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Abstract

We attempt to determine the impact of production decisions on the price of heating

oil. A model for the production of distillate fuel oil is proposed. Its solution, obtained

using stochastic dynamic programming, closely matches history. By perturbing the

problem in a deliberate manner, we can determine the value of additional units of

inventory by examining di�erences in costs. Using these di�erences, we de�ne a pro-

duction futures price for extra units of distillate fuel oil. We then use linear regression

to determine if these production futures prices have an impact on actual heating oil

futures prices.
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1 Introduction

Distillate fuel oil is one of several petroleum products re�ned from crude oil, including motor

gasoline, kerosene, jet fuel, and residual fuel oil. The most common distillates are diesel

engine fuel and heating oil. Unfortunately, separate inventory, production, and demand data

for each particular distillate is not readily available. Thus, the data used in our work will be

total distillate fuel oil. While the largest use of distillate is as a fuel for diesel engines, the

amount used for heating oil is substantial. Unlike diesel engine fuel, the demand for heating

oil is greatly a�ected by seasonal factors. This seasonality can be detected when observing

data for total distillate fuel oil.

Demand for heating oil is high during the winter and almost nonexistent during the

summer. As a result, producers seek to hold large inventories during the winter. Figure

1 displays �rst-of-the-month inventory levels for total distillate fuel oil in the U.S. during

1988-1995. To maintain these levels, producers begin to accumulate stocks of heating oil
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Figure 1: Total Distillate Fuel Oil Inventory, 1988-1995
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during the summer and fall. Production exceeds demand, and inventory levels rise. These

stocks will be stored for later use. When winter begins, demand exceeds production, and

stocks built up earlier can be used along with winter production to meet demand. As winter

demand is met, inventory levels fall.

We will be concerned with investigating how this seasonal pattern in distillate fuel oil

data in
uences the price of heating oil. Since November 1978, there has been active trade

in heating oil futures contracts on the New York Mercantile Exchange (NYMEX). Each

contract calls for the holder of a long position to receive one thousand 42-gallon barrels of

No. 2 heating oil during a pre-speci�ed delivery month. There is no �xed delivery date.

Rather, there is a delivery period of several weeks during the delivery month. The last

trading day of a particular futures contract is the last business day of the month preceding

the delivery month. It should also be noted that there are several active spot markets for

heating oil, including one located in New York harbor. The primary goal of this research will

be to determine how the production and storage of distillate fuel oil in
uences these prices

for heating oil.

In the next section, the theory of commodity storage is discussed along with some of

the relevant works in the literature. Section 3 proposes a discrete-state stochastic dynamic

programming problem for distillate fuel oil production. The features of the model are dis-

cussed in detail and its solution is presented. Finally, Section 4 discusses how to forecast

prices using production costs. The concept of a production futures price is discussed, and

this quantity is used to help predict heating oil futures prices and spreads.
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2 The Theory of Commodity Storage

Suppose we have a frictionless economy with a series of discrete trading dates t 2 [0; 1; 2; :::� ].

Consider a commodity which can be purchased at any date t for immediate delivery at spot

price St. Further, assume investors can trade in a term structure of futures contracts on the

commodity at any date. Let Ft;T denote the price at time t of a futures contract maturing at

date T 2 [t; � ], where Ft;t = St. Finally, we will assume that interest rates are deterministic,

and let rt;T represent the riskless interest rate over the period [t; T ]. Then following Fama

and French [11], the cost of carry relationship states that

Ft;T = St(1 + rt;T ) + wt;T � ct;T ; (1)

where wt;T represents the marginal storage cost and ct;T represents the marginal convenience

yield from an additional unit of inventory over [t; T ]. To better understand its meaning, let

us write this formula in a slightly di�erent way:

Ft;T � St = rt;TSt + wt;T � ct;T : (2)

The above states that the return from buying the commodity spot at date t and selling it for

future delivery at date T is equal to the sum of interest and storage costs less the convenience

yield. The right-hand side of equation (2) is referred to as the cost of carry.

The convenience yield re
ects the bene�ts of ownership of the commodity that are not

realized by the holder of a futures contract. Perhaps the most important bene�t is the ability

to meet unexpected demand. Unlike interest rates or holding costs, the convenience yield

is not directly observable. Given each of the other four quantities in equation (1), ct;T is

chosen to preserve the equality.
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We will let yt;T represent the cost of carry, so that

yt;T = rt;TSt + wt;T � ct;T : (3)

Substituting into equation (2) gives

Ft;T � St = yt;T : (4)

In the case where T = t+1, we refer to yt;t+1 as the instantaneous cost of carry. It represents

the cost incurred in the next instant of time. Note that we can also write

Ft;T+1 � St = yt;T+1: (5)

Taking the opposite of equation (4) and adding it to equation (5) yields

Ft;T+1 � Ft;T = yt;T+1 � yt;T : (6)

The left-hand side of the above equation is a futures price spread. It is the di�erence in

price between two futures contracts on the same asset which mature during adjacent time

periods. The right-hand side is known as the (T � t)-periods ahead forward cost of carry.

It represents the cost, perceived at time t, of carrying the commodity during the interval

[T; T + 1].

In the literature, the theory of storage begins with Kaldor[13]. He believed that stocks

of a commodity possess a yield which must be deducted from carrying costs. One justi�ca-

tion given for this yield was that holders of stocks could make use of them whenever they

wished, a bene�t Kaldor referred to as convenience. He also proposed that this yield should

vary inversely with stock level. Working [18], [19] studied the Chicago wheat market. His

investigations led him to believe in the existence of convenience yields which could lead to a
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negative net price of storage. This negative price of storage would prevail when the amount

of wheat supplied was low. Telser [17], studying the storage of wheat and cotton, found

support for the existence of convenience yields. He discovered that the futures price spread

for these goods was heavily in
uenced by the seasonal pattern of their stocks. Brennan [6]

studied the convenience yield for several agricultural commodities, including eggs, cheese,

butter, wheat, and oats. Using linear regression, he saw signi�cant relationships between

convenience yields and stock levels. More recently, econometric techniques have been em-

ployed to study the theory of storage. Many of these analyses consider distillate fuel oil.

Fama and French [11] study futures and spot prices for twenty-one commodities. They note

that seasonal factors often play an important role in explaining the convenience yield, and

they �nd some evidence suggesting that futures prices can forecast future spot prices. Bopp

and Sitzer [5] focus on distillate fuel oil and argue that heating oil futures prices in
uence

the current spot price. Lowry [14] builds a production model that contains a convenience

yield arising from precautionary storage which is a quadratic function of inventory level. He

applies his model to distillate fuel oil and �nds support for his convenience yield speci�ca-

tion. Finally, the theory of storage has also played an important role in many asset valuation

models. The works of Gibson and Schwartz [12], Cortazar and Schwartz [8], and Miltersen

and Schwartz [15] rely on a stochastic representation for the convenience yield in order to

price �nancial instruments like options.
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3 A Model for Distillate Fuel Oil Production

3.1 Overview

The goal of this section is to propose and solve a discrete-state stochastic dynamic program-

ming problem for monthly U.S. production of distillate fuel oil during 1988-1995. The use

of dynamic programming is appropriate since decisions regarding how much to produce in

the current time period will directly a�ect future time periods. With the objective of mini-

mizing re�nery costs, our goal will be to adjust the parameters of the model to �t historical

inventory levels. The stochastic nature of the problem is derived from the uncertainty in

demand. Before discussing the problem in detail, we will brie
y discuss a simple method for

forecasting distillate fuel oil demand.

