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Abstract: We analyze an algorithm for computing the homology type of a triangulation.
By triangulation we mean a finite simplicial complex; its homology type is given by its
homology groups (with integer coefficients). The algorithm could be used in computer-
aided design to tell whether two finite-element meshes or Bézier-spline surfaces are of the
same “topological type,” and whether they can be embedded in 3. Homology computation
is a purely combinatorial problem of considerable intrinsic interest. While the worst-case
bounds we obtain for this algorithm are poor, we argue that many triangulations (in general)
and virtually all triangulations in design are very “sparse,” in a sense we make precise. We
formalize this sparseness measure, and perform a probabilistic analysis of the sparse case to
show that the expected running time of the algorithm is roughly quadratic in the geometric
complexity (number of simplices) and linear in the dimension.
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1 Introduction

In this paper we study the complexity of computing all the homology groups of a triangu-
lation. In computer-aided design (CAD), many geometric designs are triangulations. For
example, finite-element methods use 2D and 3D triangulations of solids, called finite-element
meshes. Triangular parametric surfaces such as rational Bézier surfaces are widely used in
geometric modelling systems [War]. A collection of these objects is, topologically, a trian-
gulation (a 3D finite-element tetrahedralization is simply a 3D triangulation). Furthermore,
algorithms exist for triangulating polygons and tetrahedra (eg, [Che]); the problem of tri-
angulating algebraic varieties has been studied by Hironaka, McCallum and others. In this
paper we will adopt the following

Definition 1 A triangulation is a finite simplicial complez.

Thus, a triangular parametric surface will be regarded as a homeomorph of a triangula-
tion. Since homology type is a topological invariant, it is the same for all homeomorphs of
a triangulation, and for all other triangulations of the same geometric object.

In geometric design, we often construct triangulations (either by machine or by hand),
and then modify them incrementally in the design process. These modifications can involve
adding new triangles and tetrahedra, identifying edges and vertices, etc. We wish to ask,
when are two triangulations “topologically equivalent?” For example, we may wish to com-
pute whether two designs have the same “topological type.” Alternatively, after modifying
a design, we wish to know whether its “topology” has been altered. Indeed, the topological
type of a design may be taken as a design specification, or as an invariant, which no modelling
operation should violate. Finally, we are interested in the physical realizability of a geomet-
ric design. One basic question we may ask is, “Can the design be embedded in Euclidean
Space (R°)?” In general these questions are very hard. One way to attack this problem is
to search for computable topological invariants. For example, one topological invariant we
might consider is the fundamental group. As is well known, given a simplicial complex it is
possible to “effectively compute” its fundamental group, in the sense that one may compute
a presentation for that group. However, deciding the isomorphism of two groups from their
presentations is uncomputable. Indeed, by showing that any finitely-presented group can be
the fundamental group of a compact 4-manifold [ST], it has been shown that there exists
no algorithm for deciding the topological equivalence (homeomorphism) of two compact,
orientable, triangulable 4-manifolds [Mar|.! One may wonder why we seek faster algorithms
for computing homology groups. One motivation is that this fast algorithm is a vital sub-
routine called in the construction of Postnikov complexes. We are working on obtaining a
fast algorithm for computing the higher homotopy groups using this method. This is an
important open problem in algebraic topology and the results in this paper are perhaps the
most important step to obtaining a fast algorithm for its solution. Specifically, to compute
higher homotopy, we must quickly compute the cohomology groups of Postnikov complexes

1See [Mas] for a nice review of this history.



derived from sparse triangulations. It is key that this computation be fast, because it is
done often: this computational bottleneck is perhaps the fundamental barrier to a practical
solution. See [DC] for work in this direction. We show in section 7 how a slight tweak on our
algorithm can compute the cohomology groups of a sparse triangulation in the same time
bounds.

1.1 Statement of Approach and Results

This paper develops the basic concepts of sparse triangulations, and the basic algorithmic
structure of the resulting sparse matrices representing the boundary homomorphisms. We
develop tools that use sparseness to bound the expected growth in density and algebraic com-
plexity. This paper concentrates on the geometric and algebraic consequences of sparseness,
and the reduction of sparse homology computation to a “sparse” computational algebraic
problem which is amenable to probablistic analysis. We introduce tools for analyzing the
resulting “sparse” algebraic problem in a probabilistic setting. These tools yield probabilis-
tic bounds on the growth of algebraic complexity, which is a key obstacle to obtaining fast
algorithms.

1.1.1 Homology Type is Effectively Computable

One topological invariant is the homology type by which we mean all the homology groups
of a triangulation. Henceforth, all homology and chain groups will be taken to have inte-
ger coefficients. A finite triangulation’s homology groups are all finitely generated abelian
groups. These groups have a structure theorem, which tells us that each can be expressed
in normal form as the direct sum of a free abelian group, and zero or more several torsion
groups (quotients of Z),

2°0Z/d®---®Z/d (1)

where the each d; divides the next, i.e., d;|d;|- - - |d;. Furthermore, classical algebraic topology
tells us that these homology groups are effectively computable.? Homology computation has
been considered in a complexity-theoretic setting (for regular CW-complexes and for semi-
algebraic sets) by [SS], among others.

The homology computation for a simplicial complex K is effected as follows:

First, we construct the “chain groups” { C,, } which are free abelian groups generated by
the (oriented) simplices of each dimension. A boundary homomorphism 0, maps from each
Cp to Cp_1. The p** homology group is defined by

Hy(K) = (ker 8,)/(im Gpy1). (2)

We calculate the matrix of the boundary homomorphism in “simplex basis coordinates.”
This matrix is then “diagonalized” over the ring of integers; the diagonal matrix is its

?For a finite triangulation or regular cell complex. See textbooks such as [Mun, Spa] for a good modern
treatment.
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“(Smith) normal form:” The diagonal entries are 1,...,1,d;,d,,...,d,, (r > 0). From this
matrix we may immediately calculate the betti number b and torsion coefficients d;, . . ., d,

that give the cannonical form of the group (1).

1.1.2 Complexity: What Is Known

Our goal here is to study how efficiently the homology type can be computed. Suppose the
input triangulation K has n, simplices in dimension p, and dim K = D for some dimension
bound D. Let n = max,n,. The matrix of each boundary homomorphism has size O(n?).
The computational bottleneck in determinining simplicial homology is the conversion of these
matrices to (Smith) normal form.

In 1861, Smith [Smi] gave what is now considered the classical “reduction” algorithm
showing that an integer matrix can be diagonalized using elementary row and column oper-
ations (see section 4 below). It was noted in the 1970’s that neither the classical algorithm
nor several well-known subsequent algorithms for reduction were known to be polynomial
(see [KB] for a review of these observations). Kannan and Bachem then gave a polynomial-
time algorithm for reduction to Smith normal form. This bound has been subsequently
improved: [CC] provided an O(s!!) algorithm, where for an n x m matrix with maximum
coeflicient p we define s = m+n+log|p|. A paper by [Ili] gives the fastest worst-case bounds
for computing Smith normal form, and hence the canonical structure of abelian groups. The
worst-case bounds given by Iliopoulos are roughly O(s®) The algorithms in [Ili]; [CC] are
different from the classical algorithm. Either of these results could be used to compute the
homology type in (deterministic) times O(Dn'!) or O(Dn?).

In this paper we exploit the sparseness of the matrices and use a probabilistic analysis
to derive a faster algorithm in the sparse, probabilistic case.

This paper reviews the classical algorithm for computing all the homology groups of a
triangulation. While the worst-case analysis of the algorithm indicates that it could run in
doubly-exponential time [Dom]|, we identify a class of common simplicial complexes of the
kind most frequently encountered in geometric design which have a “sparseness” property
that enables the algorithm to run quickly. We formalize this sparseness measure, and then
perform a probabilistic analysis of the sparse case to show that the expected running time
of the algorithm is roughly quadratic in the geometric complexity n (number of simplices)
and linear in the dimension D of the triangulation. The bound obtained in the sparse,
probabilistic case is O(Dn?).

1.1.3 Sparseness

Because diagonalizing over a ring can be expensive, the a prior: worst-case bounds we obtain
are doubly-exponential in n = max,n, [Dom]. However, our problem has a much better
expected (probabilistic) running time because of two properties: (1) the non-zero coefficients
in the boundary matrix are all initially units, and (2) we argue that many triangulations (in
general) and virtually all triangulations in design are very “sparse,” in a sense we now make



precise. The rank n, of C,, is the number of p-simplices in K. Hence, Jp, may be represented
by an nj, x n,_; matrix A,. Now, each p-simplex has a boundary which is a (p—1)-chain. For
example, consider a triangular patch as an oriented 2-simplex [vo, v1,v2]. Now, in general,
for a p-simplex o we have

p

Bp0 = Gp[vo, - - -, vp] = Y (=1)'[vo,..., 5, ..., vp) (3)
1=0
where the “hat” ¢; means that the vertex v; is to be deleted to obtain a (p —1)-simplex. So,
for our triangular patch we have

04[vo, v1, va] = [v1, v2] — [vo, va] + [vo, v1]. (4)

Hence, “encoding” eq. (4) into the matrix A4, requires p + 1 entries (which are +1’s) into
one column of A, (here, p = 2). These are the only non-zero entries in that column. This
suggests a good definition of “sparse”. Since the boundary homomorphism matrix Apisa
np-1 X n, matrix (where n; = rank(C;)), we say that

Definition 2 The boundary homomorphism 8, is sparse if the boundary homomorphism
matriz Ap is sparse. A triangulation K 1is said to be sparse if all its non-trivial boundary
homomorphisms are sparse.

This definition essentially corresponds to the number of p- and (p — 1)-simplices being
much larger than p, which means that the matrix A, will be sparse. We show that

Theorem 3 Given a sparse triangulation K, its homology groups (with integer coefficients)
can be computed in expected time O(Dn?) where D is the mazimum dimension of K and

n = maxp n,.

1.1.4 Which Triangulations are Sparse?

In this section we now give algebraic and geometric criteria that characterize the sparse
triangulations.

