Randomization and Failure Detection:
A Hybrid Approach to Solve Consensus*

Marcos K. Aguilera and Sam Toueg
aguilera@cs.cornell.edu sam@cs.cornell.edu

Department of Computer Science
Upson Hall, Cornell University
Ithaca, NY 14853-7501, USA.

June 27, 1996

Abstract

We present a Consensus algorithm that combines randomization and unreliable
failure detection, two well-known techniques for solving Consensus in asynchronous
systems with crash failures. This hybrid algorithm combines advantages from both
approaches: it guarantees deterministic termination if the failure detector is accurate,
and probabilistic termination otherwise. In executions with no failures or failure de-
tector mistakes, the most likely ones in practice, Consensus is reached in only two
asynchronous rounds.

1 Background

It is well-known that Consensus cannot be solved in asynchronous systems with failures, even
if communication is reliable, at most one process may fail, and it can only fail by crashing.
This “impossibility of Consensus”, shown in a seminal paper by Fischer, Lynch and Paterson
[FLP85], has been the subject of intense research seeking to “circumvent” this negative result
(e.g., [Ben83, BT83, Rab83, DDS87, DLS88, CT96, CHT6)).

We focus on two of the major techniques to circumvent the impossibility of Consensus in
asynchronous systems: randomization and unreliable failure detection. The first one assumes
that each process has an oracle (denoted R-oracle) that provides random bits [Ben83]. The
second technique assumes that each process has an oracle (denoted FD-oracle) that provides
a list of processes suspected to have crashed [CT96]. Each approach has some advantages
over the other, and we seek to combine advantages from both.

*Research partially supported by NSF grant CCR-9402896 and DARPA /NASA Ames grant NAG-2-593

With a randomized Consensus algorithm, every process can query its R-oracle, and use
the oracle’s random bit to determine its next step. With such an algorithm, termination
is achieved with probability 1, within a finite expected number of steps (for a survey of
randomized Consensus algorithms see [CD89)).

With a failure-detector based Consensus algorithm, every process can query its local FD-
oracle (which provides a list of processes that are suspected to have crashed) to determine the
process’s next step. Consensus can be solved with FD-oracles that make an infinite number
of mistakes. In particular, Consensus can be solved with any FD-oracle that satisfies two
properties, strong completeness and eventual weak accuracy. Roughly speaking, the first
property states that every process that crashes is eventually suspected by every correct
process, and the second one states that some correct process is eventually not suspected.
These properties define the weakest class of failure detectors that can be used to solve
Consensus [CHT96].

In this paper we describe a hybrid Consensus algorithm with the following properties.
Every process has access to both an R-oracle and an FD-oracle. If the FD-oracle satisfies the
above two properties, the algorithm solves Consensus (no matter how the R-oracle behaves).
If the FD-oracle loses its accuracy property, but the R-oracle works, the algorithm still
solves Consensus, albeit “only” with probability 1. In executions with no failures or failure
detector mistakes, the most likely ones in practice, the algorithm reaches Consensus in two
asynchronous rounds. A discussion of the relative merits of randomization, failure detection,
and this hybrid approach is postponed to Section 7.

The idea of combining randomization and failure detection to solve Consensus in asyn-
chronous systems first appeared in [DM94]. A related idea, namely, combining randomiza-
tion and deterministic algorithms to solve Consensus in synchronous systems was explored
in [GP90, Zam96]. A brief comparison with our results is given in Section 8.

2 Informal Model

Our model of asynchronous computation is patterned after the one in [FLP85|, and its
extension in [CHT96]. We only sketch its main features here. We consider asynchronous
distributed systems in which there is no bound on message delay, clock drift, or the time
necessary to execute a step. To simplify the presentation of our model, we assume the
existence of a discrete global clock. This is merely a fictional device: the processes do not
have access to it. We take the range 7 of the clock’s ticks to be the set of natural numbers N.
The system consists of a set of n processes, Il = {pg, p1, .- -,Pn_1}. Every pair of processes
is connected by a reliable communication channel. Up to f processes can fail by crashing.
A failure pattern indicates which processes crash, and when, during an execution. Formally,
a failure pattern F is a function from N to 27 where F(t) denotes the set of processes
that have crashed through time ¢. Once a process crashes, it does not “recover”, i.e., V¢ :
F(t) C F(t+1). We define crashed(F) = Uen F(t) and correct(F) = II — crashed(F). If
p € crashed(F') we say p crashes (in F') and if p € correct(F') we say p is correct (in F).
Each process has access to two oracles: a failure detector, henceforth denoted the FD-
oracle, and a random number generator, henceforth denoted the R-oracle. When a process

queries its FD-oracle, it obtains a list of processes. When it queries its R-oracle it obtains a
bit. The properties of these oracles are described in the two next sections.

