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Abstract. In this short note we study the asymptotic behaviour of the
minima over compact intervals of Gaussian processes, whose paths are
not necessarily smooth. We show that, beyond the logarithmic large
deviation Gaussian estimates, this problem is closely related to the clas-
sical small-ball problem. Under certain conditions we estimate the term
describing the correction to the large deviation behaviour. In addition,
the asymptotic distribution of the location of the minimum, condition-
ally on the minimum exceeding a high threshold, is also studied.

1. Introduction

Let X =
(
X(t), t ∈ R

)
be a centered Gaussian process with continuous

sample paths. For a compact subinterval [a, b] of the real line we are in-
terested in the right tail of the random variable mina≤t≤bX(t). This is a
complicated object; see e.g. Guliashvili and Tankov (2016) and Adler et al.
(2014). On the logarithmic scale, however, this tail can be described as
follows:

(1.1) lim
u→∞

1

u2
logP

(
min
a≤t≤b

X(t) > u
)

= − 1

2σ2∗(a, b)
,

where

(1.2) σ2∗(a, b) = min
ν∈M1[a,b]

∫
[a,b]

∫
[a,b]

RX(s, t) ν(ds) ν(dt) ,

with RX the covariance function of the process and M1[a, b] the set of all
Borel probability measures ν on [a, b]; see Theorem 5.1 in Adler et al. (2014).
The quantity in (1.2) is strictly positive whenever the tail probability in (1.1)
is strictly positive for u = 0. In order to obtain more precise results on the
right tail of the minimum than (1.1), additional assumptions on the process
X, in addition to its continuity, are needed. In Chakrabarty and Samorod-
nitsky (2018) such additional assumptions guarantee that the process X is
very smooth. Under these assumptions the optimization problem (1.2) has
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a unique optimal solution, a probability measure ν∗ whose support is a fi-
nite set. If k is the cardinality of that set, then (under a non-degeneracy
assumption),

(1.3) P
(

min
a≤t≤b

X(t) > u
)
∼ cu−k exp

{
− 1

2σ2∗(a, b)
u2
}

for some c ∈ (0,∞).
Our goal in this paper is to obtain results on the asymptotics of the right

tail of the Gaussian minimum, more precise than the logarithmic asymp-
totics (1.1), when the process X is not so smooth as to satisfy the assump-
tions of Chakrabarty and Samorodnitsky (2018) (and, hence, also (1.3)).
Such more precise asymptotics are, clearly, related to the support of the
optimal measure in (1.2), so the next Section 2 describes certain situations
where information on the optimal measure or, at least, on its support, is
available. The more precise asymptotic results on the tail of the minima
are In Section 3; the results are the most precise in the Markovian case. In
Section 4 we show that, in many cases, the law of the location of the min-
imum of a non-smooth Gaussian process, given that the minimum is high,
converges, as the height of the minimum increases, to the minimizer in the
optimization problem (1.2). We conclude with examples in Section 5.

2. The optimal measure and its support

When a Gaussian process is very smooth, optimal measures in the opti-
mization problem (1.2) are supported by finite sets; see Chakrabarty and
Samorodnitsky (2018). On the other hand, processes whose sample paths
are sufficiently “rough” may lead to optimal measures with large supports,
For example, if X is the stationary Ornstein-Uhlenbeck process, with covari-
ance function RX(s, t) = exp{−|s − t|}, then the optimal measure in (1.2)
is

ν∗ =
1

2 + b− a
δa +

1

2 + b− a
δb +

b− a
2 + b− a

λa,b ,

where δx is a point mass at x, and λa,b is the uniform probability distribution
on the interval (a, b); see Example 6.2 in Adler et al. (2014). In this case the
optimal measure has a full support in the interval [a, b]. We now demonstrate
other situations where this phenomenon holds.

