
ROBOT CONTROLLERS: ONLINE AND OFFLINE
ADAPTION, AND AUTOMATIC CODE TRANSFER

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Kai Weng Wong

August 2018

c� 2018 Kai Weng Wong

ALL RIGHTS RESERVED

ROBOT CONTROLLERS: ONLINE AND OFFLINE ADAPTION, AND AUTOMATIC

CODE TRANSFER

Kai Weng Wong, Ph.D.

Cornell University 2018

The development of robotic technology has evolved and changed how robots operate

next to humans. In the past decades, robots were mainly seen in factories with confined

and structured environments. Increasingly, robots are moving out of situated environments

and are starting to operate in unstructured and dynamic environments. With the change

of operating environment, many more environment events can arise during robot task

execution. Robots need to cope with these events, sometimes anticipated and sometimes

not, and be able to finish their assigned tasks. In this work, I present three approaches

to increase robustness in robot task execution when unexpected situations arise. The

approaches span low-level robot controllers and high-level robot controllers, and include

both o✏ine and online solutions.

The first contribution is an o✏ine approach that automatically adapts and transfers robot

programs between robots, leveraging the Robot Operating System (ROS). The approach

reduces the time spent on retrofitting existing programs on new robots and speeds up the

time from robot software development to execution.

The robot programs considered in the first contribution are often referred to as low-level

robot controllers, retrieving sensor information from the robot and sending commands to

the robot. They are usually executed alongside with high-level controllers, which process

commands or specifications from users. The low-level and high-level controllers are

inter-connected but their relationships and interactions are rarely inspected.

The second contribution is an approach that inspects low-level controllers and proposes

changes to the corresponding high-level specification, based on potential conflicts among

the low-level controllers. The approach addresses the disconnect between high-level and

low-level controllers which can lead to execution errors.

The final contribution is an approach that increases robustness when unexpected environ-

ment events arise in the execution of high-level robot controllers. These events may involve

uncontrolled environment behaviors or other robots operating in the same workspace, re-

sulting in unpredictable robot behaviors during task execution. The approach automatically

adapts the robot controller when these environment events occur, such that the robot can

finish its task safely. Throughout the work, the approaches demonstrate how to cope with

di↵erent unexpected situations and increase robustness during robot task execution.

BIOGRAPHICAL SKETCH

Kai Weng (Catherine) Wong was born in Macau, Macau in 1991. She grew up there

and completed her primary and secondary schooling in Chan Sui Ki Perpetual Help College

in Macau, before attending De Anza College in Cupertino, California from 2008 to 2010.

She transferred to Cornell University and earned her Bachelor of Science in Mechanical

Engineering in 2013. She continued her graduate study at the Sibley School of Mechanical

and Aerospace engineering at Cornell and received her doctoral degree in 2018.

iii

For my parents and Flora,

Jim and FriedEgg, and

so many other people who have inspired me along the way.

iv

ACKNOWLEDGEMENTS

First, I thank my family for their continuous support during my doctoral study. My

graduate study came as a bit of surprise and thanks for bearing with me. I also want to

thank Jim. Thank you for reading my papers even when you didn’t want to and being there

unconditionally. All your support has made this possible.

For my Cornell community, I thank my advisor Hadas Kress-Gazit. I am not the best

writer or even close to be one. Thank you for bearing with all my grammatical mistakes

and awkward writing, and giving me suggestion both academically and in life. I thank my

committee members Joe Halpern and Ross Knepper who gave me constructive feedback

and guidance during my doctoral study. Other people who meant a lot to me are my group

mates in the Verifiable Robotics Research Group. Thank you all, particularly Scott Hamill

and Adam Pacheck. I always had last minute paper reading requests, but you all would read

my papers without hesitation. I thank my mentors Brad Treat, Eric Young, Ken Rother,

Tom Schryver and Steve Gal for their guidance and support during my Commercialization

Fellowship. You have showed me how live and create impact in the world. The last person

that I would not miss is Marcia Sawyer. Marcia, thank you for making sure I am on track

for the past 5 years.

I want to express my gratitude for my collaborators: Ankur Mehta, Rüdiger Ehlers

and Hila Peleg as well. Ankur, I enjoyed our collaboration and I wish we could work

together again. Rüdiger, you have inspired me and showed me how a good researcher

should be. Hila, I enjoyed our time working together and how we came from di↵erent

research communities and worked together seamlessly.

Last but not least, I thank my volleyball mates. You have turned a stressful PhD life into

v

a lively and exciting one. I think I should thank myself too. Thanks for holding on to it.

This work was supported by the NSF Expeditions in Computing project ExCAPE

CCF-1138996; DARPA N66001-12-1-4250 and NSF CAREER award CNS-0953365.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . x
List of Figures . xi

1 Introduction 1

2 Automatic ROS Code Transfer between Robots 4
2.1 Introduction . 4
2.2 Preliminaries . 7
2.3 Problem Formulation . 12
2.4 Keyboard Control Example . 14
2.5 Approach . 14

2.5.1 Replace channel names based on message type (Communication) 15
2.5.2 Check and modify variables (Parameters) 19

2.6 Examples . 24
2.6.1 Keyboard control example revisited 24
2.6.2 Obstacle avoidance example . 25
2.6.3 Joint trajectory following example 26
2.6.4 Greet Example . 27
2.6.5 Path Planning Example with MoveIt! 29
2.6.6 Localization Example . 30

2.7 Evaluation . 32
2.8 Challenges Ahead . 33
2.9 Conclusion and Future Work . 35

3 Robot Operating System (ROS) Introspective Implementation of High-Level
Task Controllers 37
3.1 Introduction . 37
3.2 Related Work . 43
3.3 Problem Formulation . 44
3.4 Preliminaries . 45
3.5 Approach . 49

3.5.1 Mapping from Propositions to ROS Nodes 49
3.5.2 Detecting Possible Failure . 54

vii

3.6 Example . 63
3.6.1 Clean and Patrol Example . 63
3.6.2 Homogeneous Robots Example 72
3.6.3 Discussion . 76

3.7 Evaluation . 78
3.8 Conclusion . 79

4 Resilient, Provably-correct, High-level Robot Behaviors 81
4.1 Introduction . 81
4.2 Related Work . 85

4.2.1 Planning . 85
4.2.2 Negotiation and Collaboration 87
4.2.3 Controller Synthesis . 88

4.3 Preliminaries . 89
4.4 Problem Formulation . 96
4.5 Overview . 97
4.6 Recovery . 103

4.6.1 Adding Recovery Transitions to Winning States 105
4.6.2 Adding Recovery Transitions to Non-Winning States 106

4.7 Environment Characterization (EC) . 109
4.7.1 Runtime Monitoring . 110
4.7.2 Automatic rewriting of the specification 110

4.8 Integrative Negotiation . 114
4.8.1 Both robots can incorporate the other’s specification 116
4.8.2 Only one robot can incorporate the other’s specification 117
4.8.3 Both robots cannot incorporate the other’s specification 118

4.9 Computational implications . 119
4.10 Examples . 121

4.10.1 No Other Robot in the Workspace 122
4.10.2 Example with Recovery and Environment Characterization (3rd

example in the online video1) 126
4.10.3 Communicating Robots in the Workspace (4th example in the online

video 1) . 128
4.10.4 Comparison . 132

4.11 Evaluation . 134
4.12 Summary . 135

5 Conclusion 137

viii

Bibliography 140

ix

LIST OF TABLES

2.1 Distribution of type Twist from Turtlebot codebase 16
2.2 Configuration files for each method . 23
2.3 Distribution of type Twist from Jackal codebase 25
2.4 Distribution of LaserScan from Jackal codebase 25
2.5 Summary of Example Results . 32

4.1 Propositions Classification and Notation 91
4.2 Explanation of the Superscript Notations for Specification 'r and Con-

trollerAr . 102

x

LIST OF FIGURES

1.1 MoveIt! Trajectory Planning from a Fetch Robotics’ Fetch robot to a
Willow Garage’s PR2 robot . 2

2.1 A variety of robots. From left to right: Clearpath Robotics’ Jackal, Willow
Garage’s Turtlebot, Universal Robots’ UR5, Kinova’s Jaco, Softbank
Robotics’ Nao and Pepper. 4

2.2 YAML Excerpt of Jackal and Turtlebot 20
2.3 Convert a Jackal program to a Turtlebot program 24
2.4 UR5 configurations to Jaco configurations with B.3. We removed the

background of the Jaco for clarity. 27
2.5 Waving motion of Pepper and Nao . 28
2.6 MoveIt! Trajectory Planning from the Fetch to the PR2 29
2.7 Localization of the Jackal and the Turtlebot with laser scans. The axis

indicates the robot pose estimation. 31

3.1 Finite state machine of Example 7. This state machine was automatically
synthesized from the specification. The symbol ‘!’ denotes that the variable
value is False. The yellow node in the middle shows that with the current
specification, the outputs move and stop can both be true at the same time. 39

3.2 Overview of Connections to ROS Controller Node 50
3.3 Integration of the finite state machine in Example 7 with ROS 50
3.4 Map for Example 8 . 64
3.5 The Proposition Mapping GUI included in our package. We are mapping

propositions to ROS nodes and topics for Example 8 here. 66
3.6 Analysis result of output propositions publishing to input propositions for

Example 8 . 68
3.7 Analysis result of output nodes publishing to the robot velocity topic for

Example 8 . 69
3.8 Analysis result of output nodes publishing to the youBot’s arm controller

for Example 8 . 70
3.9 Both the ‘pickup node’ and the ‘drop node’ are mapped to the output pickup 71
3.10 A youBot performing its task as described in Example 8. 71
3.11 Four Sphero SPRKs for Example 9 . 72
3.12 Mapping for an output proposition move left 73
3.13 Analysis result of output nodes publishing to the robot velocity topic for

Example 9 . 74
3.14 Analysis with Section 3.5.2.5 . 75

xi

3.15 Analysis with Section 3.5.2.6 . 76

4.1 Connection of the three approaches. The purple boxes highlight the Re-
covery approach in Section 4.6; the green boxes highlight the Environment
Characterization approach in Section 4.7; the yellow boxes describe the
Integrative Negotiation approach in Section 4.8; finally, we abort the
execution if we reach the red boxes. 101

4.2 Workspace for Examples 2 and 4 . 121
4.3 Alice, the orange Aldebaran Nao, performing her task as described in

Example 11. 122
4.4 The robot performing the task described in Example 12. 127
4.5 DeliveryAgent (‘D’), the Johnny5 robot; KitchenAssistant (‘A’), the blue

Aldebaran Nao, and Chef (‘C’), the orange Aldebaran Nao, performing
their tasks as described in Example 13. 131

xii

CHAPTER 1

INTRODUCTION

The development of robotic technology has not only reduced human exposure to

dangerous and hazardous scenarios but also increased accuracy and e�ciency of task

execution. With a variety of tasks that can leverage robotic technology, humans have built

many di↵erent types of robots. Some of the robots are similar to each other while others are

drastically di↵erent in capabilities and appearance. For example, stationary robotic arms

and mobile robots have di↵erent capabilities, while robotic arms have similar capabilities

but they may vary in size. Even though robot development has improved robot hardware

reliability and software stability, execution failure can still arise when robots conduct

di↵erent tasks or are in proximity of other robots. Unexpected events can occur before and

during robot execution. If robots do not react accordingly, this can lead to catastrophic

failure and destroy both the robots and its operating environment. In this dissertation, I

explore ways to create robust task execution with robots over a range of di↵erent scenarios.

First, my dissertation presents an approach to automatically convert existing source robot

programs to target robot programs in Chapter 2. This is based on my current submission to

the IEEE Robotics and Automation Letters (RA-L) in 2018 [92] with my collaborator Hila

Peleg and my advisor Hadas Kress-Gazit. When a source robot originally designated for

a task is unavailable, it is desirable to execute the source program on another target robot

easily and automatically. The target robot should maintain its safety requirements and finish

the task with the same or similar program. For example, as shown in Fig. 1.1, both a Fetch

Robotics’ Fetch robot and a Willow Garage’s PR2 robot have mobile bases and are capable

1

of object manipulation with their end-e↵ectors. If a Fetch robot is no longer available, it is

ideal to take a readily-available program, adapt the program and execute it on a PR2 robot.

An automatic transfer of programs between the robots can reduce reprogramming time and

the delay on task execution.

(a) Fetch’s arm away from obstacles (b) PR2’s arm away from obstacles

Figure 1.1: MoveIt! Trajectory Planning from a Fetch Robotics’ Fetch robot to a Willow Garage’s
PR2 robot

The above robot programs are often referred to as low-level continuous controllers. In

robot execution, these low-level controllers are usually run in parallel with one or more high-

level discrete controllers, and the two types of controllers together form hybrid controllers.

In hybrid controllers, the high-level controllers interpret instructions from the user and

the low-level controllers communicate with the robot directly and command the robot.

My dissertation considers high-level controllers synthesized from specifications written

in Linear Temporal Logic (LTL), using the technique from [10]. With this technique, a

controller, if successfully generated, is provably-correct, i.e., the controller execution would

not contradict the specification given.

In Chapter 3, my dissertation examines the interactions between low-level and high-level

2

controllers. This is based on my paper published in the Journal of Software Engineering

for Robotics (JOSER) in 2017 [90] with my advisor Hadas Kress-Gazit. Many researchers

have proposed improvements on both low-level controller execution [2, 36, 40, 52, 65, 82]

and high-level controller execution [6, 7, 34, 39, 41, 44, 45, 73, 85, 93], but the interaction

between the two are rarely analyzed. If not handled properly, their interaction can create

problems during execution and hinder task progress. Chapter 3 addresses this problem and

outlines an approach to examine the inter-connection of high-level and low-level controllers.

The approach automatically suggests changes to the high-level task specification through

an analysis of the low-level controller network.

Finally in Chapter 4, my dissertation proposes a system to mitigate environment anoma-

lies during the execution of provably-correct controllers. This is based on my paper

published in the IEEE Transaction on Robotics (T-RO) in 2018 [91] with my collaborator

Rüdiger Ehlers and my advisor Hadas Kress-Gazit. While we can handle some potential

errors before execution as in Chapter 2 and Chapter 3, unexpected events can still happen

during execution. These unexpected events can lead to a controller breakdown with no

transitions to a next state, as the controller does not expect such a scenario and does not

know how to proceed. Here, I am interested in unexpected environment events during the

execution of provably-correct controllers. Chapter 4 illustrates how a provably-correct

controller can fail gracefully when unexpected events arise. The approach allows the robot

to continue executing its task and make progress towards its goals as long as the robot

satisfies its safety requirements. The approach further illustrates how other robots operating

in the same workspace are similar to unexpected events, and these events can be modified

through communication with robots creating the events.

3

CHAPTER 2

AUTOMATIC ROS CODE TRANSFER BETWEEN ROBOTS

2.1 Introduction

With the continuous development of robotic technology and the decreasing cost of robot

hardware, the community has evolved from building and using similar industrial robotic

arms in the past thirty years to creating and using more diverse hardware. Currently, there

are many di↵erent types of robots and each has similar yet di↵erent physical properties.

Fig. 2.1 displays some examples of existing robots. For instance, Clearpath Robotics’

Jackal and Willow Garage’s Turtlebot have di↵erent appearance, but both are moving bases

and can be equipped with sensors such as cameras and lidar. Similarly, Universal Robots’

UR5 arm and Kinova’s Jaco arm have di↵erent joint limits and link lengths, but they are

both robotic arms capable of performing a variety of tasks which include gesturing and

inventory fetching from shelves. Finally, the last two robots, Softbank Robotics’ Nao and

Pepper robots, are both humanoids but their size and mobility are dramatically di↵erent.

Figure 2.1: A variety of robots. From left to right: Clearpath Robotics’ Jackal, Willow Garage’s
Turtlebot, Universal Robots’ UR5, Kinova’s Jaco, Softbank Robotics’ Nao and Pepper.

Even though some robots have similar capabilities, transferring a program written for

4

one robot (source robot) to another robot (target robot) is not a trivial process since each

robot typically has a di↵erent Application Programming Interface (API). To execute a

source program on a target robot, one needs to rewrite the code using a di↵erent API while

ensuring the original commands are valid. An easy and adaptive code transfer process

between robots is desirable as it improves the robot software development paradigm and

eliminates the time spent on retrofitting any existing program to another robot.

This problem is partially mitigated with the Robot Operating System (ROS) [72]. ROS

is a popular open-source framework used by and developed by researchers, hobbyists and

industry experts around the world. Under this framework, each robot program created

follows a similar coding structure, i.e.: all robots share an API. With ROS, the transfer

process is made easier but other problems still persist: a user must find and replace the right

communication channels (topics/services/actions) when switching to a target robot; at the

same time, the commands to the target robot from the source program can be invalid and

expose the target robot to dangerous scenarios.

In this work, we present a system to streamline the code transfer process described

above. We treat this problem as a program synthesis problem: the creation of code in a

target language based on specifications. As in other program translation systems [38, 67],

our specification is a program – in our case, a program written for the source robot.

Given a description of the source robot, a source program and a target robot, without

any source program execution, our system not only transfers code, but also considers

physical properties of the source robot and the target robot. The target robot with the

resulting program exhibits behaviors that are similar to the behaviors of the source robot

5

with the source program, with commands validated to be within the robot limits. We

demonstrate how to create similar behaviors for di↵erent types of motion commands: (1)

for joint commands we minimize the target robots Cartesian distance from the source robot

configuration, (2) for path planning commands we ensure the target robot reaches the same

goal point as the source robot, and (3) for velocity commands we scale the target robot

velocities proportional to the source robot and the target robot limit ranges. In this work,

we consider commands to be safe if they are within the robot hardware limits. Our system

can be found on Github1.

Related Work

Researchers have developed approaches to facilitate ROS controller setup and execution.

Some researchers modified the original ROS message-passing methods to create ROS sys-

tems that tolerate online failure [51]. Other researchers streamlined the process to execute

synthesized controllers from high-level task specifications with ROS [89]. Researchers

also presented methods to determine ROS parameter values and internal program connec-

tions that maximize the overall system performance and minimize the required hardware

resources [14]. Of all the works discussed, [14] is the closest to our work. Compared to

our work, the work in [14] focuses on the ROS program resource usage and e�ciency

improvement, while our work focuses on the automatic transfer of ROS programs for one

robot to programs for some other robot using optimization and other techniques.

Our work is closely related to some of the program translation approaches. The
1
https://github.com/wongkaiweng/rosCodeSyn

6

https://github.com/wongkaiweng/rosCodeSyn

translation of programs from one programming language or platform to another is a problem

that has garnered recent attention [38, 67, 96], and has been tackled with machine learning

tools similar to those used for natural language translation. Program repair, or the problem

of accepting a program that does not satisfy some tests or logical formulas to outputting

a similar program that now satisfies the tests and formulas, has also been explored in the

programming languages community [54, 62, 66]. Both are fields which harness machine

learning tools in order to perform program synthesis [31, 32, 50, 53, 56, 69, 70, 84, 94],

generating a program that satisfies a provided specification. They deal with the general

cases of their respective problems. In contrast, this paper takes a more problem-specific

approach and leverages both program repair and program translation in the scope of ROS

programs.

For the rest of the paper, first, we outline related preliminaries in Section 2.2. We

motivate the problem solved in this paper in Section 2.3. We explain our approach in

Section 2.5 with an example described in Section 2.4. Afterwards, we demonstrate our

approach on several examples in Section 2.6. We evaluate our approach in Section 2.7 and

discuss the challenges of code transfer in Section 2.8. Finally, we summarize our work and

outline possible future extensions in Section 2.9.

2.2 Preliminaries

Definition 2.2.1. Robot Operating System (ROS) is an open-source robot control frame-

work used by people around the world, with software packages developed by researchers

and hobbyists. ROS works as a decentralized framework, with standalone programs (called

7

nodes) all connected to the same ROS master for communication purposes. In ROS,

there are three ways to communicate sensor information and actuation commands between

programs: topics, services and actions, which are di↵erent channels for message passing.

In this work, we focus on topics and actions. In the following we describe writing a ROS

program. The code snippets are all in Python.

• A topic is a many-in-to-many-out message channel for exchanging sensor data and robot

commands. A ROS node sending messages to a channel is a channel’s publisher and a ROS

node retrieving messages from a channel is a channel’s subscriber. A node can publish and

subscribe to multiple channels. Below is a code snippet with examples of initializing a

publisher and a subscriber.

Publisher

rospy.Publisher(topic_name,msg_type,. . .)

Publisher Example

rospy.Publisher(’cmd_vel’,geometry_msgs.msg.Twist,. . .)

Subscriber Example

rospy.Subscriber(’scan’,sensor_msgs.msg.LaserScan,. . .)

In this snippet, topic name is a string that specifies the topic name. msg type is a class

in Python and the message type. ’cmd vel’ is an example of topic name and it is of type

geometry msgs.msg.Twist.

• An action is a request and response channel with feedback provided during request

processing. For this channel, a node acts as an action server while other nodes act as clients,

all connected to the same ROS master. The duration from request to response varies. Below

8

is a code snippet with examples of initializing an action server and an action client.

Action Server

actionlib.SimpleActionServer(act_name,act_type,. . .)

Action Client

actionlib.SimpleActionClient(act_name,act_type,. . .)

Action Client Example

actionlib.SimpleActionClient(’follow_joint_traj’,trajectory_msgs.msg.

FollowJointTrajectoryAction)

In this snippet, act name is an action name. act type specifies the action type and it

is a class in Python. For example, ’follow joint traj’ is an action of type trajec-

tory msgs.msg.FollowJointTrajectoryAction.

