) and one proportional to T 1/2, derived by

assuming a Boltzmann distribution of precession angles. The dominant T 1/2 term

seemed to capture the temperature-dependence for T < 100 K with one fitting pa-

rameter (the scale), but the observed linewidths were substantially narrower than

could be predicted by any reasonable simulation we performed within this model.

This led us to the surprising conclusion that the true spatially-nonuniform oscilla-

tions in the experiment may be naturally more coherent than the macrospin model

suggests. Still, we suspect that the predicted ∝ T 1/2 contribution to the linewidth

is fairly general, because it follows from Boltzmann statistics applied to the pre-

cession amplitude fluctuating around an (approximately) equilibrium value. Our

expressions are certainly useful in predicting general trends in coherence with re-

spect to different system parameters (magnetic volume, damping, precession angle,

etc.). For instance, in Rippard’s point contact geometry, a much larger magnetic

volume (the magnetic films are not patterned) is excited to very large angles, both
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of which are predicted to improve coherence.

For T > 100 K, however, the linewidth increased much more rapidly than

could be captured by this simple model. In the same experiment, we also argued

that by also allowing the system to occasionally escape the dominant oscillatory

mode (over an effective energy barrier), the full temperature dependence of the

observed coherence could be explained with one or two more fitting parameters.

We reported direct evidence for this hopping effect from a sample in which, under

some bias conditions, more than one mode appeared in the spectrum. Whenever

two modes appeared simultaneously, the linewidths of both increased dramatically.

By including this effect in the temperature dependence, we had probed the effective

barriers separating different magnetic modes without even knowing the details of

the modes involved.

At this point, the spin transfer effect was widely accepted; both switching

and spontaneous oscillations predicted by the theory had been observed, and we

had begun to understand the mechanisms limiting coherence in the oscillations.

Meanwhile, several experiments had started to refine estimates the actual strength

and form of the spin-transfer torque (along with damping) in these systems. In

2004, Koch et al. [28] performed a time-resolved switching measurement, and by

comparing with the macrospin model, estimated the magnitude of the spin torque

and damping. Braganca et al. [30] also estimated these quantities by studying

the pulsed-switching probabilities. In magnetic tunnel (as opposed to metallic)

junctions, Fuchs et al. [31] were able to estimate the magnitude of the torque

by measuring changes in the thermally-activated switching lifetime under differ-

ent bias conditions (2005). In these three switching experiments, the torque (and

damping) were rather laboriously and indirectly estimated through comparisons
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with the macrospin model, though there were likely many different dynamical

modes involved in these (large-angle) switching process. Also in 2005, Krivorotov

et al. [32] performed time-resolved measurements of both dynamics and switching

in metallic junctions, and were similarly able to get a rough estimate of the torque

(or spin polarization). They were also able to more directly (but still laboriously)

estimate the damping parameter by measuring the decay time of small-angle oscil-

lations under bias and then extrapolating to zero bias. This technique assumed the

linear bias-dependence of the effective damping predicted by Slonczewski’s theory,

which was yet unproven through direct experiment.

At this point, no one had found a way to directly measure these physical quan-

tities, and so it remained a central issue. Additionally, in the wake of improving

micromagnetic simulations [26, 33, 34], it was still not clear precisely what set of

modes were excited by DC currents. In 2005, Tulapurkar et al. [35] and our group

independently developed a new form of ferromagnetic resonance (FMR) driven by

the spin transfer torque, which would allow us to address these issues, as well

as demonstrating the feasibility of FMR in much smaller systems than had been

probed before.21 In these experiments, we applied microwave-frequency spin cur-

rents and measured the magnetic response with a resonant (DC) nonlinear mixing

voltage.

For metallic spin-valves (discussed in chapter 4), we observed several normal

resonance modes, more than appeared in the DC-driven experiment, from both

magnetic layers. We achieved an efficient and direct measurement of the magnetic

damping parameter from the dominant low-frequency FMR peak linewidth22, and

21We published in 2006.
22The linewidth of this ac-driven experiment is proportional to magnetic damp-

ing, and not directly related to oscillation coherence.
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confirmed over a large bias range (including zero) its predicted linear bias depen-

dence. As predicted, the effective damping approached zero at the critical bias for

spontaneous DC-driven oscillations. By monitoring the different normal modes’

evolution through this bias point, we were able to confirm that the various DC-

driven modes seen before corresponded to a subset of the normal magnetic modes.

Using the resonance lineshape we were also able to observe a regime of ordinary

FMR (below the critical bias) and a regime of phase-locking between the microwave

current and the large-angle DC-driven modes, which was consistent with observa-

tions from a different technique performed by Rippard et al. [36] in 2005. The

most exciting aspect of this measurement, though, is that the observed behavior of

the lowest-frequency, dominant resonance mode agreed quite well with predictions

for a uniform mode, enabling a very simple physical interpretation of the data.

At this time, however, our technique for calibrating the microwave current was

not reliable enough to make estimates of the actual magnitude of the spin transfer

torque, but our observed resonance line shapes implied that the torque in these

metallic junctions was strongly confined to the magnetization plane as predicted

by Slonczewski, even under bias.

This result contrasted with the conclusions of Tulapurkar et al. [35], who ob-

served more complicated FMR line shapes (in MgO-based tunnel junctions), and

interpreted this structure as arising from a strong perpendicular component of the

torque. Our results suggested that either their lineshapes (most likely) arose from

a superposition of two normal modes from the different layers (similar to the modes

we had observed) or that the physics behind spin transfer in tunnel junctions was

drastically different than Slonczewski’s predictions [37]. If Slonczewski was cor-

rect, there should have been very little (or zero) perpendicular torque due to small
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biases, but this component should have increased as the square of the applied

DC voltage (Tulapurkar’s measurement was restricted to zero bias). Slonczewski’s

theory also included parameters such as the spin-dependent conductances that

were not well understood experimentally. Different assumptions about the system

yielded different expectations for the magnitude and bias-dependence of the spin

transfer torque.

In order to address these questions, we performed the spin-transfer-driven FMR

technique on MgO-based junctions similar to Tulapurkar’s (discussed in chapter

5). Armed with a much improved microwave-current calibration technique, we

were able to use our resonance line shapes and magnitudes to make the first direct

measurement of both components of the spin transfer torque separately. Our

lock-in technique also allowed us to study the bias dependence of the two torque

components. Our first major result was that, in contrast to Tulapurkar et al.,

at zero bias we observed only the predicted in-plane component. Second, upon

increasing the bias, the perpendicular component grew to ∼ 30% the size of the

in-plane component, scaling as the voltage squared, also as predicted. Interestingly,

from this direct measurement (and independently from the bias dependence of the

damping) we estimated that the torque is very close to the maximum possible value

predicted from elastic scattering processes, implying that further improvements in

materials will likely not markedly improve the torque’s efficiency. We also observe

a substantial increase in the efficiency of the torque at high bias, which might be

due to heating, or could be an indication of changes in inelastic scattering due to

magnons. This is still a work in progress, and even after we publish, our results

will likely prompt substantial new theoretical and experimental study of these

nanoscale systems.



Chapter 2

Microwave Oscillations of a Nanomagnet

Driven by a DC Spin-Polarized Current
The contents of this chapter are adapted from work originally published as Nature

(London) 425, 380, (2003).

2.1 Introduction

As discussed in the introductory chapters, spin-polarized electrons can apply a

large and efficient torque to a ferromagnet through direct transfer of spin angular

momentum. This offers the possibility of manipulating magnetic-device elements

without applying cumbersome magnetic fields (that require large currents to gen-

erate and are not easy to localize) [2,3,10,11,14–16,18,38–45]. In this chapter we

take the first steps toward understanding what type of magnetic motions can be

generated by this torque.

Theory predicts that above a critical value of the applied current (where the

spin transfer torque first overcomes the magnetic damping torque [11]), spin trans-

fer can drive a nanomagnet into types of oscillatory magnetic modes not attainable

with magnetic fields alone [2, 3, 38]. Before the measurements described in this

chapter were performed, however, existing experimental techniques had provided

only indirect evidence of such dynamical states [10, 11, 14, 18, 41, 43–45], and the

nature of these modes had not been determined.

Here we demonstrate a technique that allows direct electrical measurements

of microwave-frequency dynamics in individual nanomagnets, propelled by a DC

29
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spin-polarized current. We show that spin transfer can produce several different

types of magnetic excitations, identifiable by the corresponding spectral features’

magnitude and the dependence of their frequencies on bias and field. Although

there is no mechanical motion, a simple magnetic multilayer structure acts like

a nanoscale motor; it converts energy from a DC electrical current into high-

frequency magnetic rotations that might be applied in new devices including mi-

crowave sources and resonators.

2.2 Devices and Apparatus

We examine samples made by sputtering a multilayer of composition 80 nm Cu /

40 nm Co / 10 nm Cu / 3 nm Co / 2 nm Cu / 30 nm Pt onto an oxidized silicon

wafer and then milling through part of the multilayer (Fig. 2.1a) to form a pillar

with an elliptical cross-section of lithographic dimensions 130 nm × 70 nm [1].

Top contact is made with a Cu electrode. Transmission or reflection of electrons

from the thicker “fixed” Co layer produces a spin-polarized current that can apply

a torque to the thinner “free” Co layer. Subsequent oscillations of the free-layer

magnetization relative to the fixed layer change the device resistance [46] so, under

conditions of DC current bias, magnetic dynamics produce a time-varying voltage

(with typical frequencies in the microwave range). If the oscillations were exactly

symmetric relative to the direction of the fixed-layer moment (but confined to

the plane), voltage signals would occur only at multiples of twice the fundamental

oscillation frequency, f . To produce signals strength at f , we apply static magnetic

fields (H) in the sample plane a few degrees away from the magnetically easy axis

of the free layer. All data are taken at room temperature, and by convention

positive I denotes electron flow from the free to the fixed layer.
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In characterization measurements done at frequencies <1 kHz, the samples

exhibit the same spin-transfer-driven changes in resistance reported in previous

experiments [11, 16] (Fig. 2.1b). For H smaller than the coercive field of the

free layer (Hc ≈ 600 Oe), an applied current produces hysteretic switching of the

magnetic layers between the low-resistance parallel (P) and high-resistance anti-

parallel (AP) states. Sweeping H can also drive switching between the P and

AP states (Fig. 2.1b, inset). For H larger than 600 Oe, the current produces

peaks in the differential resistance dV/dI that have been assumed previously to

be associated with dynamical magnetic excitations [10, 11, 14, 18]. The resistance

values displayed in Fig. 2.1b include a lead resistance of ≈ 6 Ω from high-frequency

(50 GHz) probes and a top-contact resistance of ≈ 9 Ω.

We measure the spectra of microwave power that results from the free layer

magnetic motions by using a heterodyne mixer circuit [47] (Fig. 2.1a). This circuit

differs from the only previous experiment on spin-transfer-driven magnetic oscil-

lations [18] in that the sample is not exposed to a large high-frequency magnetic

field that could alter its dynamics. The filter on the output of our mixer passes

25-100Mhz, giving a frequency resolution of ≈ 200 MHz. We calibrate the circuit

by measuring temperature-dependent Johnson noise from test resistors. When we

state values of emitted power, they will correspond to the power available to a

load matched to the sample resistance, R. To convert to the power delivered to

a 50-Ω line, one should multiply our values by the power transmission coefficient

1 − Γ2 = 1 − (R − 50 Ω)2/(R + 50 Ω)2.
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Figure 2.1: Resistance and microwave data for sample 1. (a) Schematic of the

sample and the heterodyne mixer circuit. (b) (offset vertically) dV/dI versus I

for H = 0, 0.5, 1.0, 1.5, 2.0, and 2.5 kOe, with current sweeps in both directions.

At H = 0, the switching currents are I+
c = 0.88 mA and I−

c = -0.71 mA, and

∆Rmax = 0.11 Ω between the P and AP states. Colored dots on the 2 kOe curve

correspond to spectra in (c). (inset) dV/dI near I = 0. (c) (offset vertically)

Microwave spectra with Johnson noise PJN subtracted at H = 2 kOe, for several

values of I. (inset) Spectrum at H = 2.6 kOe and I = 2.2 mA, where f and

2f peaks are visible on the same scan. (d) (offset vertically) Spectra at H = 2.0

kOe, for I = 1.7 to 3.0 mA in 0.1 mA steps, showing the growth of the small-

amplitude precessional peak and then a transition to the large-amplitude regime

(2nd harmonic). (e) Field dependence of the low-bias peak frequency (top) and

the large-amplitude regime (first harmonic) at I = 3.6 mA (bottom). The line is a

fit to Eq. 2.1 (f) Microwave power versus frequency and current at H = 2.0 kOe.

The black line shows dV/dI versus I from (b).
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2.3 Data and Analysis

We first consider the microwave spectrum from sample 1 for H = 2 kOe. For both

negative I and small positive I we measure only frequency-independent Johnson

noise power PJN . We subtract this background from all spectra we display. At

I = 2.0 mA, we begin to resolve a microwave signal at 16.0 GHz (Fig. 2.1c, d).

A second-harmonic peak is also present (Fig. 2.1c, inset). As I is increased, these

initial signals grow until I ≈ 2.4 mA, beyond which the dynamics change to a

different regime (Fig. 2.1d). In Fig. 2.1e, we compare the H-dependence of the

measured frequency for the initial signals to the formula for small-angle elliptical

precession of a thin-film ferromagnet [48]:

f =
γ

2π

√

(H + Han + Hd)(H + Han + Hd + 4πMeff) (2.1)

Here γ is the gyromagnetic ratio, Han accounts for a uniaxial easy-axis anisotropy,

Hd models the coupling from the fixed layer, and 4πMeff = 4πMs−2Ku/Ms, with

Ms the saturation magnetization and Ku a uniaxial perpendicular anisotropy [49].

