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Summary
let N = (Nl""’Nm) be a multivariate counting process having
predictable compensator A = (Al""’Am) so that in particular N-A 1is a

martingale. A probability model is considered where we assume A has a
relatively simple form given by

A{¢0,t]) = [ Y _B{ds)
(0,t]

where Y = (Yl,...,Ym) is a nonnegative process and B 1is an arbitrary
Borel measure on (R+,0(R+)). When Y= X>0 (a constant) and B(t) =t
then A(t) = At so that N is a Poisson process. Thus we call the family
of counting processes having compensator as above Poisson type counting
processes. Special cases are discrete and continuous time Markov chains,
models for survival analysis and the multiplicative intensity model.

In this paper we introduce this family of counting processes and
discuss its elementary properties. We then consider estimation of the
compensator based on observations of N and Y over a period of time.
Consistency and weak convergence results are given for the estimator, thus
generalizing the results of Aalen (1978) to this wider class of counting
processes. The theory is illustrated by estimating the cumulative hazard

rate from censored survival times having arbitrary distribution function.

Title: Estimating the Compensator from Poisson Type Counting Processes

Abbreviated Title: Compensator Poisson Type Counting Process
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1. INTRODUCTION

We consider a counting process N = (N _, t = 0} where for each t > 0

£
Nt counts the frequency of occurrence of some event over the interval
(0,t]. An important relative of N 1is its compensator function

A = {At, t = 0) where for each t > 0 At is, roughly speaking, the
cumulative rate of occurrence of events over (0,t]. Usually we are given
a filtration F = {Ft, t = 0} where for each t > 0 Ft is a collection
of all events observed over the interval (0,t] and the compensator A of
N is defined relative to F. 1In the martingale approach to counting
processes emphasis is placed on the fact that N-A forms a (local)
martingale relative to F which describes the sense in which A
compensates N.

Sometimes the compensator has a relatively simple form where for each

t>0 At may be written

(1.1) A, = [ Y B{ds)
too,e) ®

where Y satisfies a measurability requirement of a technical nature (see
section 2) and B is a right continuous, nondecreasing function on [0,)
with B(0) = 0. 1In statistical applications the process Y 1is typically
observable whereas the function B is unknown and to be estimated.
Numerous examples of (1.1) occur in various connections as we
illustrate in section 2. A special case of a general sort occurs when the
function B admits a density b relative to the Lebesgue measure so that

the intensity of the point process N exists. In this case the process

(1.2) A(t) = Ytb(t), tz0



is called the intensity process. The model (1.2) is called the
multiplicative intensity model and has been studied in detail from a
statistical point of view and has been shown to provide a general framework
for the study of censored survival data by Aalen (1978) and inhomogeneous
Markov chains by Aalen and Johansen (1978). 1In addition, Andersen and Gill
(1982) used this model to study Cox's proportional hazards model extended
to counting processes generated by a recurring event (see also Prentice and
Self (1982) for a related extension along these lines).

The counting process approach to probability models arising in
statistical applications has proved a powerful tool. For example, the
methods of this approach have been used to derive asymptotic normality of
maximum 1ikelihood estimators in parametric counting process models by
Borgan (1984), to study the product limit estimator of an arbitrary
continuous distribution function F on [0,«) by Gill (1983) and in a
general treatment of two sample clinical trials involving arbitrary
censorship of survival times by Slud (1984). of éourse, many other
examples of the power of these methods may be cited.

In the examples cited above in one form or another the compensator
function A 1is assumed to be continuous or special methods have been
introduced to cover the discrete case (see for example section 4). 1In our
treatment of counting processes we make no such assumptions. In order to
deal with this generality we have relied on the theory of multivariate
counting processes in Jacod (1975) and the general functional convergence
theorems for semimartingales found in Jacod, Klopotowski and Memin (1982)
and Lipster and Shiryayev (1980). The estimation theory we develop may be
used to extend Aalen’s (1978) earlier work to a wider class of counting

process models.



In this paper we assume a basic knowledge of the martingale approach
to counting processes although a sufficient review may be found in Aalen
(1978). Some of the other ideas used in this paper such as predictability
and local martingale are discussed, for example, in an excellent expository
paper on martingales by Shiryayev (1981).

Section 2 introduces the probability model for the compensator in the
family of Poisson-type counting processes and gives a number of examples.
In section 3 we consider the statistical problem of estimating the
compensator function. Finally, in section 4 we apply the theory developed
in section 3 to estimating the cumulative risk (hazard) function in a
random censorship model in survival analysis when the distribution function

of the survival times is arbitrary.

2. ©POISSON-TYPE COUNTING PROCESSES

2.1 Definition and Examples

Let (Q,F,P) be a probability space and F = {(Ft), t = 0} a given
family of sub-o-algebras of F satisfying the usual conditions (i.e. F
is nondecreasing, right continuous and complete relative to P). A
stochastic process X = {(Xt), t = 0} 1is called F-adapted if for each t,
Xt is Ft—measurable (written’ Xt € Ft) which we denote by
X = {(Xt,Ft), t > 0}. An F-adapted process is also F-pFedictable if it is
measurable with respect to the smallest o-algebra over Ox[0,») generated
by the left-continuous F-adapted processes. The families M(F,P), M2(F,P),
Mloc(F’P)’ and Mioc(F’P) denote the classes of F-adapted processes

which are uniformly integrable martingales, square integrable martingales

and their local counterparts, respectively.



Let E be a discrete space of m (m < «) distinguished "events" and
denote a generic event in E by 1i. We take as our starting point an
m-variate counting process N = (N(1),...,N(m)) having predictable
compensator function A = (A(l),...,A(m)). Thus for each i € E and
t>0 Nt(i) counts the number of events of type i which have occurred
over the time interval (0,t] and At(i) measures the cumulative rate of
occurrence of event i over (0,t]. In this case if M(i) = N(i) - A(i)
then M(i) = (1 (1),F), t = 0) is of class W2 (F,P) for all ieE.

In this sequel we restrict our attention to a family of m-variate
counting processes where the compensator function has a particularly simple

form defined as follows.

Definition 2.1. Let B denote a Borel measure on (R+ = [0,4w0), a(R+)).

An m-variate counting process N is called a Poisson-type counting process

if for each i € E its compensator has the form:

(2.1) AL ((0,£]) = J Y (i)B;(dt}, vV £ =0
(0,t]

where Y = {(Yt,Ft), t = 0} is an m-dimensional nonnegative F-predictable

process. [

According to definition 1.1 we view the compensator function A as a
random measure defined on the Borel sets. Accordingly, we also view
M = N-A as a random martingale measure which is in agreement with Jacod
(1975) who also calls the kernel A{dt) the dual predictable projection of
N. When m= 1 with Yt =)X>0 (a constant) and B{(0,t]} = t for all

t we obtain from (2.1) A{(0,t]} = Xt, so that N is a simple Poisson



process of rate XA and thus in the general case N is called a
Poisson-type point process by Lipster and Shiryayev (1978). Also, when B
has a density relative to the Lebesgue measure then (2.1) reduces to the
multiplicative intensity model considered by Aalen (1978).

Consider the following examples.

Example 1. Life testing: random censorship model. For fixed positive

integer mn, suppose Xi and Ui’ i=1,...,n are 2n independent
random variables with Xi or Ui almost surely finite for each 1. Xi
has distribution measure F and Ui has distribution measure L. The
observable random variables Xi and 61 are given by Xi = Xi ~ Ui and
Si = 1(Xi < Ui)’ where a .~ b = min(a,b) and 1(-) 1is the characteristic
or indicator function of (:).

To analyze problems arising in this model we define the following

quantities for each i =1,...,n:
i ~

(2.2) N = 1(X; =€, 5, = D), t=0
i ~

(2.3) Y= 1% zt), £20
t -1

(2.4) B(t) = [ (1-F(s-)) "F{ds), t = 0,
0

where (2.4) is an ordinary Lebesgue-Stieltjes integral and

F(s-) = 1lim F(t). The process N = {Ni
tts

, t = 0} 1is called a simple

counting process and is equal to zero until the ith observation time

elapses and has not been censored while Y- {Yt, t = 0} 1is called a risk

process and is equal to one as long as the ith unit remains alive or under



observation. The risk process, by virtue of its left continuity, is
F-predictable where F 1is determined by (2.5).

