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Abstract

We obtain analytic conditions on a nonrandom function f which are
necessary and sufficient for the existence of the double integral
7 [T, f(s,t)dX,dX , where X, is the Levy symmetric stable process of
index o satisfying 1 < a 2. The precise condition is that the integral
operator having kernel f should define a completely summing map from
L“'(R) to L*R) (1/a + 1/a" =1). We also obtain bounds on the pth
absolute moments of the integral for all 0 < p < «/2.

Central to our method and of independent interest is the following
decoupling inequality for random bilinear forms: for each 1 <o <2 and
1 <p <a there is a constant C(p,z) such that for every n > 2 and

n

bilinear form B on R we have

E]B(z,mp < C(p,a)E|B(,&,x)|p,

where X = (X1”"’Xn) is a random vector with i.i.d. symmetric a-stable
components and Y is an independent copy of X. Furthermore an analogue

of this result is shown to hold for multilinear forms of each rank.



1. Introduction and statement of main results

We investigate the integral

+c0
(1.1) J(f) = [ f(s,t)dxdx,

b d

where Xt is a symmetric stable process with index a, satisfying

1 < a < 2. We obtain conditions for the integral to exist based on summing
properties of the integral operator having integral kernel f. These
conditions are best possible in a sense to be made precise below. We also
obtain bounds on moments of J(f). A forthcoming paper will contain further
information about the double integral as well as extensions to higher order
multiple integrals.

t > 0} has stationary independent increments and the

1uX] —alula
characteristic function of X] is Ee =g . Without loss of

The process {X,

generality we take a = 1. We extend Xt to all of R by choosing an

~

independent copy {X,, t >0} of {X,, t>0} andsetting X_ = -Yt.

For 0 < a <2, the single integral ff: f(t)dX, exists if and only

t
if fe La(R]) (see Schilder (1970)). When « = 2, the process X,  1is

t
Brownian motion. In that case, one approach allows the double integral to
be defined for any L2 function as an L2 1imit of suitable simple func-
tions (see Ito (1951)). Contrary to expectation, example 1 of Section 2
shows that for 1 < a < 2 the analogous condition f ¢ L“(Rz) is not
sufficient for the double integral to exist.

Our method is based on the following decoupling inequalities which may

be of independent interest. They are established in Section 3.
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Theorem 1.1 (Decoupling Inequalities). Let M],Mz,... be i.i.d. symmetric

stable random variables with index o satisfying 1 <o < 2. For each
k=1,2,... let {M?} be an independent copy of the sequence {Mi}' Then
for each integer r > 1, and for every p satisfying 1 < p < », there
are constants C(p,r) and C'(p,r) such that for any Zi—indexed family of

real numbers a , all but finitely many of which are zero, we have

I I
12 r

C(p,r)E ) a. . .M.
|1']<1’2<...<1'r Tlgesed Ty T Ty

55' y a M

(1.2) .. C
11<12<"'<1r 1

<Cpor)E| ] a; My eeM, 'p

Remark. It is possible to choose

23 r
Clp,r) = 18 2/2 2(r-])p ’
(p-1)
and, when o« = 2,
fﬁ 182p3 r-1
C(p,r) =| 3/2
\(p—1)

No attempt has been made to obtain the best constants. The expression for
C(p,r) 1is based in part on the constants appearing in Burkholder's square
inequality (see for example Burkholder (1973), Theorem 3.2). MNote that the
inequality (1.2) holds trivially when « < 2 and p > «. Extensions of the
decoupling inequalities to o« < 1 and to other infinitely divisible random
variables will appear elsewhere.

We shall define the double integral J(f) for functions f which
satisfy f(s,t) = f(t,s) and further conditions to be specified below. The
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symmetry assumption is for notational convenience only: for general f we
may write f = fs + fa’ where fs is symmetric and fa antisymmetric
under interchange of arguments. The ordinary (nonstochastic) double
integral of an antisymmetric integrable function is zero. Analogously, set
J(f) = J(f) whenever J(f ) and J(lfal) are well-defined.

We are aware of three natural approaches to the problem of defining the
double stochastic integral for symmetric integrands.

In the first approach one seeks a Banach space B of measurable
functions and a constant 0 < p < = for which it is possible to prove an

inequality of the form

(1.3) (El-o{ _c{ f(s,t)dxsdxt| )P < c|f B>
for "simple" functions f. Here, and subsequently, ’ ,B denotes the norm

of B and C 1is a constant independent of f. If the functions f for
which (1.3) holds are dense in B then the double integral may be defined
by completion for all f in B. Spaces B suitable for a wide class of
applications have been introduced by Surgailis (1981) in the case 1 < a < 2.

Specifically, define G . by

oy

a-€

R ate

, +oo ate
(1.4) o (F)= [ (] 'f(s,t)' ds) dt + lf’

+ |f
a,€ e La—e(RZ) ’ lLa+e(R2)
for 1<a <2 and e >0 such that 1 <a-e <ate 2. Surgailis obtains
an analogue of (1.3) for the space B of symmetric functions satisfying

c; 8(f) { » for each such « and «.
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The second approach uses the fact that Xt is a semimartingale and the
double integral is defined as an iterated Ita-type stochastic integral.

While no-one seems to have applied this approach to the double integral in the
stable non-Gaussian case, Kallenberg (1975) has developed an Ita integral for
general Lévy processes. In the case of stable processes with index « 1in

the range 1 < « < 2, the integral of Kallenberg is defined for the widest
possible class of integrands.

The third approach has been developed by Neveu (1968) in the Gaussian
case (see also the appendix of Mandelbaum and Taqqu (1984).) Briefly, one
may define the integral directly for functions of the form f(t,s) = g(t)h(s)
and then for general f via a suitable orthogonal expansion of the form
f(t,s) = E?,j=} C1j¢i(s)¢j(t)‘ In the non—L2 case these methods are severely
limited by the complicated geometry of L¥. Nevertheless, some success along
these lines has been achieved by Szulga and Woyczinski (1983).

Our approach is a mixture of the first two. We define the double
integral of a function vanishing on the diagonal as an iterated Ita integral
using the work of Kallenberg (1975). The class of such integrands, A;,
is defined precisely below. We show that this class may be normed in such a
way that it becomes a Banach space (Theorem 1.2); moreover the class of all
step functions is dense in A; and an inequality having the form of (1.3)
holds (Theorem 1.3).

Since we also obtain the reverse inequality to (1.3), our class of
jntegrands is the largest Banach space of Lebesgue measurable functions for
which it is possible to define J(f) as a limit in mean of integrals of step
functions as in approach (1).

At the same time, the class A; is the largest possible class to which

Kallenberg's construction applies. Therefore our approach is also best

possible amongst those of the second type.
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Kallenberg proves that for any predictable process Vt satisfying

(1.5) Plw: é th(w)ladt { o) =1

there exists a sequence of simple predictable processes Vn(t) such that

T P
(1.6) i an(t) - V(t)‘“dt >0, 0<T<w,
o |
and such that for each N> 0
T T
(1.7) sup |j vo(t)dx, - | Vm(t)dxtl > 0 a.s.,
0<TKN 10 0o

as m,n > «. Moreover (1.7) follows from (1.6). The integral fg V(t)dXt
may be defined as the limit of the simple integrals. This definition agrees
with the semimartingale definition whenever the latter is applicable, i.e.,
s ® 2 _
whenever V., satisfies P(fg Yy <=) = 1.
In order to use Kallenberg's result to define the double integral, we

need to establish the existence of a predictable Vt'

For the remainder of this paper we shall assume that the function f

satisfies the following condition:

+co
(1.8) [ ‘f(s,t)lads { =, a.e. t.

Under this assumption the expression fg f(s,t)dXS defines a stable
random variable for almost every t. We will show that there is a Lebesgue

null set B such that the process
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0 t
Vi = 1BC(t) é f(s,t)dxS

has a version Vt which is predictable relative to the usual completed

filtration of Xt' For notational convenience, we write

(1.9) v, =

t f(s,t)dX_.

S

OO ¢t

In particular, we may view Vt as a random element 1in Lo[R+], the metric

space of equivalence classes of Lebesgue measurable functions, and we shall
do so for the rest of the paper.

Let ?t be an independent copy of Xt and recall that we have set
b

X, = -X, in order to extend X, toall of R. Let {Vt,

t t > 0} and

+ ot

~

{Vt, t > 0} denote, respectively, predictable versions of 1 C(t) fg f(s,it)dxS
B

~

and 1 C(t) fg f(-s,it)dXS, both of which exist under condition (1.8) by Theorem
B
1.2 below.

Definition 1.1. Let A; denote the linear space of symmetric functions f

on R2 for which

P(é 'V:’adt + é Vg |t + é ‘V;l“dt + é |VE|“dt < =) = 1.

Theorem 1.2. Assume f satisfies (1.8). Then

+

~t
(1) Predictable versions V; and V¢

(2) The condition f ¢ A; is equivalent to

exist.

+c t
(1.10a) ECS|] f(s,t)dxs|“dt)p/“)‘/p e
—c 0

and

+oo 0
(1.10b) (E([]] f(s,t)dxs.“dt)p/“)]/p <o
e ot
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for some 0 < p < a. Moreover, if (1.10) holds for one such p then
(1.10) holds for all 0< p < a.

(3) The space A; is a Banach space with equivalent norms x;,p,
1 <p<a, given by the left side of (1.10). In fact, for all 0 < p' <

p < a, there is a constant C depending on p' and p such that

hp () Shy () <O

o (f)e

2

Each function in A; is locally integrable.