Here we have assumed for simplicity that the free layer behaves as a uniform mag-

netization (the “macrospin” approximation). The true magnetic excitations in our

elliptical devices most likely contain spatial variations in the free layer’s magne-

tization, shifting the precession frequency to higher values through the exchange

field [50]. Still, the fit is excellent and gives the values 4πMeff = 6.8±0.1 kOe and

Han + Hd = 1.18± 0.04 kOe. The value for 4πMeff is less than 4πMs for bulk Co

(16 kOe) as expected due to significant perpendicular anisotropy in Co/Cu(111)

films (see Fig. 3 in [51]). Similar fits for other samples yield 4πMeff in the range

6.7-12 kOe. Superconducting quantum interference device (SQUID) measurements

on test samples containing many 3-nm Co layers give 4πMeff = 10 ± 1 kOe.
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On the basis of the agreement with equation 2.1 we identify the initial signals

as arising from small-angle elliptical precession of the free layer, thereby confirming

pioneering predictions that spin transfer can coherently excite this uniform spin-

wave mode [3]. We can make a rough estimate for the amplitude of the precession

angle, θmax and the misalignment angle θmis (induced by the applied field) between

the precession axis and the fixed-layer moment based on the integrated microwave

power measured about f and 2f (Pf and P2f). Because 4πMeff is large compared

to the in-plane anisotropy, the precession is strongly confined to the sample plane.

Assuming for simplicity that θ(t) = θmis+θmax sin(ωt), that the angular variation in

resistance ∆R(θ) = ∆Rmax(1− cos(θ))/2 and that |θmis ± θmax| � 1, we calculate:

θ4

max ≈
512P2fR

∆R2
maxI

2
(2.2)

θ2

mis ≈
32PfR

∆R2
maxI

2θ2
max

(2.3)

where R = 12.8 Ω and ∆Rmax = 0.11 Ω is the resistance change between the

P and AP states. For the spectrum from sample 1 in the inset to Fig. 2.1c, we

estimate that θmis ≈ 9◦, and the precessional signal first becomes measurable above

θmax ≈ 10◦.

With increasing currents, the nanomagnet exhibits additional dynamical

regimes. As I is increased beyond 2.4 mA to 3.6 mA for sample 1, the microwave

power grows by two orders of magnitude, peak frequencies shift abruptly, and

the spectrum acquires a significant low-frequency background (Fig. 2.1c).1 In

many samples some spectral peaks are difficult to distinguish. Within this large-

amplitude regime, peaks shift down in frequency with increasing current (Fig.

1Here this is not studied in great detail, but it is most likely a Lorentzian
centered at zero frequency, due to rapid thermal activation discussed in chapter 3
and Ref. [52].
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2.1f). The large-amplitude signals persist for I up to 6.0 mA, where the mi-

crowave power plummets sharply at the same current for which there is a shoulder

in dV/dI. The state that appears thereafter has a DC resistance 0.04 Ω lower than

the AP state and 0.07 Ω above the P state. At even higher current levels (not

shown), we sometimes see additional large microwave signals that are not repro-

ducible from sample to sample. These might be associated with dynamics in the

fixed layer.

The regions of I and H associated with each type of dynamical mode can

be determined by analyzing the microwave power and dV/dI (Fig. 2.2a, b for

sample 2). In all eight samples we have examined in detail, large microwave signals

occur for a similarly shaped range of I and H . Samples 1 and 2 exhibit clear

structure in dV/dI at the boundaries of the large-amplitude regime, but other

samples sometimes lack prominent dV/dI features over part of this border. In Fig.

2.2c we construct a dynamical stability diagram showing the different modes that

can be driven by a DC spin-transfer current and a constant in-plane magnetic field.

Explaining the existence of all these modes and the positions of their boundaries

provides a rigorous testing ground for theories of spin-transfer-driven magnetic

dynamics, as discussed below.

As indicated in Fig. 2.2c, d, microwave signals can sometimes be observed

not only at large H where dynamical modes have been postulated previously [10,

11, 14, 18, 41, 43–45], but also in the small-H regime of currents at H = 500 Oe;

for example, microwave peaks corresponding to small-angle precession exist for I

within ∼ 0.7 mA below the current for P to AP switching. Similar features are

also observed before switching from AP to P at negative bias. This precession has

also more recently been observed in these regions at low temperature (≈ 10 K) as
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Figure 2.2: Data from sample 2, which has (at H = 0) I+
c = 1.06 mA, I−

c = -3.22

mA, P-state resistance (including leads) 17.5 Ω, ∆Rmax = 0.20 Ω, and 4πMeff = 12

kOe. (a) Broadband (0.1-18 GHz measured with a detector diode directly after

amplification) power versus I and H , for I swept negative to positive. The white

dots show the position of the AP to P transition for I swept positive to negative.

(b) dV/dI at the same values of I and H . A smooth I-dependent, H-independent

background (similar to that of Fig. 2.1b) is subtracted emphasize the different

regimes. Resistance changes ∆R are measured relative to P. (c) Dynamical stability

diagram extracted from (a) and (b). P/AP indicates bistability, S and L the small-

and large-amplitude dynamical regimes, and W a state of intermediate resistance

and only small microwave signals. The colored dots in (c) correspond to the

microwave spectra at H = 500 and 1100 Oe shown in (d).
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well [53,54]. As discussed below, stable precession is indeed predicted in this region

even excluding the effects of temperature. As discussed in Ref. [55], this precession

can also be excited below the critical current by thermal fluctuations, deflecting

the free-layer moment away from equilibrium far enough for us to measure but not

far enough to excite over the activation barrier for switching [19]. Related signals

have been observed recently in magnetic tunnel junctions [56].

To understand what type of motion may be associated with the different dy-

namical modes, we have computed solutions of the Landau-Lifshitz-Gilbert equa-

tion of motion for a single-domain magnet (similar to Ref. [20, 21, 57, 58]). We

employ the form of the spin-transfer torque derived in [2]. The calculated zero-

temperature dynamical phase diagram is presented in Fig. 2.3a, along with some

representative trajectories. We have not attempted to adjust parameters to fit

our data, but upon comparing with Fig. 2.2c, the existence and relative positions

of the P, AP, and small-angle-precession regimes agree quite well. The exact lo-

cations of the boundaries depend strongly on the choice of parameters and the

complicated details of the actual micromagnetic modes we excite. More recently,

the curvature on the corners of the P/AP region not found in the simulation here

has been qualitatively captured within the macrospin approximation by including

thermal fluctuations [55], which can excite the magnetization over the potential

energy barrier between the P and AP state.

Our simulation suggests that the initial microwave signals correspond to small-

angle precession, and that the large-amplitude signals at higher bias correspond to

large-angle, approximately in-plane precession of the free-layer moment (labeled

“large angle” in Fig. 2.2). As shown in Fig. 2.3b, the simulation reproduces the
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Figure 2.3: Results of numerical solution to the Landau-Lifshitz-Gilbert equa-

tion for a single-domain nanomagnet at zero temperature. The parameters are:

4πMeff = 10 kOe, Han = 500 Oe, Gilbert damping parameter α = 0.014, and

effective polarization P = 0.3, which produce Hc = 500 Oe and I+
c = 2.8 mA. (a)

Theoretical dynamical stability diagram. The pictures show representative pre-

cessional trajectories of the free-layer moment vector m (the fixed layer moment

vector M and applied field H remain static). For the “out-of-plane” case, the

system chooses (depending on initial conditions) one of two equivalent trajectories

above and below the sample plane. (b) Dependence of precession frequency on cur-

rent in the simulation for H = 2 kOe, including both the fundamental frequency

and harmonics in the measurement range. The vertical dividing lines correspond

to the phase diagram boundaries of (a).
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abrupt jump2 to much lower frequency at the onset of this mode, as well as the

decreasing frequency with further increases in current (compare with Fig. 2.1f).

It also reproduces the large powers in the harmonics; the maximum simulated mi-

crowave powers for this mode in the 0-18 GHz bandwidth are 18 pW mA−2 for

sample 1 and 75 pW mA−2 for sample 2 (differing primarily because of different

∆Rmax values), whereas the measured maxima are 10 and 90 pW mA−2, respec-

tively. Low-frequency backgrounds in the large-amplitude spectra (for example,

Fig. 2.2d, spectrum 5) are not reproduced by this simulation, and are likely due to

telegraphing between the dominant large-angle dynamical mode and other modes

nearby in energy [21, 52, 54]. The simulation also does not explain the state W.

We suspect our single-domain approximation becomes invalid in the regime W

(perhaps owing to dynamical instabilities [25, 60]), and that different regions of

the sample may move in a fashion that tends to cancel the overall resistance os-

cillations. More recent micromagnetic simulations have been employed with some

success in order to qualitatively explain this regime [26].

2.4 Conclusions

In this chapter we discussed the first unambiguous direct measurement of magneti-

zation dynamics driven by DC spin-polarized currents in individual nanomagnets.

We applied DC current and measured the corresponding microwave-frequency re-

sistance oscillations with a spectrum analyzer, confirming predictions that the in-

2In the simulation for this device, the “jump” appears abrupt, but is actually
continuous transition over a very short range. This is generally only true in the
macrospin approximation. More recent data and micromagnetic simulations [59]
illustrate that as the precession angle changes in these devices, the frequency often
makes abrupt jumps corresponding to hops between different dynamical modes.
Some evidence of this hopping is also reported in chapters 3 and 4.
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termediate resistances correspond to a regime of magnetization dynamics. We com-

pared the frequency and amplitude of the generated spectral peaks to a macrospin

simulation and identified both small- and large-angle dynamical modes. We also

reported several important discrepancies between the simulation and the obser-

vations, providing a rigorous testing ground for future spin transfer theory. The

magnetic precession in this system can be quite large, generating a substantial frac-

tion of the maximum possible power. For sample 1, the largest peak in the power

spectrum has a maximum of more than 40 times larger than room-temperature

Johnson noise. Nanomagnets driven by spin-polarized currents may one day serve

as nanoscale microwave sources or oscillators, tunable by I and H over a wide

frequency range.



Chapter 3

Mechanisms Limiting the Coherence of

Spontaneous Magnetic Oscillations

Driven By DC Spin-Polarized Currents
The contents of this chapter are adapted from work originally published as Phys.

Rev. B 72, 224427, (2005).

3.1 Introduction

As the previous chapter began to explore, a spin-polarized DC current can excite

periodic oscillations in nanometer-scale magnetic multilayers even in the absence

of any external oscillatory drive [5, 32, 61, 62] in agreement with predictions [2, 3].

The magnetic motions produce variations of the resistance R(t) that, when mea-

sured with a spectrum analyzer, give peaks in the microwave power spectral density

versus frequency (Fig. 3.1a). Deviations from perfect periodicity can be charac-

terized by the time scale over which the oscillations lose phase coherence, related

to the reciprocal of the linewidth. This scale is important both for a fundamental

understanding of the dynamics and for applications including tunable nanoscale

microwave sources and resonators [63]. The coherence quality has varied in pre-

vious experiments, with room-temperature linewidths ranging from a full width

at half maximum (FWHM) of 550 MHz for Co layers in “nanopillars” to 2 MHz

for Py (Ni81Fe19) films in point-contact devices [62, 64]. Here we investigate the

processes that limit the coherence time of spin-transfer-driven precession by mea-

41
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suring the dependence of linewidths on temperature and the proximity of similar

magnetic modes. We argue that two fundamental mechanisms contribute: (a)

thermal deflection of the magnetization about its equilibrium trajectory at low

temperatures, and (b) rapid thermally-activated escape to other magnetic states

at higher temperatures. Interestingly, by probing mechanism (b) we are able to

estimate the effective energy barriers between different dynamical modes without

actually knowing the details of the modes involved. Also, our observed linewidths

are narrower than predicted by simple macrospin simulations, indicating that spa-

tial variations in the magnetization may actually improve coherence.

3.2 Sample Geometry

We focus on devices having a nanopillar geometry (Fig. 3.1a, inset). The samples

are composed of metal multilayers fabricated into elliptical cross sections using the

procedure of Ref. [1, 61]. the devices that we examine have different sequences of

layers (noted below), but all contain one thin Py “free” layer (2-7 nm thick) that

can be driven into precession by spin-transfer torques and a thicker or exchange-

biased “fixed” Py layer, which polarizes the current and does not undergo dynamics

in the current range we discuss. When biased with a DC current I, motion of the

free-layer magnetic moment results in a spontaneous microwave signal IR(t) that

we measure with a spectrum analyzer. Figure 3.1b is a dynamical phase diagram for

device 1, determined from microwave measurements as in Ref. [61], with magnetic

field H applied in plane along the magnetically easy axis. This device has the layer

structure 80 nm Cu / 20 nm Py / 6 nm Cu / 2 nm Py / 2 nm Cu / 30 nm Pt, with

an approximately elliptical cross section of 120 nm × 60 nm and a resistance of 6

Ω (low enough that ohmic heating [53] is negligible above 20 K). We will consider
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the dynamical states near bias points corresponding to the dot in Fig. 3.1b where,

as a function of increasing I, the sample evolves from a configuration in which the

moments of the two magnetic layers are parallel (P) to a regime with small-angle

precessional dynamics (SD), to a regime with larger-angle dynamics (LD).