A special group of actions commonly used in the community is enabled by MoveIt! [80],

a popular and widely-used package for trajectory planning of manipulators. In this paper,

we provide insight on how to transfer programs using MoveIt! actions in addition to regular

ROS actions. A typical usage of MoveIt! with Python in ROS is as follows:

mov_group=MoveGroupInterface(group_name,’base_link’)

mov_group.moveToPose(pose_goal, pose_frame)

The first line above initializes a planning interface mov group and specifies group name,

the group of joints and links involved in the planning process. The second line sends a goal

pose pose goal of a point (represented as a coordinate frame) on the robot, pose frame,

to the MoveIt! trajectory planning action server. pose frame is usually a coordinate frame

9

on the tip of the group group name.

Definition 2.2.2. ROS Messages Each message type in ROS has a defined structure [64]

for storing di↵erent information. Di↵erent message types can be used together to construct

a new message type. In this work, for parameter changes (Section 2.5.2), we focus on two

di↵erent types of messages that are commonly used to send commands to robots in ROS:

velocity messages and joint trajectory messages.

• Velocity Messages are in the form of Twist messages in ROS. They are sent through

publishers to a robot. We can separate each Twist message into linear(v) and angular(a)

velocity commands, and each of them can be further separated into x, y and z components.

By convention, for a di↵erential drive robot, a user sends linear x velocity, vx, to move a

robot forward/backward and angular z velocity, az, to turn a robot. Below is an example of

initializing and assigning a Twist message to control a di↵erential drive robot.

Message Assignment Example

vel_msg = geometry_msgs.msg.Twist()

vel_msg.linear.x = 1.0

vel_msg.angular.z = 0.5

Message Declaration Example

vel_msg = geometry_msgs.msg.Twist(geometry_msgs.msg.Vector3(1.0, 0, 0),

geometry_msgs.msg.Vector3(0, 0 ,0.5))

For a holonomic robot, a user can send linear x velocity, vx, and linear y velocity, vy, to

command a robot.

Diagonal motion - holonomic robot

vel_msg.linear.x, vel_msg.linear.y = 1.0, 1.0

10

A user can also send angular z velocity (az) to a holonomic robot. If both linear y velocity

(vy) and angular z velocity (az) are sent, it is up to the internal robot software to decide on

how to handle the commands.

• Joint Trajectory Messages specify robot joint commands and they are sent through an

action server to the robot. For each message, we specify the joints to command in the field

joint names and the commands in the field points. Below is an example.

Trajectory message example

traj = trajectory_msgs.msg.JointTrajectory()

traj.joint_names=[’joint_1’, ’joint_2’, . . .]

traj.points = [JointTrajectoryPoint(positions=0.0, . . .),

JointTrajectoryPoint(positions=1.57, . . .), . . .)

Each command in points is a JointTrajectoryPoint object, corresponding to a joint in

joint names. Note that there are other fields in JointTrajectoryPoint but in this work

we are mainly interested in the positions field, or position commands. Other fields for

joint velocity or acceleration commands can be handled similar to velocity commands in

Section B.2 described later.

Definition 2.2.3. Program Synthesis Problem is the problem of computing from a spec-

ification a program that implements it. The classic synthesis problem searches for an

implementation to a full specification, usually encoded in some logic. Newer variations on

the problem have turned to partial specifications, such as input-output examples or type

information, that are easier for the user to provide but describe a much wider array of

11

matching programs.

One of the forms of the synthesis problem is that where the specifications are in the

form of a program, as in our work here. Another work with programs as specifications is

the Sketch tool [56] which is used to deobfuscate programs.

Definition 2.2.4. Abstract Syntax tree (AST) is a tree structure that represents the syn-

tactic structure of a program or program fragment, reduced to provide the most concise and

convenient form for further processing (e.g. keywords are no longer kept and parentheses

are discarded). The AST can be used to further analyze the program after syntactic parsing.

Additional annotations on the tree are often added to preserve semantic information found

during phases of type-checking and analysis.

Definition 2.2.5. Compiler front-end is the part of the compiler that performs the analysis

of the source language text, with no consideration of the target language. A phase of the

front-end conducts syntactic analysis and builds an AST from the source language text.

The AST and its annotations created during compilation are then used by later phases of

the compiler or other analysis.

Readers can find more information about both the AST and the compiler front-end

in [30].

2.3 Problem Formulation

In this work, we address the problem of automatic program adaption between robots with

similar capabilities as deemed by the user. Formally,

12

Problem 1. Given a specification in the form of a ROS program in Python for a source

robot r, automatically modify this program such that the target robot r0 can safely execute

the adapted program and exhibit similar behaviors as the source robot r running the original

program.

In this work, we consider the target commands to be safe if they are within the robot’s

hardware limits. The source robot behaviors and the target robot behaviors are similar

if (1) the distance between robot trajectories is minimized for joint commands, (2) the

robots reach the same goal points for path planning commands and (3) velocities are scaled

proportionally based on the source robot and target robot limits for velocity commands.

Our approach in this work does not require an execution of the source code on the

source robot for data collection and it can handle variable assignments in the code. In

this work we mainly consider ground robots but our approach is applicable to UAVS and

underwater robots as well. We make the following assumptions in this work:

1. There are no inherent errors in the source code. We can compile and run the code of the

source robot.

2. Depending on the commands in the source program, our system is provided with the

corresponding velocity limit, the joint limit or the MoveIt! configuration files of the target

robot.

Our approach currently has the following restrictions:

1. We do not deal with arithmetic calculations of variables in the code.

13

2. We do not modify commands generated from runtime information.

2.4 Keyboard Control Example

To illustrate our approach, consider the following ROS program taken from Github2.

Example 1. This program controls a Jackal robot using keyboard arrow keys. Code

Snippet 1 contains parts of the program. In the code, line 1 sets up a velocity message

publisher and line 3 publishes velocity messages using the publisher. In the following, we

show how we automatically adapt this program and run it on a Turtlebot.

Code Snippet 1 Keyboard Control Program
1 pub=rospy.Publisher(’cmd_vel’,Twist,queue_size=1)

2 if up_arrow_key:

3 pub.publish(Twist(Vector3(0.5, 0, 0), Vector3(0, 0 ,0)))

4 elif: . . .

2.5 Approach

To solve Problem 1 in Section 2.3, we propose a process that synthesizes target code from

source code. Our approach divides the process into two parts: First, finding and replacing

the message channels with the correct names to deliver di↵erent messages. Second, ensuring

the commands are valid and safe for the target robot. If possible, we modify the commands

to create similar behaviors on the target robot.
2
https://github.com/siavash-khodadadeh/JackalNavigation/blob/master/scripts/

controller.py

14

https://github.com/siavash-khodadadeh/JackalNavigation/blob/master/scripts/controller.py
https://github.com/siavash-khodadadeh/JackalNavigation/blob/master/scripts/controller.py

2.5.1 Replace channel names based on message type (Communica-

tion)

In this subsection, we describe how we replace the subscribers/publishers and action

clients/servers (channel names) of the source robot with those of the target robot. In ROS,

each channel name corresponds to a message type. For example, in line 1 of Code Snippet 1,

the topic name ’cmd vel’ passes messages of type Twist. Our approach automatically

examines and categorizes channel names by message types, and finds a suitable replacement

later. We present three methods for finding channel names based on message types.

A.1 From code examples on codebases

One of the methods to find suitable channel names is to learn from other users. We

can use a codebase of programs for the target robot to learn probable channel names. We

created our codebase by mining online services such as GitHub and organized the code

by robots. We replace the original channel name with the most likely channel name based

on the probability distribution created from examples for the target robot, i.e., the channel

name with the highest probability.

In this work, we have manually collected Python code from GitHub for di↵erent robots.

On each collected script for the target robot, we automatically run the compiler front-end,

and retrieve all channel names by message type from the generated AST. Once we collect

all channel names by message types from the target robot codebase, we calculate the

distribution of channel usage. In this work, we automatically select the channel name

15

with the highest usage probability and we replace the channel name in the source code.

Alternatively, we can present the distribution to the user and prompt for user decision.

In Example 1, Code Snippet 1 is first compiled and we automatically identify all

the publishers/subscribers together with action servers/clients. In this case, we find one

publisher with message type Twist. Our method then automatically looks for all topic

names with message type Twist from the Python codebase of the target robot, Turtlebot.

We have collected 67 Turtlebot scripts and the topic name distribution of Twist is shown

in Table 2.1.

Twist Topic Name Count Probability
cmd vel mux/input/navi 15 0.52
cmd vel mux/input/teleop 8 0.28
mobile base/commands/velocity 3 0.10
cmd vel 2 0.07
cmd vel mux/input/switch 1 0.03

Table 2.1: Distribution of type Twist from Turtlebot codebase

Our method automatically selects the topic name with the highest probability, re-

places the topic name in the AST and converts the AST back into code for the target

robot. In Example 1, our method replaces ’cmd vel’ in line 1 of Code Snippet 1 with

’cmd vel mux/input/navi’, the Turtlebot channel name with the highest count that corre-

sponds to type Twist.

pub=rospy.Publisher(’cmd_vel_mux/input/navi’, Twist, queue_size=1)

A.2 From available topics/actions (rostopic)

If there aren’t enough code examples to extract data, we leverage other information

16

available, such as the list of topics/actions connected to the current ROS master. We

automatically retrieve the list of available topics/actions with the ‘rostopic’ command and

obtain the message type of each channel. Below is an example of channel listing with the

type of each channel.

/camera/rgb/image_raw (sensor msgs/Image)

/cmd_vel_mux/input/navi (geometry msgs/Twist)

/odom (nav msgs/Odometry)

/scan (sensor msgs/LaserScan)

... ...

Our method automatically searches for channel names matching the desired message

type. Since we cannot obtain a distribution as in A.1, if there is more than one channel

name with the same message type, we present the result to the user and ask the user to

choose an appropriate replacement.

For Example 1, our method presents the following prompt to the user if we do not have

any Turtlebot code examples:

Please select a topic for Twist from the list.

The original topic was ’cmd_vel’. Input Example: 1

1. /cmd_vel_mux/input/navi

2. /cmd_vel_mux/input/safety_controller

3. /cmd_vel_mux/input/switch

4. /cmd_vel_mux/input/teleop

5. /mobile_base/commands/velocity

Then our method replaces the channel name based on the user selection.

17

To increase replacement accuracy, we can also combine A.1 and A.2: first we can use

A.1 to search for the most probable replacement and then A.2 to verify that the replacement

topic exists on the target robot.

A.3 From possible target MoveIt! groups

When the source program contains a MoveIt! trajectory planning request, we want the

target robot to reach the same pose (pose goal) as the source robot. The goal pose remains

unchanged but to plan for the target robot, we replace the group of links and joints for

planning (group name), and the location of the pose goal on the robot (pose frame), often the

robot end e↵ector frame, with those of the target robot. For example, for the group name

Nao’s left arm, the pose frame is Nao’s left wrist.

To do so, first, we find all the possible planning groups and pose frames from the

Semantic Robot Description Format (SRDF) file3 of the target robot. An SRDF file

describes all the possible planning groups and for each group, its links and joints. We

compare the available target group names with the source group name and sort the names

by similarity using Ratcli↵ and Obershelp’s Gestalt Pattern Matching [76]. We then present

the sorted list to the user and ask for their input. We can derive a pose frame automatically

from the group chosen. At the end, we replace group name and pose frame with those of

the target robot.
3
http://wiki.ros.org/srdf

18

http://wiki.ros.org/srdf

2.5.2 Check and modify variables (Parameters)

In addition to replacing the communication method through channel name replacement, our

approach checks and ensures the commands that will be sent to the target robot are valid.

To do so, we first extract valid command ranges from di↵erent robot configuration files.

We consider the Unified Robot Description Format (URDF) files4 which encode upper and

lower joint limits of manipulator joint limits, and YAML files5 which encode velocity limits

of mobile robots. We can retrieve joint limits and velocity limits from these two types of

files.

In this work, we target Twist messages (velocity commands) for mobile robots and

JointTrajectory messages (joint commands) for robotic arms. We outline three di↵erent

methods to ensure the robot commands are within limits and to create target robot behaviors

that are similar to the source robot behaviors.

B.1 Check if commands are within limits

Before modifying an existing command, first we check if it is a valid command. Our

check requires the target robot’s URDF file for joint command validation and its YAML

file for velocity command validation. From the URDF and/or YAML file, we obtain the

velocity and joint limits of the target robot. For Example 1, the YAML file excerpts of the

source robot Jackal and the target robot Turtlebot are shown in Fig. 2.2.
4
http://wiki.ros.org/urdf

5
http://www.yaml.org/

19

http://wiki.ros.org/urdf
http://www.yaml.org/

Figure 2.2: YAML Excerpt of Jackal and Turtlebot

Jackal
linear :

x:
lower: �2.0
upper: 2.0
deadband: 0.0

angular :
z:

lower: �4.0
upper: 4.0
deadband: 0.0

Turtlebot
linear :

x:
lower: �0.8
upper: 0.8
deadband: 0.0

angular :
z:

lower: �5.4
upper: 5.4
deadband: 0.0

Similar to Section 2.5.1, we find all the commands in the compilation process. We

check if a command is within the target robot limits; if it is not, we notify the user.

In Example 1, the message command on line 3 in Code Snippet 1 sets the linear x

velocity component to 0.5 (Twist.linear.x = 0.5). We check that the command is within

the velocity limits of the Turtlebot, -0.8 Twist.linear.x 0.8.

B.2 Scale velocity commands

In addition to providing feedback to the user, we can also modify and scale robot

commands proportional to the source robot and the target robot limits. Scaling velocities

aims to preserve relative motions in the program. This method requires YAML files of both

robots.

In this work, we restrict the method to a same-drive scaling, i.e., it can be a di↵erential-

drive-to-di↵erential-drive velocity scaling or a holonomic-robot-to-holonomic-robot veloc-

ity scaling, but it cannot be a di↵erential-drive-to-holonomic-robot scaling. Section 2.8

outlines why it is di�cult to convert commands between two di↵erent robot drives. In

general, we assume both the source robot and the target robot uses the same fields, for

20

example Twist.linear.x, for robot control.

Given the robot’s velocity limits and its deadband, where a command between 0 and

the deadband has no e↵ect on the robot and can be treated as zero commands, we can scale

the robot commands appropriately with the following two equations:

Ct =
(Cs � Ds)

(ULs � Ds)
⇥ (ULt � Dt) + Dt (2.1)

Ct =
(Cs + Ds)
(LLs + Ds)

⇥ (LLt + Dt) � Dt (2.2)

In Eq. 2.1 and Eq. 2.2, we find Ct, the target command, given the source command, Cs.

The subscript s stands for the source robot and the subscript t stands for the target robot.

D is the deadband; UL is the upper limit and LL is the lower limit. We assume the upper

limit is bigger than zero and the lower limit is smaller than zero, with the deadband being

symmetric and D always positive. Eq. 2.1 scales commands bigger than or equal to zero

while Eq. 2.2 scales commands smaller than zero. Our approach allows the robot to have

di↵erent upper and lower limits.

In Example 1, with the source and target YAML file in Fig. 2.2, we scale the command

in line 3 in Code Snippet 1 with Eq. 2.1. The new linear x velocity command is 0.2:

pub.publish(Twist(Vector3(0.2, 0, 0), Vector3(0, 0 ,0.0)))

In the previous method in B.1, it ensures a command is within limits but it does not

guarantee the resulting behaviors to be the same: units are not encoded in the YAML files

currently and the processing of commands can be di↵erent between robots. Our method

in B.2 does not rely on the source and the target YAML file using the same units and we

preserve relative motions with scaling.

21

In this method, we outline a simple linear scaling method that scales velocity commands.

Nonlinear scaling of commands is also possible based on the framework in this method.

Given the limit files and the nonlinear relation between the source commands and the target

commands, we can perform nonlinear conversion of commands similar to the case here.

B.3 Optimize joint trajectories

We can scale joint commands similar to velocity commands. However, straight-forward

scaling of joint commands based on joint limits may result in target robot behaviors that

are significantly di↵erent than the source robot behaviors. In this work, we leverage the

work in [81] to map joint commands of one robot to another regardless of the number of

joints and lengths of each link.

Our method requires the URDF files of both the source robot and the target robot.

Before leveraging [81] and mapping joint commands, with the AST of the source code, our

method automatically searches for JointTrajectory commands in the AST, and extracts

robot joint names and joints commands to the source robot. With the source robot URDF

and the list of joint names, we automatically retrieve a corresponding kinematic chain. As

for the target robot, our method starts by finding source joint names from the target URDF.

If we cannot find the same joints, our method automatically finds the longest kinematic

chain from the target robot URDF for mapping and replacement in the transfer process.

With the kinematic chains of the source robot and the target robot, our method leverages

[81] and optimizes the target joint angles, such that the resulting joint angles generate the

closest robot configuration in Cartesian coordinates to that of the source robot with the

source angles found in the source program. The optimization technique in [81] considers

the upper and lower limits of each joint, and minimizes the distance between discretized

22

locations on the two chains. A user can specify the importance of the chain shape in

comparison to end e↵ector location in this optimization technique. In this work, we

extend [81] and find the weight between the chain shape and the end e↵ector automatically

during optimization.

At the end, we replace both the joint names and the joint angle commands in the source

code with that of the target robot from the optimization.

Table 2.2 summarizes the configuration files needed for each method described to check

and modify variables. We provide feedback at the end of the transfer summarizing all the

changes and replacements that cannot be found. With this information, our approach keeps

users in the loop and allows the user to inspect and verify the changes before execution.

Our implementation can be found on Github6. We demonstrate our methods with

examples in the following section.

Method Source
YAML

Target
YAML

Source
URDF

Target
URDF

B.1 Check if commands are within limits - -
B.2 Scale velocity commands - -
B.3 Optimize joint trajectories - -

Table 2.2: Configuration files for each method

6
https://github.com/wongkaiweng/rosCodeSyn

23

https://github.com/wongkaiweng/rosCodeSyn

2.6 Examples

In this section, we illustrate the methods described in Section 2.5 with examples involving

a variety of robots. Several source programs (Example 1-3, 5-6 below) were downloaded

from GitHub, as indicated in the following. Executions of source and target robots is

available online7.

2.6.1 Keyboard control example revisited

As shown in Section 2.5, for Example 1, we can automatically replace variables and topic

names of the source robot, the Jackal, with those of the target robot, the Turtlebot. After

replacement, we can control Turtlebot with arrow keys and drive the robot around. This is

the first example in the video online.

(a) Jackal in our lab (b) Simulated Turtlebot in Gazebo

Figure 2.3: Convert a Jackal program to a Turtlebot program

7
https://youtu.be/Bhso4Kgdcx8

24

https://youtu.be/Bhso4Kgdcx8

2.6.2 Obstacle avoidance example

Example 2. We consider a ROS program that controls a Turtlebot and avoids collisions

with obstacles8. We convert this Turtlebot program into a Jackal program.

In Example 2, from the source code, we find a subscriber to the LaserScan topic and

a publisher to the Twist topic. We search for suitable replacements from code examples

collected for Jackal. The distributions are shown in Table 2.3 and Table 2.4.

Twist Topic Name Count Distribution
cmd vel 4 0.57
jackal vel controller/cmd vel 2 0.29
cmd vel/keyboard 1 0.14

Table 2.3: Distribution of type Twist from Jackal codebase

LaserScan Topic Name Count Distribution
front/scan 1 1.0

Table 2.4: Distribution of LaserScan from Jackal codebase

We replace the two topics in the code with those of the highest distribution (A.1) and

verify the topics exist on the target robot (A.2). We also check to ensure the commands

are within limits (B.1) and scale velocity commands (B.2). The snippet below shows the

modification:

41 rospy.Subscriber(’front/scan’, LaserScan, ...

...

8
https://github.com/njarrow/TurtleBot/blob/master/wander

25

https://github.com/njarrow/TurtleBot/blob/master/wander

45 vel_pub = rospy.Publisher(’cmd_vel’, Twist, ...

...

70 vel=0.75

Both the source robot Turtlebot and the target robot Jackal respond to the laser scan

information and avoid collision. This is the second example in the video online.

2.6.3 Joint trajectory following example

Example 3. Consider a Universal Robot’s ROS program that moves a Universal Robot

UR5 arm (6 DoF) to di↵erent configurations9. We demonstrate transferring this program to

a Kinova Jaco arm (7 DoF).

To do so, we first run the compiler front-end on the source code. There is one action

client with type FollowJointTrajectoryAction in the AST. We search through the Jaco

arm codebase but we cannot find an action matching the message type (A.1).

In this case, we use A.2 and search through the current list of available topics and

actions. We prompt the user to choose an action from two options found:

Please select an action for FollowJointTrajectoryAction from the list.

The original topic was ’/arm controller/follow joint trajectory’. Input Example: 1

1. effort_joint_traj_controller/follow_joint_traj

2. effort_finger_traj_controller/follow_joint_traj

9
https://github.com/ros-industrial/universal_robot/blob/kinetic-devel/ur_

driver/test_move.py

26

https://github.com/ros-industrial/universal_robot/blob/kinetic-devel/ur_driver/test_move.py
https://github.com/ros-industrial/universal_robot/blob/kinetic-devel/ur_driver/test_move.py

Since we are replacing joint commands, we choose 1 and convert the action

client name from ’/arm controller/follow joint trajectory’ of the UR5 to ’ef-

fort joint traj controller/follow joint traj’ of the Jaco.