We start with considering certain stationary Gaussian processes, in which
case we will use the standard single variable notation for the covariance
function RX(t) := RX(s, s+ t), s, t ∈ R. By stationarity it is enough to take
a = 0 and consider intervals of the type [0, b], b > 0.

Theorem 2.1. Let X =
(
X(t), t ∈ R

)
be a centered stationary Gaussian

process with continuous sample paths and covariance function RX. Suppose
that RX is strictly convex on [0, b]. Then the optimization problem (1.2) has
a unique optimal probability measure, which has a full support in the interval
[0, b].
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Proof. By Polya’s theorem, the spectral measure of the process X has an
absolutely continuous component which is of full support on R; see e.g.
Lukacs (1970). Then there is a unique optimal probability measure ν∗ in the
optimization problem (1.2); see Adler et al. (2014). Furthermore, the strict
convexity of the covariance function implies that it is strictly decreasing on
[0, b].

Note that the support of the optimal probability measure ν∗ cannot con-
sist of a single point, for in that case the value of the double integral in (1.2)
is RX(0), while any two-point probability measure ν would give a strictly
smaller integral. We show now that endpoints 0 and b of the interval belong
to the support. By symmetry it is enough to prove that b is in the support
of ν∗.

Suppose that, to the contrary, for some 0 < ε < b we have ν∗
(
[b−ε, b]

)
= 0,

and let c be the right-most point of the support of ν∗. Then 0 < c ≤
b − ε. Choosing, if necessary, a smaller ε we can assure that c > ε and
that ν∗

(
[0, c − ε)

)
> 0. Construct now a new probability measure, ν̂∗ by

translating the positive mass of ν∗ in the interval [c − ε, c] to the interval
[b− ε, b]. By the strict monotonicity of the covariance function,∫

[0,b]

∫
[0,b]

RX(t− s) ν̂∗(ds) ν̂∗(dt)

=

∫
[0,c−ε)

∫
[0,c−ε)

RX(t− s) ν∗(ds) ν∗(dt)

+

∫
[c−ε,c]

∫
[c−ε,c]

RX(t− s) ν∗(ds) ν∗(dt)

+2

∫
[c−ε,c]

∫
[0,c−ε)

RX(b− c+ t− s) ν∗(ds) ν∗(dt)

<

∫
[0,c−ε)

∫
[0,c−ε)

RX(t− s) ν∗(ds) ν∗(dt)

+

∫
[c−ε,c]

∫
[c−ε,c]

RX(t− s) ν∗(ds) ν∗(dt)

+2

∫
[c−ε,c]

∫
[0,c−ε)

RX(t− s) ν∗(ds) ν∗(dt)

=

∫
[0,b]

∫
[0,b]

RX(t− s) ν∗(ds) ν∗(dt) ,

contradicting the optimality of the measure ν∗.
Hence, the endpoints of the interval are in the support of ν∗, and we

proceed to prove that the support of ν∗ is the entire interval [0, b]. Suppose
that, to the contrary, there are points 0 ≤ c1 < c2 ≤ b, both in the support
of ν∗, such that ν∗

(
(c1, c2)

)
= 0. Denote

m(t) =

∫
[0,b]

RX(t− s) ν∗(ds), 0 ≤ t ≤ b .
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The optimality of the measure ν∗ implies that m(t) ≥ σ2∗(0, b) (the optimal
value of the double integral in (1.2)) for all 0 ≤ t ≤ b, with equality on the
support of ν∗; see Theorem 4.3 in Adler et al. (2014). Note that on the
interval [c1, c2] this function,

m(t) =

∫
[0,c1]

RX(t− s) ν∗(ds) +

∫
[c2,b]

RX(s− t) ν∗(ds) ,

is strictly convex by the assumptions. Since m(c1) = m(c2) = σ2∗(0, b), this
rules out the possibility that m(t) ≥ σ2∗(0, b) for c1 < t < c2. The resulting
contradiction completes the proof of the theorem. �

For certain nonstationary Gaussian processes the optimization problem
(1.2) can be explicitly solved. Here one such situation. Let

(
B(t), t ≥ 0

)
be

the standard Brownian motion, and 0 < a < b < ∞. Consider a centered
Gaussian process of the form

(2.1) X(t) =
1

g(t)
B(t), a ≤ t ≤ b ,

where g : [a, b]→ (0,∞) is a continuous function.

