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Abstract

 A  is a continuous-time, real-valued stochastic process which has independent andLevy jump process
stationary increments, with no Brownian component.  We study some of the fundamental properties of
Levy jump processes and develop  inventory models for them.  Of particular interest to us is the

�������
	
gamma-distributed Levy process, in which the demand that occurs in a fixed period of time has a gamma
distribution.
 We study the relevant properties of these processes, and we develop a quadratically convergent
algorithm for finding optimal  policies.  We develop a simpler heuristic policy and derive a bound

��������	
on its relative cost.  For the gamma-distributed Levy process this bound is 7.9%  if backordering unfilled
demand is at least twice as expensive as holding inventory.
 Most easily-computed  inventory policies assume the inventory position to be uniform and

������
	
assume that there is no overshoot.  Our tests indicate that these assumptions are dangerous when the
coefficient of variation of the demand that occurs in the reorder interval is less than one.  This is often the
case for low-demand parts that experience sporadic or spiky demand.  As long as the coefficient of
variation of the demand that occurs in one reorder interval is at least one, and the service level is
reasonably high, all of the polices we tested work very well.  However even in this region it is often the
case that the standard Hadley-Whitin cost function fails to have a local minimum.

� Research supported by the NSF grant DDM-921704.��� Research supported by the NSF grant DMS-94-00535 and the NSA grant MDA904-95-H-1036.
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Optimal (s,S) Inventory Policies for Levy Demand Processes

Robin O. Roundy and Gennady Samorodnitsky

Section 1:  Introduction

 We consider  inventory models in which both time and inventory are modelled as continuous
������
	

quantities, the lead times are deterministic, and customer service is modelled through cost minimization
rather than constraints on service levels.  We discuss two important models of this sort below.  For a more
thorough discussion of the literature see [Zheng 1992].  Also see [Gallego 1994] and [Axsater 1993].
 By far the most popular model for  and  policies is originally due to Hadley and Whitin

������
	 ��� ��� 	
[1963].  This model has been the mainstay of introductory textbooks on inventory theory for over 20 years
(see, for example, [Johnson and Montgomery 1974], [Nahmias 1993] and [Vollman, Berry and Whybark
1992]).  This model assumes that the inventory position lands on the reorder point rather then jumping
over it, so the distinction between  policies and  policies disappears.  This model also

�������
	 ��� ��� 	
assumes that the inventory position is uniformly distributed between  and .  The cost function makes

� �
use of approximations (see Section 4).  This model is conceptually and computationally simple.  Any
demand distribution can be used, continuous or discrete.  The computations required are relatively simple,
and the model gives good solutions for most real-world inventory systems.
 The main disadvantage of the Hadley-Whitin model is its robustness.  When the backorder cost is
sufficiently low or the order cost is sufficiently high the cost function can fail to have a local minimum.
For example, suppose that the holding cost is 1 dollar per item per day, the mean demand rate is 1 item
per day, the order cost is  dollars the backorder cost is    dollars per item, and the demand that occurs^� � �

during one lead time is uniformly distributed over the interval .  If   the cost function^ ^� � ��	�
 � �����	�	���	 �

has no local minimum ( (31) in Section 4 is non-decreasing).  Thus if   and , or if  ^ ^������� ����� � ��� � �

and , the cost function has no local minimum.������� �

 More recently Zheng developed an elegant  inventory model [Zheng 1992].  This model differs
��� ��� 	

from that of Hadley and Whitin in that Zheng uses a time-weighted backorder cost of   dollars per item
�

per day rather than    dollars per item.  Zheng assumes that the cumulative demand process is non-^�

decreasing, has continuous sample paths, and has identically distributed increments.  The continuity of the
sample paths implies that the inventory position lands on the reorder point rather than jumping over it,
and that the inventory position is uniformly distributed between  and .  As in the Hadley-Whitin model,

� �
the distinction between  policies and  policies disappears.

������
	 ��� ��� 	
 Zheng makes no approximations in the cost function, so it is not surprising that Zheng's model is
more robust than the Hadley-Whitin model.  Zheng's model accomodates any demand distribution.  It is
more complex than the Hadley-Whitin model, both conceptually and computationally, but it is simple
enough to teach in introductory courses and efficient enough to use in large, real-world inventory systems.
 A  is a continuous-time, real-valued stochastic process which has independent andLevy jump process
identically distributed ( ) increments, with no Brownian component.  According to the Levyi.i.d.
Decomposition Theorem [Hida 1970, p. 45], any real-valued Levy process with  increments can bei.i.d.
expressed as  , where  is a deterministic drift,  is a Brownian

� �! 	"� #$ &% #�' �! 	&%)( �! 	 #$ ' �! 	* + *
motion and  is a Levy jump process.  Zheng's cumulative demand process is assumed to be non-

( �, 	
decreasing and continuous.  Brownian motion is not non-decreasing and Levy jump processes are
discontinuous, so according to this theorem either Zheng's demand process is deterministic or it fails to
have independent increments.
 Processes with dependent, identically-distributed increments that satisfy Zheng's assumptions have
been studied [Serfozo and Stidham 1978, Browne and Zipkin 89].  For these demand processes Zheng's
model produces policies that are optimal within the class of  policies.  However  policies are

������
	 ��������	
no longer an optimal class because past demands are correlated with future demands.
 A primary goal of this research is to study some fundamental properties of Levy jump processes and
to develop  inventory models for them.  Levy jump processes are a realistic and rich class of

������
	
stochastic processes in which the inventory position usually jumps over the reorder point rather than
landing exactly on it.  Of particular interest to us is the gamma-distributed Levy process, in which the
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demand that occurs in a fixed period of time has a gamma distribution.  We study some relevant
properties of these processes, and  we develop a quadratically convergent algorithm for finding optimal��������	

 policies for them.  We develop a simpler policy called the Mass Uniform heuristic, and derive a
bound on its relative cost.  For the gamma-distributed Levy process this bound is 7.9%  if backordering
unfilled demand is at least twice as expensive as holding inventory.  Our quadratically-convergent
algorithm for computing optimal policies can also be used to compute Zheng's  policy more

� � ��� 	
efficiently.
 Another of our goals in initiating this research was to convince ourselves that Zheng's algorithm is as
robust as it appears to be.  Our computational tests indicate that it is very robust, much more so than the
cost-minimization versions of the Hadley-Whitin model are, but that it can produce poor policies in some
realistic scenarios.
Overview
 This paper is organized as follows.  In Section 2 we develop the key properties of general Levy
demand processes and, specifically, of the gamma-distributed Levy process.  In Section 3 we develop our
inventory model for  policies for Levy demand processes.  We also present a quadratically-

��������	
convergent algorithm for computing optimal policies, and we discuss service levels.  In Section 4 we
develop the Mass Uniform heuristic for computing  policies, we prove that the relative cost of the

��������	
Mass Uniform heuristic is at most 7.9%  if backordering unfilled demand is at least twice as expensive as
holding inventory.  We develop bounds on the performance of the  policy derived from Zheng's

��������	
��� ��� 	

 policy, and we briefly describe the other policies that we have tested.  In Section 5 we summarize
our computational experiments, and in Section 6 we draw our conclusions.  Appendix 1 contains a
glossary of notation, and Appendix 2 contains all of the proofs.

Section 2:  Levy Demand Processes

 We begin this section with two definitions.

Definition 1:  A  is a continuous-time, real-valued, stochastic process which hasLevy jump process
� �, 	

the following properties.
� �!� 	"� ���

The sample paths of  are right-continuous functions of .
� �, 	  

For every   are independent.
� �� ��� ������	�
�� � � �, 	�� � �! 	  � �, 	����	��� � � �, 	  � �! 	�  � �  � � �����

For every   and  have the same distribution.
 �������� � � �, &%�� 	  � �, 	 � ��� 	

� �! 	
 has no Brownian component.

Definition 2:  A  is a non-decreasing Levy jump process which has positive, finiteLevy demand process
expected value for all .

 ����

We use Levy demand processes to model cumulative demand.  Thus   is the total demand that occurs
� �! 	

in the time interval  and  is the total demand that occurs in the time interval .  By
� � �  
 � �, ���� 	 �, ���� 


selecting the units of measure in our inventory models appropriately, we assume without loss of generality
that

E[ ] .
� �! 	 �  

Examples of Levy demand processes include the compound Poisson processes.  In a Levy demand process,
demand for randomly-sized quantities of inventory occurs instantaneously at random points in time,
creating "demands" or "jumps" (discontinuities in the cumulative demand process).  If the demand
quantities are all integer multiples of some number, we say that the jump sizes are arithmetic [Feller 1996,
p. 360].  Some of our results require non-arithmetic jump sizes.

Property 1:  The jump sizes are non-arithmetic.
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 Any of three functions can be used to characterize a Levy demand process  .  The first of these
� �! 	

comes from observing the time epochs at which a demand of size greater than    occurs.  Since the�
demand process    has i.i.d. increments, these time epochs form a Poisson process.   is the rate

� �, 	 � � 	� +

at which demands of size greater than    occur.  Algebraically we havex

� +( ) ] (1)x
�  lim  [1

0
1��� �   ���	� 
�� � � 	

(See Feller, p. 302, Theorem 1.  Note that the distributions of    for  form a convolution semi-
� �, 	  ���

group as defined in Feller p. 293).  Clearly    is non-increasing.  The mean rate per unit time at
� + � � 	

which demand occurs is    E .  Because  is well-defined and non-


0
+

� �����  � � 	�� � � � � � 	 
 ��� � �! 	�
decreasing, limsup   .  If  limsup  we have E , which is contrary to

0��� � � � 	"� � � � � 	 ��� � � � � 	 
 ������ �� �+ +

our assumptions.  Integration by parts leads to

� � � � � � 	 
&� �����  � � 	�� � � � 	 ���E   (2)
� �

0 0

+ +
� �� �

 .

 A Levy demand process can be constructed from any non-negative, non-increasing function  � + � � 	
satisfying (2).  Compound Poisson processes are the Levy demand processes in which demands of any size
occur at a finite rate, i.e.,   For a compound Poisson process  P  for all 0� + �!� 	 � � � �, 	"� � 	 ���  � �

 < 
�

and  is the probability that the size of a given jump is greater than .  On the other hand, if
� �+ +� � 	�� �,� 	 �� + � � 	 ��� �   as    then any open interval on the time axis contains a countably infinite number of� �

 
jumps, and  P  for all 

� � �, 	 � � 	 � �  �����

 The measure  is called the Levy measure.  We define the random variables  and  by���  � � 	�� ( �� +

 �"! 	 � �#���  � � 	��  �$! 	"� � � 	 ��� �% &' '
( (� �� �+ +   and   (3)

The following lemma allows us to interpret  as the demand-weighted jump size.
(

Lemma 1: For all     E
) ��� � � � � �! 	  � �, 	 �*! 	 ��� � �, 	�� �  �$! 	���) + ,�

'�- � %
All proofs are in Appendix 2.  To illustrate Lemma 1, suppose that demands of size  arrive at rate ,

� �.�./
and that demands of size  arrive at rate .  Then  for   for

	 �.�./ � � 	"� 	0�1/ � � � � ��� � � 	"���.�./� �+ +
� � � ��	 � � � 	 � � � 	 (

 and  otherwise.  Half of the jumps are of size  and half are of size , but  weights� +

the probabilities of the jumps by their size, so  with probability , and  with probability
( ��� �.�./ ( � 	

	0�1/
.

 The second function that is used to characterize Levy demand processes is the distribution of .
� �, 	

Because  has stationary, independent increments, the Laplace transform  of  satisfies
� �! 	 � 	 � �! 	2 3�4� 
��2 3 2 3�4� 
�� �4� � � 
� 	 � 	 


  =  [ . (4)

Since is a non-trivial, non-negative random variable,
� �, 	

2 3�	� 
�� � 	  ���� � 	
 < 1 for .  5

By [Hida 1970] ,1

2 3�	� 
�� � 	
  =   = . (6)5 5687 9 :<;0=?>@; 7 :BA�6C9 =D>.E�6 :<;F=$GH HI IJ JKML KNLO P PQ Q+ + –

 The third function that can be used to characterize Levy demand processes is the expected length of
time  E   required to accumulate    units of demand, starting from a given point in time.

R � � 	TS � � � � 	 
 ����R R R� � 	 �!� 	"� � �!� 	 ���
is related to the steady-state distribution of the inventory position.  Clearly .   if+

1  Theorem 3.3 page 42. Hida's   is our .  His  is our .���DU � � 	�� ���  � � 	�� � �! �� 	&% ���DU � � 	�� � �! 	� V+  ' � 
XW�"Y W�Z



4

and only if  i.e., if and only in  is a compound Poisson process.   is left-continuous,
� �+ ����� � �	��
�� �������

and � ���������� ��� ���/     as  (7)

One might be tempted to conjecture that  but this is typically not the case.
� ����������

Lemma 2:   satisfies E   for all    If Property 1 holds then  
� � ����� ������ � � �!� ������#"�$%� �	&%� � �����'(�)+*� � ,-" �.� � E  as  .