A distributed algorithm A4 is a collection of n deterministic automata (one for each
process in the system) that communicate by sending messages through reliable channels.
The execution of A occurs in steps as follows. For every time ¢ € 7, at most one process
takes a step. Each step consists of receiving a message; querying the FD-oracle; querying
the R-oracle; changing state; and optionally sending a message to one process. We assume
that messages are never lost. That is, if a process does not crash, it eventually receives every
message sent to it.

A schedule is a sequence {s;};en of processes and a sequence {t; };en of strictly increasing
times. A schedule indicates which processes take a step and when: for each j, process s;
takes a step at time t;. A schedule is consistent (with respect to a failure pattern F') if a
process does not take a step after it has crashed (in F'). A schedule is fair (with respect to
a failure pattern F') if each process that is correct (in F') takes an infinite number of steps.
We consider only schedules that are consistent and fair.

2.1 FD-oracles

Every process p has access to a local FD-oracle module that outputs a list of processes
that are suspected to have crashed. If some process ¢ belongs to such list, we say that
p suspects g.! FD-oracles can make mistakes: it is possible for a process p to be suspected
by another even though p did not crash, or for a process to crash and never be suspected.
FD-oracles can be classified according to properties that limit the extent of such mistakes.
We focus on one of the eight classes of FD-oracles defined in [CT96], namely, the class of
Eventually Strong failure detectors, denoted <S. An FD-oracle belongs to ¢S if and only if
it satisfies two properties:

Strong completeness: Eventually every process that crashes is permanently suspected by
every correct process (formally, 3t € 7,Vp € crashed(F),Vq € correct(F),Vt' >t :
pE FDZ’, where FDZ' denotes the output of ¢’s FD-oracle module at time t').

Eventual weak accuracy: There is a time after which some correct process is never suspected
by any correct process (formally, 3t € 7,3p € correct(F),Vt' > t,Vq € correct(F) :

p & FD;’).

It is known that &S is the weakest class of FD-oracles that can be used to solve Consensus.

2.2 R-oracles

Each process has access to a local R-oracle module that outputs one bit each time it is
queried. We say that the R-oracle is random if it outputs an independent random bit for
each query. For simplicity, we assume a uniform distribution, i.e., a random R-oracle outputs
0 and 1, each with probability 1/2.

!In general, processes do not have to agree on the list of suspects at any one time or ever.

2.3 Adversary Power

When designing fault-tolerant algorithms, we often assume that an intelligent adversary has
some control on the behavior of the system, e.g., the adversary may be able to control the
occurrence and the timing of process failures, the message delays, and the scheduling of pro-
cesses. Adversaries may have limitations on their computing power and on the information
that they can obtain from the system. Different algorithms are designed to defeat different
types of adversaries [CD89].

We now describe the adversary that our hybrid algorithm defeats. The adversary has
unbounded computational power, and full knowledge of all process steps that already oc-
curred. In particular, it knows the contents of all past messages, the internal state of all
processes in the system,? and all the previous outputs of both the R-oracle and FD-oracle.
With this information, at any time in the execution, the adversary can dynamically select
which process takes the next step, which message this process receives (if any), and which
processes (if any) crash. The adversary, however, operates under the following restrictions:
the final schedule must be consistent and fair, every message sent to a correct process must
be eventually received, and at most f processes may crash over the entire execution.

In addition to the above power, we allow the adversary to initially select one of the two
oracles to control, and possibly corrupt.? If the adversary selects to control the R-oracle, it
can predict and even determine the bits output by that oracle. For example, the adversary
can force some local R-oracle module to always output 0, or it can dynamically adjust the
R-oracle’s output according to what the processes have done so far.

If the adversary selects to control the FD-oracle, it can ensure that the FD-oracle does not
satisfy eventual weak accuracy. In other words, at any time the adversary can include any
process (whether correct or not) in the output of the local FD-oracle module of any process.
The adversary, however, does not have the power to disrupt the strong completeness property
of the FD-oracle. This is not a limitation in practice: most failure detectors are based on
time-outs and eventually detect all process crashes.

If the adversary does not control the R-oracle then the R-oracle is random. If the ad-
versary does not control the FD-oracle then the FD-oracle is in &S. We stress that the
algorithm does not know which one of the two oracles (FD-oracle or R-oracle) is controlled
by the adversary.

3 The Consensus Problem

Uniform Binary Consensus is defined in terms of two primitives, propose(v) and decide(v),
where v € {0,1}. When a process executes propose(v), we say that it proposes v; similarly,
when a process executes decide(v), we say that it decides v. The Uniform Binary Consensus
problem is specified as follows:

2This is in contrast to the assumptions made by several algorithms, e.g., those that use cryptographic
techniques.

3From the definitions of these oracles, it is clear that we can allow the adversary to control the behavior
of both oracles for an arbitrary but finite amount of time. The only restriction is that it must eventually
stop controlling one of the oracles.