This theorem is proved in Section 4. Using Kallenberg (1975), we can

then define the integral J'(f) = [[' f(s,t)dXSdXt as
(1.11) JU(F) = 2 [Vidx +2 [ vidX, +2 [ Vidx +2 [
0 0 0 0

We now turn to the definition of the double integral J(f). We shall
define it as the sum of two terms. The first is precisely the expression
in (1.11), and the second contains the contribution from the diagonal
[s = t}. It has been traditional in the Gaussian theory (a =2) not to
include the diagonal term since this has the advantage of giving the

isometry

EI(F)% = J f'f(s,t).zdsdt.
This advantage disappears in the case a« < 2, and in its absence there is

a compelling reason to include the diagonal term: call a function g

dyadic if it has the form of a finite sum
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where the Ii are disjoint intervals with dyadic rational endpoints. For

such g it seems natural to define

(1.12)

g ~— 8

f g(s,t)dX dX_ = E a. AX(I.)aX(I.),
- st i,5<N 1] i J

where AX(Ii) denotes the increment of Xt over Ii' This is consistent
with the definition of J(g) we give below, but not consistent if the
diagonal term is left out.

denote respectively the canonical increasing
2
t.
may be realized as the quadratic variation process of Xt and it is

Let Vi and Vi

processes in the Doob-Meyer decomposition of Xg and X The process

Vi

well known (see, e.g., Greenwood (1969)) that is a stable subordinator

Vi

of index %.. Similarly for ;t’ Therefore, if f(t,s) satisfies

(1.13) [ 'f(t,t)]“/zdt <o

we may define

(1.14) [ f(t,t)dv, = Z f(-t,-t)dv, + Z ft,t)dv,,
where v . =

We can now introduce the class Aa of integrands f for which we

define the double integral.

Definition 1.2. Let Aa denote the class of functions f which belong to

A; and also satisfy (1.13).
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For fe A, we define J(f) = [T 17 f(s,t)dxdX, as

(1.15) J(f) = J'(F) + +? f(t,t)dv, .

The integral with respect to Vi embodies the contribution of the
diagonal. The consistency of this definition with (1.12) is easily shown
using Tto's formula.

The next theorem, which plays a key role in the sequel, shows that it
is always possible to approximate the integrals J'(f) and J(f) by dyadic
integrals. The bounds on the moments of J'(f) are obtained by applying
the decoupling inequalities (see Theorem 1.1). These bounds involve the
A D introduced above:

oy

(1.16) A (f)

i

t
TR TN

t
(ECT | ] s, t)an [P/ /P,

- GO -0

which by Theorem 1.2 is well-defined for 0 <p <a, whenever f ¢ A;.

(We have set X , = -Yt). The theorem also shows that dyadic functions are

t

. [}
dense in A .
o

Theorem 1.3.

(1) Suppose f ¢ A;. Then there is a sequence hn of dyadic func-
tions satisfying hn(s,t) = 0 on the squares that straddle the diagonal
[s = t}, such that

Tim xa’p(hn—f) =0

N>
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and
Tim E|J'(hn)—a'(f)|p =0
N
for each 0 < p < a. Moreover there are constants c; D and d; D such
that
! ‘ p 1/p ] |
(1.17) dy phe,p(f) < (E'J (f)| ) <y e (f)

(2) Suppose f ¢ A Then there is a sequence g of dyadic func-

tions such that

Tim Eld(gn)-d(f)|p =0

N-»wo

for each 0 < p < a/2. Moreover there are constants <, D and da o such

that

¢4

+o
4, LT [FE8)|2a)? e, ()} < (E|an)| PP

4o
< pll ) [f(t,t>]°‘/2dt>2/“ +hg p(F))

Section 5 contains the proof of Theorem 1.3 and provides an explicit
construction, based on f, of the dyadic functions hn and 9y The
proof of Theorem 1.3 also establishes that a decoupling inequality holds

for J'(f), namely,

Corollary 1.1. Suppose f ¢ A; and let {Xg, - <t <w} for i=1,2

be independent copies of {X , -» <t <=}, Let 1< p <a andlet

t)
C(p,2) and C'(p,2) be the same constants as in Theorem 1.1. Then
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-t 1,v2y1P p ot Ty v2(P
C'(p,Z)E' [ (] f(s,t)dXSdXt)I _<_E|J‘(f)‘ _<_C(p,2)E’ [ (] f(s,t)dXS)dth .

Corollary 1.2. Relations (1.10) are equivalent to

i f(s,t)dxs|“dt)P/C‘)Vp < o

+oo
(1.18) (E( J |
The equivalence is a consequence of the decoupling inequalities and does not
follow directly from the symmetry of f. Corollary 1.2 is proved at the end of
Section 5.
The set A; of permissible integrands f has been described in terms

of the realizations of the stochastic process X In Theorem 1.4 below we

t.
give an equivalent analytic characterization. To state this result, it is

necessary to introduce the notion of a completely summing operator.

Let B, and B, be Banach spaces and A: B] > B2 a continuous linear

1 2
operator. We say that A s p-summing, 0 <p < =, if there is a constant

¢ such that for every collection x],xz,...,xn in B], we have

b

k P n p
(1.19) y ’Axi’B <c sup 'x*(x1)|
=] 2 X*eB? i=]

|x*|§j

where BT denotes the dual of B1. The infimum of constants ¢ that will do

in (1.19) is denoted ,A’gp, and 'A'*p is called the p-summing norm of A.
The facts below follow from the definition. (See e.g. Schwartz

(1981).)

A A w = A o f .

(A) ' !*p < > ‘ l*q < or q>p

(B) If B, is reflexive, then 'Al*p {» forany p, implies A is

2
compact.

(C) The space of p-summing operators A s a Banach space with norm 'A’*p.
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The operator A is called completely summing if it is p-summing for

alt p > 0.

Theorem 1.4.
(1) A necessary and sufficient condition for f ¢ A; is that the

operator Af, defined for functions ¢ belonging to L% (R) by
(1.20) (Aco)(t) = f f(s,t)o(s)ds,

1
defines a continuous, completely summing linear mapping from L% (R) to

L*(R). (Here «a' 1is defined by 1/a' + 1/« =1.) Moreover, the norms

induced on A; by the ' '*q are equivalent to the norms A’ b for all
0<p<a and 0< g < ». In particular there are constants cé 2. q and
dp,a,q such that

(1.21) < (E|or(e 'p”p<c

S L N L

(2) A necessary and sufficient condition for f ¢ A is f e A;
and ft: 'f(t,t)la/zdt < ». Moreover, forany 0<p<a and 0<q <=,

there are constants ¢ and d such that
Psasqg P, q

(1.22) dp,a,q{(iz |£(2,8)[*/2ae) 2/ + || o} < (EJa(r) Py

<c {(+7 'f(t,t)'“/zdt)z/“ + 'A

= Psa,q f'*q}

This theorem is proved in Section 6.

Remarks.
(1) By Remark (B) above we have that f ¢ A implies that the

integral operator Af with kernel f defined in (1.14) is compact as
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a mapping from Lai(R) to L%(R). It is possible to give a direct proof
of this fact without using the theory of p-summing operators. See
McConnell (1984).

(2) In the case a = 2 it is known that the class of completely
summing integral kernel transformations of LZ(R) coincides with the class
of Hilbert-Schmidt operators (see Schwartz (1981).) Thus for o« = 2,

“(

A, coincides with L°(R%).

(3) The double integral J(f) exists when

I i ]

f(s,t) = gi (S)h.i (t),

i=1
with each 9 and hi belonging to L“(—w,+w). One can verify this directly
by checking that f belongs to Aa. One can also observe that the corre-
sponding operator Af has finite-dimensional range and hence is completely

summing.

Basic facts and notation. The same letter ¢ (or C) may denote different

constants. The indicator function of a set A is denoted either I(A) or

1 and I. denotes the indicator function of an interval Ij'

A’
A symmetric stable random variable Y with index 0 <« < 2 has
a

. -aju
LLA, ‘ ‘ 1/«

characteristic function Ee and covariation norm 'Y'a =a /%,

The random variable Y is standard if ‘Y‘a = 1. Note that ' 'a is a
norm only when o > 1. The terminology “covariation norm" is suggested by
the term “"covariation" introduced by Cambanis and Miller (1981) as an
analogue of covariance. Convergence in covariation norm is equivalent to
convergence in probability (Schilder 1970). In fact, there are constants

¢ such that for p > 0 and 0 < a < 2,

Dyo
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PyI/p
(1.23) (EM ) = Cp,(x’YIa'
In order to verify (1.23) and identify cp o let Xt be a standard
symmetric stable process with index o« so that 'X1la = 1. Then by

the scaling property (self-similarity) of Xt’

E[Y|P = Efx [P = aP e P = (e DY)

This proves (1.23) and shows that c = (E'X]'p)]/p.

We assume without loss of generality that f in (1.1) is symmetric.
The double integral J(f) = ftijt: f(s,t)dX.dX, involves integration over
all of R2, whereas J'(f) = ff'f(s,t)dXSdXt "ignores" the contribution of
the diagonal {s =t} (the precise definition of J(f) and J(f) have
been given earlier). The conditions {f ¢ Aa} refers to J(f), whereas
the conditions {f « A;}, x;’p(f) < «» and g; (f) < = refer to J'(f).

s E

Outline of the paper. Section 2 relates the various conditions on the

integrand f. The decoupling inequalities (Theorem 1.1) are established in
Section 3. They will be used in the proof of Theorem 1.3. Section 4 is
devoted to the definition of the stochastic integral (Theorem 1.2) and
Section 5 to the existence of dyadic approximations and moment estimates
(Theorem 1.3 and Corollary 1.2). The analytic characterization of the

spaces A; and A, (Theorem 1.4) is established in Section 6.
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2. Counterexamples

The following counterexamples relate the various conditions on the
integrand f introduced in Section 1. The first shows that the condition
fe L“(RZ) is not sufficient for the integral J'(f) = U'f(s,t)dXSdXt

to exist.