We first give an algebraic condition. We use the following intuitive notion: “the x P-
simplices that a (p — 1)-simplex o bounds, are called the coboundary of o, and we call & the
size of the coboundary of o.”

The following formalization is standard and elementary. We view C, as a Z-module and
for a simplex o and an integer c, we define 7 : C, — Z by the rule 7(ao) = |al. 7 extends
to chains as follows. Each chain ¢ can be written as a unique linear combination 3 aio; over

all p-simplices o; (with no repetition of basis elements). We then define 7c = Y aio; ) =

3y (7ra,~a,-) = ¥ |ai|. We define the “dual” map 7* : C? — Z analogously. For any co-chain

c*, we define its weight to be 7*c*. Let § be the coboundary operator (defined to be the dual
of the boundary operator; see section 7). For any p-simplex o, we define its coboundary size
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& to be the weight of §*. The mazimum coboundary size of any p-simplex is the maximum
coboundary size over all p-simplices o, or max, 7*§o*.

Claim 4 (Algebraic Condition for Sparseness) Let x be the mazimum coboundary size
of any (p — 1)-simplez. A boundary homomorphism 8, is sparse if rank(C,_,) > p, and
rank(Cp) > k.

Proof: Definitional. O

We can now give two geometric criteria, either of which is sufficient for sparseness. We
write vertez for “0-simplex” and edge for “1-simplex” where it is mellifluous. First we give
the following definition, which is standard in computational geometry:

Definition 5 A triangulation K has k-bounded local complexity if there is some constant
k such that for all vertices v of K, v is a face of at most k edges.

Then

Proposition 6 (Geometric Conditions for Sparseness) Let N be the number of ver-
tices of a D-dimensional triangulation K. Then K is sparse if either

1. K has k-bounded local complezity, for some k < N, or
2. DL N.

Furthermore, (1) implies (2), but the converse is false.

Proof: (1) First, assume K has k-bounded local complexity, for some k < N. We give
a coboundary size bound. Let o be a (p — 1)-simplex, for p > 1. Consider a p-simplex p
that contains o as a face, and a vertex v of 0. Now, p is formed (up to sign) by taking
o = [vo, ..., vp_1] and adding a vertex v, to obtain p = [vg,...,v,_1,vp). So, in the absence
of bounded local complexity, v, can be any vertex, so the the coboundary size of o could be
N —p.

Call an edge a vo-edge if it contains vy as a face. If there exists a bound k on the number
of vp-edges, we can enumerate the possible p-simplices p that o bounds. Observe that any
such p must contain p vo-edges. These p vo-edges completely determine p (up to sign): p—1
of these edges are edges of o as well, and remaining one is of the form %[vo,v,]. So the
number of different ways we can choose p edges from a list of k edges is (ﬁ) Hence, in a
D-dimensional triangulation, a coboundary size bound for the boundary homomorphism 3,

k). Since p < D, a global coboundary size bound is given by O(kP).

is given by (p

(1) = (2). Note we cannot have D > k since there aren’t enough vp-edges to make any
simplices bigger than dimension k¥ — 1. Hence, the assumption that k¥ < N directly implies
that D < N.



(2) Now, assume D <« N. We consider the densest possible triangulation K on N
vertices. For example, for D = 1, K would simply be the complete graph on N vertices.
The boundary homomorphism d; can be represented by a matrix A; with (N ) columns and
N rows. Each column will be N-long and contain two non-zero entries. Each row will be
(1;' ) -wide and contain N non-zero entries. Hence the column sparseness is measured by the

ratio 2/N and the row sparseness by N/ (1;’) = 2/(N —1). So, for large N, this “densest
possible 1-triangulation” is still sparse.

Now consider the general case of the densest D-triangulation on N vertices. In general,
K will contain all possible simplices on N vertices, up to D dimensions. Let 1 < p < D. A
boundary homomorphism 3,_; can be represented by a matrix A,_; with ( ) columns and

(pN ) rows. Each column will be (pN ) long and contain p non-zero entries. Each row will

be gf )-Wlde and contain (P ) non-zero entries. Hence the column sparseness is measured
by the ratio
pl(N —-p+1)! p! p!

(%) - N TNN-D)(N-1)---(N—p+2)  O(N?

and the row sparseness by

b)) ___»

(N)  N-p+1’

p

where p < D. So, for D <« N, these ratios are very small and hence even the “densest
possible D-triangulation” is still sparse.

(2) does not imply (1). For example, consider the 1-triangulation for the complete graph
on NV vertices. The coboundary size of each vertex is N — 1, but the triangulation is still not
dense when N is large. 0O

Now, obviously, there are triangulations that violate sparseness. For example, a triangu-
lation consisting solely of one 1000-simplex will not be sparse for p &~ 1000. More generally,
if K consists solely of a “small number” of p-simplices, it is not sparse. Now, if p is small,
the diagonalization algorithm is still fast (eg., our implementation is fast for p < 30 even
for non sparse matrices). For larger p, the algebraic complexity will interact with the time
bound. Hence “non-sparseness”, as defined above, captures the notion of when K consists
of a “small number” of p-simplices: this occurs when p approaches (or exceeds) rank(C,_,).

However, in most triangulations, and virtually all geometric designs, the number of p-
simplices is much greater than p. For example, even the standard triangulation of a 2-torus
(or klein bottle) requires 18 2-simplices, 27 1-simplices, and 9 vertices. (There is a difficult
but well-known theorem showing that this triangulation is, in fact, minimal). Physically
manufacturable designs will have D = 3. Almost any “real” geometric design arising in

applications will have hundreds of 2- and 3-simplices, and the ratio (p/ rank( Cp_l)) will be



very small indeed. Even configuration spaces for motion planning will be “sparse” in our
sense. We were initially motivated to develop this probabilistic analysis for the sparse case
because our implementation of this algorithm ran very fast in practice, and we wished to
explain why the worst-case behavior was not attained. We wanted (1) to establish a rigorous
account of this much better average-case behavior, and (2) to classify the triangulations on
which it could be expected. (1) led to our probablistic analysis for the sparse case. (2)
led to our definition of sparseness: on “sparse” triangulations, the quadratic time behavior
can be expected. Of course, the general problem of computing the homology of non-sparse
triangulations is still of theoretical interest, as is the problem of diagonalizing matrices over
an arbitrary euclidean domain. While it is clear that one can make the diagonalization
algorithm run slowly by bad choice of non-sparse examples; however, it is also clear that
probabilistic analysis of the sparse case better predicts the expected complexity of homology
calculation.

1.1.5 Applications

One of our interests is the efficient computation of the higher homotopy groups of simply-
connected spaces (such as n-spheres). That computation is critically dependent on the results
in this paper, which is called often as a subroutine. See [DC] for work in this direction.

However, there are many other applications as well. In geometric design (CAD) we could
take as input two triangulations and compute whether they have the same homology groups.
While isomorphism of all the homology groups does not imply homeomorphism, it does
mean that their “topologies” are “similar.” For example, the triangulations could represent
solid finite-element meshes in mechanical design, or curved surfaces (eg, Bézier systems).
We know that surfaces with torsion homology are generally not embeddable in 3. For
example, for the Klein bottle K and the projective plane P? we have H,(K) = Z & Z/2
and H,(P?) = Z/2, resp. Hence the presence of torsion implies the physical unrealizability
of a design. Thus, for example, we could compute whether a series of modifications to a
design preserves its embeddability, connectivity, number of holes, etc. There is a wealth
of information in the homology groups of a topological space K. In geometric design, the
Euler number x(K) has been suggested as a topological invariant. The Euler Number of K
is computable from the betti numbers in eq (1). Let 3, be the betti number in dimension
p. Then x(K) = ¥,(—1)PB,. Hence it is clear how the homology type provides strictly
more information than the euler characteristic. Because the homology groups carry so much
information about the space, we could indeed imagine a CAD system where the homology
type of the design was part of the design specification, or where designs were classified by
homology type.

1.2 Review of Previous Work

The computability of the homology groups of a simplicial complex is well known basic mathe-
matics; see textbooks on elementary algebraic topology, for example, [Mun; Spa]. Worst-case
deterministic bounds have been given by [Smi; KB; CC; Ili]; see sec. 1.1.2. For work on
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computing cohomology groups, see [Hol; Gla; Lam]. For other work on computational alge-
braic topology, see [Bro; Ani; SS; McC; Hir; Col; Arn; KY; Can; CD]. See also [Whi]. [VY;
Sno| discuss related problems of interest.

2 Mathematical Preliminaries

2.1 Review of Simplicial Complexes

We assume the reader has the intuition that a triangulation or tetrahedralization of a solid
1s a geometric realization of a simplicial complex. This object contains 0-simplices (vertices),
1-simplices (edges), 2-simplices (triangles), 3-simplices (tetrahedra), etc. The set of these is
called a simplicial complez. The intersection of any two simplices must be another simplex
of lower dimension. Clearly, we can represent a p-simplex by its vertices [vo,...,vp]. We
wish to treat a simplicial complex as a purely combinatorial object. We do this by treating
the simplices of a complex as combinatorial objects “independent of their coordinates.” We

define

Definition 7 An abstract simplicial complex K consists of a set {v} of vertices and a set
{s} of finite non-empty subsets of {v} called simplezes such that

1. Any set consisting of ezactly one vertez is a simplez.

2. Any non-empty subset of a simplez is a simplez.

o € K is called a simplez of K, and its dimension is one less than its cardinality. The
vertices of K have dimension 0. The dimension of K is the dimension of the largest simplex
in K.

A geometric realization of o is an embedding ¢ : & — R" such that the image of the
vertices of o are linearly independent. A geometric realization of K is an embedding of each
simplex that preserves the adjacency relationships of K: that is, if o, 7, p are simplices and
o N7 =p, then ¢(c) N P(7) = ¢(p).

Next we define the orientation of a simplex:

Definition 8 Let o be a p-simplez. Define two orderings of its vertices of be equivalent if
they differ by an even permutation. This defines two equivalence classes of vertez orderings
for p > 0. (Vertices have only one class, hence one orientation). Each of these classes is
called an orientation of 0. An oriented simplex is a simplez o together with an orientation
+1 of 0.