Uniform agreement: If processes p and p’ decide v and v', respectively, then v = v/;
Uniform validity: If a process decides v, then v was proposed by some process;

Termination: Every correct process eventually decides some value.
For probabilistic Consensus algorithms, Termination is weakened to

Termination with probability 1: With probability 1, every correct process eventually decides
some value.

4 Hybrid Consensus Algorithm

The hybrid Consensus algorithm shown in Figure 1 combines Ben-Or’s algorithm [Ben83]
with failure-detection and the rotating coordinator paradigm used in [CT96]. With this
paradigm, we assume that all processes have a prior: knowledge that during phase k, one
selected process, namely Pk modn, 1S the coordinator. The algorithm works under the as-
sumption that a majority of processes are correct (i.e., n > 2f). It is easy to see that this
requirement is necessary for any algorithm that solves Consensus in asynchronous systems
with crash failures, even if all processes have access to a random R-oracle and an FD-oracle
that belongs to ©S.

In the hybrid algorithm, every message contains a tag (R, P, S or E), a phase number,
and a value which is either 0 or 1 (for messages tagged P or S, it could also be “?”).
Messages tagged R are called reports; those tagged with P are called proposals; those with
tag S are called suggestions [to the coordinator], those with tag E are called estimates [from
the coordinator]. When p sends (R, k,v), (P, k,v) or (S, k,v) we say that p reports, proposes
or suggests v in phase k, respectively. When the coordinator sends (£, k,v) we say that the
coordinator sends estimate v in phase k.

Each execution of the while loop is called a phase, and each phase consists of four
asynchronous rounds. In the first round, processes report to each other their current estimate
(0 or 1) for a decision value.

In the second round, if a process receives a majority of reports for the same value then it
proposes that value to all processes, otherwise it proposes “?”. Note that it is impossible for
one process to propose 0 and another process to propose 1. At the end of the second round,
if a process receives f + 1 proposals for the same value different than ?, then it decides that
value. If it receives at least one value different than ?, then it adopts that value as its new
estimate, otherwise it adopts 7 for estimate.

In the third round, processes suggest their estimate to the current coordinator. If the
coordinator receives a value different than 7 then it sends that value as its estimate. Oth-
erwise, the coordinator queries the R-oracle, and sends the random value that it obtains as
its estimate.

In the fourth round, processes wait until they receive the coordinator’s estimate or until
their FD-oracle suspects the coordinator. If a process receives the coordinator’s estimate, it

Every process p executes the following:

0

10

15

20

25

procedure propose(v,) {v, is the value proposed by process p}
T — v {z is p’s current estimate of the decision value}
k<0
while true do

k—k+1 {k is the current phase number}
C “ Dk modn {c is the current coordinator}
send (R, k,z) to all processes
wait for messages of the form (R, k,*) from n — f processes {“x” can be 0 or 1}
if received more than n/2 (R, k,v) with the same v
then send (P, k,v) to all processes
else send (P, k,?) to all processes
wait for messages of the form (P, k,*) from n — f processes {“x” can be 0, 1 or 7}
if received at least f + 1 (P, k,v) with the same v # 7 then decide(v)
if at least one (P, k,v) with v # ? then z «— v else z — ?
send (S, k,z) to c
if p = ¢ then

wait for messages of the form (S, k,) from n — f processes

if received at least one (S, k,v) with v # 7

then send (E, k,v) to all processes

else

random_bit — R-oracle {query R-oracle}
send (E, k,random_bit) to all processes

wait until receive (E, k,v_coord) from c or ¢ € FD-oracle {query FD-oracle}
if received (E, k,v_coord)
then z — wv_coord
else if z = 7 then = — R-oracle {query R-oracle}

Figure 1: Hybrid Consensus algorithm

adopts it. Otherwise, if its current estimate is 7, it adopts a random value obtained from its
R-oracle.

To simplify the presentation, the algorithm in Figure 1 does not include a halt statement.
Moreover, once a correct process decides a value, it will keep deciding the same value in all
subsequent phases. However, it is easy to modify the algorithm so that every process decides
at most once, and halts at most one round after deciding.

5 Proof of Correctness

The hybrid algorithm shown in Figure 1 always satisfies the safety properties of Consensus.
This holds no matter how the FD-oracle or the R-oracle behave, that is, even if these oracles
are totally under the control of the adversary. On the other hand, the algorithm satisfies
liveness properties only if the FD-oracle satisfies strong completeness. Strong completeness
is easy to achieve in practice: most failure-detectors use time-out mechanisms, and every
process that crashes eventually causes a time-out, and therefore a permanent suspicion.
Assume that there is a majority of correct processes (i.e., n > 2f). We show the following:

Theorem 1
(Safety) The hybrid algorithm always satisfies validity and uniform agreement.

(Liveness) Suppose that the FD-oracle satisfies strong completeness.

o If the FD-oracle satisfies eventual weak accuracy, i.e., it is in &S, then the algo-
rithm satisfies termination.

e [fthe R-oracle is random then the algorithm satisfies termination with probability 1.