In general E  can be either finite or infinite.  Lemma 2 holds in either case.  Note that � ,/" �	�0� ���1�2�3$%�)+*
by definition.
 Intuitively, the fact that  can be explained as follows.  If we are told that   then we� 4���1�3&%� �	�5�6�87
know that  lands on  rather than jumping over .  This fact increases the expected length of time� �
�� 7 7
that  spends in the interval [ , + ), .� �
�� 797 &%�:;:
 The overshoot   is the amount by which a Levy demand process over-shoots a given�	�0� ���1�2��'(�)+*
value .  The expectation of the overshoot is    Note that many inventory models, including� ���1��'<� ��
those of Zheng and Hadley and Whitin , assume that there is no overshoot, so  is equal to zero

� �����'(�
for all .  Lemma 2 describes the expectation of the overshoot.  The following lemma allows us to�
interpret  as the asymtotic distribution of the overshoot.,
Lemma 3:  If Property 1 holds then  P as  .�0�	�0� �������'<� &%=1�>� �0?��@7A?B��CD��=1� �E� �')+* F G HI � +

Equation (3) and the integration by parts formula imply that   andCJ�!?K���LCM�!?K��NO?QP �!?K�3&RCS�0?K�H T T� +

E E   The means are finite if  .  Thus the asymtotic overshoot  is�VU�"1�8WXPY� ,-" � � ���1�+7@� ��� ,I[Z G � +

stochastically smaller than the demand-weighted jump size , and has a mean that is half of the mean ofU
the demand-weighted jump size.
 The Laplace transform of  is

� ���1�

  

    

 E   E

E

\^] � ] �
] ]

]

_ ` `
` `

�	�a� b 7dce���1�gfe� ���1�@b 7@�
� � ���1�@b 7@�h� ���0�	�
��ji%�1�+7@
^b 7+�
� ���!� �
��3i%���

k k
k k kl m

k kl m
n n
G G)	o n )	o n

n n p
G G G)@* )	o n )	o n

p n
G G
=0 =0

=0 =0 =0

=0 =0
  E

         .
ln

(8)b 7+� 7@
q� b 7@

� �	�+7+
R� � �	�r"s7@
t� 'u�� �	�#"

)	o n )wvyx p{zp
G

p p
G Gv�x p{z v�x * z p vyxV* z

` `k | }
k k =0

=0 =0

\ ] \ ] \ ]
The last two equalities follow from (4) and (5).
The Gamma-Distributed Levy Demand Process
 We now turn our attention to a specific Levy demand process.

Definition 3:  The g  is the Levy demand process * for which *amma-distributed Levy process �~�
�� �~�r���
has an exponential distribution with mean one.

Note that *  has a gamma distribution with shape parameter  and rate parameter   This is without�D��
�� 
 � .
loss of generality; in continuous-time inventory models we can choose our units of measure for time and
inventory so that the demand that occurs in one day has a mean of  and a variance of .  This process is� �
not a new one (see, for example, [Prabhu 1980] and [Feller 1966, p. 567]).  Note that

\ ] ]v�x p{z p*
�	� � �  =   . (9)1

1+



5

   Figure 1:  � + �����
ψ

0 1 2 3
0

1

x

2

3

4 (x)+

   Figure 2:  � �������	�

0
0.1
0.2
0.3
0.4
0.5

0 0.5 1 1.5 2 2.5

θ(x) - x

x
Lemma 4:  For the gamma-distributed Levy demand process * ,�~��
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 � �b



k
n
G ��

   and 10

� �� ) np�� Z
G p )@*����a� b 7@
 � �� ��
��

k
 , 11

where  is the derivative of , and .
� � �� ���� ���� ���������

 For the gamma-distributed Levy process, the demand-weighted jump size  has an exponentialU
distribution (see (10) and (3)).  The graph of   in Figure 1 indicates that orders for small quanitites

� + ����
of inventory occur much more often than orders for large quantities, but there is no finite upper bound on
the maximum order quantity.  By Lemma 3 the same can be said for the overshoot quantities.
 A graph of   appears in Figure 2.  From (10) we obtain E , so by Lemma 2,

� �����'(� � ,-"�� ���>W� ���1��'<��� ��� W �E� � �	&%� � � as .  Suppose that  .  Figure 2 indicates that even though the mean demand
rate is equal to one, from a given starting point, the expected amount of time required to accumulate an
additional  units of demand is between  and .� � N�� � � �BN � ���
 We now list some other properties of the gamma-distributed Levy process .  The presentation of�h�
���
these properties is designed to facilitate the statements of our lemmas and theorems.

Property 2:  .   is non-decreasing and absolutely continuous.   is non-increasing.
� � ����(�6��� ���� ����+ �

Property 3:   is continuous, and  as .
� ����1� ����>� � �E� ��
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Property 4:   for all .
� ����������
	����� ������

Property 5:   is continuous.
� ������

Property 6:  For all  there is a  such that .
����� �����
���
��� ������� ������ �� �

Lemma 5:  Properties 1 through 6 hold for .� ������
Note that the first claim of Property 2 implies that  is not a compound Poisson process.� �����
 The Mass-Uniform policy, which we develop in section 4, makes use of the following function.

� ������
� � 	 �!�"�$#&%(')�+* �,�- . /
021 �

12

Lemma 6:   For the gamma-distributed Levy process,  as .� ������34%657%68 �93;:
 In optimizing and evaluating  inventory policies for the gamma-distributed Levy process, the

�!<=�?>@�
functions ,    and  are frequently used.  They were tabulated using numerical integration,

� � ����� ����� �����
and numerically approximated.  The approximations are given in Appendix 3.  Let    be the steady-

A�B
state distribution of the inventory position.  In the next section we will need to compute E C D � A�B �FE�GH 0 I J 1LKJ ID ��>M#N��� 'O� D ���� D �����P PRQ )    numerically for several different functions .  The functions  of interest are
well-behaved, but the probability measure    is ill-behaved in the neighborhood of  .  In fact,

PP Q J 1�KJ I K
'O� �SGT�� � U J 1�KJ I K

����$	V�W��XRYZ�������3[% �+3(� \]G^%
 as .  Table 1 gives some values of the probability density   for .  A

PP Q
transformation described in Appendix 3 was used to perform these integrations in a numerically stable
manner.

Table 1:  The density  / .
_ _`badc@e agf@e

� %ihj#k%V� %ihj#ml %nhZ#po %ihj#mq %�����5T�r%s�t%u*wv@hyx 8"*R%ih{z vO*wl@h|v l"z"*w} vO*wq %u*R%68 �O*~x��0.01 0.1
+ + +

� ��

Section 3:  The Inventory Model

 We now turn our attention to  inventory policies.  We consider a continuous-review, single-item
��<=��>��

inventory system with backorders and with a deterministic lead time .  There is a fixed ordering cost�� ��� � �
 (in dollars), a holding cost  (in dollars per item per day), and a time-weighted backorder cost 

(in dollars per item per day).  We choose our units of measure so that the demand  that occurs in one
� �r%s�

day has a mean and a variance of one.  Therefore the demand  that occurs in one lead time satisfies
�

E .C � EG �
 The minimum order quantity is .  For Levy demand processes orders come in irregular

\]G]>M#4<
quantities because we usually over-shoot the reorder point.  For the gamma-distributed Levy process the
actual order quantity is strictly greater than  with probability one.

\
 Let  be the net inventory at time  and let  be the inventory

�SA ����� � A�B �����Z� �SA ���� � �� � �����)�� � E
position at time .   and  are right-continuous.  They have steady-state distributions  and

� A7B ����� �SA ����� A7B�SA �SA G A�B # � � A�B �����
 satisfying   where  and  are independent [Zipkin 1986].  Since  is equal to

�
the mean time required for  units of demand to accumulate after an order is placed, P

� � A7B�� >M#N���ZG� ������d5���\k���Z��������\
 .  The average order quantity and the mean time between orders are both equal to� ���\k��* ��\k�$#4\

The quantity ,  referred to in Figure 2 and in Table 1, is the mean quantity by which the
demand process overshoots the reorder point.
 If the inventory position at time  is  then the expected rate at which holding and

� A�B �����ZGT�
backorder costs will be incurred at time    is

�� �
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��������� 	 
����������������������������
�������������� 
!���"�$#&%'����� �(�
E 13+ + )

where E is the partial expectation.  Note that  is continuous and convex, and that
%*�+���,� 	-���������.� �������) +���0/��1�+���2/�
3�1�����546
 ��467 �1�+���548��� �94:�;7< < <

,    as  , and   as  . (14)

Let = � >?�A@B�1�����DC�
$E
sup .

<
If    has a gamma distribution then  and the following properties hold.

� = ��7
Property 7:    is convex, is strictly convex for  , and  for .

������� F�C��GC = �1�����DC�F �GC�F<
Property 8:    is continuous, and    is continuous except possibly at  .

�1����� �(�+��� �0�HF< < <
 Following [Zheng 1992] and [Zipkin 1986], the expected holding and backorder cost per cycle
incurred by an  policy with    is

��I5JLKM� N���KO�:I
P � K�JLN.��� ��NQ#R	 ����SBTU�V��� ����KO�����W�+����XY�Z Z

) E   . (15)
[]\L^ <

The average cost per day incurred by an  policy is therefore
��I5JLKM�
_ ��K9J`N���� a �(�b � P � K�JLN.���N.�Z 16

Following the notation in (15), we defineP K9J`N���� �1� KO�����c������XB�< < <\L^
(   (17)

[ Z
P K�JLN.��� �(� KO�����c������XB�< < < < <\L^

(      and (18)
[ Z

d ��K9J`N.�,� ��N��$#e����KO�:N.�$� b � P � K�JLN.�`aZ
(19)

The first-order optimality conditions areFU� ��N��$# � P K9J`N�� �(�f _ � K�JLN.�fgKZ <
( and 20

F!� # ������K6��N��$� _ � K�JLN.��� a �(���N.�cf _ � K�JLN.� � K�JLN.���N�� fgN � N.�ZZ Z< d
21

Note that (21) states that  is the average cost, which corresponds exactly with Zheng [Zheng
����KO�:N.�

1992].  Zheng's other optimality condition is , a simpler, special case of (20).
����K6��N������h� KM�

Lemma 7:  Suppose that  is chosen optimally for a given .  Properties 2 and 3 imply that
K N�i�F�h� KO�:N.�Dj�����KD�Dj�����KO�:N.�$�k
�#Y	g��N��$��NO� ����K6��N��DiZ

.  If Properties 4 and 7 also hold then �h� KM�
.

Recall that E  as .  We claim that
ZB� N.�$�:NG4 	 l�� NG4�7����KO�:N.�$�:����KD�m4n
#R	 l�� NG467

  E  as  .

If  and  are large then (20), Properties 2 and 3, (14), and Lemma 2 indicate that
K N�h� KO�:N.��������KD��� �1� KO�����e	o�+���$�qp&�rXY��st�h� KM��� 
�#Y	o�+���$�qp&�rXY�0������KD���u u\ \^ ^< < <Z Z
�#Y	g��N��$��NO��st�h� KM���v
#R	 l��Z

E .  A rigorous argument can be constructed along similar lines.
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 We define    by�
\

� � �HF< \
( ) .   (22)� �( ) is often referred to as the newsvendor cost or the buffer cost, because when the order cost is equal to

\
zero the optimal policy has  and  and ( ) is the average cost of that policy.

N��HF K8� � J � �
\ \

 By the convexity of  and by (20),  
�h�+��� K j � jnKO�:NUa\

Lemma 8:   Suppose that  is chosen optimally for a given .  If Properties 7 and 8 hold then
K N�i�FKvi � inKO�:NUa �(�\

23

If Property 2 also holds, the solution to the first-order optimality conditions (20)-(21) is unique.

 Algebraically the first-order optimality conditions are most conveniently expressed in terms of  and
KN Im��KO�:N K

.  However cost minimization is most efficiently carried out in terms of   and .  Let�h� I5J`KD��� _ ��K9J`KO�:Ir�
 .  Thenf�����I5JLKM� f _ ��K9JLN.� f _ ��K9JLN.� f�����I5JLKM� f _ ��K9J`N��fgK fmK fgN fmI fmN� � ��� a �(�� �

^������
	 ^������
	   and   24

By (21) and (24),

              
 

   

f�����I5JLKM� f _ � K�JLN.�f�I9f�K fgK fmN fgN� � �f f
� � � _ ��K9J`N.�$�:����KO�:N.� J��N.�'f _ ��K9J`N.� f _ ��K9J`N.� � N.�� N.� fgK fmN fmN ��N.�f

�
^������	< <

^������
	

�� ��� �
�� � � �� � � �Z ZZ Z             

(25)

which is equal to zero whenever the first-order conditions are satisfied. This fact suggests that if we
alternate Newton steps in  and , we are likely to get overall quadratic convergence.  What we actually

I K
do is similar, and it works for the same reason, but the algebra is somewhat simpler.  We alternate
between Newton steps in  which attempt to find a zero of in ( )-space, and Newton

K P ��K9JLKO�:Ir� I5JLK<
steps in  which attempt to find a zero of in ( )-space.  Because the Newton steps are

I ��K9JLKO�:Ir� I5JLKd
performed in -space rather than -space, the derivative of  with respect to  and

��I5JLKM� ��K9J`N�� P � K�JLKO�:Ir� K<
the derivative of   with respect to  are computed as in (24).  The algorithm for systems withd ��K9JLKO�:Ir� I
discrete demands described in [Federgruen and Zheng 1991] is similar in that it also alternates between
improvements in  and improvements in .

I K
Cost Minimization Algorithm

Step 1:  Select an initial policy .
� I5J`KD�

Step 2:  Set   
I�� I9�< ������� �"!$#&%' �(#)%*���+!,#-%.0/

Step 3:  Set   
K1� KO�< 23�(�+� �+!4#+%25���+� �+!6#+%87 ' �(#+%9�(�+!4#+%

. .. . . .:.;. ./
Step 4:  Set  and  .

I4��I K<�6K< <
Step 5:  Either terminate or go to Step 2.

