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A3STRACT

For an unconstrained minimization problem with a sparse
Hessian, a symmetric version of Schubert's update is given which
preserves the sparseness structure defined by the Hessian. At
each iteration of the algorithm there are two sparse linear sys-
tems to be solved. These have the same sparseness structure
defined by the Hessian. The differences between succeeding approx-
imations to the Hessian and the Hessian at the solution are re-
lated by a careful evaluation of the difference in the Frobenius

norm. This relation is used in proVing the local and linear con-

vergence of the algorithm.



1. INTRODUCTION

Let £ : R®™ + R be given. Consider the problem of finding
a local minimum of £ on some open set D c Rn. Let x* ¢ D be the

minimum, so that
f(x*) = min {f(x) : x e D}.

In the following, assume that f is twice continuously differen-
tiable on D.
When solving this problem using a Newton-like method %o
find a zero of g(x) = Vf(x), it is'usually the case that an ap-
proximation to Jg(x) = sz(x), the Jacobian of g or Hes§ian of
£, looks as mucp like Jq as possible. Since sz is symmetric,
it is approximated by a symmetric matrix.
Let S = {A e L(R") : A = A"}, and for u,v e RY, let
Q = {A e LIRM : Au = v}. A Newton-like method for the solutic

v,u

of the minimization problem is: given x ¢ D and B ¢ S, nonsin-~

qular,
(1.1) , x, = x - B lg(x)
B+ e S noy-,s
where Yy = gix,) - g(x),
and 8 = x, - x.

Specific methods for choosing a B, in sn QY s have the property
’
that near the solution, B, is nonsingular.
Suppose that V2£ is sparse. The type of methods considered

require the solution of a linear system in (1.1), namely



Bs = -g(x).

The objective is to define a method of updating B to preserve
the sparseness structure of the Hessian. With that in mind, the
criterion for deciding when the nonlinear problem is sparse will
be the same for deciding when the linear systems are sparse.
That is normally [5] if V?f has less than 10% nonzeros.

Furthermore assume that [sz]ii #0 for i = 1,...,n. Other-
wise, the i—t--)l component of Vf is linear in xi, so that x4 can be
written as a function of the remaining xj,j =1l,...,1-1,1i+1,
..., n, and the dimension of the problem can be reduced.

Let Z = {A ¢ LY : Aij = 0 for all (i,j) such that
[sz(x)]ij = 0 yx € D}. Schubert's update for sparse nonlinear
ecuations [13], {11, (8] is in 2n Qy,s' but it is not symmetric.

Fo:BeSnZwewantaB e Sn Z nQ .
+ Y,s

2. NOTATION AND TECHNICAL PRELIMINARIES

cefinition 2.1 Let s ¢ R® and define the components of s by
oy T .
{2.1) £y = e5s for 1 = 1,...,n.

‘Cefine 2. = {v¢ R : e;v =0 for all i such that
{szlji = 0}. 1In other words, zj is the subspace determined by
the zero-nonzero structure of the jEE row of sz.
For j = 1,...,n define the Ly projection of s onto zj by
sj. The vectgr sj is defined cémponent-wise by
. 2
o if [V f]ji #0

(2.2) els. =
i3 ; 2 _
0 if [V f]ji =0



Lemma 2.2 Let s ¢ R" and suppose f : R® + R is C2 and Ivzf]ii # 0

for i = 1,...,n. Then

(2.3a) e;s = e;sj ' and
T T _ T T
(2.3b) ejs eisj = ejsi eisj
n .
(2.3c) w = Ej=1 elsj ajej € Zi for aj e R,j=1,...,n.
. 2 . . T T
Proof: : By the h h s, [VTE£).. 0 lies e.s. = p. = €.
r (a) y e hypothesi [ 13) # imp ;c %5 o] e]s
(b): 1If [v2f]ji # 0, then by symmetry [V f]ij # 0 so that
) ' 2 s
e;si =0 = e;s. Hence (2.3b) holds. If [V flj; = 0, then e;sj =0
and both sides of (2.3b) are zero.
. T _ T - . 2 - A ’
(c): .ejw = eisjaj 0 if [V f]ij 0 j 1,...,n.