Proof: We say that process p starts phase k if process p completes at least k£ — 1 iterations
of the while loop. We say that process p reaches line n in phase k if process p starts phase k
and p executes past line n — 1 in that phase. We say that v is k-locked if every process
that starts phase k£ does so with its variable z set to v. When ambiguities may arise, a local
variable of a process p is subscripted by p, e.g., z, is the local variable z of process p.

We first show the safety properties.

Lemma 1 Suppose k > 0. Then (1) it is impossible for a process to propose 0 and another
one to propose 1 in the same phase k; and (2) it is impossible for a process to suggest 0 and
another to suggest 1 in the same phase k.

Proof: We prove (1) by contradiction: suppose that two processes p and ¢ propose 0 and 1,
respectively, in phase k. Thus, p received more than n/2 reports for 0 and ¢ received more
than n/2 reports for 1 in phase k. But then there is a process that reports 0 to p and 1 to g
in phase k, and this is impossible. This proves (1).

Now (2) follows from (1) since if a process suggests v # ? in phase k, then v was proposed
in phase k. O

Lemma 2 If some process decides v in phase k > 0, then v is (k + 1)-locked.

Proof: Suppose some process p decides v in phase k > 0 (note that v # 7), and let ¢ be any
process that starts phase k£ + 1. From the algorithm, p receives at least f + 1 proposals for v
in phase k (line 12). Let r be any process that suggests a value in line 14 of phase k. Before
suggesting (line 14), r waits for n — f proposals in line 11. Because p receives f + 1 proposals
for v, » must have received at least one proposal for v. Moreover, by Lemma 1, r» does not
receive any proposals for 7. * So r sets z, to v in line 13 and suggests v in phase k. Thus, (1)
q sets z, to v in line 13, and (2) the coordinator of phase k£ can only receive suggestions for v.
In particular, the coordinator does not receive ?. So, if the coordinator sends an estimate in
phase k (line 18), that estimate is also v. If g receives that estimate (line 22), then g resets
z4 to v in line 24. Otherwise ¢ does not modify z, (because z, is different than ?). In either
case, ¢ starts phase k + 1 with z, =v. O

Lemma 3 If a value v is k-locked for some k > 0, then every process that reaches line 13
in phase k decides v in phase k.

Proof: Suppose v is k-locked for some k£ > 0. Then, all reports sent in line 6 of phase &
are for v. Since n — f > n/2, every process that proposes some value in phase k proposes v
in line 9. Consider a process p that reaches line 13 in phase k. Clearly, p receives n — f
proposals (line 11) for v in phase k. Since n — f > f + 1, p decides v in phase k. O

Corollary 1 If some process decides v in phase k > 0, then every process that reaches
line 13 in phase k + 1 decides v in phase k + 1.

Proof: By Lemma 2 and Lemma 3. O

Corollary 2 (Uniform agreement) If some processes p and p' decide v and v' in phase k > 0
and k' > 0, respectively, then v = v'.

Proof: For k = k' the result follows from Lemma 1 and the fact that a process can decide
a value in a phase only if that value was proposed in the same phase. Assume that & < &'.
Since p' decides in phase k' then p’ reaches line 13 in every phase 7, k < r < k'. Since
p decides v in phase k, by Corollary 1 p’ decides v in phase k + 1 < k'. By additional
applications of Corollary 1, we conclude that p’ decides v in phase k’. Each process can
decide at most once per phase, sov =¢'. O

Corollary 3 (Validity) If some process p decides some value v then v was the initial value
of some process.

Proof: Note v € {0,1}. If the initial values of all processes are not identical, then v is
clearly the initial value of some process. Now, suppose all processes have the same initial
value w. Thus, w is 1-locked. From Lemma 3, p decides w, and from Corollary 2, w = v. O

From now on we assume that the FD-oracle satisfies strong completeness, and proceed to
prove the liveness properties.

“We denote by ¥ the binary complement of bit v.

Lemma 4 FEvery correct process starts every phase k > 0.

Proof: The detailed proof is by a simple but tedious induction on k. We describe only the
central idea here. In each phase, there are four wait statements that can potentially block
processes (lines 7, 11, 16, 22). It is not possible for a correct process to be blocked forever in
any of the first three wait statements, because at least n — f processes are correct and send
the messages that this process is waiting for. Consider the fourth wait statement. Either
the coordinator ¢ sends its estimate to all processes or ¢ crashes. In the first case, every
correct process receives this estimate. In the second case, ¢ eventually appears on the list
of suspects, i.e., ¢ € FD-oracle (because the FD-oracle satisfies strong completeness). So no
correct process waits forever at the fourth wait statement of a phase. O

Corollary 4 If a value v 1s k-locked for some k > 0, then every correct process decides v in
phase k.