Example 1. (La(RZ) is not sufficient).
Consider the quadratic form version of J'(f), namely Q(f) =

Tim Qn(f) a.s. where
N>

n n

Qn(f) = 121 j§1 aijmiMj and M, ,M,,....M are i.i.d.

standard symmetric random variables with index «, for 0 < a < 2. The

Q

may be realized as J'(fn) for appropriate step functions fn. Let

n
bk when 1 =2k, Jj = 1i-1
a =
N
0 otherwise,
_§n :
so that Qn(f) = Zk=1 b My My 1+ We will choose b such that

. o 44
(i) k§1 lbk| <
and such that
.. = o a .. 5.
(i) k£1 lbkl lMZk' a.s

Since
1xQn(f) 1xQn(f)

Ee EE[e

| M5, 1]

P R HE R LA LA
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(i1) ensures that, as n » =, Qn(f) diverges in distribution, and hence a.s.
To construct the sequence {bk} use the fact that the law of large

numbers entails 1im l.zg=] le|“ = » a.s. Proceeding inductively, put

n+o n
n0 =0, For each i > 1 there is a number n, > Ny 1 such that
1D 3y o1
P(— 7 lM.'“ >i%) >~ .
n, j=1 ' J 2
i
Now choose -
0 if k<n,
b, = <
1 i-1 i
—_— if ) n, <k <) n;
9 (12n1)1/a j=1 J=1

© a _peo - . _ i
Then Xk=1 b, = Zi=1 —E-< . But, if Ni = Zj:} nss then

k
1
e 3 el ey L I
S S e T
L Ny «
g 2 k=%1+1 M

diverges a.s.

Example 2. (5; 8(f) < » 1is not necessary).

Choose f(s,t) = g(s)g(t)I([0,11%) with

g(s) = < L 5 ) /e
s(1 + Tog"s)

Then J'(f) exists by remark (4) of Section 1 since g ¢ L*(R'). However

Sy 8(f) is infinite.

b}
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3. Proof of Theorem 1.1 (Decoupling Inequalities)

Throughout this section we let

A = (18p>/2/(p-1))

(3.1) 1/2

wo
]

18p%/2/ (p-1)

for 1 <p < «=. We shall need two preliminary lemmas. The first concerns
symmetric Bernoulli random variables and it will be used to prove the

theorem in the case o = 2.

Lemma 3.1. Let EysEpreee be i.i.d. random variables satisfying P(gi = 1)

el

=1 - P = -1) =.% , and let {zX} for k =1,2,3,... be independent

copies of this sequence. Then, for each r> 1, 1<p <=, and any

Z:-indexed family of real numbers a , all but finitely many

i],izﬂ..,ir
of which are zero, we have

Ap r-1 1 r D
(3.2) (=) A SRR R |
b 1]< .<1r r r
< EI y a. Y lp
= -, T A e >4
11<"'<1r 1 ro1 r
Bp r-1 , ] - lp
< (=) E a A ST SO L
= RS PR e i
Ap 1]< .<1r 1 roo1 r
Proof. Llet S = E' a; i Eq g P and set
i<, 1272 r 71 r
1 2
: 2+] rop
S, = E ) a. c L eeels  Ei BN sesEs
* |i]<.,.<ir [ERRAELT S RS P RN % B

for 2 =0,1,...,r=-1. It is sufficient to prove that
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A B
(3.3) (B)s, 4 <8, < (DS
A

p p

2-1

for any %2 = 2,...,r. Fix such an 2. Let F be the o-field generated by

the independent random sequences {g§+]},...,{gg}, with F trivial when
2 =r. Let
L+1 r
e, =) a. PR R
i, yseeesi Bl SRR P i

where the sum is over all 1],...,1£_], 1£+1"“’1r satisfying

1] vas £ 1&—1 < 1& < 1X+1 LR Tr’ Then

_ P _ p
s, E'% eifiﬁl EE(‘% eia_il |F).
2
{ejz;1 forms a martingale difference sequence when conditioned on F.
Applying Burkholder's square inequality (Burkholder (1973)), we obtain

(3.4) AT S R CEL|T g PR < BELD efte )|

The observation

e((7 o222 2| F} = ELT )PP

H

e 5P

and the fact that (3.4) holds with {gi} replaced by {g}}, yield relation
(3.3). This concludes the proof. [J
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The next lemma will be used in the proof of the left side of the
decoupling inequalities (1.2) in the case o < 2. It will be applied
iteratively and therefore it is important that no extraneous constants

appear in the inequality (3.5) below.

Lemma 3.2. Let £ and £y be mean zero random variables and let Y be
independent of &4 and &, with P(Y =1) =1 - P(Y =10). Also let Y
be an independent copy of Y. Then, for every 1 <{p < and each real

constant a, we have

p Y
(3.5) E|a+g]Y+gZY| < E‘a+2§1Y+2g2Y .

H

proof. Llet u=P(Y=1), o=1- and 8 =.1_§__g 2. MWe first show that
&

: P YiP
(3.6) Ela+g1Y+g2Y' < E|a+gg]Y+5ng‘ .
Indeed, we have

Efavey o, ¥|” = ofa|” + uEfateyie,|”

and

E a+gg]Y+5§ZV!p 52|a|p + uoEIa+gg]lp + ch|a+5gZ|p + HZE'a+§§1+5§2 P

(RJe]P 2 efassey [ 25 efovae |

5 e 5 s P oy

By convexity of 'x‘p, E'a+5g]|p.2 ,E(a+5g])'p = ’a'p since Ez; = 0, so
that the first bracket dominates cz‘alp + pc’a‘p = c'alp. Consider now the
second bracket. Factor one u and note that +-% +‘% = 1. Again, by

convexity of 'x'p, the expression in the second bracket dominates
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WE[S (arpey) + 5 (aspe,) + wlasprq+asy)|P = uEfass(n + 302y + 8w + S

HE‘a+§] +€le

because g(p +-§) = 1 for the indicated choice of g. This proves (3.6).
To prove (3.5), it is sufficient to show that the right hand side of

(3.6) is monotone increasing in g for g > 0. This is obviously true if
a = 0. Now suppose that a # 0. The random variable Z = g]Y + 527 has

mean zero. The conclusion follows because the function g(g) = E'a+BZ'p is

convex in g and satisfies g'(0) = 0. (I

Remark. An extension of Lemma 2.2 is stated in (3.13) below.

Decoupling inequalities (left-hand side):

To simplify the notation we shall consider the case r =2 only--it
should be clear how the proof may be adapted to the general case. Consider

first the Gaussian case (a = 2). Then we are to prove the following: Let

{Mi} and {ﬁi} be independent sequences of i.i.d. N(0,1) random
variables. Then, for 1 < p < », and for all matrices (aij) of real

numbers with at most finitely many nonzero entries, we have

p<B E
| »

P

(3.7) E| } M. | P.
|1-<j 151" 'IJTJl

To see this, let {g, } and {gik} be independent matrices of i.i.d.

symmetric Bernoulli random variables. Then

n
1 1 p
Ej )} a,.(— Z Ea ) (— ) E.)
'1<' 1305 a1 K ke 3K |
B n n
p 1 1 5 p
K2 ElV asi(— ) g M— T &)
= A i VR k= TR R : Jk‘

=
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To verify this inequality, relabel the indices judiciously and apply Lemma
3.1 in the case r = 2. The desired inequality (3.7) now follows from the
central limit theorem since aij =0 for all but finitely many (i,j).

Consider now the case 1 < o < 2. Let N(dx) be a Poisson random

measure on R with intensity EN(dx) = d;+ , let ¢ > 1 be arbitrary,
04
X
and set l l
wk = / xN(dx), Kk = oea,-1,0,1,... .
{KkS|X‘ <Kk+]}
The random variables ...,W ,,W.,W are independent and have a

-1’70t
symmetric distribution. It is well known that the series };Z_m Wy
converges almost surely, and in Lp(g) for 0<p <o, toa symmetric
stable random variable of index «.
Introduce independent copies N],Nz,... of N(dx) and define
variables W in the same way as wk, but with Nn(dx) replacing

nk
N(dx). For each integer m > 0 Tlet

m m
W(m) = 1};\] a"J(kZ._m w'ik)( Z-m wgk)
and
. m m
W(m) = 1Z<j au(kZ-m ”fk”ki-m 31

where the family {ij} is an independent copy of the family {wjk}. Let
W(=) and W(=) denote the limits of these sequences, which exist almost
surely, as m tends to infinity.

let 1 <p <a, and let Ap and Bp be defined as in (3.1). Since

« > 1 1is arbitrary, it is enough to prove that
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(3.8) E'W(m)'P < 4Py ;P.)Z E'V:@»)'p.

Now since the sums Z€=_m W.\ converge in LP(a), it follows that

W(m) converges to W(=) in LP(2). It suffices then to prove the

inequalities
B
E[W(m) [P < 4% A_P_)2 E[W(m)| P,

because by Fatou's lemma,

E|w(w)|p < Tim inf ElW(m)'p
m>c

B
< aP(e Z\R)Z{Hm E[fi(m)-fi(=) [P + E[ii(=)] "}
Hizacd

We shall now simplify the expression

W(m) = 7 ) a. W, W.
i< k,2e[-m,m] 171k
by relabeling the indices. Since k and & take values in [-m,m], the
relabeling s = 3mi+k and t = 3mj+2 ensures that to each (i,k) and
(j,2) there corresponds exactly one s and t, and moreover, if 1 < J

then s < t. Llet then

aij if s = 3mi+k, t = 3mj+e
for some k,% ¢ [-m,m]
st
0 otherwise,
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W if s = 3mi+k, k ¢ [-m,m]

ik

0 otherwise,

and define 75 with wik replaced by Wik' Then we have

W(m) = ) ) a, W, W,
i< -mek,agm 9 Tk

=7V b.,2.7,.,

s¢t Sts t

and

Wm) = v b_,727..
s?t st st

Clearly, then, it is enough to prove the following result.