Let (9,F,P) be a probability space on which {Xi’Ui} are defined
and let the filtration F = (F_, t = 0} be given by

t

(2.5) Ft = Fb v a-(l(Xi < s), Sil(Xi <s),s=<t,i=1,...,n)
where FO contains the P-null sets of F and their subsets. Next define

the process Mt és follows:

. t
1

i i
(2.6) M, = N - g Y B{ds}, t = 0.

According to Gill (1980), ut = {(Mt,Ft), t = 0} € MZ(F,P) and therefore

N' has unique predictable compensator Ai given by

(2.7) AL((0,€]) = f  YiB(ds).
(0,t]

. os . e . i
Thus as Ai satisfies definition 1.1 for each i =1,...,n, N is a

Poisson-type counting process having compensator Ai relative to F. O

Example 2. Compound Poigson-type Processes. Let (Q,F,P) be a

probability space on which we define a sequence X = {Xn, n =1} of
independent random vectors and a counting process T = {wt, t =z 0). Let
{Fn, n =1} be a sequence of distribution measures on Rd (d an integer)
and let B be a Borel measure on (R+,0(R+)). We assume that for each

n=1,2,... Xn has distribution Fn and that =« has compensator B

relative to its internal history o= {FZ, t = 0}, defined by



(2.8) Ft = FO vo-(r : 0£s=<¢t), t=0)

where FO c F contains the P-null sets of F and their subsets. We

further assume that X and « are independent processes.

Next define a process Y = {Yt, t = 0} by the relation
T
(2.9) Yt = 3 Xn’ vV t = 0.
n=1
We interpret (2.9) so that Yt = 0 whenever o= 0. Since B 1is the

deterministic compensator for w, according to theorem 18.9, Lipster and
Shiryayev (1978), = 1is a process of independent increments from which it
is easy to derive that Y 1is a process of independent increments. Further
if B 1is continuous and B{R+) = o then theorem 18.10, Lipster and
Shiryayev (1978) implies that =« can be transformed into a Poisson process
by a change of time. In this case we may view Y as a compound Poisson
process up to a change of time and therefore for the general case of
arbitrary B we call Y a compound Poisson-type‘process. We use the
process Y to construct an example of a Poisson-type counting process.

For fixed E, a Borel set in Rd—{O}, we define the following

sequence of stopping times T = {Tn, n=z=1l}):

Ty = inf{t: t > 0, Yt e E}

(2.10)

. c
= . >
Tl inf{t: t > T Yt € E, Yt- e E)}, n=z1

where EC denotes the complement of E. On {w: Yt(w) € EC, V t =0} set



Ty = % and for n = 1 set Totl = T2 = Tpe3 T o T © on
{w: Yt(w) cE°V t> rn}. Clearly T forms a point process by recording
the epochs at which the process Y visits the set E. We define the

counting process N = (N_, t = 0} as follows:

t’

(2.11) N = 2 1(r_=1¢t), Vt=z=0.
t n
n=1

Here Nt counts the frequency of distinct visits to E by Y in 0,t].
Next define the filtration F = {Ft, t = 0} given by

(2.12) Ft = FO v o-(YS, T 0=ss=<1t)y,Vvt=z=0
where FO is defined at (2.8). It is evident that N 1is F-adapted and
that N = {(Nt,Ft), t = 0} 1is a local submartingale with localizing
sequence T = {Tn, n = 1} defined at (2.10). Thus there exists a unique
predictable compensator A = {(At,Ft), t = 0} such that N-A 1is a local
martingale.

Let {Q(k), k = 1} be an R-sequence of partitions (see for example

Brown (1978) or Helland (1982)) where Q(k) = {to k,t1 k,...} with

0 = tO,k < tl,k < ... < tj,k and tj,k + o as j = o, Q(k+l) D Q(k)
(i.e. Q(k+l) 1is a refinement of Q(k)) and Ak(t) = maxj{tj+1,k-tj,k:
tj k= t} >0 as k - o for each t. For k=1 define the process Ak
by
(2.13) (t) = by E(N - N |F ), t=0

E jre, o=t Gk Tkl tk



Next consider the process A defined as follows:

- _ c
(2.14) A= (Oft] Fﬂs-+1{E Y_)1(Y, € E)B(ds}, £=0

where Fn{-} denétes the Fn-measure of (-} and E-y = {x: xty € E} and
1(-) 1is the indicator function of (:) (i.e. 1(:) =1 or 0 as ()
holds or not).

By a series of reexpressions of (2.13) and the use of lemma 2.3 (see
next section) it is possible to show that Ak(t) -+ At almost surely as
k - © and that this result holds over arbitrary R-sequences. Put

c .
£t = Fwt_+1{E-Yt—}l<Yt~ € E) for t=0 so that At may be written

(2.15) A_= [ &B{ds}), t=0.
0,e] °

Observe that since € = {(gt,Ft), t =0} is a Ft-predictable process
A= {At,Ft), t = 0) 1is predictable and satisfies definition 1.1 with Y
jdentified with £. TFor N to be a Poisson-type counting process it
remains to prove the A 1is its compensator.

Suppose A= {(Kt,Ft), t = 0} 1is the predictable compensator for N.
Then according to Murali-Roa's (1969) proof of the Meyer decomposition
theorem Ak -+ A in the weak Ll topology (i.e. EAk(t)lB - EﬁtlB for all
B € F). Hence {Ak, k > 1} 1is uniformly integrable. Combining this fact
with the almost sure convergence of Ak to A allows one to show that
A_ = Kt almost surely and therefore N 1s a Poisson-type counting

t

process. O
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Had we known a-priori that the compensator of N relative to F is
calculable (see Brown (1978) for a definition) we could have gone directly
to the in probability limit of Ak(t) as k - o. As this example
illustrates we may extend proposition 1, Brown (1978) on the calculability
of A relative to F to the class of counting processes N generated as

shown above from compound Poisson-type processes.

Example 3. First passage time for a Wiener process. This example may be

found also in Lipster and Shiryayev (1978). Let W = {(Wt,Ft), t = 0} be
a Wiener process and 7 = inf{t = O: Wt = 1) where 7 =« 1if

Sup . Wt < 1. We consider the simple counting process

N = {(Nt’Ft)’ t Z.O} with Nt = 1(r s t) for all t = 0. By virtue of
the predictability of W it is easily shown that 7 1is a predictable
markovian (stopping) time and therefore the unique predictable compensator
of N relative to F 1is N itself which providgs us with an example of a

compensator not of the Poisson-type.

Alternatively, we consider the minimal representation of

=

 =1lr=t), £20 (i.e. for Fﬁ = olw: N_, s <t} and

N = (N ((& ,Fﬁ),t:z 0} of

t

i

& t), t = 0} we find the compensator A

ﬁ). First, define the function F on [0,x) by:
o 2

(2.16) rey = J27x [ eV /%ay, t=zo0.
172

Then it is easily shown that A 1is given by:

g
I

(2.17) -An(1-F(t A 7))

t

[ 1(r = s)dF(s)/(1-F(s)), t = 0.
0

i
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Thus A 1is a Poisson-type counting process with the process {Yt}

identified with ({1(r = t)} and the Borel measure B identified with the
measure generated by the function -4n(l-F). We further recognize A to
be in the family of multiplicative intensity models (see Aalen (1978))
where the intensity process {At} is identified with

-1/2_-3/2_-1/2¢

(1(r = t)(2m) /(1-F(t))}. O

Example 4. Discrete time Markov chain. Let X = {Xn’ n= 0} be a

homogeneous Markov chain having states {1,2,...,m} (m < o) and

probability transition matrix P = lp.

