
Full-Processor Timing Channel Protection with
Applications to Secure Hardware Compartments

Andrew Ferraiuolo, Yao Wang, Rui Xu, Danfeng Zhang, Andrew Myers, and G. Edward Suh
Cornell University

Ithaca, NY 14850, USA
andrew@csl.cornell.edu, yao@csl.cornell.edu, rx37@cornell.edu,

zhangdf@cs.cornell.edu, andru@cs.cornell.edu, suh@csl.cornell.edu

ABSTRACT
This paper presents timing compartments, an architecture abstrac-
tion that explicitly removes microarchitecture-level timing chan-
nels between groups of software running concurrently on a shared
multi-core processor. The capability to eliminate timing channels
coupled with conventional software isolation enables strong iso-
lation comparable to running software on separate physical ma-
chines. This paper shows that such a strong timing isolation can be
achieved by systematically removing timing interference in shared
resources in a multi-core, and formally checked using information
flow analysis on an RTL implementation. Through this systematic
process, we identify and remove new sources of timing channels,
including cache coherence mechanisms and module interfaces, and
introduce new performance optimizations. We also demonstrate
how timing compartments may be extended to support a hardware-
only TCB which ensures security even when the system is managed
by an untrusted OS or hypervisor. Experimental studies show that
the performance overheads of strict timing isolation can be surpris-
ingly low for a small number of timing compartments; executing
two timing compartments reduces system throughput by less than
7% on average and by less than 2% for compute-bound workloads.

1. INTRODUCTION
Timing channel attacks have become a major threat as hard-

ware is increasingly consolidated and shared by distrusting enti-
ties, which traditionally have been isolated on their own physical
machines. For example, in cloud computing, mutually distrusting
parties own virtual machines on shared hardware. In mobile plat-
forms, users download third-party apps which might leak secrets
through timing. While programs and virtual machines can be iso-
lated using access control mechanisms such as virtual memory, tim-
ing channels in microarchitecture allow attackers to subvert these
boundaries even when the OS and hypervisor are bug-free. Fur-
ther, unlike physical side-channel attacks such as power analysis
that require physical proximity, timing channels can be exploited
in software by remote adversaries.

For example, researchers have shown that secret keys can be ex-
tracted from co-resident VMs on production EC2 servers through
microarchitectural timing channels [43]. Hardware-level timing
channels have been shown in many shared hardware components,
including caches [42, 7, 10, 41, 53, 3, 49, 10, 31, 23], branch pre-
dictors [1, 2], interconnects [56, 59], pipelines [57], and memory
controllers [55, 21]. The wide range of vulnerabilities suggests that
strong timing isolation requires protection across a full processor,
ideally in a way that can be verified.

In this paper, we propose timing compartments (TCs), a hardware-
enforced abstraction that isolates distrusting software by eliminat-

ing timing channels through hardware in a shared, multicore pro-
cessor. Timing compartments use hardware mechanisms to remove
fine-grained microarchitecure-level timing interference that is diffi-
cult to control in software. Timing compartments provably enforce
timing-sensitive noninterference and are statically verifiable with
information flow analysis. When combined with access controls
which prevent attacks that do not exploit timing, timing compart-
ments provide isolation that is comparable to running each com-
partment on a separate processor. Timing compartments are the
first formally-verified architecture to remove timing channels be-
tween processes sharing hardware in a multicore processor.

To provide strong isolation while allowing formal verification,
timing compartments use static partitioning and time multiplexing
to eliminate timing channels through shared hardware. The pro-
cess of systematically applying this protection approach to a mod-
ern multi-core architecture revealed new sources of timing channels
that have not been studied before. Notably, we show that cache co-
herence mechanisms cause timing channels even among processes
with no shared data, and propose modifications to remove this vul-
nerability.

By using simple partitioning and time multiplexing to completely
remove timing dependence, timing compartments are formally ver-
ifiable with information flow analysis. Information flow analysis
proves that a system obeys noninterference, which requires that
attacker-visible outputs cannot be affected by sensitive inputs [22].
Recently, hardware-level information flow control techniques have
been proposed to enforce timing-sensitive noninterference in a hard-
ware design statically at design time [34, 33, 65]. We implemented
timing compartments in an RTL prototype of a quad-core processor
with caches and a memory (DRAM) controller, and performed an
information flow analysis using SecVerilog [65]. This result shows
that timing compartments are amenable to formal verification.

Unfortunately, we found that such full-processor timing isolation
can lead to significant performance overhead when enforcement
mechanisms are implemented naively. To improve efficiency while
maintaining a strong security guarantee, we propose a set of per-
formance optimizations. First, we propose coordinated scheduling
of time slots for time-multiplexed resources in the shared memory
hierarchy. Our study shows that coordinated scheduling reduces
the average L2 miss latency by up to 62% compared to an uncoor-
dinated baseline. Second, we propose a novel optimization which
increases the available bandwidth through a temporally-partitioned
memory controller. As our experiments show that memory band-
width reduction is the main source of performance overhead, this
optimization improves performance considerably. The optimiza-
tions reduce the performance overhead of timing compartments by
58%.

Simulation results suggest the performance overhead of timing

compartments with the proposed optimizations is quite reasonable
especially when a small number of compartments run concurrently.
Compared to the baseline with no timing isolation, executing two
timing compartments reduces system throughput by less than 7%
on average and by less than 2% for compute-bound workloads. In
the worst case, memory-intensive workloads incur up to an 18%
overhead. The results suggest that timing compartments on a shared
multi-core processor are far more efficient compared to removing
timing channels by running software on separate machines.

To the best of our knowledge, this paper represents the first to
show that complete timing isolation on a multi-core processor is
feasible with reasonable overhead and can be formally verified.
Prior efforts for verifiable timing-channel protection [50, 51, 65]
have verified single-core processors that can run only one program
at a time. On the other hand, the multi-core processor in this pa-
per runs multiple programs concurrently, sharing caches, on-chip
networks, and memory controllers.

The timing compartment design can be extended to provide tim-
ing isolation even when the OS/hypervisor is potentially malicious.
This extension requires interfaces that let the untrusted OS/hypervi-
sor manage resource allocations while ensuring security. These ex-
tensions also require protection mechanisms to handle new timing
channels. In particular, these extensions address attacks through
page faults, including the one proposed by Xu et al. [62].

The following summarizes the main contributions.

• The paper introduces a new abstraction that enables software
to explicitly remove microarchitecture-level timing interfer-
ence on a multi-core, and shows that strong protection is vi-
able.

• The paper identifies new timing channels on a multi-core,
including one through cache coherence, and presents com-
prehensive timing protection for a full multi-core processor.

• The paper introduces performance optimizations which sig-
nificantly reduce overhead and enable practical performance.

• The paper shows that timing compartments can be formally
verified using an RTL implementation of a 4-core processor.

• The paper shows how full-processor timing isolation can be
performed when an OS/hypervisor cannot be trusted. This
enables timing channel protection for secure hardware com-
partments such as Intel SGX [27].

The rest of the paper is organized as follows. Section 2 intro-
duces timing compartments and presents example applications that
can be enabled by strong timing isolation. Section 3 identifies the
sources of timing channels in a multi-core processor, and describes
protection mechanisms to eliminate them. Section 4 presents the
performance optimizations to make timing compartments practi-
cal. Section 5 extends the timing compartment for cases with an
untrusted OS. Section 6 evaluates the proposed architecture. Sec-
tion 7 discusses related work, and Section 8 concludes the paper.

2. TIMING COMPARTMENTS

2.1 Objective and Scope
The goal of timing compartments is to provide strong microar-

chitecture timing isolation among software running concurrently
on a multi-core processor, in a verifiable manner. Timing compart-
ments aim to eliminate timing channels that are not present among
software modules running on dedicated processors. Therefore, the

Figure 1: Baseline multi-core architecture.

focus is on removing timing interference among parallel processing
cores.

Timing compartments ensure that the timing of a program in one
compartment is independent of program behavior in other compart-
ments. They prevent both intentional (covert-channel) and unin-
tentional (side-channel) information leaks between different timing
compartments. However, timing compartments do not remove tim-
ing dependence within one compartment. For example, Bernstein’s
attack [7] showed that an AES key in OpenSSL can be extracted
by observing timing variations that depend on cache interference
among memory accesses within one program. These timing chan-
nel vulnerabilities exist even if a program runs on its own dedicated
hardware. Since this is an orthogonal problem, they are not pre-
vented by timing compartments. Language-level techniques have
been developed to mitigate [5, 63, 64] these timing channels.

Similarly, since timing compartments aim to eliminate hardware-
level timing interference that cannot be eliminated in software, they
do not address timing channels introduced at the software imple-
mentation level. If necessary, software-level timing channels can
be handled separately in software. For example, there has been
recent work on preventing OS-level timing channels (e.g., [6]).