Theorem 2.2. (a) Suppose that g is a nondecreasing concave and twice
continuously differentiable function on [a, b]. Define

f(x) = −g(x)g′′(x) ≥ 0, a < x < b ,

pa =
g(a)

a

(
g(a)− ag′(a)

)
≥ 0 ,

pb = g(b)g′(b) ≥ 0 .

Then the finite measure µ on [a, b] defined by

(2.2) µ(dx) = paδa(dx) + pbδb(dx) + f(x) dx, a ≤ x ≤ b ,

is equal, up to a multiplicative constant, to an optimal solution to the opti-
mization problem (1.2).

(b) Suppose that g is concave on [a, b], and nondecreasing and twice con-
tinuously differentiable on [a0, b], for some a < a0 < b such that g(a0) =
a0g
′(a0). If pb is as in part (a), and

f(x) = −g(x)g′′(x) ≥ 0, a0 < x < b ,

then the finite measure µ on [a, b] defined by

(2.3) µ(dx) = pbδb(dx) + f(x) dx, a0 ≤ x ≤ b ,

is equal, up to a multiplicative constant, to an optimal solution to the opti-
mization problem (1.2).

Proof. Observe that the covariance function of the process X is given by

RX(s, t) =
s

g(s)g(t)
, a ≤ s ≤ t ≤ b .
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With the measure µ defined by (2.2),∫
[a,b]

RX(s, t)µ(ds) = paRX(a, t) + pbRX(b, t) +

∫ b

a
RX(x, t)f(x) dx

=
g(a)

a

(
g(a)− ag′(a)

) a

g(a)g(t)
+ g(b)g′(b)

t

g(b)g(t)

−
∫ t

a

x

g(t)g(x)
g(x)g′′(x) dx−

∫ b

t

t

g(t)g(x)
g(x)g′′(x) dx

=
1

g(t)

[
g(a)− ag′(a) + tg′(b)−

∫ t

a
xg′′(x) dx− t

∫ b

t
g′′(x) dx

]
=

1

g(t)

[
g(a) +

∫ t

a
g′(x) dx

]
= 1

for each a ≤ t ≤ b. By Theorem 4.3 in Adler et al. (2014) this implies the
claim of part (a).

For part (b) note that by the above argument we already know that

(2.4)

∫
[a,b]

RX(s, t)µ1(ds) = 1

for all a0 ≤ t ≤ b. Appealing, once again, to Theorem 4.3 in Adler et al.
(2014) we see that the claim of part (b) will follow once we check that the
value of the integral in (2.4) is at least 1 for a ≤ t < a0. For such t,∫

[a,b]
RX(s, t)µ1(ds) = pbRX(b, t) +

∫ b

a0

RX(x, t)f(x) dx

=
1

g(t)

[
tg′(b)− t

∫ b

a0

g′′(x) dx

]
=
tg′(a0)

g(t)
.

Since by concavity of g,

g(a0)− g(t) =

∫ a0

t
g′(x) dx ≥ g′(a0)(a0 − t) ,

we conclude that

g(t) ≤ g(a0)− a0g′(a0) + tg′(a0) = tg′(a0) ,

which gives the required lower bound on the integral of the covariance func-
tion. �

Remark 1. It is clear that the assumption of continuous second derivative
of the function g in Theorem 2.2 can be replaced by the assumption of
absolutely continuous first derivative, in which case the function g′′ in the
statement of the theorem is simply a nonpositive derivative of g′ in the sense
of absolute continuity.
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3. Tails of the minima

In this section we describe certain situations in which we can give more
precise asymptotics of the tail of the minimum of a Gaussian process X be-
yond the logarithmic asymptotics in (1.1). In these situations the smooth-
ness assumptions of Chakrabarty and Samorodnitsky (2018) are not satis-
fied, and asymptotics of the type (1.3) are no longer applicable. Our most
precise results apply to Gaussian Markov processes, of which the processes
of the type defined in (2.1) are a special case.