1j"l$i,j5m' For each pair (i,j),

l<i,j=sm Ilet Nij = {Nij(n)’ n = 0} count the number of direct
transitions from state i into j realized by the Markov chain X. Also,
if Fn = a-(XO,Xl,...,Xn), n=>=0, then for 1 <1i,j <m it is easily

shown that Nij = {(Nij(n)’Fn)’ n = 0} has unique predictable compensator

Aij = ((Aij(n), Fn, n = 0} given by:
n
(2.18) Aij (n) = il l(Xk—]. = l)pij
= [ 1x ,.,,=1p;.plds}, n=z0
(O,H] ”’(S) 1 1]
where p(s) = card{k: k is a positive integer and k =< s}. Here if we
identify {Yt} with {Xp(t)-l} (which is readily shown to be predictable)

and B with pijp we obtain a forth example of a Poisson-type counting

process. O
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2.2 Basic Properties and Preliminaries

2.2.1

In many applications the counting process N is the primary object of
observation. For each i € E there is an associated sequence of stopping
times T(i) = {rn(i), n = 1} which is the point process over Rf

recording the epochs of events of type 1. Thus for each t 2 0

(2.19) N (i) = & 1(r (i) =t), 1e€kE.
t n
n=1
By ordering the sequences {T(1),...,T(m)} 1into a new sequence

T = {rn, n > 1} we obtain a sequence of event epochs in a marked point

process having mark space E. The epochs T satisfy the following

relations:
(2.20) ) T, > 0 a.s.
(2) T < T4l 25 on {rn < w0}
(3) Thn = Tn+l a.s. on {'rn = w}
(&) Nt = % Nt(i) = 3 l(rn <t),vtet=0

i€k n=1

where a.s. means almost surely with respect to P. We denote the random

variable r_ = 1im T for the limit of the sequence T. On
ntee

{w: Tw(w) < «} we obtain an infinite number of events in a finite time and
we say there has been an explosion in the marked point process at 7 _.
Beyond this point the process is terminated.

2.2.2

The fundamental relation in this approach to counting processes is

given by the decomposition
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(2.21) N=A+m

where m is a local martingale which defines the sense in which the
compensator process A compensates N. The localizing sequence for m is
given by the sequence of event epochs T and in accordance with Lipster
and Shiryayev (1978) we use the terminology r_-local martingale when
referring to m.

According to definition 2.1 we may view the compensator A as a
random Borel measure on (R+,a(R+)) or alternatively we introduce the
random function AS = A{(0,s]}, s = 0. For each we l A.(w) 1is clearly
a monotone nondecreasing right continuous function on R" with AO = 0.

We know that A may have at most a countable number of discontinuities and

we use the notatiom AA = A - A , where A = 1lim A , to denote the
s s s- s- ht0 ~h

magnitude of the jump in A at s = 0. According to theorem 2.1, Jacod

(1975), for each i € E the compensator A(i) satisfies sup AAS(i) =
s<7T
[++]

sup AAS(i) <1 and AAT (i) = 0 with probability one. This coincides
s<r ©
[+2]

with the fact that for any t the number of points occurring at ¢t,
namely ANt, is identically zero or one and anticipates a latter result
which allows us to interpret AAt > 0 as the conditional probability
ANt =1 given Ft—'
2.2.3

For each i € E the decomposition in (2.21) uniquely defines a local
martingale m(i) = {(mt(i),Ft), t = 0} and the family of processes

{m(i), i € E} induced by (2.21) is a family of fm-locally square integrable

local martingales. The (local) square integrability of m(i) and m(j),
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i,j € E, allows the definition of a covariance process <m(i),m{(j)>

defined by the relation

(2.22) m(i)m(j) - <m(i),m(j)> € MlOC(F,P).

The process <-> 1is called the quadratic characteristic and as it turns
out bears a definite relation to the compensator function A. 1In

particular we have the following lemma.

Lemma 2.1. The family {m(i), i € E} of rm-locally square
integrable local martingales defined by (2.21) has the unique quadratic

characteristic given by:

J  @-aa (1))da (i), 1 =]
(0,t]
(2.23) <m(i),m(j)> =
' - [ A (1)da_(3), i ]
(0,t]

for all i,j € E and t = 0. In particular we have m(i)m(j) -

<m(i),m(j)>, 1is a Tw—local martingale.

Proof. For i =3 (2.23) follows immediately from corollary 18.12
and lemma 18.12, Lipster and Shiryayev (1978). For i = j the proof of
(2.23) can be obtained with the applications of theorem 5.2, lemma 18.7 and
theorem 18.8, Lipster and Shiryayev (1978). 1In both cases uniqueness
follows from the predictability of A. O
2.2.4

In applications of counting processes, such as the inference problems

we consider here, there arises the need to treat integrals of the form
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(2.24)

=
]

(Oft] X (dN_-dA )

f Xsdms on {w: t < Tw(w)}
(0,t]

where X = {(Xt’Ff)’ t = 0} is a predictable process and for each t the
integral in (2.24) is interpreted for each w € {w: t < rm(w)} as a
pathwise Lebesgue-Stieltjes integral. The question arises as to when the
integral at (2.24) agrees with the stochastic integral of X relative to
m meaning therefore that M = {(Mt’Fﬁ)’ t = 0} 1is a (local) martingale.
For the purposes of this discussion it suffices to recall theorem 18.7,

Lipster and Shiryayev (1978) to answer this question.

Lemma 2.2. Suppose X = {(Xt,Ft), t = 0} is a predictable process

such that P(|X | <) =1, t=0 and let M= (@ ,F), t=0}. Then
Aoo

r
o]

(a) E f IXSIdAS < o implies M 1is a uniformly integral martingale,
0

t
(b) p(g |x lda =, t<r) =0 implies M is a r_-local

martingale.

The Lemma is merely a statement of theorem 18.7, Lipster and Shiryayev
(1978) and will not be proved.
2.2.5

We will apply lemma 2.2 to exhibit a further decomposition of the
counting process N. For each t > 0 we introduce the notation
B(t) = B{(0,t]} with B(0) = 0, where B is the Borel measure introduced
at definition 1.1. The function B is a monotonic increasing function of
local bounded variation (i.e. B is of bounded variation on bounded sets

of the form [0,t], t > 0).
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Let A = {t: t > 0, AB(t) > 0}, where AB(t) = B(t) - 1lim B(s),
stt

denote the countable set of discontinuities of B and when convenient we
identify this set with a sequence {tk, k = 1} such that 0 < t1 < t2
< ... < ty < ... . Consider the following decomposition of N.

Let XA denote the characteristic function of the set A and

introduce the following decomposition of N:

(2.25) N - N¢ + n¢
where for each t = 0 and i € E
d,.
(2.26) Nt(l) = % ANt (i)
k:t, <t k

t
- { X ()N ().

Thus Ni(i) counts the frequency of events of type 1 to occur exactly at
one of the tk € A over the interval (0,t]. Obviously, N®  and Nd are

counting processes.

Let B® = B - IAB denote the continuous part of B. This allows a
decomposition of B of the form:

(2.27) B = B° + B¢

where Bd = ZAB = f XAdB. Thus the compensator function A may be written
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d

(2.28) A = [ vaB® + [ vaB

ff

c + Ad

]
-

with obvious correspondence. It is shown that N has compensator A® and
d d
N~ compensator A~ as follows.
Observe that Xp = {XA(t), t = 0) 1is a deterministic and therefore
predictable process and X A is bounded by one. Consider the

Lebesgue-Stieltjes integral

[a

(2.29) m. = [ x/(s)m
oo A S
= = (AN -Y_ AB(t,))
kit <t Sk Tk €
k
t
- xd . Iy 8%ds), t= 0.
t s
0
. . d d .
By virtue of lemma 2.2 it follows that N = {(Nt’Ff)’ t =0} is a

. . . R d .
Poisson-type counting process having unique compensator A . Similarly,
c . . . . . c
N~ is a Poisson-type counting process having unique compensator A-.
In closing this section we note that in general the function B may

be decomposed as follows:

(2.30) B=2B + B + B

d . . ac . . s
where B is defined above, B is an absolutely continuous function and

sc . : . . I . .
B is a singular continuous function (absolute continuity and singularity
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are of course defined relative to Lebesgue measure, cf Royden (1968)). Let

i denote the Lebesgue measure and set = dB®° dp so that
g

(2.31) B¢ - [ pdu.