Timing compartments allow software to explicitly control hardware-
level timing interference among groups of software entities, with-
out enforcing any restrictions within each compartment. Handling
timing channels separately from traditional isolation abstractions
such as virtual memory allows the overhead of timing channel pro-
tection to only be incurred when necessary.

2.2 Architecture Model
Figure 1 shows a conventional multi-core architecture that is as-

sumed as the baseline in this paper. The architecture has multiple
cores, each with one or more private caches (L1 and L2). The cores
are connected to a shared cache (L3) via an on-chip bus. A shared
system bus connects the shared cache to a memory controller that
manages requests to main memory as well as other system com-
ponents such as a DMA engine, a timer, and I/O modules. Bus
interconnects are used to model on-chip networks. The general
approach and findings should apply to other types of interconnect
networks as well.

2.3 Threat Model and Assumptions
Our threat model focuses on software attacks from one timing

compartment to another. We assume that attackers do not have
physical access to the system, and do not consider physical attacks
such as ones that tamper with off-chip memory buses or physical
side-channel attacks through power consumption or electromag-
netic emission. If physical security is required, the proposed tim-
ing compartments can be combined with existing off-chip memory
protection techniques [48, 46, 20].

We also assume that explicit communications between different
timing compartments are prevented using traditional access control
mechanisms such as virtual memory. Therefore, timing compart-
ments should have separate address spaces and do not share phys-
ical pages except for read-only pages that contain instructions or
libraries. There is no point in timing isolation if explicit communi-
cation is allowed.

This paper addresses two threat models for privileged software
such as an OS or a hypervisor. In traditional systems, the privileged
software is trusted and manages protection mechanisms such as vir-
tual memory. In this case, the privileged software is also trusted to
manage timing compartments. We use this as the baseline threat
model. To apply timing compartments to recent secure processor
technologies, we also consider a threat model where the OS or a
hypervisor is untrusted. In this case, the timing compartment is ex-
tended to allow the untrusted OS/hypervisor to allocate resources
while guaranteeing timing isolation and also remove information
leaks to the untrusted OS/hypervisor.

2.4 Application Scenarios
The ability to remove timing channels between software modules

significantly increases the level of assurance in diverse application
domains where distrusting entities share a physical system.

High-Assurance Cloud Computing. In IaaS cloud computing,
a tenant may share hardware with competitors or attackers that want
to extract sensitive data. Conventional virtualization technologies
restrict explicit communication channels among virtual machines,
but cannot control timing channels. A practical timing channel at-
tack has been exploited in commercial clouds to extract crypto-
graphic keys [43]. Timing compartments can enable high assur-
ance cloud computing by ensuring that there is no software-level
communication channel among virtual machines.

Untrusted Software. The ability to completely eliminate timing
channels enables timing compartments to keep information con-
tained even when software is potentially malicious. For example,
smartphone users download third party applications that cannot be
trusted to manage private or sensitive data. A system may sandbox
an untrusted application and restrict its communication channels
when it accesses sensitive data. However, access control mecha-
nisms cannot prevent the untrusted application from intentionally
leaking information through covert timing channels. These sand-
boxes can be extended with timing compartments to provide com-
plete isolation that includes timing.

Safety-Critical Systems. Aside from timing channel protec-
tion, the capability to control interference in shared hardware can
also be used to provide timing guarantees in safety-critical systems.
For example, hard real-time systems such as automotive controllers
must perform computations within a strict deadline. Unfortunately,
multi-core processors cause interference that makes timing guaran-
tees difficult to meet. Timing compartments can be used to ensure
that the timing of safety-critical components is not affected by the
rest of a system.

3. PROTECTION MECHANISMS

3.1 Approach
Timing channels exist when an adversary in one compartment

can correlate the timing of its event to a program behavior in an-
other compartment. As a result, any program-dependent interfer-
ence in shared hardware resources between timing compartments
may lead to timing channels. To achieve a degree of isolation that is
comparable to running on separate hardware, timing compartments
are designed to remove contention in shared hardware resources.

Timing compartments are designed to be verified with informa-
tion flow analysis. Existing information flow analysis techniques
for hardware enforce noninterference, a strong property which elim-
inates leakage of any information. Intuitively, an entity H is non-
interfering with entity L if an observer can learn nothing about
data owned by H by observing and controlling only inputs/outputs
owned by L. Existing information flow tools are timing-sensitive,
meaning the adversary is assumed to be able to see the time at
which L signals change. Timing sensitive noninterference guar-
antees that there is no leakage via timing channels.

To be compliant with verification tools that enforce timing-sensitive
noninterference, we use two approaches that completely eliminate
timing channels and are simple to analyze. Spatial partitioning re-
moves contention by duplicating or partitioning a resource for each
compartment. Temporal partitioning removes contention by time
multiplexing resources among timing compartments with a fixed
schedule. Protection mechanisms that rely on obfuscation [38, 17]
cannot be verified with information flow. They mitigate, but do not
eliminate timing channels, so they do not enforce noninterference

For most resources, either spatial partitioning or temporal parti-
tioning can be used. For example, to eliminate timing channels in a
shared cache, the cache can be temporally partitioned to be used by
one compartment at a time or be spatially partitioned by allocating
some of the cache ways to each timing compartment. In the rest
of the section, we describe how each source of timing channel in a
typical multi-core processor can be removed, and discuss the trade-
off between spatial and temporal partitioning for each component.

3.2 Timing Compartment ID
To track the timing protection boundaries, a management soft-

ware such as an operating systems assigns a timing compartment
ID (TCID) to processes. The same TCID can be assigned to mul-
tiple processes that do not require strong timing isolation among
them such as ones belong to the same user.

In hardware, each processing core has an active timing com-
partment register (ATC) which indicates the TCID of the TC that
is currently executing on that core. The value of the ATC is ap-
pended to each memory request and used by enforcement mecha-
nisms to remove interference between different compartments. The
size of the ATC is logarithmic with the number of physical cores
as hardware only needs to distinguish active compartments running
concurrently. The management software can virtualize TCIDs by
maintaining a translation between virtual and physical TCIDs.

3.3 Private Resource Protection
To remove timing channels through each core’s private resources

(such as TLBs, private caches, branch predictors, and pipelines),
at most one timing compartment is allocated to a core at a time.
Simultaneous multithreading (SMT) is restricted so that only pro-
cesses with the same TCID can share a core. This approach is
already taken in production EC2 servers, which disable SMT to
prevent timing channel attacks [67].

However, multiple timing compartments can use these resources
through time-sharing. Therefore, there exist timing channels if the
state is kept across context switches. For example, the branch be-
havior of one timing compartment may affect the next timing com-
partment if the branch predictor table is kept across a switch. To
eliminate this timing channel, timing compartments flush the per-
core state when a core leaves a timing compartment (i.e., the TCID
changes).

To prevent information leakage, the time taken to flush should
not depend on each timing compartment’s state. For example, cache
flushing should not take longer when there are more dirty blocks.

Component Timing Channel Solution

Shared caches
Replacement Way partitioning
MSHRs Duplicate MSHRs
Response ports Separate queues

Memory Controller

DRAM bus Time multiplexing
Queueing structure Separate queues
Row buffer Closed Page Policy
Response ports Separate queues

On-Chip interconnect Interconnect bus Time multiplexing
Queueing structure Separate queues

Cache coherence Coherence bus Time multiplexing
Cache port Response by L3

Table 1: Summary of timing channels and protection. Green
represents newly identified ones.

Therefore, we design hardware to support secure flushing that blocks
a core for the worst-case writeback time. In our evaluation, we
found the performance impact of the flushing is negligible.

3.4 Timing Isolation in Memory Hierarchy
Table 1 summarizes the timing channels in the shared memory

hierarchy and our approaches to remove them. Newly discovered
timing channels are highlighted in green.

3.4.1 Cache Contention
Static cache partitioning [42] eliminates cache interference among

timing compartments by allowing a cache block to replace only
entries owned by the same timing compartment. While other ap-
proaches to cache protection have been proposed [36, 58, 17], tim-
ing compartments use way partitioning because it can be formally
verified. Way partitioning is a form of spatial partitioning that allo-
cates each cache way to one timing compartment. Cache partition
control registers (CPCs) associate a TCID with each way. On a
cache access, only entries in ways owned by the corresponding TC
are checked or evicted. By changing these registers, management
software can adjust the number of ways allocated to each TC. As
with private caches, any partitions owned by a TC must be flushed
when it is context switched out.

For shared caches, spatial partitioning provides better perfor-
mance than temporal partitioning by allowing all active TCs to use
a portion of the cache and keep the most heavily used data on-chip.
In temporal partitioning, while one TC can use the entire cache, the
performance of other TCs will significantly degrade as their mem-
ory accesses need to go off-chip.