Proof: Immediate from Lemmata 3 and 4. O

Corollary 5 If some process decides v in phase k > 0, then every correct process decides v
in phase k + 1 (and thus in all subsequent phases).

Proof: Immediate from Corollary 1 and Lemma 4. O

Lemma 5 (Termination) If the FD-oracle satisfies eventual weak accuracy then every cor-
rect process decides.

Proof: By eventual weak accuracy of the FD-oracle, there exists a time after which a correct
process p,, is never suspected by anyone. For each process p;, let k; be the value of variable &
of process p; at that time. Let k = 1+maz;{k;} and k = min{j + k: j € NA (j + k) mod n = m}.
Let ¢ and r be arbitrary processes that start phase k+1. In phase lAc, the coordinator is
process pn, by choice of k. So g and r do not suspect the coordinator and thus ¢ and r set
z4 and z, to the coordinator’s estimate in line 24. Since this estimate is different from ? and
unique for phase l%, we have z, = 2, = v for some v # ? at the beginning of phase k+1. So
v is k + 1-locked. Therefore, by Corollary 4, all correct processes decide v in phase k+1. 0O

We now proceed to show that if the R-oracle is random, then the algorithm satisfies
termination with probability 1. For £ > 0, let 73 be the first time that any process receives
n — f proposals in phase k. From Lemma 4, for every £ > 0, some process receives n — f
proposals in phase k, and so 74 is well-defined. Note that in our algorithm no process queries
the R-oracle in phase k£ before time 7.

For each k > 0, we say that a value v is k-major at time t if by time ¢t more than n/2
processes have started phase k£ with their variable z set to v. Clearly, for each £ > 0 and all
times ¢ and ¢, it is impossible for 0 to be k-major at ¢, and 1 to be k-major at ¢'.

We say that a process p R-gets v in phase k at time t if either:

e In phase k£ at time ¢, p obtains v from the R-oracle in line 25 and sets z, to v; or

e In phase k, the coordinator obtains v from the R-oracle in line 20, sends v as its
estimate to all processes, p receives this estimate and sets z, to v in line 24 at time ¢.

9

function FavorableToss(r, u): bit {evaluated only at time u > 7 where k = 2r}
k —2r {k is the first phase in epoch r}
if some value v is k-major at time 73 then return v
if by time u no process received n — f proposals in phase k& + 1 then return 0 {u < 741}
if before time 73 1: {here u > 741}
(a) 1is k-major, and
(b) less than n/2 processes R-got a value in phase k, and
(c) the coordinator did not query the R-oracle in line 20 of phase k

then return 1
else return 0

Figure 2: Favorable coin toss algorithm

Intuitively, a process p R-gets v if p sets z,, to v, and p obtained v from an R-oracle query
(directly, or indirectly through the coordinator).

Lemma 6 If at time t a process p starts phase k > 1 with z, set to some value v, then
either v is (k — 1)-magor at time t or p R-gets v in phase k — 1.

Proof: Consider phase k—1. Suppose p did not R-get v. Let ¢ be the last time p updates z,,
in phase £ — 1. Note that ¢’ < t. Then, at time ¢, either (a) p receives the estimate from the
coordinator, and the coordinator obtained that estimate from one of its non-? suggestions;
or (b) p sets z, in line 13. In both cases, more than n/2 processes must have reported v in
phase k — 1 before time #'. Therefore, at least n/2 processes have started phase £ — 1 by
time ¢ (and thus by time ¢) with their variable z set to v. O

For the rest of the proof, we group pairs of phases into epochs as follows: epoch r consists
of phases 2r and 27 + 1.5 We will define the concept of a “lucky” epoch — one in which
processes toss coins that cause the termination of the algorithm (no matter what the ad-
versary does). To do so, we first define function FavorableToss(r,u) given in Figure 2. We
say that epoch r is lucky if, for every process p and any time u, if p queries the R-oracle
in epoch r at time u, then p obtains FavorableToss(r,u) from the R-oracle. Note that if p
queries the R-oracle in epoch 7 at time u, this occurs after at least one process receives n — f
proposals in phase 2r. Thus, 7, < u, so the value of FavorableToss(r,u) depends only on
what occurred in the system up to time wu.

Lemma 7 If the R-oracle is random then the probability that some epoch is lucky is 1.

Proof: The result is immediate from the following observation: for every r > 1, (a) the
probability that epoch 7 is lucky is at least 27(2»*2) (because in each phase there are at most

5Phase 1 is not part of any epoch.

10

n+ 1 queries to the R-oracle, and the R-oracle is random), and (b) for any 7' # r, the events
“epoch 7 is lucky” and “epoch 7’ is lucky” are independent (because epochs r and 7’ consist
of disjoint sets of phases).0

Lemma 8 For every r > 1, if epoch 7 is lucky then some walue is (2r + 1)-locked or
(2r + 2)-locked.