Let v, ..., v, be linearly independent points. We shall denote by [vo, . .., v,] the oriented
simplex consisting of the simplex with vertices v, ...,v, and the equivalence class of the
particular ordering vy, ..., vp.



2.2 Review of Simplicial Homology

We now review some well known mathematical background. We first define the chain groups
for a simplicial complex K.

Definition 9 A p-chain on a simplicial complez K s a function c from the oriented p-
simplices of K to the integers that vanishes on all but finitely many p-simplices, such that

c(o) = —c(o)
if o and o’ are opposite orientations of the same simplez.

Definition 10 We add p-chains by adding their values. This yields a group Cp(K), called
the chain group of dimension p. For p <0 or p > dim K, C,(K) is the trivial group.

For every oriented simplex o, we define the elementary chain ¢, as follows: c,(0) = 1,
cs(0’) = —1 (if o’ is the opposite orientation of o), and ¢, vanishes on all other oriented
simplices. Now, it is convenient to write o to denote not only an oriented simplex o, but
also to denote the elementary p-chain c¢,. Hence we write o/ = —o.

We note the following fact: C,(K) is the direct sum of subgroups isomorphic to Z, one
for each p-simplex of K. Hence, Cp(K) is a free abelian group generated by the oriented
p-simplices of K. To “compute” Cp(K), we simply count the number n, of p-simplices, and
“construct” Cp(K') as Z"». This means we view the oriented p-simplices as a basis for C,(K),
and we can write any chain in the group as a finite linear combination 3 k;0;. One example
of such a chain is the RHS of eq. (4).

Next, we define the boundary homomorphism 8, : C,(K) — Cp_1(K) using equation (3).
An example of computing 9, is shown in eq. (4). This constructs a free chain complez (a
differential graded group of degree -1, in which each C, is free abelian):

Bp—

Co(K) 250y (K) 25 .. 20,0 (K)25Co(K). (5)

It is straightforward to show that for all p

Bp (o] 3,,_1 = 0. (6)
Finally, we can define the homology groups, formalizing (2):

Definition 11 The kernel of 8, : Cp(K) — C,_1(K) is called the group of p-cycles and is
denoted Z,(K). The image of Op41 : Cpy1(K) — Cp(K) s called the group of p-boundaries,
and is denoted By(K). By (6), each boundary of a (p + 1)-chain is a p-cycle, so Bo(K) C
Zy(K). We define

Hy(K) = Z,(K)/Bp(K) (7)

to be the p-th homology group of K.



2.3 Computing the Homology Groups

Now, let G and H be free abelian groups with bases 0y,...,0, and p1,..., pm respectively.
For a homomorphism f : G — H, then

(o) = S ao )

for unique integers a;;. The matrix A = ((l,']‘) is called the matriz of f relative to the chosen

bases for G and H.
We recall the following basic theorem from algebra:

Theorem 12 Let A = (a,-j> be an n x m matriz over a principle ideal domain R. Then A

can be “diagonalized” in the sense that we can obtain a diagonal matriz

PAQ (9)

where P € GL(R) and Q € GL,(R). If the diagonal elements of (9) are dy,ds, ..., d;, then
di|dz| - - - |di Furthermore, if R is a euclidean domain, then (9) may be obtained by elementary
row and column operations on A.

This “diagonal” form is called the “normal form” of the matrix; the algorithm to compute
it is called the “reduction algorithm.” Z, of course, is a euclidean domain. We further recall
that the elementary row operations are as follows:

1. Add an integer multiple of row ¢ to row j (z # 7).
2. Interchange rows ¢ and j.

3. Multiple row 7 by a unit (in our case, +1).

Each of these corresponds to a change of basis in H. There are three similar “column”
operations that correspond to a change of basis in G. Theorem 12 therefore states that we
can always apply a sequence of these six operations on A to reduce it to the desired “normal
form.” By viewing the presentation matrices for abelian groups as Z-modules, we obtain
the structure theorem for finitely-generated abelian groups (1). The reduction algorithm
is central to computing the normal form of the boundary homomorphism, and hence, to
computing the homology groups. We review the well-known reduction algorithm in section
4. We proceed now to describe the following classical construction from algebraic topology;
see, for example, [Mun].

1. Let Z, = ker J,, and B, = im 0p4;.

10



2. Let W, be all elements o, of C, such that some non-zero multiple of o, belongs to B,.
W), is a subgroup of Cp, called the group of weak p-boundaries [Mun|. We have

B,cW,CZ,CC,.

3. Using the reduction algorithm, we diagonalize the matrix for d,, that is, we choose
bases 01,...,0, for C, and py, ..., p, for C,_y, relative to which the matrix of 0, has

the normal form

o - - ol o1 - - - on
o g o -

' 0

ol o ' d (10)
P41

) 0 0

oL .

where all the d; are positive, and d;|d;| - - - |d;. It is not hard to show that

(a) O141,...,0n is a basis for Z,.
(b) p1,...,p is a basis for W,_;.
(¢) dip1,...,dipi is a basis for B,_;.

A straightforward computation shows that

Hy(K) = (Z,/W,) & (W,/By). (11)
Now, the group Z,/W, is free, and W,/ B, is a torsion group. Hence, we can calculate

Hy(K) by computing these two groups.

2.3.1 The Algorithm For Homology Group Computation

We proceed as follows. First, we choose bases for the chain groups by arbitrarily orienting
the simplices of K. These orientations remain fixed for the computation. Then we construct
the matrix of the boundary homomorphism relative to these bases. Its entries will all be 0, 1,
or —1. We next reduce this matrix to normal form using the reduction algorithm, obtaining

a matrix like (10). Now,
1. The rank of Z, is the number of zero columns in matrix (10).

2. The rank of W,_, is the number of non-zero rows in (10).
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3. There is an isomorphism

Wp..l/B -1 E Z/dl @ @Z/d[.

Hence, from the normal form of the boundary homomorphism (10) we can “read off” the
torsion coeflicients of K in dimension p — 1; they are simply the entries of the matrix that
are greater than 1. We can also “read off” the rank of Z, and W,_; (see above). Finally,
the normal form for 9,41 gives us the rank of W,. The betti number of K in dimension p is
simply b = rank(Z,/W,) = rank(Z,) — rank(W,).

3 Complexity: New Results

All of the steps in the algorithm given in sec. 2.3.1 are essentially linear-time operations
except the reduction algorithm. The time R(n) required by the reduction algorithm (section
4) in fact dominates the computation of homology type, which can clearly be done in time
O(D(n+R(n))). Wenow examine the reduction algorithm and analyze its complexity. While
worst-case bounds for the reduction algorithm are poor, we describe a sparse probabilistic
analysis which yields an expected time bound that is roughly quadratic.

3.1 Exactly What We Show

An (s, t)-sparse matrix has s non-zero entries per column and ¢ per row. (s, t)-sparse integer
boundary matrices arise in the computation of integral homology. We will give a probabilistic
analysis for diagonalizing an integer (s, t)-sparse matrix into normal formal. By normal form
of a matrix, we mean the diagonalization of the matrix over the ring of integers. We prove
that under high probability the expected running time is O(n?) where n is the size of the
given (s,t)-sparse matrix, i.e. this expected running time can be achieved with probability
very close to 1 when s,t < n.

3.2 Definitions

We now study the classical reduction algorithm (see, e.g. [Mun]) and show that this reduction
algorithm runs fast (i.e. O(n?)) probabilistically on a (s,t)-sparse matrix with non-zero
entries uniformly distributed over the set Zj_,,;\{0}, where Z_, ) is the set of integers in
the interval [—p, p], p is a very small positive integer and n is the size of the matrix. In the
case of integral homology computation, p = 1.

Definition 13 We denote the algebraic complexity of a matriz A by alg(A). alg(A) =
max{|a;;| | ai; is an entry in A}.

Definition 14 Henceforth we will consider diagonalization of an integer matriz A over Z.
We will assume A has n rows and m columns, and without loss of generality we take n > m.
We call n the size of the matriz.

11



Definition 15 An n x m matrizc M is called (s,t)-sparse if each row (resp. column) of M
has ezactly t (resp. s) non-zero elements and s < n and t < m. Furthermore, we require
that the non-zero entries in M are uniformly distributed over the set Zi_,\{0} where p isa
very small positive integer, and each entry of this matriz has equal chance of being non-zero.
For convenience, we define o = log,n, 3 = log, m and assume n > m wlog.

3.3 How We Prove It: the Basic Idea

In this section, we give a brief overview of our approach in order to give the reader the
general idea; a formal and careful exposition comes in section 5.

We proceed as follows. The approach we take in analyzing the probabilistic complexity
of normal form computation is to examine pre-reduction complexity. This operation reduces
the computation on an n X m matrix to the computation on an (n — 1) x (m — 1) matrix.

Definition 16 When an arbitrary matriz is in the form of eq. (1 ), where ay; divides each
element of B, we say the matriz is in pre-reduced form. We call the algorithmic process of
bringing a matriz into pre-reduced form pre-reduction. We call the matriz B in eq. (1) the
remaining matrix after a pre-reduction.

ar, 0 - - .0

(12)

B

0

Examining the steps of the reduction algorithm (reviewed in section 4), and keeping track
of complexity, we note the following simple

Proposition 17 Let ¢, be the smallest non-zero element of the initial matriz A. Then pre-
reducing the matriz can be done in time O(¢ynm). If A is sparse, then pre-reduction can be
done in time O(¢yn). 0O

By a further examination of the reduction algorithm, it is evident that the change in
algebraic complexity of an entry after a pre-reduction depends only on the algebraic com-
plexity before the pre-reduction. Suppose we begin with an (s,t)-sparse n X m matrix A. We
first notice that our original (s, t)-sparse matrix gets denser after each pre-reduction but the
algebraic complexity remains the same (probabilistically) for the first few pre-reductions.
That is, initially, as the matrix is diagonalized, it remains “sparse enough” that a subse-
quent pre-reduction will increase its density, but not its algebraic complexity. However, the
remaining matrix becomes increasingly dense, and this “sparse enough” property is eventu-
ally violated. At this point, we call the remaining matrix “dense”. We show that the dense
remaining matrix we obtain has uniformly distributed entries all of low algebraic complexity.
From our point of view, the difference between “sparse enough” and “dense” is as follows:

12



Definition 18 “Sparse enough” matrices have non-zero elements that are uniformly dis-
tributed and of low algebraic complezity. A pre-reduction of a “sparse enough” matriz will
make it somewhat denser, but will not raise its ezpected algebraic complezity.