Proposition 3.1. Let Nx(dx) and ﬁx(dx), L =1,2,... be independent

Poisson random measures on R', each having intensity 'xl']'adx. Let
{61} and {yi} be sequences of non-negative real numbers such that for

some constant « > 1, we have 61 < ¥; S_K@i. Set

1, = xN. (dx)
1 1
{8;<]x] <v;}
and y N
l. = [ xN. (dx).
1 1
{8;<]x| <vy}

Let 1 <p <a and Ap and Bp be defined as above. Then for any

matrix (bij) with at most finitely many non-zero entries, we have

E| ] bllwpiw&
i<j

B
2 jﬁe'gb”zfp.
J J i<

A 13717
p

Remark. Theorem 1 follows from this proposition by identifying

Z = / xN_(dx) with /

s . xNi(dx) when s = 3mi+k.
6S£'X|<ys Kkﬁlle(

k+1
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Proof of the proposition. The proof is in 4 steps.

1) Since {Zi} is a sequence of independent compound Poisson random
Vs
variables, it is convenient to write Zi = zkl] Us i where the random vari-

able Vs has a Poisson distribution with parameter A, = | EN(dx)
{51.5|x|<y1.}

and the uik's are independent of Vi symmetric, independent, identically
distributed for fixed i, and take values only in {x: &, S_lx’ <yste

The random variable vi can be interpreted as the total number of jumps of
a Poisson process in the interval {x: s, ﬁ_lx' <y;} andthe wu, are the
jump sizes. Set u;, =&, ‘uik’ where . =~ is the sign of the jump and
'uik' is its magnitude. The random variables £ are i.i.d., independent

2

of Vis and they satisfy

Ples =1 =1 - Plgy, = -1} =1/2

Ve Vo
_ 1 ~ - ‘] ~ ~ .
2) set U, =],y 8585, and Uj = L k=1 645> Where {gjk} is an

independent copy of the sequence fgjk}. Note that Ui and Ui are not

L

independent because of the presence of Vi We shall prove that for every

1 <p <=, we have

A2
(3.9) ) E| 7 b, .U TP <E] Y
B in 1j1 J' ‘1-‘&3- 13717

B 2
by ZZs|P < (P By E[ T b TP
x L
D D 1<J

13177

By conditioning on the Vi it is enough to prove (3.9) under the
assumption that the v; are non-random. Then (Zi:1<j bijzi)gjk’ujk’
is a martingale difference sequence indexed by j = 1,2,..., and
1 <k< vj. By applying Burkholder's square inequality and then the

relations . < u. < 8. to
63—-' Jk’ i~
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E b..Z. = F b..Z.
’1§j 132123 'Z ( Z ij T)FJklqu"
1<J
we get
V 2 2 p/?
A EIY O L P R
1<]
1<J

2.2p/2

< <PBE] 7 I byZy) ajlp/ :
Jj k=1 i
i<j

Since Burkholder's square inequality yields the same result (without the

factor Kp) when applied to E'Z we get

NP
i< 1JZiUJ| ?

T

B
3.10) (P b. .z.U.|P <E b..z.7.|P p_P b, .7.0.|P
( ) (B ) E’.X. ijri J’ < ‘i%j iji J‘ < (k A ) E' Z- 13 177

Y Y

Now, write E, Having conditioned on

P 2 : i IP
Ligy Pig%il5]" = EE(|L¢s 033205
{ﬁj}, we can apply the same argument again, this time to the martingale differ-

ence sequence (Zj:j>1 bijﬁj)gikluik" T=1,2,000, 1<kX< Vi and get

A ~ ~ ~ ~
(3.11) (§§)E(E’-;. bijuiujlp'{uj}).i E(E| I b..z.u.'pl{uj})

Relation (3.9) follows from (3.10) and (3.11).
V.
. i n (n)
3) We shall now approximate sz] ik by Zk=1 Yik ik where for
each n, {Y gz)} is a family of i.i.d. Bernoulli random variables with
L
L P(Y(n) =1)=1- P(Y§2)= 0). Recall that A; s the parameter of the

. _— . n o y(n),
Poisson distribution of vie It is well known that the sequence Zk=] Yik €5k
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Ve
converges in distribution to Xkl] Eijp as tends to infinity. Moreover

we have convergence of all moments. Thus, if we let {7§£)} denote an

independent copy of the {Ygi)}, then it suffices to show that

n

(3.2) €[] by (1 v, (7 v
i<j TIN5 T ia =1

)P

<HPE| T s.8.b. . ( § v(Me f yin)z )'P
< Toos.s.b. (T Yie, E )P,
Ty 17371352, I i =1 Jn Zdn

4) We shall now use Lemma 3.2 to establish (3.12).

We shall focus successively on all pairs (u,k), ue Z], 1T <k<n

for which 'bujl + 'biu, >0 for some i and j. If 'buj' > 0, then
the random variable YSE) appears in the first factor of one of the
summands of the left hand side of (3.12), and if ’biu' > 0, then the
random variable Yéz) appears in the second factor of one of the summands.
For each such pair (u,k), we apply Lemma 3.2 as follows. We set

Y = Ygg), we let g4 (respectively 52) be the sum of the coefficients
of Yéz) when Y&i) appears in the first (respectively second) factor,
and we let a denote the terms of the left-hand side of (3.12) that do

not involve Yén) (Note that £y or g, may be zero, but not both). Thus

k -
n
= ' b o.e o yimy
%1 né] jéu 8uiPuzfuk’n g
n
- r (n). %
t2 7 L L SituPiu iy Bifuee

and

a=|7 5.5, . ¥Me yMy 7oy 5.5.b. v (M v(“)g.i} .
iy 13T ik =ik jk =jk i< Ak iT3Ui3 A 2in Jn B in
J#u n#k
i<j
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Thus

)+§ y(n)‘ .

E[ I 6;65b, 7 v(”) g y{n)z )|P = E|a+ y(n b

i< i737i] A= 1x 1 uk

Let {7§2)} be an independent copy of {Y§g)} and let G denote the

o-field generated by all random variables Y(n), £, , Y. and Z. with
in ? Zin’ dn Jn

(ion) # (u,k). Then, by Lemma 2.2, we have

E’a+g1Y§E)+§2Y L 'p = E(E‘a+g] (n)+g2Y(n , 'G

E(E‘a+2g]YSE)+2§2VSE)'p'G)

- (n), o, w(n)p
= E‘a+2§1Yuk +2,V 0 ' ).

We now apply the same reasoning to each such pair (u,k) in turn. (The

definitions of gl, 52’ and a must be slightly modified by changing

(n)
an ’
(isn). In that case the variable Yég) should then be changed to

if the previous argument had been already applied to the pair

2Y§:) if it previously appeared in £ s and it should be changed to
27§:) if it previously appeared in 51.) Since the left hand side of
(3.12) is a quadratic form in the Y's and since the previous reasoning is
applied to each Y exactly once, we obtain (3.12). This completes the

proof of the proposition. [J

Remark concerning the case r > 2. The proof is similar to the case r = 2.

To establish the equivalent of relation (3.9), proceed as in the proof of
Lemma 3.7. The power 2 in (3.9) then becomes r. To establish the

equivalent of relation (3.7), use the relation
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r P
1.,2. 2 (4
(3.13) E‘a + (121 gi)Y' < Eia+2§]Y F2E,YT L+ 2T Y

+ 2r-1(€r-1vr-1+€rYr)l

4T P
5_E‘a+2r ](.Z] 51Y1)'
1=

instead of (3.5). Here Y],...,Yr are independent copies of Y and
gl,...,gr are independent random variables, independent of Y. To
obtain (3.13), apply (3.5) many times while conditioning on the non-relevant
random variables. The constant 4P in (3.12) becomes (Zr-1)rp_

The constant in the left side of the decoupling inequalities (1.2) can
thus be taken to be

(Bp)r(zr-1)rp - ¢ 182232 2(r-l)p)r

p (p-1)

Decoupling inequalities (right-hand side):

Again we give details only in the case r = 2,

Lemma 3.3. Let {Xi} be a sequence of i.i.d. symmetric random variables
such that E'Xil <= and Tet {Y,} be an independent copy of {X,}. Then

for 1 {p <= we have
E“Z ,p < El Vooa,

Y|P < 2]/pEl
i#j

lp
ij 1 J ij 1 J 1J 1 J

where the aij are symmetric and finitely many of them are non-zero.

Proof. The inequality on the right-hand side follows from the triangle

inequality applied to ' ' . To prove the inequality on the left-hand
LP(a)
side, note that by Jensen's inequality it is enough to show that

E(1‘2>ja 1J'x , k<) =
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and, hence, that for each fixed 1 > j we have E(Xin|G) = 0 where

51V %5Y 50X Vg gpe e - But

= - G
E(Xin‘G) E(XiE(lexi,G)’G) E(XiE(YjIX]Yj,...,Xj_]Yj)l ). The last

G 1is the o-field generated by X]Yj,...,X

expression vanishes since Yj has a symmetric conditional distribution

given X]Yj""’xj_]Yj‘ 0

Now fix an integer n so large that aij =0 for i>n or j>n and

assume from now on that the matrix is symmetic. Let B denote the

n

symmetric bilinear form defined on R by

B(x,y) = ) a..x:.¥.
jay 1

! 2} be as

where x = (x],...,xn) and y = (y],...,yn). Let {Mj} and {Mj

in the statement of Theorem 1.1. In view of lemma 3.3 it is sufficient to

prove that for 1 < p < =
(3.13) E[BLY|P < 2 PE[B(x.0) |

where X and Y denote, respectively, the n-dimensional random vectors

with components M} j=71,e0.,n and Mg, j=1,.0.5n. Inequality (3.13)

J
follows easily from the polarization identity

B(X,Y) =

~ 2

LB, x4Y) - B(X.X) - B(Y.Y))
2

He

together with the observation that X+Y 2}/“5. This concludes the proof of

Theorem 1.1. [

Remark. Let {Mi} be a sequence of i.i.d. symmetric a-stable random
variables with 1 < « < 2. Then in view of the preceding results, the pth

moments of

Y oa, MM, 7 M. M.
i<y W g T

are all comparable in size.

a..M.M., a..M.ﬁ., a. .
iji] Z. iji] igj 1]
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4, Proof of Theorem 1.2

We begin with a foundational lemma which establishes Part (1) of the

theorem.