Theorem 3.1. Let (X(t), a ≤ t ≤ b) be a centered Gaussian Markov process
with continuous sample paths, such that an optimal measure ν∗ in the opti-
mization problem (1.2) has an absolutely continuous component νac, whose
density with respect to the Lebesgue measure has a version with

(3.1) η := inf
x∈[a,b]

dνac(x)

dx
> 0 .

Then

−∞ < lim inf
u→∞

u−2/3
(

logP

(
min
a≤t≤b

X(t) > u

)
+

1

2σ2∗(a, b)
u2
)

≤ lim sup
u→∞

u−2/3
(

logP

(
min
a≤t≤b

X(t) > u

)
+

1

2σ2∗(a, b)
u2
)
< 0 .

Proof of Theorem 3.1. We will use the following easily checkable fact (which
also follows from Theorem 4.12.11 (iii) of Bingham et al. (1987)): if f :
(0,∞)→ (0,∞) is a bounded measurable function such that

(3.2) lim
ε↓0

εβ log f(ε) = −c ,

for some β, c ∈ (0,∞), then there exists C ∈ (0,∞) such that

(3.3) lim
x→∞

x−β/(1+β) log

∫ ∞
0

e−xεf(ε)dε = −C .

Denote

(3.4) Y =

∫
[a,b]

X(t) ν∗(dt) .

Since ν∗ has full support, it follows that

E(X(t)|Y ) = Y a.s. for all t ∈ [a, b] ;

see e.g. p.8 in Chakrabarty and Samorodnitsky (2018). With

Z(t) := X(t)− Y, t ∈ [a, b] ,

wee see that Y and
(
Z(t), t ∈ [a, b]

)
are independent. Since∫

[a,b]
Z(t) ν∗(dt) = 0 a.s. ,
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it follows that
Z∗ := min

a≤t≤b
Z(t) ≤ 0 a.s. .

Therefore, for u > 0,

P

(
min
a≤t≤b

X(t) > u

)
= P (Y + Z∗ > u)

=

∫ ∞
u

P (Z∗ > u− y)P (Y ∈ dy)

=

∫ ∞
u

P (Z∗ > u− y)
1

σ∗(a, b)
√

2π
e−y

2/2σ2
∗(a,b) dy

=
1

σ∗(a, b)
√

2π
e−u

2/2σ2
∗(a,b)

∫ ∞
0

e−uε/σ
2
∗(a,b)P (Z∗ > −ε)e−ε

2/2σ2
∗(a,b) dε .

We will prove that

lim inf
ε↓0

ε2 logP (Z∗ > −ε) > −∞ ,(3.5)

By (3.3) with β = 2 this will prove the lower bound in the statement of the
theorem. However, if X∗ and X∗ are the smallest and the largest values,
respectively, of X on [a, b], then, as ε ↓ 0,

logP (Z∗ > −ε) ≥ logP (X∗ −X∗ < ε) ∼ −κε−2

for some κ ∈ (0,∞). The asymptotic equivalence in the last line has been
shown in Li (2001). Thus, (3.5) follows.