Definition 19 The entries of a “dense” matriz are uniformly distributed and of low algebraic
complezity. A pre-reduction of a “dense” matriz is ezpected to raise its algebraic complezity.

We show that the expected number of pre-reductions we can perform before obtaining
a dense remaining matrix B is at least n — ¥/n, and hence the resulting dense remaining
matrix B is of expected size at most /n (recall the definition of size, def. 14). Furthermore,
the entries in this dense remaining matrix B of size at most +/n are uniformly distributed
over the integral interval Zi_,, ) with p a very small positive integer. From prop. 17, we
know that each pre-reduction of a “sparse enough” matrix of size n takes time O(n), and
hence we can obtain our dense remaining matrix B in time O(n?).

It then remains to analyze the complexity of diagonalizing the remaining dense matrix B.
First, we will prove that the algebraic complexity of B changes by a constant amount after
each successive pre-reduction. We show that for the case of integral homology computation
the expected value of this constant is in fact 1. Pre-reducing a general dense n x m matrix
of uniform algebraic complexity p can be done in time O(pmn) (prop. 17). Let r = ¥/n.
Hence we can diagonalize an r x r dense remaining matrix B with initial algebraic complexity
p = 1 in expected time

r

rP+2(r—1)243(r-2>%+... = di(r—i+1)2 = 0(rY). (13)

=1

Clearly, O(r*) = O(n). Hence B can be diagonalized in linear (O(n)) expected time. We
conclude that the complexity of normal form computation for a (s,t)-sparse matrix A is
O(n?) probabilistically where n is the size of A, i.e. This expected running time can be
achieved with probability very close to 1 when s, < n.

In this paper, we analyze our algorithm in the real RAM arithmetic-complexity model.
However, We also notice that the diagonalization of an r x r dense remaining matrix B can
be done in time O(nlog®n) in the bit-complexity model. More generally, let m(s) be the time
required to multiply 2 integers of size < s. Then we rewrite eq. (13) and instead of eq. (13)
we obtain:

im(i)i(r— i +1)?

IN

im(r)i(r —i41)?

= m(r)o(r")
O(m(V/n)n)

13



So even if m(s) = log?s, we have O(m(¥/n)n) = O(nlog®n). Since until the dense remain-
ing matrix B is obtained, the expected algebraic complexity is very low, we can therefore
conclude that the bit-complexity of normal form computation for a (s, t)-sparse matrix A is
also O(n?) probabilistically where n is the size of A, i.e. This expected running time can be
achieved with probability very close to 1 when s,t < n.

In order to prove this result, we describe a number of tools. First we develop a technique
for analyzing the combinatorics of diagonalization, by gathering successive pre-reduction
steps together into “groups” called groups of pre-reductions. By group pre-reduction we mean
a sequence of pre-reductions having the property that each pre-reduction in the sequence
increases the number of non-zero entries in a row by the same expected amount. We then
gather the group pre-reductions into sequences called “phases”. By a phase of group pre-
reductions we mean a sequence of at most /2« successive group pre-reductions, where a =
log, n. Phases of group pre-reductions can be combinatorially cascaded in order to effect
a complexity analysis. We use discrete random variables to model integral matrix entries,
and thereby determine bounds on their expected growth and density. The probabilistic
analysis is complicated by the destruction of uniformness and independence of the matrix
entries after the dense matrix is obtained. However, we are able to show that the entries
are nevertheless conditionally independent and uniform (on the outer row and column). This
admits an inductive probabilistic argument (based on the recursive conditioning) that we
use to derive our theorem on the constant algebraic complexity growth per pre-reduction in
a dense matrix with low algebraic complexity.

In section 6, we generalize our probabilistic analysis to a non-uniform and dependent nxm
(s,t)-sparse matrix, that is a (s,t)-sparse matrix whose entries have dependent and non-
uniform probability distributions on being non-zero. We propose a pre-processing algorithm
using active randomization to destroy the non-uniformness and dependence in order to obtain
a uniform and independent (s,t)-sparse matrix, that is a (s,t)-sparse matrix whose entries
have independent and uniform probability distributions on being non-zero. Then we can use
the reduction algorithm to diagonalize this uniform and independent (s,t)-sparse matrix.
The randomization corresponds to a random “change of basis”, hence the Smith normal form
will be the same. We show that the active randomization algorithm takes time O(n 4+ m).
Hence, we prove that diagonalizing a non-uniform and dependent n x m (s, t)-sparse matrix
can be done in expected time O(n?) with probability very close to 1 as n is large. Therefore,
diagonalizing a (s, t)-sparse matrix takes expected time O(n?).

4 The Reduction Algorithm

We now prove theorem 12 by giving the classical reduction algorithm. In the process we keep
track of the complexity. We observe first that all elementary row (resp. column) operations
take time O(m) (resp. O(n)). The proof uses the division algorithm (i.e., the fact that Z is
a euclidean domain).

Proof (of therorem 12): Let A = (a;,-) be an m X n matrix over Z.
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Step 1 (preprocessing): We find the smallest non-zero element, ¢; of A. (Here smallest means
smallest “size” in the ring—i.e., smallest absolute value). Permute the rows and columns to
move the smallest element to the upper left hand corner, a;;. Multiply the first row by +1
to make a,; positive.

Step 2: Suppose a;; doesn’t divide some entry in the first column, say, a;; fa;:

a1

(14)
a1
L.
Use the division algorithm to obtain
a;; =qan +r (15)

where ¢,7 € Z and 0 < r < a;;. Now we add (—q) times the first row to the :** row. This
replaces a;; by r, while increasing the “size” of the numbers in row ¢ by a factor of ¢. Since
r < @11, @11 1s no longer the minimal element of A. The new minimal element is somewhere
in row ¢ (it may not be r). Repermute the matrix so that the new minimal element is in the
upper left corner.

Step 3: Repeat step 2 until a;; divides every a;; in the first column.

Step 4: Similarly, we may use column operations to reduce to the case where a;; divides
every ai; in the first row.

We observe that step 1 takes time O(mn), step 2 takes time O(m + n). We observe that
steps 3 and 4 terminate because at each step, a;; is decremented by at least one. Hence, we
reach step 5 after O(mn + ¢;(n + m)) time.

Step 5: Subtract off multiples of the first row and column to make all the elements a;; in
the first column and a;; in the first row zero, for 7,7 # 1. Now the matrix looks like this:

(au()'--O
0

(16)

0 /
Now, we wish to ensure that a;; divides every element of the submatrix B. We number

B’s rows and columns starting at 2.
Step 6: Suppose some entry b;; of B is not divisible by a;;. We add row ¢ to row 1 to obtain:
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0
B (17)
\ 0
Next, we apply the division algorithm to obtain
b,‘j =qan +r (18)
with ¢,7 € Z, 0 < r < a;;. We subtract ¢ times column 1 from column j to obtain:
(ayy bz - T oo by
0
(19)

B
0 )

Step 7: Now, at this point, ay; is no longer the minimal element of A, since r < a;;. We go
back to step 1, moving r to aj;. Since the corner element is decreased by at least one each
time, the (entire) process terminates after at most ¢; iterations. Finally, a;; will divide every
entry in B, and the first row and column will be zero, except for a,;. Hence, the matrix has
the form (16), and ay; divides each element of B.

Step 8 (recursive step): We note that if a is an integer that divides each entry of A, and that
if A’ is obtained from A by any row or column operation, then a still divides each entry of
A’. Hence, we can recursively invoke the algorithm on submatrix B. 0O

5 Normal Form Computation of a (s,t)-sparse Matrix

Consider a pre-reduction computation. For the given matrix A = ( a;; ), we can always
find an element a with the smallest size and transform it to the (1,1)-position. Next, we
can use elementary row operations to ensure that this element will divide all the entries in
the first column. We can then subtract off multiples of rows to zero out the entries in the
first column (except for a,,;). This process halts after most |a| row operations (as can be
seen from the Euclidean division algorithm). The entries in the first row can be zeroed out
similarly. Recall prop. 17. Without loss of generality, will assume a,; = 1, because this case
can maximize the possible worst-case increase in algebraic complexity. Now, let’s consider
the following step in a pre-reduction.
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1 ... b .. 1 .. b 1 .. 0

qg .. a .. 0 .. a—-bg .. 0 ... a—bq (20)

Definition 20 We call the step illustrated in eq. (20) a basic step in a pre-reduction.

Definition 21 We call the first row of the matriz A the outer row, and the row containing
a and q hit row. The outer and hit columns are defined analogously.

We are interested in the following two questions for a (s,t)-sparse matrix A:

Question 22 Will a (s,t)-sparse matriz get denser after a sequence of pre-reductions? If
so, how fast?

Question 23 Will the algebraic complexity alg(A) grow after a sequence of pre-reductions?
If so, how fast?

5.1 Change of Density

We notice that a row can get denser after performing a basic step if and only if some zero
entries are converted to non-zero. In the following, we will define a random variable X to
measure the density growth after one basic step.