Lemma 4.1. Suppose f(s,t) satisfies
(4.1) i 'f(s,t)l“ds <= a.e.
0

Then there is a Lebesgue null set B such that the process

0 t
v = 1Bc(t) é f(s,t)dXg

has a predictable version Vt'

Proof. It suffices to consider f supported in [0,1]2. Consider a dyadic

function u(s,t) of the form

u(s,t) = Tooa, . I (s)I.(t)
i,g¢n T
where for some n we have Ii = (2‘”(1-1), 2’"1]. (Recall that Ii(s)

denotes the indicator function of the interval Ii‘) It is easy to see

directly that the process fg u(s,t)dX_  has a predictable version.

s
Now by (4.1) we may choose functions fN having the form of the dyadic

function u above (with possibly different n 1in each case) so that

! N N
(4.2) ‘{t: é 'f(s,t) - fN(s,t)I“ds > 2 }' <27,
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where ’ , denotes the Lebesgue measure on [0,1]. This is easily done after
first approximating f by a bounded measurable function. let VN(t) be the
predictable version of f% fN(s,t)dXS as described above. By (4.2) and the
Borel-Cantelli lemma there is a Lebesgue null set B so that

1
[ |fy(s:t) = F(s,t)|%ds < 27,
0

VtgB and N > N(t). Thus by (1.23) and the Borel-Cantelli lemma, we have

. 0
(4.3) Tim VN(t) = Vt a.s., tg B.

Now

Set Vy = Tim VN(t)1 C(t). Then Vt is predictable, and by (4.3), we have
B
0 . . 0
Vt = Vt a.s. Hence Vt is a version of Vt' 0

As noted in the introduction we will henceforth use the abusive notation

Vt t

metric space of measurable functions on R+.

"

f% f(s,t)dXS. We may view V. as a random element of LO(R+), the

Proof of Theorem 1.2.

(1) The first part of the theorem holds by Lemma 4.1.
(2) To prove the second part of the theorem, recall that f ¢ A; if and

only if

o t
(4.4) P( [ , i f(s,t)deI“dt <o) =1

o |0
together with the same condition in which f(s,t) is replaced by f(-s,t).
Condition (4.4) implies that f; f(s,t)dX, 1is a well-defined LY[0,%)-

valued stable random variable. By de Acosta (1975) we have
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Elfg f(s,t)dXS’ia <o for 0<p <a. The same considerations apply
(R,)
to f(s,-t), establishing (1.10). Conversely, (1.10) implies (4.4),
together with the corresponding statement with s replaced by -s.
(3) We now turn to the proof of the third part of the theorem. Let
D<p <a and let {fn} be a Cauchy sequence in x;’p. Then
ffwlfg fn(s,t)dxs'“dt converges in measure on the product space @xR. We
conclude from Schilder (1970) that for almost every t, fn(-,t) converges
in L*([0,t)). Thus there is a Lebesgue measurable function f(s,t) satis-
fying (1.8) such that
t

1’(s,t)dXS = 1im | fn(s,t)dXS
nseo

Ot

in probability, for almost every t. We conclude from Fatou's Temma and
Fubini's theorem that x; p(f) { », By the same argument x; p(fn-f)__<_

. ! , t . [
Tima_ (f -fm). Hence fn converges to f in Xa,p proving that A,

e PN
is a Banach space.

In fact, the preceding argument shows also that A; is a complete

i
metric space in both metrics xg D' and xs 0 where 0 <p' <p < a.

3

p(f). Thus, if =<' 1is the

1
topology induced by the metric xz D' and if 1t 1is the topology induced

3

- . - I3
By Holder's inequality Ka,p'(f) <A,

by the metric xz D’ then t' <« t 1in the sense that ¢ 1is the finer
topology. By a well-known consequence of the closed graph theorem, we have

also t < 1'. Using the homogeneity of xa p' and of xa 0’ we conclude

2 3

that there is a constant C such that My p(f)‘g Cha p.(f) and therefore

2 E]

xa,p.(f) _gxa,p(f) L0

o ().

3
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Finally, if f belongs to A; then it is locally integrable. Indeed,

by Jensen's inequality and (1.23) for 1 <p < «,

-

A(F) > (E(S ' [ f(s,t)dX I“)p %) P > E| [ f(s,t)dX ]dt
®sP 0'o0 s 0o 'D s

(4.5) = ¢ ( ’f(s,t)l“ds)1/“dt > ¢

5O 1,

t
i lf(s,t)idsdt
0

Oy =
O
O Ny

i
2 C]’0"111_‘([0,1]2).

The same argument applies to the restriction of f to any unit square in

2

R®™ with sides parallel to the axes, since Xt has stationary increments.

The local integrability of f follows. 1[I
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5. Proof of Theorem 1.3 (Existence of dyadic approximations and

moment estimates)

In what follows it is convenient to restrict the domain of the functions
f(s,t) to the unit square [0,]]2. There is no loss in generality in doing
so. Indeed, it is easy to pass from functions supported in [0,1]2 to
functions supported in RE, and the considerations below apply to each of

the 4 integrals defining J'(f). The condition f ¢ A; becomes then

1t o
(5.1) P(f ’ i f(s,t)dXS’ dt < =) = 1.
0'o0

and it is assumed throughout this section.

To prove Part (1) of Theorem 1.3, we construct a sequence of dyadic
functions hn(s,t) that are identically 0 on the dyadic squares that
straddlie the diagonal, and which satisfy

. -‘ t t o p/a
(5.2) Tim E(f ’ [ h(sit)dX - | f(s,t)dXS' dt) =0
0'0 0

N->o
for 0< p < a. We shall need four preliminary results.
Llet p = ([0,1],8,' ’) be the unit interval probability space, with
Borel o-field B and Lebesgue measure ’ '. Let Gn be the o-field of

subsets of [0,1] generated by the dyadic intervals

Ioso= [E-127427), 1< <2

Put AX . = X - X and Tet A_ = ofaX_ ., 1¢i<2").
AL N e PP f -
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Lemma 5.1. Let g e L*[0,1]. Then

1

1
(5.3) E(é g(s)dXs|A,) = é E(|G,) (s)dX

a.S.,

w

where the expectation on the right is computed on the unit interval

probability space P.

Proof. By Cambanis and Miller (1981), p. 45, we have for (1-1)2'n‘$ s < i2 ",

(5.4) E(X_-X AX L) = 2Ms - (i-1)27Max ..
S (1_1)2-n' n,i n,i
Since Xt has independent increments,
2" j2n
E(é g(s)dX |A)) = Z E((i_{ - g(s)dXg|ax, ;).

If g is dyadic, we can decompose the integral further, use (5.4), recollect
terms and conclude that the last expression equals
j2 ™"

1
1 (2" (1‘{)2_'1 g(s)ds)ak, = (f) E(g|6, ) (s)dX,.

[[Range i AN

.i

Relation (5.3) follows for general g since dyadic functions are dense in

L%*r0,11. 0O

Lemma 5.2. For any 0 <p <« and f satisfying (5.1),

1Tt t
(5.5) g |E(£ f(s,t)dXs'Gn) - é f(s,t)dxs’a >0

as n-»> = 1in Lp(g). (The conditional expectation here is defined on the unit

interval probability space P.)
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Proof. By (5.1) and the martingale convergence theorem applied to P, the
(dyadic) random functions E(fg f(s,t)dXS‘Gn) converge in L*[0,1] to
fg f(s,t)dXS a.s. Their L%[0,1] norm converges in Lp(Q) because we have

uniform integrability. Indeed, by Jensen's inequality

o441 P/
f(s,t)dXSI dt}

OO ¢+

1t 1
sup E{[ lE(f f(s,t)dX lG )|“dt}p/“_5 E{J ’
n 0! 0 sin 0

js finite because of (5.1) and Theorem 1.2. [

Lemma 5.3. Llet €, be a sequence of positive numbers tending to zero. Put

+
fn(s,t) = f(s,(t—gn) YI(s £ t—sn).
where f satisfies (5.1). Then fn satisfies (5.1) and, for 0 < p < a,

p/a

*dt} = 0.

|

t
f (s,t)dX_ - [ f(s,t)dX

O+

1
(5.6) lim E{f |
0

Nn->w

Proof. Define T : L°[0,1] > L°[0,11 by Ta(t) = 3((t-g,)"). Then

(5.7) » 0,

ITﬁzu@'
L%*[0,1]
and, if ®(0) = 0, we have, after a change of variables,

1 1-¢
(5.8) f 'Tn@(t)'“dt = (" |@(t)|“dt.
0 0

Since fé |fn(s,t)’“ds < » for almost every t, we conclude that

t f (s,t)dX_ can be viewed as a predictable random element of L0[0,1],
0 'n s
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the space of Lebesgue measurable functions on [0,1] (see Lemma 4.1.)

To see

that it also belongs to L%[0,1], note that by (5.1) fg f(s,t)dXS belongs

to that space and, for almost every t ¢ [0,1], we have

f (s,t)dX

a' L]
n S Se>

(5.9) AISIORUSIOR

O

with the left-hand side belonging to L*[0,1]. Hence fn satisfies (5.1).