3.2 Demand Forecasting with Winters' Method

As stated in the introduction, demand for distillate fuel oil is highly seasonal. Thus, a

seasonal time series method seems to be an appropriate choice for generating forecasts. We

will use an exponential smoothing model known as Winters' additive method. The details

of this procedure will follow those given in Abraham and Ledolter [1].

Winters suggests a linear trend model with seasonal indicators. If we let Dt represent

the variable of interest, then we can write

Dt+j = Tt+j + St+j + �t+j: (7)

The trend component is assumed to be linear with Tt+j = �t+j = �t + �t � j. Assuming that
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the length of the seasonal period is d, we have d seasonal factors which satisfy

Si = Si+d = Si+2d = : : : for i = 1; 2; : : : d and
dX
i=1

Si = 0: (8)

The error terms, �t, are assumed to be independent and identically distributed normal ran-

dom variables with mean 0 and variance �2.

Given the information available, an estimate of the level of the series at time t+1, �̂t+1,

can be found in two di�erent ways. We can compute the current observation adjusted by its

estimated seasonal factor, Dt+1� Ŝt+1�d. Also, we can compute the trend estimate, �̂t+ �̂t,

where �̂t is the slope estimate at time t. The Winters' technique employs a weighted average

of these two estimates to obtain an estimate of the level at time t+ 1:

�̂t+1 = �1(Dt+1 � Ŝt+1�d) + (1� �1)(�̂t + �̂t); (9)

where �1 is a smoothing parameter satisfying 0 � �1 � 1. Next, we can compute an update

of the slope estimate, �̂t+1, using two di�erent pieces of information. We will utilize the

current estimate of the slope, �̂t+1� �̂t, as well as the previous estimate of the slope, �̂t. We

again compute a weighted average using another smoothing parameter to estimate the slope

at time t+ 1:

�̂t+1 = �2(�̂t+1 � �̂t) + (1� �2)�̂t: (10)

It is also possible to update the seasonal coe�cient, Ŝt+1, using the current estimate of the

seasonal factor, Dt+1 � �̂t+1, and the previous estimate, Ŝt+1�d. Using a third smoothing

parameter, we compute:

Ŝt+1 = �3(Dt+1 � �̂t+1) + (1� �3)Ŝt+1�d: (11)

8



The seasonal factors are updated once each full season. For reasons which will become clear

later, however, this will not be done. In our model, we will assume that the seasonal factors

remain constant through time. This is tantamount to choosing �3 = 0.

After obtaining estimates for the level, slope, and seasonal components, it is possible to

compute a forecast for a future value, say Dt+k, from time origin t by calculating

D̂t+k = �̂t + �̂t � k + Ŝt+k�d: (12)

3.3 The Stochastic Dynamic Programming Problem

3.3.1 Assumptions and Notation

We will begin by describing the events which take place in a typical time period. Initially,

we will assume that producers create a forecast for demand using Winters' additive method.

Based on this forecast and the current inventory level, a decision is made to replenish stocks.

The new inventory amount, which is the sum of beginning period inventory and current

period production, is referred to as the order-up-to quantity. After receiving new inventory,

we then observe demand. We assume that demand is never backlogged, and that there are no

lost sales due to consumers going elsewhere to purchase the product. Instead, in the case of

unexpectedly large demand, it is assumed that producers can acquire enough of the product

to meet demand at an extremely high cost. This procedure will be referred to as emergency

acquisition, and it will ensure that beginning period inventory is always nonnegative. Finally,

at the end of the time period, cost is incurred and a new inventory level is observed.

An additional issue to be considered is the existence of imports and exports. In our model,

we will treat imports as part of production and exports as part of demand. This assumption
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seems appropriate due to their relative small size during the time period of interest.

It is now appropriate to introduce some notation. Let Xt � 0 represent the inventory

level at the beginning of time period t. The order-up-to quantity for period t will be denoted

by Yt, which must satisfy Yt � Xt. Demand will be denoted by Dt. Based on this notation,

note that current period production is Yt�Xt, and we have the following inventory equation:

(Xt + (Yt �Xt)�Dt)
+ = (Yt �Dt)

+ = Xt+1: (13)

The quantity Xt+1 is both the ending period inventory for time t and the beginning period

inventory for time t + 1. The positive part arises since emergency acquisition prevents

beginning period inventory from falling below zero.

We will now give a general description of the dynamic programming problem. At the

beginning of time period t, the state of the system, st, is the following vector:

st := (N�t; N�t; NXt):

Each component of the vector above is known as a level of the state space. These quantities

are integer-valued. Corresponding to these levels are actual values of the variables. The �rst

two components are related to the level and slope components in Winters' method. Each

possible (N�t; N�t)-pair will give rise to a probability distribution for demand. This will be

explained in detail later in this chapter. The third component, NXt, is a potential beginning

period inventory level for time t. The decision variable for the problem is denoted by NYt.

It corresponds to the order-up-to level for time t and is measured on the same scale as NXt.

Also, let rt be the discount factor for time t satisfying 0 � rt � 1. Following the format

given in Bertsekas[4], we can denote the cost incurred in stage t by ft(st; NYt(st); �t), where
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�t is a random disturbance term due to the uncertainty in demand. The total discounted

cost incurred along any sample path will be

N�1X
t=1

rtft(st; NYt(st); �t) + rNfN (sN);

where fN(sN) is the end-of-horizon cost incurred in the �nal time period N . Due to the

stochastic nature of the problem, our goal will be to choose decisions that minimize expected

discounted cost:

E[
N�1X
t=1

rtft(st; NYt(st); �t) + rNfN (sN)]:

We will next discuss the structure of the state space in detail.

3.3.2 State Space

Recall that each component of the state space vector is an integer-valued level. Let N�, N� ,

and NX , respectively, represent the number of levels for each state space variable. In any

time period, the components of the state space vector must satisfy 1 � N�t � N�; 1 �

N�t � N� ; and 1 � NXt � NX : For each time period, this results in N��N��NX possible

states. It should now be apparent why the seasonal component from Winters' method is not

included in the state space. Depending on the length of the seasonal period, this could cause

the size of the state space to explode.