Lemma 9:  The Cost Minimization Algorithm is quadratically convergent if Properties 2, 7 and 8 hold,
and if    is twice continuously differentiable in a neighborhood of the optimal .

ZB�+��� N
 The proofs of Lemmas 7 through 9 assume that  and  have certain properties, but they do not

� �+���Z
assume that they are related to a common Levy demand process in the sense of Section 2.  In particular, if
we assume that  and allow  to be arbitrary  Lemmas 7 through 9 hold.  Under these

ZB�+���,�H� � J
assumptions our  policies correspond to Zheng's  policies.  The Cost Minimization Algorithm

� I5J`KD� �>=J`N��
is therefore quadratically convergent for Zheng's  policies, if Properties 7 and 8 hold.

�?=�JLN.�
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Service Levels
 We conclude this section by discussing service levels.  In discrete time inventory models the Type 1
Service Level is usually defined as the probability that a time period ends without any backorders.  The
continuous-time analogue is P , the fraction of the time that the net inventory is non-negative.

� �������	�
The Type 2 Service Level is the fill rate, or the fraction of the demand that is met without backorders.  In
many continuous-time inventory models, including that of [Zheng 1992], these two service measures are
equivalent.  However they are not equivalent for Levy demand processes.  The following is reminiscent of
Zheng's fill-rate computation.

Lemma 10:  In  policies for Levy demand processes,

�������

P
� ����������� � �

� ��� 
���� � ��
����
� 
�� ����!

"
which is equal to  for an optimal policy.�$# 
 � ���%�

Lemma 11:  For Levy demand processes, the fill rate of an policy is

���&�'�

( ) 
+* ) 
,�.- )0/ �1� # *E 2 3+ +

where  is the demand-weighted jump size (see Lemma 1), and , , and  are independent.
* *4�5- /

Lemma 11 can be explained intuitively as follows.  Suppose that a demand of size  occurs at/ 
,67� )0/ 
,60�8
time .  At time  the on-hand inventory is  .  The number of units ordered

6 6 �.-�
,6 ):9 � )0/ 
;6 )<9 =60�8 8?>2 3
at time , but not delivered to the client at time , is

6 6
@ A2 3� / 
,67� )0/ 
;60�+� ) �.-�
;6 )<9 � )B/ 
,6 )<9 $60�8 8 > > . (26)

Note that the random variables ,    and   are stochastically
� / 
;67� )B/ 
,60�C�D�.-�
,6 )<9 � / 
;6 )<9 $60�8 8

independent.  ,   has steady-state distribution , and the demand-weighted/ 
;6 )<9 =60�FE / �5-�
,6 )<9 � �5-8
distribution of the jump size  is  (see Lemma 1).  Substituting these distributions into

� / 
;67� )0/ 
,60�C� *8
(26) leads to the formula in Lemma 11.
 It is interesting to compare these two service measures, P  and the fill rate.  Note that


,����G��H�
( 
;�I��J��H��JK
C* ) �I�L� # *LJ ( 
;����JM*F�>N> .  If  is the fill rate then taking expectations leads to

O
P P .  If either the lead time  or the order quantity  is sufficiently large, the

,����G��H�'� � 
,����GM*P� 9 �O

standard deviation of   will be large relative to the jump size , and P
���Q�R�.- )0/ * 
;�I��GM*F� )

P  will be close to zero.

,����G��H�

 On the other hand these two service measures can be very far apart.  Suppose that the order cost ,
S

the order quantity , the lead time  and the order-up-to level  are all very small.  Then the jump size 
� 9 � *

will be large relative to , and it is possible for P  to be close to zero and E[
��� 
,����T��U� 
+* ) ���L� # *V�>0>

to be close to one.  This would correspond to a "veneer inventory" policy, in only very small orders can be
filled from stock.  A large fraction of the total demand comes in large orders that must be backordered.
The backorder costs are time-weighted and the lead time is assumed to be short relative to the average
delay between consecutive large orders.  Therefore the average backorder cost incurred is small, and the
policy can be economical.
 For the gamma-distributed Levy process, the computation of the fill rate requires a two-dimensional
numerical integration, assuming that   is evaluated using efficient approximations.

W 
,X%�Y
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Section 4:  Policies: Description and Analysis

 We consider four different policies for this problem, two policies that are based on the classical
Hadley-Whitin inventory model, the  policy whose parameters are taken from Zheng's 


���&�'� 
�� ��<�
policy, and a new policy designed for Levy Jump Processes that we call the Mass Uniform Policy.
 The Hadley-Whitin inventory model is currently the mainstay of introductory inventory courses.  It
differs from our inventory model (and from Zheng's) in that it uses a cost of  dollars per item for^�
backorders, rather than  dollars per item per day.  The change in units of measure complicates direct�
comparison of the models.  We will compare them by following the common practice of using service
level targets to determine the backorder costs.
 In discussing the Hadley-Whitin model we use  to represent the mean rate at which demand� � (
occurs.  The Hadley-Whitin cost function for an  policy with  is


���&�'� �M�M� ) �
S # � ����
�� #�� ��� ) 9 �%� 
 ��� 
�� �7� # �� � �^ (27)Y

(see, for example, [Nahmias 1993] page 258).  If the demand process can over-shoot the reorder point, the
first term is an approximation.  The second and third terms are also approximations.  The third term over-
states the marginal benefit of an extra unit of safety stock and the second term over-states the marginal
cost of an extra unit of safety stock.  Although this cost expression never has a global minimum (let��G � # � ��� )�	^  and let ), it usually has an easily-computed local minimum that corresponds to a very

�
effective policy.  However when  (and consequently ) is sufficiently large, the error in the holding cost

S �
term dominates and (27) fails to have a local minimum.
 There are two standard computational approaches to this model - the cost minimization approach and
the service-constrained approach.  The cost-minimization approach attempts to minimize (27) directly.
The service-constrained approach searches for a policy that meets a specified service target, and that is
optimal for some .  We lack a backorder cost , but we know that for optimal policies, the fraction of� �
 

time that we have inventory on hand is equal to .  According the Hadley-Whitin model this is�$# 
 � ���%�
equivalent to the fill rate, and is equal to  .  So we follow the standard service-constrained( ) � 
�� � # �Y
approach and obtain a policy such that ( ) � 
�� � # �D� �$# 
 � ���%�Y . (28)

 Setting the derivative of (27) with respect to  equal to zero,  we obtain
�

� ) W 
�� � � ��
 � )� Y . (29)

Similarly, the value of  at a local minimum of (27) must be
�

�M� � 
 S � ��� 
�� �7� # ��
� Y �
(30)

Substituting (30) into (27) we obtain an average cost of� � �V
 S � ��� 
�� � � ���V
�� ) 9 ���
 Y � �
(31)

The derivative of (31) with respect to  converges to  as .  If the derivative ever becomes
� � G�� � ����� 	

negative, the supremum of all  for which the derivative is negative is a local minimum of (27).  The
�

corresponding policy satisfies (29), and the policy can be obtained through either the cost-minimization
approach or the service-constrained approach.  However the derivative of (31) may never become
negative, in which case the cost minimization approach will fail to produce a policy (in (29),�%� # � G ( �
 �

.  The service-constrained approach is more robust.  It never fails to produce a policy which
meets the target service level, and it produces policies which cannot be obtained using the cost-
minimization approach.
  We study two policies that are based on the Hadley-Whitin model.  Our first policy, called
HW-COST, is the standard service-constrained algorithm (see, for example, [Nahmias 1993] pages 263-
264).  We eliminate  from (29) and  (30), and the resulting equation is solved together with (28).�
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This algorithm fails only when .  The standard cost minimization algorithm, which is equivalent
� � �

when it works, but which works less often, is as follows.  Guess at  and find the local minimum of (27).�

Then search for a  such that the computed policy satisfies    It may be that� ( ) � 
�� � # �D� �$# 
 � ���%� �
 Y( ) � 
�� � # � G �$# 
 � ���%� �
Y  for all values of   for which (27) has a local minimum.  In that case we say
that HW-COST has failed, meaning that to obtain the desired service measure we would need to make �

small enough that (27) would not have a local minimum.  We compute and evaluate the policy whether
this happens or not.
 Our second policy, called HW-EOQ, is the common approach of using the EOQ model to select 

�
and using  the service target to select .  Thus   and  is selected so that (28) holds  (see,

� �M� � S # � �� �
for example, [Nahmias 1993] page 262).  If  then (29) gives an imputed .  If  we say that

� ��� � � T��

HW-EOQ has failed.  In this case, if   then the standard cost-minimization algorithm

�M� � S # �� �
will fail   in (29) , and all values of  for which (28) has a local minimum yield policies^
��%� # � G ( � �
 �
with service levels that are higher than the target.
 Our third policy, called ZHENG, is the  policy whose parameters are taken from Zheng's 


���&�'� 
 � &���
policy [Zheng 1992].  The policy is computed using the Cost Minimization Algorithm.
 Our fourth policy is called the Mass Uniform policy, or MASS-U.  For a given  we approximate

��G��)
" �
;X�� 
,X%�

 with a function  defined as follows.

� 
������ 
,X%� ) 
������ X � 
���� ) �	� 
���� ) ) ) ) )


 
�� ��� X�� � 
;X�� ) 
����C��� X � � 
�� � ) � 
���� )�( � #�� 
����&) ) ) ) ) )( (
� 
�� �) �
,X%��� 
����� X0� � 
�����) )

� � �
� � ����

8 ! ! !

���
8 ! ! !�

!

" " " "
" " � "

� " ( 
 X � 
 
���� ���)

 �
32

The dependence of  on  is suppressed.  The measure  takes the area that lies under the curve
� �
;X�� � 
;X��)

" "! !
,X%� $� J�X J � 
����& � 
���� X�� 
 
����) ) ) )
 and above  and concentrates it into a mass of size  located at  (see

Figure 3).   is chosen to equalize the first moments of the measures   and
 
���� 
;X���� X  � J�X J �) )" !��� 
,X%���� � J�X J � � 
;X�� ) 
�� �+� � 
�� �  � J�X J �) ) ) )� " "
 .  Since /  is a probability density, (32) and

! !
Properties 2 and 6 imply that � T � 
���� � T 
 
����'J � #�� ��G��) ) ) )

 and   for all  . (33)

Figure 3:  The Mass Uniform Policy
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If we use  in place of and if  then (16) becomes
� � 
;X�� � 
;X���� X  ��� 
 
����&)� " !

� 
�� ���� � S � � 
��������
�� ) 
 
���� �%� 
���� ��
�� ) X%��� X # � 
����%��� � 
����) ) ) ) )
�

! !8 ���
� �� � �

  . (34)
" "

Consider the optimization problem

 � � 
�� &���
P min:   � �
8 8

such that:   .
��� 
 
����)

Let  and solve P , and suppose that .  Lemma 9 implies that the Cost
� 
���� � 
���� 
 � 
 
����'T � 
����) ) ) )

�
8

Minimization algorithm converges quadratically to .  The Cost Minimization Algorithm is

�� 
�� � �� 
���� �) )

easily adapted to solve P .

 �
�
8

 To compute the Mass Uniform policy we select a  and we use the Cost Minimization Algorithm
� )

with appropriate modifications to solve P .  We adjust   to make   (  ).  The approximations

 � � � �D� �) ) )
�
8

in Appendix 3 are helpful.  Unlike the computation of optimal policies, no numerical integrations are
required.  The following Lemma guarantees that the approach works.

Lemma 12:  Assume that Properties 2, 3, 5, 6, 7 and 8 hold and that .  The optimal solution
��G��)


�� 
����N� 
�� �7� 
 � 
 � � 
�� �) ) )
,  of P  is the unique solution of the first-order optimality conditions for P .  and� �

8 8
� 
�� � � � ��G � 
�� � � G��) ) ) ) ) )

 are continuous functions of .  If  is sufficiently large then , and if  is
sufficiently small then .

��T � 
����) )

 The relative cost of a policy is defined to be   where  is the average cost of the policy

 � ) � � #�� �! � � !

policy and  is the average cost of an optimal policy.� �
Lemma 13:  The relative cost of Zheng's policy is at most  min ,

	 
� � ��������� �������������������������� !��"$# # �% �&#' (()
where  is the optimal order quantity (not Zheng's order quantity).

�M�M� ) �
For the gamma-distributed Levy process,  E  and   as  so the

" �
���� ) � � � *��%� ( # � 
���� � ( # ( � � � 	 
relative cost of Zheng's policy is at most  min

	 
+-, . /�����0� !��"$# #21��% ��#' ( ,  
�

 Note that  as , and  as .  The bound of Lemma 13 implies that if
��
43 � � � 9 � � ��
43 � � 	 9 � 	� �9 G G�� � � �  � � 	 9 � 	5  then  Zheng's policy works very well as as  and as .    However there is

no uniform, finite upper bound on the relative cost of Zheng's policy (proof omitted), and the trends
illustrated by this bound are similar to the computational results of Section 5.  If the lead time is zero or
close to zero, and the order cost  is small, Zheng's policy can be far from optimal.  This statement

S
probably applies to all existing continuous-time  inventory models which assume the inventory


�����'�
position to be uniformly distributed.

Lemma 14:  The relative cost of the Mass Uniform Policy  is at most , where

�� &��� 6�
����% �&##

6�
�� � � X��H
L
;X�� ) 
�� �7��� X � �(
�	� 
���� � ��
����� 
����� 
 
����" "" "�

� � ! !