Joint names and joint commands of the UR5 are automatically extracted from the source

program. We use our method in B.3 to obtain new joint commands that create similar arm

configurations as the UR5 on the target robotic arm, the Jaco. We replace the joint names

and joint commands in the AST and create a new ROS program for the Jaco arm. The two

robotic arms conduct a similar triangular motion at the end, as shown in Fig. 2.4. This is

the third example in the video online.

(a) Original UR5 configurations (b) Generated Jaco configurations

Figure 2.4: UR5 configurations to Jaco configurations with B.3. We removed the background of
the Jaco for clarity.

2.6.4 Greet Example

Example 4. Consider a ROS Program that controls a Softbank Robotics Pepper with a

graphical interface. This is an example created by the authors. We would like to transfer

27

(a) Pepper waving left (b) Nao waving left

(c) Pepper waving right (d) Nao waving right

Figure 2.5: Waving motion of Pepper and Nao

this program onto a Softbank Robotics Nao.

In this example, we convert both mobile base commands in the Twist messages and

manipulator commands in the JointTrajectory messages to those appropriate for the target

robot. We scale velocity commands using B.2 and perform trajectory optimization with B.3

to create a waving motion for the Nao. The results are shown in Fig. 2.5. This is the fourth

example in the video online.

28

2.6.5 Path Planning Example with MoveIt!

Example 5. Consider a ROS Program that moves the end e↵ector of a Fetch Robotics

Fetch robot between two obstacles and away from them using MoveIt!. This is adapted from

an example online10. We demonstrate transferring this program to a PR2 robot.

(a) Fetch’s arm away from obstacles (b) PR2’s arm away from obstacles

(c) Fetch’s arm between obstacles (d) PR2’s arm between obstacles

Figure 2.6: MoveIt! Trajectory Planning from the Fetch to the PR2

Using A.3, we find out the code plans trajectories for the “arm with torso” group of the

Fetch in the “wrist roll link” frame. Using the SRDF file of the PR2, we find all the possible
10
http://docs.fetchrobotics.com/manipulation.html

29

http://docs.fetchrobotics.com/manipulation.html

groups and we present the sorted results to the user. The user chooses “left arm with torso”

as the new group. From there, we automatically find a target frame “l wrist roll link” and

update the target robot script. The result is shown in Fig. 2.6. Note that if a goal point is

not reachable, we would not know until execution. In the future, we would like to provide

feedback regarding these scenarios during the transfer process. This is the fifth example in

the video online.

2.6.6 Localization Example

Example 6. Consider a ROS Program that localizes a robot based on laser scans11. The

original source robot is unknown. We demonstrate transferring this program to both a

Jackal robot and a Turtlebot.

We replace the topics in the program with A.1 and verify the topics exist on the target

robot with A.2. We run the program and drive both the Jackal and the Turtlebot manually.

During the program execution, we obtain good approximations of the robot location, as

shown in Fig. 2.7. This is the sixth example in the video online.
11
https://github.com/penguinmenac3/ros_graph_slam/blob/master/scripts/graph_

slam_node.py

30

https://github.com/penguinmenac3/ros_graph_slam/blob/master/scripts/graph_slam_node.py
https://github.com/penguinmenac3/ros_graph_slam/blob/master/scripts/graph_slam_node.py

(a) Turtlebot Localization (b) Jackal Localization

Figure 2.7: Localization of the Jackal and the Turtlebot with laser scans. The axis indicates the
robot pose estimation.

31

2.7 Evaluation

Table 2.7 displays a summary of the approach performance in the Example Section.

Examples
Time
Taken

(s)

Section 2.5.1
Communication

Replacement
(# of channels)

Section 2.5.2
Parameter

Replacement
(# of parameters)

Total
Replacement

(#)

User Input
in Total

Replacement
(# of instances)

of
Target
Robot

Examples

Lines in File
/

Replacement
Errors

Example 1: Keyboard control 2.9 1 8 9 0 67 75/0
Example 2: Obstacle avoidance 1.4 2 4 6 0 12 85/0
Example 3: Joint trajectory following 11.7 1 40 41 1 60 89/0
Example 4: Greet 3.3 2 14 16 1a 0 209/0
Example 5: Path Planning with MoveIt! 2.8 2 0 2 1b 110 69/0
Example 6: Localization (Turtlebot) 10.08 5 0 5 1 67 339/0
Example 6: Localization (Jackal) 8.74 5 0 5 1 12 339/0

aThe two communication replacements both come from the Current Available Topics (A.2), with one been unique and required no user input.
bThis user replacement instance comes from the MoveIt! Replacement (A.3), which is not based on robot examples.

Table 2.5: Summary of Example Results

As shown in Table 2.7, our approach requires minimal user intervention, with only one input from the user in Examples 3, 4, 5 and 6. In

general, the need for user input is inversely proportional to the number of available target robot examples and the quality of the examples.

Depending on the choice of the target robot, the user can find it di�cult to collect robot examples from online codebases. Common robots such

as the Turtlebot and the PR2 have relatively abundant examples available online while other robots such as the Jackal and the Nao have fewer

examples by other users. Even though some robots have more examples, they are still mainly on the order of 10 with the maximum number of

examples to be around 150. More examples are needed to extract other usage patterns. Collecting code examples from robotics experts also

reduces replacement errors as the length of the script increases.

32

2.8 Challenges Ahead

To generalize a transfer process for any robot and any program, we summarize our experi-

ence and outline some of the challenges ahead:

1. Understanding programmers’ intent

Consider the following code snippet of Example 2:

Code Snippet 2 Obstacle Avoidance Program
68 ...

69 if SCAN.ranges[320]/10 >= .3:

70 vel=.3

In Example 2, we replaced vel=.3 in line 70 of Code Snippet 2 with vel=.75 for the

Jackal using B.2. In Code Snippet 2, we can also see that there is another .3 in line 69.

We do not know the intent of the programmer here and we cannot tell if this .3 should be

replaced as well.

2. Determining if commands are bundled

If we want to convert holonomic robot commands into di↵erential drive commands,

we can perform the calculation easily but the challenge comes from how we determine the

commands for conversion. Consider the code snippet below:

vel_msg.linear.x = 1.0

...

vel_msg.linear.y = 0.5

33

In the code, the velocity message is changed at two di↵erent places. It is unclear

if we should consider the two changes to be the same command when converting from

holonomic commands to di↵erential drive commands. The commands can either result in a

holonomic robot moving forward then sideways or the robot moving diagonally. It may

require execution of the code to figure out the actual commands and perform a conversion.

3. Handling assignment with arithmetic operations

As one of our assumptions, currently we do not deal with any arithmetic operations.

Arithmetic operations pose extra challenge when checking if a command is within limits.

They may require partial code execution to retrieve values. Another challenge arises when

finding a replacement that involves multiple variables.

4. Handling commands generated from sensor information

Some robot commands are generated from sensor information such as lidar scans and

video feed. Since we cannot get an actual command without any sensor data, it is di�cult

to say if a command is within limits. It may require program analysis technique such as

symbolic testing or concolic testing to perform analysis and replacement.

5. Retrieving velocity configuration in YAML files

Currently the format for defining velocity limits is not unified and each robot manufac-

turer uses a di↵erent format. In this work, we have processed the files and created a unified

format for using the files in our approach.

6. Collecting robot examples

As discussed in Section 2.7, to further improve code transfer, we need more examples

than the current hundred to extract usage patterns and other information. The creation

34

of a centralized robot codebase would be useful for the improvement of robotic software

development.

2.9 Conclusion and Future Work

In this work, we present a system that given a ROS program of a source robot, automatically

synthesizes a program for a target robot. We leverage the standardized framework of

ROS. Automatic code transfer improves code reusability between robots and allows fast

deployment of another robot when the source robot is unavailable.

In our approach, we find and replace source robot message channels with target robot

message channels. We mine possible channel names from code examples on codebases

such as GitHub and current active channels. Our approach also ensures commands to the

target robot are safe and the target robot exhibits similar behaviors as the source robot, by

checking to make sure all commands are within limits, scaling velocities and optimizing

joint trajectories.

Based on our experience, we evaluate and outline some of the challenges of automatic

code transfer between robots. Our approach provides a good starting point to automatically

transfer code between robots and keep the user in the loop on the transfer process. As

for future work, we want to expand and find correlations among di↵erent commands with

a bigger collection of code examples. We will also explore other ways to reason about

transfer between di↵erent robot dynamic/kinematic models, such as from a moving base to

a UAV. Last but not least, we want to collect and create a larger example codebase such that

35

we can extract intricate usage patterns and improve robotic software development.

36

CHAPTER 3

ROBOT OPERATING SYSTEM (ROS) INTROSPECTIVE IMPLEMENTATION

OF HIGH-LEVEL TASK CONTROLLERS

3.1 Introduction

Synthesis of correct-by-construction robot controllers has gained popularity in recent

years [3, 4, 6, 7, 23, 25, 47, 58, 59, 63, 74, 86, 93]; researchers have leveraged synthesis

techniques from the formal-methods community to automatically generate these controllers.

With controller synthesis, a user with no programming expertise can automatically generate

a controller given a specification; if synthesis is successful, the synthesized controller

is correct-by-construction, i.e., the controller does not deviate from the user instructions

during execution. This is an advancement from the status quo where programmers may

accidentally introduce errors into the controller, and the controller can exhibit unexpected

behaviors during execution.

Over the years, researchers have explored and improved controller synthesis in a variety

of directions. Controller synthesis has coupled with sampling-based motion planning to

speed up motion plan creation [7] and take into account the complex and nonlinear dy-

namics of a system operating in a partially unknown environment [63]. Besides planning

trajectories with sampling-based motion planning approaches and synthesis, we can gen-

erate trajectories by reducing the trajectory generation problem to a sequence of shorter

horizon problems while maintaining temporal properties with synthesis [93]. In the case of

expected occasional human intervention, we can synthesize a semi-autonomous controller

37

for correct operation [58]. These controllers are also improved to increase robustness

against intermittent [25] or chronic [86] unexpected environment events; disturbances in

a multi-agent systems with both controlled and uncontrolled agents [4]; and exogenous

disturbances on a system with continuous dynamics [59]. If controller synthesis fails, we

can provide feedback [74] and automatically suggest changes to the task specification [3].

A majority of existing works such as the ones above have discussed how to improve

controller synthesis in di↵erent directions for robotics applications. Yet, the process to go

from synthesizing a controller to executing a controller on a robot is omitted in most of the

works, and this process is often not as trivial as it seems. Consider the following task that

we can deploy with either a single robot or a group of robots:

Example 7. Robot(s) always move forward. If Robot(s) sense an obstacle, it(they) should

stop moving.

Specification 1 Obstacle Sensing Specification

Always move.1
If you are sensing person then do stop.2

The high-level task specification of Example 7 is shown in Spec. 1 in the form of

Structured English [46] sentences. These sentences belong to a restricted English grammar

that enables users to write specifications using language and not code.

With a specification, to execute a task, we start by translating the task specification to

logical formulas [46] and then synthesizing a controller using the technique from [10]. In

the case of Example 7, we can successfully synthesize a controller. This controller is a

38

Figure 3.1: Finite state machine of Example 7. This state machine was automatically synthesized
from the specification. The symbol ‘!’ denotes that the variable value is False. The yellow node in
the middle shows that with the current specification, the outputs move and stop can both be true at
the same time.

finite-state machine, as shown in Fig. 3.1. To execute a continuous task with the discrete

finite-state machine shown in Fig. 3.1, we abstract the continuous behaviors of the robot(s)

and its(theirs) environment into Boolean variables – they are also known as ‘propositions’.

In the controller shown in Fig. 3.1, we have three propositions; the controller takes in

as input a Boolean proposition person and in return determines the values of two output

propositions move or stop, i.e., whether the robot should move and/or stop.

The circles in Fig. 3.1 are the robot states and there are four in total for this controller.

Each circle displays the valuation of the two output propositions in that state. If a proposi-

tion’s value is false, it is denoted with a ‘!’ in front. Each edge is labeled with a valuation

of the input proposition. Depending on the incoming valuation of the input proposition and

the current state, the controller moves to a next state.

Consider a single-robot scenario: to execute the controller on a physical system such

as a KUKA youBot, we start by connecting each input or output in the controller to an

executable program that processes sensor information or sends out robot commands; we

39

called this process ‘mapping’. Here, we map the outputs move and stop to programs that

execute robot velocity commands such as moving forward or stopping; we map the input

person to the result of a perception module that implements a person detector using camera

images from a camera mounted in front of the robot.

Even though the controller synthesized in Fig. 3.1 is correct-by-construction with

respect to the specification, the user may introduce errors at runtime through the mapping

of controller inputs/outputs to low-level programs executing the commands. For instance,

if the outputs move and stop are mapped to the same controller, when they are both true, as

in the yellow state in Fig. 3.1, conflicting velocity commands will be sent to the robot. This

is undesirable and we should provide feedback to the user before execution to prevent such

a case.

The synthesized controller is also not limited to single-robot execution and we can

control multiple robots at the same time using a single controller such as the one in

Fig. 3.1. Consider a two-robot scenario: we want to control two KUKA youbots using

the controller in Fig. 3.1. In this scenario, each output proposition should command both

robots. For example, if the output move is true, then the mapped output programs should

send commands to both robots and both robots should move forward. However, the user

could leave one robot uncontrolled by mistake: for example, when the output stop is true,

commands are only sent to one of the two robots; as a result, one robot would stop while

the other may keep moving forward; this generates unexpected outcomes. In this work, we

also want to check for situations similar to the scenario above before execution to prevent

abnormal behaviors.

40

In this work, we propose a framework to streamline the process of converting a high-

level task specification into an execution of the corresponding synthesized controller. We

focus on implementations based on the Robot Operating System (ROS), a popular open-

source software with a rich library of packages developed by users around the world. ROS

works as a distributed system, with programs known as ‘nodes’ that each must connect to

a ROS master which keeps track of channels for one node to reach another node. Nodes

connected to the same ROS master can communicate with each other through message

passing in three di↵erent methods: topics, services and actions. A topic is a many-in-many-

out long-term message channel, a service is a short request/reply channel and an action is

analogous to a longer service with intermediate feedback provided before a reply.

We show in this work how there exists a natural connection of correct-by-construction

controllers to ROS. Specifically, we:

1. Propose a framework for a seamless integration of correct-by-construction controllers

with ROS. In this framework, we consider the controller as a ROS node, and the

inputs and outputs of the controller as topics that other nodes can use to communicate

with the controller.

2. Detect possible failures related to the mapping between the controller and the low-

level programs, i.e., ROS nodes, connected to the controller. For example, we are able

to detect possible faults related to the implementation of Example 7 where the robot

can stop and move at the same time and where one robot in a group of homogeneous

robots is left uncontrolled.

3. Automatically provide feedback to the user in the form of suggested changes to the

41

specification.

4. Demonstrate our framework for both single robot execution and homogeneous robots

execution.

Compared with our previous work [89],

1. We removed the constraint of one output proposition (topic) to one ROS node.

Our framework now allows connection of multiple ROS nodes to the same output

proposition (topic);

2. With the constraint above removed, we also provide a solution to check if multiple

nodes connected to the same output proposition are sending conflicting commands;

3. We show that our framework can control multiple robots with one correct-by-

construction controller. We demonstrate the updated framework with an example

controlling a group of homogeneous robots. We discuss the possible failure and

feedback we can provide.

The rest of the paper is as follows: first we discuss existing work in Section 3.2; then

we define the problem addressed in this paper in Section 3.3. In Section 3.4, we define

the necessary preliminaries. In Section 3.5, we describe our framework and how we can

detect and provide feedback to the user; we illustrate and discuss our approach using two

examples in Section 3.6. In Section 3.7, we evaluate our work independent of the examples.

Finally, in Section 3.8, we summarize our work.

42

3.2 Related Work

The ROS package SMACH [12] can execute finite-state machines; it allows a user to

manually create finite-state machines and execute them on robots. Our software is similar in

that we can also execute finite-state machines, but we automatically synthesize these state

machines from high-level task specifications; and the controllers, if successfully generated,

are correct-by-construction. The work in [87] has also executed robot controllers with ROS

starting from high-level task specifications. However, they do not adapt their execution to

ROS’s standard structure and they do not provide any analysis.

Besides providing feedback before controller execution, some have proposed mecha-

nisms to increase robustness in controller execution. The work in [51] modifies the ROS

message-passing methods such that the modified methods can result in an adaptive system

that tolerates failure online. Compare to [51], we do not modify the ROS message-passing

methods; we analyze existing ROS structures and check for potential errors in this work.

Researchers have also leveraged a hybrid navigation architecture for robot execution with

ROS [77]. The work proposes a robot motion planning method that is reactive to obstacles.

Compare to [77], our approach reacts to not only obstacles but also other environment

events such as alarms or pickup requests. In this work, we propose a seamless integration

of correct-by-construction controllers with ROS; we point out potential failure and suggest

specification modifications before robot execution. Our changes is also not limited to

motion planning.

During the execution of correct-by-construction controllers, researchers have proposed

43

di↵erent approaches to tackle anomalies. Researchers have monitored and detected viola-

tions of higher-level task specifications at runtime [86, 91] (Chapter 4). In their approach,

they have also automatically added in ‘recovery’ transitions to the controller such that the

robot can safely continue its task even when a higher-level task specification is violated at

runtime. Some also look at resynthesizing controllers when unexpected condition occurs

during execution [61]. In this work, we provide feedback and suggest changes based on

the analysis of the low-level controller interactions unlike [91] which adds in transitions

based on the high-level specification. The changes made in this work are before execution

unlike [61] which resynthesizes controllers during execution.

3.3 Problem Formulation

In this work, we present an system that implements a controller synthesized from a high-

level task specification with ROS seamlessly. We consider manual mapping of correct-by-

construction controller inputs and outputs to one or multiple ROS nodes. As described

in Section 3.1, even when executing a correct-by-construction controller on a robot, the

system can still create erratic execution. For instance, in Example 7, the robot can move and

stop at the same time with the controller in Fig. 3.1. The resulting behavior is unknown and

the robot can crash into a person. In the case of executing more than one robot under the

same controller, the robots may not receive the same commands due to incorrect mapping

and this may lead to unexpected execution.

We consider the following problem:

Problem 2. Given a high-level task specification and a mapping of controller inputs and

44

outputs to ROS nodes, provide:

(a) safety and goal-satisfaction guarantees for robot execution with ROS under user

assumptions about the environment behaviors in the specification;

(b) guarantees on conflict-free message-passing to ROS topics and actions;

(c) feedback to the user about foreseeable and possible execution failure.

For our approach, we make the following assumptions about the system of interest:

1. There is only one single ROS master across multiple machines. 2. No ROS node launches

another node during execution.

3.4 Preliminaries

Definition 3.4.1. Robot Operating System (ROS)

The Robot Operating System (ROS) is a robotics middleware comprising of software

libraries developed and shared by researchers and hobbyists around the world. In ROS,

these libraries are known as packages. To use ROS, users start by creating stand-alone

programs called nodes, each denoted as n, with custom or existing ROS packages. Each

node n can execute robot commands, retrieve and update sensor information or process and

forward incoming data. ROS operates as a distributed system; to exchange information

with other nodes, each node must connect to a ROS master. Through the master, each node

can locate and communicate with another node through message-passing in three di↵erent

methods:

45

1. Topics: A node n interacts with a topic T either through subscribing to information

in the form of messages from the topic or publishing messages to the topic. Each

topic creates a many-in-to-many-out relationship; it is a message bus that can only

pass one type of message but multiple nodes can subscribe or publish messages to

the topic T . We call a node that subscribes to messages from a topic the topic’s

subscriber while a node that publishes messages to a topic the topic’s publisher.

2. Services: Services provide a request/reply relationship in ROS. Any node n can send

service requests to a service-providing node and wait for replies as long as the two

nodes are connected to the same ROS master. The duration of a request to a reply

is usually relatively short. For example, in the MoveIt! [80] package of ROS, the

move group node provides an inverse kinematics service that returns joint values of a

robot arm based on a given pose of the robot end e↵ector. The time taken is usually

less than a second.

3. Actions: Actions are treated as services that take a longer time to fulfill the request.

When an action server node receives a request, the server processes the request and

provides feedback to the action client node in the meantime. After the action server

finishes the request, similar to a service, it returns a result of the request to the client.

Actions function as longer-duration services but when examining the system, their

connections with a node are similar to those of topics, showing as ‘action topic’ in the

connected system; the action client node and the action server node both subscribe

and publish to the ‘action topic’.

To examine all the nodes and intertwined connections of a ROS master, a user can

46

examine the full system graph. The graph is known as the ROS Computation Graph,

G = {N, E}, and a user can examine the Graph G with existing GUIs such as ‘rqt graph’ or

with APIs such as ‘rosgraph’. The graph G is a directed graph; N is the set of all nodes

and E is the set of all directed edges between nodes. Each edge e 2 E is of the form

[T, nstart, nend], where T is the topic name and also the edge name, nstart is the starting node

of the edge and nend is the ending node of the edge. The graph G currently does not display

service connections among nodes.

In ROS, if we have multiple homogeneous robots, we can distinguish them by defining

a namespace in front of the topic, service or action of each robot. For example, if we

have a topic, service, or action of a robot in the form ‘/A’; with a namespace added, it

will be of the form ‘/namespace/A’ (e.g.: ‘/robot1/A’, ‘/robot2/A’ etc.). With namespaces,

we can distinguish among homogeneous robots easily without changing all the topics,

services or actions manually. In this work, we consider robots using the same topics to be

homogeneous. For example, a KUKA youBot and an Aldebaran Nao are homogeneous if

they have the exact same topics.