Therefore w ¢ Zi'

Definition 2.3 For a scalar a ¢ R, we use the notation of the

generalized inverse and define

if a #0
(2.4) a =

+
o K|+

if a = 0.

Now, Schubert's update, for B ¢ 2 and y,s ¢ R, can be writ-

ten as

which, using Definition 2.3, is equivalent to

_ n T + T _ T
(2.5) B, = B + Zj=l (sjsj) ej(y Bs) ejsj'



It is easy to verify that B_ ¢ Z n Qy,s (8].

Definition 2.4 Let s ¢ R'. Define P ¢ L(R") by

-n T o+ T T
2.6 P=1/2 [1I - Z. .S, .S s.e.].
{ ) /2 1 =1 (s]sj) ey s]e]]

Define A,D ¢ L(R") by

(2.7 A= I, .s.e,
) 3=1 ?3%3%; ‘
= (olsls 9252§ .ee vpnsn]
and
£2.2) D = diag (s;sl, s;sz,..m, s;sn).

Observe that A is the Frobenius projection of ss’ onto z.

Also, P can be written as
. .
(2.93) ) P=1/2 (T -AD].

Definition 2.5 For v ¢ R® and M €. L(R™) and an integer 0 < m < n,
édefine Mm‘e L(Rm) to be the iower right m x m submatrix of M = Mn’
and v, * R" to be the last m components of v.

The matrix P is a projection operator. This fact is a conse-
quence éf the following Lemma on the eigenvalues of P.

Lemma 2.6 The eigenvalues of P are in [0, max (1/2, 1 - min

p;#0 ;s

)]

pi%0 sT

2
and the eigenvalues of (I - P). are in {min (1/2, min Py ), 11
i%1



Proof: Without loss of generality, assume all the zero compon-

ents of s are ordered first. That is

p., = Q i=1,...,% and
p. #0 i=2+1,...,n.
Then An

is the nonzero part of A, and Dn is invertible by

-2 -5
(2.3a) and definition 2.5. tm=n- 2.
‘From (2.9), partioning the matrix,
(2.10) 0y \
P=1/2 [I_ - [-F+-—--=-~ 1]
' -1 |
IA i 1
T
1/2 IL: \
= T T T T T e, - - - .
-1
+ -
' 1/2 11, - A D ))

It is clear that P has % eigenvalues equal to 1/2, ané the

1

remaining n - £ are the eigenvalues of 1/2 [In - AnD; }J. Simi-

larly, I - P has £ eigenvalues egual to 1/2, and its other n - §
- -1
+ .
are the eigenvalues of 1/2 [Im AmDm ]
It is now sufficient to consider P and I - P of dimension m,

so we omit the subscripts temporarily. Observe that

P

[}

1/2 (1 - 7} and

1

I-P=1/2 [I +AD "} are similar

2

to 1/2 D-l/z(D - A)D-l/ and 1/2 D_l/z(n + .l\)D_l/2 respectively.

Schnabel [12] observed that D + A is the sum of a diaconal

positive definite matrix and positive semi-definite rank one



matrices, Thus,

(2.11) 2
P12

By the Interleaving Eigenvalue Lemma, e.g. Wilkinson [pp. 95-98,

(2.12) min e.v. (D + A) 2 min ZpE > 0.(f)
i

Similarly, D'- A can be written as a sum of positive semi-

definite rank one matrices

(2.13) D-a-= £ 3 ll j .
. 2 1<) - ! . ,?
(VEl 5 70 P3Pir=-Ri--+
[l I

So min e.v. (D - A) = 0.

Thus Pm is positive semi~definite and
2
min e.v. (I - P)ﬂ 2 min Py > 0. So in general, min e.v. P 2 0
al 1 T—

S.S,;
11

and min e.v. (I - P) 2 min (1/2, min

Pi#0 s;s;

)

This gives the lower. bounds.
The bounds on the largest eigenvalues follow from

x'x = xT(I - P)x + x'Px.