For the gamma-distributed Levy process, the function  is graphed in Figure 4.  Since  achieves
6�
���� 6�
����

its maximum value of 0.0527 at 0.0307 the relative cost of the Mass Uniform policy is at most
�M� 

0.0791  if 2 Since  1 0.0235, the relative cost of the Mass Uniform policy is at most 0.0353� # � � � 6�
 �F�
if 2 and �$# � � ��� ( �
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Figure 4:  The Relative Cost of the Mass Uniform Policy
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Section 5:  Computational Results

 The main purpose of our computational study is to use the gamma-distributed Levy process as a
vehicle for testing the robustness of the  inventory policies described in Section 4.  The bound in

���������
Lemma 14 is strong enough that MASS-U does not need computational validation, but the performance
that can be expected of the other policies is less certain.  In addition we want to gain intuition into the
nature of optimal policies for the gamma-distributed Levy process and to explore the importance of
modelling the overshoot and the non-uniformity of the distribution of the inventory position.
 As has been mentioned before, we scale our units of measure for time and inventory so that the
demand which occurs in one time period has a mean and a variance of one.  In this section we select our
unit of measure for money so that the holding cost is .  The fact that we re-scaled out units of

	�
�
measure alters the intuitive meaning of the remaining parameters.  The backorder cost  is interpreted as�
a measure of service.  Lemma 10 implies that  is the fraction of time that we are out of stock.

��� � ��� � �
The lead time  is a measure of the variability of the demand  that occurs in one lead time.   has a

� � �
squared coefficient of variation of .  The order cost  is a prime determinant of the minimum order

����� �
quantity .  We define the reorder interval to be , the time interval corresponding to the minimum

� �
order quantity.  The squared coefficient of variation of the demand that occurs in a reorder interval is��� � .
Application Range
 As a vehicle for interpretating our results we define the "application range", a domain of the
parameter space in which most real-world applications of  inventory systems lie.  Since this is

���������
primarily based on personal experience it is bound to be somewhat controversial.  In our experience lead
times can be long or short, so all lead times are included in the application range.  Most inventory systems
operate with at least moderately high service levels, so for membership in the application range we require�����  (the system is out of stock at most 25% of the time; see Lemma 10).
 We define the order costs that lie in the application range indirectly, through the order quantities .

�
In our experience most large and moderately large inventory systems have a substantial number of items
which experience spikey or sporadic demand.  For these items the squared coefficient of variation of the
demand that occurs in  days is often very high.  Maintaining inventories for these products tends to be

�
very expensive.  In a great many cases distribution systems should be re-designed to eliminate the need to
inventory these parts, but this is not always possible.  Our application range is intended to include some
parts of this type, but not all of them.
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 We considered the following criteria for an order quantity that falls within the application range.
First, the mean order quantity is at most twice the minimum order quantity, i.e., , where

� � � ����� �� �
� � � �� �

 comes from ZHENG.  (This translates into 0.444 .  Taking  from HW-COST or HW-EOQ
gives results that are comparable, but somewhat different.)  Second, the demand that occurs in  days

� �
has a squared coefficient of variation of at most 2.  (This translates into 0.5.)  Third, the demand

� ��
that occurs in  days has a squared coefficient of variation of at most 2, where  comes from the

� � � � �� �
optimal policy.  (This translates into 0.134.  Taking  from MASS-U gives nearly identical

� � ��
results.)
 In the context of our computational studies these three criteria turned out to be nearly equivalent.  We
chose the first one.  Thus a problem instance is said to fall within the application range if 3 and if���
� � �� �

0.444, where  comes from ZHENG.
 Results
 Figure 5 illustrates how the relative order quantities change as the order cost decreases.  For� � � � � �

0.25 it appears that the  values for ZHENG approximate the optimal value of .  This trend
�

has intuitive appeal because the average order quantity is  for these processes, and it is  in Zheng's
� � � � �

paper.  However the trend breaks down for smaller order quantities.  Qualitatively, HW-COST and HW-
EOQ behave similarly to ZHENG, MASS-U behaves like the optimal policy, and the backorder cost and
the lead time have little or no impact.
 Figure 6 illustrates the fact that the relative cost of ZHENG matches the qualitative behavior of the
theoretical bound in Lemma 13.  ZHENG, HW-COST and HW-EOQ all have have unbounded relative
cost for  and .  This is true of all policies for which, if we set ,  /   fails to

� 
�� �
	�� � 
�� � � � � 	� �
converge to 0 as , including both HW-COST and HW-EOQ.  For a fixed  the relative cost of

���� �����
these three policies (and most other  policies in the literature) converges to 1 as .

��������� ����
 These observations can be explained as follows.  Because of the non-uniformity of the distribution of
the inventory position, in optimal policies the order-up-to level  is closer to  than it otherwise would

� ���
be.  As  gets small this trend becomes more pronounced.  In addition, the expected overshoot grows

�
relative to the minimum order quantity , effectively reducing the average order cost incurred per day.

�
Figure 5 confirms this by showing that for ZHENG,  is too large when the order costs are small.  If the

�
lead time is zero or very small these errors can be very costly.  On the other hand, if the lead time is
positive then the costs of all of these policies converge to the Newsvendor Cost  as , so the

� ��� � �����
relative cost tends to 0.
 Our main computational experiment used all combinations of order costs 0.0625, 0.25, 1, 4, 16,� 

64, 256, 1024, 4096, 16384, backorder costs of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and lead times� 

� 
 0, 0.0625, 0.25, 0.5625, 1, 1.5625, 2.25, 3.0625, 4, 5.0625 .  Since the HW-COST algorithm does not
work for , we substituted  for  for the HW-COST policy.  In all 1000 parameter� � 	�
� � 
��� � � 
�
sets were tested.  Of the 1000 parameter sets, 792 are inside of the application range.  200 parameter sets
have backorder costs  that are less than 3.  For 9 parameter sets ZHENG produces  values that are less� �
than 0.444, and both of these criteria apply to one parameter set.  Note that Figure 6 includes data sets
with smaller order costs than our main experiment, but only for .� 
���
 Table 2 summarizes the results.  MASS-U consistently out-performs the theoretical bound given by
Lemma 14, usually by a very substantial margin.  It was never more than 3.2% from optimal, and its
average relative cost was negligible.  On average ZHENG was only 1.3% from optimal, but it was off by
as much as 52%, and within the application range it was off by as much as 20.6%.  Both HW-COST and
HW-EOQ perform well on average, but within the application range they both had maximum relative
costs of over 27%.  If we had defined the applicaiton range via  rather than  the

� � � � � ���������� �
maximum relative costs would have been much smaller.
 Our main computational experiement contains 1,000 parameter sets, but the gaps between parameter
values are still large enough to make the maximum errors reported in Table 2 unreliable.  For example, in
the experiment that generated the data for Figure 6 we included the parameter set 

� 
���� � ��� � � 
�� �
� 
��� � 
�� � ���

.  This parameter set falls within the application range ( ), and it has relative costs of 40%
for HW-Cost, 40% for HW-EOQ, and 33% for Zheng.  These numbers are substantially larger than the
maximum errors reported in Table 2.
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       Figure 5
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Figure 6
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Table 2:  Relative Costs of the Policies
     

Relative Cost = (Policy Cost) / (Opt. Cost) - 1

  
  HW-Cost HW-EOQ ZHENG  MASS-U

All Test Problems
   Mean  0.077  0.051  0.013  9.2E-05
   St. Dev. 0.166  0.111  0.057  0.001
   Max  1.820  0.929  0.523  0.032
   %  Heur. Fails 0.452  0.411  

In the Application Range (79% of total)    
   Mean  0.017  0.030  0.006  4.9E-06
   St. Dev. 0.031  0.061  0.023  4.5E-05
   Max  0.275  0.392  0.206  0.001
   % Heur. Fails 0.343  0.337  

When Q  1 and p  3    � �
   Max  0.128  0.096  0.070  0.000

When the Heuristic does Not Fail    
   Mean  0.025  0.066  
   St. Dev. 0.045  0.127  
   Max  0.404  0.929  

 Even within the application range the cost-minimization versions of HW-COST and HW-EOQ fail
for over 33% of the parameter sets, because the cost function does not have a local minimum.
 Tables 3, 4 and 5 illustrate the combinations of parameters that cause problems for the different
policies.  Because MASS-U is uniformly very effective no tables were produced for it.  The cost-
minimization versions of HW-COST and HW-EOQ fail often, both in and out of the application range,
especially for larger order costs , lower backorder costs , and lower lead times.  The HW-COST policy

� �
is more than 20% from optimal only when the backorder cost is outside of the application range ( ),�����
or when both the order cost and the lead time are small.  Relatively speaking, HW-EOQ has more trouble
when both the order cost and the lead time are small, and is more robust with small backorder costs.
ZHENG is more robust than either of the others, but both inside of the application range and outside of it,
Zheng's policy has trouble when both the order cost and the lead time are small.
 The errors that occur when both the order cost and the lead time are small were explained when we
discussed Figure 6.  Both the order quantity and the relative cost of the HW-COST policy grow without
bound as  approaches .  With , HW-COST clearly had problems.� 	�
� � 
��� �
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Table 3

The Largest Lead Time for which HW-Cost Fails

           
Lead Times Tested:  0, 0.06, 0.25, 0.56, 1, 1.56, 2.25, 3.06, 4, 5.06           

           
           Order Costs

  0.06 0.25 1 4 16 64 256 1024 4096 16384

 1.2 0.25 1 All All All All All All All All
Back- 2 0.06 0.25 1 1.6 All All All All All All
 order 4 0.06 0.06 0.25 0.56 1 3.1 All All All All
Costs 8 0 0.06 0.06 0.25 0.56 1 3.1 All All All
 16 0 0 0.06 0.06 0.25 0.56 1 3.1 All All
 32 0 0 0 0.06 0.06 0.25 0.56 1 2.3 All
 64 0 0 0 0 0.06 0.06 0.25 0.56 1 2.3
 128 0 0 0 0 0 0.06 0.06 0.25 0.56 1
 256 0 0 0 0 0 0 0.06 0.06 0.25 0.56
 512 0 0 0 0 0 0 0 0.06 0.06 0.25

Note:  When the lead time  is equal to zero, the standard cost-minimization approach leads to a reorder
�

point of  and a fill rate of 100%.
�

Note:  In each each row, in the limit as , we eventually get ALL.
����

Lead Times for which HW-Cost has Relative Cost > 20%

           
Lead Times Tested:  0, 0.06, 0.25, 0.56, 1, 1.56, 2.25, 3.06, 4, 5.06           

           
           Order Costs

  0.06 0.25 1 4 16 64 256 1024 4096 16384

 1.2   All All All All All All All All All All
Back- 2 *0.25 *0.06 None None None None None None None None
 order 4 0 0 None None None None None None None None
Costs 8 0 0 None None None None None None None None
 16 0 0 None None None None None None None None
 32 0 0 None None None None None None None None
 64 0 0 None None None None None None None None
 128 0 0 None None None None None None None None
 256 0 0 None None None None None None None None
 512 0 0 None None None None None None None None
           
Order  Mean 2.2 2.4 2.9 4.2 6.9 12.6 24.0 46.6 92.0 183
Quan- Min 0.4 0.7 1.4 2.8 5.7 11.3 22.6 45.3 90.5 181
 tities Max 10.1 10.2 10.3 10.9 12.7 17.5 28.2 50.6 95.7 186
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Table 4

The Largest Lead Time for which HW-EOQ Fails

           
Lead Times Tested:  0, 0.06, 0.25, 0.56, 1, 1.56, 2.25, 3.06, 4, 5.06           

           
       Order Costs

  0.06 0.25 1 4 16 64 256 1024 4096 16384

 1 0.06 0.25 0.56 1 2.3 All All All All All
Back- 2 0.06 0.06 0.25 0.56 1.6 3.1 All All All All
 order 4 0.06 0.06 0.25 0.56 1 2.3 4 All All All
Costs 8 0 0.06 0.06 0.25 0.56 1 2.3 4 All All
 16 0 0 0.06 0.06 0.25 0.56 1 2.3 All All
 32 0 0 0 0.06 0.06 0.25 0.56 1 2.3 All
 64 0 0 0 0 0.06 0.06 0.25 0.56 1 2.3
 128 0 0 0 0 0 0.06 0.06 0.25 0.56 1
 256 0 0 0 0 0 0 0.06 0.06 0.25 0.56
 512 0 0 0 0 0 0 0 0.06 0.06 0.25

Note:  When the lead time L is equal to zero, the standard cost-minimization approach leads to a reorder
point of 0 and a fill rate of 100%.