The compensator A 1is therefore written

d

(2.32) [ vpau + [ YaB®® + [ vdB

>
I

_ A3C 4 p5¢ 4 a9

The interesting thing about (2.32) is that a counting process, N3¢ say,
generated by A%®  would possess an intensity process YB which is a
multiplicative intensity as defined by Aalen (19738).
2.2.6

The decomposition of N given at (2.25) shows N to be the
superposition of two Poisson-type counting processes N® with continuous
compensator A and Nd with purely discrete compensator Ad, the latter
having event epochs exclusively in the set A. Thus the sequence
T = {Tn, n > 1) of event epochs of N 1is a mixture of the event epochs of

c d d

N and Nd, which we denote by ¢ = {73, n>1l} and T = (Tn, n 1},

v

respectively.

c
the

: s s c
By virtue of the continuity of the compensator A of N
sequence T is a sequence of totally inaccessible stopping times (see for

example, lemma 18.3, corollary 1, Lipster and Shiryayev (1978)). Also it

is a straightforward demonstration to show that the sequence
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Td = {ri, n =1} 1is an accessible (see definition 7.4, Metivier (1982))

sequence of stopping times. We remark that the sequence Td is
predictable if and only if the counting process Nd is predictable in

P-a.s. for all t, € A. 1In such

which case we must have ANS = Yt AB(t "

)
k k k

a case estimating an unknown Bd from observable (Nd,Y) would be
trivially accomplished. However, in many statistical applications such as
we illustrate in connection with survival analysis Td is accessible but
not predictable.

In light of the preceding discussion we use the terminology accessible
set when referring to the set A. 1In some statistical applications where
B is unknown, A may be unknown as well and require estimation. This
topic is beyond the scope of the present endeavor.
2.2.7

Much about the behavior of N can be learned from characterization of
the compensator A and vice versa. The model (2.21) which defines the
family of Poisson-type counting processes exhibits an interplay between the
process Y and the measure B in determining the rate of occurrence of
events of different types in the point process. Observe that in the case
Y=1 (i.e. a constant process) then (2.21) yields A = B meaning N has
deterministic compensator B. We noted earlier that in this case N 1is a
process of independent increments. Thus an immediate role played by the
general process Y 1is to introduce a form of stochastic dependence between
the future behavior of N and elements of its past.

Next we prove a version of lemma 3.3, Aalen (1978) which relates the
occurrence of events in N with the compensator A and relies on the

decomposition of B shown at (2.30).
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Lemma 2.3. Suppose the family of processes (Y(i), i € E} 1is bounded
by an integrable random variable. Then for each n=1,2,... and 1€ E
we have the following:

. ,o,-1 . i . )
(i) 1lim h TEN_, (i) - Nt(l)[Ft) =Y (1), (t+);

hi0 t+h
. . .-l . . . .
(ii) lim b PN, (1) - N (i) = 1|Ft) =Y, (1), (t9);
hi0
s .-l . i .
(iii) lim h PN _ (i) - N (i) > 1|Ft) = 0;
hi0
(iv) For each k such that t,_ € A

k

1im P(N_ (i) - N (i) = 1|F )
hi0 Tk b fh

= lim E(N_ (i) - N (i) |F ) = Y_ (i)AB,(t.);
hi0 tk tk-h tk-h tk itk

where (1)-(iii) hold for t outside a set of p-measure zero and on

. N ac _ _ _
{(w,£): t =< Tn}, ﬁi = dBi /dp  and ABi(tk) = Bi(tk) Bi(tk ).

Proof. The proof of (i)-(iii) can be obtained by the method of proof
used in lemma 3.3(i)-(iii), Aalen (1978). First recall that for each

n=12,... {Nt ; At ;o t = 0} 1is a martingale. Secondly, the func-
/\n An

tions B°C and Bd are both singular and have derivative equal to zero
a.e. relative to the Lebesgue measure. Thus for t outside a set of
Lebesgue measure zero and on {(w,t), t = Tn} (so that t . T~ t)
(i)-(iii) may be proved by the method of proof used in Lemma 3.3, Aalen
(1978).

To prove (iv) recall the decomposition of A and N given by

(2.33) A =%+ ad
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(2.34) N = &% + ¢

where N° has compensator AS and Nd has compensator Ad. By virtue of

the continuity of AS it is easily seen that for n=1,2,... and k = 1
(2.35) lim E(N - N |F )
ht0 tkATn (tkATn)—h tk—h
d d
= lim [O(h) + E(N - N |F )]
hi0 tkATn (tkArn)—h tk—h
d d
- lim E(N - N |F )
o kM (et Gy

where O(h) + 0 as h { 0. Finally, since Nd has compensator
Ad = f YdBd and Y is predictable (hence Yt e Ft ) we obtain (iv)
k k

whenever (w,tk) € {(w,t): t = rn}. Note that in (2.35) we have
conveniently suppressed the index 1.

To obtain the result for 1lim P(N_ - N = 1|F we introduce a

hi0 kP
family of random variables (S(h), h = 0} where S(h) > (tk A rn) -h is

)
tk—h

the time of the first jump in N after (t, 4 rn) - h. From what has been

k
proved thus far it follows that as h 4 0 S(h) 1 S(0) where
S(0) = tk AT P-a.s. Hence, the result (iv) is proved as above via the
method of proof of lemma 3.3(ii), Aalen (1978). This completes our

proof. O
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2.2.8
We began our discussion with a counting process N = {(Nt,Ft), t = 0}
having predictable compensator A = {(At,Ft), t > 0} where A 1is a random

measure of the form

(2.36) A, = J Y3Blds}, t£=0
(0,t]

as shown in definition 2.1. 1In example 3, 2.1 we introduced the filtration

FN = {Fi, t = 0} called the internal history of N where
(2.37) N vo-(N,s=t), t=0
) t 0 s’ - ! -7

More generally, we introduce the filtration G {Gt, t = 0} such that G

satisfies

(2.38) F

If we consider the counting process N = {(Nt,Gt), t = 0) it is natural to
ask what is the form of the compensator A = {(At,Gt), t =0} of N
relative to G. 1In the general case this is a very difficult problem but

as we shall see for the Poisson-type counting process this is not the case.

Lemma 2.4. Let the compensator of a point process
N = {(Nt,Ft), t = 0) be of the Poisson-type and given by the formula

(2.36). Then
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(2.39) A = [ Y B{ds), t=0
0,e] °

is the unique predictable compensator of a point process
N = {(Nt,Gt), t = 0} where ?t is a P{dw)B{dt} measurable version of

E(YtIGt). O

The proof of this lemma is given in Theorem 18.3, Lipster and
Shiryayev (1978) for the case G = FN and for general G 1in the case
where the intensity exist by Bremaud (1980) (see T1l4, Chapter IT).
However, it is easily seen that lemma 2.4 can be proved by the method used
in Lipster and Shiryayev (1978) for general G without change.

2.2.9

The necessary and sufficient conditions for the likelihood of
Poisson-type counting processes to have a convenient exponential form can
be given for the self-exciting case (i.e. F =TF). The form of the

likelihood is shown by the process {Z t = 0} defined at equation (14),

tl
Jacod (1975) and the conditions are those which guarantee the validity of
E(Zw) = 1. Since this result is vital to the development of likelihood

based inference procedures and the proof long and complicated we are

inclined to consider this problem in a later paper.
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3. ESTIMATION OF THE COMPENSATOR

3.1.1

We address the problem of estimation of the compensator from
Poisson-type counting processes as defined in section 2. We assume that
the process (N,Y) is observable and that the Borel measure B in
equation (2.1) is unknown. The statistical problem is to estimate B
based on observation of the process (N,Y) over a period of time.

For each n = 1,2,... suppose we observe (Ni,Yi), i=1,...,n
independent processes where Ni(j) = {(Ni(j), Fi), t =0} is a
Poisson-type counting process with compensator Ai(j) = f Yi(j)dBj,

P

j=1,...,m and i =1,...,n. For each n define , t = 0},

N(n) and Y(n) as follows:

T .
(3.1) Fff‘) - v Ft, Vt 2 0;
i1
T .
(3.2) N o o5 N
i1
n .
(3.3) vy o5yt
i=1

Denote A(n) = f Y(n)dB (componentwise) and observe that for each n

N oA Mloc(F(n),P(n)), where P - pl x P2 x ... x P". Note

(n)

that AN > 1 occurs with positive probability at the atoms of B (i.e.

the accessible set A) so that technically N(n)

is not a counting process
in our sense of the term but it is an integral-valued random measure over
®",o®D).

We remark that the sequence (N(n),Y<n>,A(n)) outlined above may
arise in other ways and the general theory on weak convergence we appeal to
in the next section can be adapted to this wider usage.

F(n)

. : n
To continue, for each n we define the -predictable process X

by
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(3.4) - @™y he™ S0y, vezo
t t t
where we use the convention % := 0. Next for each j =1,...,m consider

the following Stieltjes integral

A t
(3.5) BY(5) = [ X2a™ ), ve=o
0
n ’n n n .
and denote B = (B (l),...,B (m)). We propose to use B as an estimator

of B which for Poisson-type counting processes is the analogous estimator
to that used by Aalen (1978) in connection with the multiplicative
intensity model.