3.3 Data and Analysis

We find that linewidths can vary significantly between samples of similar geometry,

to a greater extent than the critical currents or the other aspects of spin-transfer-

driven dynamics that have been analyzed previously. The differences between

samples might be associated with film roughness, partial oxidation at the sample

edges, or other effects. We will focus on the comparatively narrow lines. Figure

3.2a shows the measured temperature dependence of the FWHM of the peak in

power density observed at twice the fundamental precession frequency in device

1.1 Because the linewidth depends on the magnitude of the precession angle θ

measured in plane (Fig. 3.2a, inset), as temperature T is changed we keep the

average precession angle 〈θ〉 approximately constant. For device 1, we do this

by monitoring the power in the second harmonic, estimating 〈θ〉 by using the

procedure of Ref. [61] and adjusting I between 1.1 mA (25K) and 0.9 mA (170 K)

to fix 〈θ〉 near an estimated value of 32◦, where the linewidth is a minimum in this

device. The misalignment angle between the precession axis and the fixed layer

magnetization (estimated from the first and second harmonic [61]) is θmis ∼ 2◦.

We find that the linewidth is strongly dependent on T , increasing by a factor of

5 between 25 and 170 K. We have observed qualitatively similar behavior in six

1The linewidths for device 1 approach a constant value below ∼20 K, as ex-
pected due to ohmic heating. See the heating estimate in Ref. [53].
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Figure 3.1: (a) A far narrower spectral peak from a nanopillar device than those

reported prior to the original publication of this work (FWHM = 5.2 MHz) [54].

The device has the same composition as device 3, described in the text. (Inset)

Schematic of a nanopillar device. (b) Differential resistance of device 1 as a function

of I and H at T = 4.2 K, obtained by increasing I at fixed H . AP denotes static

antiparallel alignment of the two magnetic moments, P parallel alignment, P/AP

a bistable region, SD small-angle dynamics, and LD large-angle dynamics.
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samples, throughout the region of the phase diagram where precessional excitations

exist. Figure 3.2b shows results near the fundamental precession frequency for

smaller-angle precession in device 2, composed of 80 nm Cu / 20 nm Py / 10 nm

Cu / 7 nm Py / 20 nm Cu / 30 nm Pt, with cross section 130 nm × 40 nm,

and resistance 20 Ω. The thicker free layer (compared to device 1) reduces some

effects of thermal fluctuations and permits studies of the small-angle dynamics up

to room temperature. Measurements at the fundamental precession frequency are

possible even for small 〈θ〉 in device 2, because of larger value of the offset angle

θmis than in device 1. 2 The strong T dependence that we observe in all samples

indicates that thermal effects determine the coherence time of spin-transfer-drive

precession above 25K.

To analyze these results, we first consider the simplest model, in which the

moment of the free layer is assumed to respond as a single macrospin. Theoretical

studies of this model have been performed previously [20, 21, 29, 55, 58, 65], and

good qualitative agreement has been found with both frequency- and time-domain

measurements, with some exceptions at large currents [5, 27, 32, 61]. We integrate

the Landau-Lifshitz-Gilbert (LLG) equation of motion with the Slonczewski form

of the spin-transfer torque [9]. Thermal effects are modeled by a randomly fluctu-

ating field µ0Hth, with each spatial component drawn from a Gaussian distribution

of zero mean and standard deviation
√

2αkBT/γMsV ∆t, where α is the Gilbert

damping parameter, kB is Boltzmann’s constant, γ is the gyromagnetic ratio, Ms

and V are the magnetization and volume of the free layer, and ∆t is the integration

2In this case we control the precession angle by monitoring the power at the
fundamental, and estimate 〈θ〉 < 12◦ for these data. At these small angles, we did
not see a second harmonic above the noise floor of the measurements. The upper
bound is estimated by assuming the second harmonic peak amplitude is the same
size as the noise.
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from Eqs. 3.2 and 3.3, obtained by convolution. (Inset) Dependence of linewidth

on I for device 1, with estimates of precession angles.
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time step [28,66]. Thermal fluctuations displace the moment both (i) along and (ii)

transverse to the equilibrium trajectory. Fluctuations along the trajectory speed

and slow the moment’s progress, directly inducing a spread in precession frequency

f . From the time needed for this random-walk process to produce dephasing, we

estimate the contribution to the FWHM from mechanism (i) to be

∆f|| ≈
4πγαkBT

MsV D2
n2 (3.1)

where D is the length of the precession trajectory on the unit sphere, and n = 1 or

2 for the first or second harmonic peak.3 If we substitute parameters appropriate

for device 1: α = 0.025 [32], T = 150 K, µ0Ms = 0.81 T [53], n = 2, dimensions

2 × 120 × 60 nm3, and θ = 32◦, we predict a contribution from this mechanism

of ∆f ≈ 12 MHz. This is much less than the measured linewidths at T = 150

K, and the linear T dependence also differs from the experiment, so we conclude

that the contribution from this mechanism is likely negligible from devices 1 and

2 in this geometry. The second mechanism, (ii) thermal fluctuations of the free-

layer moment transverse to the trajectory, will produce fluctuations in θ about 〈θ〉

(upper inset, Fig. 3.3). If f depends on θ, this will cause an additional spread

∆f⊥. Different regimes are possible for the resulting linewidths, depending on the

magnitude (and linearity) of df/dθ, the width of the distribution in θ, and the

correlation time for fluctuations. However, (as discussed below) our simulations

3Without Hth, the steady-state precession is perfectly periodic, so the Fourier
transform yields a delta function in power at the resonant frequency. The linewidth
due to Hth is derived by assuming an arbitrary trajectory on the unit sphere
of perimeter D, writing down the distribution of fluctuations in the precession’s
phase at each time step (it’s a Gaussian, since it is caused by Hth), and taking a
Fourier transform of the time-evolution to get a distribution in frequencies (also a
Gaussian). As you can imagine, if D is very small, thermal kicks will cause large
jumps in phase, broadening the resonance. Interestingly, we do not see a strong
linear component in the data from device 2.
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suggest that our data correspond to a regime in which the linewidth at low tem-

perature is simply proportional to the FWHM ∆θ of the distribution of precession

angles, weighted by the magnitude of the resistance oscillations associated with

each θ:4

∆f⊥ = n
df

dθ

∣

∣

∣

∣

∣

〈θ〉

∆θ. (3.2)

The simulation parameters used are those corresponding to device 1 (listed above),

together with an in-plane uniaxial anisotropy µ0Hk = 20 mT, an out-of-plane

anisotropy µ0Meff = 0.8 T [53], I = 1.2 mA, and µ0H = 50 mT applied along

the easy axis, with the fixed-layer moment in the same direction. We assume that

the angular dependence of the Slonczewski torque is simply proportional to sin(θ)

with an efficiency parameter of 0.2 [29].

The squares in Fig. 3.3 show the FWHM calculated directly from the Fourier

transform of R(t) obtained in the simulation, and the triangles display values

predicted by the right-hand side of Eq. 3.2 with ∆θ and df/dθ|〈θ〉 ≈ 35 MHz/deg

both determined from the same simulation. The agreement between these two

quantities demonstrates that the simulation is not in a regime where motional

narrowing is important, and that Eq. 3.2 gives a good description

of the linewidths expected from dynamics within this approximation.5

The T dependence of the calculated linewidths in Fig. 3.3 is to good accuracy

T 1/2 at low T (Fig. 3.3, inset). We expect that this form is very general (and

perhaps even applicable beyond the macrospin case) because it follows from Eq.

3.2, if one assumes that Boltzmann statistics can be applied to this non-equilibrium

4For small angles, (discussed in chapter 2) the resistance oscillations are pro-
portional to θ2

misθ
2 for the fundamental peak and θ4 for the second harmonic; see

the online supporting material in Ref. [32].
5The small systematic deviations at higher temperatures are likely due to non-

linearities in the system occurring when the ∆θ becomes comparable to 〈θ〉.
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problem. If fluctuations of θ about 〈θ〉 are subject to an effective linear restoring

term, then both simulations and simple analytical calculations show that ∆θ ≈

AT 1/2, where A is a constant.6

Consider now the data for device 1 shown in Fig. 3.2a. In the range 25-110

K, Eq. 3.2 with ∆θ ≈ AT 1/2 gives a reasonable fit, with one adjustable parameter

Adf/dθ|〈θ〉 = 2.3 MHz K1/2. However, the measured widths are approximately

a factor of 8 narrower than those predicted by the macrospin simulation with

parameters chosen to model this sample (Fig. 3.3). The measured value df/dθ|〈θ〉 ∼

30 MHz/deg is similar to the simulation, so the effective linear restoring term

required to model our device (∝ 1/A2) would have to be larger by a factor of

∼ 50. We have not been able to account for so large a difference by varying device

parameters over a reasonable range or by employing different predictions for the

angular dependence of the spin torque [55].

We are therefore led to the surprising suggestion that spin-transfer-driven dy-

namical modes can generate narrower linewidths at low T than are expected within

the macrospin approximation. Initial micromagnetic simulations have been per-

formed in an attempt to account for the possibility of spatially nonuniform mag-

netizations in spin-transfer devices [26,33,67,68]. However, for the cases analyzed,

non-uniformities have thus far led to much broader, not narrower, linewidths. It

is possible that the simulations might be improved by including recently proposed

mechanisms, whereby different regions of a nanomagnet interact through feedback

mediated by the current [8, 60, 69, 70]. At the 2007 APS March Meeting, Kyung-

6A is set by the details of the precession and the effective restoring term. If A
is small, when a thermal fluctuation kicks θ away from equilibrium, it will take a
long time to return. In this case, thermal fluctuations will cause a larger spread
in θ and hence a larger linewidth.
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Jin Lee reported unpublished simulation results showing that including this effect

substantially improves the coherence time of precession in nanomagnets similar to

ours [71].

Above T ≈ 120 K, the measured linewidths (Fig. 3.2) increase with T much

more rapidly than the approximate low-temperature T 1/2 dependence predicted

above. The macrospin simulation simply cannot capture this upturn at higher

temperatures. As we shall now discuss, a plausible mechanism for the strong T

dependence is switching between different dynamical modes, leading to linewidths

inversely proportional to the lifetime of the precessional state. Switching between

different steady-state precessional modes and static states has previously been iden-

tified at frequencies from < 100 kHz [45,53,72] to several gigahertz [52]. The conse-

quences on linewidths have been considered within LLG simulations [29]. Further

direct experimental evidence for rapid mode-hopping is reported below. Interest-

ingly enough, without knowing the details of the micromagnetic modes involved,

we can estimate the effects of such switching by simply assuming that the aver-

age lifetime of a precessional state is thermally activated, τ ≈ (1/f)exp(Eb/kBT ),

where Eb is an effective activation barrier. The time-averaged Fourier transform

then yields a linewidth7

∆fsw =
1

πτ
=

f

π
exp(−Eb/kBT ). (3.3)

We find that only the combination of Eqs. 3.2 and 3.3 gives a good description of

7The linewidth here basically arises from our inability to resolve the frequency;
when telegraphing between two dynamical states, the time trace of the resistance
oscillations is essentially a series of short sinusoidal blocks of differing lengths t.
If one of the modes is short-lived, it will not contribute to the Fourier transform,
and what remains are blocks of a single frequency, with uncorrelated phases. The
Fourier transform of one of these blocks is a peak (with side-bands) width ∝ 1/t.
Averaging over the distribution of lifetimes (an exponential) yields a Lorentzian
with a width given by Eq. 3.3.
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the strong T -dependence of the linewidths in Fig. 3.2. For device 1, Adf/dθ|〈θ〉 =

2.3 MHz K1/2 (as before) and Eb/kB = 400 K. For device 2, Adf/dθ|〈θ〉 = 3.7 MHz

K1/2 and Eb/kB = 880 K.8 Similar values of Eb were determined from gigahertz-

rate telegraph-noise signals by Pufall et al. [52]. Note that Eq. 3.3 alone would

predict low-T linewidths much smaller than we measure. The effective barriers

from the fits are small compared to the static anisotropy barriers (for switching)

µ0MsHkV/kB ∼ 10, 000 K in device 1 and 100,000 K in device 2. It is not surprising

that the effective barriers for switching between dynamical states are distinct from

the static anisotropies.

Direct evidence for the importance of the switching mechanism can be seen

in some samples (e.g., device 3, composed of 80 nm Cu / 8 nm IrMn / 4 nm

Py / 8 nm Cu / 4 nm Py / 20 nm Cu / 30 nm Pt, with a cross section of 130

× 60 nm2) for which, at particular values of I, H , and T , multiple peaks can

appear simultaneously in the power spectrum at frequencies that are not related

harmonically Fig. 3.4. In these regimes, the widths of both peaks are broader than

when only a single mode is visible in the spectrum. We suggest the cause is rapid

switching between two different dynamical states.9

8The common approximation we used in Eq. 3.3, that the activation attempt
time is equal to the precession period, is difficult to justify. However, the fit
results are fairly insensitive to the attempt time so long as its the right order of
magnitude. If we leave the attempt time as a third floating parameter, for device
2 (where f = 15.9 GHz) the quality of fit is similar, with attempt time 1/19 GHz
and Eb/kB = 930 K. For device 1 (f = 5.3 GHz), the attempt time is 1/14 GHz
with Eb/kB = 550 K. In both cases, the low-temperature values of Adf/dθ|〈θ〉 are
not affected within the precision of this measurement.

9It might be interesting to study this over-barrier process in greater detail by
simultaneously monitoring the Lorentzian centered at f = 0 that should appear
when there is telegraphing between modes. The zero-frequency peak linewidth
gives more information about the telegraphing rates and its height gives infor-
mation about the change in average resistance between the two modes. Spectra
containing multiple peaks and broadening tend to show an upturn at low frequency,
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Macrospin simulations at experimental temperatures do not exhibit switching

between metastable states except in narrow regions of the dynamical phase diagram

where nearly degenerate modes exist [21, 29]. In contrast, we measure strong

thermally activated temperature dependence whenever precessional dynamics are

present, for T > 120 K. In this regime, transitions involving nonuniform modes

[8, 60, 68] therefore appear only to increase the linewidths. Understanding these

transitions will provide an important test for future micromagnetic simulations.