Lead Times for which HW-EOQ has Relative Cost > 20%

           
Lead Times Tested:  0, 0.06, 0.25, 0.56, 1, 1.56, 2.25, 3.06, 4, 5.06           

           
           Order Costs

  0.06 0.25 1 4 16 64 256 1024 4096 16384

 1 All  1  4 None None None None None None None� �
Back- 2    1.56 None None None None None None None None

� ������� �
 order 4   5.06 None None None None None None None None

� ������� �
Costs 8  None None None None None None None None None

� �������
 16 0.25, None None None None None None None None None�
  2.25

�
 32 0 None None None None None None None None None
 64 0 0 None None None None None None None None
 128 0 0 None None None None None None None None
 256 0 0 None None None None None None None None
 512 0 0 None None None None None None None None
           
Order  Mean 0.4 0.7 1.4 2.8 5.7 11.3 22.6 45.3 90.5 181
Quan- Min 0.4 0.7 1.4 2.8 5.7 11.3 22.6 45.3 90.5 181
 tities Max 0.4 0.7 1.4 2.8 5.7 11.3 22.6 45.3 90.5 181
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Table 5

Lead Times for which Zheng has Relative Cost > 20%

           
Lead Times Tested:  0, 0.06, 0.25, 0.56, 1, 1.56, 2.25, 3.06, 4, 5.06           

           
  Order Costs

  0.06 0.25 1 4 16 64 256 1024 4096 16384

 1 0 0 None None None None None None None None
� �

Back- 2 0 0 None None None None None None None None
� �

 order 4 0.06 None None None None None None None None None
�

Costs 8 0.06 None None None None None None None None None
�

 16 0.06 None None None None None None None None None
�

 32 0.06 None None None None None None None None None
�

 64 0.06 None None None None None None None None None
�

 128 0.06 None None None None None None None None None
�

 256 0.06 None None None None None None None None None
�

 512 0.06 None None None None None None None None None
�

           
Order  Mean 0.9 1.4 2.3 3.9 7.0 13.0 25.2 49.7 98.8 197
Quan- Min 0.4 0.7 1.4 2.8 5.7 11.3 22.7 45.3 90.7 181
tities Max 1.2 1.9 3.2 5.3 9.0 16.6 32.3 64.2 128 256

Range of Order Quantities for the Optimal Policy

           
Lead Times Tested:  0, 0.06, 0.25, 0.56, 1, 1.56, 2.25, 3.06, 4, 5.06           

           
  Order Costs

  0.06 0.25 1 4 16 64 256 1024 4096 16384

Order  Mean 0.5 1.0 1.8 3.4 6.4 12.5 24.7 49.2 98.3 197
Quan- Min 0.1 0.3 0.9 2.3 5.1 10.8 22.1 44.8 90.1 181
 tities Max 0.9 1.6 2.8 4.8 8.5 16.1 31.8 63.7 128 256

 As Figure 7 illustrates, the ratio of the relative cost of the ZHENG policy to the bound in Lemma 13
is usually much less than one.  But in our tests, when the order cost is 16 or more the arithmetic difference
between the bound and the relative cost of the policy is at most 1%.  Lemma 14 gives a bound on the
relative cost of the MASS-U policy.  The ratio of this bound to the relative cost of the MASS-U policy is
less than 6 in only 2 of the 1000 parameter sets in the test.  Usually it is much higher.  However the
arithmetic difference between the bound and the relative cost of the policy is never more than 5.2%, and is
usually much smaller (see Figure 7).
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Figure 7
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Table 6

Computation Times:  Avg. Seconds per Problem Instance
HW-COST HW-EOQ ZHENG MASS-U Optimal
.027 .007 .076 .069 36.5
Computations done on a 486-based, 50 megahertz PC

 Table 6 gives the CPU time per problem instance, in seconds.  All policies requiring an initial guess
were started from the HW-EOQ policy.  For Zheng's policy we used the Cost Minimization Algorithm,
which is faster than the algorithm that Zheng proposed.  All of the policies have very low computation
times except for the optimal policy.  The optimal policy requires three numerical integrations for each
iteration of the Cost Minimization Algorithm.
Recommendations
 Heuristic policies are usually measured on the quality of the policies that they produce and on the
computational effort that they require.  All of the four heuristic policies studied can be computed very
efficiently.
 The standard Hadley-Whitin cost function often fails to have a local minimum.  However the standard
algorithms for computing polices with a given fill rate, Zheng's policy, and the Mass Uniform policy are
all much more robust.  When the service level is reasonably high , and , all of

� � � � � � 	 � � � � � � � � �
these policies perform very well.
 The main negative result of these tests is that when , as it often is with low-demand parts that

� � �
experience sproadic or spikey demand, only the MASS-U policy can be relied on.  (Recall that because of
the way we scaled time and inventory,  should be interpreted as the coefficient of variation of the

�
demand that occurs in one reorder interval.)  Other policies that assume the inventory position to be
uniformly distributed would almost certainly experience similar problems.  If inventory levels are discrete
the algorithm of Federgruen and Zheng [1994] should be used.  To our knowledge this is the only paper
that efficiently computes good  inventory policies for systems with continuous inventory levels, that

���������
does not assume the inventory position to be uniform, and that allows the demand process to over-shoot
the reorder point.

Section 6:  Conclusions

 Levy demand processes are a useful and interesting set of demand processes for inventory models.
Numerical approximations for the distribution of , of , and/or both will be required.  The gamma-

� �
distributed Levy process is particularly attractive, and we have provided the appropriate approximations.
 For Levy demand processes the distribution of the inventory position does not need to be uniform, and
the demand process is allowed to over-shoot the reorder point.  Most easily-computed  inventory

���������
policies require the inventory position to be uniform and assume that there is no overshoot.  Our tests
indicate that when the coefficient of variation of the demand that occurs in the reorder interval is greater
than one, it is important to model the inventory position as non-uniform and to model the overshoot when
it occurs.  This is often the case for low-demand parts that experience sporadic or spiky demand.
 As long as the coefficient of variation of the demand that occurs in one reorder interval is at least one,
and the service level is reasonably high, the standard service-constrained Hadley-Whitin inventory

���������
polices and Zheng's policy work very well.  However even in this region it is often the case that the
standard Hadley-Whitin cost function fails to have a local minimum.
 The Mass Uniform heuristic applies to all Levy demand processes.  For the gamma-distributed Levy
process it is guaranteed to be within 8% of optimal whenever backorders are at least as expensive as
inventory.
 For any Levy demand process, the Cost Minimization Algorithm applies to Zheng's  inventory

��� � � �
model, to the Mass Uniform heuristic and to the computation of optimal policies.  The algorithm is
quadratically convergent.
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Appendix 1:  Notation

� � � �   The location of the point mass associated with the Mass Uniform policy   (see (32)).� � � �
    (see Lemma 14). 

��� ���	� 
�� ������� ���
� ��� � � � ��������� ��� � 
 � �

  The average cost of the  policy with .   (see (16))� ��������� � ��� ����� ��� � ��������� �
    the average cost of an  policy� ��� ��� � ��� �����
  The demand that occurs in the time interval  .� ��� � � � �����

    The demand that occurs in the time interval  .� � � � ���    the demand that occurs in one lead time.� ��� � � � � � ��� � ����� � ��� � �! ��� � � �
     (see (19)).

�
" �� � � #$� �%# ��� �'& #

      (see (12)).
( ) *� + ,

-/. ��0 � � � �10 ��� �
  P  the cumulative distribution function of the random variable .-_ . ��0 � � � � 0 ��� �
  P  the complementary cumulative distribution function of the random variable .� ��0 � � 	 ��02� � � � � � � �!0 �3���

  E  the expected rate at which holding and backorder costs are+ +

incurred   (see (13)).� � � � � � ��0 � �� �
  The Newsvendor Cost or the Buffer cost.    minimizes   See (22).	

   The holding cost, in dollars per item per day. ��� � � � � �����!0 � ��0 � & 0 � �
        the expected holding cost incurred per cycle  (see (15))

( � � ,�
4�5 ��� � 6 4 ��� � � � � � ��� ��� � � � � �

    the inventory position at time .7
   The Demand-Weighted Distribution of the Jump Size  (see (3) and Lemma 1).�
   The fixed order cost, in dollars.�
   The lead time.8 . 9 .

( )  E  the Laplace Transform of the random variable : ) *; � � �<
8 � <( )    the Laplace Transform of the function : � �(

+ =
9 � +

=0
; &?> ��0 ��@ � �

�
   The demand rate (assumed to be equal to ).

�
A ��0 � � � �!0 � � 0.

  E ,  the partial expectation of the random variable  at .
) *+6 4 ��� � � �

   The net inventory at time �    The backorder cost, in dollars per item per day.� � 
 ��� �
   The minimum order quantity.  .B � � �   The point mass associated with the Mass Uniform policy (see (32)).�

   The reorder point.�
   The order-up-to level.� � � � � � � ��� �

  E the expected time to accumulate units of demand.
) *9�C

� �, � � � � � �
  The derivative of    (see (11)).�

   Used to index time.D
   The Asymtotic distribution of the overshoot  (see (3) and Lemma 3).� � ��0 � ��
   The value that minimizes   See (22).
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Appendix 2:  Proofs

The following lemma is used in the proof of Lemmas 1 and 11.

Lemma A.1:  Let  be a non-negative, real-valued, bounded measurable function.  Define
���������
	

�����	�� ����������	���������	���������	�	! �"#������	�$%'&�( )
where is a measurable process such that for every  ,   is adapted to the sigma-��������	����+*-,'	 �+.-,/������	
field .  Then0 �1����2�	��32�4-��	

E E E 35
������5	�	6� 7 ���������8����	�	:9; <"=� ����	�$> ?�@� 7 ���:AB��������	�	:9; ?�3� �C	% % %DFE &HG E & DFE &( I (J +

with  independent of .
A ��������	K���+*-,
	

Proof:  Suppose first that �����L���
	��M�-����	�NO�P���'	�QR S (36)

with   non-negative, real-valued, bounded and measurable with  for all .  We have
�T�U� �P����	+VW� ��RXS R R�K���	Y� �P�1������	���������	�	Z�-��������	�	! <"O������	�$[Q%\& ( R S)

Note that for all   and  are independent.  Define by    and
���B������	���������	 �8����	 �]����	 �]��,'	Y�^,_ _)

 �]����	`�M�-�1������	���������	�	Z a������	�Q_b c d eR )
Then  is constant whenever  is constant,  for all , and   is a Levy

�]����	 ������	 �]����	+VW�̀ N#������	 �+*-, �f����	_ _ _� R
demand process.  Following (1) let  be the rate of arrivals of jumps of size greater than , for theJ +gh ���K	 �
process   .  If  jumps by  at time   then  jumps by    at time  .  By 6 ,

�f����	 ������	 2 � �f����	 �i�M�P��2�	�Nj2 � �k	_ _ Rl mgLn DFo~ – –��	 p p
  =   =  

q rts:u�v w�xjyzu r|{jwt} q rts:u�v w�xjy�u~rF�jw�}� �� � � �� � � �� �� �� �+  +
�K� ��� � �� �

Consequently the mean of   is�]����	_
E
7 �]����	:9K�^� �-��2K	�N�2� �"[� ��2K	�$��^�fN��3Q_ %'& I R J +

Note that    is an  -martingale where  is the sigma-field  .^������	Y�M�f����	����fNj� �1����2K	��z2�V-��	_ � � 0D D
Therefore

E ,^
� �% b c&�( S�P��������	�	� �������	 �̂ ,

so

E E E

E

7 �K���	:9K� �P��������	�	� �"�������	����Z��$��̂ ,�� 7 �-��������	�	:9j�a !��
� 7 ����2��z������	�	 9�2¡ <"=� ��2�	�$> ?���

� �% %
% %

& &( (S S
DFE &�¢ E &( I J +

proving (35) for the case (36).
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 Let    be the set of bounded measurable functions  for which (35) holds.   is a monotone vector� ��
space [Sharpe 1988, p. 364].  We have shown that   contains all functions of type (36).  By the Montone�
Convergence Theorem [Sharpe 1988, Theorem A0.6],  contains all bounded measurable functions.� �
Lemma 1: E

� �� ��� �	��
��������
��������������� 
�����"! #%$&�����'# ()�*�+� ��(,�"!.-�/ 01 23 4 5 +

Proof:  If we set    in Lemma A.1 we have� ��(�687	�'#9����(������

    

E E

� �� � �
�

� �� ����:
��������
�������������*�;
�����8! # <=�	�?>������A@B(C���.� ��(*�8!D�E
# $&���	�E��F#G$&�����8-�� � �/ HJI�/LK8I�/1 1 23

HJI�/1 4 4
5 +

�
Lemma 2:   satisfies E   for all    If Property 1 holds then  

M M M��(*� ��(*�'# < 
��:
 ��(*���A@�NO( (��OPE- ��(*���Q(3�RS < TU@ ( SQV E  as  .