We observe that the indicator function l(Y(n) > 0) appearing in
equation (3.4) becomes particularly relevant when with positive probability
B{t: Yén) = 0} > Q. In this case we cannot estimate B on (t: Yén) = 0}

but rather we estimate gn where
(3.6) 5 = [ 1¢v™ > 0)ds.

Thus in problems of this type B" plays the role of "parameter" and does

Y(n) has been observed. This is

not become known to us until the process
a common occurrence in problems of estimation from stochastic processes and
numerous other examples may be found (c.f. Aalen (1978)).

In lemma 3.1 (below) we show that for each n =1,2,... the error of

estimation process B"-B" is a local martingale for B" of (3.5) and B

of (3.6). First we recall that N(n)-A(n) is a local martingale and

therefore let {TE, k = 1} denote a localizing sequence of F(n)-stopping

times for this process (i.e. for each k {N<n)n - A(n)n, t =0} is a
tATk tArk

martingale). Also let 1: = lim Ti and consider the following lemma.
kteo
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Lemma 3.1. Let B" and B be defined by (3.5) and (3.6),
respectively.

i) If for each n =1,2,...

t
f 1(Yén)(j) > 0)B(ds) <@, V t < i =1,....m (a.s.-p™)y,
0
then BU-B" e MloC(F(n),P(n)).
ii) If for each n=1,2,...
ton (n)
I XQ(3)B;(ds) <=, ¥ € < D3 =1,...m (a.s.-PYY)
0
then BT-B" e M%OC(F(H),P(H)) and for each t = 0
(3.7)
(t . n. 2 %k .2 2
fXS(i)Bi{ds} -z (Xs(i)) { = (Ys(i)) }(ABi(S)) , 1=173;
0 s<t k=1
<Bn-§n>ij = and
not n n k k
-kzl g Xs(l)XS(J)YS(l)YS(J)ABi(s)Bj{ds}, i =3
S

where for all i,j € E, <B"-B™M - «p™(i)-8"(1),8"(§)-B"(j)>.

Proof. Observe that by virtue of the predictability of Y(n) " is a

v

predictable process and that from equation (3.4) P(IXZI <w) =1, V t 0.

Secondly, observe that

A

(3.8) BRE" - [ X (an™ .aa(™)

T
-z X anF-aa®)
k=1

and that for each j = 1,2,...,m
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T (n) t n k
(3.9) 1™y > 0B (ds) = [ X0(j) = Y.(3)B,{ds)
o J 0 57 k=1 57
n t n k
= 3= X ()Y (J)B (ds}, V t = O.
k=1 0 J
Finally recall that for each k =1,...,m NE-aK e MlOC(F(n),P(n)). Thus

by (i), lemma 2.2(b) and equation 3.8 the conclusion
B™-B" ¢ MloC(F(n),P(n)) easily follows.

To prove part (ii) we first observe that with probability one

t t
. (2 .
(3.10) [ X2@m,ds) = [ &anaal™ )
0 ] 0 s s
n t n k
= = [ X ()da )
k=1 0
DT k k
> = f XS(J)(l-YS(J)ABj(s))YS(J)Bj{ds}
k=1 0
for all t =0, j=1,...,m where the inequality results from the fact

that 0 < AAE(j) <1, Vs =0 with probability one. By (ii) the right
hand side of (3.10) is almost surely finite for all t < 12 and thus by

theorem 18.8, Lipster and Shiryayev (1978) we obtain f Xn(le-dAl) €

A

Mioc(F(n),P(n)), i=1,...,n and therefore their sum B"-B" ¢

2 (n) () . . . .
Mloc(F ,P ). Finally, by the assumption of independence, the family
{Nl-Al, i=1,...,m} is mutually orthogonal so that by lemma 2.1,

theorem 18.8 (Lipster and Shiryayev (1978)) we obtain (3.7). O
3.1.2

Consistency. We consider the problem of determining in what sense gn
is to be considered a close approximation to B on ({t: Yén) > 0}. Thus

the concept of consistency we develop here is defined in terms associated

A
. . . n zn
with the error of estimation process B -B .
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For use in theorem 3.1 (below) we define two modes of uniform
~
consistency of the estimator B. In each mode we assume that for each

n=1,2,... BM-B" ¢ N& (F(n),P(n>) and let {Tn, k = 1} be a localizing
oc k
(n)

-stopping times with 7%= lim 7o,
© k
kteo

sequence of F

Definition 3.1. For each k such that 1 £k £ o and

(3.11) sup |B” - B
s<t SAT

A
n . R .
we call {B, n=z= 1) a local rk-unlformlv consistent estimator for

(3%, n=1). O

Definition 3.2. For each k such that 1 £ k <« and

(3.12) sup [B:—Ezl E 0 as nt e

SSTk
we call {Bn, n=1) a 1k~uniformlv consistent estimator for
=1

’{B,nzl). o

The relationship between these modes of consistency is obviously that
fk—uniform consistency implies local rk~uniform consistency. Further, if
in either mode consistency is obtained for some k it is also obtained for
k-1,k-2,...,1.

°n
Observe that in each mode of consistency we can only assert that B

is a close approximation to B on (t: Yén) > 0) and then confined only

+ .. . PP - e s s
to subintervals of R . Implicit in these definitions is the possibility
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of replacing 8" with B when conditions guarantee that, for example,
YFD) > 0 uniformly on the subintervals in question in (3.11) and (3.12).
In most applications such conditions will generally be of importance. For

. : . . . : n
example in random censorship models in survival analysis where Y( )

may
be interpreted as a risk process and B as the cumulative hazard rate we
may have restrictions on the censoring mechanism which produce the required
conditions.

The idea behind these modes of consistency, particularly local uniform
consistency, is that according to definition 3.1 and 3.2 we may only
achieve consistency of the estimator ﬁ over bounded intervals of the form
[0,t] and not necessarily over [0,»). We apply these definitions in the
next theorem where all operations (e.g. I-l) on vector valued processes are

to be interpreted componentwise.

A

Theorem 3.1. Suppose {Bn, n = 1) 1is a sequence of estimators
defined at (3.5) for (B, n= 1} defined at (3.6). Consider the
following conditions.

[@¢] For k<w and t e R+

L E[B? _-F |0 as nto

tATk t/\'fk
(2) Eann - Ennl -0 as n t =«
"« Tk

and for k = » we require (1) or (2) with the additional condition
n

T 2
3 E [ 1@ > onids) - B [T 1x™ > 0)B(ds) < =

[B] For all k and t € R+

1) <s™-ET 20 as ntw, i=1,...,m
t_ATk
2) <e™-EST Po as ntw i=1,...,m

T

k
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a) If for cach n=1,2,... 8-E%e M _(F™ ™), then (al(D)
and [a](2) imply {gn} is local rk-uniformly consistent and Tk—uniformly
consistent, respectively.

b) If for each n=-1,2,... eE" el @™ ™), then 181D

and [B](2) imply {Bn} is local 7k~uniformly consistent and rk~uniformly

consistent, respectively.

Proof. First consider the case k < «, Assume that

B"-B" e Mloc(F(n),P(n)) and that (1) of [a] holds. Since

n =Tl l

IB - B 0 is a submartingale theorem 3.4, Doob (1953) implies that
* AT
k k

for each real X and t = 0

(3.13) Ap(sup [BT - B0 | =) <E[B - B
s<t SATk SAT

Since X 1is arbitrary (1) of [a] implies that B 1is local rk-uniformly

consistent.

Next suppose that (2) of [a] holds. Let {tg’ £ 21} be a

P n n
deterministic sequence such that t, t ®« as £ t e and t, ~ 7, T 7

2 2 k k

almost surely. The monotone convergence theorem and Fatou’'s lemma, Royden

(1968) together with (3.13) imply that

2l > A) =< lim inf E|B" - B | .
S
£ T, AT T AT

sSrE £

(3.14) AP(sup |BD - B

To verify that the right hand side of (3.14) tends to zero as n t «,

A
n =N

recall that {IB - B £ =1} 1is a uniformly integrable family
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of random variables such that an n B" nl - |B n Enn| a.s. -P(n).
tzATk tkATk Ty Tk

Thus proposition 5.19, Breiman (1968) implies that

. “n =n “n =n
(3.15) lim E|B LB nl = E|B LB .

n
£t tﬂArk tBATk Tk Tk

On combining (3.15), (3.14), (2) of [a] and the arbitrariness of X it
follows that B is Tk—uniformly consistent.