In order to prove the upper bound in the statement of the theorem, we use
a change of measure. Let LX be the closed in L2 linear span of the process
X. For every Z ∈ LX, the function fZ(t) = E

(
ZX(t), a ≤ t ≤ b

)
belongs

to the reproducing kernel Hilbert space of X and, hence, the probability
measures

(
X(t), a ≤ t ≤ b

)
and

(
X(t) + fZ(t), a ≤ t ≤ b

)
generate on R[a,b]

are equivalent. Furthermore, in the obvious notation,

dPX+fZ

dPX
= exp

{
Z − EZ2/2

}
;

see van der Vaart and van Zanten (2008). In particular, for every such Z,

P
(

min
a≤t≤b

X(t) + fZ(t) > 0
)

(3.6)

= exp
{
−EZ2/2

}
E

[
eZ1

(
min
a≤t≤b

X(t) > 0
)]

.

With Y as in (3.4) we choose Z = −uY/EY 2. Since ν∗ has a full support,
we have fZ(t) = −u for all a ≤ t ≤ b. By (3.6),

P
(

min
a≤t≤b

X(t) > u
)

= exp

{
− 1

2σ2∗(a, b)
u2
}

(3.7)

E

[
exp

{
−u 1

σ2∗(a, b)

∫
[a,b]

X(t) ν∗(dt)

}
1
(

min
a≤t≤b

X(t) > 0
)]

.
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Next,

E

[
exp

{
−u 1

σ2∗(a, b)

∫
[a,b]

X(t) ν∗(dt)

}
1
(

min
a≤t≤b

X(t) > 0
)]

≤E

[
exp

{
−u 1

σ2∗(a, b)

∫
[a,b]
|X(t)| ν∗(dt)

}]

≤ exp

{
−u2/3 1

σ2∗(a, b)

}
+ P

(∫
[a,b]
|X(t)| ν∗(dt) ≤ u−1/3

)
.

Appealing, once again, to Li (2001), we have, by (3.1) ,

logP

(∫
[a,b]
|X(t)| ν∗(dt) ≤ u−1/3

)

≤ logP

(
η

∫
[a,b]
|X(t)| dt ≤ u−1/3

)
∼ −κ1u2/3

for some κ1 ∈ (0,∞). In conjunction with (3.7) this establishes the upper
bound in the theorem. �

It is clear from the proof of Theorem 3.1 that there is a close connec-
tion between the improvements on the logarithmic asymptotics (1.1) of the
minima of Gaussian processes and small ball problems for these processes.
Availability of bounds on small ball probabilities is often helpful in obtain-
ing bounds on the tail of the Gaussian minimum. The following theorem is
another example of this.

Theorem 3.2. Let (X(t), a ≤ t ≤ b) be a centered Gaussian process with
continuous sample paths, such that an optimal measure ν∗ in the optimiza-
tion problem (1.2) has a full support in [a, b]. Suppose that there exists a
function σ : [0,∞)→ [0,∞) satisfying

(3.8) lim
h↓0

h−βσ(h) = c ∈ (0,∞)

for some β > 0, such that such that

E
[
(X(t)−X(s))2

]
≤ σ(|t− s|)2, s, t ∈ [a, b] .

Then,

lim inf
u→∞

u−1/(β+1)

(
logP

(
min
t∈[a,b]

X(t) > u

)
+

1

2σ2∗(a, b)
u2
)
> −∞ ,

where σ2∗(a, b) is as in (1.2), and should not be confused with the σ of (3.8).
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Proof. An argument identical to the proof of the lower bound in Theorem
3.1 gives us

P

(
min
a≤t≤b

X(t) > u

)
≥ 1

σ∗(a, b)
√

2π
e−u

2/2σ2
∗(a,b)∫ ∞

0
e−uε/σ

2
∗(a,b)P

(
max
a≤t≤b

|X(t)−X(a)| < ε/2

)
e−ε

2/2σ2
∗(a,b) dε .