Proof:  We define a renewal reward process which renews itself at times  where  and W W #%P W #X / XZY R
 ��
�� W ��[\���*]^(*� W � W _ 
 ��(*� ��(*� [3�R 3�RXZY R X.  Then   , and has mean .  At renewal epoch  we earn a
M

reward   (   Let max   By the Renewal Reward
�� W ����
�� W � _ 
̀ 
 ��(,�a�8- ['����b# �c[ed Wgf 8!.-X X 3�R X3�R
Theorem,

E   lim   < 
��:
 ��(*���?@ hi��(*�'# 
�� W ��h;j#9�.- SQV3�R X;k HJlM m n
Since  our first assertion follows.
��:
 ��(*����NO(�63�R
 By Lemma 3,    as   Fatou's Lemma implies that
��:
 ��(*��� S T ( SQV -3�R

liminf  E E (37)( SoV 
��:
 ��(*���9N < Tp@�-m n3�R
If E  we are done.  Therefore we assume that< Tp@,# V

E (38)< Tp@*# ()�*�q� ��(*�8!Lr V -� / 2 5 +

Let s �OPE6 
 tu
���[v�86F[�#%PE6c�+6c-w-w-�6X x s     and y ��(\6F�'t �c[eNOPzd�
 �O(\!s min .X x
Note that by (6) and (38),

E (39)
{ |} ~ � � �
 # ()�*�+� ��(,�"!�] (����.� ��(*�8!F# ]�� ( ��(*���E(�r V -Rz� � � �/ / /2 2 2x s 5 s 5 s s 5+ + +

Let � ��(*�'t 
 �L(E   and
� �� k KZ�+lxx

� ��(,�'t 
��Q(��F
 �O(�-E
m n} ~u} ~R Rx x

Then � ��(*�z# � ��(,�)] � ��7)�L(*���*�B$ ��7	�"!��� I�/K �,� �
.
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We claim that  is directly Riemann integrable.  Observe that
�������

��������� 	�
�	 �� �����������E � �� �� �� �
Then  is non-increasing, and

�������
� � �� �� � �"!���#�$�&%'�)( 	 *)+

E
�

by (39).  By Remark 3.10.5, p. 232 of [Resnick 1992],  is directly Riemann integrable.  By the Key
�������

Renewal Theorem,

limsup E )   lim   

E

E

E E

�-,.+ 	/�0	 �#�$�1� 23�#�$��4,.+
( ���#�$�&%'�
	5�6�

( 	873�9
�	 �� %'�

( 	87.�:%'�)( 	
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�D�
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�&E � �6!
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� �
� �HI

+ �����'%&� ( < J KML0�;F E

The last line follows from (39).  By (37) and because  is arbitrary, the result follows.
F �N O

Lemma 3:   If Property 1 holds then  P as  .�0	5�0	 �����P�Q73�/�R$�S, �0TU�&%VTW(YXZ�#R$� �4,.+7C � [
� \

] G +

Proof:  If  then P .  Given a  such that 
G G+ +�#R$�^(YN 	5�0	 �#�$�_�Q73�/�R`(YNa(YXb�#R$� R/�N �#R$���N&c7d eC � \we view  as a renewal process which renews itself whenever a jump of size greater than  occurs.	/��f_� R

Suppose that successive renewals occur at times  and , let  represent the total demand that occurs inf f g� !the interval , and let  represent the size of the jump that occurs at time .  We define��fac�fh� i f� ! !jk�#�$�̂ � 	/�l	 �����P�Q7.�5�R mh�#�$�̂ � J gn*��Qc�g/<�ik��W<oRVLP  and  P .  This leads to the renewal
d eC �

equation

jk�#�$�^(Ymh�#�$�$< jk�#�67pTU�-%rqsX �0TU��tu��
� v wsxVy

The Key Renewal Theorem implies that

jk�#�$�z, mh�#�$�&%&� �-,.+��
J g/<�i
E ]

  as  
�

0
�

Since ,
ik�R

� �
A B�

A B�
0 0� �

w w �
w � �

mh�#�$�&%'�)( J gn*��Qc�g/<�ik��W<oRVL{%'�
( J g/<�ik��W<oRVL{%'�

( J|i)73R5�}uL~%&}�( J ihL'73R��

P

E P

E P E

We define the Levy demand process *  to be the process which has a demand of size  whenever
	Z��f_� iY73R	/��f_� i��R

 has a demand of size .  Following (2),
 f J 	Z�#f_��L�( J 	b��
{��L�( ���W<oR��'%&�M�E * E * (40)
�
�D� G +
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We view *  as a renewal process that has the same renewals as .  The expected amount by which
������� �������������� 	 
��� �������

 increases between renewals is E ], and the expected amount by which *  increases
between renewals is E ] .  By (40) and the Renewal Theorem,

	������ �� �� �� �+ +����������� ��� �!�"������� # � $%�����'&	 �������)( 	�����	 �������*( 	 
��� �+#-,E * E ]
E E ]

lim .
Lemma 4:   For the gamma-distributed Levy demand process * ,

�������
� + �����/� ��0 �1�2 0�43 � 5"6

   and 10

7 89 :<; �����"�/� 2 ���=& �1�� ������ > 5@? 5"A
 11

where  is the derivative of , and .
7 7 79 ����� ����� ���"�=�CB

Proof:   For the gamma-distributed Levy demand process * , (6) and (8) are equivalent to
�������

ln    and (41)
�)DE� �/� 2 ���������F F �� � � 5GAH +

I F FJ ���/� & �1�D�)DE� �ln
42

By definition, .  By the theory of Laplace transforms it suffices to prove that  as defined in
7 ����"�=�CB �����+

(10) satisfies (41), and that  as defined by (11) satisfies (42).  For  (10) we must show that   ln
7 F����� �)DE� �

is equal to � � �� 3 �� � �K 3 KMLK4L K4LF 2 ��0N���O� �)DP� 2 � ��02 20 0Q Q
 . (43)

When  ,  (43) and  ln  are both equal to zero.  The derivative of the right-hand side of (43)F F�CB �)DE� �
with respect to  is , so (10) holds.F FDSR��*DE� �
 From (11) we have

     

ln
 ,

� �
� �
�

3 ; � :<; �� � : K�T K 3
:<; � 3 ; �� � : K�T :
:<; ��
2 2 �������� ������ 2 ���U���D�*DE� � ������ �)DE� �

� ���V�D D�*DE� � �)DE� �

5!A
> 5@WX?�Y!Z[A
>

H
H

8
F 8 F
F F

so (42) holds when  is given by (11).   
7 ����� .

Lemma 5:  Properties 2 through 6 hold for .
�\�����]

Proof:  Clearly Property 1, the first two claims of Property 2, and the first claim of Property 3 hold.
Differentiating (11) we see that , so Properties 2, 4 and 5 hold.  From (7) we obtain .

7 79 9 9���"�N^�B ���"�_#!D
 

 For  there is a positive constant  such that   (  works).  By (11),
B̀ �̂�EabD c �����Nd�c�Re�fc/�gDE� 28 K�T
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Lemma 7:  Suppose that  is chosen optimally for a given .  Properties 2 and 3 imply that
N OBPRQS � N " O ��� S � N ��� S � N " O ��"FT<��U?� O ��" OWV S � N " O � P�

.  If Properties 4 and 7 also hold then S � N �
.

Proof:  By (14), (   
Q �YX N,Z[O �<� S � N "-�?�\�����]�
�̂ � S � N ��" S � N " O �_)� � �	 `a �a a	 	` `� � �S � N "-�?�bUR������"A# V ��� Q<c�S � N ��" S � N " O ��� S � N "-�_� ���

  .  If    then Properties 2 and 3
�

and the convexity of  imply that    .  Either both of these inequalities are
S Q<c S � N ";�_�bUd���'��"A# V �
�a 	 ` � ��

tight or we have a contradiction.  If Properties 4 and 7 also hold then   
Q<e S � N "-�?�bUR������"A# V ���fMa 	 ` � ��

 By (14),   
Q � S � N ��" S � N " O �_) S � N ";�_�bUd���'��"A# V �
� c�S � N ��" S � N " O �_)a 	 ` � ��T<� UR������"I# V ����� S � N ��" S � N " O ��)ATg�
U?� O ��" OWV Ma 	 ` �

  
� � 3

Lemma 8:  Suppose that  is chosen optimally for a given .  If Properties 7 and 8 hold then
N OBPRQ

N@PihjPkN " O M	 (23)

If Property 2 also holds, the solution to the first-order optimality conditions (20)-(21) is unique.

Proof:  First we show that  achieves its minimum over the set  .   Thisl � NbZmO � � NbZ[O ��n>oqp-�(oir�s Q�t �+

follows from the fact that  as max , and the continuity of .l � N,Z[O �u*-+ s OLZ #87 OvZ'Nbt *;+ l � NbZ[O �
 Let   be the value of  that satisfies (20) for a given , i.e., .  By

N � O � N OBPRQ Xk� N � O � Z[O ��� Q�
Properties 7 and 8, is unique, and (23) holds for .  The other first-order optimality

N � O � N � N � O �
condition (21) can be written as    To show that  has a unique minimum it

Q � � N � O � Z[O � �mM l � NbZmO �w
suffices to show that the zero of  is unique.  Differentiating (20) with respect to  and

w � N � O � Z[O � O
rearranging we obtain
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�� O X � N � O � ZmO �N � O �<� " MS � N " O � � O �� �� � �

Therefore

 
�� O � O� N � O � Z[O �<� S � N � O ��" O � "A# � O �_) S � N � O ��" O � � O �� N � O �

" X � N � O � ZmO � ) S � N � O ��" O � � O �� N � O �� O
�=" )J# � O � S �S � N � O ��" O � � O �X � N � O � ZmO �

w � �
� �

� �� � �

1 2
� �

1 2

� �
�

� � N � O ��" O �mM
Property 7 and (23) imply that     if  .  If we can show that

� � O � S � N � O ��" O � eRQ OBPRQ�
X � N � O � ZmO � P " S � N � O ��" O � � O � PRQ� � � ��

(44)

then we will have shown that , and the proof will be complete.  By Properties 2 and 7
�� ` w � N � O � Z[O � PRQ

and by (23),

X N � O � Z[O ��� S � N � O ��";���\� O �]����� U S � N � O � ��" S � N � O ��" O � V � O �� � � � � � � �	 `(   
/ � �

P " S � N � O ��" O � � O � PRQ M� �� 3
Lemma 9:  The Cost Minimization Algorithm is quadratically convergent if Properties 2, 7 and 8 hold,
and if    is twice continuously differentiable in a neighborhood of the optimal .

� ���'� O
Proof:   Differentiating (19) and applying (20), we see that for an optimal policy� �� N � O� NbZmO ��) � NbZmO �E� Q � �w w . 45

 Let    be a row vector, and let  max .  Let  * *   be optimal,
� ��� � � �"	� � Z � � ��
�
 Z 

 � � N Z[O ��  � � � N " O Z>N � N ) O � O ) � N " � M* * * *   and  *    By Property 8 there are column vectors

� �� T-� � T Z T � �̂ � � � Z � � Xk� N,Z[O � � NbZmO �* *�  �  �
T T,   such that the functions  and   can be written as

w
Xk� N ) Z?O ) �>� T^)��g� �*� � * *      and 

_� � � �
w � N ) Z?O ) �W� �.)��<�@� M" *

* *   
� � � ��  

By (45),  .  Note that
� �B">� �

X � NbZmO ��) S � N " O � � O �<� Xk� N,Z[O ��) X � NbZmO �
� �� N � O� Ti)ATi)��<�?� Z

� � � � � �
� 
 

  and
(46)

�
�

" S � N " O �i� O �<� w � NbZ[O ��� "?� )��<�_� M � �
�� O� � 47

� �� �
By Lemma 8 and Property 7, 0.  In the proof of Lemma 8 we showed that  Properties 2, 7 and 8

����  
imply (44), so 

Ti)IT PRQ M� 
 Starting from  ,  the Cost Minimization Algorithm computes

� NbZ � �
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� � � " � NbZ'N " � �S � � �C� N " � �
� � ) " " N ) Z?O )�B)��<�?�
� � ) " " � � ) �<� ��q) "?�j)��g� ��B)��<�?�

� �
�  � 

�
�  �  

� 

w
w�

� � � ��
� � �� � ��

*
* *

* *
( )

� �
1 1

and

N � N ) " Xk� NbZ[N " � �X � NbZmN " � ��) S � � � � N " � �
� N ) " Xk� N ) Z N " � ) )��g� � �Ti)ATi)��<�_�
� N ) " � N )��<�@�� Ti)AT ��)��g� �Ti)ATi)��<�_�

� � � �� � � � � � �
� � � �� 
� � �  

�  

*

*
*  * *

* *

� �
� � � ��
� �� �� M 3

Lemma 10:  In  policies for Levy demand processes,
� � Z[N �

P
U ��� � QuV � ) Z�� )AT � Tv) � �B� O �Xk� N,Z[O �� �

which is equal to  for an optimal policy.� 7
� � )AT��
Proof:  By (13),    Therefore

S ���'�E�qTA"R� Tv) � ��� ����� M"� 	
X NbZmO � � S � N ";���\����� ���

�qT<�R� O ��"R� Tv) � � � � N ";��� �����
���"
� � O �<T<"R�(T.) � ��
 P ��jM

� �	 `

	 ` 	 �
( '   

P

/
/

� �� �
�

� �
�

Therefore

P P
(U ��� � QuV �B#," U 
 P �� V � ) M�Tv) � � Tv) � �B� O �X NbZ[O �� � 3

Lemma 11:  For Levy demand processes, the fill rate of an policy is given by
� � ZmN �

#," ��� "R����Y"�
 �.�v7��
E
� �+ +

where  is the demand-weighted jump size (see Lemma 1), and , , and  are independent.
� ����� 


Proof:  Let  and let   The number of items ordered between time  and
�[��������
 ���'� �R������� ���[���'� �AM Q� � � �

time  that that are backordered is
�

N � � � � � s�
 ��� � t
 ��� ��"�
 ���6��"YU �������6� V
 ��� ��"�
 ���6�/ � �� �
���
	
� � �� + +

.

Let    for , and let    for  .  Applying Lemma A.1 we have
T]��� Z h ��� ���<" h �.7 � � PRQ T]��� Z h ��� Q � � Q+ +

# #� �� N � � � �<� U T]��� Z �������6� � V �
�
* U T]��� Z ���
� V � * +E E

E   as  ,

/
����	
� �
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because  is bounded and continuous on , except at , and because
T]��� Z h � oqp o ��� Z h ��n-s Q�t p o

P .  Since  as   the fill rate is
� � � Z ���
��n-s Q�t p o_��� Q 
 � � �u*6# � *;+ Z��

lim E��� + #," �B#," U T]� � Z ���
� VN � � �
 � � �� �
because of the regenerative nature of .

N � � � 3
Lemma 12:  Assume that Properties 2, 3, 5, 6, 7 and 8 hold and that .  Then P  has an optimal

OBPRQ � �" ` �
solution ,  which is the unique solution of the first-order optimality conditions for P .