5.1.1 Discrete Random Variables, Expected Values and Variance of a Basic
Step

For a (s,t)-sparse matrix A, the discrete random variable X is defined as a map from the

set of indices of non-zero entries in the outer row (except the first entry on that row), to the

set {0,1,...,t —1}(i.e. the set of possible number of zero entries being converted to non-zero

in a basic step). We know that the probability of a entry being non-zero in a (s,t)-sparse
¢

matrix A is P(a;; #0) =1—-(1-2)(1- %) =2+ L — 2L For convenience, we define p
s t

to be 24 L — 2= Clearly, p — 0 as £, £ — 0 asymptotically. So we have
Definition 24 The probability distribution function f is defined as follows,

t—1
z

fz)=P(X=z)= ( ) (1-p)(p)~"" (21)

f here is usually called the binomial distribution function.
We know that the expectation F(X) and variance V(X) can be computed easily as
follows,
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E(X) = (t-1)(1-p) (22)

= (t=D0-24 =)t tasp0 (23)
V(X) = (t-1)p(1 - p) (24)
< (t=1)p (25)
_ t(t;1)+s(t;1)_st(:n7—zl)_>0asp_)0 (26)

E(X) and V(X) tell us that, t — 1 zero entries are converted to non-zero in a basic step
of a pre-reduction with probability very close to 1 as p — 0, i.e., the hit row now is expected
to have 2¢ — 2 non-zero entries and no non-zero entries on the hit row are expected to be
hit in a basic step. So, we can also conclude that, the algebraic complexity stays unchanged
with probability very close to 1 as p — 0. Since in a pre-reduction there are exactly s rows
involved, so we have

Proposition 25 After n/s pre-reductions, we obtain an 2°(1 — 1) x (2° — &) remaining
s t

matriz B of ezpected sparsity (2s-2, 2t-2) with probability very close to 1 as 2L 50
asymptotically wheren = 2% m =28 n > m.

Proof: Let us consider the remaining matrix B after the first pre-reduction. The matrix
looks like the one in eq. (12). We know that after the first pre-reduction, some rows of
B have 2t — 2 non-zero entries and some columns of B have 2s — 2 non-zero entries. In
order that the outer row (resp. column) of B has 2t — 2 (resp. 2s — 2) non-zero entries, a; ,
and a3 have to be non-zero in the original matrix A. But we know that P(a;; # 0) — 0
and P(az; #0) — 0 as £, £ — 0. So, the outer row (resp. column) of B will still have ¢
(resp. s) non-zero entries with probability very close to 1 as 2,2 — 0. Then, the second
pre-reduction will convert ¢ — 1 (expected number of) zero entries to non-zero in each of
its hit rows. By the same analysis, we know that we can perform an expected number n /s
of pre-reductions such that during each pre-reduction only ¢ — 1 (expected number of) zero
entries are converted to non-zero in a hit row with probability very close to 1 as 2L 0.
After an expected number n/s of pre-reductions, each row will have at most 2t — 2 expected

non-zero entries and each column will have at most 2s — 2 expected non-zero entries. [

5.1.2 Group Pre-reductions and Phases of Group Pre-reductions

Proposition 25 tells us that during the first n/s (expected number of) pre-reductions, the
expected number of zero entries converted to non-zero in a hit row stays the same with
s t

probability very close to 1 as 2, - — 0 asymptotically. So,
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Definition 26 We group these pre-reductions together and call them the first group pre-
reduction. In general, group pre-reduction means that we group a sequence of successive pre-
reductions together when this sequence of pre-reductions has the property that the ezpected
number of zero entries converted to mon-zero in a hit row stays the same after each pre-
reduction in this sequence of pre-reductions.

We know that after the first group pre-reduction, we get a denser matrix, but the
probability of any entry of this matrix being non-zero is very close to 0 as the ratios
(2s —2)/(2(1 = 1)), (2t — 2)/(2° — &) — 0 asymptotically where 2t — 2 (resp. 2s — 2)
is the expected number of non-zero entries in each row (resp. column) and 2%(1 — 2) (resp.
28 — 2;) is the number of rows (resp. columns) of the remaining matrix after the first group
pre-reduction. In other words, the remaining matrix is still “sparse enough” in the sense that
an additional pre-reduction will not change its expected algebraic complexity (we see this
from the proof of proposition 1 above). Recall that (Def. 19) a dense matrix B is one where
a pre-reduction of B results in an expected increase in algebraic complexity. In general, we
want to know how many such group pre-reductions we can perform before we reach such a
dense matrix. We observe that after one group pre-reduction, the number of non-zero entries
in a row is nearly doubled and P(a;; # 0), where a;; is any entry in the remaining matrix,
is also doubled. But as long as P(a;; # 0) — 0 we can keep performing the next group
pre-reduction.

From the proof of proposition 25 and the definition of group pre-reduction, we can derive
that the expected number of pre-reductions in a group pre-reduction is n’/s’ where n’ is the
size of the matrix before the group pre-reduction and s’ is the number of non-zero entries in
the outer column of the matrix before the group pre-reduction. We now derive the expected
number of group pre-reductions we can perform before P(a;; # 0) 4 0. Suppose the 5t
group pre-reduction contains p; pre-reductions. Then the total expected number of pre-
reductions we can perform before obtaining a dense remaining matrix is ¥; p;. We bound
this sum below.

For convenience in our anal sis, we gather successive rou re-reductions into sequences
’
called “phases” .

Definition 27 The i*h phase of group pre-reductions consists of a sequence of n; group pre-
reductions with n; < \/2a such that after this sequence of group pre-reductions we obtain a
matriz of size 2°® with 0 < a < 1 for some a, where n = 2% is the size of the original matriz.

Also, we will assume that after each group pre-reduction, the number of non-zero entries
in each row is doubled. Now, we claim the following,

Theorem 28 For a given (s,t)-sparse matriz of size n = 2°: The ezpected number of phases
of group pre-reductions is k and the ezpected number of group pre-reductions we can perform
before obtaining a dense remaining matriz is ny + ny + --- + ng where n; < \/2a is the
number of group pre-reductions in the i* phase of group pre-reductions fori =1,2,....k and

k=g
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Corollary 29 The remaining dense matriz is of size at most 23 = ¥/n.

In order to prove theorem 28, we will make several observations about the size (def. 14) of
the remaining matrix after each group pre-reduction. Let us consider the following sequence
of values, each of which represents the size of the remaining matrix after each successive
group pre-reduction. We start out with a matrix of size n = 2° for some a:

after first group pre—reduction 1
—

20 2°(1 - 3) (27)
after second group pre—reduction 20_1(1 _ 1)(2 _ 1) (28)
8 8
after third gro_uﬁ’pre—reducu'on 20_3(1 _ l)(2 _ l)(4 _ l) (29)
8 8 8
(30)
after ith grovﬂare-reducticm 2&—‘7'(1)(1 _ %)(2 _ %)(4 _ %) . (2i _ é) (31)

In deriving the above sequence of sizes of the remaining matrix after each successive
group pre-reduction, we obtained the following recurrence relation on !

W o= 0 (32)
v = 40 4 (33)

The ") here is a combinatorial device to help us find the transition point from the
first phase of group pre-reductions to the second phase of group pre-reductions. Precisely,
when 7‘(1) reaches a, we obtain a sequence of 7 group pre-reductions, and we will show that
i < v2a. According to the definition of a phase of group pre-reductions, we will call this
sequence of ¢ group pre-reductions the first phase of group pre-reductions.

Proposition 30 In the above sequence (27) - (92), if YV = a, then o and i satisfy the
relation o = F1) and the size of the remaining matriz is (1 — -1 (2= 1) = 2me
for some real 0 < a; < 1 .

Proof: From recurrence relation given by the equations (33) - (34) above, we obtain

v = A0+
= 142441
i(i+1)
2

So, after i** group pre-reduction, the remaining matrix has 2% number of rows with 0 <
a; < 1 for some real a; and

1 1 . |
1-2)2=2)---(2=2) = 2me
( s)( S) ( 3) — 00 as @ — 00
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and the number of non-zero entries in a row (resp. column) is 2°¢ (resp. 2's). 0O

We call the above ((27) - (32)) sequence of group pre-reductions before v{*) reaches o
the first phase of group pre-reductions. For convenience, we denote n; to be 7, i.e. n; is the
number of group pre-reductions in the first phase of group pre-reductions. From proposition
30, we know that n; < v/2a. The remaining matrix obtained after the nth group pre-
reduction is of size (1 — 3)(2—1)... (2™ — 1), and the number of non-zero entries in a row

8
(resp. column) of this remaining matrix is at most 2™t (resp. 2™ s) and the ratio

2Ms
G-De-D-@ - 24

1
35
S O-hE-Doe o)) %)
— 0as a — oo and n; = V2a by proposition 30. (36)

For convenience, in our case we define the following,

Definition 31 We define the column sparseness ratio of a matriz to be the ratio of the
number of non-zero entries in a column to the size of the column. The row sparseness ratio
is defined analogously. We will simply write sparseness ratio when they are the same.

For example, eq. (34) is the sparseness ratio of the remaining matrix after the first phase
of group pre-reductions.

Definition 32 We let n’ (resp. m') denote the number of rows (resp. columns) of the
remaining matriz after the first phase of group pre-reductions, and t' (resp. s') the number
of non-zero entries in a row (resp. column).

The total number of non-zero entries in the remaining matrix after the first phase of
group pre-reductions is n't’ = m’s’. So, the ratio 'fl—', — 0 as a — oo, i.e. the probability
of any entry being non-zero in the remaining matrix after the first phase of group pre-
reductions is very close to 0 as :—’,, ':.—', — 0 asymptotically. Hence, we can keep performing
group pre-reductions.

Now we start out with the remaining matrix of size 2% and obtain the following sequence
of values, each of which represents the size of the remaining matrix after each successive group

pre-reduction.

ga1a after 1°t gro'ifrc—reducn'on 2010_'“(2“1 _ l) (37)
8
after 2nd grouﬂre—reduction 2,”0_"1_("1_“)(2,“ _ l)(2"1+1 _ l) (38)
8 8

after 37¢ group pre—reduction ara—ny —(ny+1)=(n1+42) (on, 1 i+l 1 ni+2 l
— 2 (2™ - it -5 -3) (39)
(40)
after itk grouﬂre—reduction 2“10-7.(2)(2"1 _ l)(2"1+1 _ l)(2"1+2 _ l) o (2"1""'—1 _ l) (41)

8 8 8 S
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In deriving the above sequence of sizes of the remaining matrix after each successive
group pre-reduction, we obtained the following recurrence relation on 7,(2):

7((,2) = m (42)
7'_(2) = 'y,-(f)l +n+21-1 (43)

The 7,(2) here is a combinatorial device to help us find the transition point from the
second phase of group pre-reductions to the third phase of group pre-reductions. Precisely,
2) . . . .
when v;” reaches a,a, we obtain a sequence of 7 group pre-reductions, and we will show that
t < V2a. According to the definition of a phase of group pre-reductions, we will call this
sequence of < group pre-reductions the second phase of group pre-reductions.