The narrowest linewidth that we achieved for any free-layer oscillation (shown

in Fig. 3.1a, for a sample composition the same as device 3) in a patterned nanopil-

lar device is10 5.2 MHz, corresponding to a coherence time of 1/∆f ∼ 190 ns. This

is more than a factor of 100 improvement relative to the first measurements in

nanopillars of the previous chapter, and is comparable to the lower limit expected

from Eq. 3.1.11 Such narrow linewidths are observed in devices containing an

antiferromagnetic layer to exchange bias the fixed magnetic layer 45◦ relative to

the easy axis and with H applied along the exchange-bias direction. We speculate

that the reduced symmetry of these conditions may improve the coherence time by

reducing both df/dθ and the likelihood of thermally activated switching between

low-energy modes. Also, as discussed in Ilya Krivorotov’s upcoming paper [59],

when the moments are not collinear (and the spin-torque is not ∼ 0), the spatial

distribution of the spin-transfer torque across the free layer is not so wildly affected

by small changes in the local magnetization. This leads to more spatially uniform

and stable rotation of the magnetization.

but this has not been studied in detail.
10At the time this data was published.
11Unfortunately, ohmic heating due to increased critical currents and resistance

precludes T dependent studies below T ≈ 200 K in the samples with these small
linewidths.
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3.4 Conclusions

In summary, we have studied the spectral linewidth of magnetization dynamics

in individual nanomagnets driven by DC spin polarized currents, as a function

of temperature and the proximity of nearby modes. Our data indicate that the

coherence time of spontaneous spin-transfer-driven magnetic dynamics is limited

by thermal effects: thermal fluctuations of the precession angle at low T , and

thermally activated mode switching at high T or near bias points where two or

more different modes are accessible. Without knowing the exact details of the true

micromagnetic modes involved, we have measured the effective energy barriers

separating them (roughly 1000 K, which is very small compared to the energy

barrier for full reversal). The coherence time can be increased dramatically by

cooling samples below room temperature, increasing the magnetic volume, finding

regimes where the frequency does not vary with angle, and avoiding the situation

where several similar modes are accessible.



Chapter 4

Spin-Transfer-Driven Ferromagnetic

Resonance of Individual Nanomagnets
The contents of this chapter are adapted from work originally published as Phys.

Rev. Lett. 96, 227601, (2006).

4.1 Introduction

Ferromagnetic resonance (FMR) is the primary technique for learning about the

forces that determine the dynamical properties of magnetic materials. However,

conventional FMR detection methods lack the sensitivity to measure individual

sub-100-nm-scale devices that are of interest for fundamental physics studies and

for a broad range of memory and signal-processing applications. For this reason,

many new techniques are being investigated for probing magnetic dynamics on

small scales, including Brillouin scattering [73] and FMR detected by Kerr mi-

croscopy [74], scanning probes [75, 76], X-rays [77], and electrical techniques [78].

Here we demonstrate a simple new form of FMR that uses innovative methods to

both drive and detect magnetic precession, thereby enabling FMR studies for the

first time on individual sub-100-nm devices and providing a detailed new under-

standing of their magnetic modes. We excite precession not by applying an AC

magnetic field as is done in other forms of FMR, but by using spin-transfer torque

from a spin-polarized AC current [2,3]. We detect the resulting magnetic motions

electrically. We demonstrate detailed studies of FMR in single nanomagnets as

small as 30×90×5.5 nm3, and the method should be scalable to investigate much

56
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smaller samples as well. Our technique is similar to methods developed by Tula-

purkar et al. [35] for radio-frequency detection, but we will demonstrate that the

peak shapes measured there were likely not simple FMR.

We have achieved the following new results: (i) We measure magnetic normal

modes of a single nanomagnet, including both the lowest-frequency fundamental

mode and higher-order spatially nonuniform modes. (ii) By comparing the FMR

spectrum to signals excited by a DC spin-polarized current, we demonstrate that

different DC biases can drive different normal modes. (iii) From the resonance line

shapes, we distinguish simple FMR from a regime of phase locking. (iv) from the

resonance linewidths, we achieve efficient measurement of the magnetic damping

in a single nanomagnet.

4.2 Devices and Apparatus

Our samples have a nanopillar structure (Fig. 4.1a, inset), consisting of two mag-

netic layers – 20 nm of permalloy (Py = Ni81Fe19) and 5.5 nm of a Py65Cu35 alloy –

separated by a 12 nm copper spacer (see details in appendix 4.5.1). We pattern the

layers to have approximately elliptical cross sections using ion milling. We focus

here on one 30 × 90 nm2 device, but we also obtained similar results in 40 × 120

and 100× 200 nm2 samples.1 We use different materials for the two magnetic lay-

ers so that by applying a perpendicular magnetic field H we can induce an offset

angle between their equilibrium moment directions (without an offset angle, both

the spin-transfer torque and the small-angle resistance response are zero). The

room-temperature magnetoresistance (Fig. 4.1a) shows that the PyCu moment

1Generally, in the larger samples, we find the mode spacing is reduced, and it
is difficult to find a regime in which to cleanly study a single mode.
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saturates out of plane at µ0H ≈ 0.3 T, while the larger moment of Py does not

saturate until approximately µ0H > 1 T.2 All of our FMR measurements in this

chapter are performed at low temperature (≤ 10 K),3 and the direction of H is

approximately perpendicular to the layers (ẑ direction), tilted 5◦ along the long

axis of the ellipse (in the x̂ direction) to stabilize the in-plane component of the

Py layer magnetization along x̂. Positive currents correspond to electron flow from

the PyCu to the Py layer. Using a bias tee, we apply current at both microwave

frequencies (If cos 2πft) and DC (IDC) while measuring the DC voltage across

the sample VDC (Fig. 4.1b). If the frequency f is set near a resonance of either

magnetic layer, the layer will precess, producing a time-dependent resistance:4

R(t) = R0 + ∆R(t) = R0 + Re

(

∞
∑

n=0

∆Rnfe
in2πft

)

, (4.1)

where ∆Rnf can be complex. The voltage V (t) = I(t)R(t) will contain a term

involving mixing between IRF and ∆R(t), so that the measured DC voltage will

be

VDC = IDC(R0 + ∆R0) +
1

2
IRF |∆Rf |cos(δf), (4.2)

where δf is the phase of ∆Rf . The final term enables measurement of spin-transfer-

driven FMR. To reduce background signals and noise, we chop the microwave

current bias at 1.5 kHz and measure the DC mixing signal Vmix = VDC − IDCR0

using a lock-in amplifier.5

2The 20 nm Py layer used here has a stronger demagnetizing field than the
3-nm layer of Ref. [5].

3At room temperature, this sample is super-paramagnetic, but there is still a
small FMR signal. It may be interesting vary the temperature and investigate
phase-locking and decoherence in this system.

4Resistances are all differential.
5Not included in this equation is the term (1/2)(d2V/dI2)I2

RF which arises from
non-resonant nonlinear mixing in the device. Here we subtract this background
from the data when applicable.
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4.3 Data and Analysis

In Fig. 4.1c we plot the FMR response Vmix/IRF measured for IDC near 0. We

observe several resonances, appearing as either peaks or dips in Vmix. An applied

IDC can decrease the width of some resonances and make them easier to discern as

discussed below. By studying the field dependence of the largest resonances (Fig.

4.1d), we identify two groups that we will call normal modes A0, A1, and A2 (solid

symbols) and B0, B1 (open symbols). Above µ0H = 0.3 T, the field required to

saturate the PyCu moment along ẑ, the frequencies of A0, A1, and A2 shift linearly

in parallel with slope df/dH = gµBµ0/h, where g = 2.2 ± 0.1. As expected for

the modes of a thin-film nanomagnet [50], the measured frequencies are shifted

above that of uniform precession of a bulk film, ffilm = (gµB/h)(µ0H − µ0Meff ),

with µ0Meff = 0.3 T.6 The linearity of the frequency with respect to H above 0.3

T provides initial evidence that A0, A1, and A2 are magnetic modes of the PyCu

layer (additional evidence is presented later). The other two large resonances, B0

and B1, also shift together, with weaker dependence of H . This is the behavior

expected for modes of the Py layer, because the values of H shown in Fig. 4.1d are

not large enough to saturate the Py layer out of plane. To avoid coupling between

modes in different layers, we perform our detailed measurements at fields where

the mode frequencies are well separated. In addition to these modes, we observe

small signals (not shown in Fig. 4.1d) at twice the frequencies of the main modes

6Generally, the more nonuniform the mode, the higher the frequency due to the
exchange field. We might draw the conclusion that mode A0 is quite nonuniform
based entirely on its frequency shift above macrospin estimations. However, there
is also substantial dipolar coupling from the Py on the PyCu layer, which tends
to offset the frequency as well. I am quite interested to see what micromagnetic
simulations predict in this geometry.
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and near frequency sums (modes C).7

Based on comparisons to simulations [33,50] and that the lowest-frequency res-

onances produce the largest resistance signals, we propose that A0 and B0 corre-

spond to the lowest-frequency normal mode of the PyCu and Py layer respectively.

This mode should have the most spatially uniform precession amplitude (albeit not

exactly uniform) [33, 50]. The higher-frequency resonances A1, A2, and B1 must

correspond to higher-order nonuniform modes. The observed frequencies and fre-

quency intervals are in the range predicted for normal modes of similarly shaped

nanoscale samples [33, 50].

Next we compare the FMR measurements to spontaneous precessional signals

that can be excited by IDC alone (IRF = 0) [61,62]. The power spectral density of

resistance oscillations for DC-driven excitations at 420 mT is shown in Fig. 4.2a.

We examine IDC > 0, which gives the sign of torque to drive excitations in the

PyCu layer only [5]. A single peak appears in the DC-driven spectral density above

a critical current Ic = 0.3 mA, and moves to higher frequency with increasing IDC .

The increase in frequency can be identified with an increasing precession angle,

which decreases the average demagnetizing field along ẑ [5]. At larger IDC , we

observe additional peaks at higher f and switching of the precession frequency

between different values, similar to the results of previous measurements [5,61,62]

that have not been well explained before.

The FMR signals are displayed in Fig. 4.2b at the same values of IDC shown

in Fig. 4.2a. we find that the FMR fundamental mode A0 that we identified

7These extra features are neither sharp nor well-defined peaks, and it is quite
difficult to accurately define their central frequency. I suspect that these modes
would be much easier to identify if we performed this experiment using the im-
proved RF leveling techniques discussed in the next chapter.
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above with the PyCu layer is the mode that is excited at the threshold for DC-

driven excitations. When IDC is large enough that the DC-driven mode begins

to increase in frequency (585 µA), the shape of this FMR changes from a simple

Lorentzian to a more complicated structure with a dip at low frequency and a peak

at high frequency. The FMR peaks A1 and A2 also vary strongly in peak shape

and frequency as a function of positive IDC , in a manner similar to A0, confirming

that A1 and A2 (like A0) are associated with the PyCu layer. The FMR modes

B0 and B1 that we identified with the Py layer do not shift significantly in f as a

function of positive IDC . This is expected, because positive IDC is the wrong sign

to excite spin-transfer dynamics in the Py layer [2].

There has been significant debate about whether the magnetic modes which

contribute to the DC-spin-transfer-driven precessional signals correspond to ap-

proximately uniform macrospin precession or to nonuniform spin-wave instabili-

ties [8,60,69,79]. Our FMR measurements show directly that, at Ic, the DC-driven

peak frequency is equal to that of the lowest-frequency RF-driven mode, the one

expected to be the most spatially uniform [50]. Higher values of IDC can also excite

the spatially nonuniform mode A1 and even produce mode hopping so that mode

A1 can be excited when mode A0 is not.

In order to analyze the FMR peak shapes, we make the simplifying assumption

that the lowest-frequency modes A0 and B0 can be approximated by a macrospin

model, with the Slonczewski form of the spin-transfer torque [2]. The PyCu

layer magnetization m then evolves according to the Landau-Lifshitz-Gilbert-

Slonczewski (LLGS) equation:

∂m

∂t
= γ0µ0( ~H + ~Hanis) ×m + αm×

∂m

∂t
+

ηI(t)

e
m× (m× M). (4.3)

Here, γ0 is the magnitude of the gyromagnetic ratio, ~H and ~Hanis are the applied
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and anisotropy fields, α is the Gilbert damping parameter, and η (> 0 for our

definition of positive current) is a dimensionless spin transfer efficiency factor [2].

A similar equation of motion for the Py layer can be quickly attained by swapping

m and M, and using the appropriate η (< 0). Equations 4.3 and 4.2 together

predict a Lorentzian line shape

Vmix(f) =
∂R

∂θ

I2
RF η sin(θ)

8πe∆0

1

1 + (f − f0)2/∆2
0

. (4.4)

Here R is the differential resistance, θ is the angle between m and M, f0 is the

unforced precession frequency, and ∆0 is the linewidth. For the Py layer (when

η < 0) this equation predicts an inverted Lorentzian signal, similar to that of

mode B0. The width ∆0 predicted for the PyCu layer in our simple experimental

geometry is (to within 1% error for µ0H > 0.5 T; see appendix 4.5.2)

∆0 = αf0. (4.5)

As predicted by Eq. 4.4, we find that the measured FMR peak for mode A0 at

IDC = 0, for sufficiently small values of IRF , is fit accurately by a Lorentzian,

the amplitude scales Vmix ∝ I2
RF , and the width is independent of IRF , (Figs.

4.3a and 4.4a). Our minimum measurable precession angle is ≈ 0.2◦. For IRF >

0.35 mA, the peak eventually shifts to higher frequency and the shape becomes

asymmetric, familiar properties for nonlinear oscillators [80]. From the magnitude

of the frequency shift in similar signals (Fig. 4.3b, inset), we estimate that the

largest precession angle we have achieved is approximately 40◦.