� N � O � O � O � � � �" " ` �N � O � O � O � O O OBP�O � O � O=PRQ" " " " " " "
and  are continuous functions of .  If  is sufficiently large then , and if 

is sufficiently small then .
OBe�O � O �" "

Proof:  Equating zero to the partial derivatives of  with respect to  and , respectively, wel � NbZmO � N O` �
obtain �

� O ��� S � N "6!�� O � ��) � O ���5� S � N ��" S � N " O � ��� Q" " "� ��
and (48)

S � N " O ��� l � NbZ[O �` � . (49)

Claim 1:  Let , and let  be the value of  that minimizes  for given
_!�� O � c�O e�O N � OvZ[O � N l � N,Z[O �" �  ` �

values of  and  .  Then  and  exist, are unique, and satisfy  
_ _ _ _O O N � O Z[O � N � O Z[O � N � O ZmO ��" O

1 1
   e�N � O ZmO ��" O eRh e�N � O ZmO � e�N � O ZmO �� � 	 � � � _ _ _

.

Proof of Claim 1:  By (33), .  By Properties 2, 7 and 8 the left-hand side of (48) is
O ��!�� O � PRQ"�

continuous in , is negative if  is strictly increasing in  if , and is positive if
N NdcRh-Z N N � h	 	N " O � h N � O ZmO � N � O Z[O � N � O ZmO ��" O eRh e	 �  � 	� .  Therefore  and  exist and are unique, and 

_ _ _
1 1N � O ZmO � N � O ZmO ��" O e�N � O Z[O ��" O N � O ZmO � e�N � O ZmO ��   � � � �  � � _ _ _ _ _

.   and  follow from (48) and the
strict convexity of   This proves Claim 1.

S ����� M
Let � �

�
� O � � � O � � O ��)

�
� O � ��� S � N � OLZmO ��" O ��"��" " "

"
�
� O ��� S � N � OvZmO ��" ! � O � ��" � O � S � N � OvZmO ��";���
��� M" " " " "
�

� 	 `
/ (50)

Then (49) is equivalent to .

� � O �E� Q
Claim 2:  Let .  Then .

!�� O � c�O e�O � O � e � O �" �  � 
� �

Proof of Claim 2:   Let  and .  Then
_ _N � N � O ZmO � N � N � O Z[O �

1 �  
 

       

� �
�

� O ��" � O ���
�
� O � S � N " O ��" S � N "6!�� O � ��" S � N " O ��) S � N "6!�� O � �" " "

) � O � O � S � N " O ��" O � S � N " O ��" S � N "-�'�
���.) S � N "-�'���
�" �    � � �
�    � � �  �	 	` `

	 
� �/ /� �
 
      

     

�
�
� O � S � N " O ��" S � N " O � "

�
� O � S � N "6!�� O � ��" S � N "6!�� O � �" " " "

) � O ��� O � S � N " O ��" S � N " O �^) � O ��� N " O " N ) O � S � N " O �" "� � 	 
� � � �  � �  �� ��   � � � �    � �
 
) � O ��� N " N � S � N " O ��" � O � S �����
�
�v) S ���'�
���" "� �� � �    � `  � ` � � � �/ /��� ���� �
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( ) * * ) )
( +-,�.+-,�. * *
( (* ) * * + +/0/101

1 / �2� �����������3��4
�����5������������4
�����5�� � �! "* )
.

By (33), .  Claim 1 and Property 7 imply that the first two terms of this expression are� 674
�����98�:�)
positive.  The definition of , Claim 1 and Property 7 imply that

_�<;=�-���$>?���* *' '
'

'
( ( (* ) * * * ) * *

+ + ( (
( + +

������@����������A�����3�����B�C�������D�� ������A�������
	E����������C������4
�����5�� � � �
8 ������A���F�G�
	E����������C�F����4
�����5�H� �� � �
� ����� ���F�G� ����	I�������� �

! "& ! "
&1 /
1 / J��������4
�����K���������3��4
�����5�� �! "* )

.

Therefore , and Claim 2 holds.
L L������� �����98�:* )

Claim 3:  For all , P  has an optimal solution ,  which is the unique solution of the�M8�:3�N� ���O�����P�������K�� � �. ,
first-order optimality conditions for P .�N�.,
Proof of Claim 3:  Let .  By (33), .  Note that  is continuous

Q ;=R=SUTV�XW��X674
�����ZY 4[�����98�: \C���]>?���� � . ,
for  and that  converges to infinity as max | | .  Thus (34) achieves its���^>_���9` Q \C���]>_��� T��a>b�cY
dfe.,
minimum in , and this minimum satisfies the first-order optimality conditions for P .  The first-order

Q ���.,
optimality conditions are equivalent to�P�=�-���g>?���Z> �����h6�:�>i�M674
�����Z> :j� ������k����4
������ � �

   and  .
L L l m

Claims 1 and 2 imply that the solution to these conditions is unique.  Thus Claim 3 holds, and  and
_�O������������ �M8�:�_

 are well-defined functions of .

Claim 4:  and  are continuous functions of .�-����� �n����� �� � �
Proof of Claim 4:  By (32) and Properties 3 and 5,  and  are both continuous.  By Properties 3

_ _4
����� �������
and 5 and (34), if , , converges to , ,  in  then

_ _��� � �o� ���p�<��� RqSUT@����>Zr@�9W��X674
�Fr@�?>sr�8�: Yt t t\ ���<>_�u� \C���]>_��� �vdf�M8�:�> ���]>?���w;C���O�x���Z>_���x���5�Z>. ., ,
t t yz  converges to .  Let  let  and let

_ _ _ _���2>?�3�w;C���O�x�3�Z>_���x���5� T|{H�~}|�9W�}]�M��>G��>��~�~��Y T|�X�M�x>
��>����~�~Yy y y y_ _
.  Select the subsequence  of  so that

liminf lim  .  For all ,  is feasible for P if  is��dbe \ ���2>?�3�w� \ ��� >_� � 8�:����^>_�E	�� � �v�}Zd�e
. ., y y . , �9� ��� �9� ���� � ���� �� � _

sufficiently large Therefore , so� \ ��� >_� �9�7\ ���̂ >_�E	��A��df\C���̂ >_�E	D���9�7e. ., ,�9� ��� �9� ��� . ,� � ��� � � ���
the sequence  is bounded.  Therefore it has a subsequence  such that��� >_� � ��� >
� ��9� ��� �9� ���

y
� ���

y
� ���

��� >
� >G� � ���2>G� ��� R � 674
��� �Z>i� 674
������ � � �y
� ���

y
� ���

y
� ���

y
� ���

y
� ���� � � converges to ,  in .  Because  .*

 Let .� 8�:
liminf lim

lim

��d�e \ ���C>_�3�B� \ ��� >_� �B�=\C���C>_���� dbe67\I���^>_�E	u�
	�\ ���^>_������\I���]>?�E	u�=� \ ���]>?�E	��
	�\ ���^>_������\I���]>?���d�e
. . . � �, , ,y y y

� ���
y
� ���

. . . . . ., , , , , ,� � ¡¢� ��
� � �! " ! "	u�6 \ ���2>?���
	£\I���]>_������\I���^>_�E	u���d�e

��limsup .

. . ., , ,y y� ! "
Taking the limit as  we see that  is continuous in .

_ _ _� dk: > \¤���O�����?>?�n�����K� �. ,
 Equation (49) implies that  is continuous in .  By Property 7 and (23),

_ _�����O���������������5� � ��-��������������� � � ������A�C���O��������4
�����5�
	 ������A�����-�����5�� � � �_ _ _ _
 is continuous in .  By (48) and Property 5, 

( ('
is continuous in   But for Properties 7 and 8 imply that this expression is continuous and��� �O�����96�r�>� � ¥
strictly increasing in .  Thus  and  are both continuous in , and Claim 4 holds.�O����� �O����� �n����� �� � � �
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Claim 5:  If  is sufficiently large then , and if  is sufficiently small then .� �M87������� ��8�: �M�7�������� � � � � �
Proof of Claim 5:  Consider the policy �=�M� ��� r 	E4
������ ,  . (51)

¥
Let max .  By (34) and (14), the cost of this policy is����� ; T � > � Y

\C���]>?���w� �2	E� ������A�����U��4
�����K�
	 ����� �����U�H�
��� ���X� �����
	E�D ������ � � � �
� � 	E�������������rU�
	 ����� ���Frk�
	 � ����� ��O���Hr ���	�X� �����
	 ������ � � �

. ( (, ¥
.

¥ ¥ ¥( (¥ )

 �& ! "
 �&� �� � ! "

 
' '

' '
�� 	E�������������rk�
	 ����� ����rk�
	 � ����� �������X� �����
	 ������ � � ��7����rk�
	�� 	 � ����� � �����������<������ �

�=����rk�
	����<�����
	 � ����� ���p���Frk�
	��2	 � ����� �� � �� �
! "q! "� �! "¥ ¥( (¥ ( (¥ ¥(

' '' ''
.

 

The average cost of any policy for which  is�M�7��\C���^>_���98����c�������
	 �D �����M6���� ������ � �. (, ! "' '
.

By Property 2 this quantity grows without bound as  .  The cost of the policy in (51) is finite, and if� dk:�� ��� �M�7�n����� �� � � �
 is sufficiently small,  this policy is feasible for P  by (33).  Thus  for  sufficiently

. ,
small.
 We need to show that  if  is sufficiently large.  In view of Claim 2, it suffices to show�M87������� �� � �
that  if  is sufficiently large.  Let .  By (50),

L �x���98�: � �P�=�-���g>?���� � � �
L '

'
�����B�=� ������ �����U�������������U��4
�����K�E	 ����� �����U�������������
�0���� � � � � �

� ����� ���F�G���������U�����0� �����H�� �
! " ! "&

& ! "
( +A,�.,+ �

( +A,�.,+ �
(52)

 Assume that .  Claim 1 and (33) imply that .  By (48),
_r �7�U��4
����� �U���M��r �7�U��4
�����h�7�� �¥ ¥�����U�����967�����9� ��

.  The convexity of  and (14) imply that the first term of (52) is positive, the third
term is zero, and the second term grows without bound as .  Therefore Claim 5 holds.�cdfe�
 Assume that .  Claim 1 and (33) imply that .  We claim

_r 87�U��4
����� �U���M�7�U��4
�����h��r �7�� �¥ ¥
that the second term of (52) grows without bound as .  By the convexity of  and (14), this is true�cdfe ��
if  grows without bound as .  But  by (33).rI�����U����� �cdfe r �����U�����967�D��4
�����h67���x�� � � � � �¥ ¥
Therefore it suffices to show that�

�����w;=��������J�����U�������������U��4
�����5�D� ����� �����
���������U�����0� �� � � � � �! " ! "&' ( +�,�.,+ �
(53)

is non-negative.  By the convexity of  and (48), the first term of (53) is���������J�����U�������������U��4
�����5�M6=� ��������k���D��4
�����5����C���U��4
�����5�� � � � � � �� ������@���D��4[�����K��J�����i���������U������ � � �! " ! "! " (('
.

Equation (48) implies that .  Therefore there is a  such that  and�����9�987�����U����� � r ���n�7�� ¥�������B�=�����U������ .  The second term of (53) is
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� ��� �� � ������ 	
�������	���������������� ����������������������	���������	
���������� � � �� ! ���������#"�������$	
���%���&	
���'�&�(�� � �� 
) * + * +* +

.

By (33), , �����.- �����������/� "���(�0���$	
���%����	����������1-32� � � � �4  � � * +
.

This completes the proof of Claim 5 and of Lemma 12. 5
Lemma 13:  The relative cost of Zheng's policy is at most   min ,

6 78 8 9:<;>=@?A; B�:<;>=@?A;DCFE3:<;>=;>EAGH:<IJ=@KML L ;LNEPOQ RRS
where  is the optimal order quantity (not Zheng's order quantity).

�UTU����V
Proof:  Note that in computing the average cost of an  policy, Zheng's cost model corresponds to

��VXWY�%�
assuming that .  Under this assumption the average cost incurred by an  policy with

� ����[Z\� ��VXWY����UTU����V
  is ] ���JWY����T ^`_ 	������a�F�b������ cYd

  .

e f)
Let g ���JWY���[Z 	������a�F�ih3������ �kj ����lm �c d)

  
�

The true average cost incurred by an  policy can be written as
��VXWY���] ���JWY����T ^`_ 	������a�F�b���`_ g ���iWn�(�����(�T �/� ] ���JWY���_ g ���JWY���%l������

  
(54)

�
�

e f)
o p

cYd m
� m

 Let  be Zheng's policy and let  .  Let  be the optimal policy and let
��VqWY�3� �rTU�s��V ��VqWn�3�� � � � � m m�rTU�t��Vm m m .  We claim that

] ���uW�v�%� ] ���uW�v�%� ] ���uWF�v�.� ] ���uWF�v�nlm m � � � � m m� �
(55)

The optimality of Zheng's policy under his assumptions, and the optimality of the optimal policy, justify
the left and right inequalities of (55).  The optimality of  implies that 

��VUW�3� 	
��V��[TU	
���3�[T� � � �] ���\WY�v�� � � .  By (54),] ���\Wn�v�.� �w� ] ���\Wn�v�x_y	���V����������v�����v�aT ] ���\WY�v�zW����v�� � � � � � � � � �� � �� �o p
which proves (55).
 In view of  (55) it suffices to prove a bound on

] ���uWF�v��� ] ���uW�v�] ���uW�v�� m m m mm m . (56)

By (14) and (21),
] ���uW�v�[TU	���V��%�{	��}|~�_&�����}|y�&V��%�{	
��|~�_&���#�m m m c c m c m  ,
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)  
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�������3�
	4� �5�76 (�7�3	����8�"!�� # �5�76 ��9���
	��:�%��;+ ,+ + - - + +- ./

)  )
1 1

By (54) and (57), < �������
	�� < �����3�
	 ���
	�� < �����3�
	��=�������3�
	< �����3�
	 �>� < �������
	 ������
	 ����6?	���$���
	����%�� �@�$����6?	3A:BC�D����E�BC�F�@��9���
G ++ + + + + + + + ++ + + + ++ - + ++ + - ++

HI
H

1
1 1

1      

      J K+ + + ++ - + - +	����%� ���
	�����@�$����6?	3A:BC�D� �5�76?	ML B=A��
J K

H N1
This is the first of the two upper bounds we need to establish.  We claim without proof that for the
gamma-dsitributed Levy process, if we set the lead time equal to zero and let the order quantity approach
zero, (  and .  Therefore this is an asymtotically tight bound on (56) for

�O�=6P	QLR�TS?U ���D�V	MLW���V	XSY�+ - + 1[Z 1
small , when the lead time is zero.