(f)Toint (14) also showed that D + A is positive definite.

15],



This completes the proof of Lemma 2.6.

Lemma 2.7 Let u,v,s € R® and P be given by (2.9). Then

(2.14) <o+(1 -P)-lu,v> = <o+(1 - p)‘lv,u>.

Proof: Suppose that the zero components of s are ordered first.

_-""_1\: .
)
/

Then

M2 T

I-P-=

1/2 (Im + AmDm

Now,

.
+ -1\ _ T + T T
(2.15) @ - m Ty = 1(20s]s,) e ulelv
-1 -1
+ <Dm (I - P)m um,vm>.

- = 3 3 PR 3 -
Note that (I P)mDm 1/2(Dm + Am) which is symmetric and posi
tive definite, by (2.12). 1Its inverse must be symmetric and

positive definite also, so that
-1 -1
(2.16) <Dm (1 - p)m vy = <u ,D (1 - vm>.
From (2.15) and (2.16) we have

+ -1
(2.17) <D (I - P) u\£>

T T + T -1 - -1
igl eiu[2(sisi) eiv] + <um,Dm (I ?)m
<u,D+(I - P)"lv).

Yo



lemma 2.8 Let s ¢ R", and P be defined by (2.9)

(a) If v e R" is such
for all i such that s; = 0,
(2.183) -@ta -

. n
) If£f u ¢ R ,then

that elv
i

*hen

P) —'lv,v> < -

0

T
e . -1 S.S. n . T .2
2.12, (Z 'T - P) u,s\ < max(2, max —171) [igl(sisi) (eiu) 1.

\ /

0.
3

-

#0

Procf: (a): Again assume that the zero components of s are

ordered first. Then

Therefore, (2.20) and (2.21) yield

(z.2e3 - - 2)"tv,v)
2
_ Te v T2 _ /n-lr _ 51
= -iL 2(sisp Y ein? - (ot P tvp v
' 2 g T 2 -17
s - = %i=1 (e,v)° - |l(x -P) D ||.7v v
s's 5. 40 i mm''2 ‘mm
1
since s;s1 Z s s and <Mx /) 2-§5452 for nonsingular M.
IENR
By Lemma 2.6 ||(I - P)mll 21, so
(2.2 M -2 o1, « [1x-e I, o ll,
s Il 11, |
< max STS. < STS .
£<j<n



(2.22)

(b):

(2.23)

10

<D (x - P~ v,v>

< - s—:,';-(Zs 7‘ol(e v) + v;‘vm)
i
s - ;%;( iol(e n? 4Ty )
S,
i
VT

v . T
= = —— since for s, = 0, e.v = 0.
T 5 MR §

<D+(I - P)‘lu,u>

L
T +, 1.2 -1 -1 .,
= i;12(:-:5_51) (eiu) +‘<Dm (1 - P)m um'-“m)

2
T +, 7 12 -1
= iglz(sisi) (eiu) +<2(Dm + Am) “m'“‘m)

L

T +, 1.2 1/2 -1.1/2 -1/2
s jLy2(sysi) (eyw) T+ ||2x)m (D, + A) "D I]zllom u

2
T +, 1.2 -1
= L2Gsispteiw? ¢ |la - B |]2<p v, ,un>

n

T +, T .2 s
s 2 igl(sisi) (eiu) + max <Dm u ,um>
D.;‘O 2
J J )
by Lemma 2.6 and
1

lHa -2ty =
min e.v.(I - P)n

for positive definite (I - P)m
n T +, 1.2
< max (2, max —l—l) ;L. (s:8.) (e u)
0. 740 pj i=1°7171 i

3. SYMMETRIC SCHUBERT UPDATE

Powell [10) derived the Powell symmetric Broyden update frcm

n
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the Broyden update,

T
- (y - Bs)s
B+ B + T .
s s
by iteratively projecting B, into S and then projecting back to

Q Using the same technique,.Dénnis [3] derived most of the sym-

YIST
metric updates satisfying the. linear equation B,s =y from the rank

1 updates,

B, =B + ix—:—gibiil
c's
with various choices of ¢ ¢ R".