The peak shape for mode B0 is also to good accuracy Lorentzian for small

IDC , but with negative sign. This sign is expected because when the Py moment

precesses in resonance, the positive current pushes the Py moment angle closer to

the PyCu moment, giving a negative resistance response. The FMR peak shapes



65

1.0 1.1 1.2 1.3
0 

10 

20 

30 

40 

7 8 9

0 

10 

20 

30 

40 

50 

Frequency (GHz)

5 6 7 8
0 

10 

20 

30 

40 

50 

7.0 7.5 8.0

0 

50 

100 

150 

200 

250 

10 11 12

0 

1 

2 

3 

4 

5 

6 

0.8 1.0 1.2
0 

20 

40 

60 

220 A RF

-50 m

0.52 mA DC

370 mT

I
DC

= 1.3I
c

Frequency (GHz)

V
m

ix
/I

R
F

(m
   

)
80 A RF

990 A RF

0 mA DC, 535 mT

P
o

w
e
r 

(m
   

2
/M

H
z
)

30 m

5 8
0

50

Freq. (GHz)
6 7

A DC

(m

V
m

ix
/I

R
F

(a)

(b)

Frequency (GHz)

V m
ix

/I
R

F
(m

   
)

(c)

-24 m

43 m

I
RF

= I
c
/3

0.8
Freq. (f/f0)

1 1.2V m
ix

/I R
F

(m
)

60

P
o

w
e
r 

(m
   

2
/M

H
z
)

Frequency (f/f0)

(d)

12 A RF

370 A RF

0.5 mA DC, 370 mT I
dc

=0

535 mT

Figure 4.3: (a) FMR peak shape for mode A0 at IDC = 0 and different values of

IRF : from bottom to top, traces 1-5 span IRF = 80-340 µA in equal increments,

and traces 5-10 span 340-990 µA in equal increments. (b) Bottom curve: spectral

density of DC-driven resistance oscillations for mode A0, showing a peak with

half width at half maximum = 13 MHz. Top curve: FMR signal at the same

bias conditions, showing the phase-locking peak shape. (inset) Evolution of the

FMR peak for mode A0 at 370 mT, IDC = 0, for IRF from 30 µA to 1160 µA. (c)

Evolution of the FMR signal for mode A0 in the phase-locking regime at IDC = 0.5

mA, µ0H = 370 mT, for (bottom to top) IRF from 12 to 370 µA, equally spaced

on a logarithmic scale. (d) Results of macrospin simulations for the DC-driven

dynamics and FMR signal 4.5.



66

10 11 12 13
0 

1 

2 

0.0 0.2 0.4
0.00 

0.01 

0.02 

0.03 

0.04 

0.05 

Frequency (GHz)

0
/ f

0

DC Bias (mA)

535 mT

I
c

V m
ix

/I
R

F
(m

   
)

0 mA DC
535 mT

(b)

(a)

180 A RF

B0

A0 effective
damping

-0.2

Figure 4.4: (a) Detail of the peak shape for mode A0, at IDC = 0, IRF = 180

µA, µ0H = 535 mT, with a fit to a Lorentzian line shape. (b) Dependence of

linewidth on IDC for modes A0 and B0, for µ0H = 535 mT. For the PyCu layer

mode A0, ∆0/f0 is equal to the magnetic damping α. The critical current is Ic

= 0.40 ±0.03 mA at µ0H = 535 mT, as measured independently by the onset of
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for the higher-order modes A1, A2, and B1 are not as well fit by Lorentzians. We

plot the spectrum of DC-driven excitations for IDC = 0.52 mA, IRF = 0 in Fig 4.3b.

The width is much narrower than the FMR spectrum for the same mode (inset),

confirming arguments that the linewidths in these two types of measurements are

determined by different physics (see chapter 3).

We noted above that the FMR peak shape changes from a Lorentzian to a

more complex shape for sufficiently large values of IDC (see the detailed resonance

shapes in Figs. 4.3b and 4.3c). As shown in Fig. 4.3d, this shape change is

reproduced by a macrospin simulation (discussed in appendix 4.5.3), and can be

explained as a consequence of phase locking between IRF and the large-amplitude
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precession excited by IDC [18, 36, 81, 82]. Due to the demagnetization field in

our geometry, the precession frequency increases with precession amplitude. As

a result, (confirmed by the simulation) applying RF current on the low-f side

of a large-angle DC-driven resonance forces the amplitude to decrease. Under

these conditions, the precession phase locks approximately out of phase with the

applied RF current (δf ≈ 180◦), giving negative values of Vmix. Frequencies on

the high-f side force the precession to larger amplitude, producing phase locking

approximately in phase with the drive and a positive Vmix. Recently, Tulapurkar

et al. [35] measured similar peak shapes, and proposed that they were caused by

simple FMR with a torque mechanism different from the Slonczewski theory. We

suggest instead that the peak shapes in [35] may be due either to phase locking

with thermally excited precession at room temperature (rather than simple FMR),

or to the superposition of two FMR signals from different layers (one positive like

that of A0 and one negative like B0).

A benefit of measuring the Lorentzian line shape of simple FMR is that the

linewidth allows a measurement of the magnetic damping parameter α, using Eq.

4.5. It is highly desirable to minimize the damping in spin-transfer-driven memory

devices so as to decrease the current needed for switching [2]. Previously, α in

magnetic nanostructures could only be estimated by indirect means [30, 32]. As

shown in Fig. 4.4b, for IDC = 0 we measure α = 0.040 ± 0.001 for the Py Cu

layer. This is larger than the damping for Py65Cu35 films in identically prepared

large-area multilayers as measured by conventional FMR, αfilm = 0.021 ± 0.003.

The cause of the extra damping in our nanopillars is not known, but it may be

due to coupling with the antiferromagnetic oxide along the sides of the device [83].

As a function of increasing IDC , the theory of spin-transfer torques predicts that
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the effective damping should decrease linearly, reaching zero at the threshold for

the excitation of DC-driven precession [2]. This is precisely what we find for mode

A0 (Fig. 4.4b). In contrast, the linewidth of mode B0 decreases with decreasing

IDC . This is as expected for a Py-layer mode, because the sign of the spin-transfer

torque should promote DC-driven precession in the Py layer at negative IDC .

4.4 Conclusions

In this chapter we have demonstrated a new form of ferromagnetic resonance driven

by spin transfer (ST-FMR) that is capable of probing individual nanomagnets or-

ders of magnitude smaller than can be achieved through existing methods [73–78].

In contrast to the techniques discussed in chapters 2 and 3, here we apply a

microwave-frequency current and measure the magnetic response through a DC

mixing voltage generated by the magnetoresistance oscillations. We have shown

that this technique provides detailed new information about the dynamics of both

the fundamental and higher-order magnetic normal modes in single sub-100-nm-

scale magnetic samples, in both linear and nonlinear regimes. We probed more of

the normal modes than the DC-driven experiments, have identified which modes

are excited by DC-currents, and have observed phase locking between the RF cur-

rent and the large-angle DC-driven modes. Using the resonance linewidth, we

have also achieved a direct and efficient measurement of the magnetic damping

in a single nanostructure. We confirmed that the effective damping parameter is

tunable by IDC , and decreases linearly toward zero at Ic, as predicted [2]. Spin-

transfer-driven FMR will be of immediate utility in understanding and optimizing

magnetic dynamics in nanostructures used for memory and microwave signal pro-

cessing applications. Furthermore, both spin-transfer torques and magnetoresis-
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tance measurements become increasingly effective on smaller size scales. The same

technique may therefore enable new fundamental studies of even smaller magnetic

samples, approaching the molecular limit.
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4.5 Appendices

4.5.1 Device Details and Circuit Calibration

The thicknesses of the layers composing our samples are, from bottom to top, 120

nm Cu / 20 nm Py / 12 nm Cu / 5.5 nm Py65Cu35 / 2 nm Cu, with a Au top

contact. The difference in resistance between parallel and antiparallel magnetic

layers for our 30 × 90 nm2 sample at 10 K is ∆Rmax = 0.84 Ω.

The RF attenuation in our cables, the bias tee, and the ribbon bonds connect-

ing to the sample is frequency dependent. In order to know the value of IRF at

the sample, this attenuation must be calibrated. We calibrate the attenuation of

the cables and bias tee by measuring their transmission with a network analyzer.

To estimate the losses due to the ribbon bonds, we measure the reflection from

ribbon-bonded open, short, and 50-Ω test samples. We observe negligible reflec-

tion from the bonded 50 Ω sample, implying that the ribbon bonds produce little

impedance discontinuity for frequencies < 15 GHz. We can therefore estimate the

frequency-dependent transmission through the ribbon bonds as the square root of

the measured reflection coefficient from either the bonded open test sample or the

bonded short (a square root because the reflected power travels twice through the

ribbon bonds). Finally, we measure the reflection coefficient directly for each of

our ribbon-bonded samples before collecting FMR data, and from this determine

its impedance and the resulting value of IRF . For the 30×90 nm2 sample on which

we focus in the paper, the frequency dependence of IRF at the sample, referenced

to the value at 5 GHz, is shown in Fig. 4.5.

The mixing signal contains a background due to deviations from linearity in

the I-V curve of the sample, which we subtract from the data presented in the
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figures of chapter 4. (At the time this measurement was performed, we had not

developed the local mixing calibration techniques of chapter 5.)

4.5.2 Relationship Between Linewidth and Damping

Equation 4.5 of the main text above is an approximation of the true width predicted

by Eqs. 4.3 and 4.2:

∆0

f0

= α
H/Ms − Nz + Nx/2 + Ny/2

√

(H/Ms − Nz + Nx)(H/Ms − Nz + Ny)
(4.6)

We estimate that the effective demagnetization factors for our PyCu layer are Nz

= 0.79, Nx = 0.03, and Ny = 0.18, based on a magnetization of 0.39 T [84] and

coercive field measurements. However, the result of Eq. 4.6 is quite insensitive to

these values, so that for µ0H > 0.5 T we have simply ∆0/f0 = α for the PyCu

layer to within 1% error. Simulations show that this prediction is also not altered

at the 1% level by the 5◦ offset between ~H and ẑ in our measurements.
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For the Py layer mode, there is an additional correction required to relate ∆0/f0

to α, due to the larger deviation of the precession axis from ẑ.

4.5.3 Simulation Parameters

In our numerical simulations, we integrate the LLG equation for macrospin pre-

cession (Eq. 4.3), using the following parameters: α = 0.04, g = 2.2, a PyCu

magnetization µ0Ms = 390 mT [84], in- and out-of-plane anisotropies 58 mT and

300 mT, and an efficiency parameter η = (0.2)gµB/(2MsV ), where µB is the

Bohr Magneton and V is the volume of a 5.5-nm-thick disk of elliptical cross sec-

tion 90 × 30 nm2. Thermal effects are modeled with a 10 K Langevin fluctuating

field [66]. For Fig. 4.3d, Ic = 0.6 mA, f0 = 8.1 GHz, and IRF = 0.1-1, 1.2, 1.5, 2, 3,

and 4 mA. The qualitative results of the simulation are not affected by reasonable

variations in device parameters.

4.5.4 Regarding Another Proposed Mechanism for DC

Voltages Produced by Magnetic Precession

Berger has proposed that a precessing magnet in a multilayer device may generate

a DC voltage directly [85]. This mechanism, derived by calculating the rate of spin

flip of conduction-electron spins during precession and solving the spin-diffusion

equation in the various layers, could produce another source of signal in our ex-

periments on resonance, in addition to the mixing mechanism we discussed in the

main text. However, the maximum magnitude of VDC predicted to be generated by

the Berger mechanism is hf/e = 40 µeV for f = 10 GHz, and our FMR signals can

grow much larger than this. Also, we find that at small values of IRF our signals

scale as VDC ∝ I2
RF as expected for the mixing mechanism (because |∆Rf ∝ IRF ),
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while the Berger signal would scale ∝ IRF . On this basis, we argue that only the

resistance mixing mechanism is dominant in producing our signal.



Chapter 5

Direct Measurement of the Spin Transfer

Torque and its Bias Dependence in

Magnetic Tunnel Junctions
The contents of this chapter are adapted from very recent work that we are in the

process of publishing.

5.1 Introduction

Nanoscale magnetic tunnel junctions (MTJ, composed of two ferromagnets sepa-

rated by a tunnel barrier) with MgO barriers can have extremely large magnetore-

sistance, and for this reason they are under aggressive pursuit for applications in

memory technologies and magnetic-field sensing [86–89]. Further, it has recently

been demonstrated that the magnetic state of a nanoscale MTJ can be switched

by a spin-polarized tunnel current via the spin-transfer torque [90,91], a promising

new mechanism for the write operation of nanomagnetic memory elements [92].

While the presence of the spin torque has been unambiguously observed, its

quantitative behavior in an MTJ, especially its bias dependence, has yet to be

understood in detail. One puzzling observation has been that in contrast to tunnel

magnetoresistance (which decreases strongly under bias), the spin torque depends

very little on the junction bias [93]. Recent theoretical models attempt to quantify

the spin torque’s bias dependence in an MTJ, and to explain its relationship with

the tunnel magnetoresistance [37,94–96]. To test these model calculations, a direct,

74
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quantitative measurement of how the spin-torque evolves with junction bias is

highly desirable. Quantitative understanding of this bias dependence will also

be important for the development and optimization of nanostructured MTJ spin-

torque devices in memory applications.

Here we demonstrate for the first time that the recently-developed spin-transfer-

driven ferromagnetic resonance (ST-FMR) technique [35,97] described in the pre-

vious chapter can be used to achieve a detailed, highly-quantitative understanding

of the spin transfer torque in individual nanoscale devices. We apply ST-FMR to

MgO-based tunnel junctions similar to those of Tulapurkar et al. [35], and directly

measure both the magnitude and direction of the spin transfer torque acting upon

an individual nanomagnet. We find the torque ~τ generated by a bias voltage V lies

in the plane defined by the magnetizations (in the m× (m×M) direction with m

and M defined as the free- and fixed-layer magnetization directions) at small V .