A

Next assume, as in (b), that B n-En n € MZ(F(n),P(n)). Therefore
AT ATy
(Bn 0 " n)2 - <" - B n M(F(n),P(n)) and for any finite
ATk ATk 'ATk
F(n)—stopping T
n ~n 2 ‘n _n
(3.16) E{(BT n - BT Tn) } = E{<B -B >T Tn}.
3 Tk Tk

Further for 1 =1,...,m (Bn(i)-ﬁn(i))2 and <Bn—En>11 are nonnegative
with <B -B'>" being nondecreasing and F(n)-predictable. Hence

according to the Lenglart inequality, Lenglart (1977)

3.17)  B( sup [BT(D)-BR(D] > at/?y
SS’CATE
< ;1; E(<B™-EHTT . b) + P(<p"-B">T0 = b)
tAfk tATk

for all real a >0 and b >0 and ¢t € R+.
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Assume that (1) of [B] holds so that b in (3.17) can be taken

arbitrarily small and therefore the right hand side of (3.17) can be made

arbitrarily small for any a. Hence, (1) of [B] and (3.17) implies B 1is

local 7, -uniformly consistent.

k
Next assume that (2) of [B8] holds and replace t in (3.17) with a

n n
P A
sequence {t£> £ =z 1) such that t2 t @« as £ 1T « so that tJZ i T Ty
a.s. ~P(n). Recall that <B-B'™>"' is a nondecreasing process and that
in particular <p"-B 0 t <Bn-En>l; a.s. —P(n). Thus an application
t/e/\'rk Tk

of the monotone convergence theorem to (3.17) (using {tg}) it follows
that (2) of [B] implies that B 1is rk—uniformly consistent.
It remains to consider the case k = «. First observe that <Bn-En>ll

is a nondecreasing process and consider a deterministic sequence

(t,, £=1) such that t, . r? -7 a.s. 2™ First apply (3.17) with
{r?, £ = 1} replacing TE and for fixed t =z 0. Using the fact that
<Bn_§n>1; = <Bn-§n>l; a.s. —P(n) and letting £ - «» then (1) of [B],

T - : T

o0 o0

A

Fatou’'s lemma and the monotone convergence theorem imply that B 1is local

r -uniformly consistent. Secondly, apply (3.17) with {r?, 2 =1}

£ =1} replacing t. Again using <Bn_§n>1; =

replacing 72 and {tg’
T
<Bn-§n>1; a.s. -P(n) and letting £ - « we have that (2) of [B]
T
[+o]

A
implies B 1is r_-uniformly consistent.

Observe that the added condition (3) of [a] (for k = =) implies,
according to lemma 2.2, that B n B n is a uniformly integrable
N N
o) [=¢]

martingale so that (1) and (3) of [a] implies, via equation (3.13), that B
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is local Tw-uniformly consistent. Finally, take a sequence {tﬂ’ 2=z 1}

such that t, t+ «» and note that condition (3) implies that

2
(8" . B o’ £ > 1) 1is a uniformly integrable family. Thus equation
T AT AT
) 27w
(3.13) and proposition 5.19, Breiman (1968) (using ann - Enn | =
Tm- 7w-
IBnn - Ennl - a.s.) together with conditions (1) and (3) of [a] imply that
T T
0 [o+]

B is Tw—uniformly consistent. This completes the proof. O

3.1.3.

Weak Convergence to a Gaussian process. We investigate conditions so

that the normalized error of estimation process nl/z(Bn-En) converges
weakly as n = « to a Gaussian process of independent increments. To
prove this result we appeal to the functional central limit theorems for
semimartingales developed by Jacob, Klopotowski and Mémin (1982) and
Lipster and Shiryayev (1980).

A

Theorem 3.2 (below) considers the case where B™-B" is of class

loc for each n =1,2,... . In this setting it is natural to

consider (see section 3.1.4) estimation of the limiting quadratic
characteristic function (i.e. asymptotic covariance function) associated

l/Z(Bn-gn). It turns out that the convergence

with the weak limit of n
criteria we give for this case appear to be those we can often verify in
applications (see for example section 4).

In theorem 3.2 (below) the limit process X 1is a zero mean Gaussian
process of independent increments and is defined as follows. Let
£ = {&t, t > 0} be a continuous m-dimensional zero mean Gaussian process

1 m

and let C (C7,...,C) be a continuous function defined on R+ = [0,x).

We assume that for each 1,j, 1 =1, = m



(3.18) <g>ij -

Secondly, let U = (Uj, j = 1} be a family of independent zero mean

. . . m . . -
Gaussian random variables in R such that Uj has distribution measure

@j and covariance matrix {a?k, 1 < 2,k =m}. Let {tj, j= 1) be a

countable sequence such 0 < t1 < t2 < ... < tj and suppose {tj} is

identified with the accessible set A defined in section 2.2.5. We assume

that for each t = O, ¥ U. converges almost surely and that (U,}
j:tht J J

is independent of ¢£.

Finally, we define the process X = {Xt, t = 0} by
(3.19) Xt = §t + % Uj’ t=0
: jit,<t
J
so that for each 1i,j, 1 =<1i,j = m,
Cl(t) + = ail, i=173;
(3.20) <t - kit st
s o), 19,
kit <t F
oS

and for all t = 0. Thus X 1is a zero mean Gaussian process of

independent increments having quadratic characteristic given by (3.20).

Theorem 3.2. Let A denote the accessible set and identify A with

the sequence {tﬂ’ 2 = 1). Let X be the Gaussian process defined

1/2 4

according to equation (3.19) and let =n (Bn—gn) be the normalized error

of estimation process defined by (3.5) and (3.6). Define a process
n

2% = 2™y L™ 5 0y where Y™™ is defined at (3.3) and consider

the following conditions:
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[@] Vt=0, j=1,2,...,m, V ee€ (0,1]
t n 2 n ne P
g Z N1z D] > eraa ") 2, 0
[B] vt=0, ij=1,2,...,m
t n 2., . nc P j
J @GnTaalt 3y 3 clo;
0 ntwo
[vy] For each t£ e A and u e rR™
n
iu-W iu-U
Be  HF™) EoEe  h a-/D,
2 nte
where W, = zrg (ANén)-AAt(:n));
2 2 2
[6] Vt=0 and i, 1 <i=sm
1) £ (a<n/?EnEN>IH? R = (o
£2:t <t 2 nte AL:t <t
2 £
where A" = A" - 3aA" and A<nl/2(Bn-§n)>t = n[<Bn—§n>t - <Bn—§n>t_]

where <B™-B™> is defined at (3.7). Also for all x,u € R® u-x = Z?zl

u.X, .
11

+
Let D(R ,Rm) denote the space of right continuous functions from R%

into R" having left hand limits. If for n=1,2,...

nl/2<£n_ﬁn) € Mioc(F(n),P(n)) then the conditions [a], [B8], [v] and [§]

1/2 2

imply that n (Bn_gn) converges in law to X in D(R+,Rm) endowed with

the Skorokhod topology as n t «.

Proof. To prove the theorem we proceed by showing that the finite

/2,2

. . . . . n sn
dimensional distributions of n (B"-B") converge to those of X and to

show that the family of probability measures {P(n), n =1} is relatively
compact.
For each n=1,2,... let M = nl/z(Bn—En) and consider the process

M™¢  defined as follows:
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(3.21) MC =

n
& (L-xp(s)d , t=0

Oyt

where denotes the characteristic function of the accessible set A

XA
(i.e. x,(t) =0 or1 as t&A or teA and where (3.21) is to be
interpreted as a Lebesgue-Stieltjes integral. Since X4 is a bounded
predictable process it follows from lemma 2.2 that for each n =1,2,...
M  defines a locally square integrable local martingale.