Definition 3.4.2. High-level Task specification and Robot Controller Synthesis

Given a robot system consisting of ROS nodes, we want to provide guarantees on robot

behaviors during the system execution using some existing formal methods techniques. In

this work, we are interested in writing high-level task specifications and then automatically

synthesizing correct-by-construction controllers from these specifications.

We give a brief overview of the process of going from a high-level task specification to

synthesizing and executing a correct-by-construction controller on a robot platform. The

47

reader can find more details of the process in [47].

In this work, we consider a high-level task specification ' written in Structured English,

such as the one shown in Spec. 1. Given a specification, we first translate it to Linear Tem-

poral Logic formulas (LTL); using these formulas, with the controller synthesis technique

in [10], we automatically synthesize a robot controller A if the task is feasible. Fig. 3.1

gives an example of the synthesized controller; it is a finite-state machine. Its edge labels

are the input propositions (inputs) X of the controller and its state labels are the output

propositions (outputs) Y of the controller.

Propositions are Boolean variables that abstract either the continuous environment

behaviors for input propositions x 2 X or the continuous robot behaviors for output

propositions y 2 Y. At each state, the controllerA first takes in a current valuation of the

input propositions. Given the valuation of the input propositions and the current controller

state, the controllerA determines and moves to a next state and outputs the valuations of

the output propositions at that state.

With a specification and a controller automatically synthesized, the user still cannot

execute the controller on a robot platform until he or she creates a mapping from the

controller inputs and outputs to some low-level programs that execute robot commands.

The mapping specifies programs that provide a valuation of the inputs to the controller

and programs that respond to output valuations of the controller. In this work, we map the

inputs and outputs of the controller to ROS programs that either retrieve and process sensor

information for inputs or command and actuate the robot for outputs.

48

With the mapping from the inputs and outputs of the controller to ROS programs that

execute low-level commands on the actual robot, we are ready to execute the task. In

the following section, we describe our framework for connecting a synthesized correct-

by-construction robot controller with ROS nodes (Section 3.5.1) and methods to provide

feedback to the user regarding possible problems with the mapping (Section 3.5.2).

3.5 Approach

Before we can execute the robot controller on a physical system, we need to map each input

and output in the controller to one or multiple ROS programs (nodes) that retrieve sensor

information or execute robot commands. In the following subsection, we elaborate on the

framework of controller-to-ROS integration.

3.5.1 Mapping from Propositions to ROS Nodes

Since ROS follows a distinct communication paradigm among nodes, instead of asking

existing ROS users to learn about correct-by-construction controller execution, we adapt the

execution to the ROS structure. Fig. 3.2 gives an overview of the connection model between

a correct-by-construction controller and ROS nodes and Fig. 3.3 shows the integration of

the correct-by-construction robot controller in Fig. 3.1 with ROS.

49

Input1
node

Input2
node

...

...

...

...

...

Input1
Topic

Input2
Topic

...

Provably-correct
Controller Node

Output1
Topic

Output2
Topic

...

Output1
node 1

Output2
node 1

Output2
node 2

...

...

...

...

...

...

...

ROS topic
ROS node
Subscribe messages
Publish messages

Figure 3.2: Overview of Connections to ROS Controller Node

Figure 3.3: Integration of the finite state machine in Example 7 with ROS

50

In the structure shown in Fig. 3.2, the correct-by-construction controller forms a stan-

dalone ROS node. Each proposition in the controller corresponds to an input topic or an

output topic. We refer to them as ‘proposition topics’. In Example 7, the input person

corresponds to the ‘person topic’, as shown in Fig. 3.3. To create a connection between the

controller and ROS programs, we link each proposition topic to at least one ROS node. A

user can create and modify such a mapping with a provided GUI.

A user first connects each input topic to a node; we refer to this node as an ‘input

proposition node’. Each input node first takes in sensor information; the node then processes

and interprets the information into Boolean messages; finally the input node publishes

these messages through the input topic to the controller node (See Input1 Topic in Fig. 3.2).

For the input topics, each topic only receives messages from one node, i.e.: there should

be only one publisher to the input topic. In Example 7, the input person converts sensor

information from the ‘/image raw’ topic to decide whether the input person is true. The

‘person node’ then publishes this status to the ‘person topic’ and this topic is subscribed by

the controller node, as shown in Fig. 3.3.

Similarly, the user also connects each output topic to one node (See Output1 Topic

in Fig. 3.2) or more (See Output2 Topic in Fig. 3.2), we refer to these nodes as ‘output

proposition nodes’. Each output node takes in a Boolean valuation from the output topic.

If the valuation is true, the output node would decide on the action commands to execute

and send the commands to the robot(s); if the valuation is false, the output node is idle. We

define Mprop to be the number of nodes connected to a topic for a proposition prop. For

example, in Fig. 3.2, the number of nodes connected to Output1 Topic is 1 (MOutput1 = 1)

51

and the number of nodes connected to Output2 Topic is 2 (MOutput2 = 2).

For each output topic, since it can be subscribed to by one or more nodes, these nodes

together can send multiple commands to multiple robots; this allows for centralized control

of multiple robots under one proposition. For input topics, we refrain from allowing multiple

nodes publish to the same input topic, but rather we ask the user to create multiple input

propositions and decide on the instructions with those propositions at the specification level.

This allows the technique in [10] to validate the instructions during controller synthesis.

In addition to communicating with the controller node, the input and output nodes can

subscribe or publish to any other nodes, together with sending or receiving action and

service requests and responses. In Example 7, the ‘output proposition nodes’ of move

receive status messages from the ‘move topic’ that is published by the controller node.

For the single robot case, if the output move is true, the ‘move node 1’ publishes velocity

commands to the ‘/youbot 1/cmd vel’ topic. For the case of controlling two KUKA youbots

under the same controller, if the output move is true, commands are sent to both robots. The

‘move node 1’ publishes velocity commands to youbot 1 through the ‘youbot 1/cmd vel’

topic while the ‘move node 2’ publishes velocity commands to youbot 2 through the

‘/youbot 2/cmd vel’ topic. The single robot case is as shown by the orange connection on

the top of Fig. 3.3 while the two-robot case is as shown by both orange connections on the

top and bottom of Fig. 3.3.

The controller node executes the finite-state machineA synthesized from a specification

'. At runtime, it subscribes to Boolean valuation of the input propositions from the input

topics and publishes the most recent valuation of the output propositions through the output

52

topics. These output proposition valuations are subscribed by the output nodes through

their output topics.

Currently, when using ROS, a user controls a robot through one or more nodes. Each

node usually contains both logical reasoning of multiple sensors and intertwined com-

munications to di↵erent nodes, action servers and robots. Each node also subscribes to

multiple topics and publishes to multiple topics. A node can easily send conflicting com-

mands to robots and errors are often hard to debug in these scenarios. With this work, we

reduce the logical reasoning inside each node and handle logical conditions in a correct-

by-construction manner. We can also analyze the system and check for possible failure

with these intertwined connections before execution, as described in the following section.

With our approach, we trade o↵ the number of nodes with the number of connections each

node has to other nodes; increasing the number of nodes exposes connections that we then

explicitly reason over.

In the following section, we focus on two of the three message-passing methods: topics

and actions. For the other message-passing method, services, since the time span between a

service request and response is relatively short and services are not available in the current

ROS Computation Graph API, the current work does not provide feedback. However, the

user can still send and receive service requests and responses in this execution model.

53

3.5.2 Detecting Possible Failure

With this connection model of a correct-by-construction controller with ROS nodes, we

can now examine the connection among the nodes. First, we propose three ways to define

possible undesirable behaviors when executing ROS nodes with a correct-by-construction

controller on a single robot:

E1. Input propositions subscribing to topics published by output propositions (Sec-

tion 3.5.2.2)

E2. More than one output proposition publishing to the same topic (Section 3.5.2.3)

E3. An output proposition mapping to multiple nodes and some of these nodes are sending

commands to the same topic (Section 3.5.2.4)

In addition to the feedback above, we also propose two ways to detect undesirable

behaviors in the case of centralized control of homogeneous robots:

C1. A topic of one robot is not connected to any proposition, while such a connection

exists for the other robots (Section 3.5.2.5);

C2. A robot in the group of homogeneous robots is not controlled by any output proposi-

tion (Section 3.5.2.6);

We have shown in previous sections how E2. can lead to unexpected executions: when

both output propositions move and stop are true (the yellow state in the middle of Fig. 3.1),

54

the output nodes of the two propositions can both publish velocity commands to the

‘/youbot 1/cmd vel’ topic. The mapped output node of move can send non-zero velocity

commands while the mapped output node of stop can send zero velocity commands to

‘/youbot 1/cmd vel’; this leads to unexpected behaviors during execution.

For E1., consider an additional line in Spec. 1 in Example 7: ‘If you are sensing

privacyZone then do disableCamera.’ Here, the input privacyZone is mapped to a

location-based sensor while the output disableCamera is mapped to the shutdown of the

camera on the robot if it is true. In this case, we can observe that if the robot is in a

privacy zone, the robot turns o↵ the camera. The robot does not update the camera topic

‘/youbot 1/image raw’ and the robot may not notice there is a person standing in front later

on. As a result, the robot can run into the person. The output disableCamera influences

the input person here and this can lead to undesirable behaviors during execution.

For E3., consider only an output proposition. Here a user can map one output proposition

to multiple ROS nodes (or in other words, connect an ‘output proposition topic’ to multiple

ROS nodes), and a user can accidentally map the output proposition move to both the output

node ‘move node 1’ and the node ‘stop node 1’, sending conflicting velocity commands

to the robot. We want to avoid this scenario of sending conflicting commands within an

output proposition.

In the case of two KUKA youbots, the user could have also left one youbot, youbot 2,

uncontrolled without noticing it, turning a centralized robot control to a single robot control

(C1. and/or C2.).

55

In this section, we show how we can automatically detect these problems before

execution and suggest edits to the specification. Before examining any possible failure and

after the user has mapped all the propositions to a corresponding ROS node, we launch

all the ‘proposition nodes’, i.e., we start running all the ROS ‘proposition nodes’. These

nodes can retrieve information from other nodes but they would not execute commands

on the robot at this point, as all the output propositions are false currently. With all the

‘proposition nodes’ started, we obtain a ROS Computation Graph G using either ‘rqt graph’

or ‘rosgraph’. Using the graph G, we can examine the topics or actions that each node n is

subscribing or publishing to.

3.5.2.1 Retrieve the propositions-to-nodes connections

Publishing or Sending Action Requests: In the proposed framework, we represent each

proposition prop in the controller as a proposition topic tprop connected to the controller

node. Before analyzing any undesirable behaviors in the system, first we consider all

‘proposition nodes’ connected to the topics tprop and find out the topics and actions that

each ‘proposition node’ is reaching through publishing or sending action requests.

We denote each ‘proposition node’ as nprop,i, where i in the notation nprop,i stands for

the ith node in a total of Mprop nodes subscribing/publishing to topic tprop. For inputs, there

is only one ‘proposition node’ publishing to topic tprop as defined by the framework. Thus, i

always equals to 1 for input nodes: Mprop = 1 and i = 1. For outputs, we allow for multiple

‘proposition nodes’ subscribing to tprop. Thus, i can be equal to or greater than 1, but it is

always smaller than or equal to Mprop, the total number of output nodes connected to the

56

output topic of prop: Mprop > 1 and i 6 Mprop. We provide an example below to explain

the algorithm to retrieve all the topics and nodes connecting to a proposition.

Consider we start with a ‘proposition node’ nprop,i connected to a proposition topic

tprop. This ‘proposition node’ nprop,i publishes messages to a topic ‘/A’; there is another

node nanother that could subscribe to the same topic ‘/A’ and forward the messages through

publishing them to another topic ‘/B’. To fully capture all the potential destinations of each

message sent by the ‘proposition node’ nprop,i, we automatically continue to traverse all

the connected nodes in the Graph G until the publishing topics are not subscribed by any

other nodes, or the iteration is stopped because we reach generic topics such as ’/clock’

or ’/rosout’, which every node publishes to. The algorithm also ignores nodes that are

revisited.

When iterating through all the edges, the algorithm saves a dictionary of the paths

for the proposition node nprop,i to reach a topic or node Cpub
nprop,i = {n1 : [nprop,i, t1, n1],

t1 : [nprop,i, t1], . . . } For example, consider the first pair in the dictionary Cpub
nprop,i . For a

message to reach the node n1 from the ‘proposition node’ nprop,i, the ‘proposition node’

nprop,i can first publishes this message to the topic t1; this topic t1 is then subscribed by

the node n1 and n1 can obtain this message through t1. We can find out this information

from Graph G. From the dictionary Cpub
nprop,i , we can retrieve a set of topics that the

‘proposition node’ nprop,i can potentially reach through publishing or sending action requests,

T pub
nprop,i = {t1, t2, . . . }, and a set of nodes reached by a message from the node nprop,i through

publishing, N pub
nprop,i = {n1, n2, . . . }. There are no duplicates in T pub

nprop,i or N pub
nprop,i . We use these

topics and paths to provide feedback in the later subsections.

57

Subscribing or Receiving Action Requests: Similarly, we can retrieve information about

the topics and actions that each ‘proposition node’ nprop,i is subscribing to or receiving

requests from. We traverse the Graph G in the reverse direction of the edges. At the end, we

obtain a list of topics/actions T sub
nprop,i

that the ‘proposition node’ nprop,i is directly or indirectly

subscribing to, a dictionary Csub
nprop,i

that contains the paths to di↵erent subscribe-reachable

topics and nodes, and a set of nodes visited by the proposition prop through subscribing,

Nsub
nprop,i

.

If there are multiple proposition nodes nprop,i connected to a proposition topic tprop, we

can retrieve all the topics and nodes that a proposition is connected to through a union of

the sets relating to the proposition prop. For example, T sub
prop =

SMprop
i=1 T sub

nprop,i
. Note that we

do not remove any duplicated elements with this union operation.

With the lists of topics T a
nprop,i

, nodes Na
nprop,i

, and the dictionaries Ca
nprop,i

where a 2

{sub, pub}, we can now analyze the inter-connections of the nodes.

3.5.2.2 Output proposition nodes publishing to input proposition nodes

In this integration of ROS with correct-by-construction controllers, we can have output

proposition nodes publish messages to topics that are subscribed by inputs proposition

nodes. As described above, this can be problematic during execution.

To detect this potential failure before execution, for all output propositions, we check if

the set of nodes visited by each output proposition y through publishing, N pub
y =

SMy
i=1 N pub

ny,i ,

contains one of the input proposition nodes nx. If the set N pub
y contains the input proposition

58

node, i.e.: nx 2 N pub
y , then the algorithm automatically saves the pair of input-output

propositions [y, x] and return the result that it detects a potential issue at the end.

3.5.2.3 Output propositions publishing to the same topic

In ROS, we can control a robot through publishing velocity commands to a topic, but we

do not want two propositions sending velocity commands to the same topic at the same

time, as the resulting behavior of the robot is unclear.

With the ROS Computation Graph G and the sets of publish-reachable topics of each

proposition T pub
prop =

SMprop
i=1 T pub

nprop,i from Section 3.5.2.1, we can automatically detect com-

mands sent to the same topic/action by di↵erent output propositions. To do so, we compare

the set of publishing topics T pub
yp =

SMyp
i=1 T pub

nyp ,i
of one output proposition yp with the set

of publishing topics T pub
yq =

SMyq
i=1 T pub

nyq ,i
of another output proposition yq for q , p. If the

intersection of the sets T pub
yp and T pub

yq is not empty (e.g.: T pub
yp \ T pub

yq = {t, . . . }), then that

means both propositions yp and yq can potentially publish messages to the same topic

simultaneously during execution. This can create erratic and undesirable robot behaviors;

we notify the user and automatically generate mutual exclusion specifications for these

propositions that the user can add into the specification. Note that as each ‘output proposi-

tion node’ only sends commands to the robot when that output proposition is true, mutual

exclusion makes sense here; the new specification can prevent conflicting commands from

being sent to the robot during execution.

First, we automatically save all the pairs of concurrent-topic-access propositions with

59

the corresponding topic, {{t, p, q}, . . . }. Once we have found all the possible concurrent topic

accesses, we can automatically suggest modification to the high-level task specification in

the form of Structured English sentences.

For instance, in Example 7 for the single robot case, when we detect that the output

propositions move and stop both publish to the same topic ‘/youbot 1/cmd vel’, we can

suggest the user to add in a sentence saying that ‘move and stop are never true together’.

In the form of Structured English, it is ‘always (not move and stop) or (move and not stop)

or (not move and not stop)’.

3.5.2.4 An output proposition sending conflicting commands to the same topic

through multiple nodes

For each output proposition prop, since a user can connect multiple ‘proposition nodes’

nprop,i to an output topic tprop, these nodes nprop,i may publish di↵erent commands to the

same topic t when the output proposition prop is true. This can send conflicting information

to a robot within the same output proposition prop and lead to unexpected behaviors. With

the mapping created by the user, we can check for such an incident.

The set T pub
prop is the union of all the sets of topics T pub

nprop,i of each node nprop,i mapped to

the output proposition prop. For each set T pub
nprop,i , there are no duplicates of any topic in the

set. To analyze the possible error described here, we can check if there is a duplicate in the

set of publishing topics T pub
prop for each output proposition prop. If there exists more than

one copy of a topic t in the set T pub
prop, then this must be from two di↵erent sets of T pub

nprop,i .

60

This indicates that more than one node can talk to the same topic for the proposition prop

at the same time.

For example, if the ‘move topic’ is accidentally mapped to both the ‘move node 1’

and the ‘stop node 1’, then both nodes can publish commands to the topic ‘/y-

oubot 1/cmd vel’ at the same time. There would be one copy of ‘/youbot 1/cmd vel’

in the set T pub
nmove,1 and another copy of ‘/youbot 1/cmd vel’ in the set T pub

nstop,1 . In the set

T pub
move = T pub

nmove,1 [T pub
nstop,1 , there would be two copies of the topic ‘/youbot 1/cmd vel’:

{‘/youbot 1/cmd vel’,‘/youbot 1/cmd vel’,. . . }. We can notify the user of this potential

undesirable behavior before execution.

3.5.2.5 Multiple Homogeneous Robots: check if a topic of a robot is left behind

In the case where we control a group of homogeneous robots with one correct-by-

construction controller under our paradigm, given a list of robots R by a user, we can

check if a robot r 2 R or a topic of the robot r is not connected to the controller.

Following the namespace convention in ROS, we assume that if we are controlling a

group of homogeneous robots, then for the same ROS topic on each robot, it will be of the

form ‘/robot1/topic1’, ‘/robot2/topic1’ etc. We denote them as ‘robot topics’.

For each output proposition prop, we start by finding all the ‘robot topics’ in the set

T pub
prop, i.e., the topics that the output proposition nodes are sending commands to the robots.

For all the robot topics ‘/r/t’ found, we first extract all the distinct su�xes ‘/t’. For each

distinct su�x ‘/t’ found, we check if we can find all robot topics ‘/r/t’ of this su�x ‘/t’

61

for all the robots r 2 R in the set T pub
prop. If we can find |R| robot topics for this su�x ‘/t’,

that means this output proposition prop commands all the robots through the same topic

and type of message. Otherwise, for this proposition prop, we are not commanding all the

robots R through the same topic and we may not be able to control all of them at the same

time. We provide this feedback to the user and the user can verify these mappings are as

intended before execution.

For instance, in Example 7, if the user wants to control two KUKA youBots at the

same time when the proposition move is true, but in the set T pub
move, we can only find

‘/youbot 1/cmd vel’, the velocity topic of youbot 1, but not ‘/youbot 2/cmd vel’, the

velocity topic of youbot 2. With our analysis, we can point out this case and verify

with the user.

3.5.2.6 Multiple Homogeneous Robots: check if none of a robot’s topics is connected

to a proposition

With this, we can also check if a robot r 2 R is completely left out in the motion or action

execution, i.e., if none of the topics of this robot r is connected to an output proposition of

this controller.

To do so, we find all the robot topics in all the sets of T pub
prop for all output propositions

Y. For the set of all robot topics found, we check if there exists at least one robot topic of

the robot r, i.e., a robot topic with a prefix ‘/r’. If there does not exist a robot topic with a

prefix ‘/r’, then we notify the user that a robot may be excluded in this execution.

62

For example, if youbot 3 is in the robot list R provided by the user but we cannot find

any robot topics of youbot 3 in T pub
prop, we notify the user.

The reader can find the implementation of our approaches in our ROS package online1.

A user can create a mapping and execute a controller on a robot platform using our plugin

in this package. This is shown in the following section as we walk through two examples to

demonstrate our approach.

3.6 Example

In this section, we demonstrate our framework and how we can detect undesirable behaviors

before execution with two di↵erent examples: in the first example, a KUKA youbot is

conducting a clean and patrol task; in the second example, four Sphero SPRK robots are

responding to di↵erent sensor inputs. The reader can find a video of an analysis together

with an execution of the two examples online 2.

3.6.1 Clean and Patrol Example

In this example, a KUKA youbot with an arm conducts a clean and patrol task in the

workspace shown in Fig. 3.4. The specification is as written in Spec. 2.

Example 8. The robot patrols all the outer regions, topLane, rightLane, bottomLane and

leftLane, if it is not holding an object (line 4 in Spec. 2). If the robot sees an object, it will

stop and pick up the object (line 1-3). Then it will head to rightGround and drop o↵ the
1https://github.com/VerifiableRobotics/LTL_stack
2
https://youtu.be/E_GpZTdlx_s

63

https://github.com/VerifiableRobotics/LTL_stack
https://youtu.be/E_GpZTdlx_s

object (line 5- 8).