The magnitude of the “torkance” [98] for this component, dτ||/dV , is in excellent

agreement with the prediction for highly-spin-polarized elastic tunneling. We also

measure the evolution of ~τ under bias. For |V | < 300 mV, dτ||/dV varies by only

±8%, and its impact on the free layer magnetization increases at higher voltage,

despite the fact that the magnetoresistance decreases by 72% over the same range.

We also find that ~τ rotates under bias; we observe a component perpendicular

to the plane (in the m × M direction), τ⊥(V ), that is proportional to the square

of bias, becoming as large as 30% of the in-plane component τ||(V ). A torque in

this direction is predicted to help the magnetic reversal process by significantly

decreasing the switching time and power consumption [99, 100]. Our findings of

the rotation and strength of the torque under bias has important implications for

memory applications, improving the feasibility of ST-MRAM. Our results can be



76

interpreted within a simple model.

5.2 Devices and Apparatus

We have studied 8 exchange-biased tunnel junctions (of resistance-area product

≈ 12 Ω µm2 for the parallel magnetic configuration m = M) with the layers (in

nm) 5 Ta / 20 Cu / 3 Ta / 20 Cu / 15 PtMn / 2.5 Co70Fe30 / 0.85 Ru / 3

Co60Fe20B20 / 1.25 MgO / 2.5 Co60Fe20B20 / 5 Ta / 7 Ru deposited on an oxidized

silicon wafer by the process described in Ref. [101] (See Fig. 5.1a). The top (“free”)

magnetic layer is etched to a rounded rectangular cross section with the long axis

parallel to the exchange bias from the PtMn layer (the ŷ direction), and of size

either 50 × 100 nm2 or 50 × 150 nm2. The etch is stopped at the MgO barrier, so

that the bottom (“fixed”) layer is left extended on the scale of 10’s of microns, and

top contacts are made with 5 nm Ti / 150 nm Cu / 10 nm Pt. Contact pads are

originally fabricated in a 4-point configuration, but we cut the top electrode close

to the sample (Fig. 5.1b, left inset) prior to ST-FMR measurements to eliminate

artifacts associated with RF current flow within this electrode rather than through

the tunnel junction (see appendix 5.4.1, for more details).

All data in this chapter are from one 50 × 100 nm2 device; the other samples

gave similar behavior. The bias dependence of the differential resistance dV/dI is

shown in Fig. 5.1b for the parallel magnetization orientation (P, θ = 0◦, with θ

the angle between m and M, determined as discussed below), antiparallel (AP, θ

= 180◦), and intermediate angles. At zero bias, the tunneling magnetoresistance

ratio (TMR) is [dV/dI(AP)−dV/dI(P)]/[dV/dI(P)] = 154%. The TMR decreases

to 43% at 540 mV bias, a fractional reduction of 72%.

The ST-FMR measurements [35, 97] are performed at room temperature, us-
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Figure 5.1: Magnetic tunnel junction geometry and magnetic characterization. (a)

Schematic of the sample geometry. (b) Bias dependence of differential resistance at

room temperature for the parallel orientation of the magnetic electrodes (θ = 0◦)

and antiparallel orientation (θ = 180◦), along with intermediate angles. The angles

are determined assuming that the zero-bias conductance varies as cos(θ). (Left in-

set) Layout of the electrical contacts (cropped), showing where the top electrode is

cut to eliminate measurement artifacts. (Right inset) Zero-bias magnetoresistance

for H along ẑ.
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Figure 5.2: ST-FMR spectra at room temperature. (a) Spin-transfer FMR spectra

for I = 0, for magnetic fields (along ẑ) spaced by 0.2 kOe. IRF ranges from 12 µA

at low field (high resistance) to 25 µA at high field. The curves are offset by 250

µV. (b) Details of the primary ST-FMR peaks at H = 1000 Oe and IRF ≈ 12µA

for different DC biases. Symbols are data, lines are Lorentzian fits. These curves

are not artificially offset; the frequency-independent backgrounds for nonzero DC

biases correspond to the first term on the right of Eq. 5.2. A DC bias changes the

degree of asymmetry in the peak shape vs. frequency.
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ing the procedure described in the previous chapter. A direct current I and a

microwave-frequency current IRF are applied simultaneously to the sample at room

temperature via a bias-tee. When spin-transfer from IRF excites resonant mag-

netic dynamics, the resulting resistance oscillations mix with IRF to produce a DC

voltage response 〈Vmix〉. To maximize the signal-to-noise of the measurement, we

chop IRF at 250 Hz and measure 〈Vmix〉 using a lock-in amplifier. In all cases,

we use values of IRF in the range 5-25 µA, small enough that the FMR response

is in the linear regime. Our new improved procedures for calibrating IRF and

preventing variations in IRF while sweeping frequency are discussed in appendix

5.4.3. We use the convention that positive bias corresponds to electron flow down

the pillar, giving a sign of the spin torque that favors AP alignment of m and M.

We apply a sufficiently-strong magnetic field H along the ẑ direction (Fig. 5.1b

inset) to saturate m, while M is tilted to a lesser degree away from ŷ. Represen-

tative results for the ST-FMR spectra are shown in Fig. 5.2. We observe several

magnetic resonances in the frequency range 2 to 14 GHz. The lowest-frequency

resonance has the largest amplitude, and corresponds to the sign of signal expected

for excitation of the free magnetic layer (see chapter 4). We assume that other

smaller resonances correspond to higher-frequency standing-wave modes of the free

or fixed layer, or perhaps coupled modes [97].

Our first major result is that the degree of asymmetry in the ST-FMR peak

shape vs. frequency for the lowest-frequency mode depends strongly on the DC

bias current I, with peak shapes for I = 0 being symmetric, and with the sign of

the asymmetry depending on the sign of I (Fig. 5.2b). To analyze quantitatively

the magnitudes and the peak shapes of the ST-FMR signals, we assume that

the dynamics of the free magnetic layer near the main resonance peak can be
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described by a simple macrospin approximation, so that a generalized Landau-

Lifshitz-Gilbert (LLG) equation applies:1

∂m

∂t
= −γ0m × Heff + αm×

∂m

∂t
− γ0

τ||(I, θ)

MsV ol
ŷ − γ0

τ⊥(I, θ)

MsV ol
x̂ (5.1)

Here γ0 is the magnitude of the gyromagnetic ratio, α is the Gilbert damping

parameter, Heff is an effective field as defined in Ref. [102], and MsV ol ≈ (1.06 ±

0.16) × 10−14 emu is the total magnetic moment of the free layer based on our

estimate of the sample geometry and the measured value of Ms = 1100 emu/cm3,

consistent with Ref. [101]. The resulting ST-FMR lineshapes have been evaluated

[35,97,102,103] and good agreement has been observed in ST-FMR measurements

on all-metal spin-valve devices (see chapter 4). By extending the analysis of Ref.

[102] to nonzero values of I (see appendix 5.4.2), this formalism predicts that the

ST-FMR signal is to a good approximation

〈Vmix〉 =
1

4

∂2V

∂I2
I2

RF +
1

2

∂2V

∂θ∂I

h̄γ0 sin θ

4eMsV olσ
I2

RF

(

ζ||S(ω) − ζ⊥Ω⊥A(ω)
)

. (5.2)

Here ζ|| = [(2e/h̄)/ sin(θ)]dτ||/dI and ζ⊥ = [(2e/h̄)/ sin(θ)]dτ⊥/dI represent the

differential torques in dimensionless units, S(ω) = 1/[1 + (ω − ωm)2/σ2)] and

A(ω) = [(ω − ωm)/σ]S(ω) are symmetric and antisymmetric Lorentzians, σ is the

linewidth, ωm is the resonant precession frequency, and Ω⊥ = γ0(4πMeff +H)/ωm)

for our geometry. We use 4πMeff = 11 ± 1 kOe for the effective out-of-plane

anisotropy, as determined from the magnetoresistance for H perpendicular to the

substrate. The first term on the right in Eq. 5.2 is a non-resonant background,

useful for calibrating IRF . The second term gives the dominant ST-FMR signal; as

a function of frequency it has the form of a symmetric Lorentzian ∝ ζ|| ∝ dτ||/dI,

minus an antisymmetric Lorentzian ∝ ζ⊥ ∝ dτ⊥/dI.

1As described in chapter 4, the lowest-frequency mode behaves very much as a
uniform magnetization.
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Figure 5.3: Fit parameters for the ST-FMR signals at room temperature, for three

values of magnetic field in the ẑ direction and IRF ≈ 12µA. (a) Amplitude of

the symmetric and antisymmetric Lorentzian component of each peak. (b) The

linewidths σ/2π. (c) The center frequencies ωm/2π. (d) Non-resonant background

component.
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As shown in Fig. 5.2b, the peak shapes for the ST-FMR signals of the lowest-

frequency main resonance mode are fit very well by the form expected from Eq.

5.2. From the fits, at each value of H and I we determine with high precision

the symmetric and antisymmetric peak amplitudes, the background, the linewidth

σ, and the resonant frequency ωm, as shown in Fig. 5.3. In order to make a

quantitative determination of dτ||/dI and dτ⊥/dI using Eq. 5.2, it is necessary to

calibrate the quantities I2
RF and ∂2V/∂θ∂I, both of which depend on I due to the

bias dependence of the tunnel-junction impedance. We determine I2
RF from the

non-resonant background signal, together with the value of ∂2V/∂θ∂I determined

at low frequency (appendix 5.4.3). We calibrate ∂2V/∂θ∂I by measuring ∂V/∂I

vs. I at a sequence of magnetic fields in the ẑ direction, assuming that the zero-

bias conductance varies as cos(θ) (and that θ depends negligibly on I), and then

numerically differentiating ∂V/∂I with respect to θ at each value of I and H . These

calibrations are sufficiently accurate that the uncertainty in our measurements is

dominated by the uncertainty in the determination of MsV ol, not IRF or ∂2V/∂θ∂I.

Typical traces of IRF and ∂2V/∂θ∂I vs. bias are shown in appendix 5.4.3.

The most relevant final quantities for physical interpretation are expected to

be the “torkances” [98], defined as dτ||/dV = (dτ||/dI)/(dV/dI) and dτ⊥/dV =

(dτ⊥/dI)/(dV/dI). We plot these in Fig. 5.4a, as calculated from the measured

values of dV/dI and the values of dτ||/dI and dτ⊥/dI determined from the second

term on the right side of Eq. (2). (dτ||/dI and dτ⊥/dI are plotted in Fig. 5.5.)

We first consider the dependence of the torkances on θ. It is predicted [37, 94, 98]

that for elastic tunneling d~τ/dV should be ∝ sin(θ). The inset to Fig. 5.4a shows

that (dτ||/dV )/ sin(θ) is indeed nearly constant over the range of angles measured,

45◦ < θ < 90◦. Given this agreement, we divide out a factor of sin(θ) in plotting



83

-400 -200 0 200 400
-0.1

0.0

0.1

0.2

0.3

DC Voltage (mV)

a

2.0 kOe
1.5 kOe
1.0 kOe

F
ra

c
ti

o
n

P-conductance

b

9

10

9

10

11

10

11

c

E
ff

e
c

ti
v

e
 D

a
m

p
in

g
 (

x
1

0
-3

)

2.0 kOe

1.5 kOe

1.0 kOe

2.0 kOe, 52o 
1.5 kOe, 59o 
1.0 kOe, 71o 

in-plane

perpendicular

90Angle (o)

0.00

0.15

50

in-plane

perpendicular
1.0

1.1

1.2

1.3

-400 -200 0 200 400
DC Voltage (mV)

Figure 5.4: Bias dependence of the spin-transfer torkances and magnetic damp-

ing. (a) Magnitudes of the in-plane torkance dτ||/dV and the out-of-plane torkance

dτ⊥/dV determined from the room temperature ST-FMR signals, for three differ-

ent values of applied magnetic field in the ẑ direction. The overall scale for the

torkances has an uncertainty of ∼ 15% associated with the determination of the

sample’s magnetic volume. (Inset) Angular dependence of the torkances at zero

bias. (b) Comparison of the bias dependences of dτ||/dV and dI/dV (P), scaled by

the zero-bias values. To aid the visual comparison of the variations, small linear

background slopes (discussed in appendix 5.4.2) are subtracted from the torkance

values. (c) Symbols: Effective damping determined from the ST-FMR linewidths.

Lines: Fit to Eq. 5.5, for |V | < 300 mV.
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(Inset) Angular dependence of the differential torques at zero bias.

the torkances in the main panel of Fig. 5.4a, so that the plotted results should be

independent of angle.

The bias dependence of the dominant, in-plane component of the torkance,

dτ||/dV , is shown in the main panel of Fig. 5.4a. At V = 0, we find dτ||/dV =

0.13± 0.02h̄/(2e) kΩ−1, corresponding to an angular momentum transfer per elec-

tron of (1.01 ± 0.15)(h̄/4) sin(θ). The angular momentum transfer per electron

for elastic tunneling in a symmetric junction of polarization P is predicted to be

[2P/(1 + P 2)](h̄/4) sin(θ), which is equal to (h̄/4) sin(θ) for perfect polarization

and 0.92 (h̄/4) sin(θ) for a polarization of 0.66 (corresponding to our TMR of
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154%) [98]. Therefore our measurement is in good agreement with the theoretical

prediction, and to within the experimental uncertainty the strength of the torque is

already equal to the maximum value predicted for elastic tunneling. Consequently,

attempts to manipulate the composition of MTJs to achieve further increases in

magnetoresistance are unlikely to lead to significantly stronger torques per unit

current.