MSHR Contention. In addition to contention for cache arrays,
shared ports and MSHRs also require protection. These timing
channels are identified through our full-processor implementation
and have not yet been described in the literature. Contention for
miss status holding registers (MSHRs) in non-blocking caches causes
timing channels. The number of outstanding misses that the cache
can tolerate depends on the number of MSHRs. Once all MSHRs
are occupied, the cache will stall on a miss, resulting in increased
latency for cache accesses. Therefore, shared MSHRs cause a tim-
ing channel. To remove MSHR contention, disjoint sets of MSHRs
are allocated to each timing compartment. MSHR contention is
resolved with spatial partitioning instead of temporal partitioning
because MSHRs must be able to serve all active TCs.

Response Port Contention. Cache ports cause another timing
channel yet to be discussed in the literature. Conventional caches
have CPU-side ports and memory-side ports which are each split
into request and response ports. However, each port can only ser-
vice a single response/request at a time, creating timing channels
through contention. Similarly, shared queues that buffer responses
at the ports also lead to timing interference. To remove this tim-

ing channel, the cache ports are time multiplexed and the shared
queue is partitioned into per-compartment queues. Temporal parti-
tioning is strictly better than spatial partitioning here. The ports are
only interfaced with temporally partitioned networks, so there is no
benefit from duplication.

3.4.2 On-Chip Interconnect Contention
For on-chip networks, we adopt a temporal partitioning approach

proposed in previous work [59], and extend it with the capability to
allow system software to control network bandwidth allocation and
scheduling. Each network arbiter is extended with a ring buffer of
network turn control (NTC) registers and a network turn offset con-
trol (NTOC) register. NTCs specify a TCID and turn length. The
NTOC allows the start of the bus schedule to be adjusted relative
to other time multiplexed resources (namely, other buses and the
memory controller). Temporal partitioning is preferable to spatial
partitioning because bus transactions are short, and duplicating the
network would have high area overhead.

3.4.3 Main Memory Controller Contention
The main memory is shared concurrently by multiple cores. As

a result, interference among memory accesses from multiple TCs
leads to timing channels. We adopt a proposal by Wang et al. [55]
to provide memory protection, but propose a new optimization to
reduce its overhead (Section 6.2).

This approach uses a set of techniques to remove timing channels
in each memory controller component. A shared request queue is
replaced with smaller per-compartment queues. To remove tim-
ing variation based on row buffer state, the DRAM controller uses
a closed page policy. A closed page clears the row buffers by
precharging them after each row access. This is effectively flushing
at the end of a temporal partitioning turn. Contention for DRAM
resources such as the command/data bus, banks, and ranks is re-
moved with temporal partitioning. A period during which no new
requests can be issued, called the dead time, is added to each time
slice in order to prevent in-flight requests or refreshes from interfer-
ing with the next time slice. A hybrid temporal-spatial partitioning
approach can also be taken. In a system with multiple memory
channels, a subset of the TCs can be assigned to each channel, and
temporal partitioning can be used within each channel.

Memory controller protection supports fine-grained resource al-
location by the OS. The resource allocation control structures are
similar to those used for the on-chip interconnects. A ring buffer
of memory turn control registers (MCTs) controls the owner and
length of each turn and the memory turn offset control register
(MTOC) controls the turn offset.

3.4.4 Contention in Cache Coherence Protocols
We found that cache coherence protocols can be a source of tim-

ing channels. In our knowledge, this paper is the first to discuss
this vulnerability. Coherence operations can lead to timing inter-
ference though coherence bus contention or contention for cache
ports. Even when there is no shared data between timing compart-
ments, traffic on the snooping coherence bus can lead to a timing
channel because the bus is shared by multiple TCs.

Attack Example. Here, we demonstrate a timing, covert-channel
attack through cache coherence mechanisms using a simulated 4-
core system. Each core has private L1 and L2 caches, and the four
cores share an L3 cache. The four L2 caches are connected with a
snooping coherence bus which uses a MOESI protocol. TC0 runs
on core 0 and core 1 while TC1 runs on core 2 and core 3.

TC0 runs two threads on different cores. Both threads run a for
loop, and write to shared data during each iteration. Before each

Figure 2: TC0’s timing observation.

write is performed, one of the L2 caches has to forward the data
to the other through the snooping coherence bus and invalidate its
own copy. TC0 repeats this process and records the time for each
loop. To communicate a secret, TC1 sends a ’0’ by doing nothing
and sends a ’1’ by spawning multiple threads that write to shared
data. Figure 2 shows the execution time of the for loop that TC0
observes, which shows clear correlation to the secret. ’01101100’,
sent by TC1.

Protection. Cache coherence mechanisms have two sources of
timing interference: bus contention and port contention. Similar
to the on-chip data bus, we use temporal partitioning to remove
interference on them. However, timing channel protection for the
coherence mechanism is different from data bus protection in two
ways. While coherence requests are associated with the TCID of
the core that issues the request, responses must be tagged with the
TCID of the corresponding request, not the TCID of the core that
sends the response. Also, in the typical MOESI coherence protocol,
a private cache that owns the data may need to send it to another
cache. These transactions can contend for cache ports with requests
from processing pipelines. To remove this contention, we change
the coherence protocol to serve data from the shared cache instead
of from the private caches whenever the data is owned by a differ-
ent timing compartment. Because protected pages that are shared
between compartments are always read-only, the shared cache or
memory always has an up-to-date copy.

4. VERIFICATION WITH INFORMATION
FLOW ANALYSIS

4.1 HDL-Level Information Flow
Timing compartments are designed to be verifiable using static

information flow analysis. In particular, we use SecVerilog [65],
a secure hardware description language (HDL), to verify a pro-
totype multi-core implementation. Secure HDLs use information
flow control to formally verify security properties of a hardware
design. Information flow control tracks and constrains the prop-
agation of information throughout a system. SecVerilog analyzes
and constrains information flow with a type system statically and
at design time.

SecVerilog extends Verilog with syntax that allows a program-
mer to declare security levels, such as L or H, for variables. The
programmer also supplies an information flow policy describing
whether information is allowed to flow in each direction between
levels [16]. For example, information can be allowed to flow from
L to H, but not in the other direction. The policies can also express
mutual distrust. That is, information flows can be disallowed in
both directions between levels TC0 and TC1.

1 reg {H} h, {L} l;
2 //Not allowed
3 assign l = h;
4 ...
5 if(h) l = 0;
6 else l = 1;
7 ...
8
9 //TC(0) = TC0. TC(1) = TC1
10 reg {L} tcid;
11 reg {TC(tcid)} data, {TC0} din0, {TC1} din1;
12 ...
13 case(tcid)
14 0: data = din0;
15 1: data = din1;
16 endcase
17 ...

Figure 3: Example SecVerilog code.

Figure 3 shows an example of SecVerilog code. Here, the vari-
ables l and h have security levels L and H respectively. Assume
that information flow from H to L is disallowed. SecVerilog pre-
vents when a H variable is directly assigned to a L variable as in
line 3. The assignments on lines 5 and 6 leak the value of h to l
indirectly through control flow. SecVerilog also prevents these im-
plicit flows. SecVerilog supports dependent types which describe
security levels that depend on the run-time values of variables in
the code. In the example, the type of data is a dependent type that
signifies TC0 or TC1, depending on the value of tcid. Dependent
types are checked statically. SecVerilog uses static program analy-
sis to constrain the possible run-time values of dependent types.

4.2 Prototype Processor Implementation
This paper aims to demonstrate that strict and verifiable timing

isolation is indeed feasible for a full multi-core processor using to-
day’s tools. For this purpose, we implemented a timing compart-
ment on a multi-core processor prototype written in Verilog. Then,
we annotated the design with security types and performed an infor-
mation flow analysis with SecVerilog [65]. This process formally
verified that our prototype implementation enforces strict, timing-
sensitive noninterference.

The verified processor has 4 5-stage, in-order MIPS cores with
full bypassing, 2-way private 16KB instruction caches (16B blocks),
a 2-way shared 32KB data cache, a ring network, and a DRAM
controller. The caches are blocking, so MSHRs and branch predic-
tors are unnecessary. Because there is only one data cache and the
instruction caches contain read-only data, coherence protocols are
also not necessary in our prototype. The rest of the protection fea-
tures are implemented as described in Section 3. However, the pro-
totype omits the configuration registers which allow cache partition
sizes, memory and network turn lengths, and memory and network
offsets to be adjusted. These features improve performance, but are
not necessary for security. Instead, resources are allocated to each
core evenly.

The SecVerilog policy is configured so that each timing com-
partment has a unique security type TCi and each timing compart-
ment is mutually distrusting. That is, information is not allowed
to flow in any direction among the TCs. With this policy, all tim-
ing channels and other flows between timing compartments will
cause SecVerilog to report a type error. Generally, spatial partition-
ing is expressed by statically labeling partitions with the level of
the owner, and temporal partitioning is expressed with dependent
types that indicate the current owner.