For each of the state space variables, a range of values needs to be chosen. These ranges

should be selected so that the state space will encompass values of the variables which are

likely to be observed. There are two issues to be considered: the length of the range and its

location. While the length of these ranges will remain �xed, their locations will be allowed

to shift through time. First, denote the range lengths by R�; R�; and RX, respectively.
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Note that given these range lengths and the number of levels, it is then possible to de�ne

state space variable increments:

I� =
R�

(N� � 1)
: (14)

I� =
R�

(N� � 1)
: (15)

IX =
RX

(NX � 1)
: (16)

To clarify, levels NXt and NXt + 1, for example, correspond to values of the variable Xt

which are exactly IX units apart.

Let us now discuss the problem of locating the endpoints for the range of values associated

with the state space variables. These endpoints will be allowed to vary through time. Let us

let L�t, L�t, and LXt, respectively, denote the left endpoints for each of the variables. We

will assume that each of these quantities is speci�ed as a multiple of its corresponding state

space variable increment. Given these quantities and the increments, we can now associate

each level of a state space variable with its actual value:

�t = L�t + (N�t � 1) � I�: (17)

�t = L�t + (N�t � 1) � I�: (18)

Xt = LXt + (NXt � 1) � IX: (19)

Consider the variable Xt, for example. At its lowest level, NXt = 1, the value of the variable

is simply its left endpoint, Xt = LXt. At its highest level, NXt = NX , the variable is equal

to the right endpoint of the range, Xt = LXt + (NX � 1) � IX. Note that each value is a

multiple of IX.

The evolution of the state space over time is governed by transition probabilities com-
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puted under the assumption that demand is normally distributed. After creating a forecast

for demand, D̂t, using equation (12), we allow the error to range from �2� to 2�. Thus,

we believe that actual demand is likely to fall in the interval [D̂t � 2�; D̂t + 2�]. To obtain

possible values for demand, we round the values in these intervals and choose boundaries

known as cut points which separate adjacent values. This procedure is also done in order

to get updated values for �t and �t. Probabilities are calculated by considering the distance

between adjacent cut points. In this way, a distribution is constructed which will enable us

to compute the expected discounted cost.

3.3.3 Re�nery Costs

The �rst cost facing re�ners considered in our model is known as a production e�ciency cost.

We will assume that there is some target level of production at which cost is eliminated.

Deviations from this level will result in a quadratic penalty.

From Subsection 3.3.1, we know that period t production is represented by Yt �Xt, the

order-up-to quantity less beginning period inventory. We need to give an equation relating

Yt with its level NYt. Our de�nition must be consistent with the inventory equation (13).

Thus, we de�ne

Yt = LXt + (NYt � 1) � IX: (20)

Now we can formally de�ne the production e�ciency cost:

Pr(Yt �Xt) = c � ((Yt �Xt)� L)2: (21)

The parameter c > 0 is a cost coe�cient, while the parameter L > 0 represents the target

level for production. In our model, discounted per unit production costs are accounted for by
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adjusting holding cost parameters. This approach is justi�able due to the inventory equation

(13) assumed to hold true.

The second type of cost facing re�ners will be an inventory holding cost. This cost will

be charged on the amount of beginning period inventory. We will assume that holding costs

are directly proportional to the amount of inventory held:

H(Xt) = h �Xt: (22)

The parameter h > 0 represents the per unit holding cost.

The �nal type of cost in our model will be a pipeline e�ciency cost. Here, the term

`pipeline' refers to the primary product distribution system through which �nished products

leave the re�nery. As discussed in [16], this system consists of actual pipelines, storage

tanks, barges, tankers, and tank cars and trucks. As Lowry [14] notes, a large amount of

product must be stored in order to maintain smooth operation of the distribution system

while avoiding stockouts. For instance, a certain amount of product is necessary simply

to keep speci�c parts of the system functioning. Pipelines, for example, must be �lled in

order to operate normally. The bottoms of tanks are designed so that they are never empty,

preventing residue from settling at the bottom. The possibility that a re�nery might have

to be shut down for a period of time is another reason to accumulate stocks. The shut down

might be due to a planned maintenance period, or it could be the result of an unexpected

system interruption. Finally, stocks will be held in order to accommodate seasonal demand.

As noted in Section 1, stocks of distillate fuel oil are built up and held during the summer

in order to meet the demand for heating oil in the winter.

Our pipeline e�ciency cost will have two components. The �rst will be the emergency
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acquisition cost incurred when demand can not be satis�ed. We will assume that producers

make unplanned purchases of the product at an extremely high cost to meet demand. The

second component will be a low inventory cost. Below a certain threshold, the amount of

stocks held will be insu�cient to maintain smooth operation of the distribution system.

In our model, producers will incur cost at a quadratic penalty when stocks fall below this

level. We will model the pipeline e�ciency cost as a function of the inventory position after

demand is observed, denoted by Zt, where

Zt = Yt �Dt: (23)

Our pipeline e�ciency cost function is as follows:

Pl(Zt) = [M � Z
�

t ] + ba
2
_ (b � [(a� Zt)

+]2): (24)

The �rst term in brackets is the emergency acquisition cost, while the remainder represents

the low inventory cost. The quantities M;a; b > 0 are cost function parameters. Before

discussing the form of the function, it will be helpful to view its graph. Consider Figure 2.

When Zt � a, no cost is incurred. As inventory falls below the threshold of a, a quadratic

penalty for low inventory is imposed on the shortfall with scale parameter b. At Zt = 0,

the cost is ba2. In the case where Zt < 0, an emergency acquisition cost of M per unit is

incurred, where it is assumed that M > 2ab.

An additional point needs to be considered. Note that the cost is a function of both

the order-up-to quantity and demand. For computational reasons, it will be convenient to

express the cost as a function of just the order-up-to quantity. Thus, we will compute the

expected value of the pipeline e�ciency cost:

EPl(Yt) = ED[Pl(Yt �Dt)]: (25)
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Figure 2: Pipeline E�ciency Cost

3.3.4 The Minimization Problem for a Single Stage

As discussed at the end of Subsection 3.3.1, our goal is to choose an order-up-to level that

minimizes expected discounted cost. Using dynamic programming, we begin at the end of

the time horizon and move backward, solving a separate optimization problem at each time

period for every state. For convenience, let us write the cost incurred at any stage, ft, simply

as a function of the state: ft = ft(N�t; N�t; NXt). Taking into account the re�nery costs

discussed in the previous subsection, our minimization problem for t 6= N is:

ft(N�t; N�t; NXt) = H(Xt) +

min
NYt�NXt

[Pr(Yt �Xt) + EPl(Yt) +

rtED(ft+1(N�t+1; N�t+1; (NYt �NDt)
+))]: (26)

The quantity rt is the discount factor for time t, and the expectation is performed with

respect to the distribution for demand. When t = N , the end-of-horizon cost must be
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Figure 3: End-of-Horizon Cost

computed in order to begin the dynamic programming recursion. We will assume that this

cost is a function of inventory only so that fN (N�N ; N�N ; NXN ) = fN (NXN ). Written as

a function of XN , we will model these costs using the following expression:

fN (XN ) = �aNXN + bN � [(XN � cN )
+]2 + dN � [(eN �XN )

+]2: (27)

We have a cost function with �ve parameters. To better understand this formulation, it is

perhaps bene�cial to view a graph of the function. Consider Figure 3. Note that cN and eN

represent potential end-of-horizon inventory positions, with cN > eN > 0. Along the interval

[eN ; cN ], we will assume that each unit of inventory has a marginal value of aN > 0, resulting

in a negative component to the cost function. When inventory falls below eN , we will assume

that stocks are insu�cient to allow for smooth operations at the re�nery. A quadratic penalty

will be imposed on the shortfall amount, scaled by dN > 0. When inventory is greater than

cN , producers have an excess of product. A quadratic penalty is imposed on the amount

of excess, scaled by bN > 0. Note that a positive constant can be added to this function
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without changing its shape in order to make the cost nonnegative for all values of XN . Since

it will be easier to deal with positive costs in the dynamic programming problem, we will

make use of this fact in our implementation.