As a function of bias, we find that dτ||/dV is constant to within 8% for |V | < 300

mV. This is in striking contrast to the magnetoresistance, which decreases by 50%

over the same bias range (Fig. 5.1a). Furthermore, the value of dτ||/dV appears

to increase for 300 mV < |V | < 540 mV, whereas the magnetoresistance continues

to decrease to just 28% of its full value. The low-bias result confirms with greater

sensitivity the conclusions in Ref. [93], in which a combined effect of τ||/I and τ⊥/I

was measured for |V | < 350 mV in Co90Fe10/MgO/Co90Fe10 junctions.

The theoretical framework of Ref. [98] provides a means to analyze these results.

Both the in-plane spin-transfer torkance and the differential conductance can be

written in terms of conductance amplitudes Gσσ′ between spin channels (σ, σ′ = ±

are spin indices for the bottom and top electrodes). Assuming that the tunneling

mechanism itself does not depend on spin operators, we may then write [37, 98]

dτ||
dV

=
h̄

2e
(G++ − G−− + G+− − G−+) sin(θ) (5.3)

dI

dV
(P ) = G++ + G−−,

dI

dV
(AP ) = G+− + G−+ (5.4)

The amplitudes Gσσ′ can describe both elastic and inelastic tunneling processes.

With the assumptions that G+− ≈ G−+ for a symmetric junction near zero bias and

G−− << G++, these equations imply that, approximately, dτ||/dV ∝ dI/dV (P ).

The observation that dτ||/dV is approximately independent of bias for |V | < 300
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mV can therefore be related to the fact that the differential conductance for parallel

moments is approximately independent of bias in this range, as well. Figure 5.4b

shows a direct comparison of the fractional changes in dτ||/dV and dI/dV (P ) vs.

V (relative to the zero-bias values). For |V | < 300 mV, dτ||/dV and dI/dV (P ) dis-

play a similar pattern of non-monotonic variations, although the relative changes

in dτ||/dV are greater. At larger biases, 300 mV < |V | < 540 mV, our deter-

mined value of dτ||/dV increases much more rapidly than dI/dV . One possible

explanation for this upturn may be heating. Previous studies of magnetic tunnel

junctions [93, 104], suggest that the effective temperature of our free layer may

be heated 50-100 K or more above room temperature at our highest biases. This

could decrease the total magnetic moment of the free layer (MsV ol) thereby en-

hancing the response of the magnet to a given torkance and artificially inflating

our determination of dτ||/dV for |V | > 300 mV.

Within our macrospin ST-FMR model (leading to equation 5.2), the anti-

symmetric-in-frequency component of the ST-FMR resonance is proportional to

an out-of-plane torkance, dτ⊥/dV . We observe only symmetric ST-FMR peaks at

V = 0 (Fig. 2b), implying that at zero bias dτ⊥/dV = 0. This differs from a pre-

vious experimental report [35]. Fig. 5.4a shows that the asymmetries we measure

for V 6= 0 correspond to an approximately linear dependence of dτ⊥/dV on V at

low bias. This result is consistent with theoretical expectations [37, 95] that the

lowest-order contribution to the bias dependence is τ⊥(V )/ sin(θ) = a0 +a2V
2. For

our full range of bias we measure a2 = (84 ± 13)(h̄/2e) GΩ−1V−1. The integrated

torque τ⊥(V ) is in the m×M direction, and grows to be 30% of the in-plane torque

τ||(V ) at the largest bias we probe. We do not believe that alternative mechanisms

such as heating can account for these results, as explained in appendix 5.4.5.
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We have also performed ST-FMR measurements on metallic IrMn / Py / Cu

/ Py spin valves in the same experimental geometry, and in that case we find

that the lowest-frequency peaks are frequency-symmetric to within experimental

accuracy for all biases |I| < 2 mA, from which we conclude that τ⊥ is always less

than 1% of τ|| (see Fig. 5.6). The ratio τ⊥/τ|| < 1% is much smaller than has

been suggested based on analysis of the dynamical phase diagram of metal spin

valves [105]. The existence of a significant perpendicular component of the spin

torque therefore appears to be particular to tunnel junctions.

The measured linewidths σ of our ST-FMR measurements on MgO junctions

allow a determination of the magnetic damping. Within our macrospin model (see

section 5.4.2, assuming that τ||(V, θ) ∝ sin(θ),

σ =
αωm

2

(

Ω⊥ + Ω−1

⊥

)

− cot(θ)
γ0τ||(V, θ)

2MsV ol
. (5.5)

In Fig. 5.4c we plot the bias dependence of the effective damping defined as

αeff = 2σ/[ωm(Ω⊥ + Ω−1

⊥ )]. The zero-bias values give an average Gilbert damp-

ing coefficient α = 0.0095 ± 0.0010, consistent with literature reports for similar

materials [106]. The lines plotted in Fig. 5.4c show the slopes expected from Eq.

(5), using as a fitting parameter that (dτ||/dV )/ sin(θ) = (0.16 ± 0.03) kΩ−1h̄/2e

(assuming that dτ||/dV is constant for |V | < 300 mV). This estimate agrees with

the value determined independently above from the magnitude of the ST-FMR

peak.

5.3 Conclusions

We have employed spin-transfer-driven FMR to achieve direct detailed quantitative

measurements of both the direction and magnitude of the spin-transfer torque and
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Figure 5.6: ST-FMR signals for a metallic spin valve, (in nm) Py 4 / Cu 80 / IrMn

8 / Py 4 / Cu 8 / Py 4 / Cu 2 / Pt 30, with H = 560 Oe in the plane of the sample

along ẑ and with an exchange bias direction 135 from ẑ. We estimate θ = 77◦ from

the GMR. The average anti-symmetric Lorentzian component is 2 ± 3% the size

of the symmetric Lorentzian component over this bias range. Accounting for the

out-of-plane anisotropy 4πMeff ∼ 1 T in Eq. 5.2 of the main paper, we estimate

that the ratio τ⊥/τ|| < 1%.
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magnetic damping in individual Co60Fe20B20/MgO/Co60Fe20B20 magnetic tunnel

junctions, the type that are of interest for nonvolatile magnetic random access

memory applications. We find that the dominant, in-plane component dτ||/dV

has a magnitude at zero bias equal to, within the experimental uncertainty of

15%, the maximum value predicted for highly-spin-polarized elastic tunneling. The

torkance dτ||/dV is independent of bias to within ±8% for |V | ≤ 300 mV, and

shows no evidence of weakening even at higher bias. We also observe for the

first time a bias-dependent perpendicular component of the torque in magnetic

tunnel junctions with, to a good approximation, τ⊥(V ) ∝ V 2, in agreement with

predictions. This component of the torque is sufficiently strong at high bias that

it should be included in device modeling, especially since it may help reduce the

switching time and power consumption of the magnetic reversal process. Our

findings about the rotation and strength of the torque under bias improve the

feasibility of ST-MRAM.
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5.4 Appendices

5.4.1 ST-FMR Artifacts Due to the Leads

The capacitance from the large contact pad and lower lead crossing in Fig. 5.1b

(inset) draws a substantial RF current across the top lead, compared to the amount

passing through these highly-resistive junctions. This RF current flowing across

the top lead applies an RF magnetic field with a phase different to the current

flowing through the junction, thereby driving the precession and affecting both

the symmetry and magnitude of the ST-FMR peaks. It also causes the FMR

results to vary depending on which of the two top contacts (A or B) is used, while

the results are the same upon interchanging bottom contacts (C or D). Similar

effects from RF currents flowing past the tunnel junction may also have affected

a previous ST-FMR measurement of MgO devices [35], which showed significantly

asymmetric lineshapes even at zero DC bias. To minimize this problem, we cut

the top lead near the sample as labeled in Fig. 5.1b (left inset), and then perform

the ST-FMR measurements using contacts B and D.

This is not an issue in the metallic spin valves of the previous chapters due to

their low resistance.

5.4.2 Derivation of the ST-FMR Signal (Eq. 5.2)

This derivation generalizes arguments in references [35,102,103] in order to consider

experiments in which a finite bias is applied to the sample.

We consider only the specific geometry relevant to our experiment and define

the coordinate axes as in Ref. [102]. We assume that the orientation m of the

free-layer moment undergoes small-angle precession about the ẑ axis, the plane of
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the sample is the ŷ − ẑ plane, the easy axis of the free layer is along ŷ, and that

the orientation M of the fixed-layer moment is in the plane of the sample, differing

from ẑ by an angle θ0 toward ŷ. Let θ be the angle between m and M. The small-

angle precession of the free layer in response to the current I(t) = I + δI(t) (where

δI(t) = IRF<(eiωt)) can be characterized by the transverse components mx(t) =

<(mxe
iωt) and my(t) = <(mye

iωt). Because of the large magnetic anisotropy of

the thin film sample, mx << my and changes in the angle θ during precession are

to good approximation δθ(t) = −<(mye
iωt).

The time-dependent voltage V (t) across the sample will depend on the instan-

taneous value of the current and θ. The DC voltage signal produced by rectification

in ST-FMR can be calculated by Taylor-expanding V (t) to second order and taking

the time average over one precession period:

〈Vmix〉 =
1

2

∂2V

∂I2

〈

(δI(t))2
〉

+
∂2V

∂I∂θ
〈δI(t)δθ(t)〉 +

1

2

∂2V

∂θ2

〈

(δθ(t))2
〉

. (5.6)

Here 〈〉 denotes the time average. With this expression, we assume that voltage

signals due to spin pumping [103] are negligible in tunnel junctions. Using δθ(t) =

−<(mye
iωt), Eq. 5.6 can be expressed

〈Vmix〉 =
1

4

∂2V

∂I2
I2

RF −
1

2

∂2V

∂I∂θ
IRF<(my) +

1

4

∂2V

∂θ2
|my|

2. (5.7)

We calculate the precession angle my from the Landau-Lifshitz-Gilbert equation of

motion in the macrospin approximation, with the addition of spin-transfer-torque

terms transverse to the free-layer moment.

∂m

∂t
= −γ0m × Heff + αm×

∂m

∂t
− γ0

τ||(I, θ)

MsV ol
ŷ − γ0

τ⊥(I, θ)

MsV ol
x̂ (5.8)

where γ0 is the magnitude of the gyromagnetic ratio, α is the Gilbert damping

coefficient, and MsV ol is the total magnetic moment of the free layer. For our
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specific experimental geometry, Heff = −NxMeff x̂ − NyMeff ŷ with Nx = 4π +

(H/Meff) and Ny = (H − Hanis)/Meff . Here H is the external magnetic field,

4πMeff is the effective anisotropy perpendicular to the sample plane, and Hanis

denotes the strength of anisotropy within the easy plane. (If the precession axis

is not along a high-symmetry direction like ẑ, there are additional off-diagonal

demagnetization terms in Heff that will make the general expression for the ST-

FMR signal more complicated than the one that we derive here [102].)

For small RF excitation currents, the spin-torque terms can be Taylor-expanded:

τ||(I, θ) = τ 0

|| +
∂τ||
∂I

δI(t) +
∂τ||
∂θ

δθ(t), τ⊥(I, θ) = τ 0

⊥ +
∂τ⊥
∂I

δI(t) +
∂τ⊥
∂θ

δθ(t) (5.9)

We have used a different sign convention than Ref. [102], so that the variables η1

and η2 in Ref. [102] correspond at zero bias to η1 = −(2e/h̄ sin θ)/(∂τ||/∂I) ≡ −ζ||

and η2 = −(2e/h̄ sin θ)/(∂τ⊥/∂I) ≡ −ζ⊥ in our notation.

The oscillatory terms in the equation of motion are

iωmx = −my(γ0NyMeff + iαω) −
γ0

MsV ol

(

∂τ⊥
∂I

IRF −
∂τ⊥
∂θ

my

)

,

iωmy = mx(γ0NxMeff + iαω) −
γ0

MsV ol

(

∂τ||
∂I

IRF −
∂τ||
∂θ

my

)

. (5.10)

At this stage, we have neglected the influence of the DC spin-torque terms in

shifting the precession axis of the free layer away from ẑ. For the bias range of our

experiment, this is a very small effect. Solving these equations for my to lowest

order in the damping coefficient α we have

my =
γ0IRF

2MsV ol

1

ω − ωm − iσ

[

i
∂τ||
∂I

+
γ0NxMeff

ωm

∂dτ⊥
∂I

]

. (5.11)

Here, the resonant precession frequency ωm = γ0Meff

√

NxNy and the linewidth

σ =
αγ0Meff (Nx + Ny)

2
−

γ0

2MsV ol

∂τ||
∂θ

. (5.12)
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In the expression for the resonant precession frequency, we have neglected a cor-

rection ∝ ∂τ⊥/∂θ that is negligible for our experiment. The small shifts in the

resonant frequency that we measure as a function of bias – see Fig. 5.3c – may be

associated with micromagnetic phenomena that go beyond our macrospin approx-

imation [60].

If we define S(ω) = 1/[1 + (ω − ωm)2/σ2], A(ω) = [(ω − ωm)/σ]S(ω), and

Ω⊥ = γ0NxMeff/ωm, and substitute Eq. 5.11 into Eq. 5.7, we reach

〈Vmix〉 =
1

4

∂2V

∂I2
I2

RF +
1

2

∂2V

∂θ∂I

h̄γ0 sin θ

4eMsV olσ
I2

RF

(

ζ||S(ω) − ζ⊥Ω⊥A(ω)
)

+
1

4

∂2V

∂θ2

(

h̄γ0 sin θ

4eσMsV ol

)2

I2

RF (ζ2

|| + ζ2

⊥Ω2

⊥)S(ω). (5.13)

The final term in Eq. 5.13 represents a DC voltage generated by a change in the

average low-frequency resistance due to magnetic precession. This term should be

approximately an odd function of bias, and we estimate that it is small in the bias

range we explore. It may be the explanation for the small slope in the dependence

of dτ||/dV vs. bias that we subtract off in Fig. 5.4b of the main text of this chap-

ter; however we find that the dominant contribution to the frequency-symmetric

component of the ST-FMR signal is symmetric in bias. For these reasons we do

not consider this final term in the main text. The first two terms on the right in

Eq. 5.13 are then identical to Eq. 5.2 in the main text.