As each core can only run one TC at a time, components within a
core all have the dependent type TC(atc). Here atc is the TCID in
the core’s active timing compartment register (ATC) and TC(atc)

is the corresponding security level. On a context switch, the value
in the ATC changes causing the types to change. SecVerilog en-
forces state to be flushed on such a label change to ensure that there
is no information leak.

The active TCID is appended to each memory request, and the
address and data signals are given types that depend on the TCID.
As a result, the SecVerilog type checks ensure that there is no in-
terference in shared memory hierarchy including caches, on-chip
networks, and a memory controller. The spatially partitioned re-
sources such as cache ways and queues are statically labeled ac-
cording to the owner TC of the partition. The temporally parti-
tioned resources such as on-chip network and memory controller
resources are given dependent types that reflect which TC is cur-
rently allocated to use the resources. The processor was success-
fully type-checked indicating that these enforcement mechanisms
are sufficient to provide timing-sensitive noninterference between
timing compartments.

5. HANDLING AN UNTRUSTED OS
Modern operating systems and hypervisors are large and com-

plex, and therefore contain vulnerabilities often exploited by at-
tackers. Secure processors (also called secure hardware compart-
ments) represent a promising approach to protect critical software
even under vulnerable low-level software. In this approach, hard-
ware protects the confidentiality and integrity of software running
inside a secure compartment while still allowing an untrusted OS-
/hypervisor to manage resources. Many secure processor designs
have been proposed in research [48, 46, 32, 29, 47, 20, 11, 13, 18].
Intel has recently introduced a hardware compartment technology,
named Secure Guarded eXecution (SGX) [27] in commercial pro-
cessors.

However, existing secure processor architectures are vulnerable
to timing channel attacks through shared hardware resources. This
section shows how timing compartments can be applied to secure
processors to provide timing protection. To do so, we need to solve
two additional challenges: 1) the untrusted OS/hypervisor must be
allowed to manage the timing protection mechanisms in a way that
cannot break timing isolation, and 2) confidential data cannot be
leaked to the untrusted OS/hypervisor through timing.

5.1 Secure Protection Management
Secure processors distrust the OS/hypervisor, but still grant it the

authority to manage the allocation of resources such as CPU cycles
and virtual memory. For protection, hardware maintains a com-
partment ID for each processing core [18, 47, 46, 27] and use it to
make access control decisions. The compartment ID is not directly
accessible in software, but controlled through special instructions
which allows an untrusted OS/hypervisor to make scheduling deci-
sions (such as create, interrupt, resume, or destroy a compartment)
while ensuring confidentiality and integrity. The compartment ID
can naturally be used as the TCID for timing protection. Instruc-
tions which change the ID must be augmented to flush private core
state (e.g., caches and branch predictor tables) on a compartment
switch. Adding timing protection does not require any change to
virtual memory management protection of secure processor archi-
tectures.

In addition to CPU cycle and memory management, the untrusted
management software must be permitted to control the allocation
of timing-protected, shared resources without violating security.
These resources include space in shared caches and bandwidth in
on-chip networks and the memory controller. To ensure timing iso-
lation, the software interfaces for resource allocation must satisfy
the following properties: 1) each resource can only be allocated to

Timing channel Protection
System calls Software protection. Secure HW timer enables SW miti-

gation techniques.
Page faults Page lock and unlock instructions
Interrupts No need. Do not depend on sensitive data.

Table 2: Protection for new timing channels under an untrusted
OS/hypervisor.

at most one timing compartment at a time, and 2) the correspond-
ing state is flushed when a resource is deallocated from a timing
compartment.

In our design, shared cache is allocated by adjusting the CPCs
which associate a TCID with each way. Only one TC can be al-
located to each way at a time. Changing the value of the CPCs
triggers a flush to the corresponding cache way. Bandwidth for on-
chip networks and memory controllers is allocated by changing the
NTC and MTC control registers respectively. These registers also
allow only one TC can use each time slot. Changes to these regis-
ters do not require a flush because these resources are stateless.

5.2 New Timing Channels
If the OS/hypervisor is untrusted, information leaks through tim-

ing of events that are visible to the OS/hypervisor must be pre-
vented in hardware. In particular, the untrusted system software
can observe the timing of events that cause transitions out of the
timing compartment. There are three possible ways that a com-
partment transitions to an untrusted OS/hypervisor: explicit system
calls (or hypercalls), exceptions, and external interrupts.

Figure 2 shows how these three new timing channels are handled.
First, external interrupts such as I/O events do not depend on data
within timing compartments. Similarly, timer interrupts used for
process scheduling are set by management software independent
of data within the TC.

System calls (or hypercalls) are externally visible events that are
fully controlled by software within a compartment. Also, the tim-
ing channels in externally visible I/O events exist even when a pro-
gram runs on dedicated hardware with a trusted OS/hypervisor. As
a result, there exist countermeasures for information leaks through
timing variations within a single program. For example, language-
level techniques have been developed to eliminate [54] or mitigate
[5, 63, 64] such timing channels. To enable mitigation schemes that
insert delays, timing compartments provide a new instruction that
provides a trustworthy time value even if the OS is compromised.

Most program exceptions come from bugs or errors and should
not happen if programs in compartments are well-written. How-
ever, page faults occur during normal execution, and may leak sen-
sitive information. In modern virtual memory systems, only a fi-
nite set of pages are kept in physical memory. When new pages are
brought into physical memory, page faults are triggered, revealing
which page is being accessed. Xu et al. [62] have recently demon-
strated an attack that exploits page faults to leak secrets.

Timing compartments add two new instructions TC_LOCK and
TC_UNLOCK, to eliminate timing channels through page faults. The
instructions allow a program in a timing compartment to preload
and lock pages before sensitive computations. Locked pages can-
not be evicted. Secure processors typically provide instructions to
add or remove a page to a compartment, and maintain a protected
list of physical pages for each compartment in order to protect them
from untrusted software. The compartment aborts on a page lock
instruction if the page does not already exist on the protected page
list. An attempt by an untrusted OS/hypervisor to remove a locked
page from the list returns an error so that the OS can select a differ-
ent page to remove.

L2-L3 bus

ReqLayer

RespLayer

Timeline

TC0

TC1

L3-Mem bus

ReqLayer

RespLayer

Memory Controller

...........
L3 Pipeline

...................

treq

tL3 Request blocked by other TC

Not enough time for memory access

treq

Figure 4: A bad time multiplexing schedule.

6. PERFORMANCE OPTIMIZATIONS

6.1 Time Slice Coordination
Timing compartments rely heavily on time multiplexing to pro-

tect shared resources including the L2-L3 bus, the L3-memory bus,
and the memory controller. Since these resources are all involved in
handling L2 misses, their schedules must be coordinated to achieve
high performance. For example, to avoid an unnecessary delay
when a request exits the L3-memory bus, the memory controller
should be available immediately to handle that request.

Figure 4 illustrates the problem. It shows when each of two tim-
ing compartments are scheduled to use the time multiplexed re-
sources along the L2 miss path. Red (Blue) blocks indicate that
TC0 (TC1) is scheduled to use the device. In the figure, an access
from TC0 that misses in both the L2 and L3 caches is shown. The
L2 miss sends a request to the L3 using the L2-L3 bus request layer.
When the L3 access is complete, the request must proceed through
the L3-memory bus request layer, but at this time TC1 is scheduled
to use the L3-memory bus, so TC0 is blocked until TC1 finishes.
Then, when it arrives at the memory controller, there is not enough
time left to complete a request, so it is blocked again.

The time multiplexing schedule should be coordinated among
related resources to avoid this problem. We define a turn as the
block of time that a TC is scheduled to use a resource, and a turn
length is the duration of a turn. An offset refers to a shift in the start
of the turn for a single resource compared to the start of the full
schedule. Coordination can be done by controlling the turn lengths
and offsets for each time multiplexed resource.

There are three main criteria for developing an efficient sched-
ule. First, the turn length should be long enough for at least one
transaction to complete. Second, to reduce unnecessary delays, the
offset should begin each turn when the data is available from the
preceding step. Third, the desired schedule should repeat for each
timing compartment.

The timing of an L2 miss depends on whether it hits or misses in
the L3. After L3 hit, the response is sent back across the L2-L3 bus
immediately. After an L3 miss, the request must propagate through
the L3-memory bus, the memory controller, and so on. Since the
timing differs for these two cases, they produce conflicting timing
constraints.

Given the conflicting requirements, we found that deriving the
optimal schedule for memory hierarchy in general is a nonlinear
optimization problem which is too difficult to be solved analyti-
cally. Instead, we derive a schedule heuristically. We built a custom
simulator that models the memory hierarchy components involved
in an L2 miss. It accepts a schedule (i.e. turn length and offset val-
ues) as inputs and calculates the average L2 miss latency assuming
the distribution of request arrival times is uniform random. We then
used a simulated annealing optimizer to find a schedule that mini-
mizes the L2 miss latency assuming an L3 hit-rate of 90%.