Before discussing the solution, it is necessary to consider the issue of extrapolation. Recall

from the de�nition of the state space in Subsection 3.3.2 that the components of the state

space vector satisfy 1 � N�t � N�; 1 � N�t � N�; and 1 � NXt � NX : During the

computation of the solution to the problem, there is a possibility that a cost will be required

for a vector that does not satisfy these inequalities. In these instances, we will perform a

linear extrapolation to compute the cost. We will also monitor the amount of extrapolation

performed as we solve the problem.

3.4 Solution of the Stochastic Dynamic Programming Problem

3.4.1 Introduction

In this section we will discuss the numerical solution of the dynamic programming problem

in detail. We will use monthly data for beginning period inventory, demand, and production

for total U.S. distillate fuel oil during 1988-1995 as reported in the Basic Petroleum Data

Book [2]. Thus, we will implement our model under the assumption that decisions were made

by a single re�ner in the presence of this aggregate data. Values for quantities that de�ne

the state space will be selected to match those likely to have been chosen by the re�ner. In

each time period, a historical state will be identi�ed. This particular state is the one that

would have been observed by a re�ner following our model. For these historical states, our

goal will be to select values for cost function parameters that will cause the re�ner to choose
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decisions that closely match historical decisions.

3.4.2 Parameter Estimation

Total demand for distillate fuel oil was forecasted using Winters' method that was described

in Section 3.2. Recall that we needed to select smoothing parameters, denoted by �1 and

�2, to help us update our estimates for the level and slope components. To obtain these

smoothing parameters, we used the �ve-year period immediately preceding our period of

interest as a base period. The values of the smoothing parameters that minimize the mean-

squared error in forecasting will be considered optimal.

The base period consisted of the sixty monthly observations during 1983-1987 as reported

in the Monthly Energy Review [10] and [2]. A seasonal period of d = 12 was assumed. The

optimal values for the smoothing parameters were found to be �1 = 0:20 and �2 = 0:04.

Initial estimates for the level and slope components were computed by performing a linear

regression on an intercept and time. The procedure for estimating the seasonal factors and

the variability in demand is located in the appendix.

For the state space, Table 1 records the values chosen for the time-independent quantities

as de�ned in Subsection 3.3.2. The number of levels chosen results in 875 states for each

time period. Range lengths were selected with the goal of being su�ciently wide that likely

values for the variables would be contained within each one. The increment lengths are

de�ned once the number of levels and range lengths are speci�ed. The selection of the left

endpoints of the ranges is discussed in the appendix.

Finally, since our goal is to produce a solution for the stochastic dynamic programming

problem that closely matches history, it is necessary to identify the historical state and
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Table 1: Time-independent State Space Parameter Values

Variable # of Levels Range Length Increment Length

�t N� = 7 R� = 24; 000; 000 I� = 4; 000; 000

�t N� = 5 R� = 500; 000 I� = 125; 000

Xt NX = 25 RX = 60; 000; 000 IX = 2; 5000; 000

decision for each time period. The details of this procedure are also located in the appendix.

3.4.3 Cost Parameter Estimation to Match History

We are now ready to discuss the solution of the dynamic programming problem. First,

computer code was written in MATLAB to solve the problem. Then, some initial values

were chosen for the parameters of the cost functions. In each time period, the minimiza-

tion problem in Subsection 3.3.4 was solved using a variation of the Fibonacci method as

described in Avriel[3]. Run time was approximately 91
2
hours on a PC with a Pentium II

processor. After each iteration, the optimal decision for the historical state was compared

to the historical decision. Upon analysis, the values of the cost parameters were modi�ed in

an attempt to bring these two decisions into close agreement for each stage. We will now

discuss the parameter values chosen.

One quantity that needs to be de�ned initially is AMD. In this paper, AMD represents

average monthly demand during the period 1988-1995. Although not necessary, we will �nd

it convenient to express many of the parameters of our cost functions in terms of AMD. Its

value is AMD = 98; 950; 688.
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The parameters for the re�nery costs were chosen by experimentation. The values selected

are contained in Table 2 (Values for the end-of-horizon cost parameters are located in the

appendix.). To help determine the appropriateness of our parameter selections, Figure 4

Table 2: Cost Parameter Values

Cost Parameter Values

Production E�ciency c = 0:6

AMD2 , L = AMD

Holding h = 0:015

AMD

Pipeline E�ciency M = 0:5

AMD
, a = 1:27 � AMD, b = 0:09

AMD2

plots historical order-up-to quantities (unrounded) along with those predicted by our model.

Before commenting on the graph, let us �rst present a table of errors measuring the di�erence
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Figure 4: Actual and Predicted Order-up-to Quantities

between the historical order-up-to level and that predicted by our model. We will de�ne this
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error by

Error = NY
H
t �NY

�

t ; (28)

where NY H
t is the historical decision at time t and NY �

t is the optimal decision for the

historical state at time t. Table 3 records these errors for each month. The mean-squared

Table 3: Errors in Order-up-to Levels

Month 1988 1989 1990 1991 1992 1993 1994 1995

January 3 2 2 0 0 0 0 2

February -2 -4 -4 -6 -5 -5 -5 -3

March -3 -1 -3 -2 -2 -2 -1 0

April -3 -3 -2 -2 -1 -2 -1 -1

May 0 -2 -1 1 -1 -2 2 0

June -1 -4 0 0 -2 -1 1 0

July -1 -1 1 1 1 1 1 -1

August 1 -1 3 1 -1 1 2 0

September -2 -3 -1 1 0 -1 2 0

October 0 -1 0 2 5 4 1 -1

November -1 -1 -2 2 2 3 1 0

December 2 1 0 3 3 3 1 1

deviation (MSD) of these errors is MSD = 4:50.