Equation 5.5 in the main text follows from equation 5.12 after using ωm =

γ0Meff

√

NxNy and assuming that τ||(I, θ) ∝ sin(θ).

5.4.3 Details of the Calibration of I2

RF

The calibration of I2
RF is performed in two steps: (1) a flatness correction and

(2) accounting for the bias dependence of the sample impedance. The flatness
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correction ensures that the microwave current within the sample IRF does not vary

with frequency. We apply an external magnetic field H with magnitude chosen

so that all magnetic resonances have frequencies higher than the range of interest,

and then measure the ST-FMR background signal as a function of frequency for a

fixed DC bias (|I| > 10µA). Due to circuit resonances and losses, this background

signal may vary as the frequency is changed. At the same time, we determine

∂2V/∂I2 by measuring ∂V/∂I versus I with low-frequency lock-in techniques and

then differentiating numerically. We can then determine the variations of IRF with

frequency using the formula for the non-resonant background (first term in Eq.

5.13):

〈Vbackground〉 =
1

4

∂2V

∂I2
I2

RF . (5.14)

We input this information to the microwave source, and employ its flatness-correction

option to modulate the output signal so that the final microwave current coupled

to the sample no longer varies with frequency.

(2) After step (1), IRF is leveled vs. frequency and its magnitude can be de-

termined for one set of values I0 and H0. However, because the sample impedance

varies as a function of I and H , we must also determine how IRF varies as these

quantities are changed. In order to do this accurately even at points where ∂2V/∂I2

is near zero, we calculate IRF (I, H) by taking into account how variations in dI/dV

alter the termination of the transmission line, assuming that the impedance looking

out from the junction is 50 Ω:

IRF (I, H) = IRF (I0, H0)

[

dV

dI
(I0, H0) + 50Ω

]

/

[

dV

dI
(I, H) + 50Ω

]

. (5.15)

In practice, we generally determine IRF (I0, H0) using Eq. 5.14 together with the

value of the non-resonant background at one choice of I0 for each value of magnetic

field, and then employ Eq. 5.15 to find the full I dependence.
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Figure 5.7: Test of the calibration for IRF and the non-resonant background, for

H = 1.0 kOe in the ẑ direction. Circles: Magnitude of non-resonant background

measured from fits to the ST-FMR peaks. Squares: the background expected from

equations 5.14 and 5.15 after determining IRF = 11.7 µA at I0 = −30µA.
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Figure 5.7 shows that this procedure successfully reproduces the measured non-

resonant background signal as a function of I0, using as input the bias dependence

of dV/dI measured at low frequency. This demonstrates that there are no high-

frequency phenomena which cause the background signal to deviate significantly

from the simple rectification signal caused by non-linearities in the low-frequency

current-voltage curve. Figure 5.8 shows the typical change in IRF as described by

Eq. 5.15.

5.4.4 Regarding a Possible Alternative Mechanism for the

Antisymmetric Lorentzian Component of the

ST-FMR Signal

Kovalev et al. [102] and Kupferschmidt et al. [103] have noted that a component

of the ST-FMR signal that is antisymmetric in frequency relative to the center

frequency can arise if the precession axis of the free layer moment is tilted out

away from the sample plane and not along any of the principle axes of the mag-

netic anisotropy. In principle, this mechanism could explain an observation of an

antisymmetric ST-FMR signal that varies linearly with DC current I, because the

in-plane component of spin-transfer torque from I will cause the equilibrium ori-

entation of the free-layer moment to move out-of-plane (until the torque from the

demagnetization field balances the in-plane spin-transfer-torque). However, when

evaluating this mechanism quantitatively, we find that it predicts an antisymmetric

component 50 times smaller than we measure.
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Figure 5.8: Representative examples of the bias dependence of IRF and ∂2V/∂θ∂I

for H in the ẑ direction. Values of IRF and ∂2V/∂θ∂I at V = 0 are labeled. IRF

is determined using the procedure described above. ∂2V/∂θ∂I is determined by

measuring ∂V/∂I vs. I at a sequence of magnetic fields in the ẑ direction, by

assuming that the conductance changes at zero bias are proportional to cos(θ)

and that θ depends negligibly on I, and then by performing a local linear fit to

determine ∂2V/∂θ∂I for given values of I and H .
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5.4.5 Regarding the Effects of Heating on Measurements

of the Perpendicular Torkance

In principle, heating might affect the ST-FMR measurements through several

mechanisms. Here we consider only whether a heating effect might be able to

explain our observation that the ST-FMR signal contains a perpendicular com-

ponent with an antisymmetric Lorentzian lineshape, whose magnitude depends

approximately linearly on I (i.e., we consider heating as an alternative mechanism

to the out-of-plane torkance discussed in the main paper.) If Ohmic heating is

the dominant source of heating, then the sample temperature may have an RF

component proportional to dT (t) ∼ R(I + IRF (t))2 ∼ 2RIRF I cos(ωt + δT ) (after

subtracting the constant contribution ∝ RI2 and assuming I > IRF ), where δT is

a possible phase lag. If heating changes the resistance of the sample, this would

give an additional contribution to the resonant part of the ST-FMR signal of the

form 〈Vmix〉 ∝ (∂V/∂θ∂T )〈δθ(t)δT (t)〉 ∝ (∂V/∂θ∂T )IRF I<(mye
−iδT ). However,

since ∂V/∂θ∂T in this expression is proportional to I, the lowest-order contribu-

tion to the ST-FMR signal from this mechanism is proportional to I2, so that it

cannot explain the linear dependence of the asymmetric component on I observed

experimentally.

An antisymmetric-in-frequency ST-FMR signal linear in I could result if the

Peltier effect, rather than Ohmic heating, were the dominant heating mechanism.

However, our differential conductance measurements do not show a large asymme-

try with respect to bias that would be expected if this were the case. A resonant

signal linear in I could also result if the dominant consequence of heating were not

to change the resistance, but to apply a torque to m by changing the demagneti-

zation or dipole field. We expect that this last mechanisms might be significant if
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the free layer were tilted partially out of the sample plane, but we estimate that

it is insignificant for our measurements in which the free-layer moment is in plane

and aligned within a few degrees of the symmetry axis ẑ.

For these reasons, we believe it is unlikely that heating, rather than a direct

out-of-plane spin-transfer torque, can explain the antisymmetric component of the

ST-FMR signal that we observe.



Chapter 6

Appendices

6.1 A Quick Note on Microwave Coupling in Our System

I wanted to add a short section about microwave coupling in our system, since I am

responsible for the “spaceship-shaped” leads defined during fabrication (Fig. 6.1).

The motivation for the shape of these leads is to (a) allow comfortable contact

with the microwave probes (or ribbon bonds) from any of the eight angles in 45◦

increments, (b) minimize capacitive coupling between the top and bottom leads,

and (c) keep the overall device size small, minimizing capacitive coupling between

the pads and the silicon (which conducts at microwave frequencies) below the

oxide surface of our wafers. We made no attempt to create a “50-Ω impedance-

matched waveguide” here, because the wavelengths of the microwave signals we

generally deal with are much longer than 500 µm. The rule of thumb is if the entire

structure is roughly 5-10 times smaller than the wavelength, it can be treated as

a lumped-element termination [47].

6.2 A Quick Note on Pulsed RF Measurements

In as-yet unpublished work, I have developed a technique for applying very short

(between ∼ 1 ns and 10 ns) pulses of RF (“radio frequency”) current to a spin-valve

sample to try and resonantly switch it, and have even begun to test the system on

a few samples.

In creating a pulse of RF current, there are several issues to address. One might

consider simply using the internal pulsing mechanism of the swept signal genera-

100
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Figure 6.1: Sketch of the photolithographically-defined leads for making high fre-

quency electrical contact to our devices. The whole structure is much smaller than

the wavelengths of interest, so we treat it as a lumped-element termination.
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tors, but unfortunately the cannot apply fast enough pulses for our application,

and the rising edge of the pulse is uncorrelated with the phase of the RF current.

In order to get a fast RF pulse, we use a mixer in reverse, a technique explained

to us by Robert Schoelkopf. Ordinarily, a mixer takes two high-frequency signals

on the LO (“local oscillator”) and RF ports and puts out a low-frequency signal

at the IF (“intermediate frequency”) port; the nonlinear element inside mixes the

two high-frequency signals into the sums and differences of their frequencies. If

one of the input frequencies is zero and the other is f , then that same element will

generate a mixed signal at f . This effectively turns the mixer into a gate that al-

lows high-frequency signals to propagate from LO to RF (or backwards) whenever

a DC voltage is applied to IF. The only difference between the three ports on our

mixers is the filter. All you need to do is pick a mixer with the appropriate filters:

the right frequency range on LO and RF, and a fast enough low-pass on IF to give

you the rising edge you desire. The idea is then to apply continuous RF current

to the LO (or RF) ports and pulse the IF port.

The second and most difficult issue is that we wish to control the phase of the

RF relative to the IF-port pulse, so that we can see how this affects the resonant

switching. It is relatively easy to generate a low-frequency rising edge that is

phase-coherent (to within less than 5 ps jitter) with the RF source using frequency

dividers, which are basically 1-bit processors with the clock timing defined by the

RF you feed them.1 RF Bay Inc. have excellent and cheap frequency dividers to

turn 1-15GHz (better than specs) RF source into 0-1 GHz ECL pulses, and then

Pulse Research Labs sells nice (but very fragile) variable-division boxes to divide

1These are designed to run at clock speeds up to 15 GHz, which is much faster
than today’s computer processors. They get very hot!
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further to the kHz-MHz range, and generate TTL pulses.2 The resulting signal,

however is a continuous square wave, so we need to somehow arm the pulser to

take the rising edge we desire as a trigger. Unfortunately, no pulsers I have used

are equipped with the option to “arm a pulse and take the next rising edge as a

trigger” without running into the problem that occurs (more often than one might

expect) when it arms at the same time as the trigger edge arrives and enormous

jitter ensues. This issue was a source of great hair loss until finally, Saikat Ghosh

told me to use the built-in logic on our DAQ card3, which can generate a pulse in

sync with the output of the frequency divider to use as a gate.

Figure 6.2 shows a schematic of the logic sequences used to generate a pulse.

Half of the RF power is sent to the mixer LO port, and the other half is sent

to the frequency division circuit, which generates a TTL square wave we use to

define the clock of the DAQ card logic, as well as triggering the pulser. When the

computer tells the DAQ logic to fire, a few cycles later it produces a pulse two

clock cycles long, that we use to gate the pulser. When the voltage at the gate is

high, the pulser accepts triggers (falling edges work well in this case) and will fire

the fast pulse desired to let a small amount of RF through the mixer. In order to

avoid the situation where the DAQ logic and the rising edge arrive at the pulser

simultaneously (which can surprisingly cause a trigger event), we require a delay

somewhere in the system. There is a natural delay in the DAQ card that takes care

of this in some systems, but if they are too close, a simple 100-foot BNC coaxial

line on either the clock or the DAQ logic output will take care of it.

There is also a substantial intrinsic delay between the rising edge of the RF

2They now have a nice 0-15 GHz box too.
3“DAQ” is short for “Data AcQuisition”. A DAQ card has many functions,

mainly reading voltages quickly into a computer and digital logic described here.
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Figure 6.2: Diagram of the sequencing to generate a pulse of RF current. The

output of the sweeper is divided to a MHz-frequency TTL square-wave that is fed

into the DAQ card as a reference clock. When we tell the computer to fire, it sends

a message to the DAQ logic to output a pulse that is 2 cycles long, which is fed

into the pulser’s gate. When the gate is high, the pulser uses the next descending

edge to trigger. By adding delay to the frequency divider prior to the pulse trigger,

we can increase the sensitivity of the RF phase to small changes in frequency.
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and the divided signal edges. This is great in our case, because it means that many

RF cycles pass before the pulse hits the mixer, so a small change in RF frequency

will produce a large change in the RF phase relative to the pulse. We can control

the phase with a small tweak of the frequency, much smaller than the resonant

features in our nanomagnetic system. Adding more delay to the divided signal will

improve this sensitivity.

Finally, we want to vary the amplitude of the RF pulse. The divider circuit has

a specific range of power required to run, so we must keep it in this range while

changing the RF power. To take care of this, we use a GPIB-controlled variable

attenuator. Essentially, we turn the RF source to very high power and attenuate it

on each leg of the circuit. A constant attenuator is used on the way to the mixer,

and the variable attenuator is used on the way to the divider. The computer can

then automatically adjust it based on simple power-setting rules.

Adding a second pulse underneath this RF pulse is a snap. Just find a second

pulser (not as much of a snap) and use the same signals from the DAQ logic

and frequency divider to generate a second pulse, and then a splitter/combiner

to combine the two signals. Coarse timing adjustments can be made with the

pulser, and fine adjustments can be made with small SMA extension connectors.

We have used AD811AN op-amps with great success to boost the TTL signals

to the necessary levels to trigger both pulsers, but be careful not to overload the

pulser inputs! With amplifiers in the mix, it is quite easy to do, and they can only

withstand a few volts.

As a last warning, the Picosecond 10,070A pulsers will fire twice if you leave

the gate high for more than 10 µs, so watch the length of the gate pulses!
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