C1 C2 C3

} } } }Dead Time

{Queues

Time

}Turn

Figure 5: A temporal partitioning schedule with three security
classes.

The simulation study show that the coordination has a significant
impact on memory latency. For L2 misses that hit on an L3, the
worst schedule we found just varying offset values with a fixed turn
length had an average L2 miss latency that is 2.64X higher than the
best schedule. For L2 misses in general (90% L2 hit), the schedule
found by the optimizer reduced the average L2 miss latency by 62%
compared to the worst schedule found, and by 12% compared to a
hand-tuned, best-effort schedule.

6.2 Operation-Aware Dead Time
Simulations show that the most significant source of overhead for

timing compartments is the reduction in maximum usable memory
bandwidth due to temporally partitioning the memory controller.
Figure 5 illustrates temporal partitioning [?] which removes timing
interference in a shared memory controller by issuing requests in a
fixed static schedule. Each security domain is allocated to a single
time-slice called a turn, and each security domain can only issue
transactions during its turn. To prevent transactions issued by one
timing compartment from interfering with another timing compart-
ment, the memory controller stops issuing transactions for a period
at the end of each turn, called the dead time, in order to ensure that
in-flight transactions complete by the end of a turn and do not in-
terfere with the next turn. The dead time is conservatively set to
the worst-case time between two transactions. In practice, this is a
substantial portion of a time slice. For the parameters used in our
simulations, the dead time consumes 22 memory cycles out of each
time slice, which range from 23 to 43 cycles.

Security requires that the in-flight transactions from one com-
partment cannot interfere with transactions issued by another TC
in the following turn. However, the worst-case time between two
transactions depends on the type of each transaction — in other
words, for some transaction types, the worst-case time is lower.
Transactions that take less time can safely issue later in the turn. We
propose an optimization that leverages this observation by coarsely
grouping transactions into reads and writes. Then, a different dead
time is used for each type of transaction. For example, the follow-
ing equations show the worst-case times for each memory opera-
tion sequence based on DRAM timing parameters.

• Read, Read: tFAW −3∗ tRRD

• Write, Write: tFAW −3∗ tRRD

• Read, Write: tCAS+ tBURST + tRT RS− tCWD

• Write, Read: tCWD+ tBURST + tWT R

Here, tCAS is the time between a column read command and the
placement of data onto the data bus, tCWD is the time between
a column write command and the placement of data on the bus,
tBURST is the time that the data occupies the data bus, tRT RS is the

rank to rank switching time, tWT R is the minimum time between
a column write and a column read, tRRD is the minimum time be-
tween two row activations, and finally, tFAW is the four-bank ac-
tivation window, a rolling time period during which no more than
for bank activations can occur.

The dead time for reads is set to the worst case time between any
read transaction and any other transaction. The dead time for writes
is determined similarly. The dead time for each type of transaction
determines when that type of transaction can no longer be issued.
The dead time for reads is smaller than the dead time for writes,
allowing multiple read transactions to be issued in a turn. For ex-
ample, for the DRAM parameters used in this paper, the dead time
for reads is 12 memory cycles whereas the dead time for writes is
18 cycles.

This optimization significantly improves performance for memory-
intensive workloads.

7. EVALUATION

7.1 Methodology
To study the performance overhead of timing compartments a

timing-protected multicore processor is simulated using gem5 [8]
integrated with DRAMSim2 [44]. The simulations use the ARM
ISA. We use simulations instead of our RTL prototype in order to
evaluate performance for high-performance processing cores com-
monly used in cloud computing. Table 3 shows the system config-
uration. The cores use the gem5 “O3“ out-of-order core model
which runs at 2GHz. Each core has private 32KB L1 instruc-
tion and data caches, and a private 256KB L2 cache. The shared
L3 cache is varied from 2MB to 9MB depending on the number
of cores. The cache configuration parameters are derived from
the Intel Xeon E3-1220L and Intel Xeon E7-4820 which are used
by Amazon EC2. In DRAMSim2, we simulate a single-channel
667MHz 2GB DDR3 memory. The interconnects in the simulator
run at 1GHz.

For most experiments, each core has its own timing compart-
ment. That is, for an n-core system, n timing compartments exe-
cute concurrently. We study the impact of having multiple cores in
one timing compartment separately. The number of cache ways and
the network/memory bandwidths are evenly partitioned among tim-
ing compartments. Unless otherwise stated, the memory controller
protection uses the minimum turn length (23) and the relaxed dead
time optimization, which applies different dead times for reads and
writes.

Our experiments use multiprogram workloads, and we describe
our methodology precisely enough so that it can be repeated [28].
The simulations are fastforwarded until each benchmark has exe-
cuted at least 1 billion instructions. Benchmarks may reach this
threshold at different times, meaning the benchmarks which run
faster will be fastforwarded for more instructions. However, de-
tailed simulations begin from the same point for each workload and
for all system configurations. After fastforwarding, results are col-
lected with a detailed simulation until each core has executed for
at least 100M instructions. Statistics are collected for each bench-
mark at the 100M instruction mark, but all benchmarks continue to
run until the simulation ends, so that there is interference for the
entire simulation for the insecure baseline.

7.2 Performance Overhead
This section evaluates the performance overhead of timing isola-

tion by running multiprogram workloads comprised of SPEC2006
benchmarks, and measuring the system throughput (STP). STP is
the aggregated normalized IPC of each program relative to the IPC

Core count 2/4/6/8
gem5 core model “O3”
CPU Clock 2GHz
Memory 2GB 667MHz
Network Clock 1GHz
L1d / L1i 32kB 2-way 2 cycles
L2 256kB 8-way 7 cycles
L3 2/4/6/9MB 16-way 17 cycles

Table 3: Simulation configuration parameters.
Workload Benchmarks Memory Intensity
ast_ast astar astar low-low
h26_hm h264ref hmmer med-med
ast_h26 astar h264ref low-med
sjg_h26 sjeng h264ref med-med
sjg_sjg sjeng sjeng med-med
mcf_ast mcf astar high-low
lib_ast libquantum astar high-low
mcf_mcf mcf mcf high-high
mcf_lib mcf libquantum high-high
lib_lib libquantum libquantum high-high

Table 4: Multiprogram workloads.

when each program runs by itself. An STP of greater than 1 means
that higher throughput is achieved by running the programs in par-
allel rather than serially. It is computed by

n

∑
i=1

IPCMP,i

IPCSP,i
, (1)

where IPCMP,i is the IPC of the ith program in the workload when
run in parallel with the others, and IPCSP,i is the IPC for the same
program when it is run alone on the same system.

The experiments evaluate the performance for the workload mixes
shown in Table 4. Workloads were selected to include a diverse set
of application mixes that include both memory intensive and com-
pute intensive benchmarks. Applications also vary in cache sensi-
tivity. For experiments with two cores, each workload consists of
the two benchmarks in the table. For experiments with more cores,
the same labels are used to refer to a workload mix where half the
compartments run the first program, and the others run the second
half.

7.2.1 Overall Performance Overhead
Figure 6 shows the performance overhead of timing compart-

ments in a system with 2 cores both with and without optimiza-
tions. The optimizations include the relaxed dead time for the
memory controller (relaxed) and static workload-aware resource
allocations for the cache (Cache) and memory (Mem). Workload-
aware resource allocation uses the amount of cache space and mem-

a
st

_a
st

h
2

6
_h

m

a
st

_h
2

6

sj
g

_h
2

6

sj
g

_s
g

j

m
cf

_a
st

lib
_a

st

m
cf

_m
cf

m
cf

_l
ib

lib
_l

ib

No Opt Relaxed Cache Mem All Opti

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d

 S
T
P

Figure 6: Performance Overhead of Timing Compartments.

a
st

_a
st

h
2

6
_h

m

a
st

_h
2

6

sj
g

_h
2

6

sj
g

_s
g

j

m
cf

_a
st

lib
_a

st

m
cf

_m
cf

m
cf

_l
ib

lib
_l

ib

Cache Bus Memory Ctrl

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d

 S
T
P

Figure 7: Performance Breakdown (4 cores).

ory bandwidth allocated to each application to match the general
application demands. The allocation, however, is still fixed for the
entire execution and thus only reflect general application character-
istics, not data-dependent program behavior. The bar labeled (All
Opti) uses all optimizations. The overhead is measured using the
STP of the secure system normalized to the STP of the insecure
baseline. Performance overhead depends heavily on memory in-
tensity. The overhead is quite low for compute-intensive workloads
such as sjg_sjg, ast_h26, ast_ast, and sjg_h26, because tim-
ing compartments only incur overhead during L2 misses.