It is easily argued that the local martingalé M"® is a so-called
purely discrete local martingale (see for example Shiryayev (1981) for a
definition). Thus there exists a random counting measure “nc having
predictable compensator v"¢  such that

"Cr0,e1xB), t= 0

(3.22) pPC10,E1xBY - v
defines a local martingale for each Borel set B € o(Rm). Further for each

i=1,...,m Mnc(i) has the representation
nc t i, nc nc

(3.23) M (i) = [ [ x"(u -v )(ds,dx), £t =0
t ORm

where =x= denotes the ith coordinate of x € R".
. m .
Now let i denote /-1 and for each u € R define the complex
. ~nc
predictable process A(M ,u) by
iu-x

-1 - iuex)rO([0,t]xdx), t =0

(3.24) g(MnC,u)t = gm (e

where u'x = 2 ukxk (i.e. the ordinary inner product).
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The process M7 is readily shown to be quasi-left continuous so that
in particular A;(Mnc,u)t = 0 for all t = 0 with probability 1.
Therefore, according to theorem 3.4, Jacod, Klopotowski and Mémin (1982),
the finite dimensional distributions of M converge to those of X

follows from [vy] upon showing in addition that for all t = O

(3.25) AW 5T WHTe) as ntoe
r
. nc ne
To prove (3.25) we first observe that (M (1),...,M "(m)} are

orthogonal local martingales so that for each u € R"

m t
(M2 . 5 WH? (zz(r))szZC(r), £ >0} € MloC(F(n),P(n)).

L | 0

The second term (above) is the predictable compensator for (u-MnC)2 and

R . ne
may also be written in terms of the measure v as follows:

m t
(3.26) T @HZ[ (Z?(r))szgc(r) - I (u-x) 2710, t]xdx), t = 0.

r=1 0 R
Therefore, in view of condition [B], to prove (3.25) it suffices to show
that for t =0

~ .nc 1 2 nc P
(3.27) AMT W)+ 5 fm (u-x)“v ([0,t]xdx) > 0 as n 1 .
R

But for each u € R™ this is precisely the method used by Lipster and
Shiryayev (1980) to show that the finite dimensional distributions of a

ne : .
process u-M converge to those of wu-£ where u-§ 1is a continuous
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Gaussian process. Thus it is seen that conditions [a] and [B] imply,
by the method of proof of theorem 1, part (i), Lipster and Shiryayev (1980)
(see conditions (A), (B) and equation (65)), that the limit at (3.27)
holds. Hence, by equation (3.26) the limit at (3.25) holds as well.

Since each t) is a predictable stopping time conditions [e], [B]
and [y] have been shown to imply conditions i)-iv), theorem 3.4, Jacod,
Klopotowski and Mémin (1982). Hence, the finite dimensional distributions
of M = nl/Z(gn_gn) converge to those of X.

It remains to show that the sequence of laws on D induced by M is
tight. To achieve this we apply a criterion for relative compactness
developed by Jacod and Mémin (1980).

F(n)

Define the -predictable nondecreasing process

(3.28) G, = = M>", t=0

where <Mn>kk = n<Bn-§n>kk is defined at (3.7). Secondly, define ¢~ by

(3.29) G°t°= s [CY(t) + s 05, t=z0,

where {Ck) and {a?k} are defined at (3.20).

Let L(Mn) denote the probability law on D induced by the process
M?. First observe that according to Rebolledo (1980) (see bottom page 271)
it is no restriction to consider the sequence of processes {Mn) as being

defined on a common probability space (0,F,P) yet adapted to different



39

(n)

3 - <« - 3 > -
filtrations {F' ‘). Secondly, we note that G 1is a deterministic

process and in light of conditions [B] and [§]

(3.30) and

> (Acz)z E s (AG:)Z as nt e, VEx0.
O<s<t O<s=<t

Hence, by theorem 1.8, Jacod and Mémin (1980) (L(M™), n = 1) is

relatively compact and therefore Mt = nl/2<Bn“§n) converges weakly to X

in D(R+,Rm) endowed with the Skorokhod topology. 0O

In theorem 3.2 we consider weak convergence over the whole of
R% = [0,©). This is in contrast to Aalen (1978) who restricts his counting
processes to the interval [0,1]. In many statistical applications we may
have to content ourselves with convergence restricted to some well defined
bounded subinterval I of R'. In fact in section 4 we illustrate an
example of this where I 1s determined by limitations imposed on
observations by a censoring mechanism in a survival analysis setting. In
cases such as these the essential features of theorem 3.2 remain unchanged
if we replace R+ with I and D(R%,Rm) with D(I,Rm).
3.1.4

Estimating the asvmptotic covariance function. In this section we

consider the problem of estimating the asymptotic covariance function or
specifically the quadratic characteristic <X> (see equation 3.20) of the
weak limit process X. So as to ease the exposition we introduce a number
of simplifying assumptions which should not obscure the generality within

which this problem may be treated.
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We define the processes v and W' as follows

V(o) = a™ ) ™ @y/m > 0

(3.31)
L "
kil Ys(l)Ys(J)

W(i,5) =t

for all s=>=0, i,j€E and n=1,2,... . For each n=1,2,... define

A
the process " as follows:

-
t

t . X X
) . o . . . o
g Vz(l)st(l) - g (Vz(l)) WZ(l,l)ABS(l)dBS(l), i- 3

(3.32) o(1,3) =

t ~ A
§ 4 I o NPT . s . -
- g Vo(D)V (W (1,5)8B_(1)dB_(§), 1 ]
-

for all £t 20, n=1,2,... . We propose ot = {02, t =0} as an

estimator of the quadratic characteristic <X> of the weak limit X.

In theorem 3.3 (below) we exhibit sufficient conditions to show that

A

n . . s ek
o converges in a suitable sense to <X> as n tends toward infinity.
First we introduce some preliminary assumptions. Let Gi > 0 be positive
. . + :
B-measurable functions defined on R such that inf Gi(s) > 0. Also let
s=0

+
Fij be functions defined on R so that each is B-measurable

z:g Fij(s) < o gnd (Fii(t)/Gi<t>>ABi<t> <1 for all t =0 and

l1=<i,j =m. Let B® denote the measure B-SAB and suppose that
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t .
1) [ els)arS(s) = c¢r(r), t=0, i-1,...,m
0 1 1
(3.33)
-1 -1 o
2 i G, (a8, (t, ) (1-G; (e IF (8 8B ())& =]
t
k

-1 -1 . .
-Gi (tk)Gj (tk>Fij<tk>ABi(tk)ABj<tk)’ i=j,

where tk € A. Equation (3.33) therefore allows an explicit expression of

the quadratic characteristic <X>. Consider the following theorem.

/2,20

Theorem 3.3. Suppose that n (Bn—gn) converges weakly to a

Gaussian process X of independent increments and having quadratic

characteristic <X> (see equation 3.20) in accordance with theorem 3.2.

Let {an, n > 1} be the sequence of estimators for <X> defined at (3.33)

and consider the following conditions.
[@] Suppose that for each 1i,j, 1 =1,j=m
. (n) P
i) Y(i)/n = Gi
. n,. ., F .
ii) wi(i, g - Fij uniformly on [0,«)

uniformly on [0,)

where G, and F;, satisfy (3.33) and Wwh(i,j) is defined at (3.31);

[B] {Bn, n = 1) is locally r, -uniformly consistent for {En, n=>1)

k

for some k = 1.

If condition [a] and [B] hold then for each t = 0

n,.oLy . e i3 P
sup las(l,J) <X>S | >0 as ntew

s:sStArk

where 1 =< 1,j = m.

Proof. We first observe that since Gi > 0 condition (i) of [a]
implies easily that {Bn, n=1l}) 1is locally rk—uniformly consistent for B

whenever [B] holds.
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To prove the theorem it suffices to observe that according to the
. e "n,. . . . n .on
definition of o (i,j) each term is either of the form f Hidei or
n ,,n..n . n . .
f HijABdei where in each case Hij converges uniformly to a function h
on [0,«) and in the second case AB? is locally rk—consistent for AB..

Furthermore, on bounded intervals of the form ([O,t] we have sup h(s)
: s:s=<t

and sup h(s)AB,(s) both finite. Thus,
s:ss<t J

5 A .5 S A
T T . n k¢
(3.34)  sup _ lg Hij(s)dBi - g h(s)dBi(s)l < sup J [Hij(s)-h(s)ldBi

s:sstArk s:sﬁtATk 0

S A
+ sup _ | h(s)(dB](s)-dB (s))]
s:sstar, O

k
with a corresponding inequality for the alternate case. From the
conditions [a] and [B] of the theorem and the comments above it is easily
seen that the right hand side of (3.34) may be made arbitrarily small in
probability. Therefore upon applying these expressions in appropriate
order to !;n(i,j) - <X>ij| the conclusion of the theorem readily

follows. O

As similar remark applies to theorem 3.3 as was made at the end of
theorem 3.2. That is, the limitations of a specific applied problem may
allow us to confine our attention to bounded sub-intervals of R%. For
example, in the next section we consider a function G, analogous in that
situation to the present function Gi’ which is taken to be nonzero on an

interval [0,7] or [0,7) where r > 0 1is arbitrary.