�
 By Jensen's Inequality,������	]\  �̂ �7�'��_�	̀ AaBb��_c�=�3	d�b�e�̂ ���'� ��_5	Q	(A:Bb����_5	��=�3	f\g�h����	i; �*	

E E E 58+ + + + -
Given a value of  we define  by , and we define  by

� jk���V	 �5��jk���V	Q	 # �5����A�jk���d	Q	 jP���V	-�h��jP���d	Q	 # �h���lA�jP���d	Q	 �5��j[	4�e�5���(	 ����jm	��e����jk���
	Q	-n- - - + + + +.  By Lemma 7, , so  .  Therefore< �������
	 # �5��j[	4�e�5��jk���
	Q	4�e�h��jP���
	Q	 # �BC�D�BoA��+ + + + -n- + + . (59)

By (57), Lemma 7 and (59),< �������
	�� < �����3�
	 ���
	�� < �����3�
	��=�������3�
	< �������
	 �@� < �����3�
	# ���
p ���E� �5��� ��9���
	����%���q�r�(���V	���
	� �@� < �������
	�
p ���

G ++ + + + + + + + ++ + + + +++ + + + + + +
1

1 1 21      )

      

s t
+ ++ + + + + + + + + +vu+ + + +u u+ + + + u
	����� �>� < �������
	� < �����3�
	���9���
	��:�%�����'��9���
	����%�a�&�'�(���V	�

# � p ;9���
	����%�?A ���d	 9���
	����%�?A ���d	�>� < �����3�
	 B �BoA��w x1 1 21 2 1 2
      

This is our second bound, and concludes the proof. y
Lemma 14:  The relative cost of the Mass Uniform Policy is at most    where

zF{"||@} ���V	
} ���V	v\ �r�~�&����	�� ���V	M	�!�� #��(�(���V	 �`�(���d	� ���d	��D�3���V	1 11 1/ - . , ,

,

where  is the mass-uniform order quantity (not the optimal order quantity).� # �P��j
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Proof:  Since  is adjusted to make we can view the Mass Uniform policy as the policy
� �����������	��
�� � �

computed by the original Cost Minimzation Algorithm, using the measure  in place of .��� ����
�� ����
 � �� ���
We suppress the dependence of  on .  The cost cost function to be minimized is� ����
 � �

� �	������
 � !#"%$&�	��
('*)+�,� � ���	��
-
�" �,��
 )+�,� � ��
 � �. �/
  .

( )� �0 12� 354
Let 6 �,�7�5��
98 )+�,� � ��
�:;����
 � �,��
=< � ��>/ 2 3 4 � �  � �
The true average cost incurred by an  policy with  can be written as

�	?@�5�A
 ����� � ?
� �	������
B� !#" �	��
 )C�	� � ��
 � �D" 6 �	������
.�	��
� 6 �	������
 � $&�	��
('*)+�,� � ���	��
E
F" � �	������
�>.�	��


� �
�

0 12
G H

� 354  
(60)

/
/ /

 Let  be the Mass Uniform policy and let  .  Let  be the optimal policy
�	?I�5�J
 � ��� � ? �,?��5�;
/ / / / / K K

and let  .  We claim that
�L��� � ?K K K � �,�M���N
PO � �	�Q���R
PO � �	�Q���R
PO � �	�M���N
>/ / / // /K K K K (61)

The optimality of the Mass Uniform policy for the cost function , and the optimality of the� �,�7����
/
optimal policy, justify the left and right inequalities of (61).  Note that /

:;����
 � �	��
S<�$&�	��
��UTBV;�WV��� �� �
is a probability density with first moment .  By Jensen's inequality

���	��
6 �,�7�5��
COX$Y�,��
('Z)C�	� � ���,��
E
/
.

By (60), (61) holds.
 We derive two more inequalities.  First, by the convexity of  and (32),

)6 �	�#���N
[� )+�,� � ��
�:\����
 � �	�]
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V )+�,�J
^"I�B'_�,)+�,?`
 � )C�	��
E
-ab� 'Y:;����
 � �,�N
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('d)C�	�J
�"%���,�N
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E
-ab�

�/ / / / /
/ / / / // / / / / /
2
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3 4 � �

3 4 � �
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By (58), f � � )C�	�J
 f � � )c�	�J
)C�	?`
 )c�	?`
V

� � >f � � f �	� � �,g+
-
h �%�	gC
 � ?`
 h
f �i
/ / / // // / /
33

E
E

63

 In view of  (61) it suffices to prove a bound on  .  By (21),
: � �	�M���N
 � � �	�M���N
j<�a � �,�M���]
/ / / / / // /� �	�M���N
9��)C�	?̀ 
�> � �/ / / / By (60)  (62)  (14) and (63),
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Appendix 3:  Numerical Approximations of   and .
� ������ ������

 In this appendix we describe our approach to the numerical integrations that are needed to compute
an optimal policy.  We also give the polynomial approximations for  and  for the gamma-

� � �	�
������
���� 
����
distributed Levy process, which we developed and used.

Numerical Integrations

 We need to evaluate the integrals ,   and .
� � �� � �� � �	 	 	 	 	 	� 
�����
�������� � 
�����
�������� � 
�����
��������� � �

Let  be the demand that occurs in  days.   has a gamma distribution with rate
� 
���! � 
�"��#��� � � 
����$ $ $

parameter  and shape parameter .  Let    be the lead time.  The functions   that are of interest can% � & '(
���
be expressed in terms of the density the complementary distribution function

' 
�����)+* ,.-
/ 
����! 102
 � 
&3�345����� 6 
����! 78
 � 
�&9�+:;���=<: )>* ,.- )>* ,.-and the partial expectation  E .  We define the+

partial second moment by E .  We use the following identities, which apply
6 
���? @�78
 � 
�&9�+:;���=<9A)+* B8- CD2 + 2

to gamma demand distributions:   and
6 
���? E& / 
����+:F� / 
����G� 6 
���! : :)H* ,.- )H* ,.I C - )J* ,.- )H* ,.-K K K K2

78
�&MLN&3�PORQS<�T / 
���+:U&5� / 
����LV
��WOXQR� / 
����GY: : :D D)H* ,.I�DZ- )H* ,.I C - )J* ,.-K K K 
 We evaluate  as G .  The first of these two

� � �� � �� � �	 	� 
����
������� � 
�������[L 
����+7\
���+: % <]���� �
integrals is evaluated in closed form using the identity  .  This identity also simplifies

^^�_ ) )6`
���! a:b6`
����2

the computations required for Zheng's policy.  Integrals of the form  are written as
� � _ 	'(
���+75
����+: % <.����

� � c * _G- 	 	dGe '(
gf(
�hi�P�+75
�f(
�hj���+: % <.fJ
hi����h�
  where

f(
hi�! 1k h�l % f(
hi�! % : 
�Qb:;hi� % l̀ h�lmQ* CZn�CgoZp - if  ,   and    ln if  . (64)

This is numerically advantageous because both  and the interval of
7\
gf(
�hj���+: % <.fJ
hi�G�q"�l5h�lmQ� 	 	

integration are bounded.  The integrals of  and  are managed similarly, using the identities
� 
��� � 
����	 	 	

^ ^^�_ ^P_) ) ) )6`
���? a: / 
���� / 
����! a:r's
����: :
and  .

Polynomial Approximation for  t�uwvPxzy
 Accuracy:  0.1%{
 Algorithm
     (see (64))

h| U
 % :[k �PO.}nj~ c * _G-dGe
  �  1��7 �>�G"R<jL���7 �+� % <�h�L���7 �+��Q.<�h�LW��7 �+�#}X<�hD ~
     (see (64))

� �	 	
����! % L OXfJ
�hj�
 Data
   Range

3.25 1 3.138513 8.15216 0
3.25 0.00027 1.130977 -3.496022 119.1526 -615.058
0.00027 0.0

� ��7 �>�G"R< ��7 �+� % < ��7 �>��Q.< ��7 �+�#}X<
"��5�Hl � % "

� % " �5�Hl
�5�Jl

n
n

6

6

015 0.653346 9.77922 -0.2834 -272.15
0.0015 0.0073 0.619633 10.5112 -4.024 -273.3
0.0073 0.065 -1.44249 58.05855 -370.532 670.977
0.065 0

�5�Hl
�5�Hl
�5�Jl

.237 1.142996 16.91995 -152.0991 283.902
0.237 0.79 5.650726 -41.11935 97.60782 -75.0501
0.79 1.0 3.531086 -20.14113 28.72104 0
1.0 1.13 0

�5�Jl
�5�Hl
�5�Jl

.2771337 -0.7399454 -0.097316 0
1.13 1.26 0.348694 -0.95677 -0.114 0
1.26 1.5 0.4634541 -1.346797 0 0
1.5 2.0 -8.801133 55.67633 -87.7363 0
2

�5�Hl
�5�Hl
�5�Jl

.0 2.7 1.383476 -4.13484 0 0
2.7 7.0 1.1125 0 -10 0
7.0 0 0 0 0

�5�Jl
�5�Jl
�5�
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Polynomial Approximation for  �������
 Comment:  Note that by Lemma 2, E  as .

�	��
����
���� � ����������� 
�� �!
 Accuracy:  0.1%"
 Algorithm
  ln# � �%$&�
  If  then 

$('*),+-).),���./ �0� 12� $�34�5�,��12� $6387��9�9� # � ���	� 12� $�3:�;�,��12� $638<��9�=� # � �> ?=@ ACB DFE ?9@ ACB DFE
  If  then 

),+-)�)2����/HG*$('JIK+-) �L12� $638)��KMN12� $�34�5� # MN12� $�3:�;� # MO12� $�3P7.� # MO12� $638<�� #> Q R S
  If   then 

IK+-)TG*$ �0� $UMOV5$,W6�X�����=�Y�;$>
  ln

! >�%$&�Z�[$\�N�]�^�*_4$��,�9��MOV`$��9�Q
 Data
   Range

-1.2839 6.6085 3.76234 -30.11 -30.11
0.00125 0.5292 -5.963 -2.934 -3.157 -1.78

0.

$ 12� $�3P).� 12� $635�4� 12� $�3:�;� 12� $6387�� 12� $�38<��
)TG*$�'J�bac�5)
�bad�4) G*$�'&e

f
e
f

00125 0.029 1.45469 0.523461 0.180076 0.0213841 0.00088453
0.029 0.15 1.04877 0.013856 -0.058843 -0.0283627 -0.0030053
0.15 0.62 1.0506

G*$('G*$('G*$�'
75 0.024767 -0.038544 -0.014739

0.62 3.0 1.04993 0.02395 -0.03346 -0.003828 0.0069
3.0 7.0 1.07574 -0.031276 -0.002662 0.002

)G*$�'G*$(' )
Polynomial Approximation for  g �������h ì j �Pi��lknmpoqir s tu v w
 Accuracy:  0.25%"
 Algorithm
  ln# � �%$&�
  If  then  

$('*)2+ ).)x�./ � �l�y12� $�3:�;�,_K��12� $638<��2� # � ��12� $�35�4�,��12� $�3P7.�,_x�F12� $638<��2� # �> z {|z {?=@ ACB DFE ?9@ A:B DFE
  If  then  

),+-)�)K��/bG*$�'L��+-< �L12� $638)��KMO12� $�35�4� # MO12� $�3C�]� # MN12� $�3P7.� # MO12� $�3P<.� #> Q R S
  If  then  min( ,0

$('L��+-< �}$��Z� �=�l�yV~�,�������.+-��7xI;)xI&� �l�*�%��$UM�����V �xM[�����Z� $����b�� > e A eK� A Q
  If   then  

��+-<TG*$ �}$��Z�L12� $�3P<.�,_��l�*�F12� $�38)��5$UMO12� $�35�4�}��V �,�}$bMN12� $�3P7.�}�� � �e ?=@ ACB QFE A Q
 Data
   Range

0.772 0.9062 0.2774 0.2774 1.85
-0.0103 -0.16226 0.00445 0.001533

$ 12� $638)�� 12� $�35�4� 12� $�3C�]� 12� $6387�� 12� $638<��)TG*$�'*),+-)�)K��/),+-).)x��/HG*$('*),+-).7x/),+-).7x/bG*$�'*),+��4)K/),+��5)x/bG*$�'*),+-7��),+-7.�TG*$('L�.+ <��+-<TG*$
1.7647 1.338 0.42813 0.0415
0.6827 -0.9955 -1.3737 -0.5603 -0.0741536
0.9877 0.057 -0.0774 0.063
-2.02 17.454 0.6573 4.558

�������
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