It is clear from both the graph and the table that our model does a good job of matching

historical inventory positions. We are able to match the seasonal pattern in distillate fuel
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oil that is observed each year. There are two important points to note when considering the

types of errors that are made. From Table 3, we can see that the model consistently underes-

timates the order-up-to level in December and January while overestimating it in February,

March, and April. A potential remedy for this problem may be to allow time-dependent cost

parameters in the model. For example, to encourage higher levels in December and January,

the threshold parameter a in the pipeline e�ciency cost could be shifted to the right in

those months. Similarly, to decrease levels in February, March, and April, the holding cost

parameter h could be increased. Since we wanted our cost parameters to remain stationary

through time, this idea was not seriously considered.

Finally, it should be noted that the amount of extrapolation required to solve the problem

was well within tolerable limits. This concludes our discussion of the stochastic dynamic

programming problem.

4 Price Forecasting with Production Costs

4.1 Overview

In this section we will attempt to use our cost data from the optimal solution of the stochas-

tic dynamic programming problem as an aid in predicting heating oil prices. A production

futures price will be constructed by performing a slight alteration to the dynamic program-

ming problem. We will then investigate to determine if these production futures prices have

any value in predicting either actual heating oil futures prices or their price spreads. Linear

regression models will be built to test for relationships between the variables. To begin with,
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we will de�ne what is meant by a production futures price.

4.2 The Production Futures Price

Recall from Section 1 that a trader holding a long position in a futures contract on an asset

will receive a pre-speci�ed quantity of that asset during a pre-speci�ed delivery date. In the

context of our dynamic programming problem, we could give the re�ner additional units of

inventory in a future time period. Once this additional inventory is received, we would be

interested in measuring its impact on costs not only in the current time period but in earlier

time periods as well. We will de�ne a new quantity that represents the value of receiving

this additional inventory in the future.

First, suppose we wish to give our re�ner additional inventory in time period t. Given our

model, the most natural way to do this is to give the re�ner exactly IX barrels at the same

time that stocks are replenished. In essence, this has the e�ect of increasing the order-up-to

level from NYt to NYt + 1. The minimization problem for stage t is now the following:

ft(N�t; N�t; NXt) = H(Xt) +

min
NYt�NXt

[Pr(Yt �Xt) +EPl(Yt + IX) +

rtED(ft+1(N�t+1; N�t+1; (NYt + 1�NDt)
+))]: (29)

Since this additional inventory is not present at the beginning of the period, the holding cost

is una�ected. Also, the production e�ciency cost is unaltered since this inventory was not

actually produced. The expected pipeline e�ciency cost and the discounted expected future

cost will both be impacted by this additional inventory. After making this modi�cation,

we can solve the problem using the method and parameters given in Section 3. Clearly, we
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would expect this perturbation to have an impact on the optimal decision and cost in the

current stage as well as in earlier stages.

Let us introduce some notation. Denote by T the time period in which IX barrels of extra

inventory are given. Then, we can write the new cost for the historical state at time t � T

as fTt (N�Ht ; N�Ht ; NXH
t ). Since we wish to measure the value of receiving this additional

inventory, we can consider the following expression:

Pt;T = ft(N�
H
t ; N�

H
t ; NX

H
t )� f

T
t (N�

H
t ; N�

H
t ; NX

H
t ): (30)

The right-hand side of equation (30) represents the di�erence between the cost observed for

the usual model and that for the model with the extra inventory. This di�erence should

represent the value at time t of additional inventory to be received at time T . For this

reason, we refer to Pt;T as the production futures price at time t for additional inventory in

time period T . When T = t, we have a production spot price.

A point should be made regarding the name of Pt;T . It could be argued that this price

should be referred to as a production forward price. It should be noted, however, that forward

prices and futures prices are equivalent when interest rates are assumed to be deterministic.

Since we make that assumption in this work, we will use the term `futures' to describe this

price.

We will be interested in comparing these production futures prices to actual heating oil

futures prices. We note that the scale of the quantity Pt;T is unknown. While an actual heat-

ing oil futures contract has a size of one thousand barrels, the number of barrels associated

with the production futures price is 2:5 million. This must be considered when trying to

relate the two prices. Also, unlike an actual futures price, it could be the case that Pt;T < 0.
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This is not unrealistic since there may be certain times during the year when more inventory

is undesirable. For instance, a re�ner would not want to receive additional units of heating

oil at the end of the heating season.

4.3 Predicting Heating Oil Futures Prices

Now that we have de�ned production futures prices, it is natural to be curious about their

relationship to actual heating oil prices. We will build regression models in which the heating

oil futures price will be the response. A set of independent variables, which includes the

production futures price, will be used for forecasting.

Data for heating oil futures prices consists of �rst-of-the-month settlement prices for

contracts traded on the New York Mercantile Exchange (NYMEX) during the period 1988-

1995. We will consider contracts with time to maturity varying from one to �ve months.

These contracts are by far the most liquid with respect to trading volume. A separate

regression model will be built for each speci�c time to maturity. Prices are quoted in cents

per gallon. Denote by FHO
t;t+� the price at the beginning of period t = 1; 2; : : : 96 for a futures

contract on heating oil maturing at date t + �, where � = 1; 2; 3; 4; 5 represents time to

maturity. We will restrict ourselves to contracts that mature during the eight-year period.

Thus, as time to maturity increases by one month, we will lose one observation.

The most interesting independent variable in our model will be the production futures

price. De�ned in the previous section, we will denote these by Pt;t+� where t = 1; 2; : : : 96 is

the current time period and t +�;� = 1; 2; 3; 4; 5 is the period in which extra inventory is

received.
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In addition to the production futures prices, the contemporaneous crude oil futures price

will be used as an explanatory variable. It seems proper to include the crude oil price

since heating oil is re�ned from crude oil. This should compensate for the fact that our

dynamic programming problem does not model the impact of this input to production.

Crude oil futures contracts, like their heating oil counterparts, are also traded on NYMEX.

Contracts with time to maturity varying from one to �ve months are heavily traded, and

their settlement prices are readily available. We will let FC
t;t+� represent the price in cents per

gallon at the beginning of period t = 1; 2; : : : 96 for a futures contract on crude oil maturing

at date t+�, where � = 1; 2; 3; 4; 5.

Next, we will include in our regression models monthly indicator variables to control for

seasonality. We will let Itj represent these seasonal variables, which satisfy

Itj =

8>>><
>>>:

1 if observation t is in period j

0 otherwise,

for t = 1; 2; : : : 96 and j = 1; 2; : : : 11 (There are only eleven indicators since the model

contains a constant term.).

One area of concern when conducting an analysis with linear regression is serial correlation

in the error terms. The assumption that the errors are uncorrelated allows us to make

inferences about the signi�cance of various model terms. If serial correlation is present in

the residuals, then we can not do this inference. As a means of eliminating correlation in the

errors, we will include lagged variables in our model. We will denote the one-period lagged

values for heating oil futures price, production futures price, and crude oil futures price by

FHO
t�1;(t�1)+�, Pt�1;(t�1)+�, and F

C
t�1;(t�1)+�, respectively. The inclusion of these lagged values,

particularly that of the response, will help reduce the amount of serial correlation in the
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errors. For each of our models, we will perform the Ljung-Box test as described in [7] to see

if correlation is present. Let us brie
y describe this test.