Figure 3.4: Map for Example 8

Specification 2 Clean and Patrol Specification

holdingObject is set on finished pickup and reset on finished drop.1
do pickup if and only if you are sensing object or sawObject and you are not activating2
holdingObject.
sawObject is set on object and reset on finished pickup.3
If you are not activating holdingObject then visit topLane, rightLane, bottomLane and4
leftLane.

If you are activating holdingObject then visit rightGround.5
do drop if and only if you are activating holdingObject and you have finished rightGround.6
do stop if and only if you are activating holdingObject and you have finished rightGround.7
infinitely often drop and finished drop.8

The propositions finished pickup and finished drop in Spec. 2 are known as the

completion propositions [75]. These propositions keep track of the status of actions – in

this case the output propositions pickup and drop respectively; the completion proposition

turns true when the corresponding action is completed. For example, finished pickup

should turn true after the robot completes its pick action.

We leverage the synthesis technique in [10] to check if the task is feasible that we

automatically synthesize a correct-by-construction controller with the specification in

64

Spec. 2. In this case, a correct-by-construction controller is successfully synthesized.

3.6.1.1 Proposition mapping

Before executing the controller on a KUKA youbot, we connect the controller with ROS

programs that retrieve sensor information or send commands to the robot. In our online

repository, we include a Propositions Mapping and Analysis Plugin that allows the user to

create mapping from propositions to ROS nodes that retrieve sensor information or execute

robot commands. For each ‘proposition node’, the user specifies a topic in the node that

corresponds to the ‘proposition topic’ tprop.

Before mapping propositions to ROS nodes, first the user launches all the nodes to

interface with the propositions; the user also provides a list of propositions for mapping by

loading a specification file in the format of .slugsin [24] (A in Fig. 3.5) into the Plugin. With

the list of propositions, the user can either supply an existing mapping file (B in Fig. 3.5) or

create a new mapping from scratch.

Based on the nodes connected to the current ROS Master, for inputs, the user uses a

drop-down box in the middle (C in Fig. 3.5) to assign a ‘input proposition node’ to the

input. Once the user selects a ‘proposition node’, the user also specifies a topic in the node

that serves as an input topic to communicate with the controller node with the drop-down

box on the right (D in Fig. 3.5). For outputs, the user can click on the ‘+’ button to assign

new ‘output proposition node’ with a drop-down box similar to the case of inputs. The

user can assign multiple ‘output propositions nodes’ and remove each of them with the

65

Figure 3.5: The Proposition Mapping GUI included in our package. We are mapping propositions
to ROS nodes and topics for Example 8 here.

66

‘delete’ button right next to each assignment. Once the mapping is done, the user can save

the mapping at the end (E in Fig. 3.5).

For this task, we localize the KUKA youBot using a Vicon Motion Capture System. All

the nodes in the ROS structure can subscribe to the robot location leveraging the package

vicon bridge [13]. We have the output region propositions, e.g., leftGround, rightGround

etc., mapped to nodes that drive the robot to di↵erent regions using the navigation stack [79].

We keep each node simple and separate the motion planning to di↵erent nodes here, as

we want to avoid having a node that drives a robot to di↵erent waypoints; in that case, we

cannot analyze the logic within a node; the intertwined connections and complex reasoning

in a node can also lead to erratic execution. We map the pickup and drop propositions to

nodes that plan arm trajectories using MoveIt! [80]. The proposition pickup also sends

velocity commands to move closer to the object before picking up the object. For object

detection, we use an RGBD camera mounted in front of the youBot together with the

AprilTag library [68] available in ROS to detect objects. The proposition stop sends

velocity commands of zero when it is true. With all the propositions mapped to ROS

programs, we can now analyze the ROS connections.

3.6.1.2 ROS structure analysis

Once we obtain a mapping from the user, we take a snapshot of the current ROS Compu-

tation Graph G. With the graph G, we use the algorithms described in Section 3.5.2.2 to

3.5.2.4 to analyze the node connections. The results are given as follow:

67

Output proposition nodes publishing to input proposition nodes (Section 3.5.2.2):

Figure 3.6: Analysis result of output propositions publishing to input propositions for Example 8

Fig. 3.6 gives the result of using the Section 3.5.2.2 approach with the current graph G.

For each row in the table, the leftmost column displays the output proposition that publishes

to the input proposition; and the input proposition is shown in the middle column. The

rightmost column displays one possible path from the output node to the input node in the

ROS computation graph G. For the entries in the Output-to-input Chain column, the name

with parentheses ‘()’ stands for a node, (node name), while the name with box brackets ‘[]’

stands for a topic, [topic name].

As shown in Fig. 3.6, with the current mapping, we can see that the output proposition

pickup publishes its most-up-to-date status to the input proposition finished pickup during

execution, and similarly for drop and finished drop. In this case, this connection is

desirable as we want to know the arm actuation status before continuing the robot movement.

Output propositions publishing to the same topic (Section 3.5.2.3):

Both Fig. 3.7 and Fig. 3.8 highlight some results of the algorithm described in Sec-

tion 3.5.2.3. With the youBot, we can control the robot movement by publishing velocity

commands to the topic ‘/cmd vel’. As shown in Fig. 3.7, the corresponding nodes of

the output region propositions are all publishing velocity commands to the robot through

68

Figure 3.7: Analysis result of output nodes publishing to the robot velocity topic for Example 8

the navigation stack. The execution is undefined if more than one of the nodes publish

velocity commands at the same time. In our previous work [47], we manually add in a

mutual exclusion specification of the region propositions to resolve this issue, but with the

framework here, we can automatically reason about this through an analysis of the ROS

Computation Graph G.

Besides the output region propositions, we also find out that the output propositions

stop and pickup are both directly publishing to the velocity topic. A user could not easily

find out this potential conflict before this work.

With this feedback, we suggest the addition of a mutual exclusion specification ‘The

region propositions, stop and pickup are always mutually exclusive’ (always (stop and not

69

pickup and not leftLane and not rightLane . . .) or . . .).

Figure 3.8: Analysis result of output nodes publishing to the youBot’s arm controller for Example 8

Besides the velocity topic, the pickup and drop propositions can publish to the youBot’s

arm controller at the same time, as shown in Fig. 3.8. In this case, we can suggest the

addition of ‘pickup and drop are always mutually exclusive’ to the specification.

An output proposition sending conflicting commands to the same topic through multiple

nodes (Section 3.5.2.4)

If the user has accidentally mapped both the ‘pickup node’ and the ‘drop node’ to the

output pickup, then the output pickup can send conflicting information to the robot when

pickup is true. In Fig. 3.9, we can see that this error is detected and the user can catch this

mistake before execution.

3.6.1.3 Execution

The user modifies the specification ' based on the analysis and suggestions and launches

the controller node with an updated specification and controller. During execution, the

70

Figure 3.9: Both the ‘pickup node’ and the ‘drop node’ are mapped to the output pickup

robot patrols the outer regions (Fig. 3.10a). When the robot senses an object and picks up

the object (Fig. 3.10b), it heads to rightGround and drops o↵ the object (Fig. 3.10c). The

task continues (Fig. 3.10d). None of the mutually excluded propositions publishes to the

same topic at any time.

(a) The youBot starts in topLane and patrols the
outer regions.

(b) The youBot sees an object in bottomLane
and it pickups up the object.

(c) The youBot drops the object at rightGround. (d) The youBot continues its execution.

Figure 3.10: A youBot performing its task as described in Example 8.

71

Figure 3.11: Four Sphero SPRKs for Example 9

Specification 3 Homogeneous Robot Control Specification

if you are sensing leftSignal then do moveLeft and turnPurple1
if you are sensing rightSignal then do moveRight and turnBlue2
if you are sensing forwardSignal then do moveUp and turnGreen3
if you are sensing backwardSignal then do moveDown and turnYellow4
if you are sensing stopSignal then do stop and turnRed5
if you are not sensing (leftSignal or rightSignal or forwardSignal or backwardSignal or6
stop) then do turnWhite

3.6.2 Homogeneous Robots Example

In this example, we control a group of homogeneous robots. We are using four Sphero

SPRK robots as shown in Fig. 3.11. These robots can roll in all directions and change color.

Their task is as follows:

Example 9. Control four robots as a group. The robots should respond to di↵erent

commands together, including: move left, move right, move forward, move backward, stop

and do nothing.

The task specification is shown in Spec. 3.

72

3.6.2.1 Mapping

In this example, all the input propositions end with Signal and they are mapped to sensor

nodes that determine if there is a signal using the AprilTag library. We use each output

proposition to control all four robots. All the propositions that start with move or turn are

output propositions. For each output proposition, we can map to multiple ‘output propo-

sition nodes’; an example is shown in Fig. 3.12. We use namespaces here to distinguish

the homogeneous robots; the namespaces are ‘/sphero wpw’, ‘/sphero ggw’, ‘/sphero rgw’

and ‘/sphero wpp’.

Figure 3.12: Mapping for an output proposition move left

3.6.2.2 Analysis

Since the output propositions that start with move (similarly for turn) can all send ve-

locity commands (color commands) to the robots (See Fig. 3.13), we should modify the

specification to state that the propositions starting with move are mutual exclusive.

With this modification, however, the specification is unrealizable. In this case, we can

use to the technique in [74] to analyze and modify the specification. With [74], we find

out the outputs starting with move are a↵ected by the inputs ending with Signal. In order

73

to synthesize a controller, we should also assume that the inputs ending with Signal are

mutual exclusive. With this addition, the specification is realizable. We can now move on

to the analysis among the four robots.

Figure 3.13: Analysis result of output nodes publishing to the robot velocity topic for Example 9

Before any analysis, first we ask the user to specify all the robots in this task (The

Robots row in Fig. 3.14) and the robot topics that we can ignore in this analysis (The

Robots Topics to Ignore row in Fig. 3.14). In this example, there are four robots in total.

We are ignoring all the sensors on the robot, since the task does not depend on the robots’

sensors.

With a defined proposition mapping, a list of robots and an optional list of topics to

ignore given by the user, we analyze and highlight any robot topics or robots that are not

included in the execution as defined by the current mapping.

In Fig. 3.14, we can see that one of the SPRK robots, sphero wpw is not connected

74

Figure 3.14: Analysis with Section 3.5.2.5

to the proposition move down with the topic ‘/cmd vel’ , while all the other robots in the

given list are. This serves as a feedback to the user and the user can then decide if he or she

wants to modify the mapping.

If one robot in the robot list is completely ignored in the current mapping, we can also

detect that and notify the user. As shown in Fig. 3.15, there are five robots in the list with

sphero wrb added, and we can check and notice that sphero wrb is completely ignored in

the current mapping.

75

Figure 3.15: Analysis with Section 3.5.2.6

This example is shown in the video online, with four Sphero SPRKs responding to

di↵erent sensor inputs.

3.6.3 Discussion

In this section, our examples demonstrate the execution of our framework with a single

robot and with a group of homogeneous robots. Our approach detects potential conflicts

that are not originally captured in the high-level task specification. Since the specification

does not include these conflicts, the synthesis process cannot detect the conflicts and a

controller is synthesized. Even though the synthesized high-level controller is provably-

correct, the execution can still be di↵erent from the user expectation due to the low-level

conflicts and the task outcome is unknown. With our approach, we provide warnings and

suggest specification changes on these potential conflicts such that users can incorporate

76

the information about the low-level connections into the high-level task specification.

As shown in Example 8, our approach automatically finds out the robot can only

head to one region at a time. This is previously a user insight but now we can obtain

such an information automatically by inspecting the low-level connections. Our approach

furthermore detects that other low-level programs can be sending commands to the robot at

the same time the robot is heading to a region. Previously, this is only found out during

execution; the user would stop the robot then and inspect the erratic robot behavior. For

a group of robots, we can detect the robots are not in sync in Example 9 leveraging the

connections of the low-level programs. With our framework, we detect problems and

suggest changes before they arise during execution.

In the process of constructing and using this framework with ROS, we face some

challenges. To start, the mapping from propositions to ROS nodes is still manually done

by the user and this can be cumbersome if there are a lot of propositions. However, even

though the mapping is manual, we have made it more streamlined and explicit with the work

here that the user does not have to inspect the ROS Computation Graph G for mapping;

a user can create a mapping with our provided GUI within a short period of time. A lot

of ROS packages such as MoveIt! and the navigation stack are powerful, but we also

spent a substantial amount of time tuning the parameters in these packages to get them

working with the youBot. These packages are powerful but they must be customized for

di↵erent robots. Lastly, a user still needs to know about the robot platform to ensure correct

behaviors. For example, a robot without an arm would not finish the task described in

Example 8 and currently we cannot detect such a failure.

77

3.7 Evaluation

In this section, we qualitatively evaluate our approach independent of the examples above.

In this work, we propose a framework to seamlessly execute a controller synthesized

from a high-level task specification with low-level controllers in the form of ROS nodes.

With this framework, we can analyze the connections among the low-level controllers for

potential conflicts and propose changes to the high-level specification.

Compared to the normal approach of writing a single ROS node with many intertwined

commands and communication for a robot task, our approach breaks down the node into

multiple smaller nodes and allows for independent node analysis. Our approach does

increase the number of low-level ROS nodes which can, in turn, increase network tra�c.

Although ROS can handle hundreds of nodes in normal cases, bad connectivity among

nodes can hinder task progress and result in delays that are more severe than that of a

single ROS node. However, by separating the logic from the commands in the single ROS

node with our framework, we can analyze the connections among the nodes and make

modifications to the specification. An analysis of the connections inside a single ROS

node is close to impossible before. In the single node programmed by the user, the logical

reasoning and the commands to the robot are usually inseparable, making it hard to analyze

and extract potential command conflicts.

As for the analysis, even though we are suggesting changes based on the interactions

among the output nodes, an analysis of the interactions among the input nodes is still

78

missing in this work. This analysis would be good for a better representation of the

connections among the low-level controllers. Creating such an analysis is challenging as we

cannot determine the internal data processing of each input node solely based on the ROS

Connection Graph. The Graph only indicates node connections, but it does not provide

the type and values of the data in and out of a node. The Graph is su�cient for an output

node analysis, for which the actual data is not necessary, but it is missing the data that is

critical for an input node analysis. For the input analysis, we need the data to determine

the relationship between sensor data and input valuations. This information is then used

to detect conflicts and suggest changes. Other structures that describe the input nodes are

needed to extract such information for analysis.

3.8 Conclusion

In this work, we propose a framework for seamless integration of correct-by-construction

controllers with ROS. The subscribe-publish message-passing method of ROS matches

with the input-output paradigm of correct-by-construction controllers. Yet, failure can arise

in the low-level execution with ROS when using these correct-by-construction controllers:

the connection of a high-level controller to low-level programs is not inspected and even

though the high-level controller is correct-by-construction, its interaction with the low-level

programs may not be; the programs can send conflicting commands to a robot and this can

lead to unexpected robot behaviors. In this work, we describe approaches to detect possible

failure and provide feedback to the user using such a system.

ROS has enabled and sped up both robot software and hardware development, and it

79

will continue to increase its exposure to the public in the future. We lay out the starting

point of providing guarantees and feedback in robot execution with ROS. Challenges and

future development include using our framework with multiple ROS masters, integrating

our framework with SMACH and providing analysis with the robot physical constraints

and its sensors considered. For task execution with multiple robots, an analysis on task

execution with a group of heterogeneous robots would be useful as well.

80

CHAPTER 4

RESILIENT, PROVABLY-CORRECT, HIGH-LEVEL ROBOT BEHAVIORS

4.1 Introduction

When developing robot controllers, users make assumptions about the operating environ-

ment of the robot. Such assumptions are typically kept implicit when manually coding

a controller, while they are made explicit in the automatic synthesis of controllers. For

example, in a pick-up task, one might assume that an object is always available for pickup.

If such assumptions are violated at runtime, two problems usually arise: (i) the controllers

do not accommodate unexpected environment behaviors and hence, the execution outcome

is unknown, and (ii) the controllers do not provide feedback to the user. In this work, we

consider controllers synthesized from high-level specifications, with explicit assumptions

about the environment. We increase the robustness of these controllers with respect to

unexpected events so that the robot maintains its behavioral guarantees, whenever possi-

ble. When unrecoverable unexpected situations arise, we provide feedback to the user by

leveraging the work in [74].

Automatic controller synthesis from high-level task specifications has gained popularity

in the robotics community in recent years (e.g. [6,7,34,39,41,44,45,73,85,93]). Compared

to the tedious and error-prone nature of manually writing robot controllers, these synthe-

sized controllers provide correctness guarantees, i. e., the generated controller satisfies all

requirements in the specification given by the user. We call this property provably-correct

and these controllers provably-correct controllers.

81

To synthesize provably-correct controllers, some formulations consider specifications

that capture both the robot and its environment behaviors (e.g. [44, 45, 93]). Similar to

those works, each specification considered here is separated into two parts: environment

assumptions and robot specification [10]. To guarantee the desired behavior of the robot, the

environment assumptions must be satisfied when executing the synthesized controller. The

controller synthesis process creates robot behaviors for any “allowable” environment be-

haviors, based on the environment assumptions. If the environment violates its assumptions

at runtime, then the controller may violate the robot specification.

Example 10. Consider a task where a robot is required to grasp a block and cut it in half

by pushing it towards a table saw. In a manually-coded controller, an engineer may assume

that a block is always at the pickup location when the robot actuates its pickup action.

However, if there are no objects at the pickup location and the engineer does not check the

assumption during execution, the robot will send its “block”, or its hand, into the saw and

destroy it. In an automatically synthesized controller, the user may explicitly state in the

environment specification that a block is present when the robot actuates its hand; when

executing, if the robot is asked to pick up a block but there isn’t one, then the assumption is

violated and this results in unknown robot action.

In this work, we present a framework to automatically detect and recover from envi-

ronment behaviors that violate the environment assumptions, at runtime. This framework

consists of three complementary methods that restore system correctness guarantees, such

that the robot can continue its task as defined in the robot specification after the violation.

We focus on how a robot resolves conflicts with its environment or one other collabora-

tive agent in the workspace; multi-agent conflicts are out of the scope of this work. One

82

component of our framework incorporates possible runtime anomalies o✏ine through the

controller synthesis process (Recovery - Section 4.6), while the other two resolve any issues

online during the controller execution (Environment Characterization - Section 4.7 and

Integrative Negotiation - Section 4.8).

The Recovery approach in Section 4.6 synthesizes a “forgiving” controller that toler-

ates temporary anomalies, i.e., environment behaviors inconsistent with the environment

assumptions, when executing the controller. In Example 10, with the Recovery approach,

the robot would wait until the block is available and then pick it up.

As the recovery approach does not guarantee eventual progress towards the robot goals

when environment assumption violations persist, we furthermore introduce an Environment

Characterization approach. It rewrites the environment safety assumptions by incorporating

newly-observed environment behaviors. The specification now allows more environment

behaviors; if the robot can still satisfy the task with the new assumptions, the robot can

continue its task. In Example 10, the specification would be updated during execution and

the robot would stand by until the block is present and then actuate its pickup action.

If the environment includes other collaborative robots in the same workspace, then

the Integrative Negotiation approach in Section 4.8 attempts to modify the environment

behaviors, specifically the other robot’s behavior, through communication with the other

robot. Consider Example 10 but now the block is placed at the pickup location by another

robot. To ensure the block is ready, the robot assumes its counterpart leaves a block at

the pickup area when the area is empty. However, if its counterpart is idle at runtime thus

violating the assumption, the robot can then initiate this approach to recover its assumption.

83

This paper expands on the work outlined in [86] and [88] in several directions. First, the

Recovery approach updated from [86] now accommodates more violations of environment

assumptions and allows the robot to temporarily stop progressing to its goals until the

violation is resolved. The approach still ensures that if the anomaly is temporary, the robot

can recover and head towards its goals. In [86], the robot controller fails when the robot

cannot guarantee one of its goals.

Second, this paper leverages the activation-completion paradigm described in [75].

When combined with the Environment Characterization approach in [86], we can capture

relationships of environment behaviors and robot behaviors: the updated environment

assumptions can now include not only environment behaviors but also robot status such

as its location and its completed actions, thereby refining the assumptions; previously

without the activation-completion paradigm, the approach in [86] could only capture the

environment behaviors but not any robot status. For example, in [86], the approach could

only capture that a light is on, but here it can capture that a light is on when the robot is

sensed to be in region A.

Finally, the improved Integrative Negotiation approach based on the work in [88] now

allows two robots in conflict to both accommodate the other’s task and proceed to their

goals, ensuring no future violations would be caused by the same conflict. Consider the

example above again: robot A assumes that robot B places a block at the pickup area when

it is empty, while robot B assumes that robot A never enters its region. Robot B can violate

robot A’s assumption and not place blocks during execution. In that case, the Integrative

Negotiation is triggered; both robots incorporate and satisfy the other’s assumption after

84

negotiation. Robot A will stay away from robot B while robot B will replace blocks at

the pickup area. This violation will not happen in the future. In [88], only one robot

accommodates the other robot after negotiation, and the other robot can create conflicts

again.

The paper is organized as follows: In Section 4.2, we review related work. In Section 4.3,

we define preliminaries and the specification for Example 10. In Section 4.4, we define the

problem and give an overview of the three approaches in Section 4.5. These approaches

are described in Sections 4.6 (Recovery), 4.7 (Environment Characterization) and 4.8

(Integrative Negotiation). In Section 4.9, we discuss the computational implications of the

three approaches. In Section 4.10, we illustrate the approaches with examples. We provide

an evaluation of our approaches afterwards in Section 4.11 and finally, we summarize our

work in Section 4.12.