Moreover, by (5.7) and (5.9), we have

1t t
Vi ([ | [ (s,t)dxg - ] f(s,t)dXsiadt)]/“ =0 a.s.
n=0 0 0 0

The following estimate uses (5.8) and provides the uniform integrability

needed to deduce (5.6) from the above relation:

1-¢ t
fn(s,t)dxs|“)9/“ = E( é " é f(s,t)dXS'“dt)p/“

O ok

1
E(/
0

|
< E(} | } f(s,t)dxsl“dt)p/“
0! 0

which is finite for 0 < p < a. [
Lemma 5.4. Suppose that

T
(5.10) P(f | i f(s,t)dXS]“dt (o) =1
0'0

H
where f 1is not necessarily symmetric. Let ¢ € L* [0,1] where
1/a + 1/a' = 1. Then

11 1 1
(5.11) [ (] f(s,t)o(s)ds)dXy = [ a(s)([ f(s,t)dx;)ds.
0 0 0 0
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Proof. The proof is in 3 steps.

1) We first prove

1 1
(5.12) é (é f(s,t)o(s)ds)dX; = é ¢(s)(£ f(s,t)dX,)ds
n n

for ¢ dyadic and
1

(5.13) E, = {t e [0,1]: ] lf(s,t)i“ds < n}.
0

The left-hand side of (5.12) is well-defined because
l'fg f(s,t)@(s)ds"La 5_n1/“ i'¢l'La. ¢ ». To show that the right-hand
side of (5.12) is well-defined, put g = fE f(s,t)dX, and
n =beC f(s,t)dXt. Relation (5.10) ensuresnthat E+n  is a well-defined
randomne1ement of L%[0,1]. Moreover, =n is symmetric and & and n are
independent. Thus g-n has the same distribution as &+n, and therefore
£ =.% {(54n)+(g-n)} 1is a random element of L%[0,1]. The right-hand side
of (5.12) is thus a well-defined stable random variable.

To prove the equality in (5.12), choose dyadic functions fm(s,t) on

[0,17 satisfying

1

(5.14) lim [ |f (s,t) - f(s,t)l“dsdt = 0.

m
M- En 0

Since the equality (5.12) clearly holds when f is replaced by fm’
it is sufficient to show that when f s replaced by fm-f in (5.12)

both sides converge a.s. to 0 along a subsequence.
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For the left hand side, it is sufficient to show that the following

covariation norm ’ Ia tends to 0 as m > =

1 1
'[ (f £ (s;t)e(s)ds)dX, - [ f(s,t)¢(s)ds)dxt‘z
E 0 En 0

1
=] jé (F (s,t) = f(s,t))e(s)ds|"dt

En

1
5_|'¢||ta. é é Ifm(s,t) - f(s,t)‘“dsdt
n

by Holder's inequality. This tends to 0 as m > =, by (5.14).
For the right hand side of (5.12), it is sufficient to show that the

following L](Q) norm tends to 0 as m > «:

1 1
Elé ¢(s)(é fm(s,t)dxt)ds - é ¢(s)(é f(s,t)dXt)ds'
n
<

|o(s)] E[[ (Fu(sst) - fs,t))dX|ds

E
n

f

i

1
e, [ o8] ([ [fy(sst) = Fls,t)|"ae)!/%as
0 En

IA
nd

([ |falsst) - f(s,t)|%dtds) '/
“0E

by l'@l'm ¢ » and Jensen's inequality. By (5.14), this tends to 0 as

m> ». This establishes (5.12).

2) Next we obtain (5.11) for dyadic ¢. Therefore fix such a function ¢
and let us show that the right side of (5.12) converges in probability as

n tends to infinity. For almost every s, we have that
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1
Vim [ f(s,t)dX; = [ f(s,t)dX, a.s.
N> En 0

Since ¢ is dyadic we need to deduce only

e

lim [ [ f(s,t)dX.ds = [ ] f(s,t)dX.ds
I

neo 1 En 0

for any fixed interval I. In order to interchange the 1imit and the

s-integration it is enough to show that

-1

(5.15) vim P(sup([ | J f(s,t)dxt’“ds)‘/“ >a) =0
E

Q> n 0 n

since then the functions IE f(s,t)dXt are a.s. uniformly integrable
n
on I,
Now by independence of & and n introduced above, Jensen's

inequality and (5.10) we have for any 1 <p <«

1 1]
(5.16)  E([ | [ f(s,t)dx |"as)P CE(f | ] f(s.t)dx, |“as)P/ < .
0 En 0'o

For almost every fixed s the random variables JE f(s,t)dXt form
n

a martingale. It then follows from (5.16) that the sequence

o (] fsat)x, [fs) Ve
noYg ' E, ’ tl

forms a nonnegative submartingale. The desired result (5.15) now follows

by Doob's inequality:
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P(sup Yn > a) 5_1_.E(sup Yn)p

n n
aP

<—P _ sup E(Yn)p

where the last inequality follows from (5.16).
By (5.12) the random variables fE (fg f(s,t)q;(s)ds)dxt converge in
probability as n tends to infinity. aence the integrands
Te (t) fé f(s,t)e(s)ds converge in L% to jé f(s,t)o(s)ds. In particular
n

the left side of (5.11) is well-defined and equals the right side.

3) There remains to prove (5.11) for general ¢ ¢ Lal. Given such a func-
tion ¢ choose dyadic ¢~ with '¢n-¢|La. > 0. By (5.10) we have that
the random variables fé ¢n(s) fg f(s,t)dXtds converge a.s. By step 2)

of this proof the random variables fé([é f(s,t)¢n(s)ds)dXt also con-
verge a.s. Thus the integrands jg f(s,t)¢n(s)ds converge in L%, On the

other hand, by choice of the O

1 1
é f(s,t)o (s)ds » é f(s,t)o(s)ds

for almost every t. The latter function thus belongs to L%, the left

side of (5.11) is well-defined, and the two sides of (5.11) are equal. [

Proof of Part (1) of Theorem 1.3. Define fs(t) = f(s,t) = ft(s) and let

E, (F(s,t)]e,) = E(fg[e,)(t)

and

i

E,(f(sst)]6,) = E(fy]6,)(s)
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Fix p satisfying 1 <p <a and define fn as in Lemma 5.3 with

ey = o-N  For each k =1,2,... choose n, SO that

f(s,t)dXS‘adt)p/“)1/p_5 1/k

O

1t
(5.17) (E(é l g £ (sst)dX -

for n > Ny By Lemma 5.1 and relation (5.17) the sequence

E (s t)‘G X, 2= 1,2,..0,

2( n +x S

e R

is an LP(Q)-bounded, L*[0,1]-valued martingale for 0 < p < a. Since
L*T[0,1] has the Radon-Nikodym property the martingale convergence theorem

for L%[0,1]-valued martingales (see, e.g. Diestel and Uhl (1977)) implies

that
) o, (oo e
Tim E( E,(f_ (s,t)|G YdX_ - (s t)dX_|"dt) =0
2> 0 ' 0 2 N ‘ nk+x S 0 l

Thus we may choose né > ny such that

e s G ,)dX i e ax_[2at)P/a /P ¢ g
(5.18)  {E( é o nk(s,t)| nl.() - nk(s,t) S| t)P/M < 1/k.

0

My ot

For any & = 1,2,... Wwe have that

t
E1(f Ez(fn n'+2 dXs’

/ k ) = LB (Ep(Fy (s t){G .)|G

(s,t)lGné)dXSlG :

N

"

the interchange of orders of integration being justified by Lemma 5.4 since

fn vanishes above the diagonal. By Lemma 5.2 we may find n; > né with
k
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(5.19)

el

t t
e |/ E1(Ezfnk(s,t)lGn&)‘GnE)dXS - Ez(fnk(s,t)lGné)dXS‘“dt)p/“}]/p <1/k.

<o

Set

(5.20) h(s:t) = E, (E5(F, (s,t)'Gné)‘Gnﬁ).

k
The functions hk are clearly dyadic and moreover satisfy hk(s,t) =0
for s >t and on dyadic squares that straddle the diagonal. This is so
-n!
because if I 1is a dyadic interval of length 2 k, then fn is identi-
k
cally zero on IxI, hence both conditional expectations in (5.20) vanish

on IxI. Applying (5.17), (5.18) and (5.19) above with 1 <p <o, we have
T i Jay1/
(E(J ' [ hy (sst)dXg - [ f(s,t)dX ‘“dt)p o\ P ¢ 3k,
OO SO S —

This establishes relation (5.2).

We can complete the construction of the hk’ by extending hk(s,t)
to the region s >t so as to be symmetric.

We now show that J'(hk) E J'(f). For notational convenience reindex

the hk so that we may write

2" -1 (n)
(5.21) hn(s,t) = .Z _Z ajj In,i(s>1n,j(t)
j=1 i=l
for s <t where In ; is the indicator function of the dyadic interval
=, 1) set v(¢) = fEn (s,t)dX and V(t) = [t f(s.t)dx . Then we
Zn 2n n n S S

have jg ‘Vn(t) - V(t)'“dt P o. By Kallenberg (1975),
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1 1
(5.22) é vn(t)dxt i é V(t)dX,.

The Lp(g) convergence of J'(hn) to J'(f) and the inequality in
Part (1) of the theorem now follow easily. Set 1 <p < a. We have by

(5.22), Theorem 1.1, relations (1.23) and (5.2),

1t t
E|f [ f(s,t)axgdx | = Tim E|f . (s,t)dx dx, |°
00 Nso
n .
2 3—1
= Tim i agq)AXn ;A% "p
nso  'j= =1 i 1 J ’ sJ
2" j=-1 .
<Vin C(p,2)E| ] ) a{Max, a% S|P
N>w j=1 i=1 1 2
2”
= 1im CI E( z 2 (n)AX . az-n)p/a
nso %P 521 | i=1 %1575 n 1'
, 1t /
=limcC' _E(J | f h.(s,t)dX ‘adt)p @
N> @sp 0
, 1t b/
= ,t)dXx_|%dt
¢ B | ] fls,t)d 5| “dt)

~

where the Ayn i are based on an independent copy Xt of Xt' This estab-

lishes the right side of (1.17). The left side is proved similarly using

the right side of (1.2), and the proof of Part (1) of theorem 1.3 is complete.