On the other hand, the performance overhead can be quite sig-
nificant for memory intensive workloads when unoptimized pro-
tection techniques are used. For example, lib_lib has overhead
close to 45%. For these cases, the relaxed operation-aware dead
time can significantly reduce overhead. This optimization reduces
the worst-case overhead to roughly 20%. The overhead can be fur-
ther reduced to less than 7% on average and 16% in the worst case
if the application-aware resource allocation is also enabled.

We note that 2 TCs are enough to support many practical ap-
plication scenarios. For example, mobile security platforms such
as ARM TrustZone [4] isolate applications into two worlds. Each
world can be placed in a single TC regardless of the number of
cores. As we show later, overheads scale with the number of TCs,
not with the number of cores. Similarly, hardware compartments
such as Intel SGX are designed to be used as a secure co-processor
to run security-critical parts of an application and mostly likely to
run one compartment at a time.

7.2.2 Overhead Breakdown
To better understand the sources of the performance overhead,

the overhead of protection mechanisms were evaluated individu-
ally. Figure 7 shows the performance overhead of timing compart-
ments compared to the insecure baseline when only a single protec-
tion mechanism is enabled at a time. These protection mechanisms
include cache partitioning, time multiplexing for on-chip intercon-
nect, and time multiplexing for a memory controller. The mem-
ory controller uses the relaxed dead time optimization. The results
suggest that the memory controller protection is the most substan-
tial source of overhead, and that cache partitioning and bus protec-
tion are less costly. This is because memory controller protection
requires a dead time [55] to drain in-flight transactions which sig-
nificantly reduces total memory bandwidth. For example, in our
DRAM configuration, the turn length is 23 cycles whereas the dead
time is 22 cycles. As a result, only one DRAM request can be is-
sued every 23 cycles, incurring significant overhead for bandwidth-
limited applications. While protection for caches and on-chip inter-
connects introduce inefficiencies, they do not reduce the total cache
capacity or the on-chip interconnect bandwidth.

a
st

_a
st

h
2

6
_h

m

a
st

_h
2

6

sj
g

_h
2

6

sj
g

_s
g

j

m
cf

_a
st

lib
_a

st

m
cf

_m
cf

m
cf

_l
ib

lib
_l

ib

2TCs 4TCs 8TCs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d
 S

T
P

Figure 8: Norm. STP of TCs as the number of TCs increases.

a
st

_a
st

h
2

6
_h

m

a
st

_h
2

6

sj
g

_h
2

6

sj
g

_s
g

j

m
cf

_a
st

lib
_a

st

m
cf

_m
cf

m
cf

_l
ib

lib
_l

ib

4TCs 2TCs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d

 S
T
P

Figure 9: Benefit of allowing 2 programs to share a TC.

7.2.3 Scaling the Number of TCs
Figure 8 shows the performance overhead of the timing compart-

ment as the number of TCs and cores increases from 2 to 8. The re-
laxed dead time is used, but resource allocations are not optimized
based on application characteristics. The performance overhead is
low (less than 5%) for compute-intensive benchmarks even with a
large number of TCs. Yet, the overhead of memory-intensive work-
loads increases with the number of TCs, because more compart-
ments share the same amount of fixed memory bandwidth. While
our simulation infrastructure currently only supports one memory
controller, we note that commercial systems typically have multi-
ple memory channels, typically one for every 2-4 cores. We believe
that the overhead for processors with more cores will be still similar
to these results with 2-4 cores.

The results suggest that many TCs can be supported simultane-
ously with reasonable overhead for compute-intensive applications.
However, many memory intensive workloads should not be allo-
cated to the same machine to keep overheads low. This is true even
without TCs. In cloud computing environments, workloads can
be dynamically profiled and more intensive workloads can be allo-
cated to machines with are few memory intensive workloads [15].

7.2.4 Using one TC for Multiple Cores
Multiple programs or virtual machines can be grouped into the

same timing compartment as long as they have the same security
needs. For example, cloud users often request several VMs that
run on the same physical machine, possibly to avoid network com-
munication latencies. Naturally, VMs owned by the same user can
be grouped into the same timing compartment. Also, low-security
VMs may not need timing channel protection. For multi-threaded
programs, one program can also use multiple cores running in the
same timing compartment.

Using one timing compartment for multiple cores provides sub-
stantial performance improvements because cores within one com-

Component No protection With protection Overhead
(µm2) (µm2) (%)

Cores 530,524 530,524 0
Inst cache 617,944 617,844 0
Data cache 578,270 577,968 -0.05
Network 621,996 661,309 6.32
DRAM controller 158,757 184,577 16.26
Total 2,507,491 2,572,222 2.58

Table 5: Area breakdown and overhead for the RTL prototype.

partment can share resources as they would in a conventional sys-
tem without timing protection. Figure 9 shows the benefit of group-
ing multiple programs into a single timing compartment by com-
paring the STP of a system that runs 4 programs in 4 TCs, to the
same system running the same 4 programs in 2TCs. The mem-
ory controller turn lengths are increased to 30 for the 2 TC system
(compared to 23 for the 4TC systems) since TCs running two pro-
grams consume more memory bandwidth. The performance im-
provement is dependent on the characteristics of the applications in
the workload. For memory intensive workloads such as lib_lib,
the STP improves by as much as 54% compared to using 4TCs.
However, for workloads like ast_ast where all applications are
compute-bound, the improvement is small. Overall, the perfor-
mance overhead of running 2 TCs on 4 cores is comparable to run-
ning 2 TCs on 2 cores.

7.2.5 Multi-threaded Performance Overhead
The multiprogram workloads do not show the overhead of pro-

tection for the cache coherence bus, because they do not have shared
data. To evaluate the overhead of cache coherence protection, we
used SPLASH-2 [60] benchmarks on a 4-core system. For each
experiment, we run two copies of a SPLASH-2 benchmark, each
with two threads, in two TCs.

The overhead of cache coherence protection was evaluated by
comparing the normalized execution time of a system with all pro-
tection mechanisms to the normalized execution time of the same
system with all protection mechanisms except cache coherence pro-
tection. The overhead of adding cache coherence protection is quite
low; the overhead is at most 1.5% for ocean_cp. The overheads for
the remaining SPLASH-2 benchmarks is negligible. The overhead
is low because coherence protocol transactions are infrequent.

7.2.6 Context Switch Overhead
When the TC is context switched out, the remaining state in the

private and shared caches, and on-chip resources such as the TLB
and branch predictor, need to be flushed and dirty cache lines need
to be written back to main memory. To prevent writeback requests
from interfering with the incoming process, the core must be stalled
until all writebacks are complete. We believe flushing the private
and shared caches are the main source of overhead as they are the
largest state elements. We evaluated the STP of a 4-core system
with 4TCs and with private caches that are flushed every 10ms,
50ms, and 100ms normalized to the STP of the system without
flushing. The overhead of context switching is quite small. On
average the overhead is 2.1% when context switches happen every
10ms and 0.8% when context switches happen every 100ms. The
overhead is at most 7% (for h26_hm) when flushing happens every
10ms.

7.3 Area and Frequency Overhead
The Verilog prototype used for security verification is also used

to evaluate the area and frequency overhead. The design was syn-
thesized with the Synopsys Design Compiler. Timing channel pro-
tection does not affect the clock frequency. Both designs with and

without timing channel protection synthesized to 820MHz. The
overall area overhead is 2.58%. This figure excludes the cache area
which is large compared to the small baseline processor. Therefore,
the area overhead for a full processor including caches will be even
lower.

8. RELATED WORK
Timing compartments represent the first architecture to provably

enforce timing-sensitive noninterference among concurrently exe-
cuting processes on a shared multicore. Tiwari et al. [50, 51] have
used information flow to formally guarantee that a process running
on a single-core is noninterfering with publicly observable outputs.
Execution leases [50] enforce strict upper bounds on the execution
times of program subsections. A single-core secure processor has
been developed with leases and verified [51] with information flow.
However, they do not address timing channels introduced through
fine-grained resource-sharing in a multicore processor. We view
these problems as orthogonal, and these approaches can be com-
bined.

Information flow tracking is a promising approach for formally
verifying security properties of hardware designs. Gate level infor-
mation flow tracking (GLIFT) [52, 39, 25] allows run-time infor-
mation flow analysis at the gate level, requiring significant power,
performance, and area overheads. Star Logic [40] permits GLIFT
to be performed during simulation time, but requires enumeration
of the entire state space to attain a static guarantee. Caisson [33]
enforces information flow control in a hardware description lan-
guage type system. Sapper [33] is another HDL type system which
reduces the area overhead of Caisson by inserting run-time checks,
removing the need for redundant registers. SecVerilog [65] both re-
moves dynamic checks and redundant hardware with a dependent
type system that permits hardware to be shared dynamically, but
checked statically. Timing compartments are verified using SecVer-
ilog. However, timing compartments are designed to be verifiable
with any of the aforementioned information flow tools.