4.2 Related Work

4.2.1 Planning

The work on controller synthesis from high-level specifications shares some of the same

objectives as work in the AI planning community. Relevant planning approaches can be

separated into two types:

• Related O✏ine Planning approaches include conformant planning and contingency

planning. Conformant Planning constructs plans that work in all possible scenarios of

85

a partially-observable or unobservable world. Related works leverage model checking

techniques to validate plans against specifications in an unobservable domain [16, 17,

29]. Schoppers synthesizes a plan for a robot with one goal using the Universal Plans

approach [78].

Contingency Planning “constructs plans that can be expected to succeed despite unknown

initial conditions and uncertain outcomes of nondeterministic actions” [71]. The authors

of [21] find contingency plans with failure risk within a known bound. Others tackled

contingencies by providing a variety of online recovery approaches for di↵erent excep-

tions [35] or planning multiple contingency paths simultaneously to account for future

uncertainties for autonomous vehicles [33].

In our work, robots operate in a fully observable world unlike conformant planning. Similar

to contingency planning, we create controllers that guarantee task completion from a set of

possible initial conditions and deal with nondeterministic action outcomes. The conceptual

di↵erence between the two is that in contingency planning the nondeterminism is over

controlled actions, all outcomes are possible, while in our work, the nondeterminism is

over uncontrolled environment events. Some events may be assumed not to happen, and

the controller is synthesized based on a worst-case analysis; if a controller exists, the task is

guaranteed to succeed.

• Online Replanning responds to unexpected events during execution. Some researchers

repair the current plan online through either adding or removing actions [83]. Others use

failure in the form of transition matrices to modify to the planning instance [19]. In our

work, we also use failures, violations of environment safety assumptions, to modify robot

controllers by updating the specifications.

86

Our work shares similar ideas to contingency planning and online replanning; Our

approach combines those problems to create a system that is robust to unexpected events.

Though both AI planning and controller synthesis focus on creating a plan/controller, our

work synthesizes controllers that can provide correctness guarantees for user specifications

during execution and replan for unexpected events online, while most of the works in the

AI planning address the correctness problem and the robustness against anomaly problem

separately. Furthermore, the specifications typically addressed in contingency planning

and online replanning are of the form “reach a goal state” while this work considers

specifications with multiple goals and safety constraints.

4.2.2 Negotiation and Collaboration

Researchers define negotiation as “a means for agents to communicate and compromise to

reach mutually beneficial agreements” [95]. Some researchers model multi-issue negotia-

tion under time constraints and incomplete information [27]; others optimize the acceptance

policies in a negotiation [5]. Researchers also use game theory to analyze automated

negotiation among agents with partial information and shared tasks [97]. In collaboration,

researchers reduce the plan repair problem for coordination of decentralized agents to a

multi-agent planning problem that minimizes communication overhead [42]. In this work,

our Integrative Negotiation approach is inspired by existing negotiation and collaboration

approaches. Our approach focuses on the exchange of information so that each robot can

resolve conflicts with its environment and the robots in our work are not sharing tasks.

87

4.2.3 Controller Synthesis

In controller synthesis from temporal logic specifications, researchers have considered

di↵erent types of failures and improvements on controller execution:

• Synthesis Failure: Some authors provide explanations on why controller synthesis

failed [43, 74], while others revise the specification through mining environment assump-

tions until a robot controller is synthesized [3, 57]. In this work, the Environment Charac-

terization (EC) approach automatically rewrites the specification online to incorporate any

newly observed environment behaviors, as opposed to the o✏ine approach in [57] or [3].

This work utilizes [74] to provide explanations when a controller cannot be synthesized.

• Increase Robustness Before Execution: Some modify the specification before synthe-

sis such that the synthesized controller tolerates a user-defined number of safety assumption

violations [25]. Others generate controllers that allow the robot to temporarily violate its

guarantees when there are environment assumption violations [22]. Researchers also syn-

thesize robust systems that maximize the ratio of environment failures to robot failures [8].

In [89] (Chapter 3), we suggest changes to the specification before execution through an

analysis of low-level controllers, such that we prevent potential conflicts during execution.

Here, the Recovery approach modifies the synthesis algorithm [10] to add “recovery” transi-

tions into the controller. The robot can take these transitions as a fallback when a transient

anomaly occurs, but the robot guarantees are never violated as in [22]. The approach is

automatic and does not require users to process information and make changes as in [89].

• Online Monitoring: Bloem et al. synthesize a “safety shield” that monitors and cor-

88

rects erroneous outputs of the critical properties during execution [11]. Jones et al. use

unsupervised learning to create a formula that describes normal system behaviors before

execution [37]; during execution, they monitor this formula to detect anomalies. In this

work, the Integrative Negotiation approach does not modify the outputs as in [11], but we

modify the environment robot’s behavior through an exchange of specifications.

• Irregular Online Events: Some researchers refine their controllers iteratively through

grammatical inference when executing the controller in an unknown adversarial environ-

ment [28]. Some use automata learning methods to develop a control strategy for a robot

with unknown dynamics [15]. For changes in topological constraints during execution,

some decompose the workspace again online with new constraints [49]; some patch local

strategies on top of the original strategy [60,61], while others consider alternative task plans

online [20] or updates of the task representation triggered by low-level motion planners [26].

The EC approach in this work tackles not only changes of topological constraints as in [60]

but also constraints such as dependencies among environment events and robot-induced en-

vironment events. The approach can be triggered by not only low-level motion planners but

also internal or external sensors. The Integrative Negotiation approach in this work allows

decentralized robot control with each robot having di↵erent goals, while [26] considers

centralized robot control with robots sharing a common goal.

4.3 Preliminaries

In this section, the subscript r on a function, set, or formula symbol, denotes a connection

to robot r.

89

Definition 4.3.1. Atomic Propositions To define a task for robot r, first the temporal

evolution of the robot and environment behaviors of interest are abstracted by a set of

atomic propositions APr = Yr [Xr. The propositions represent the motion and actions of

robot r (Yr and Xr) and other environment events including environment robots (Xr). All

propositions considered in this work are Boolean.

The set of robot/system propositions is Yr = Regr [Actr [Memr. Let Reg be the set

consisting of all the regions loci obtained from a user-defined partitioning of the robot

workspace. A proposition ⇡loci,r 2 Regr is true if and only if robot r is currently heading to

region loci. All propositions ⇡loci,r in Regr are mutually exclusive. Actr represents the set of

actions ai,r that can be performed by robot r during its mission. A proposition ⇡ai,r 2 Actr

is true if and only if robot r is initiating action ai,r at the moment. An action ai,r may be

completed instantaneously or it may take finite time to complete. Note that action ai,r

may not have completed after ⇡ai,r is set back to false and the completion of action ai,r

is captured by sensor propositions in Xr. Memr consists of ‘memory’ propositions that

keep track of the occurrence of some robot or environment behaviors. In Example 10, the

robot can conduct two actions: pickup and cutBlock (we omit ‘, r’ for clarity) therefore,

Actr = {⇡pickup, ⇡cutBlock} and there are no memory propositions Memr = ;.

The set of environment/sensor propositions Xr = {Regc
r [Actc

r [S enr} [eAPr [S enG

is abstracted from the robot’s sensors. Regc
r is the same size as Regr ✓ Yr, and each

proposition ⇡c
loci,r 2 Regc

r is true if and only if robot r is currently located in region loci. As

before, all the propositions ⇡c
loci,r in Regc

r are mutually exclusive. Similarly, Actc
r contains

the same number of propositions as Actr, and a proposition ⇡c
ai,r 2 Actc

r is true if and

90

only if robot r has completed action ai,r. S enr consists of propositions representing the

environment as captured by the sensors of robot r. The set of environment robots’ Atomic

Propositions, eAPr, consists of status information shared by the other robots operating in

the same workspace. It can range from location and action status to sensor information.

S enG is the set of global sensors accessible by all robots working in the same workspace.

In Example 10, S enr = {⇡pickupTask, ⇡holdingBlock, ⇡blockPresent}. If robot r is operating in the

same workspace as robot Bob and Bob is in charge of placing a block, then we have

eAPr = {⇡placeBlock,Bob}.

We use “robot” and “system” interchangeably in the following sections. Table 4.1 gives

a summary of the proposition notations used in this work.

Table 4.1: Propositions Classification and Notation

Atomic
Propositions

APr

Subsets Proposition
notation

Meaning if proposition is true

System
Propositions
Yr

Actr ⇡ai,r Robot r is performing action ai.

Regr ⇡loci,r

Robot r is moving towards region loci. At
any time, there is exactly one proposition

true in Regr.
Memr ⇡memi,r For robot r, event memi has occurred.

Environment
Propositions
Xr

Actc
r ⇡c

ai,r Robot r has completed action ai.

Regc
r ⇡c

loci,r

Robot r is currently in loci. At any time,
there is exactly one proposition true in

Regc
r .

S enr ⇡seni,r Robot r is sensing seni.

eAPr ⇡r
prop,r0

To robot r, the environment robot r0 is
actuating/sensing prop.

S enG ⇡Gseni All robots sense seni.

Definition 4.3.2. Robot Controller Given a set APr, a controller is a tuple Ar =

91

(S r, s0,r,Xr,Yr, �r, �s
r , �

e
r) where S r is a finite set of states, and s0,r 2 S r is the initial state.

Xr is the input alphabet, which is the set of environment propositions as in Def. 4.3.1. Yr is

the output alphabet, which is the set of robot propositions as in Def. 4.3.1. �r : S r⇥Xr ! S r

is a transition function that given a current state and an input symbol outputs a next state.

�s
r : S r ! 2Yr is an output labeling function that maps a state si,r to the set of robot

propositions true in that state. �e
r : S r ! 2Xr is an input labeling function that maps a state

si,r to the set of environment propositions xi,r true for the transition to that state.

In this work, we execute hybrid controllers on the robots: each hybrid controller consists

of a discrete high-level controller Ar and a set of continuous low-level controllers, each

corresponding to a proposition ⇡ 2 APr. These low-level controllers are in charge of

carrying out the actions or sensing depending on the valuation of ⇡.

Definition 4.3.3. Linear Temporal Logic (LTL) In this work, we automatically synthesize

a robot controllerAr (Def. 4.3.2) from a specification written in Linear Temporal Logic

(LTL). LTL formulas are constructed from a set of atomic propositions APr using the

following grammar:

' ::= true | ⇡ 2 APr | ¬' | ' _ ' | �' | 'U'.

We derive conjunction (^), bi-implication ($) and implication (!), from negation (¬) and

disjunction (_). The temporal operators “finally” (⇤) and “always” (⇤) are derived from

“next” (�) and “until” (U) as ⇤'=trueU' and ⇤'=¬ ⇤¬' .

An LTL formula ' is evaluated over traces �r = (x0,r, y0,r)(x1,r, y1,r) . . . 2 (2Xr ⇥ 2Yr)!

of Ar and their corresponding runs �r = s0,r s1,r s2,r A run/trace combination can be

produced byAr if for every i 2 N, si+1,r = �r(si,r, xi+1,r), xi,r = �e
r(si,r), and yi,r = �s

r(si,r).

92

Whether a trace �r satisfies an LTL formula ' at some position i 2 N is recursively

defined over the syntactic structure of the LTL formula. For proposition p 2 APr, �r,i |= p

i↵ (if and only if) p 2 xi,r [yi,r. For the LTL formula �', �r,i |= �' i↵ �r,i+1 |= '. A

run �r satisfies 'U'0 if there exists some i 2 N such that �r,i |= '0 and for all 0 j < i,

�r, j |= '. A trace satisfies an LTL formula if it satisfies the formula at position 0. A run

ofAr satisfies an LTL formula if the corresponding trace satisfies it. An LTL expression

built using only propositions, negated propositions, conjunction, and next-time operators is

called a “simple LTL conjunction”. For the full semantics of LTL, the reader is referred

to [18].

Definition 4.3.4. Mission Specification In this work, we restrict the class of LTL formulas

considered to the Generalized Reactivity (1) (GR(1)) formulas [10]. With GR(1) specifica-

tions and the algorithm in [10], we can synthesize a controller at a lower computational

complexity than with the full LTL. For the full LTL, the synthesis complexity is double

exponential in the length of the formula. In comparison, the synthesis algorithm from [10]

runs in time polynomial to the number of states, while the state space is exponential to the

number of propositions. In the GR(1) fragment a mission specification 'r is:

'r = 'e,r ! 's,r

= ('i
e,r ^ 't

e,r ^ 'g
e,r)! ('i

s,r ^ 't
s,r ^ 'g

s,r). (4.1)

The subformulas of 'r with superscript ‘i’ stand for initial conditions, with superscript

‘t’ for transitions, and with superscript ‘g’ for goals. The ‘i’ is overloaded here as an

abbreviation, but should not be confused with an index variable i in the rest of the paper.

'i
e,r is the initial condition of the environment, in the form of a Boolean formula over

93

Xr. 'i
s,r is the initial condition of the robot, in the form of a Boolean formula over Xr [Yr.

't
e,r=
V
⇤ t

e,r are the environment safety assumptions and t
e,r is a Boolean combination

of terms from Xr [Yr [�Xr, where �V={�v | 8v 2 V}. The formula 't
e,r denotes the

assumptions about the environment behaviors during execution.

't
s,r =
V
⇤ t

s,r is the system safety guarantees, with t
s,r being a Boolean combination

of terms fromXr[Yr[�Xr[�Yr. These are user-provided constraints over the behavior

of the robot that must be maintained at all times.

'g
e,r =
Vp

i=1 ⇤ ⇤
g,i
e,r are the environment liveness properties, where each g,i

e,r is a Boolean

formula over Xr [Yr. These represent environment states that are assumed to be reached

repeatedly during execution.

'g
s,r =
Vq

j=1 ⇤ ⇤
g, j
s,r are the system liveness properties, i.e. the robot goals, where each

 g, j
s,r is a Boolean formula over Xr [Yr. These are conditions that should be satisfied by the

robot repeatedly during execution.

The specifications for Example 10 are shown in Spec. 4. The initial conditions are that

there are no blocks and the robot is idle; it has not received a pickup task yet (line 1-2). The

environment safety assumption (line 3) is that a block is present when the robot receives

a pickup command. The system safety guarantees (line 4-5) are that the robot picks up

the block when it receives a command and it cuts the block when it senses a block in its

manipulator. If the block is placed by another robot, we replace line 2 and 3 in Spec. 4

with Spec. 5. We omit topological constraints in the specifications throughout the paper for

clarity.

94

Specification 4 Block Cutting Example

'i
s,r =¬⇡pickup ^ ¬⇡cutBlock1
'i

e,r =¬⇡pickupTask ^ ¬⇡holdingBlock ^ ¬⇡blockPresent2
't

e,r =⇤((� ⇡pickupTask ^ ¬� ⇡holdingBlock)! (� ⇡blockPresent)3
't

s,r =⇤((�⇡pickupTask ^� ⇡blockPresent)$� ⇡pickup)^4
⇤(⇡holdingBlock$�⇡cutBlock)5

Specification 5 Block Cutting Example - Two Robots

'i
e,r =¬⇡pickupTask ^ ¬⇡holdingBlock ^ ¬⇡blockPresent ^ ¬⇡placeBlock,Bob2
't

e,r =⇤(¬� ⇡blockPresent ! � ⇡placeBlock,Bob)3

A specification 'r is realizable if a controllerAr satisfying 'r (on all of its traces) can

be successfully synthesized; the specification 'r is unrealizable otherwise.

Ideally, the user wants the robot to maintain the properties in 't
s,r and complete the goals

specified in the formulas 'g
s,r when executing the controllerAr. However, from Eq. 4.1, if

'e,r is false in a trace of the automaton Ar, then the trace can satisfy Eq. 4.1 even when

's,r is false due to the implication structure, therefore robot behaviors may not achieve the

system specification 's,r. This work leverages [23] where possible robot behaviors that

actively make the environment assumptions false are prohibited.

Definition 4.3.5. Game Structures Each robot controller Ar (Def. 4.3.2) is constructed

by finding a winning strategy for the robot in a two-player game between the environment

and the robot [10]. The game Gr = (Xr,Yr,⇥r, ⇢e
r , ⇢

s
r, �r) has the following components:

Xr and Yr are as described in Def. 4.3.1. A position of the game is an assignment to

the variables in Xr [Yr. ⇥r ✓ 2(Xr[Yr) is the set of initial positions. The input constraints

95

⇢e
r ✓ 2(Xr[Yr) ⇥ 2Xr define the possible incoming inputs, i.e. possible environment behaviors,

based on the current position. ⇢s
r ✓ 2(Xr[Yr) ⇥ 2(Xr[Yr) defines the next possible positions

based on the current position. The winning condition of the robot �r is given in the form of

an LTL formula:

(⇤ ⇤ g,1
e,r ^ · · · ^ ⇤ ⇤ g,p

e,r)! (⇤ ⇤ g,1
s,r ^ · · · ^ ⇤ ⇤ g,q

s,r),

with each g,p
e,r or g,q

s,r being a Boolean formula from 'g
e,r and 'g

s,r respectively.

4.4 Problem Formulation

We say an environment robot is collaborative if it has its own specification 'renv , can

communicate and can attempt to adjust its own behavior following requests from robot

r. An unresponsive environment robot is one that cannot be communicated with or that

cannot adjust its own behaviors following requests from robot r; it is treated as any other

uncontrollable environment element.

As described in Section 4.3, we first abstract the robot and environment behaviors to

propositions. With these propositions, a user writes a mission specification 'r = 'e,r !

's,r and synthesizes a provably-correct controller Ar with [10]. This specification may

include explicit assumptions about environment behaviors, captured in 'e,r. During

execution, when robot r is in a state si,r of the controller Ar, the next environment state

xi+1,r may be di↵erent from the user expectation and violate the safety assumptions in

't
e,r: (si,r, xi+1,r) 6|= 't

e,r. Note that one cannot detect liveness assumption violations in finite

executions, therefore we focus on safety violations.

96

In such cases, due to the game-based synthesis formulation, a controller synthesized

with [10] will not have a valid next state, which practically means the robot will throw

an exception and fail. In this paper we create a layered approach to deal with assumption

violations, solving the following problem:

Problem 3. Given a specification 'r and a controller Ar synthesized from 'r, construct

a controller A0r based on 'r that increases robustness against violations of environment

safety assumptions 't
e,r during execution, i.e., such that the controller A0r satisfies the

specification 'r, including on all traces �r starting from a state sr,i+1 reached immediately

after an environment assumption violation and for which there exists a winning strategy

from some state in �r after the final assumption violation.

This work considers environment assumption violations. We assume sensors provide

correct information about the environment and actuators are able to perform actions cor-

rectly. Dealing with sensor and actuation noise and faults is outside of the scope of this

paper. We will tackle Problem 3 with a particular emphasis on multi-robot scenarios, where

the controller operates in a partially collaborative environment.

4.5 Overview

To address Problem 3, consider the following two di↵erent scenarios where robot r’s

assumptions may be violated when executing a provably-correct robot controllerAr:

S.1 robot r is operating in a workspace by itself or with unresponsive robots;

S.2 robot r is working in a workspace shared with some other collaborative robots.

97

In scenario S.1, if one of the environment safety assumptions 't
e,r is violated during

execution, then it must be due to some incorrectly modeled environment behaviors in the

specification 'r. Since the assumptions 't
e,r are falsified, the controllerAr does not have a

next state. To restore the desired robot behavior 's,r, we proposed two di↵erent approaches

in [86].

The first is an o✏ine approach called Recovery. It introduced a modified controller

synthesis algorithm based on [10]. This synthesis algorithm adds extra “recovery” tran-

sitions; the robot will continue and complete its task with this “recovery” controller as

long as the violations of 't
e,r are transient and do not cause the violation of 't

s,r. In this

paper (Section 4.6), the approach is improved to include states and transitions that do not

guarantee the satisfaction of robot goals 'g
s,r but the robot guarantees 't

s,r hold: the robot

can take these “safe” moves when no better moves are available. This guarantees that the

robot controllerAr has a next state, as opposed to [86], when the robot can safely remain in

these “safe” non-winning states. Once the violations of the environment assumptions 't
e,r

disappear, the robot can proceed to its goals. The approach solves Problem 3 for transient

assumption violations by constructing a controllerA0r that (1) satisfies, whenever possible,

the robot guarantees 't
s,r when environment safety assumptions 't

e,r are violated and (2)

satisfies the full robot specification 's,r when the violations end and the robot is eventually

in a winning state, i.e., a state from which the satisfaction of the specification 'r can be

ensured.

The second approach in [86], Environment Characterization, is applied during execution.

The approach automatically relaxes the environment safety assumptions 't
e,r during execu-

98

tion, when the robot observes any incorrectly modeled environment behaviors. In this paper

(Section 4.7), the approach has been changed to account for the most-recently-observed

environment behaviors as opposed to the previous observation in [86]. The approach here

ensures that any new environment information included in the specification is up-to-date.

The approach solves Problem 3 by automatically relaxing the environment assumptions

and synthesizing a controllerA0r that satisfies the guarantees 's,r for a larger set of possible

environment behaviors, including those observed during execution that violated the original

assumptions.

If robot r is sharing its workspace with other collaborative robots as in scenario S.2,

then violations of the environment safety assumptions 't
e,r may be caused by unexpected

behaviors performed by the environment robots. For such cases, we proposed the Integrative

Negotiation approach to resolve the conflict [88]. The approach attempts to modify the

environment behaviors by changing the behavior of one of the environment robots. Partial

specifications are exchanged between the pair of robots in conflict. Incorporating the plan

of the other robot, if possible, enables the robots to continue their tasks. In this paper

(Section 4.8), the approach now includes a new step where the two robots in negotiation both

modify their specifications, such that if successful, no further assumption violations will

be caused by the other robot. In [88], it is always possible that the robot not incorporating

the other’s specification violates the other’s assumptions again. The approach solves

Problem 3 by automatically updating a specification '0r with the partial specification of the

environment robot. The controllerA0r synthesized from '0r ensures that each robot satisfies

the assumptions the other robot is making regarding the robot’s behavior.