Suppose we wish to test the null hypothesis that the �rst h autocorrelations of the

residuals are equal to zero against the alternative that at least one is nonzero. In a model

with n observations, we compute the following statistic:

QLB = n � (n+ 2)
hX
j=1

�̂2(j)

n� j
; (31)

where �̂(j) is the sample autocorrelation function of the residuals at lag j. If the null

hypothesis is true, then QLB has an approximate chi-squared distribution with h degrees of

freedom. The null hypothesis is rejected for large values of the test statistic. We will perform

this test for each of our models, setting h = 3.

Before discussing the regression models, let us present a time series plot of heating oil

futures prices during 1988-1995. Figure 5 plots the time series of prices for the 1-month

and 5-month time-to-maturity contracts. There are two interesting time periods to consider.

First, for the 1-month contract, observation 25 is extremely high. As reported in the 1990

CRB Commodity Year Book [9], a record cold winter caused the price of heating oil to

jump. While it had a dramatic e�ect on the 1-month price, this event did not signi�cantly

a�ect contracts with other maturity times. Thus, when we �t our regression models, we will

remove this observation in the 1�month model. The second time period of note is the set

of observations from time periods 33 to 37. This is the Persian Gulf War period, ranging

from September, 1990 to January, 1991. The heating oil futures price for contracts on all

maturities is greatly a�ected during this period. Rather than eliminate each of these points,

we will �nd it acceptable to leave them in each model.
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Figure 5: Heating Oil Futures Prices, 1988-1995

We are now ready to �t our regression models. The regression equation to be estimated

is

FHO
t;t+� = B0 +BC � F

C
t;t+� +BP � Pt;t+� +

P11
j=1Bj � Itj + BHOL � F

HO
t�1;(t�1)+� +

BCL � F
C
t�1;(t�1)+� +BPL � Pt�1;(t�1)+� + �t; (32)

where � = 1; 2; 3; 4; 5 and 1 � t � 96 � �. The results of these linear regressions are

located in Table 4. Each column represents a di�erent time to maturity. For each regression

coe�cient, the least squares estimate is given along with its standard error in parentheses.

Coe�cients statistically di�erent from zero at a signi�cance level of 0:05 are in boldface.

The next-to-last row gives the adjusted R2 value for each model, while the �nal row gives

the value of the Ljung-Box test statistic for h = 3 lags and its p-value in parentheses. In

all �ve models, the crude oil futures price was overwhelmingly the most important predictor

variable. The estimated coe�cient was near unity, and the value of the associated t-statistic
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Table 4: Regression Model Results for Predicting Futures Prices

Quantity � = 1 � = 2 � = 3 � = 4 � = 5

B̂0 5.67(1.97) 4.63(1.72) 2.89(1.46) 2.38(1.40) 1.46(1.27)

B̂C 1.02(0.06) 1.03(0.05) 1.05(0.05) 1.03(0.05) 1.05(0.05)

B̂P 3538(705) 2989(775) 3175(893) 1482(1013) 942(1091)

B̂1 -0.48(1.31) -1.97(1.02) -0.14(0.98) -0.99(0.82) -0.53(0.79)

B̂2 -2.25(1.21) -1.40(1.10) -0.64(0.95) -0.67(0.93) 0.12(0.91)

B̂3 -4.53(1.19) -4.29(1.13) -2.70(1.05) -1.24(1.26) 0.01(1.26)

B̂4 -1.68(1.31) -2.32(1.19) -1.09(1.08) 0.00(1.32) 1.50(1.19)

B̂5 -4.00(1.29) -3.57(1.18) -2.37(1.11) -0.44(1.35) 0.71(1.24)

B̂6 -2.75(1.32) -2.97(1.19) -1.27(1.09) 0.13(1.34) 1.23(1.20)

B̂7 -3.66(1.24) -3.24(1.15) -1.64(1.06) 0.33(1.31) 1.49(1.23)

B̂8 -2.16(1.26) -1.64(1.13) -0.22(1.01) 1.26(1.25) 2.23(0.96)

B̂9 -0.92(1.20) -0.09(1.07) 1.54(0.97) 2.91(1.08) 2.98(0.80)

B̂10 -2.35(1.20) -1.98(1.14) 0.21(1.00) 1.30(0.94) 0.55(0.84)

B̂11 -1.01(1.14) -0.76(1.01) 1.34(0.84) 0.27(0.85) 0.54(0.77)

B̂HOL 0.48(0.10) 0.63(0.11) 0.64(0.11) 0.62(0.11) 0.60(0.11)

B̂CL -0.49(0.10) -0.65(0.11) -0.68(0.11) -0.64(0.11) -0.63(0.11)

B̂PL -3620(713) -3048(788) -3194(901) -1439(1018) -835(1095)

R2(adj) 95.3% 96.6% 97.4% 97.5% 97.5%

QLB(h = 3) 2.74(0.43) 4.96(0.17) 3.83(0.28) 2.35(0.50) 2.02(0.57)
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was statistically signi�cant at the 0:05 level. For time to maturity ranging from one to three

months, the production futures price coe�cient was statistically signi�cant and positively

correlated with heating oil price. For the two longest maturity contracts, however, it was not

signi�cantly di�erent from zero. The impact of the seasonal indicators varied greatly, with

some coe�cients being statistically signi�cant only for certain maturity levels and others not

at all. Also, note that the lagged terms were important in forecasting the heating oil futures

price. They also eliminated serial correlation in the model, as we would fail to reject the null

hypothesis of uncorrelated errors based on our Ljung-Box statistics. The overall explanatory

power of each model was excellent, with adjusted R2 values in excess of 95%.

Finally, using our regression models, we can determine the importance of the production

futures price in reducing the total variability in heating oil futures prices. Consider the

following. For a �xed maturity level, the total variability in the heating oil futures price is

calculated by computing the sum of the squared deviations about its sample mean. In a

linear regression model, this quantity, known as the total sum of squares, is partitioned into

the sum of squares due to regression and the sum of squares due to error. As explanatory

variables are added to our regression model, the regression sum of squares grows while the

error sum of squares is reduced. For each particular term added to the model, we can

compute its sequential sum of squares. This is de�ned as the further reduction in error sum

of squares beyond that achieved by the previous predictors. In our models, the two most

important variables to consider are crude oil futures price and production futures price.