Timing compartments leverage prior proposals which use tem-
poral partitioning to protect the network [59, 56] and memory con-
troller [55]. Shaifee et al. [45] propose rank partitioning and the
triple alternation to improve performance of temporally partitioned
memory controllers. Both optimizations can be added to timing
compartments. However, the previous study [45] showed that the
triple alternation has comparable performance with bank partition-
ing used in this paper. Rank partitioning requires significant re-
strictions to memory allocation. Ferraiuolo et al. [19] propose op-
timizations for timing-channel protection for memory controllers
when only uni-directional protection is necessary. These optimiza-
tions do not apply to timing compartments, which are mutually dis-
trusting.

Timing compartments use way partitioning for cache protection.
Liu et al. [35] demonstrated that way partitioning intended for per-
formance isolation in conventional Intel processors can also be used
for timing channel protection. Other approaches for cache timing-
channel protection have also been proposed, but most cannot be
verified with SecVerilog. For example, RPCache [58] and Random
Fill cache [36] obfuscate cache timing by randomizing cache re-
placements and insertions respectively. These cannot be verified
with information flow analysis, because they do not provide nonin-
terference. Although the particular blocks chosen for eviction and
insertion are randomized, accesses from one software entity still
cause blocks owned by another entity to be evicted. This flow rep-
resents an actual leak of information — the number of accesses
made by co-resident software is not hidden, and this has been used
to carry out attacks [31]. NoMoCache [17] partitions some cache

ways, but allows interference in other cache ways to reduce timing
channel capacity. NoMoCache also cannot be verified, because it
does not provide noninterference.

Many microarchitectural timing channels have been identified.
This work is the first to point out vulnerabilities in cache coherence
protocols and component interfaces. Vulnerabilities have also been
found in caches [37, 42, 7, 41, 53, 10, 31, 23], branch predictors
[1, 2], processor pipelines [57], networks on chip [56, 59], and
memory controllers [55, 21]. Timing compartment removes timing
channels between software running concurrently on multiple cores.

Recent studies have proposed detecting attempts to use covert
timing channels. Hunger et al. [26] formally model timing chan-
nels, and demonstrate that reads from a covert timing channel are
destructive. This facilitates detection since it implies reads can
be observed. They also show how attacks can both be performed
and detected even through noisy channels. Chen et al. [12] pro-
pose CC-Hunter, a framework for timing channel detection that
uses hardware support to detect bursts of events that are likely to
correspond to attempts to use a timing channel. These detection
strategies complement TCs by providing different trade-off points.
For high-assurance systems, TCs provide a strong guarantee that
there are no timing channels through shared hardware. For lower-
security scenarios, the detection approaches can limit information
leaks (but not eliminate them) by enabling protection only after at-
tacks have been detected.

We show how timing compartments can be applied even when
the OS/hypervisor is not trusted. This allows timing compartments
to be used for secure processor architectures [66, 18, 20, 47, 30,
32, 11, 13, 27, 9, 4, 29, 48, 50, 24, 61, 14] to provide strong iso-
lation for both explicit and timing channels. Iso-X [18] represents
the latest academic compartments architecture. Ascend [20] is a
compartment architecture which prevents timing channels through
the off-chip memory access patterns of a single program. Hyper-
wall [47] extends compartments to systems managed by a hypervi-
sor. Other architectures reduce the software TCB rather than elim-
inating it [30, 11, 32, 13]. Secure processor architectures have also
been adopted commercially as well [27, 9]. None of these architec-
tures prevent the timing channels among multiple cores that timing
compartments removes. Because these architectures use similar ap-
proaches, we believe the timing compartments can be applied to
many of them.

9. CONCLUSION
This paper presents timing compartments, the first architecture

to provably enforce timing-sensitive noninterference among soft-
ware concurrently running on a multi-core processor. Enforcing
noninterference implies that timing compartments are comprehen-
sive, removing timing channels instead of mitigating them. We
have shown that timing compartments can be mechanically veri-
fied using static information flow analysis and be applied to both
traditional systems and secure processor with an untrusted OS/hy-
pervisor. Finally, experimental results show that timing compart-
ments can have surprisingly low performance overhead, especially
when a small number of compartments are used concurrently.

10. REFERENCES
[1] O. Aciiçmez, c. K. Koç, and J.-P. Seifert. "On the Power of Simple Branch

Prediction Analysis". In Proceedings of the 2nd ACM Symposium on
Information, Computer and Communications Security, 2007.

[2] O. Aciiçmez, c. K. Koç, and J.-P. Seifert. "Predicting Secret Keys via Branch
Prediction". In Proceedings of the 7th Cryptographers’ Track at the RSA
Conference on Topics in Cryptology, 2007.

[3] O. Aciiçmez, W. Schindler, and c. K. Koç. "Cache Based Remote Timing
Attack on the AES." . In Proceedings of the 7th Cryptographers’ Track at the
RSA Conference on Topics in Cryptology, 2007.

[4] ARM Ltd. Trustzone. http:
//www.arm.com/products/processors/technologies/trustzone.php.

[5] A. Askarov, D. Zhang, and A. C. Myers. "Predictive Black-Box Mitigation of
Timing Channels". In Proceedings of the 17th ACM Conference on Computer
and Communications Security, 2010.

[6] A. Aviram, S. Hu, B. Ford, and R. Gummadi. "Determinating Timing Channels
in Compute Clouds". In The ACM Cloud Computing Security Workshop, 2010.

[7] D. J. Bernstein. "Cache-Timing Attacks on AES". Technical report, 2005.
[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. "The Gem5 Simulator".
SIGARCH Computer Architecture News, 2011.

[9] R. Boivie. "SecureBlue++: CPU Support for Secure Execution", 2012.
[10] J. Bonneau and I. Mironov. "Cache-Collision Timing Attacks Against AES". In

Proceedings of the Cryptographic Hardware and Embedded Systems Lecture
Notes in Computer Science, 2006.

[11] D. Champagne and R. Lee. "Scalable Architectural Support for Trusted
Software". In Proceedings of the 16th IEEE International Symposium on High
Performance Computer Architecture, 2010.

[12] J. Chen and G. Venkataramani. "CC-Hunter: Uncovering Covert Timing
Channels on Shared Processor Hardware". In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, 2014.

[13] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic. "SecureME: A
Hardware-software Approach to Full System Security". In Proceedings of the
International Conference on Supercomputing, 2011.

[14] J. Criswell, N. Dautenhahn, and V. Adve. "Virtual Ghost: Protecting
Applications from Hostile Operating Systems". In Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2014.

[15] C. Delimitrou and C. Kozyrakis. "Quasar: Resource-Efficient and QoS-Aware
Cluster Management". In Procedings of the 19th international conference on
Architectural support for programming languages and operating systems Not.,
2014.

[16] D. E. Denning. "A Lattice Model of Secure Information Flow".
Communications of the ACM, 1976.

[17] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev.
"Non-Monopolizable Caches: Low-Complexity Mitigation of Cache Side
Channel Attacks". ACM Transactions Architecture and Code Optimization,
2012.

[18] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh, and
R. Riley. "Iso-X: A Flexible Architecture for Hardware-Managed Isolated
Execution". In Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014.

[19] A. Ferraiuolo, Y. Wang, D. Zhang, A. C. Myers, and G. E. Suh. "Lattice priority
scheduling: Low-overhead timing-channel protection for a shared memory
controller". In IEEE International Symposium on High Performance Computer
Architecture, 2016.

[20] C. W. Fletcher, M. v. Dijk, and S. Devadas. "A Secure Processor Architecture
for Encrypted Computation on Untrusted Programs". In Proceedings of the 7th
ACM Workshop on Scalable Trusted Computing, 2012.

[21] C. W. Fletcher, L. Ren, X. Yu, M. van Dijk, O. Khan, and S. Devadas.
"Suppressing the Oblivious RAM Timing Channel While Making Information
Leakage and Program Efficiency Trade-Offs". In 20th IEEE International
Symposium on High Performance Computer Architecture, 2014.

[22] J. A. Goguen and J. Meseguer. "Security Policies and Security Models". In
IEEE Symposium on Security and Privacy, 1982.

[23] D. Gullasch, E. Bangerter, and S. Krenn. "Cache Games – Bringing
Access-Based Cache Attacks on AES to Practice". In Proceedings of the IEEE
Symposium on Security and Privacy, 2011.

[24] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel. "InkTag:
Secure Applications on an Untrusted Operating System". ACM SIGARCH
Computer Architecture News, 2013.

[25] W. Hu, D. Mu, J. Oberg, B. Mao, M. Tiwari, T. Sherwood, and R. Kastner.
Gate-level information flow tracking for security lattices. ACM Trans. Des.
Autom. Electron. Syst., 2014.