Proof: Throughout the proof of this lemma, fix some arbitrary » > 1 and assume that
epoch 7 is lucky. Let k£ = 2r; recall that epoch r consists of phases k£ and £+ 1. Since epoch
r is lucky, if any process R-gets a value v at time ¢ and in phase 7 = k or j = k + 1, then
v = FavorableToss(r,u) for some time u, 7; < u < ¢ (value v was obtained either directly
from the R-oracle or indirectly through the coordinator).

Case 1: Suppose some value v is k-major at time 7. By the definition of Favorable Toss, for
any u such that 7, < u, FavorableToss(r,u) = v. So, if a process R-gets a value in
phase k, that value is v. Note that ¥ is not k-major at any time. By Lemma 6, v is
(k + 1)-locked.

Case 2: Now assume that no value is k-major at time 7.

Case 2.1: Suppose that no value is k-major before time 74,;. Then for any u, 7 < u, we
have FavorableToss(r,u) = 0. By Lemma 6, every process p that starts phase k + 1
before time 741 does so with z, set to some value that p R-got in phase k, and such
value can only be 0. So all reports (and thus all proposals) sent in phase k + 1 before
time 7, are for 0. From the definition of 71, there are at least n — f such proposals
for 0 in phase £+ 1. By an argument similar to the one in the proof of Lemma 2, value
0 is (k + 2)-locked.

Case 2.2: Now assume some value v is k-major before time 73 .

Case 2.2.1: Suppose v = 0. Since 1 is never k-major, then for any time » such that 7, < u,
we have Favorable Toss(r,u) = 0. So all processes that R-get a value in phase k£ R-get 0.
By Lemma 6, value 0 is (k + 1)-locked.

Case 2.2.2: Now assume v = 1. For any time u, 7 < u < 741, we have FavorableToss(r,u) =
Let S be the processes that R-get a value in phase k£ before time 74,1; clearly, all pro-
cesses in S R-get 0.

Case 2.2.2.1: Suppose |S| > n/2. Then for any time u, 7 < u, Favorable Toss(r,u) = 0. So,
all processes that R-get in phase k+ 1 R-get 0. Note that |S| > n/2 implies that 1 can
never be (k + 1)-major. By Lemma 6, value 0 is (k + 2)-locked.

Case 2.2.2.2: Now assume that |S| < n/2.

Case 2.2.2.2.1: Suppose that the coordinator of phase k does not query the R-oracle in
line 20 of phase k before time 7;.;. Then for any w such that 7,,; < u, we have
FavorableToss(r,u) = 1. So, if the coordinator queries the R-oracle in line 20 of

11

phase k it obtains 1 from the R-oracle. Therefore, all processes that R-get a value
at or after time 7, in phase k£ R-get 1. Thus, exactly |S| < n/2 processes R-get 0
in phase k. Since 1 is k-major, from Lemma 6 we conclude that value 0 can never
be (k + 1)-major. Since no process queries the R-oracle in phase k + 1 before time
Tr+1, all processes that R-get a value in phase k£ + 1 R-get 1. By Lemma 6, value 1 is
(k + 2)-locked.

Case 2.2.2.2.2: Now assume that the coordinator of phase k queries the R-oracle in line 20
of phase k before time 7;,;. Then the coordinator obtains 0 from the R-oracle. So,
for any u > 7, we have FavorableToss(r,u) = 0. Since the coordinator queries the
R-oracle in line 20, it received n — f suggestions for ? in line 16, and this occurred
before time 74,1. Thus, n — f processes have set their variable z to ? in line 13 in
phase k£ before time 7;,1. Note that if any such process starts phase k£ + 1, then it
R-gets a value in phase k, and that value is 0, and thus such process starts phase k£ + 1
with its variable z set to 0. Therefore at most n — (n — f) = f < n/2 processes start
phase £+ 1 with their variable z set to 1. So 1 can never be (k+1)-major. All processes
that R-get in phase k& + 1 R-get 0. By Lemma 6, value 0 is (k + 2)-locked.O

Lemma 9 (Termination with probability 1) If the R-oracle is random then the probability
that all correct processes decide is 1.

Proof: Immediate from Lemmata 7 and 8, and Corollary 4.0

The proof of Theorem 1 is now complete: validity and uniform agreement were shown
in Corollary 3 and Corollary 2, respectively. Termination was proved in Lemma 5, and
termination with probability 1 was shown in Lemma 9. Orheorem 1

From the proof of Lemma 7, it is easy to see that the expected number of rounds for
termination is O(2?™). However, it can be shown that, as in [Ben83], termination is reached
in constant expected number of rounds if f = O(y/n). In Section 7, we outline a similar
hybrid algorithm that terminates in constant expected number of rounds even for f = O(n).

6 An Optimization

The algorithm in Figure 1 was designed to be simple rather than efficient, because our
main goal here is to demonstrate the viability of a “robust” hybrid approach (one in which
termination can occur in more than one way: by “good” failure detection or by “good”
random draws). The following optimization suggests that such hybrid algorithms can also
be efficient in practice.