We use the iterative double projection on Schubert's update
(2.5), alternately projecting into S and back to z nQy,s' For
3¢ S.~2Zand y,s ¢ R, given, the derivation of the symmetric
Schubert update is straightforward, though somewhat tedious, and

is omitted here. The update is given by

(3.1) n T + 7 T T
) B, =B + 1/2.L,.(s.s.) e.x(e.,s. + s_.e.)
+ / J=L( 33 ] ¢ 33 3 3]
where A = (,L,P*) (y - Bs) and P is defined by (2.6).
Lemma 2.6 implies that the maximum eigenvalue of P is less than
1, since min (slsi)_lpi > 0. Therefore by the Neumann Lemma (9],
Di#O
@
k _ -1
.kgoP = (I P) v

and A is the solution of
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(3.2) (I -P)A = (y - Bs).

Observe that the matrix I < P has the same sparseness struc-
2 . . .
ture as V- £. Although I - P is not symmetric we can rewrite the
update so that the 1ine§r system is symmetric and positive definite.

Again assume that the zero components of s are ordered first. Then

(3.3)

~

G
R 2 VR A
(3.4) | A = (y - Bs)
0 1Dy * A,
and GE = diag(Yl,.-.,yz)
T
y. = si8; if s; #0

4. PROPERTIES OF THE UPDATE

The first lemma of this section will verify that the update

has the desired structure.

Lemma 4.1 Let B ¢ S n2 and y,s ¢ R®. Then B+ defined by (3.1)

satisfies B+ € S nZ n Qy,s'

Proof: Obviously B+ € S. To show B+ € 2, it is sufficient to

check each row.
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n
T T T + T, T T
1 = +
(4.1) eiB+ eiB + 1/2(sisi) ei)\si 1/2 JElelsj(sjsj) eJXe
The first and second terms on the right are in zi. By Lemma 2.2,

gart ¢, the third *erm is in Zi also. Therefore, B+ € 2.

To sece that B o« Qy s’ form the vector B+s and check component-
: ’
wice that e;E+s = ely. If S #0,
(4.2) e:B,s = e Bs + 1/2el\ + 1/2 T els (s"s ) telrels
174+% 7 %4 i 52151%3 %5557 ©3%¢
= e:Es + e;(I - P)X from (2.6)
= bTy
=Y.
If s. = 0, then
i
(4.2) e; B s = elB+sl = 0.

By the Mean Value Theorem (9], HEi ¢ (0,1) such that

T _ T -
ei(q+ -q) = eiJg(x + tis)s

T T - .
Then e,y = eiJ(x + Eis)si »0 since Jg e 2.

Therefore B, ¢ Qy s and the proof is complete.
r
The following estimate will be used to prove the convergence

‘properties of the algorithm given in section 5.

Theorem 4.2 Let B,J ¢ S nZ and y,s ¢ Rn,'s 0 ana let B, be defined

by (3.1). Then

1 2
(4.4) e, = a2 s |18 - a2 - [1(B - 9sl]y
ls112
s's n
+ max (2, max —1—10 z Isi)+[e£(y - Js)]z.

0 X i
pi‘ pj
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Proof:
2 _‘ n T 2
(4.5) B, - dllp = I le;(3, - Jley]
o
n T
= I [e.,(B - J)e + 1/2(s S, ) ey As e. + 1/2e s, (s S, ) e X]
i sa i j i73
i,j=1
= g {te](B - Je 12 + 2eT(B - Je.(sTs.)Telnels
Y €j j €3 €5151%;) ©17€35;

To vHT T 2 o reTe yF Ty T Te yF T, T
+ 1/2[(sisi)(eix)(ejsi)] + 1/2(sisi) eixejsi(sjsj) ej\eis

e

2 n T + 7T T
|8 - J[]F + iil(sjsi) e {2e;(B - s

+ 1 2 T\ +1/2 1 .S. ) els, e s X
/ e; / J=1(s 351 JeJ 1.