Proof of Part (2) of Theorem 1.3. We shall obtain the required dyadic

functions 9, by modifying the hn on the squares In P In j that

straddle the diagonal.
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let J, 5 = [/2(i-1)27", y2i2™"). Since step functions of the form

n
Z§=1 bidn ; are dense in La/2[0,¢?j we may find constants bgn) such
that
L2 ) /2
(5.23) f ‘ v () - f(t,t)!“ dt > 0
o gz VM
as n > =. We thus have
(5.24) ;n b{My > } f(t,t)d
. iy Vn, i 5 >/

in LP for each 0 < p < a/2 where Avy is the increment of vy over

£

n,i
It follows from the results of Greenwood (1969) that for each fixed n

and 1 we have
b

Avp g = Tim 2 z (AX
Mo j=a

)2

m,J

in LP as above, where (i-1)27" = a2 and i2™" = b2™. Using this and
(5.24) it is then easy to find new constants bM ; such that
M , ]
12} 20y 5 (8% )% > é f(t,t)dv,

in P for 0<p <a/2.
Take for gn(s,t) the value hn(s,t) if the point (s,t) does not

I On I

belong to one of the squares I take for gn(s,t)

. X ‘e T .x -
n,i  n,i n,i ' n,i

the value an i The result of Part (2) follows. [
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Proof of Corollary 1.2. MWrite An ~ Bn if there are positive constants C'

and C such that c'|An| 5»'3n|.5 C|An| for all n. Restrict the domain of
f(s,t) to the unit square [0,1]2.

We may view fé f(s,t)dXS as a random element of LO[O,lj. Indeed, by
Lemma 4.1, ]E f(s,t)dXS is a random element of Lo[O,lj and so is
fl f(s,t)dXS. (In the second case, Lemma 4.1 may be applied as stated if

f(s,t) is replaced by f(1-s,1-t) and XS is replaced by X(]-s)+’)
asP
defined in (5.20) and (5.21) and set hn(s,t) = hn(t,s). Then by Part 1)

Suppose first that A _(f) < =. Let hn be the dyadic functions

of Theorem 1.3, the decoupling inequalities, Lemma 3.3 and relation (1.23),

we have

EI} | } f(s,t)dxs|“dt)9/a . E‘J.(f)'p

~ 1im E’J'(hn)‘p

N-»o
~ Tim E| ) agﬂ)Axn Y .IP
5o i< i j , 5]
1,521, 00052
~ 1im E y agq)AX AX . p
nN->o ' 1;3 n 1] n,1 nle
1,551 ,000,2
1 } -
= E£(J f(s,t)dX_d¥X
0 | 0 s
p bl o4 \P /0
= f(s,t)dX_|%dt
po EU | ] F(s:8)d|%dt)

~

where the A?n j are based on an independent copy Xt of Xt‘

5
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Suppose now that
T 1 /
E(f | f(s,t)dxs|“dt)p * < e,
0'290

To show that x; p(f) { », construct dyadic functions Hk as in formula
(5.20) with fn replaced by f. The arguments using the martingale con-
k
vergence theorems show that (fé ' fé Hk(s,t)dXSl“)1/“ converges to
1 1 1 .
(/o ' I f(s,t)dXSla) /e 50 P(). Then, by Lemma 3.3,

-k
(fé ‘ IB-Z Hk(s,t)dxsl“dt)]/“ converges in LP() and the limit may be
. s . 1 t o1/ '
identified with (fo' Ig f(s,t)dxsl dt) /%, Thus p(f) {w. 0

2
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6. Proof of Theorem 1.4 (Analytic characterization of A; and Aa)
As in Section 5, we restrict the domain of the function f(s,t) to

the unit square [0,1]2 and we interpret the condition f ¢ A; to mean
1 1

(6.1) P(f | i f(s,t)dxs|“dt <) =1,
0'D90

This is justified by Corollary 1.2. We shall use results that are
established in the Appendix.

Observe that while f may not belong to L“([0,1]2), the function
f(.,t) belongs to L*[0,17 for almost all t. Therefore, for any

o ¢ LY[0,1], 1/a«' + 1/a =1, the function
1
(Aco) (t) = é f(s,t)o(s)ds

is defined for almost all t, and is such that we may change the order of

integration in fg (qu))(t)dxt (see Lemma 5.4 above.)

Lemma 6.1. Suppose that f satisfies (6.1). Then Af is a linear

continuous map from L% [0,1] to L*[0,1].

Proof. Applying Lemma 5.4 and the definition of the norm of a linear

functional, we get

1}

1 1
sup 'f o(s)(J f(s,t)dXt)ds'
=1 '0 0

1]

1
"é f(s,t)dxt|'La

1
(A dX
i 0 Jg e

I}

which is a.s. finite by (6.1). There is therefore a constant M such that
"Af¢|’La <M for all |'¢|'La. = 1. Hence "Afll <¢e and A. s

continuous. [
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Ltet A% denote the standard symmetric stable cylinder probability of
index a on L“’[0,1]. Although A* 1is not countably additive it induces
a countably additive measure on each finite-dimensional quotient space of
La'[O,lj, which can be interpreted as the probability distribution of the
random vector having components fé fi(s)dXS, i=1,...,8 where the fi

are in L%[0,1]. (See the Appendix for more detail.)

1

A map Ag: L% 0,17 » L*[0,1] is radonifying if 2% ° A; is a Radon

measure on L%[0,17. Since L*T[0,1] is separable and has a separable dual
if « > 1, this is equivalent to the statement that A% ° A;] extends to
a countably additive Borel probability measure on L*, In particular,

o [} "]
A Af
We prove in the Appendix (see Proposition A.1) that Af is radoni-

is tight by Ulam's theorem (Billingsley, 1968).

fying if f satisfies (6.1). Conversely (Proposition A.2), f satisfies

(6.1) if A_ is continuous and radonifying.

£
The seminar of Maurey-Schwartz has investigated in depth the
properties of radonifying maps and, in particular, the connection between
summing properties and the radonifying property. We will use the following
special case of Theorem 2, page V.4 of Maurey (1982). (Also see Schwartz

(1981).)

Theorem (Maurey). A bounded linear operator A: L% ([0,11) » L*([0,1])

® if and only if A dis g-summing for some 0 < q < a.

radonifies 2\
Moreover, if A 1is q-summing for one such q then A is g-summing for

all 0 < g < a and hence completely summing.

Proof of Theorem 1.4. The proof is in 4 parts.

1) If f satisfies (6.1), then the operator Af is continuous (Lemma

6.1), radonifying (Proposition A.1 of the Appendix) and hence completely
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summing (Maurey's theorem). Conversely, suppose Af is a continuous
completely summing map from L% [0,1] to L%[0,1]. It is radonifying
(Maurey's theorem) and it follows from Proposition A.2 of the Appendix

that (6.1) holds.

2) We begin by proving half of the equivalence of the norms x; 0 and

l '*q directly:

f(s,t)dxsl“dt)P/“)”p <

(6.2) (E( -Cp,a,qlAf'*q

e MR —
Oty ot

|

for every 1 <p <o and 1<q<a.
Suppose no such inequality were true. Then we could find a sequence
fj of functions on [0,1]2, each satisfying (6.1), with the following

properties for fixed 1 <p <a and 1 <q < a:

(6.3) 1A |« <27
J

1t |
(6.4) (E ] | [ f(s.t)dxX ;“dt)P/a)‘/P >3
0o'o J S

(6.5) support(fi(-,t)) n support(fj(-,t')) =@ forall t,t' and iz J.

In fact, since Xt scales, each square straddling the main diagonal has
properties similar to [0,1]2 and therefore it is possible to choose the
support of each fj to be a square straddling the main diagonal and such
that the support of fi and fj are disjoint for 1 # j.

By (6.5), the fj’s have disjoint support, and therefore the function
f = §§=] f; and the map A = §§=] Afj are well-defined. Since 'Af|*q <

y ‘Af-,*q <=, Ac is completely sunming and so f satisfies (6.1).
J
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Let gj(-) be the independent random elements of L*[0,1] with dis-
joint support defined by gj(t) = fg fj(s,t)dXS (independence and
disjointness of the support follow from (6.5)). Set also

£(t) =[5 f(s,t)dX,. Then

(6.6) g(t) = 1 g;5(t)
j=1
almost surely, for each fixed t.
We now show that the two sides in (6.6) are equal as random elements

in L%[0,1]. Note first that for almost all , we have

|{t: z;(t) # 0, gj(t) # 0 for some i # j}| = 0,

so that ) gj(t,m) converges a.s. in LO[O,]]. Both £ (t,w) and
) gj(t,w) are random elements of LO[0,1], there are almost surely
equal for each fixed t, and therefore by Fubini's theorem they are
equal as random elements of Lo[O,]], and hence as random elements
of L%[0,1] since & satisfies (6.1). Since the £ ;5 have disjoint

support, we have
Eles] - E(j; o517 0P7" 2 E(]e

contradicting Theorem 1.2. Hence the inequalities (6.2) hold.

3) The space of functions A; is complete under the norm x; b

(Theorem 1.2). We now prove that it is also complete under the norm

. . . N H .
where ‘ '* is viewed as a norm on the functions f in A via
q o

l '*q’
lf'*q ) IAf|*q'
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Let ¢],¢2,... be the standard Haar functions. They form a basis
for L%. For each continuous linear map A: L » L% there is an

associated matrix aij of real numbers defined by Ay = Z?:O a. .¢

LNANN
i =0,1,..., with the series convergent in L%, Since the span of the

1
¢y is dense in L% , the operator A is uniquely determined by the aij'

The space of p-summing operators Af is a Banach space with
i

norm ‘Afl*q' Take f e A such that !Afn-Afm'*q >0 as n,m > =
and let A be the g-summing operator such that 'Af -A'*q > 0.