In many systems, failures are rare, and failure detectors can be tuned to seldom make
mistakes (i.e., erroneous suspicions). The algorithm in Figure 1 can be optimized to perform
particularly well in such systems. The optimized version ensures that all correct processes
decide by the end of two asynchronous rounds when the first coordinator does not crash and
no process erroneously suspects it.°

6 Actually, decision occurs in two rounds even if up to n — 2f — 1 processes erroneously suspect it.

12

¢ — P {po is the first coordinator}
if p = ¢ then send (£, 0,v,) to all processes {if p is the first coordinator}

wait until receive (E,0,v_coord) from ¢ or ¢ € FD-oracle {query FD-oracle}
if received (F,0,v_coord)

then send (P, 0,v_coord) to all processes

else send (P,0,7) to all processes

wait for messages of the form (P,0,*) from n — f processes {“x” can be 0, 1 or 7}
if received at least f + 1 (P,0,v) with the same v # ? then decide(v)
if received at least one (P,0,v) with v # ? then z «— v

Figure 3: Optimization for the hybrid algorithm

This optimization is obtained by inserting some extra code between lines 2 and 3 of
the hybrid algorithm. This code, given in Figure 3, consists of a phase (phase 0) with two
asynchronous rounds. In the first round, py sends a message to all processes; in the second
round, every process sends a message to all processes. We claim that: (1) the optimization
code preserves the correctness of the original algorithm; and (2) processes decide quickly in
the absence of failures and erroneous suspicions. To see (1) note that:

e No correct process blocks during the execution of the optimization code (phase 0), i.e.,
all correct processes start phase 1;

e Any process p that starts phase 1 does so with z, set to the initial value of some
process;

e If some process decides v in phase 0 then v is 1-locked. Thus, (by Corollary 4) all
correct processes decide v in phase 1.

To see (2), note that if py is correct and no process suspects pg, then all processes wait for
its estimate v and propose v in phase 0; so every process receives n — f proposals for v and
thus decides v in phase 0. Thus we have:

Theorem 2 Theorem 1 holds for the optimized hybrid algorithm. Moreover, in executions
with no crashes or false suspicions, all processes decide in two rounds.

7 Discussion

In practice, many systems are well-behaved most of the time: few failures actually occur, and
most messages are received within some predictable time. Failure-detector based algorithms
(whether “pure” ones like in [CT96] or hybrid ones like in this paper) are particularly well-
suited to take advantage of this: (time-out based) failure detectors can be tuned so that

13

the algorithms perform optimally when the system behaves as predicted, and performance
degrades gracefully as the system deviates from its “normal” behavior (i.e., if failures occur
or messages take longer than expected). For example, the optimized version of our hybrid
algorithm solves Consensus in only two asynchronous rounds in the executions that are most
likely to occur in practice, namely, runs with no failures or erroneous suspicions.

The above discussion suggests that using this hybrid approach is better than using the
randomized approach alone. In fact, randomized Consensus algorithms for asynchronous
systems tend to be inefficient in practical settings.” Typically, their performance depends
more on “luck” (e.g., many processes happen to start with the same initial value or happen
to draw the same random bit) than on how “well-behaved” the underlying system is (e.g.,
on the number of failures that actually occur during execution). The fact that randomized
algorithms are extremely “robust”, i.e., they do not depend on how the system behaves, may
also be an inherent source of inefficiency.

Note that our hybrid algorithm terminates with probability 1 even if the FD-oracle is
completely inaccurate (in fact even if every process suspects every other process all the time).
So it is more robust than algorithms that are simply failure-detector based.

An important remark is now in order about the expected termination time of our hy-
brid algorithm. We developed this algorithm by combining Ben-Or’s randomized algorithm
[Ben83] with the failure detection ideas in [CT96]. We selected Ben-Or’s algorithm because
it is the simplest, and thus the most appropriate to illustrate this approach, even though its
expected number of rounds is exponential in n for f = O(n). By starting from an efficient
randomized algorithm, due to Chor et al. [CMS89], we can obtain a hybrid algorithm that
terminates in constant expected number of rounds, as we now briefly explain.

Roughly speaking, the randomized asynchronous Consensus algorithm in [CMS89] is
obtained from Ben-Or’s algorithm by replacing each coin toss with the toss of a “weakly
global coin” computed by a coin_toss procedure. We can do exactly the same: replace the
coin tosses of the algorithm in Figure 1 with those obtained by using the coin_toss procedure.
More precisely, in each phase, every process: (a) invokes this procedure between the second
and third rounds (i.e., between lines 13 and 14) to obtain a random bit, and (b) uses this
random bit rather than querying the R-oracle (in lines 20 and 25).8

As in [CMS89], this modified hybrid algorithm terminates® in constant expected number
of rounds for f < n(3 — v/5)/2 ~ 0.38n. But also as in [CMS89], and in contrast to
the algorithm in Section 4, it assumes that the adversary cannot see the internal state of
processes or the content of messages. With the optimization of Figure 3, this modified hybrid
algorithm also terminates in two rounds in failure-free and suspicion-free runs.