99

The three proposed approaches together create a system that can handle unexpected

events when a robot is operating in a shared environment. Controllers created with the

Recovery approach are more forgiving of any violations, but the robot can only resume

making progress towards the completion of its task if the violation eventually disappears.

If the violation persists and the robot cannot make progress towards its goal, the Envi-

ronment Characterization approach in Section 4.7 can re-enable progress. For these two

approaches, the robot is passive: it only checks if it can continue its task with guarantees

when unexpected events arise. If the robot is operating in a shared workspace with some

collaborative robots, the robot can play an active role and ask the environment robot to

modify its behaviors with the Integrative Negotiation approach, which changes the robot

environment behaviors. The system solves Problem 3 by increasing robustness of the

provably-correct controller execution with the three approaches.

If the three approaches cannot create a new controller A0r, i.e. the specification is

unrealizable, feedback regarding the unrealizability of the specification '0r is provided to

the user leveraging the techniques in [74]. Other approaches (e.g. [43, 57]) can be used as

well. The user can modify the specification '0r based on the feedback returned.

All the tasks considered in this work are encoded using the activation-completion

paradigm described in [75]. Compared with the examples in [86] and [88], this results in a

more realistic modeling of real-world scenarios where actions take time to complete and

can be aborted before they are completed.

Fig. 4.1 gives a summary of how the three approaches connect with each other in this

system. Table 4.2 summarizes the superscript notations used in the following sections.

100

Synthesize 'r with
the Recovery ap-

proach in Section 4.6

Execute Ar

Resolve the viola-
tion using Alg. 2

Negotiate with
renv. Send and

receive specification.
(Line 2-8 in Alg. 4)

Resynthesize controller
with renv’s request.

(Line 9-10 in Alg. 4)

Ask for user input

Abort execution
(Line 11 in Alg. 2)

Abort execution.
Analyze 'nego

r
(Line 17, 20 in Alg. 4)

Resynthesize a
controller A⇤r with '⇤r
(Line 15 in Alg. 4)

Negotiation completed.
Replace Ar with Anego

r
(Line 12, 21 in Alg. 4)

Synthesize 'renv with
the Recovery ap-

proach in Section 4.6

Execute Arenv

Receive request from
r. Send specification.
(Line 2-8 in Alg. 4)

Resynthesize controller
with r’s request

(Line 9-10 in Alg. 4)

Receive status.
Negotiation completed
(Line 18, 21 in Alg. 4)

Robot r Communication Robot renv

Violation of
assumptions '0 t

e,r

No and viola-
tion involves
renv(S.2)

Yes

'g
s,r,'

t(renv)
e,r

'g
s,renv ,'

t(r)
e,renv

SendAnego
r status

SendAnego
renv status

¬Anego
r and
¬Anego

renv

Anego
r andAnego

renv¬Anego
r butAnego

renv

A⇤r synthesized

A⇤r not
gener-
ated

No, (S.1)

'0r is still
unrealiz-
able

'0r is
realizable

Figure 4.1: Connection of the three approaches. The purple boxes highlight the Recovery approach in Section 4.6; the green boxes highlight the
Environment Characterization approach in Section 4.7; the yellow boxes describe the Integrative Negotiation approach in Section 4.8; finally, we
abort the execution if we reach the red boxes.

101

Table 4.2: Explanation of the Superscript Notations for Specification 'r and ControllerAr

Section Type Superscript
Notation

Example Meaning of the superscript

4.7

Environment
Characterization

Result
h0 A0r, '0 i

e,r
Modified h via the Environment Characterization Approach.
When the execution just begins, h0 is the same as h.

Extra simple LTL
conjunction h

conj
EC1 '

conj
t,EC1
e,r

A simple LTL conjunction created from the Environment Char-
acterization approach.

Specification updated
with simple LTL

conjunction
hEC1 't,EC1

e,r
h updated with the simple LTL conjunctions h

conj
EC1 found with

the Environment Characterization approach.

4.8

Integrative
Negotiation Result h⇤ A⇤r , '⇤ i

e,r
Modified h via the Integrative Negotiation Approach. When the
execution just begins, h⇤ is the same as h.

Snippets to robot renv h(renv) 't(renv)
e,r Environment Assumptions to send to the environment robot renv

Intermediate
Integrative

Negotiation Result
hnego Anego

r ,'t nego
e,r Intermediate h inside the Integrative Negotiation approach.

102

4.6 Recovery

The synthesis problem for Generalized Reactivity (1) specifications [10] is typically reduced

to finding a winning strategy for the robot, or the system player, in a suitable game structure

(Definition 4.3.5). We call the positions of a game structure from which the system player

can win the game the winning positions. These positions can be found by evaluating the

following equation:

W = ⌫Z.
q\

j=1

µY.
p[

i=1

⌫X. ⇤�((�s
j \ Z) [Y [(�

e
i \ X)). (4.2)

In Eq. 4.2, ⌫ is the greatest fixpoint operator and µ is the least fixpoint operator.

Given a monotone function f : 2J ! 2J for some set J, µX. f (X) denotes the limit of

f (f (. . . (f (;)) . . .)), whereas ⌫X. f (X) represents the limit of f (f (. . . (f (2J)) . . .)). The ⇤�

operator takes a set of states T ✓ 2(Xr[Yr) and computes the positions that the system player

can take a transition to T within one step. Formally:

⇤�(T) = {(x, y) 2 2Xr[Yr | 8x0 ✓ Xr.9y0 ✓ Yr.

(x, y, x0) 2 ⇢e
r ! (x, y, x0, y0) 2 ⇢s

r ^ (x0, y0) 2 T }.

Note that ⇤� is a monotonic operator as T occurs only positively in the definition of the

operator, i.e., adding elements to a set with the operator applied can only make the resulting

position set larger. Also, in the fixpoint equation (Eq. 4.2), �s
j represents the positions

satisfying the jth system goal g, j
s,r , whereas �

e
i represents the positions that do not satisfy

the ith environment goal g,i
e,r (for all 1 i p and 1 j q).

103

The outermost fixpoint of the equation defining W successively approximates the

positions that are winning for the system player. In every iteration of the outermost fixpoint

evaluation, it is checked that each system goal can be reached (if the environment reaches

its goals infinite often). This idea is represented by the
Tq

j=1 operator that iterates over

the system goals. The middle least fixpoint operator then successively approximates the

positions that can reach a system goal g, j
s,r , starting with the positions that are closest to the

goal and ending with the positions that are farthest away from the goal.

The
Sp

i=1 operator iterates over all environment goals; the strategy may wait for any of

them to be reached on the way to the next system goal. The inner-most greatest fixpoint

then implements the allowance to wait: we want to find the greatest set of positions for

which leaving the set implies that an environment goal has been reached.

The ⇤�(. . .) part in Eq. 4.2 finally implements the aim of the system player to always

take transitions such that either:

T.1 a system goal is reached and the position is still winning afterwards (so that the

execution of the strategy can continue in a provably-correct fashion),

T.2 the next position is closer to the current system goal, or

T.3 the strategy is currently waiting for the next environment goal to be reached.

These transitions are exactly the ones given to the ⇤� operator. The ⇤� operator then checks

and returns positions that fulfill T.1, T.2 or T.3 by playing transitions in ⇢s
r, provided that

the environment only picks transitions in ⇢e
r .

104

A strategy for the system player to win the game can then be extracted by cycling

through the system goals and always picking transitions that:

1. were considered in the evaluation of the ⇤�(. . .) operator as early in the middle least

fixpoint µY evaluation as possible,

2. while only considering fully evaluated greatest fixpoints ⌫Z and ⌫X.

This ensures that the strategy never moves away from the (next) system goal and

can only get closer to it. This definition of the winning strategy naturally leads to only

including transitions (x, y, x0, y0) 2 (2Xr[Yr)2 for which (x, y) 2 W and (x, y, x0) 2 ⇢e
r .

Hence, the extracted strategy is not robust to transient violations of the environment safety

assumptions, as the implementation does not contain any transitions that witness the

violation of environment safety assumptions.

In order to allow the generated implementation to recover from transient violations

of the environment assumptions, we modify the strategy extraction procedure; we add

transitions that satisfy ⇢s
r but do not satisfy ⇢e

r . These transitions preserve the safety of the

robot, and we first add transitions that lead to winning states, as in [86], and then transitions

that do not lead to winning states, as described below.

4.6.1 Adding Recovery Transitions to Winning States

After evaluating W according to the equation above, for every (x, y) 2 2Xr[Yr and

x0 2 2Xr , we check if there is some y0 2 2Yr for which (x, y, x0, y0) 2 ⇢s
r and for which

105

(x0, y0) 2 W. Whenever this is the case, we pick a value of y0 such that (x0, y0) appears as

early as possible in the least fixpoint evaluation for the next system goal, that is, the robot

is closest to satisfying the current goal.

While this change to the strategy extraction routine of the synthesis algorithm is rel-

atively small, it has a huge e↵ect: instead of considering only transitions that satisfy the

environment assumptions, the newly generated implementation or strategy supports all

incoming environment player moves that do not violate the specification in the long run.

If environment assumption violations are not transient, the implementation may enter

a livelock. This is the case if the only valid response of the system at a point in time is

moving further away from the current system goal. However, as we prefer transitions that

do not do so, this only occurs in cases where moving away from the goal is unavoidable.

Whenever possible, the generated controller ignores transient environment assumption

violations, making it robust to irrelevant deviations from the environment assumptions.

4.6.2 Adding Recovery Transitions to Non-Winning States

In some cases, the controller cannot reach a winning state following an environment

assumption violation: the controller cannot ensure the specification will hold along its

execution as some existing environment behaviors will prevent that. Yet, this environment

behavior may not occur forever. Thus, we add alternate transitions (that satisfy ⇢s
r) to

positions that are not in W to the controller. These positions are such that W is reachable by

some sequence of transitions that are all in ⇢s
r. By preferring transitions that move closer

106

to positions in W, the generated implementation can still recover as quickly as possible in

such a case. Adding system behaviors for cases in which the controller can no longer satisfy

the specification without the help of the environment has been explored in [9]. However,

they did not consider adding such transitions only if these positions actually allow recovery

towards positions from which the specification can be enforced to hold again.

107

Algorithm 1 Strategy extraction algorithm. The game structure is given as a tuple G =
(Xr,Yr,⇥r, ⇢e

r , ⇢
s
r , �r), the family of results {P j,c,i}1c<cmax,i<imax is the set of intermediate results of

evaluating Equation 4.2, where c is the iteration of the µY fixpoint and i and j are the indices of
the environment liveness assumptions and system goals, as in Equation 4.2. The variable ToDo
stores the states whose successors still have to be computed as a set, so duplicates are removed. We
assume that the number of system goals q is � 1 and for all 1 j q, �s

j represents the states listed
in the jth system goal. All indices in for loops are iterated through in ascending order.

procedure ExtractImplementation
S 0,r (

S
1c<cmax,i<imax P j,c,i) ⇥ {1}

ToDo S 0,r, S r ;, �r = ;, �s
r ;, �e

r ;
Bj,c µcY. ⇤�((�s

j\Z) [Y) for all c 2 N and 1 j q
5: while ToDo , ; do

(s, j) popElement(ToDo), S r S r [{(s, j)}
�s

r �s
r [{(s, j) 7! s|Yr }, �e

r �e
r [{(s, j) 7! s|Xr }

for X0 ✓ Xr do
for c < cmax j do

10: for i < imax do
if 9Y 0 ✓ Yr : (X0,Y 0) 2 P j,c,i

iiiiiiiiiiiiiiiiiixxx ^ (s, X0,Y 0) |= ⇢s
r then

Y 0 some Y 0 ✓ Y s.t. (X0,Y 0) 2 P j,c,i ^ (s, X0,Y 0) |= ⇢s
r

if (X0,Y 0) |= �s
j then j0 (j mod n) + 1

else j0 j
15: �r �r [{((s, j), X0) 7! ((X0,Y 0), j0)}

if ((X0,Y 0), j0) < S r then
ToDo ToDo [{((X0,Y 0), j0)}

break to line 8
for c 2 N such that c = 0 or Bj,c , Bj,c�1 do

20: if 9Y 0 ✓ Yr : (X0,Y 0) 2 Bj,c then
Y 0 some Y 0 ✓ Y s.t. (X0,Y 0) 2 Bj,c ^ (s, X0,Y 0) |= ⇢s

r
�r �r [{((s, j), X0) 7! ((X0,Y 0), j)}
if ((X0,Y 0), j) < S r then

ToDo ToDo [{((X0,Y 0), j)}
25: break to line 8

return (Xr,Yr, S r, S r,0, �r,s, �e
r , �

s
r)

The resulting overall strategy extraction procedure is shown in Algorithm 1. The com-

putation of the backup behavior outside of W is given from line 19 onwards. Our Recovery

approach is light-weight as it does not alter the structure of the generated implementations

108

and it does not modify the specification or the computation of the winning positions. This

is in contrast to more sophisticated approaches to synthesis of error-resilient systems such

as [25] in which the generated implementation plans ahead and computation times become

much longer. As we integrate Recovery with Environment Characterization (Section 4.7)

in this work, the approach in [25] is not needed here.

4.7 Environment Characterization (EC)

First introduced in [86], the Environment Characterization approach relaxes and updates

the environment assumptions 't
e,r during execution based on any newly-observed and

previously-disallowed behaviors of the environment; the updated assumptions allow for

more environment behaviors than originally assumed: thereforeA0r, the controller synthe-

sized from the updated specification if it is realizable, guarantees correct robot behavior

in a larger range of environment behaviors. In this approach, 'r is modified to '0r, where

initially, all components are the same:

'0r = 'r = '
0 i
e,r ^ '0 t

e,r ^ '0 g
e,r ! '0 i

s,r ^ 't
s,r ^ 'g

s,r.

Note that if users do not know anything about the environment behavior a priori, they

can start with 't
e,r = ⇤(False), which means the environment has no possible behaviors.

During execution, our approach then adds possible environment behaviors automatically

based on observed behaviors.

109

4.7.1 Runtime Monitoring

During execution, the approach leverages techniques from the runtime verification com-

munity [48, 55] and particularly with LTL [1], where a system includes monitors that

continuously observe and verify some properties of interest for the system and its en-

vironment; the monitors report system success and failure. In this work, our approach

monitors the environment safety assumptions '0 t
e,r in the specification '0r. At every step of

the controller execution, the assumptions '0 t
e,r are checked against the current state si,r of

robot r and the incoming sensor values xi+1,r. Our approach detects assumption violation

and rewrites the assumptions '0 t
e,r based on the incoming sensor values xi+1,r to obtain a

closer approximation of the actual environment behaviors, as described next.

4.7.2 Automatic rewriting of the specification

We automatically incorporate newly observed environment behaviors xi+1,r into the current

environment safety assumptions '0 t
e,r, thus including additional behaviors unaccounted for

in the previous synthesized controllerA0r.

We rewrite the assumptions using two di↵erent approximations of the allowed environ-

ment transitions: coarse and fine. The algorithm switches from the coarse to the fine only

when needed due to unrealizability, as it takes longer for the finer one to capture all possible

environment transitions. Formally, the assumptions are captured using two di↵erent simple

LTL conjunctions as shown in Eq. 4.3 and Eq. 4.4 below.

110

'
conj

t,EC1
e,r = (

^

⇡2xi+1,r

� ⇡ ^
^

⇡2Xr\xi+1,r

¬� ⇡), (4.3)

'
conj

t,EC2
e,r = (

^

⇡2�e
r (si,r)

⇡ ^
^

⇡2Xr\�e
r (si,r)

¬⇡ ^
^

⇡2xi+1,r

� ⇡ ^
^

⇡2Xr\xi+1,r

¬� ⇡). (4.4)

Eq. 4.3 appends the incoming valuation of the environment propositions xi+1,r to the as-

sumptions '0 t
e,r as disjuncts; while Eq. 4.4 appends the evaluation of the current environment

propositions �e
r(si,r) and that of the next environment propositions xi+1,r to the assumptions

'0 t
e,r as disjuncts. The next environment propositions xi+1,r are a subset of Xr, which include

propositions in S enr, Regc
r and Actc

r .

Eq. 4.3 captures more environment behaviors than Eq. 4.4. When appended to the

assumptions '0 t
e,r, the new assumptions using Eq. 4.3 allow more environment behaviors,

while the assumptions '0 t
e,r created with Eq. 4.4 are more specific and only add environment

behaviors that match a two-step sequence of current and next environment proposition

values. Both Eq. 4.3 and Eq. 4.4 relax the environment behaviors; their addition to the

environment safety assumptions '0 t
e,r accounts for more possible environment behaviors in

the specification '0r. For example, consider there is only one sensor ⇡doorClosed. When the

execution starts, the door is open (⇡doorClosed is false). Then, the door is closed in the next

step (⇡doorClosed is true). The conjunction added with Eq. 4.3 is (� ⇡doorClosed), while the

conjunction added with Eq. 4.4 is (¬⇡doorClosed ^� ⇡doorClosed), which explicitly specifies a

possible environment transition and does not allow as many new environment behaviors as

that with Eq 4.3.

Algorithm 2 shows an update to the environment safety assumptions '0 t
e,r with the newly

observed environment behaviors xi+1,r. To prepare for resynthesis of the robot controller

111

Algorithm 2 One iteration of Environment Characterization
procedure EnvironmentCharacterization

2: '0 i
e,r =

V
⇡2xi+1,r ⇡ ^

V
⇡2Xr\xi+1,r ¬⇡

'0 i
s,r =

V
⇡2�s

r (si,r) ⇡ ^
V
⇡2Yr\�s

r (si,r) ¬⇡

4: 't,EC1
e,r 't,EC1

e,r _ '
conj

t,EC1
e,r (Eq. 4.3)

't,EC2
e,r 't,EC2

e,r _ '
conj

t,EC2
e,r (Eq. 4.4)

6: '0 t
e,r = ⇤(

V
 t

e,r _ ('t,EC1
e,r))

A0r SYNTHESIS('0r)
8: if '0r is unrealizable (NoA0r is generated) then

'0 t
e,r = ⇤(

V
 t

e,r _ ('t,EC2
e,r))

10: A0r SYNTHESIS('0r)
returnA0r if generated else return None

A0r, when the environment assumptions '0 t
e,r are violated, Alg. 2 first automatically updates

the environment and system initial conditions '0 i
e,r,'

0 i
s,r based on the current observed state

(lines 2,3) to ensure the robot restarts in a valid state.

Eq. 4.3 is attempted before Eq. 4.4, added as a disjunct to the environment safety

requirements '0 t
e,r (lines 4,6). If a new controllerA0r is successfully synthesized from the

specification '0r, which now includes the newly observed environment behaviors xi+1,r

(line 7), then the new controller A0r can start from the current state and reach all the

goals while satisfying the system safety guarantees, provided that the new environment

assumptions '0 t
e,r are not violated.

If the specification '0r is unrealizable after appending the simple LTL conjunctions from

Eq. 4.3 (line 8), then Alg. 2 uses Eq. 4.4 to relax the specification '0r instead (lines 5,9). If

the modified specification '0r is realizable with either Eq. 4.3 or Eq. 4.4 and a new robot

controllerA0r is synthesized, then the execution resumes with the latest controllerA0r.

112

Algorithm 3 Online resilience to unexpected events
procedure UnexpectedEventsResilience

2: A0r EnvironmentCharacterization (Alg. 2)
if '0r is still unrealizable (NoA0r is generated) then

4: if S.1: an uncontrollable environment then
Provide feedback with specification analysis [74]

6: '0 g
e,r = '

0 g
e,r^ User input

A0r SYNTHESIS('0r)
8: else

A0r,'0r IntegrativeNegotiation (Section 4.8)
10: if '0r is unrealizable (NoA0r is generated) then

Abort Execution return
12: Continue Execution

Otherwise, after Eq. 4.3 was attempted, if the specification '0r is still unrealizable

when incorporating Eq. 4.4 (line 3 in Alg. 3), we consider two possible situations: if the

environment assumptions violation is caused by a collaborative robot operating in the same

workspace (S.2), then the Integrative Negotiation approach in Section 4.8 is pursued (line 9

in Alg. 3); otherwise (S.1) Alg. 3 provides an analysis of the unrealizable specification '0r

to the user using the technique from [74] (line 5 in Alg. 3).

Interpreting the feedback, the user may include in the specification '0r new environment

livenesses (line 6 in Alg. 3), which add assumptions about behaviors that the environment

will repeatedly exhibit. Intuitively, the environment livenesses '0 g
e,r explicitly remove some

perpetual environment behaviors that are preventing the robot from reaching its goal. If

the revised specification '0r incorporating the user inputs is realizable, then the execution

continues with the new controllerA0r. However, if adding new environment livenesses does

not render the specification '0r realizable, then the execution is aborted. The user should

then reexamine the specification '0r, since no provably-correct robot controllerA0r exists.

113

4.8 Integrative Negotiation

If the Environment Characterization (EC) approach in Section 4.7 cannot automatically

construct a realizable specification '0r, and the violations of 't
e,r are due to a collaborative

robot operating in the same workspace asynchronously, then the Integrative Negotiation

approach (Alg. 4), first introduced in [88], may resolve the violation of the environment

safety assumptions '0 t
e,r through modifying the environment (collaborative robot) behaviors.