Now, observe that

Yy = Bs = (I -P)A =1/2x + 1/2¢( E (s s ) el ss,e Ty X

j=1 3773
and
(4.6)  el(y - Bs) = 1/2eTx + 1/2 7 (s 55 yteTsels. ela
. i i j=1 b IS s |
= 1/2e A+ l/ZJEl(s .S.) e)slelsjejx
by (2.3b).
Therefore, (4.6) applied to the last line of (4.5) yields
(4.7)
2 2
B, - J][F = ||B - J||F + (s s;) el A[2e (B - J)s + e Tty - Bs)1.

s - Jl{; + (s;si)+e11[ez(8 - s +elly - Js)l.

[o8 [o8
n~™s ll ™M
o

To complete the proof, we examine the sum on the right harnd
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side of (4.7). Letu =y - Jds and v = (B - J)s. Then
-1 -1
A= (I -P) (y-Bs)=(I-P) (u-v), and

T + T T T
(s.s.) eix[ei(B - J)s + ei(y - Js)])

(4.8) iS4

™~

i=1

n .
T t.T -1 T T
iil(sisi) ei(I P) (u - v){eiv + eiu]
1

n
z elb“(x - p)
i=1

<D+(I - P)-lu,v> - <D+(I - P)_lv,v>
+ @ra - 2 e - 7T - ) "ty .

(u - v)el(v + u)

Now, substituting (4.8) into (4.7) gives

(4.9)

[}

s - 3112+ <D*(1 -2ty - T - ?)"lv,v)
+ <D*(1 - p)-'lu,u> - <D+(I - p)’lv,u>

lis - 3]12 - <D+(I - p)’lv,v>.+ <D+(I - P)-lu,u>

2
1B, = Jllg

by Lemma 2.7

T
T s.S. n

< |iB = Ji|§ - !?l + max (2, max ) L (sIsi)+(e;u)2
s's p.#0 P3 i=1
by Lemma 2.8, and since si = 0 implies

T, - T _ - T _ -
e;v = ei(B J)s ei(B J)si 0.

;e - sl
=B -3k - ——2
HSHZ
sTs.

n
+ max(2, max —131) z (sTs) T relty - as)12.
. i°i i
Djfo P35 i=1
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Finally, B+ defined by (3.1) is the solution to
min(|l§ - B||F :BeS nZ n Qy,s}' It is strgightforward to apply
the variational technigues [7], [6] to this constrained minimization
problem. In January 1975, Powell [11] posed the problem in the
variational form. The solution [14] is the same as the B, in (3.3).
In fact, the author originally derived the update in this way in
March 1975, after the problem and method of attack had been sug-

gested by J.J. Moré in January 1975.

5. THE ALGORITHM

Let x ¢ R?, B e S n 2, positive definite be given.

1. Solve BAx = -g for £x, the step to be taken; g = g(x).
2. Set x, =X + Ax.

3. Evaluate 9, = g(x+); test for convergence.

4. Sety =g, -g.

[tex, ||

. T
5. For each i s.t. {eiAxI < 1

M
with M > 2 fixed, set pi = 0; otherwise set pi = el&x. This
defines s = (01102,...,pn)7, the step to be used to update B.

6. Compute B+ from B, s, y using (3.36) and (3.37).

The convergence theorem in the next section will show that
B, is positive definite in the region of local convergence. An
implementation of the algorithm might avoid singularity of the

Hessian approximation by re-evaluating the Hessian, B,

= Jg(x+) or
by adding a positive diagonal matrix to a singular or nearly singu-

lar B,. One possiblé choice for starting the iteration would be



17

»
o)
(1]
o
0
n
cr
b
o
n
o
(]
K¢
N

means that we don't want any component
of ixtending to zero faster than its corresponding projection.