Proposition 33 In the above sequence (35) - (40), if v® = a1, then a o and i satisfy the
relation a;a = ﬁ"2_—11-+-nli where n, is the number of group pre-reductions in the first phase of
group pre-reductions and the size of the remaining matriz is (2™ —2)(2m+1 —1)... (2m+i-1_
2) =2%%2 for some real 0 < a; < 1.

Proof: From the recurrence relation given by the equations (41) - (42) above, we get
1 = AP i1
= m+(m+1)+(m+2)+---+(n1+:-1)
(i —1)

So, after i** group pre-reduction, the remaining matrix has 29192 pumber of rows with
0 < ay < 1 for some real a; and

1 1 : 1
(21’11 _ _)(2n1+1 _ _) .. (2ﬂ1+l—1 _ _) — 201020 — 00 as a — 00.
S S . S

and the number of non-zero entries in a row (resp. column) is 2™+t (resp. 2Mtis). 0O

We call the above ((35) - (40)) sequence of group pre-reductions before v{?) reaches o
the second phase of group pre-reductions. For convenience, we denote n, to be i, i.e. n,
is the number of group pre-reductions in the second phase of group pre-reductions. From
proposition 33, we know that n, < v/2a. The remaining matrix obtained after the nth group
pre-reduction is of size (2™ — 1)(2m+! — 1)... (gm+ra—1 _ %) and the number of non-zero
entries in a row (resp. column) of this remaining matrix is at most 2" +"2¢ (resp. 2™ +m2s)
and the sparseness ratio
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2n1+"23
(2m — %)(2n1+1 - 1) cee(2mAne — 1)

8 8

1
(2m — %)(2n1+1 — %) s (2mAnz-2 _ 1y

s

<

— 0as aia — o0 and n; = V2a by proposition 3.
For convenience, we define the following,

Definition 34 We let n” (resp. m”) denote the number of rows (resp. columns) of the
remaining matriz after the second phase of group pre-reduction, and t" (resp. s") the number
of non-zero entries in a row (resp. column).

The total number of non-zero entries in the remaining matrix after the second phase of
group pre-reductions is n”t” = m”s”. So, the ratio % — 0 as a — oo, i.e. the probability
of any entry being non-zero in the remaining matrix after the second phase of group pre-
reductions is very close to 0 as :—’,’,, % — 0. Hence, we are ensured that we can perform at
least n; + ny group pre-reductions.

In general, we can use this combinatorial device '7,-(1-1) to find the transition point from
the (j — 1)** phase of group pre-reductions to the j** phase of group pre-reductions. After
the jt* phase of group pre-reductions, we obtain a remaining matrix of size Ij = 2%92aja
with 0 < a; < 1 for ¢ = 1,2,...,5, and each row (resp. column) of this remaining matrix
has T; = 2m+m++nit (resp. A; = 2m*m2+-+ni5) non-zero entries. Since the remaining
matrix becomes denser after each phase of group pre-reductions, the process of performing
pre-reductions without changing the expected algebraic complexity of the remaining matrix
has to stop after the k** phase of group pre-reductions for some k, i.e. the remaining matrix

we obtain after the k** phase of group pre-reductions is dense (recall def. 19).

Proposition 35 Before we reach a dense remaining matriz, the sparseness ratio after each
phase of group pre-reductions is very small (i.e. very close to 0).

Proof: Let us suppose that after the j** phase of group pre-reductions, we obtain a dense
remaining matrix, i.e., with sparseness ratio (see def. 31) %}L ~ 1. After each phase of group
pre-reductions, the size of the matrix shrinks while the density grows. So, without loss of
generality, we only need to consider the sparseness ratio after the (j — 1)** phase of group
pre-reductions. We have Aj_; < A;/2 since Aj_; = 2mtrmettnji—ig A, = 2mtnatotnjg
and n; > 1. Also we have [';_; = [¢ since T; = 2m9279i-12 T = 2m9295% and q; ~ %
for some integer ¢ > 2. Therefore, the sparseness ratio after the (; — 1)** phase of group
pre-reductions:




IN

Q

is very small indeed. 0O

Therefore, before we reach a dense remaining matrix, each pre-reduction can be done in
linear time (i.e. O(n)). Now, we are ready to prove theorem 28.

Proof of theorem 28:
We obtain a bound k on the number of expected phases of group pre-reductions. We
know that after n; + ny + - - - + ny of group pre-reductions, the size of the remaining matrix

i1s 29192 Now, suppose k > JC We derive a contradlctlon Since a — oo, & — oo.

Hence, [T%.,a; = 0 as k — oo because 0 <a <1, =1,2,..,k. Then 2™ > 2a02-aka
because n; ~ /2a and lemma 1 below. Now, the number of non-zero entries after k£ phases
is s = 2™+ t+mk and the size of the remaining matrix is Ny = 201929ka Clearly, si > Ni
as k — oo, which is a contradiction. Thus the assumption that that k > L is false. Hence,

k< 3/—- Therefore, we can perform at most >C phases of group pre- reductlons 1.e. kis at
most 3/—_ By proposition 31, the remaining matrlx 1s sparse enough before we reach a dense
remaining matrix. So, we can perform exactly [385 ] phases of group pre-reductions. By

propositions 30 & 33, we see that n; < v/2a,i = 1,2,..., k, therefore ny + ny + -+ + ng < <.
Hence, the remaining dense matrix is of size at most 2% = /n. 0O

Lemma 36 Let n; = v2a and [[5.,a; = 0 as k — oo where 0 < a; < 1 fori =12 ..
Then 2™ > 201020x@ g5 |k o,

Proof: Since we have
log,2 > 0

logaHa,- — —o0as k — oo

Therefore,
log, V2a = %(loga 2+1)

k

> 1+log, [Jaias k —
=1

= log, aja;---ara

Hence, v2a > aja; -+ - ara ie, 2™ > 201020k a5 |, o []
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is at most 38@ and the expected size of the remaining dense matrix is at most 2% = ¢/n. In
the next section, we consider diagonalizing this remaining matrix. We will show that the
algebraic complexity is increased by a constant after each pre-reduction on a dense matrix
with low algebraic complexity. In the case of integral homology group computation, the
algebraic complexity is initially 1, and we show that the expected algebraic complexity in
this case is actually increased by 1 after each pre-reduction. Recall proposition 17, that each
pre-reduction on a dense matrix takes time O(¢mn) where ¢ the smallest (in size) non-zero
entry of the dense matrix and n (resp. m) is the number of rows (resp. columns) of this dense
matrix. So, the total expected running time for a dense matrix of size r = /n with initial
algebraic complexity 1 is given by eq. (13) which is O(n). Hence, the dense remaining matrix
obtained from pre-reducing a sparse enough initial matrix of size n can be diagonalized in
expected linear time. This expected running time is achieved with probability very close to
1 when n is large.

5.2 Change of Algebraic Complexity

From last section, we know that after k¥ < 38@ phases of group pre-reductions, i.e., after
Y%, n; group pre-reductions with n; < v/2a. We are left with a dense matrix of entries
uniformly distributed over Z_, . Pre-reducing a dense matrix will change the algebraic
complexity since the non-zero entries will be hit. We want to find a fast probabilistic bound
on the growth of algebraic complexity. In the following, we will prove that, the algebraic
complexity is increased by a expected constant per pre-reduction with probability very close
to 1 when the size of the original matrix n is large.

5.2.1 Pre-reducing a Dense Matrix With Low Algebraic Complexity

In this section, we only consider a dense matrix A having entries uniformly distributed over
Z;_,;. We would like to know whether after a pre-reduction, the remaining matrix has
independent entries that are uniformly distributed.

Proposition 37 After the first pre-reduction of the dense matriz A, the uniformness and
independence of entries in B are destroyed where B is the remaining matriz obtained after
first pre-reduction.

Proof: Let us consider eq. (20). We have over all 27 ways to choose the triple (a, b, q)
from Z(_;,1) X Z(_1,1] X Z[_1,1]- Among these 27 triples, 9 triples will result in |a — bq| = 0,
14 triples will result in |@ — bg| = 1 and 4 will result in |a — bq| = 2 after a basic step in
a pre-reduction. We conclude that, the uniformness of entries in B is not preserved after a

pre-reduction.
Let us now consider the following basic step in a pre-reduction:

25



1 ... X .Y .. 1 .. 0 0

Z .U ..v . |\"lo . Uv-x2 . v_-vZz . (44)

where X,Y,Z,U and V are discrete random variables taking values in Z(_, ;). In order to
determine whether U — XZ and V — Y Z are independent, we will check whether E(U —
XZ)E(V —YZ)is equal to E(U - XZ)(V —YZ)). We have

E(U-XZ)E(V -YZ)

= (E(U)- E(X)E(Z))(E(V) - E(Y)E(2))

= E(U)E(V) - E(U)E(Y)E(Z) - E(V)E(X)E(Z)+ E(X)E(Y)E(Z)?
E((U-XZ)(V -YZ))

= E(UV-UYZ-VXZ+XYZ?

= E(U)E(V)- E(U)E(Y)E(Z)- E(V)E(X)E(Z) + E(X)E(Y)E(Z?)