[26] C. Hunger, M. Kazdagli, A. S. Rawat, A. G. Dimakis, S. Vishwanath, and
M. Tiwari. "Understanding Contention-Based Channels and Using Them for
Defense". In 21st IEEE International Symposium on High Performance
Computer Architecture, 2015.

[27] Intel Corporation. "Intel Software Guard Extensions Programming Reference",
2014.

[28] A. N. Jacobvitz, A. D. Hilton, and D. J. Sorin. "Multi-Program Benchmark
definition". In International Symposium on Performance Analysis of Systems
and Software, 2015.

[29] S. Jin, J. Ahn, S. Cha, and J. Huh. "Architectural Support for Secure
Virtualization Under a Vulnerable Hypervisor". In Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture, 2011.

[30] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. "NoHype: Virtualized Cloud
Infrastructure Without the Virtualization". In Proceedings of the 37th Annual

http://www.arm.com/products/processors/technologies/trustzone.php
http://www.arm.com/products/processors/technologies/trustzone.php

International Symposium on Computer Architecture, 2010.
[31] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou. "Deconstructing New Cache

Designs for Thwarting Software Cache-based Side Channel Attacks". In
Proceedings of the 2nd ACM Workshop on Computer Security Architectures,
2008.

[32] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang.
"Architecture for Protecting Critical Secrets in Microprocessors". In
Proceedings of the 32nd Annual International Symposium on Computer
Architecture, 2005.

[33] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam, R. Kastner,
T. Sherwood, B. Hardekopf, and F. T. Chong. Sapper: A language for
hardware-level security policy enforcement. In Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, pages 97–112, New York,
NY, USA, 2014. ACM.

[34] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood, and
B. Hardekopf. "Caisson: A Hardware Description Language for Secure
Information Flow". In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2011.

[35] F. Liu, Q. Ge, Y. Yarom, C. Mckeen, Frank Rozas, G. Heiser, and R. Lee.
"CATalyst: Defeating Last-Level Cache Side Channel Attacks in Cloud
Computing". In Proceedings of the 22nd International Symposium on High
Performance Computer Architecture, 2016.

[36] F. Liu and R. B. Lee. "Random Fill Cache Architecture". In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture, 2014.

[37] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. Lee. "Last-Level Cache
Side-Channel Attacks are Practical". In Proceedings of the IEEE Symposium on
Security and Privacy, 2015.

[38] R. Martin, J. Demme, and S. Sethumadhavan. Timewarp: Rethinking
timekeeping and performance monitoring mechanisms to mitigate side-channel
attacks. SIGARCH Comput. Archit. News, 40(3):118–129, June 2012.

[39] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner.
"Theoretical Analysis of Gate Level Information Flow Tracking". In
Proceedings of the 47th Design Automation Conference, 2010.

[40] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner.
"Information Flow Isolation in I2C and USB". In Proceedings of the 48th
Design Automation Conference, 2011.

[41] D. A. Osvik, A. Shamir, and E. Tromer. "Cache Attacks and Countermeasures:
The Case of AES". In "Proceedings of the The Cryptographers’ Track at the
RSA Conference on Topics in Cryptology, 2006.

[42] C. Percival. "Cache Missing for Fun and Profit". In BSDCan, 2005.
[43] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. "Hey, You, Get Off of My

Cloud: Exploring Information Leakage in Third-Party Compute Clouds". In
Proceedings of the 16th ACM Conference on Computer and Communications
Security, 2009.

[44] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. "DRAMSim2: A Cycle Accurate
Memory System Simulator". Computer Architecture Letters, 2011.

[45] A. Shafiee, A. Gundu, M. Shevgoor, R. Balasubramonian, and M. Tiwari.
"Avoiding Information Leakage in the Memory Controller with Fixed Service
Policies". In Proceedings of the 48th Annual IEEE/ACM International
Symposium on Microarchitecture, 2015.

[46] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. "AEGIS:
Architecture for Tamper-evident and Tamper-resistant Processing". In
Proceedings of the 17th Annual International Conference on Supercomputing,
2003.

[47] J. Szefer and R. B. Lee. "Architectural Support for Hypervisor-Secure
Virtualization". In Proceedings of the 17th International Conference on
Architectural Support for Programming Languages, 2012.

[48] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz. "Architectural Support for Copy and Tamper Resistant Software".
In Proceedings of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2000.

[49] K. Tiri, O. Aciiçmez, M. Neve, and F. Andersen. "An Analytical Model for
Time-Driven Cache Attacks". In Proceedings of the 14th International
Conference on Fast Software Encryption, 2007.

[50] M. Tiwari, X. Li, H. M. G. Wassel, F. T. Chong, and T. Sherwood. "Execution
Leases: A Hardware-supported Mechanism for Enforcing Strong
Non-interference". In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2009.

[51] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf, R. Kastner,
F. T. Chong, and T. Sherwood. "Crafting a Usable Microkernel, Processor, and
I/O System with Strict and Provable Information Flow Security". In
Proceedings of the 38th Annual International Symposium on Computer
Architecture, 2011.

[52] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood. "Complete Information Flow Tracking from the Gates Up". In
Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2009.

[53] E. Tromer, D. A. Osvik, and A. Shamir. "Efficient Cache Attacks on AES, and
Countermeasures". Journal of Cryptology, 2010.

[54] D. Volpano and G. Smith. "Probabilistic Noninterference in a Concurrent
Language". Journal of Computer Security, 1999.

[55] Y. Wang, A. Ferraiuolo, and E. Suh. "Timing Channel Protection for a Shared
Memory Controller". In Proceedings of the 20th International Symposium on
High Performance Computer Architecture, 2014.

[56] Y. Wang and E. Suh. Efficient timing channel protection for on-chip networks.
In Proceedings of the 6th ACM/IEEE International Symposium on
Networks-on-Chip., NOCS, 2012.

[57] Z. Wang and R. B. Lee. Covert and side channels due to processor architecture.
ACSAC ’06.

[58] Z. Wang and R. B. Lee. "New Cache designs for Thwarting Software
Cache-Based Side Channel Attacks". In Proceedings of the 34th Annual
International Symposium on Computer Architecture, 2007.

[59] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T. Chong, and
T. Sherwood. "SurfNoC: A Low Latency and Provably Non-Interfering
Approach to Secure Networks-on-chip". In Proceedings of the 40th Annual
International Symposium on Computer Architecture, 2013.

[60] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. "The SPLASH-2
Programs: Characterization and Methodological Considerations". In
Proceedings of the 22nd Annual International Symposium on Computer
Architecture, 1995.

[61] Y. Xia, Y. Liu, and H. Chen. "Architecture Support for Guest-transparent VM
Protection from Untrusted Hypervisor and Physical Attacks". In Proceedings of
the 2013 IEEE 19th International Symposium on High Performance Computer
Architecture, 2013.

[62] Y. Xu, W. Cui, and M. Peinado. "Controlled-Channel Attacks: Deterministic
Side Channels for Untrusted Operating Systems". In Proceedings of the 36th
IEEE Symposium on Security and Privacy, 2015.

[63] D. Zhang, A. Askarov, and A. C. Myers. "Predictive Mitigation of Timing
Channels in Interactive Systems". In Proceedings of the 18th ACM conference
on Computer and communications security, 2007.

[64] D. Zhang, A. Askarov, and A. C. Myers. Language-based control and
mitigation of timing channels. 2012.

[65] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. "A Hardware Design
Language for Timing-Sensitive Information-Flow Security". 2015.

[66] T. Zhang and R. B. Lee. "CloudMonatt: an architecture for security health
monitoring and attestation of virtual machines in cloud computing". In
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, 2015.

[67] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. "HomeAlone: Co-residency
Detection in the Cloud via Side-Channel Analysis". In Proceedings of the 2011
IEEE Symposium on Security and Privacy, 2011.

	Introduction
	Timing Compartments
	Objective and Scope
	Architecture Model
	Threat Model and Assumptions
	Application Scenarios

	Protection Mechanisms
	Approach
	Timing Compartment ID
	Private Resource Protection
	Timing Isolation in Memory Hierarchy
	Cache Contention
	On-Chip Interconnect Contention
	Main Memory Controller Contention
	Contention in Cache Coherence Protocols

	Verification with Information Flow Analysis
	HDL-Level Information Flow
	Prototype Processor Implementation

	Handling an Untrusted OS
	Secure Protection Management
	New Timing Channels

	Performance Optimizations
	Time Slice Coordination
	Operation-Aware Dead Time

	Evaluation
	Methodology
	Performance Overhead
	Overall Performance Overhead
	Overhead Breakdown
	Scaling the Number of TCs
	Using one TC for Multiple Cores
	Multi-threaded Performance Overhead
	Context Switch Overhead

	Area and Frequency Overhead

	Related Work
	Conclusion
	References