Since by the assumption (3.8) we have, for some K ∈ (0,∞),

P

(
max
a≤t≤b

|X(t)−X(a)| ≤ ε
)
≥ exp

(
−Kε−1/β

)
, ε > 0 ,

by Theorem 4.1 in Li and Shao (2001), the claim of the theorem follows
from (3.3). �

4. The location of the minimum

For a continuous centered Gaussian process X =
(
X(t), t ∈ R

)
consider

the location of the minimum of the process on an interval [a, b]:

T∗ := arg min
a≤t≤b

X(t) ,

where we choose the leftmost location of the minimum in case there are
ties. For very smooth Gaussian processes considered in Chakrabarty and
Samorodnitsky (2018) it was proved that, as u→∞,

(4.1) P

(
T∗ ∈ ·

∣∣∣ min
a≤t≤b

X(t) > u

)
⇒ ν∗ ,

with ν∗ the unique minimizer in the optimization problem (1.2). In that case
the latter optimal measure is always supported by a finite set. Our goal in
this section is to show that (4.1) continues to hold for Gaussian processes
whose sample paths are not smooth, and for which the optimal measure may
have full support.

Theorem 4.1. Let X =
(
X(t), t ∈ R

)
be a centered stationary Gaussian

process with continuous sample paths and covariance function RX. Suppose
that RX is strictly convex on [0, b]. Then (4.1) holds with a = 0 and any b >
0, where ν∗ is the unique optimal probability measure for the the optimization
problem (1.2).

Proof. The fact that the optimization problem (1.2) has a unique optimal
solution ν∗ was established in Theorem 2.1. We use (3.7) (with a = 0).
Let A ⊆ [a, b] be a Borel set that is a continuity set for ν∗. Recalling the
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notation (3.4) we obtain

P
(
T∗ ∈ A| min

a≤t≤b
X(t) > u

)
=
E
[
exp

{
−uY/σ2∗(a, b)

}
1
(
mina≤t≤bX(t) > 0, T∗ ∈ A

)]
E
[
exp {−uY/σ2∗(a, b)}1

(
mina≤t≤bX(t) > 0

)] .

By Fubini’s theorem this can be rewritten in the form

P
(
T∗ ∈ A| min

a≤t≤b
X(t) > u

)
=

∫∞
0 exp

{
−ux/σ2∗(a, b)

}
P
(
Y ≤ x, mina≤t≤bX(t) > 0, T∗ ∈ A

)
dx∫∞

0 exp {−ux/σ2∗(a, b)}P
(
Y ≤ x, mina≤t≤bX(t) > 0

)
dx

,

and so it is enough to prove that

ν∗(A) = lim
x→0

P
(
Y ≤ x, mina≤t≤bX(t) > 0, T∗ ∈ A

)
P
(
Y ≤ x, mina≤t≤bX(t) > 0

)
= lim
x→0

P
(
T∗ ∈ A

∣∣Y ≤ x, min
a≤t≤b

X(t) > 0
)
.

If we denote by mx the probability measure described by the right hand side
of this statement, then we need to prove that

(4.2) mx ⇒ ν∗ as x→ 0.

To this end, we use a discrete approximation. Let Pk =
{
bi2−k, i =

0, 1, . . . , 2k
}

be the kth binary partition of the interval [0, b], k = 1, 2, . . ..
For each k we consider the following restricted version of the optimization
problem (1.2):

(4.3) min
ν∈M1(Pk)

∫
[0,b]

∫
[0,b]

RX(s, t) ν(ds) ν(dt) ,

where the probability measures are required to be supported by the finite
set Pk. As in the case of the full optimization problem (1.2), the fact that
the spectral measure of the process X is of full support guarantees that the
problem (4.3) has a unique optimal solution, which we will denote by ν∗,k.
We also denote by σ2∗,k the corresponding value of the double integral. The
same argument as in the case of the restricted optimization problem shows
that, because of strict convexity of RX, ν∗,k assigns a positive mass to each
point in Pk.