But we know that E(Z%) # E(Z)% so E(U - XZ)E(V-YZ) # E(U - XZ)(V - YZ)), ie.
U—-XZ and V —YZ are not independent. 0O

Proposition 37 tells us that if we only consider the probability distribution for the alge-
braic complexity of entries in the remaining matrix B, it will be very complicated to derive
the probability distribution of algebraic complexity growth after in turn pre-reducing this
matrix B, since we don’t have independence and uniformness on the entries in matrix B.
However, we notice that the change of algebraic complexity of entries in matrix B depends
solely on the outer row and column of matrix A, and the entries in matrix A are indepen-
dent and uniform. So, in the next section, we will introduce conditional independence and
uniformness of entries in the remaining matrix (conditioned on the outer row and column).
This essentially enables us to derive a theorem on constant growth of algebraic complexity
after each pre-reduction by an inductive probabilistic argument.

5.2.2 Conditional Independence and Uniformness After Pre-reducing a Dense
matrix

Definition 38 Events A and B are called conditionally independent on event C if
P(AB|C) = P(A|C)P(B|C).

Definition 39 Events A;, As,...,An, are called conditionally uniform on event C if
P(A,|C) = P(Ay|C) =--- = P(4,]C).

Since we have that entries in the outer row and column of the matrix A are uniformly
distributed and independent, we claim the following
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Proposition 40 The entries in the remaining matric B obtained after pre-reducing the
dense matriz A are conditionally uniform and independent on the outer row and column in

A.

Proof: Let us first prove the conditional uniformness of entries in B. We consider the
following basic step in a pre-reduction.

1 ... Y .. 1 .. 0

X ..z |70 .. z-xy .. (45)
where X,Y and Z are discrete random variables taking values in Z_,,. We want to show
that the random variable Z — XY is conditioned on the values of X and Y. Fix X and
Y to be constants c; and c; respectively. We know that Z is uniformly distributed before
the basic step is performed. Now subtracting a constant c¢,c; from Z simply means shifting
the uniform interval by cic;. So, Z — cjc; is uniformly distributed. Hence, Z — XY is
conditionally uniform on the outer row and column.

Now let us derive the conditional independence of entries in B. We have three cases to
consider. They are 1) entries in the same row, 2) entries in the same column, and 3) entries
in different rows and columns.

Case 1) independence of entries in the same row:
We consider the following basic step in a pre-reduction.

1 ... X .. Y .. 1 .. 0 0

zZ .. X .Y . 0 .. X'-XZ .. Y-YZ (46)
where X, X", YY"’ and Z are discrete random variables taking values in Z_,,). Again, by
conditioning on the outer row and column, we fix these discrete random variables X,Y and
Z to be some constants c¢;,c; and c3 respectively. Since X’ and Y’ are independent, so
X' — ci1c3 and Y’ — cyc3 are independent. Hence, X’ — XZ and Y’/ — Y Z are independent
conditioned on the outer row and column.

Case 2) independence of entries in the same column:

This case is symmetric to case 1), so the analysis is similar to that of case 1).

Case 3) independence of entries in different rows and columns:
We again consider the following basic step in a pre-reduction.

1 ... X .Y .. 1 .. 0 0

’ I _
zZ ... X' ... . .. . 0 ... X'-XZ (47)
z' .. ... .. Y .. 0o .. .. Y -YZ
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where X, X', Y,Y’,Z and Z’ are discrete random variables taking values in Z_, ;. Again,
by conditioning on the outer row and column, we fix these discrete random variables X,Y, Z
and Z’ to be some constants c;, ¢, c3, and ¢4 respectively. Since X’ and Y were independent,
so X' —cic3 and Y’ — cy¢4 are independent. Hence, X’ — XZ and Y’ — Y Z’ are independent
conditioned on the outer row and column. 0O

In general, the uniformness and independence of entries in A;, which is the remaining
matrix obtained after :** pre-reduction, is recursively conditioned on the outer row and
column in A;_; which is the remaining matrix obtained after (i — 1)** pre-reduction. There
are two cases. In the first, the dense remaining matrix is “small”. In the second, it is “large”.
We must show that in both cases, it can be quickly diagonalized. To do this we must show
that the algebraic complexity grows slowly.

Remark 41 As we see from the sparsness property and the proof of proposition 87 above,
during the first few (i.e. O(1)) pre-reductions of a dense matriz of low algebraic complez-
iy, the algebraic complezity is increased by a expected constant after each successive pre-
reduction. So, for a constant size (i.e. O(1)) dense matriz, we can diagonalize this matriz
in constant time O(1). On the other hand, when the size of a dense matriz of low algebraic
complezity is large, Theorem 42 below ensures us that the ezpected algebraic complezity is
still only increased by a constant amount after each successive pre-reduction.

Hence we conclude this section with the following theorem.

Theorem 42 The algebraic complezity of a dense matriz increases by 1 after each pre-
reduction with probability very close to 1 when the size of the original dense matriz is asymp-
totically large.

Proof: ~ We proceed by induction on the number of pre-reductions.

Base case: entries a;; in A; are independent and uniformly distributed over Z_, 3 con-
ditioning on the outer row and column of matrix A by proposition 37.

Inductive hypothesis: alg(A;) = alg(A;_;1) + 1 with high probability.

Inductive step: We perform a pre-reduction on A;. Recall the basic step as illustrated
in eq. (20), if ¢,a,b € Z[_i41,_1], then by inductive hypothesis, with very high probability
a—bq € Z_;;). By enlarging Zj_;y,,_1) to Z[_;;, we want to know how many ways there
are to choose ¢, a,b so that |a — bg| > i + 2. We have the following three cases to consider:

Case 1) We fix ¢ to be 7, then we have 4:2 ways to choose a and b so that |a — bg| > 7 + 2.
Similarly for fixing ¢q to be —q.

Case 2) We fix b to be 7, then we have 4:? ways to choose a and b so that |a — bg| > i + 2.
Similarly for fixing b to be —i.

Case 3) We fix a to be 7, then we have 4(i—1)? ways to choose g and b so that |a—bq| > i+2.
Similarly for fixing a to be —:.

So, totally we have 1612 +8(: — 1) ways to choose a, b and ¢ so that |a —bg| > i +2. But
there exist 8: ways of choosing a, b, ¢ over all. since ﬁ%‘_—lﬁ ~1-50asi— oo, and
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entries of A, are independent and uniformly distributed over Z[_;;,;_) conditioned on the
outer row and column of A;_;, so the probability of having a,b and q so that |a — bg| > i + 2
is very close to 0 as 1 — oo.

Hence, we have alg(A,+1) = alg(A;) + 1 with probability very close to 1 when the size of
the original dense matrix is large. 0O

6 Active Randomization of a (s,t)-sparse Matrix

6.1 Introduction

Our motivating technical problem (sec. 1.1.3) was to consider “random” sparse simplicial
complexes. Our analysis has concerned “random” (s,t)-sparse integer matrices. Unfortu-
nately, these two categories are not in one-to-one correspondence because not every random
(s,t)-sparse integer matrix corresponds to a legal boundary matrix of a triangulation. We
now show how using active randomization we can get around this problem. Specifically, while
the boundary matrices arising in homology-type computation of a triangulated geometric de-
sign are sparse as discussed above, they can have non-uniform distribution and dependence
on the probability of their entries being non-zero. Namely, two g-simplices in a triangulation
can intersect at some common face, hence constraining some entries in the boundary matrix
to be zero. This constraint arises from the simple fact that two simplices of the same dimen-
sion must have at least one different vertex. Hence the boundary matrices have non-uniform
distribution and dependence on the probability of their entries being non-zero (see sec. 1.1.3
for discussion on the boundary matrices). However, in our probabilistic analysis of normal
form computation of a (s,t)-sparse matrix, we assumed that a given (s, t)-sparse matrix has
uniform distribution and independent probabilities on its entries being non-zero. Now, we
want to relax this assumption. We show that our results go through for a given (s, t)-sparse
matrix with non-uniform distribution and dependence on the probability of its entries being
non-zero. For convenience, we will adopt the following definitions.

Definition 43 A (s,t)-sparse matriz is called non-uniform and dependent if it has non-
uniform distribution and dependence on the probability of its entries being non-zero. It is
called uniform and independent if it has uniform distribution and independent probabilities
on its entries being non-zero.

Definition 44 A permutation o on n digits is called random if o is uniform among all
n! permutations on n digits, i.e., for j € Zpn), the probability P(o(i) = j) = L and for
ai, @y, ..., ai—y all distinct and different from j, P(o(i) = j l o(l) = a1,0(2) = az,...,0(i —

1) =a;.1) = jog with 1 <i <n.

In order to cope with non-uniform and dependent boundary matrices in our probabilistic
analysis of normal form computation, we propose to actively randomize a given non-uniform
and dependent (s, t)-sparse matrix. By active randomization, we mean the following:
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Definition 45 Consider a n x m (s,t)-sparse matriz A, that is non-uniform and dependent.
We define a new n x m matriz A’ as follows. We generate a random permutation o on n
digits, and initialize the O'(i)"' row in matriz A’ to be equal to the i** row of matriz A for all
¢ with 1 <2< n. This is called a random row permutation.

Definition 46 A random column permutation is defined analogously. Active randomization
18 a sequence of random row and column permutations.

We will derive the number 3 of random row and column permutations we need to perform
during active randomization in order to obtain a uniform and independent n x m (s, t)-sparse
matrix. We show that 3 is two, i.e., one random row permutation and one random column
permutation. Because of the (s, t)-sparseness of the matrix, each random permutation takes
linear time (i.e., O(n)). So, even a non-uniform and dependent (s,t)-sparse matrix can be
diagonalized into normal form in expected time O(n?) with very high probability, i.e., this
probability is very close to 1 as n is large.

6.2 Active Randomization of a Non-uniform and Dependent
(s,t)-sparse Matrix

We first describe a pre-processing algorithm employing active randomization to convert a
n X m non-uniform and dependent (s, ¢)-sparse matrix into a uniform and independent one
with two random row and column permutations. In other words, we perform one random
row permutation and one random column permutation. Then we will show that these two
operations suffice to perform to actively randomize a non-uniform and dependent (s, t)-sparse
matrix so that a uniform and independent (s, t)-sparse matrix can be obtained.

Lemma 47 A random permutation on n digits can be generated in linear time (i.e. O(n)).