Let SSHO represent the total sum of squares for the heating oil futures price. Denote the

sequential sums of squares for the crude oil futures price and the production futures price by

SSC and SSP , respectively, as each term is successively added to the model. Table 5 records
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Table 5: Selected Sums of Squares when Forecasting Prices

Quantity � = 1 � = 2 � = 3 � = 4 � = 5

SSHO 9314.19 9069.28 8453.67 7337.2 6333.1

SSC 8213.60 8262.76 7735.93 6740.7 5846.9

SSP 121.92 144.03 188.72 186.1 169.6

these quantities for each of our forecasting models. Note that total variability in the heating

oil futures price decreases as the time to maturity increases. The crude oil futures price is

responsible for a large reduction in error sum of squares, while the production futures price

contributes to a lesser degree. Still, the production futures price does explain part of the

variability in the heating oil futures price. Thus, it adds value to our model.

4.4 Predicting Heating Oil Futures Price Spreads

Recall the theory of commodity storage discussed in Section 2. The di�erence in price

between contemporaneous spot and futures prices on the same asset was known as the cost

of carry. It was conjectured that this quantity depended on interest costs, holding costs,

and a convenience yield earned from storing the asset. Along the same line of reasoning,

the di�erence in price between two futures prices on the same asset with adjacent maturity

dates was known as the forward cost of carry. This quantity could be interpreted as the

current belief about the cost of carrying the asset during the time period de�ned by the

aforementioned maturity dates. Since a spot price can be thought of as a futures price with

time to maturity zero, each of these price di�erences can be thought of as a futures price
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spread. Let us introduce some notation consistent with the previous subsection. Consider

the following expression:

FPSHOt;� = FHO
t;t+�+1 � FHO

t;t+�: (33)

The left-hand side represents the futures price spread for heating oil at time t on contracts

with time to maturity � and � + 1. The right-hand side is the �-periods ahead forward

cost of carry. It is the cost, perceived at time t, of carrying the asset during the period

[(t+�); (t+�+1)]. For heating oil, we would expect to observe a seasonal pattern in these

futures price spreads.

We will use �rst-of-the-month heating oil settlement prices from NYMEX during 1988-

1995 to help us construct the price spreads. In addition, we will also use �rst-of-the-month

New York harbor spot prices, denoted by SHOt , where

S
HO
t = F

HO
t;t : (34)

Note that possible values for � are 0; 1; 2; 3; 4. We will again restrict ourselves to contracts

that have a maturity date within the eight-year period.

We will again use linear regression modeling to help us forecast these futures price spreads.

One potential explanatory variable is a price spread constructed using our production futures

prices. Consider the following expression:

FPSPt;� = Pt;t+�+1 � Pt;t+�: (35)

The quantity FPSPt;� is the production futures price spread with de�nition similar to that

of the heating oil futures price spread. We would expect it to be useful in predicting that

price spread.
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Although the futures price of crude oil was extremely useful in predicting the heating oil

futures price, we will not include these prices in our model. Unlike heating oil spreads, the

crude oil futures price spreads do not exhibit seasonality. Thus, we conjecture that they will

not be useful in forecasting the heating oil futures price spreads.

Identical to the previous models, we will include eleven seasonal indicator variables in our

regressions. Also, we will make use of lagged values to help us eliminate serial correlation in

the residuals. We will use the following one-period lagged values:

FPSHOt�1;� = FHO
t�1;t+� � FHO

t�1;(t�1)+�:

FPSPt�1;� = Pt�1;t+� � Pt�1;(t�1)+�: (36)

Before �tting the models, let us look at a graph of heating oil futures price spreads

during 1988-1995. Figure 6 plots the time series for FPSHOt;� for � = 0 and � = 4. The
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Figure 6: Heating Oil Futures Price Spreads, 1988-1995

seasonal pattern predicted by the theory of commodity storage is apparent, particularly for
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the � = 4 series. Clearly, observation 25, discussed in the previous subsection, is having an

enormous impact on the spread for � = 0. This is to be expected since it is a function of

the 1-month futures price. Note that for this same reason, we would also expect the spread

corresponding to � = 1 to be a�ected. The other price spreads, like the one corresponding

to � = 4, will be una�ected. Regarding the Persian Gulf War period, we will again leave

the observations in our models. Thus, for the models corresponding to � = 0 and � = 1, we

will remove observation 25. We can now estimate the parameters of our regression models.

The regression equation to be estimated is

FPS
HO
t;� = B0 + BP � FPS

P
t;� +

11X
j=1

Bj � Itj +

BHOL � FPS
HO
t�1;� + BPL � FPS

P
t�1;� + �t; (37)

where � = 0; 1; 2; 3; 4 and 1 � t � 95��. The results of these regressions are reported in

Table 6. Each column represents a di�erent value of �. The format of the table is identical

to Table 4. From the table, we can see that the production futures price spread is clearly

statistically signi�cant from zero for each model with the exception of � = 4, when it is still

marginally signi�cant. It is positively correlated with the heating oil futures price spread.

The signi�cance of the seasonal indicator variables again varies across models. In particular,

for the models corresponding to � = 0 and � = 1, only one of the eleven coe�cients

is statistically signi�cant from zero. Yet for the model corresponding to � = 2, eight of

the seasonal coe�cients were signi�cant. For the lagged variables, the signi�cance of the

coe�cients varied. In particular, note that the lag of the heating oil price spread became

more signi�cant as � increased. Of course, the primary reason for including these lagged

variables was to eliminate serial correlation in the errors. Based on the Ljung-Box statistics,
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Table 6: Regression Model Results for Predicting Futures Price Spreads

Quantity � = 0 � = 1 � = 2 � = 3 � = 4

B̂0 -0.81(1.04) 0.13(0.37) -1.06(0.24) 0.59(0.37) 0.44(0.27)

B̂P 8004(1636) 3376(619) 3418(616) 2687(663) 1107(575)

B̂1 -1.68(1.24) -1.12(0.51) 1.52(0.38) -0.64(0.48) -0.02(0.24)

B̂2 -1.33(1.25) -0.66(0.43) 0.64(0.35) -0.42(0.47) -0.08(0.28)

B̂3 4.31(1.64) 0.26(0.47) 1.63(0.32) -0.09(0.42) -0.13(0.34)

B̂4 2.94(1.89) -0.08(0.58) 1.08(0.34) -0.76(0.55) -0.23(0.38)

B̂5 2.59(1.77) 0.25(0.55) 0.75(0.37) -0.53(0.51) -0.68(0.39)

B̂6 1.80(1.75) -0.32(0.60) 1.20(0.36) -0.92(0.52) -0.52(0.40)

B̂7 -0.09(1.62) -0.21(0.50) 0.80(0.37) -0.68(0.50) -0.62(0.40)

B̂8 -0.74(1.33) -0.39(0.50) 0.80(0.38) -0.87(0.51) -0.80(0.43)

B̂9 -1.25(1.27) -0.36(0.46) 0.73(0.39) -1.06(0.45) -1.28(0.40)

B̂10 0.30(1.24) -0.07(0.49) 0.57(0.39) -0.89(0.35) -1.79(0.26)

B̂11 -1.29(1.24) -0.33(0.45) 1.31(0.39) -1.63(0.41) -0.26(0.36)

B̂HOL 0.11(0.11) 0.07(0.08) 0.52(0.10) 0.70(0.08) 0.73(0.07)

B̂PL -1016(2064) -786.4(810) -1724(721) -1413(721) -71(599)

R2(adj) 59.1% 79.7% 78.3% 84.2% 90.4%

QLB(h = 3) 1.22(0.75) 11.21(0.01) 2.20(0.53) 4.97(0.17) 5.21(0.16)
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however, there is evidence to suggest that the errors in the model corresponding to � = 1

are correlated. Finally, overall explanatory power is good for each model, with adjusted R2

values mostly rising as � increases.