Clearly, σ2∗,1 ≥ σ2∗,2 ≥ . . . ≥ σ2∗[0, b]. On the other hand, the obvious
discretizations of the measure ν∗ produce a sequence of probability measures
ν ′k ∈ Pk, k = 1, 2, . . . such that ν ′k ⇒ ν∗ as k →∞. By continuity,∫

[0,b]

∫
[0,b]

RX(s, t) ν ′k(ds) ν
′
k(dt)→

∫
[0,b]

∫
[0,b]

RX(s, t) ν∗(ds) ν∗(dt)

as k → ∞, so by the optimality of the measures (ν∗,k) we conclude that
σ2∗,k → σ2∗[0, b]. We claim that ν∗,k ⇒ ν∗. Since the space M1[0, b] is weakly
compact, it is enough to prove that every subsequential limit of the sequence
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(ν∗,k) is equal to ν∗. However, for every subsequence of of the sequence (ν∗,k)
the value of the double integral in the optimization problem (1.2) converges
to σ2∗[0, b] and, by weak continuity of the double integral, it also converges
to the double integral with respect to the subsequential limit. Since under
the assumptions of the theorem the optimization problem (1.2) has a unique
optimal solution, we conclude that every subsequential limit of the sequence
(ν∗,k) is equal to ν∗.

Define, analogously to (3.4),

Yk =

∫
[a,b]

X(t) ν∗,k(dt) ,

and let

T∗,k := arg min
t∈Pk

X(t) k = 1, 2, . . . ,

once again choosing the leftmost location in the case of a tie. For each k we
define a probability measure on [a, b] by

mx,k(A) = P
(
T∗,k ∈ A

∣∣Yk ≤ x, min
t∈Pk

X(t) > 0
)
, A Borel.

It is clear that T∗,k → T∗ and mint∈Pk
X(t) → mina≤t≤bX(t) a.s. Further-

more, Yk → Y in L2. Furthermore, the distribution of mina≤t≤bX(t) is
atomless (see Lemma 1 in Ylvisaker (1965)). We conclude that, for each
fixed x > 0, mx,k ⇒ mx as k →∞. It follows that the claim (4.2) will follow
if we prove that

(4.4) mx,k ⇒ ν∗,k uniformly in k as x→ 0.

Consider the zero mean Gaussian random vector X(k) =
(
X(bi2−k), i =

0, 1, . . . , 2k
)
. Let Σk denote its covariance matrix. The uniqueness of the

minimizing measure ν∗,k implies that the vector X(k) has full support, so Σk

is invertible. For any j = 0, 1, . . . , 2k we can write

mx,k

(
{bj2−k}

)
=

P
(
X(k) ∈ Ej(x)

)∑2k

i=0 P
(
X(k) ∈ Ei(x)

)(4.5)

=

∫
Ej(x)

exp
{
−zTΣ−1k z/2

}
dz∑2k

i=0

∫
Ei(x)

exp
{
−zTΣ−1k z/2

}
dz

,

where

Ej(x) =
{
z ∈ (0,∞)2

k+1, zj < zi, i 6= j,

2k+1∑
i=0

ν∗,k
(
{bi2−k}

)
zi ≤ x

}
,

j = 0, 1, . . . , 2k + 1. It is straightforward to compute that∫
Ej(x)

dz =
x2

k+1

(2k + 1)!

ν∗,k
(
{bj2−k}

)∏2k+1
i=0 ν∗,k

(
{bi2−k}

)
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Therefore, if we prove that

(4.6) zTΣ−1k z→ 0 as x→ 0

uniformly on ∪2k+1
i=0 Ei(x), then we obtain uniform convergence in (4.4) (even

in total variation).
To this end, let w = Σ−1k z, so that

zTΣ−1k z = wTΣkw .

Let θ = Σ−11. The vector θ is equal, up to a multiplicative scale, to the
probability vector of the measure ν∗,k; see Chakrabarty and Samorodnitsky
(2018). Therefore,

‖θ‖1 = 1Tθ = 1TΣ−1k 1 = θTΣkθ = (‖θ‖1)2σ2∗,k ,
so that

‖θ‖1 =
1

σ2∗,k
.