Proof:

We start out with a permutation o such that o(:) = i for 1 < ¢ < n. Weloop n — 1
times. At the i** iteration, we pick a random number j from Z, and interchange ()
with o(j). At the end, we obtain a new permutation o. For any k € Z; »}, the probability
P(o(i) = k) = L and for ay,as,...,a;_1 € Zy ) all distinct and different from k, P(o(:) = k
| 2(1) = a1,0(2) = agy...,0(i — 1) = a;_;) = 7> 50 the newly obtained o is a random
premutation. Clearly, the above process of generating a random permutation takes linear

time, i.e., O(n). O

6.2.1 The Algorithm for Active Randomization

We proceed as follows. Let A be the given non-uniform and dependent n x m (s, t)-sparse
matrix and A’, A” be dummy n X m matrices
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Algorithm 48 (Active Randomization)

Step 1) We generate a random permutation o on n digits. We loop n times. At the it
iteration, we replace the o(i)* row of matriz A’ with the i** row of matriz A.

Step 2) We generate a random permutation 7 on m digits. We loop m times. At the ith
iteration, we replace the 7(1)™ column of A" with the i** column of matriz A'.

When diagonalizing a given non-uniform and dependent (s,t)-sparse matrix, we first
apply the active randomization algorithm as a pre-processing step to obtain a uniform and
independent (s,t)-sparse matrix. Then we apply the reduction algorithm to obtain the
normal form of the original non-uniform and dependent (s, t)-sparse matrix.

6.2.2 Probabilistic Analysis of Active Randomization

Clearly, the normal form of a matrix is unchanged under any permutations of rows and
columns since such permutations are part of the elementary row and column operations
in the reduction algorithm. So, the normal form of a matrix is preserved under random
permutations of rows and columns. More importantly, we are interested in the following
question:

Question 49 Can we perform active randomization on a non-uniform and dependent (s,t)-
sparse matriz such that a finite number of random row and column permutations results in
a uniform and independent matriz? If so, what is the number of random row and column
permutations we need to perform?

For the purpose of this paper, we can wlog assume that the non-zero entries in the
non-uniform and dependent (s,t)-sparse matrix are taken from the set {—1,1}. We can
easily generalize to non-uniform and dependent (s,t)-sparse matrices with small algebraic
complexity.

In order to answer the above question, let us first introduce some standard tools from
probability theory, namely, discrete random variables. Let X be a discrete random variable
defined on Z; ) X Z[1,m) and taking values from the set Z[_; ;). Let X; (resp. Xj) be discrete
random variable defined on Zy; ) (resp. Z[;,m)) and taking values from Zy ) (resp. Zpim)).
Clearly, the composite of X with X; and X is also a discrete random variable. In addition,
we require that the discrete random variables X have the following probability distribution,

S t st

Px=0) = 1-2-t 5L (48)
P(X#0) = 242 -2 (49)
P(X=-1) = P(X=1), (50)

Xi and X have uniform probability distribution, and X, X;, X, are independent discrete
random variables. For a given non-uniform and dependent matrix B, we want to know
whether we can actively randomize A to obtain a matrix A’ so that

P(A;; #0) = P(X(,j) # 0) (51)

31



and the probabilities of its entries being non-zero are independent. Recall the probability
distribution of entries being non-zero for a uniform and independent (s, t)-sparse matrix in
section 2.1.1. By requiring the above probability distribution (i.e., eq. (48), (49) & (50)) and
independence for the discrete random variables X, X; and X, we see that the composite of X
with X; and Xj, i.e., X(X,, Xj), in fact describes the independent probability distribution
of an entry in a uniform and independent (s,t)-sparse matrix. So, if the probabilities of
entries in the matrix (after active randomization) satisfy eq. (51), we obtain a uniform and
independent (s,t)-sparse matrix. Also we will see later that X; and X, capture a random
position to which an entry in the original non-uniform and dependent n x m (s,t)-sparse
matrix is moved after one random row permutation and one random column permutation.

We know that after applying the active randomization algorithm, each entry in the orig-
inal matrix A is moved to somewhere. The following lemma will tell us that each entry of A
is moved to a random position.

Lemma 50 Let A be a non-uniform and dependent n X m (s,t)-sparse matriz and A’ the
resulting matriz. Then A}(‘,(k), X0 = Ak where X; and X; are discrete random variables
defined above.

Proof:
We wlog assume A; , = Ag;. Let O sit at the (k,[)-position and A at the (u,v)-position.
we have the following picture:

(52)
o

Setting X; (resp. Xj;) to some value u (resp. v) with probability 1 (resp. 1) corresponds

to randomly permuting to a row (resp. column) which happens to be the ut* row (resp. vt
column) and moving < to the (u,v)-position. So, pair (X;, X;) captures a random position
to which an entry in the original non-uniform and dependent (s, t)-sparse matrix is moved.

O

Theorem 51 After actively randomizing a given non-uniform and dependent n x m (s,t)-
sparse matriz by performing one random row permutation and one random column permu-
tation, we obtain an (s,t)-sparse matriz with uniform distribution on the probability of its
entries being non-zero.

Proof:

Let A be a given non-uniform and dependent (s,t)-sparse matrix. We want to show that
after one random row permutation and one random column permutation, we can obtain a
resulting matrix A’ with

P(AL; #0) = P(X(k,1) #0) (53)
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where 1 < k < n,1 <1< m. In order to achieve the equality in eq. (53), we certainly need
to assign
Ax.x;0) = Akt (54)

By lemma 50, eq. (54) is guaranteed to be achieved. O

Theorem 52 After actively randomizing a given non-uniform and dependent n x m (s,t)-
sparse matriz by performing one random row permutation and one random column permu-
tation, we obtain a (s,t)-sparse matriz with independent probabilities of its entries being
non-zero.

Proof:

Let A be our given non-uniform and dependent (s,t)-sparse matrix. We want to show that
after one random row permutation and one random column permutation, we can obtain a
resulting matrix A’ such that P(A},; # 0) and P(A] , # 0) are independent with 1 < k,u <
n,1 <l,v<m and k # u or [ # v. In order to achieve these independent probabilities, we
certainly need to have

k= X(k1) (55)
A, = X(u,v). (56)

In order to achieve eq. (56) & (56), we need to assign

A xi) = Ak (57)
AIX.'(u),Xj(v) = Au,u- (58)

By lemma 50, eq. (57) & (58) are guaranteed to be achieved. 0O

Theorems 51 & 52 prove the correctness of our active randomization algorithm. We have
already noticed that uniformness and independence are stable in the sense that performing
any additional active randomization on a uniform and independent (s, t)-sparse matrix will
not destroy its uniformness and independence. Therefore, we conclude that performing active
randomization by using one random row permutation and one random column permutation
on a n X m non-uniform and dependent (s,t)-sparse matrix will result in a uniform and
independent (s,t)-sparse matrix.

7 Cohomology Group Computation of a Triangula-
tion

We can also compute all the cohomology groups of a triangulation in the same time bound.
Henceforth, all the cohomology and cochain groups will be taken to have integer coefficients.
The cohomology computation for a simplicial complex K is effected as follows:
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First, we recall that the chain group C,(K) of p-chains is free abelian; it has a standard
basis consisting of all the oriented p-simplices. Let {0,}acs be the standard basis. Let
{02 }acs be the dual basis such that

a;(a)={1 if o =0,

0 otherwise

So, every element of CP(K; Z) = Hom(C,(K), Z) is a linear combination of elements of the
dual basis {02 }acs, i.e. CP(K; Z) is a free abelian group with basis {0 }acs.
Second, the coboundary operator ¢ is defined to be the dual of the boundary operator
0: Cpy1 — Cp. Thus,
§:CP(K;Z) — CP*Y(K; Z),

defined by
(6Cp’ dp+1> = (Cpa adp+l>

where (-,-) denotes evaluation, ¢® € CP(K; Z),dpy1 € Cpy1(K; Z). Clearly, é is a homomor-
phism.

Third, define ZP(K; Z) to be the kernel of § and BP*!(K; Z) the image of §. Then, the
p** cohomology group is defined to be

HP(K;Z) = Z,(K; Z)/By(K; Z).

Finally, the matrix associated with 0 is called the boundary matrix. By the structural
theorem of free abelian groups, computing the normal form of the boundary matrix of 9 gives
rise to the structure of Hy(K; Z). From linear algebra, we know that the matrix associated
with 8, which is called the coboundary matrix, is the transpose of the corresponding boundary
matrix. Since the cohomology groups are also free abelian, computing the normal form of
the coboundary matrix (i.e. the transpose of the boundary matrix) gives the structure of
the cohomology groups.

8 Conclusions and Future Work

We have described an algorithm for computing all the homology and cohomology groups of
a triangulation. While the worst-case analysis of the algorithm indicates that it could run
in doubly-exponential time, we identified a class of common simplicial complexes of the kind
most frequently encountered in geometric design which have a “sparseness” property that
enables the algorithm to run quickly. We formalized this sparseness measure, and then gave
a probabilistic analysis of the sparse case to show that the expected running time of the
algorithm is roughly quadratic in the geometric complexity (number of simplices) and linear
in the dimension.

Cohomology group computation is one the essential steps in computing the higher homo-
topy groups of a simply-connected triangulation. By using our fast probabilistic algorithm
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(in section 7), we are working to obtain efficient and simple algorithms for computing the
higher homotopy groups of a simply-connected triangulation (see [DC]).

There is a great deal of future work to be done. For example: (1) Probabilistic computa-
tion of homology for regular cell complexes and CW complexes. (2) Probablistic computation
of other topological invariants. (3) Computation of the cohomology ring operations. As is
well-known, the cohomology groups of a space are completely determined by its homology.
However, they come equipped with a natural “cohomology operation” that gives the groups
a ring structure. Spaces with identical homology and cohomology groups can have differ-
ent ring structure, hence, the ring structure distinguishes “more finely” between spaces.
Deciding ring isomorphism for graded Hopf algebras is a central problem here. Fast algo-
rithmic solutions to this set of problems will prove a considerable challenge to researchers in
computational algebraic topology.
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