Also this ensures that the eigenvalues of P given by (2.6) are
not terding to 1 2s k + », or those of the matrix associated with

P

©the lincar system (3.4) are not tending to 0 as k + ». This is

Q
'
o
or
9
0
Ny
th
5]
]
or

n2 corditioning of the linear systems involving A or
;, and it is alco important in the convergence proof.
The test is about what would happen anyway on the machine.
hen the size of any compcnent is less than machine precision times
the size of the correspondinc projection, that component is insignif-

172 = 1 » the algorithm
n (mach. eps.)

is roughly the one carried out on the computer.

icant. In cther words, for M

On the other hand, for small M, say M = 2, it is likely that

many o, are set to zero. In that case, the correction to B doesn't

o

are rmuch work. This is close to the idea of keeping the same approx-
imation to the Hessian for several iterations. .
In step 6, the form of the update in (3.3) is preferable to

(2.1) since the linecar system (3.4) is symmetric. This, of course,

reguires some bookkeeping tq do the permutation on the vector s and
the corresponding permutations of B and y. However, the important
lock in that symmetric system has the samé spareness structure as

tﬁe corresponding block of the permuted Hessian. Also, this is a

£ossibly smaller system to solve.
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6. CONVERGENCE

Theorem 6.1 Let £ : R® » R be CZ(D) for D open and convex; assume
Xt ¢ D s.t. Vf(x*) = 0, sz(x*) is positive definite and

[sz(x)]ii #0V¥x e D. If Jk; > 0 s.t.
]!el(vzf(x) - Tzf(x*))!} < kilfx - x*||

for i = 1,...,n and for all x ¢ D, then 35,5 > 0 such that for
(xo, By) . By €:Z nS, which satisfy l[Bo - sz(x*)llz < & and
leo - x*[[2 < € then the symmetric Schubert method cencrates (B, }
with B, well-defined and {xk} which cenverges linearlv to x*.

Proof: Choose M > 2. Set x = . From Theorem 3.4.2 with

J = J* = sz(x*),

(6.1)
2 s's n [el(y - J*s)}2
-, - * bl
B, =a*llp < 1B - %] + max (2, max L5, A
Py °j s;70 i%i

For S5 # 0, an application of the Mean Value Theorem (9]

gives

T 2 ’ .
(6.2) leg &y = 3*9) 1% 42000 x4 )2
o

s,

where o(x, x + s) = max(||x - x*||, ||x +s - x*||). Therefore,

T 2
[ei(y - J*s)]

SY.S. n 2
(6.3) max (2, max —371) T Mco(x, x + s)°.
oj#O ps =

) 1
si#O

IA

SS{

T
i
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Now, (6.3) with (6.2) imply

: | _ 2 - 2 2
(6.4) lis, J*IIF < ||B J*HF + Mco(x, x + s)
and
(6.5) |lB+-J*HF§ [|B—J"‘||F+ao(x, X + s)

1
_ 2
where a = (Mx)°“.
Furthermore, .
(6.6)

Hx + s = x*[] < |Is]]| + [Ix - x*]|
Paxl] + []x - x*]|

(hx = xe 0]+ lx, = x* ][]+ [1x - x+]]|
5 Ny = el s aw Bl - el

so that

(6.7) “c(x, x + s) 5‘\;11 lx, = x*[] + (1 + /;—;>|1x-x-||

(a +u/§')o(x, x,) .

Therefore, (6.5) and (6.7) imply

A

]

{6.8) tip, = J*|], < liB - J*]IF + ayo(x, x,)

with a, = a(l +\ ). By the Bounded Deterioration Theorem (2],

n
1 M
the matrices Bk generated by the symmetric Schubert method are

well-defined and the sequence {xk} converges linearly to x*.
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7. CONCLUSION

The usual benefit of using the sparseness structure is the
reduced storage. At each iteration of the algorithm we solve two
sparse linear systems. All of these have the same structure.

Once a pivoting strategy is chosen [5] for solving the first sym-
metric sparse lineat‘system we can use that preprocessing for all
subsequent sparse linear systems. The usual criterion for sparse-
ness is less than 10% nonzero entries. That would be observed in
deciding when a nonlinear problem is sparse since it involves sol-

ving sparse linear equations as a subproblem.
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