In particular,

wT1 = zTθ ≤ ‖θ‖1x =
x

σ2∗,k

on ∪2k+1
i=0 Ei(x). We conclude that

wTΣkw ≤ RX(0)
(
wT1

)2
= R(0)

x2

σ4∗,k
.

Since σ2∗,k → σ2∗[0, b] > 0, for all k large enough we have σ2∗,k ≥ σ2∗[0, b]/2,
and we have obtained the desired uniform convergence, thus completing the
proof. �

5. Examples

In this section, the results in Sections 2 - 4 are applied to two examples.
The first example illustrates applications of Theorems 2.2 and 3.1.

Example 5.1. Let (B(t) : t ≥ 0) be a standard Brownian motion, and fix
0 < α < 1. Define

X(t) = t−αB(t), t > 0 .

Fix 0 < a < b <∞, and set

X∗ = min
t∈[a,b]

X(t) .

Theorem 2.2 implies that the finite measure µ on [a, b] defined by

µα(dx) = α(1− α)x2α−2 dx+ (1− α)a2α−1δa(dx) + αb2α−1δb(dx) ,

is a constant multiple of the optimal measure, that is, the solution to the
optimization problem (1.2). Let

σ2∗(a, b;α) = µα([a, b])−2Var

(∫ b

a
X(t)µα(dt)

)
.
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As the Radon-Nykodym derivative of the absolutely continuous component
of µα with respect to the Lebesgue measure is bounded away from 0 on [a, b],
the hypotheses of Theorem 3.1 are clearly satisfied, which implies that

lim inf
u→∞

u−2/3
(

logP (X∗ > u) +
1

2σ2∗(a, b;α)
u2
)
> −∞ ,

and

lim sup
u→∞

u−2/3
(

logP (X∗ > u) +
1

2σ2∗(a, b;α)
u2
)
< 0 .

In other words, as u→∞,

(5.1) P (X∗ > u) = exp

(
− 1

2σ2∗(a, b;α)
u2 − u

2
3
+O(1/ log u)

)
.

When α = 1/2, X(t) is a time-changed Ornstein-Uhlenbeck process. That
is, (

X(e2t) : t ∈ R
) d

= (Zt : t ∈ R) ,

the process on the right hand side being an Ornstein-Uhlenbeck process.
Therefore, a special case of (5.1) is that for any compact interval [a, b] ⊂ R,

(5.2) P

(
min
t∈[a,b]

Zt > u

)
= exp

(
− 1

2σ2∗(e
2a, e2b; 1/2)

u2 − u
2
3
+O(1/ log u)

)
,

as u→∞.

The second example illustrates applications of Theorems 2.1, 3.2 and 4.1.

Example 5.2. Let (X(t) : t ∈ R) be a stationary Gaussian process with
mean zero and covariance function

RX(t) = exp
{
−|t|α

}
, t ∈ R ,

for a fixed 0 < α ≤ 1. The assumptions of Theorem 2.1 are satisfied for any
b > 0 and, hence, the optimal measure, say ν∗, in the optimization problem
(1.2) is of full support. If α = 1, this follows from the explicit solution of
the optimization problem in Adler et al. (2014).

The hypotheses of Theorem 3.2 are therefore satisfied with β = α/2 and
c =
√

2, which implies the existence of C ∈ (0,∞) satisfying

logP

(
min
t∈[a,b]

X(t) > u

)
≥ − 1

2σ2∗(a, b)
u2 − Cu−2/(α+2) ,

for large u. When α = 1 this reduces to the upper bound in (5.2).
Finally, an appeal to Theorem 4.1 shows that the conditional law of the

location of the minimum (the leftmost one to be chosen in case of ties) on
[a, b] given that the minimum if above u, converges weakly to ν∗ as u→∞.
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