43

4, APPLICATION TO SURVIVAIL ANAILYSIS

We include under the heading survival analysis any application to
life-testing, medical clinical trials, biological experimentation involving
the observation of independent and possibly censored positive random

variables. The specific model we consider is described as follows:

Random Censorship Model: For each n = 1,2,... Xi and Ui
i=1,...,n are 2n independent positive random variables with Xi or

Ui almost surely finite for each 1. Assume Xi» has distribution
function F and Ui has distribution function L, which in general may
be defective. The observable random variables Xi and Si are defined by
. =X, A Ui and 6i == l(Xi < Ui). When Si = 0 we say the observation

Xi has been right censored at Ui' O

To analyze problems arising in the random censorship model we define

the following processes for each 1 = 1,...,n:
i
Nt = l(Xl < t, 61 =1), t=0
i
(4.1) Yt = 1(Xl >t), t=0
i i E i
Mo = N - g Y B(ds}, t=z0

where B is a deterministic function given by

t
(4.2) B(t) = [ (1-F(s-)) ‘F(ds), t=0
0

and is the so-called cumulative hazard or risk function which uniquely

determines the distribution F.
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The process Nt = {N t = 0} is called a simple counting process and

is equal to 0 until the ith observation time elapses and has not been

censored and is equal to 1 thereafter. The process Y= {Yl

£ t =0} is

called a risk process and is equal to 1 as long as the ith observation
remains under observation (i.e. the ith observation continues to survive

and has not been censored).

Let (Qn,Fn,Pn) be a probability space on which Xi’ Ui are defined,
i=1,...,n. We define a filtration F o= {F:, t = 0} as follows
“.3) = voe-(QE, =s), 6,1, =s), s=st,i=1,...,n), t=0
. + O i—- H i i— 3 - ’ AR ] L] o

where Fg contains the P'-null sets of F' and their subsets. According
to theorem 3.1.1, Gill (1980) the process M = {(ME,F:), t>0) is a

R . i
square integrable martingale so that N° has compensator

At = ((At,F:), t = 0) which satisfies

(4.4) A'(0) = [ Y B(ds) for any Borel set 0 € o(R")
0

where by virtue of its left-continuity, the process Yi is Fn~predictable
and B 1is a Borel measure. Thus according to definition 2.1 Ni is a
Poisson-type counting process with parameter B.

We consider the statistical problem of estimating the cumulative risk
function B. 1In the case where F has a density f relative to Lebesgue
measure then o = £f/(1-F) defines the intensity of the counting process
Ni and the theory of Aalen (1978) would apply. Gill (1980), on the other

hand, uses the counting process approach to study this problem but omits
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the assumption that the density exists. Hence, the theory of inference in
the random censorship model developed by Gill (1980) arises as a special
case of our theory for Poisson-type counting processes.

To estimate B we define the processes

TL .
() s M, t=0
t . t
i=1
(m)y 2 i
(4.5) Y = % Y., t=0
t . t
i=1
Po1a™ sy, t=0
t t ’ -
Then the estimator B" is given by
A Y () -1.n. ()
(4.6) B, = g (Yg ') TN, otz 0

N syt

where i=1

A

The estimator B in this case is called the empirical cumulative
hazard function and is studied by Gill (1980) under a more general random
censorship model than is defined above. In chapter 4 he considers the
asymptotic properties of gn including consistency and weak convergence to
a Gaussian process of independent increments. We are interested here to
give a simpler proof of weak convergence for these processes based on

theorem 3.2.

Define the process B by

t
(4.7) BY = [ a"B{ds), t=0
0

and consider the following lemma.
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Lemma 4.1. For each n = 1,2,... let B" and EB" be defined by

(4.6) and (4.7), respectively. Then we have that B"-E" is of class

W F™ Py |

Proof. Observe that for each t = 0 and w € o

A t
n  =n (n) n, (n)
(4.8) B, - B, - g YT aM

Ly

where is a square integrable martingale defined at (4.5) and the

integral is interpreted as an ordinary Lebesgue-Stieltjes integral. Since

(n)

Y is an integer valued process it follows that

sup (Yén))-lJi <1

t:t=0

= 0 has been invoked. Further (Y(n))_lJn is a

olo

where the convention

predictable process so that B7-B" e MZ(FH,PU) follows from lemma 2.2. O

In theorem 4.11, page 56, Gill (1980) it is proved that B converges
uniformly to B on sets of the form [0,t] for which Yz L as n - o,
We proceed by showing that the normalized error of estimation process

nl/z(Bn-En) converges weakly to a Gaussian process.

Theorem 4.1. Let Yn/n converge uniformly on [0O,®) to a function
y in probability as n = « and let I = {t: y(t) > 0}. Let X be a
zero-mean Gaussian process of independent increments with characteristic

function
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<X> = (y(s))'l(l-AB(s))B{ds}, tel.

t

Ot

1/2 2

Then n (Bn—gn) converges weakly to X in the space D(I,R) endowed

with the Skorokhod topology.

Proof. If u = sup{t: y(t) > 0} we assume u > 0 otherwise there is
nothing to prove. Thus I = [0,u) when y(u) =0 or I = [0,u] when

172

(u) > 0. By lemma 4.1 (Bn-En) is a square integrable martingale on
Yy Yy g g

I so we apply Theorem 3.2 with m = 1. By lemma 3.1 we have

A t
(4.9) «'/2E%EN>, = [ a™) e (1-a8(s))BMds), t e T,
0

(

It is easily shown that n(YSn))-lJ: E (y(s))—l uniformly over 1 as

n - o, thus proving condition [B] and [6] of theorem 3.2 with

c = f y_ldBC and a§ = y(tj)(l-AB(tj))AB(tj) where {tj} is the set of
discontinuities of B. To prove [a] we observe that for each t € I and

e € (0,1] we have

(4.10) n [ ™y L™yl s eyar®

gives the left-hand-side of [a] in theorem 3.2. Since y 1is strictly

positive on I and nﬁlY(n) £ vy we have Y(n) L on I as n-> = so

that (4.10) converges to zero in probability over I as n = «. Thus [e]
is proved.

To complete the proof it remains to show that the law of the random

variable Zz. = nl/z(Y(n))_lJn (AN(n) —Y<n) AB(t.)) conditional on Fn
j & & £ & j £y

converges in probability to the law of a Gaussian random variable U, with
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zero-mean and variance a? = y(tj)(l-AB(tj)AB(tj). But according to

theorem 3.1.1, G6ill (1980) AN(n) conditional on F: _ is a Binomial

t.
J
random variable with parameters Yé?) and AB(tj) from which it is easy
J
to show that the Laplace transform @n(s,w) of Z? conditional on F: _

J
converges in probability to exp{- % sz(y(tj)AB(tj)(l—AB(tj))-l} as n - ©

for all real s. On combining each of these results theorem 4.1 follows

from theorem 3.1. O

A

The estimator B" can be used to construct the product-limit or
Kaplan-Meier estimator of the distribution function F. This problem has
been considered by Gill (1980) and more recently by Phelan (1985) using
methods developed for Poisson-type counting processes. The proofs of weak
convergence in Phelan (1985) and here are to be compared with those of Gill
(1980) which rely on an interesting but elaborate construction. Our proof
is based on adaptations of Jacod, et al. (1982) and Lipster and Shiryayev

(1980) as was anticipated by Gill (1980) (see page 78).

5. FURTHER TOPIGCS

Extensions of this research have been considered by the author. These
include a family of one and two-sample hypotheses tests, likelihoods for
Poisson type counting processes and applications to estimation from Markov
renewal processes. Some of this work is included in the author’s Ph.D.
thesis and is to appear elsewhere.

The author is currently considering likelihood based inference proce-
dures for Poisson type counting processes which will include semiparametric
Cox-type regression models as well as fully parametric models.

Applications of these models to consumer decision processes are to appear.
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