1 In
By (6.2) we have ka’p(fn-fm) > 0 and therefore xa’p(fn-f) > 0 for

some f ¢ A;. Then we must have A = Af for the two operators have

the same associated matrices:

1
Tim [ o () (A o) (t)dt
n

ns>e 0

]

1
[ oy (6) Aoy (0)ae

65(8)F (5580, (5)dsdt

Og‘—.ﬂ
O~

1im
Y

It
[
[ ]

b3 (£)F(5,t)0y (5)dsdt

b5(t) (Ao;) (E)dt.

C oy wed

The third equality holds since the Haar functions are bounded and

A (f -f) >0 dimplies |f -f > 0. (See (4.5).)
asp N ' n 'L]([O,]]Z)
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4) To complete the proof of the equivalence of the norms x; 0 and

' '*q’ we use the conclusion of part 3) of this proof, relation (6.2) and

the following fact. Let B be a Banach space which is complete under the
o || a0 [ [+ 10 1]l <el] e ten 1] 2 <] 1]
(Proof: apply the closed graph theorem to the identity map (B,Il "2) >

][ -
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APPENDIX

For the reader's convenience we present here a very brief discussion
of stable cylinder probabilities. We also prove some results which are
used in Section 6.

Let B be a Banach space. A finitely additive measure A on B 1is
called a symmetric stable cylinder probability of index o« 1if A 1induces
a stable symmetric distribution on each finite-dimensional quotient space
of B, i.e., if K 1is a subspace of B of finite codimension and
n: B > B/K denotes the canonical projection, then ) © n'] defines a
symmetric o-stable probability distribution on the finite dimensional
vector space B/K.

We are interested in the case B = Lal[O,lj, 1o + 1/a' =1, 1in
which case we denote by 2* the symmetric o« stable cylinder probability
defined in terms of the stable process X, as follows:

t

Let f],...,f be linearly independent functions in L%[0,1] and

2
K< L* [0,1] be the annihilator of the f_,
;

K={o el [0,1]: <o,F> =0, 1 =1,2,...,4.

i ]
Then K has codimension 2. Let =: L% - L* /K be the quotient map and
lTet xz be the stable distribution on L* /K with characteristic function

given by

fj(s)dxs).

o

L 2
(A.1) [ exp(i ] ui<fi92)d(n)(9) = E(exp 1 ] uy
b i =1

LOC'/K J"] J

(Note that the pairing <fj;§> is well-defined.) Let 1 denote the
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collection of such projections obtained as the collection {fi} varies

]
and put C=v_ n’]( (n(L* )) where B(xn(L¥ )) denotes the family
of Borel subsets of =(L* ). The family xz is consistent in the sense

]
that if m: L% > L%/K, 1 =1,2, with KKy, and w LY /Ky >
L K KK ~ L% /K, then A% =2% o % T\, Thus there is a well-
177271 — 2 Ty T
defined finitely additive measure 2% on C defined by x“(n'](E)) =

]
xz(E) for E e B(n(L® )). Intuitively, one may think of A% as the
distribution of a-stable "noise", dXt.

The measure 2% 1is not a countably additive Borel probability measure
on L%, Recall that the map Af: L“' > L% radonifies A% if A% o A%]
extends to a countably additive Borel probability measure on L% (see
Section 6). The following propositions give a necessary and sufficient

condition for A to radonify A%,

Let f(s,t) be a symmetric function satisfying (6.1) above and Tet

1
Y, = é f(s,t)dX,

which we may view as a random element of L%[0,1]. Let P denote the

probability measure on the sample space Q. We then prove

Proposition A.1. Suppose that f satisfies (6.1) and let Af: L% [0,17 »

L*[0,1] be defined as in Section 6. Then

-1
-[.‘

1

2% oA =P o YT

as cylinder measures on L%®[0,1].
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Proof: Choose g;,9,,---59, ¢ L . Let Kc L* denote the annihilator of
gysen-sg, and let K' = AR, I mr L% LK and w'i LY > LK,

then the map Ac: L* 5> L% induces a map A from L® /K" to L%/K so

that = o Ap = Ac o n'. Let '§1 denote n'(gi). We then have

.2 — = a -1y i~

(A.2) [ exp{i ) uj<¢,gj>}d(x o Ag) (o)

L%/K J=1
2 _ I
= f EXp“ Z Uj<¢:9j>}d(7\,ﬁ| °Af Y(o).
e ;
LC(/K J

After the change of variables ¢ ='ﬁf(§) we obtain

2
[ exp{i ]
L% /K I=

where we used the symmetry of f in the first equality and (A.1) in the
second.

By Lemma 5.4 we obtain

1

(A.3) E exp{i uy g Afgj(s)dxs} = E exp{i u,

(L)Y, dt}.
Cuy e (t)Y dt}

J

I e
BT e
O‘—_\—J

j=1 J

Since the left hand side of (A.2) equals the right hand side of (A.3) the
characteristic functional of A% o A;] agrees with that of Yt‘ The proof

is complete.
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Proposition A.2. Suppose Af is continuous as a map from L% to L

and that 2% o A;] is Radon on L%, Then Yt defines a random element of

L%[0,1], i.e., (6.1) holds.

Proof. Let Y¢ be the L% -indexed stochastic process defined by

1
(] F(s,t)e(s)ds)dx,,
0

-
<
fon R

o € L% . This is well defined in view of the continuity of Af.

We begin by showing that the random linear functional Y_ has a

b
continuous version, ‘7¢. That is, we construct 7& so that
(A.4) sup |7'| <o a.S.,

ol <1
LAY
and
t
A.5 Y =Y  a.s., L* .
(A.5) o = Vo o €

To see this choose a linearly independent, dense sequence Opsbpsees of
functions in the unit ball of L%, Let 7 L* v, o= La/Kn where

Kn E_La is the annihilator of ¢1’¢2”"’¢n' The calculation in
Proposition A.1 (prior to the use of Lemma 5.4) shows that the random

vector (Y .,Y ) has probability distribution (xa ° A;l) s

¢1 d)n ™n

i.e., there are linear coordinate functionals X]""’Xn of norm at most

1 on Vn so that for any Borel subset E of R" we have

o -1
(A.6) (A" o A% )”n({v e Vo (x](v),...,xn(v)) e E}) = P((Y¢1,...,Y¢n) e E)

(Strictly speaking, the functionals X5 should be doubly indexed to indi-

cate the dependence on Vn‘ However we shall suppress this to simplify the
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notation. This will cause no difficulties in the proof because of the
consistency relations amongst the Vn‘)

The fact that A% o A;] is Radon implies that for each e > 0 there
is a large enough k so that

(A.7) P( sup |Y ‘ > k) < €
1<i<n | %

uniformly in n.

To see this, first choose a compact a < L* so that A% o A;](AC) {e.
Put - nn(A). Each A is a compact subset of the corresponding Vn;
moreover, it follows easily from the total-boundedness of A that there is

N so large that for n > N we have

(A.8) ‘xi(v)i.g es vedn, 1=M,.n
Let Bn,kzs Vn be the "cube" defined by

Bk = v e v lxi(v)‘ <k, i=1,2,.00sn}.
Since A],...,AN are compact we may choose k > e so large that Ay < By
for i =1,2,...,N. It then follows from (A.8) that we have A < B

for all n. Finally, by (A.6) and choice of A we have

-1 c -1 c
P(sup Y, | > k) = (no AZT) (B ) £ (o AgT) (a0)
1<i <n ' q>1.! fin, n,k f im0

<o AP0 <,

for every n, establishing (A.7).
As an immediate consequence of (A.7) we have sup’Y¢ ' { o a.S.
n n

(w)

It follows that for almost every « the restriction of the map ¢ » Y¢
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to {¢i} has a unique linear continuous extension to all of L% , denoted
7@. Property (A.5) follows from the continuity of Af.

The next step is to establish the existence of a random element Zs(w)
of L*[0,1] such that

(A.9) Y = ¢(s)ZSds, 2.5

o
[

for each ¢ ¢ L.
To see this, fix w for which ¢ » V@(w) is continuous. By the

Riesz representation theorem there is an L*  function Z? with

— ] 1
Y¢(w) = [y Z?@(s)ds, for all ¢ ¢ LY . Let dgs¢ys¢p,+.. denote the

Haar functions. Then we have

1

(] 2% (u)du)ay (s)

Zw
S 0 0

i
]

-i

it

) 7@‘(w)¢i(s) a.e.(s).

i=0 i

The last written expression defines the desired random element Zs(w).
The last step is to show that Z is a version of fg f(s,t)dxs.
Recall that (Sm is the mth dyadic o-field of [0,1] and put

E,. = {s < [0,1]: fé lf(s,t)l“dt <n}. We may view 1p (s)f(s,-) as an

L%-valued function on [0,1]. By the L%-valued marti:gale convergence

theorem we then have the following convergence in L* for almost every s:
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E(lEn(s)ﬂs,-)]em) e g (5)F(s.0)-

Thus, by (1.23) we have for almost every s

1 p i
(A.10) é E(1g (s)f(s,t)le)dxt > 1En(s) é f(s,t)dX,.

n M->o

On the other hand, for every s

1
é E(lgn(~)f(-,t)}Gm)(s)dxt

E(]E (‘)Z(,)IGm)(S)a

n

each equality holding a.s. By the martingale convergence theorem, we

have almost surely that

E(1g (S)Zsle) > 1 (s)Zg a.e.(s).
n n

Moo

Combining this observation with (A.10) shows that for almost every s we

have
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1
Te (s) [ f(s,t)dXt = 1¢ (s)ZS
n 0 n

almost surely. Since n was arbitrary and ZS is a random element of

L¥ the proof is complete. [J
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