"Algorithms that assume that processes a priori agree on a long sequence of random bits [Rab83, Tou84]
are more efficient than others. But this assumption may be too strong for some systems.

8 As in [CMS89], another simple modification is necessary: the addition of a “synchronization round” just
before the coin_toss procedure. In this round, processes broadcast “wait” messages, then wait until n — f
such messages are received.

9Provided, of course, that the FD-oracle satisfies strong completeness.

14

8 Related Work

The idea of combining randomization with a deterministic Consensus algorithm appeared
in [GP90], and was further developed in [Zam96]. These works, however, are for synchronous
systems only and do not involve failure detection.

Dolev and Malki were the first to combine randomization and unreliable failure detection
to solve Consensus in asynchronous systems with process crashes [DM94]. That work differs
from ours in many aspects:

e The hybrid algorithms given in [DM94] assume that both the R-oracle and the FD-
oracle always work correctly. If the failure detector loses it accuracy property, processes
may decide differently; if the random source of bits is corrupted, processes may never
decide.

e Two goals of [DM94] are to use failure detection to increase the resiliency and ensure the
deterministic termination of randomized Consensus algorithms. The hybrid Consensus
algorithms given in [DM94] achieve the first goal, by increasing the resiliency from
f <n/2to f < n, but not the second one. It is stated, however, that a future version
of the paper will give an algorithm that achieves both goals.

e The two hybrid algorithms in [DM94] use failure detectors that are stronger than <S.
The first one — which supposes that the same sequence of random bits is shared by all
the processes, as in [Rab83] — assumes that some correct process is never suspected
by any process. The second algorithm — which drops the assumption of a common
sequence of bits — assumes that Q(n) correct processes are never suspected by any
process.

Acknowledgement

We are grateful to Vassos Hadzilacos: some of our proofs are based on his lecture notes. We
would also like to thank the anonymous referees for their valuable comments.

References

[Ben83] Michael Ben-Or. Another advantage of free choice: Completely asynchronous
agreement protocols. In Proceedings of the Second ACM Symposium on Princi-
ples of Distributed Computing, pages 27-30, August 1983.

[BT83] Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Proceedings of
the Second ACM Symposium on Principles of Distributed Computing, pages 12—
26, August 1983. An extended and revised version appeared as “Asynchronous
consensus and broadcast protocols” in the Journal of the ACM, 32(4):824-840,
October 1985.

15

[CD8Y]

[CHT92]

[CHT96]

[CMS8Y]

[CT91]

[CT96]

[DDS87]

[DLS8S]

[DMY4]

[FLP85]

[GPY0]

[Rab83]

[Tou84]

Benny Chor and Cynthia Dwork. Randomization in Byzantine Agreement. Ad-
vances in Computer Research (JAI Press Inc.), 4:443-497, 1989.

Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus. In Proceedings of the Tenth ACM Symposium on
Principles of Distributed Computing, pages 147-158, August 1992.

Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus. Journal of the ACM, 43(4), July 1996. An earlier
version appeared in [CHT92].

Benny Chor, Michael Merritt, and David B. Shmoys. Simple constant-time con-
sensus protocols in realistic failure models. Journal of the ACM, 36(3):591-614,
1989.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for asyn-
chronous systems. In Proceedings of the Tenth ACM Symposium on Principles of
Distributed Computing, pages 325-340. ACM Press, August 1991.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225-267, March 1996. An earlier
version appeared in [CT91].

Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism
needed for distributed consensus. Journal of the ACM, 34(1):77-97, January 1987.

Cynthia Dwork, Nancy A. Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM, 35(2):288-323, April 1988.

Danny Dolev and Dalia Malki. Consensus made practical. Technical Report
CS94-7, The Hebrew University of Jerusalem, March 1994.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374-
382, April 1985.

Oded Goldreich and Erez Petrank. The best of both worlds: guaranteeing termi-

nation in fast randomized Byzantine Agreement protocols. Information Processing
Letters, 36(1):45-49, October 1990.

Michael Rabin. Randomized Byzantine Generals. In Proceedings of the Twenty-
Fourth Symposium on Foundations of Computer Science, pages 403—409. IEEE
Computer Society Press, November 1983.

Sam Toueg. Randomized Byzantine Agreements. In Proceedings of the Third ACM
Symposium on Principles of Distributed Computing, pages 163-178, August 1984.

16

[Zam96] Arkady Zamsky. A randomized Byzantine Agreement protocol with constant ex-
pected time and guaranteed termination in optimal (deterministic) time. In Pro-
ceedings of the Fifteenth ACM Symposium on Principles of Distributed Computing,
pages 201-208, May 1996.

17