As we did in the previous subsection, we can measure the contribution made by speci�c

predictor variables in reducing the total variability in the heating oil futures price spread

by examining sequential sums of squares. For our models, the variable of interest will be

the production futures price spread. For simplicity, let SSHO represent the total sum of

squares for the heating oil futures price spread, and denote by SSP the sequential sum of

squares for the production futures price spread. Table 7 records these values. First, note

Table 7: Selected Sums of Squares when Forecasting Price Spreads

Quantity � = 0 � = 1 � = 2 � = 3 � = 4

SSHO 1136.42 275.44 152.64 177.15 149.97

SSP 360.25 132.83 102.03 118.59 109.84

the extremely large value for SSHO when � = 0. This is due to the presence of observation

25. More importantly, note the relatively large values for SSP . Contrast these to the models

in the previous subsection, where the production futures price helped reduce variability in

heating oil futures prices only slightly compared to the crude oil futures price. Clearly, the

production futures price spread is extremely useful for predicting the heating oil futures price

spread. This is not surprising. Let us write the production futures price spread in terms of

actual production costs. Using equations (30) and (35), we obtain the following:

FPS
P
t;� = Pt;t+�+1 � Pt;t+�:
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= [ft(N�Ht ; N�Ht ; NXH
t )� f t+�+1

t (N�Ht ; N�Ht ; NXH
t )]

� [ft(N�Ht ; N�Ht ; NXH
t )� f t+�t (N�Ht ; N�Ht ; NXH

t )]:

= f t+�t (N�Ht ; N�Ht ; NXH
t )� f t+�+1

t (N�Ht ; N�Ht ; NXH
t ): (38)

The above is simply the di�erence in time t production cost when additional inventory is

received in future time period t + � as opposed to when it is received in period t +� + 1.

This represents the value, viewed from time t, of holding this additional inventory during

the period [(t + �); (t + � + 1)]. It is natural to expect this quantity to be related to the

corresponding heating oil futures price spread. Seasonality in production and inventory levels

generate seasonals in the production futures price spreads. This seasonality is observed in

the actual heating oil futures price spreads.

4.5 Conclusions and Future Research

From the preceding analysis, it is clear that decisions about the production and storage

of distillate fuel oil in
uence the price of heating oil. This is consistent with the theory

of commodity storage. The production futures prices introduced in this work are helpful in

explaining observed heating oil futures prices and especially heating oil futures price spreads.

A potential direction for future research is to perform out-of-sample forecasts for prices.

For instance, since our model covers the time period from 1988-1995, we could attempt to see

if our parameters would allow us to match historical states and decisions in 1996. We could

then take the costs associated with these states and use them in our �tted regression models

to predict prices. Alternatively, we could attempt the more di�cult problem of trying to

predict prices in the future. Since the future is not known, historical states and decisions
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have yet to be observed. We could, however, identify for each time period a set of states

likely to be realized. Based on these likely states, we may be able to infer potential decisions

and their associated costs. Using this data, we could then attempt to forecast prices.

Appendix

In this appendix we discuss several details related to parameter estimation and selection for

the stochastic dynamic programming problem.

With respect to the implementation of Winters' method, a point needs to be made

regarding the estimates of the seasonal factors. Recall that these estimates are not being

updated since �3 = 0 in equation (11). To compensate for this fact, when we generated

forecasts for demand during the period 1988-1995, we did not use the estimates from the

base period. Instead, to more accurately re
ect the seasonality during this period of interest,

we estimated seasonal factors using the data from 1988-1995 as reported in [2]. Furthermore,

one additional quantity that needs to be estimated is the standard deviation of demand, �.

Using the data for demand from 1988-1995, we performed a linear regression on an intercept,

time, and seasonal indicators. Our estimate for � is the standard error of the residuals. This

estimate was found to be �̂ = 4; 753; 565:

For the left endpoints of the ranges for the state variables, recall that these quantities

depend on time. For �t and �t, we will take the following approach. At the beginning of

time period t, estimates for the level and slope, computed at the end of time period t � 1,

are known. Round these quantities to an integer by dividing by their respective increments.

Next, multiply these rounded values by their increments. To compute the left endpoints of
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the ranges, subtract an integer multiple of the increment from these quantities. For the left

endpoints of Xt, the following approach was taken. Seasonal values for the left endpoints

were selected for each month by looking at historical beginning period inventory levels during

1988-1995. Each value is an integer multiple of IX.

Recall that our goal is to choose parameters for cost functions that will produce a solution

to the dynamic programming problem that matches actions taken during the period 1988-

1995. To do so, we must �rst determine the historical state faced by the re�ner as well as

his decision in each time period.

Let the historical state at time t be denoted by the following vector:

sH
t
:= (N�Ht ; N�Ht ; NXH

t ):

The �rst two components of this vector are determined easily. Recall from the previous

subsection that the ranges for �t and �t are de�ned so that they contain the historical

values. Thus, N�Ht and N�Ht are identi�ed easily. To compute NXH
t , we will note the

historical beginning period inventory, XH
t , and make use of equation (19):

XH
t = LXt + (NXH

t � 1) � IX: (A.1)

We solve this expression for NXH
t , noting that

XH

t

IX
will need to be rounded:

NXH
t =

& 
XH
t

IX
� 0:5

!'
�
LXt

IX
+ 1: (A.2)

By de�ning LXt carefully, we can be certain that 1 � NXH
t � NX for all t.

The historical decision at time t will be denoted by NY H
t . We can compute this quantity

in exactly the same way as we computed NXH
t . Given Y H

t , equation (20) gives

Y
H
t = LXt + (NY

H
t � 1) � IX: (A.3)
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Thus, similar to equation (40) we obtain

NY H
t =

& 
Y H
t

IX
� 0:5

!'
�
LXt

IX
+ 1: (A.4)

Finally, to compute the end-of-horizon cost, we noted the amount of inventory held at

the end of December, 1995. This is also the beginning period inventory for January, 1996,

denoted by XH
N . Upon rounding to a multiple of IX, we selected parameter values for the

cost function given in equation (27) that minimized the cost associated with this historical

level. This will help eliminate errors in matching history at the end of the horizon. The

values chosen for the parameters were aN = 1, bN = 10, cN = 1:26 � AMD, dN = 10, and

eN = AMD. To ensure that the cost is always nonnegative, the constant (1:29) was added

to the function in each state.
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