The approach initiates an exchange of partial specifications between robot r and the

robot in conflict with r, renv, in the shared workspace. This algorithm assumes the violations

of 't
e,r are due to one environment robot. The specification '⇤r in Alg. 4 is the same as

the original specification 'r when the controller execution begins, e.g., '⇤ t
s,r = 't

s,r and

'⇤ g
e,r = '

g
e,r.

Negotiation is triggered by the robot detecting the conflict, assumed here to be robot

r. Robot r notifies the conflicting robot renv of the need to negotiate. The two robots in

negotiation both execute Alg. 4, where in renv’s perspective, it is r and robot r becomes renv.

Note that negotiation is only carried out once between any two robots.

During negotiation, the algorithm does not include any revisions to the environment

safety assumptions from the EC approach – the addition of simple LTL conjunctions based

on Eq. 4.3 and Eq. 4.4. Since the Integrative Negotiation approach changes the actual envi-

ronment behaviors, the environment safety assumptions from the previous characterization

'0 t
e,r may include environment behaviors that will no longer occur. The algorithm restores

114

Algorithm 4 Integrative Negotiation for participating robots
procedure IntegrativeNegotiation

2: Restore '0 t
e,r to 't

e,r

Send 't(renv)
e,r and 'g

s,r to robot renv

4: Receive 't(r)
e,renv and 'g

s,renv from robot renv

't nego
s,r '⇤ t

s,r ^ 't(r)
e,renv , '

g nego
e,r '⇤ g

e,r ^ 'g
s,renv

6: '⇤ i
e,r =

V
⇡2xi+1,r ⇡ ^

V
⇡2Xr\xi+1,r ¬⇡

'⇤ i
s,r =

V
⇡2�s

r (si,r) ⇡ ^
V
⇡2Yr\�s

r (si,r) ¬⇡
8: 'nego

r = '⇤ i
e,r ^ 't

e,r ^ 'g nego
e,r ! '⇤ i

s,r ^ 't nego
s,r ^ 'g

s,r
Anego

r SYNTHESIS('nego
r)

10: SendAnego
r status to robot renv. Wait forAnego

renv status
if 'nego

r is realizable (Anego
r is synthesized) then

12: A⇤r Anego
r , '⇤r 'nego

r
else if 'nego

renv is realizable (robot renv can take robot r’s task into consideration) then
14: '⇤r = '

⇤ i
e,r ^ 't

e,r ^ '⇤ g
e,r ! '⇤ i

s,r ^ '⇤ t
s,r ^ 'g

s,r
A⇤r SYNTHESIS('⇤r)

16: else (Both 'nego
r and 'nego

renv are unrealizable)
Abort execution. Analyze 'nego

r . return
18: SendA⇤r status to robot renv. Wait forA⇤renv

status
if '⇤r or '⇤renv

is unrealizable then
20: Abort execution. Analyze the specifications. return

returnA⇤r ,'⇤r

the previous assumptions '0 t
e,r to the original environment safety assumptions '0 t

e,r = '
t
e,r

(line 2 in Alg. 4). If needed, environment characterization is performed after the integrative

negotiation phase. We define safeties 't(renv)
e,r as follows:

't(renv)
e,r =

^
{⇤ t

e,r | t
e,r is a clause in 't

e,r,9⇡ appears

in t
e,r we have that ⇡ 2 eAPr and ⇡ abstracts

information about renv}.

Each robot sends its environment assumptions relating to renv, 't(renv)
e,r , and its system

goals 'g
s,r to the environment robot renv (line 3 in Alg. 4); each robot also receives the

115

environment assumptions relating to itself 't(r)
e,renv and the system goals 'g

s,renv from the other

robot (line 4 in Alg. 4).

Both robots attempt to incorporate assumptions from the other robot 't(r)
e,renv into their

system safety guarantees '⇤ t
s,r. Formally, the acquired assumptions 't(r)

e,renv are conjoined

with the system safety guarantees '⇤ t
s,r and together they form the temporary new system

guarantees 't nego
s,r (line 5 in Alg. 4). If the resulting specification 'nego

renv of the environment

robot renv is realizable, then robot renv will satisfy the assumptions 't(renv)
e,r robot r is making,

and similarly for robot r.

Since robot r must maintain the safety guarantees '⇤ t
s,r when the environment speci-

fication '⇤e,r is satisfied, adding system safety guarantees '⇤ t
s,r further restrict the robot’s

behavior and may make the new specification unrealizable. To alleviate this situation, the

system goals of the environment robot 'g
s,renv are integrated into the new specification 'nego

r

as part of the environment liveness assumptions 'g nego
e,r (line 5 in Alg. 4). By doing so, we

also restrict the set of environment behaviors the robot must respond to.

The initial conditions of the environment and the robot are updated, similar to Alg. 2,

on lines 6 and 7 in Alg. 4. With the new specification 'nego
r (line 8 in Alg. 4), the synthesis

algorithm attempts to synthesize a new controller Anego
r (line 9 in Alg. 4). Robot r then

conveys the synthesis result ofAnego
r to the other robot renv and waits for the synthesis status

ofAnego
renv from robot renv (line 10 in Alg. 4).

4.8.1 Both robots can incorporate the other’s specification

116

If the two new specifications 'nego
r and 'nego

renv are both realizable, then robot r expects

no future violations of the environment safety assumptions 't
e,r from robot renv; likewise,

robot renv also anticipates no violations from robot r onwards. In this work, we guarantee

that the robots will not experience any additional environment safety violations from the

other robot. However, due to the decentralized approach, the robots may encounter livelock

situations. Here, if the environment livenesses 'g nego
e,r of robot r are not satisfied, then from

Eq. 4.1 robot r may or may not complete its system goals 'g
s,r. If robot r does not satisfy

its system goals 'g
s,r, then robot renv may not satisfy its system goals 'g

s,renv either, since its

specification 'nego
renv now incorporates robot r’s system goals into its environment livenesses

'g nego
e,renv and robot renv relies on robot r satisfying its goals. Practically speaking, since the

robots are asynchronous, one robot could make more progress than the other and eventually

resolves a livelock in many cases; however, in future work we will look into conditions for

guaranteeing livelock free executions.

4.8.2 Only one robot can incorporate the other’s specification

Even when only one of the two specifications is realizable, the robots may still continue

their tasks. Consider robot renv successfully synthesizes a new controller Anego
renv from the

specification 'nego
renv but robot r cannot from 'nego

r . For robot renv, this is identical to the

scenario where both specifications are realizable: the new controllerAnego
renv and specification

'nego
renv replace the old controller A⇤renv

and specification '⇤renv
. For robot r, receiving robot

renv’s successful status (line 13 in Alg. 4), robot r resynthesizes a new controllerA⇤r from

its specification '⇤r before negotiation, with the initial conditions '⇤ i
e,r and '⇤ i

s,r replaced

117

(lines 14,15 in Alg. 4). In this case, robot renv accommodates the assumptions of robot r

which continues the mission with the previous specification '⇤r .

Robot r then sends the latest synthesis result ofA⇤r to robot renv and waits for an update

on the A⇤renv
status (line 18 in Alg. 4). If robot r synthesizes a controller A⇤r from the

specification '⇤r , then both robots resume their tasks with the latest automatons A⇤r and

A⇤renv
. The new controllerA⇤r and specification '⇤r are returned (line 21 in Alg. 4). Robot

r continues its execution as before and satisfies its goals. Taking robot r’s specification

into account and knowing robot r can reach its goals, robot renv can also satisfy its goals

from Eq. 4.1. If '⇤r is unrealizable, then the robots exit their execution and the specifications

are analyzed (line 20 in Alg. 4). The synthesis results are exchanged twice (line 10, 18 in

Alg. 4) because when 'nego
renv is realizable and 'nego

r is unrealizable, robot r will resynthesize a

new controller with its original specification but with the current initial conditions (line 14

in Alg. 4). However, the specification could be unrealizable and both robots abort their tasks

in this case. If 'nego
r and 'nego

renv are both realizable, then the second exchange is redundant.

During the rest of the execution, robot r might violate robot renv’s assumptions again, since

robot r continues with its original specification.

4.8.3 Both robots cannot incorporate the other’s specification

If both robots r and renv cannot accommodate the other robot’s mission when conducting

their own task, i.e., 'nego
r and 'nego

renv are both unrealizable (line 16 in Alg. 4), then the

algorithm provides specification analysis to the user, using the technique from [74] (line 17

118

in Alg. 4).

4.9 Computational implications

The synthesis process in this work consists of two steps: 1. computing a game structure Gr

from a specification 'r; and 2. extracting a strategy or controllerAr from the game.

In the Recovery approach (Section 4.6), we only modify the strategy extraction portion

of the synthesis process. The computation of the structure Gr from a specification 'r does

not change, and computing a controller can still be done in time polynomial in the number

of states as in [10].

In the Environment Characterization approach (Section 4.7), the total number of possible

simple LTL conjunctions are 2|X| + 22|X|, with 2|X| due to Eq. 4.3 and 22|X| due to the

combination of any current inputs with any incoming inputs in Eq. 4.4. Since the approach

only resynthesizes when a new environment is observed, this also translates into the

maximum number of resynthesis steps possible.

In the Integrative Negotiation approach (Section 4.8), given a robot r can communicate

with m other robots, the maximum number of resynthesis steps would be 2m for robot r.

During negotiation, robot r first synthesizes a new controller by incorporating the other

robot’s specification. If it cannot do so, it resynthesizes a controller using its original

specification with an updated initial condition. Robot r synthesizes at most twice in each

negotiation.

119

Note that the complexity of all synthesis steps in the process together is the same as for

standard GR(1) synthesis – exponential in the number of propositions and polynomial in

the number of states in the game graph. This is because the number of resynthesis steps is

bounded exponentially by the number of propositions (plus the number of other robots) by

the argument above. Exponentially often executing an exponential synthesis step yields an

exponential complexity.

Lemma 1. With our work,

(a) An infinite execution of a synthesized controller never violates the system safety

guarantees 't
s,r.

(b) With the Environment Characterization (EC) approach, the environment safety as-

sumptions '0 t
e,r converge based on the environment observations.

(c) The robot safety guarantees '⇤ t
s,r converge due to the Integrative Negotiation approach.

Proof. In this work, we leverage the synthesis technique from both [10] and [23].

Claim (a). This follows from the properties of a synthesized controller from [23]. A synthe-

sized controller only contains transitions that satisfy both the environment specification 'e,r

and the system specification 's,r. The Recovery approach still ensures that the synthesized

controller satisfies the system guarantees 't
s,r, as the approach only adds new transitions

(x, y, x0, y0) that are in ⇢s. The other two approaches resynthesize a new controller when the

environment assumptions 't
e,r are violated at runtime. The approaches either uphold the

system guarantees 't
s,r with the new controller or they abort the execution. The controller

does not violate the system guarantees 't
s,r during execution.

120

Claim (b). Consider the case where we observe a violation of the environment assumptions

at runtime. With the EC approach, we update the original environment assumptions 't
e,r

with the newly-observed environment behaviors ('0 t
e,r). Compared to 't

e,r, '0 t
e,r is now a

more accurate description of the environment behaviors. As the execution continues, the

robot can observe more environment behaviors. If every single environment behavior is

possible, the environment assumptions '0 t
e,r would eventually converge to ⇤(true) by having

a disjunct for every possible environment transition in the environment assumptions.

Claim (c). Consider the case where robot r detects a violation of its environment safety

assumptions by a collaborative robot at runtime. With the Integrative Negotiation approach,

robot r updates its system safety guarantees '⇤ t
s,r conjoining the environment robot r0’s

environment safety assumptions about r. This imposes additional system guarantees on

robot r. After robot r exchanges its specification with all the collaborative robots around it,

the robot specification '⇤s,r converges. ⇤

Thus, we are converging to a specification that better approximates the environment

and describes the system, such that robots operating in a shared workspace can continue

their tasks with guarantees.

4.10 Examples

Figure 4.2: Workspace for Examples 2 and 4

121

(a) The workspace when: the door is open (left figure); the door is closed (middle), and the
door is broken (right).

(b) Starting position of Alice. (c) The door is broken when Alice is in road.

(d) The door is closed when Alice is in road. (e) Once the door opens, Alice continues her
task.

Figure 4.3: Alice, the orange Aldebaran Nao, performing her task as described in Example 11.

4.10.1 No Other Robot in the Workspace

Consider a patrol task for robot Alice (Example 11, Spec. 6) In this example, we only

consider the three bottom left regions: company, road and storage. Executions of the

examples can be found online1.

Example 11. Robot Alice conducts a patrol task and starts in company (line 1 in Spec. 6).

When she receives an order, she visits storage and stays there (lines 4,7 in Spec. 6). If she

does not receive an order or the order ends, she goes to company and stays there (lines 5,6
1
https://youtu.be/Uw_bN2hVe1I

122

https://youtu.be/Uw_bN2hVe1I

in Spec. 6). Between the regions road and storage, there is a door. Alice can visit storage

if the door is open or broken (line 3 in Spec. 6). The environment assumption is that the

door is open when Alice is in road or storage (line 2 in Spec. 6). Fig. 4.3a shows when the

door is open, closed or broken.

Specification 'A is realizable and a controllerAA is successfully synthesized.

Specification 6 Alice’s task 'A in Example 11

1 'i
s,A =⇡company,A 'i

e,A = ⇡
c
company,A

2 't
e,A =⇤((� ⇡c

road,A _� ⇡c
storage,A)! (� ⇡doorOpen)

3 't
s,A =⇤(¬(�⇡doorOpen_�⇡doorBroken)!¬� ⇡storage,A)^

4 ⇤((⇡order,A^⇡c
storage,A)!�⇡storage,A)^

5 ⇤((¬⇡order,A^⇡c
company,A)!�⇡company,A)^

6 'g
s,A =⇤ ⇤(¬⇡order,A! (⇡company,A^⇡c

company,A))^
7 ⇤ ⇤(⇡order,A ! (⇡storage,A ^ ⇡c

storage,A))

4.10.1.1 Environment Characterization only (1st example in the online video1)

The task starts (Fig. 4.3b) and Alice receives an order. Alice heads to storage and the door

is now broken. In the road region, Alice detects a violation of her assumption that ‘the door

should be open when she is in road or storage’ (line 2 in Spec. 6, Fig. 4.3c). This triggers

Environment Characterization and the algorithm appends the latest observed environment

behaviors into Alice’s updated specification, '0A, and resynthesizes a new controllerA0A. In

this case, the observed environment behavior is (¬� ⇡doorOpen ^� ⇡doorBroken ^� ⇡order,A ^

� ⇡c
road,A), with only the incoming valuation of the environment propositions as shown in

Eq. 4.3.

123

Since Alice can still proceed to storage with the door broken thus reaching her goal,

the revised specification is realizable and a new controller is synthesized. Alice contin-

ues her way to storage. When Alice is in storage, the previously added simple LTL

conjunction is invalid as Alice is no longer in road. The algorithm adds another conjunc-

tion (¬� ⇡doorOpen ^� ⇡doorBroken ^� ⇡order,A ^� ⇡c
storage,A) to Alice’s environment safety

assumptions '0 t
e,A, and it generates a new controller for Alice.

Once the order ends, Alice heads back to company. The algorithm detects a new envi-

ronment behavior and appends its observation into Alice’s specification: (¬� ⇡doorOpen ^

� ⇡doorBroken ^ ¬� ⇡order,A ^� ⇡c
storage,A). However, the specification '0A is not realizable as

Alice cannot move to company eventually with the current conjunctions and the activation-

completion paradigm.

Since adding a simple LTL conjunction created with Eq. 4.3 cannot render the spec-

ification realizable, the algorithm appends instead a conjunction created with Eq. 4.4:

((¬⇡doorOpen^⇡doorBroken^⇡order,A^⇡c
storage,A))^ (¬� ⇡doorOpen^� ⇡doorBroken^¬� ⇡order,A^

� ⇡c
storage,A)) to the specification. This conjunction includes information about both the

current and incoming environment propositions. We switch to 't,EC2
e,A from 't,EC1

e,A and the

environment assumptions now encode more precise observation of the environment. With

the new environment assumptions, it is explicitly encoded that the door will stay broken and

Alice can continue on her way to company. The new specification is now realizable, a new

controller is synthesized and Alice’s execution resumes. Alice continues and resynthesizes

when she observes new environment behaviors and eventually goes back to company.

Alice then receives an order again but this time the door is closed. Again, the algorithm

124

detects a violation of the assumption that ‘the door is open when Alice is in road or

storage’ (Fig. 4.3d). The algorithm appends a new conjunction to the specification but

the specification is unrealizable, since if the door is closed forever, then Alice can never

reach storage. The algorithm provides feedback to the user, highlighting the portion of the

specification that leads to unrealizability and asking for a user input. At this point, the user

can either abort the task and revise the entire specification, or if they know more about how

the environment behaves, they can add environment livenesses to the specification.

In this case, the user adds an environment liveness ⇤ ⇤(⇡doorOpen _⇡doorBroken) that states

the door will eventually be open or broken. The synthesis algorithm successfully creates a

new controller. The execution resumes and Alice waits until the door is open (Fig. 4.3e)

and then visits storage.

4.10.1.2 Recovery only (2nd example in the online video1)

Synthesizing Spec. 6 with the recovery approach provides robustness to temporary environ-

ment safety violations. The controller synthesized without Recovery transitions contains 73

states while the one synthesized with Recovery transitions contains 154 states.

With the ‘recovery’ controller, when Alice detects that the door is not open but broken

(violation), she can continue her task without resynthesis. When the door is closed, however,

the controller relies on the fact that the environment safety assumptions 't
e,A will eventually

hold. If that is not the case, Alice will wait in road forever without providing feedback.

Combining both approaches, as described next, eliminates unnecessary resynthesis steps.

125

4.10.2 Example with Recovery and Environment Characterization

(3rd example in the online video1)

The two approaches can be used together by executing a ‘recovery’ controller from the start.

The Environment Characterization algorithm appends all newly-observed environment

behaviors to the specification during execution. The user specifies either the duration of the

violation or the number of state transitions before controller resynthesis is triggered. This

reduces resynthesis steps while maintaining robustness to assumption violations.

Example 12. Consider the workspace shown in Fig. 4.4a where a robot patrols between

o�ce and entrance. When it senses an alarm, it goes to the o�ce and notifies the manager.

The manager then acknowledges that they received the warning by tapping the head of the

robot. Also, if the robot senses a spill when it is patrolling, it stops and calls for help.

In addition to patrolling, the robot also conducts a recycling task. If the robot is given

metal, glass or paper, it will carry the item to the corresponding deposit region.

The user makes three assumptions in the specification: 1. the manager will turn o↵

the alarm before acknowledging the robot; 2. alarm and spill will not happen at the same

time; and 3. in a deposit region, the robot will not see an item that does not belong to the

corresponding deposit region.

The user creates a realizable LTL specification for this example and synthesizes a

’recovery’ controller. In this example, a controller is resynthesized if an environment safety

assumption violation continues for more than 150 state transitions.

126

(a) Workspace of Example 12. (b) Starting position.

(c) Robot picks up a paper item. (d) Robot detects a metal item in the pa-
per deposit.

(e) Robot detects a spill. (f) Manager dismisses Robot.

Figure 4.4: The robot performing the task described in Example 12.

During execution, when the robot is patrolling, it detects a paper item (Fig. 4.4c). The

robot picks it up and brings it to the paper deposit region to drop it o↵. When dropping o↵

the item, it observes a metal item that is not supposed to be there (Fig. 4.4d), violating the

third assumption. Using the ‘recovery’ controller, the robot can continue the task without

resynthesis and it heads to the metal deposit region and drops o↵ the item.

As the robot continues patrolling, it detects an alarm and heads to the o�ce to inform

the manager. On the way to the o�ce, it also observes a spill (Fig. 4.4e). This violates the

second assumption that the robot only detects one of the two incidents at a time. With the

127

Recovery approach, the robot waits to see if the violation is temporary. Since the violation

lasts longer than the user-defined threshold, the Environment Characterization rewrites and

resynthesizes the specification but the updated specification is unrealizable.

In this case, our system provides feedback and prompts the user for input to resolve

the violation. The user then decides to include an environment liveness that the spill will

eventually go away. The new specification is realizable and the robot waits until the spill

clears.

Once the spill is removed, the robot continues on its way to the o�ce and reports to the

manager. After the report, before turning o↵ the alarm, the manager dismisses the robot by

tapping its head (Fig. 4.4f). This violates the first assumption. In this case the violation is

temporary, thus the ‘recovery’ controller can handle it without need for resynthesis.

4.10.3 Communicating Robots in the Workspace (4th example in the

online video 1)

Consider a three-robot scenario (Example 13): DeliveryAgent (‘D’), KitchenAssistant

(‘A’) and Chef (‘C’), operating in the workspace in Fig 4.2. The propositions in eAPr for

r 2 {D, A,C} are in bold for clarity.

Example 13. Robot D starts in company (line 1 in Spec. 7, and line 2 in Spec. 7, 8 and 9).

When D receives an order for ingredients, it picks up the ingredients at company (line 7

in Spec. 7) and delivers the ingredients to storage (line 3, 8-12, 14 in Spec. 7). Since D

cannot go to storage when A is not opening the door (line 13 in Spec. 7), D assumes that A

128

will open the door when D is in road or storage (line 6 in Spec 7). It returns to company

when the delivery is done (line 4, 15 in Spec. 7).

Robot A is new to the workforce; it has capabilities to pass ingredients or to open the

door but it does not know when to perform its actions. It only knows that it does not pass

ingredients when no ingredients are present (line 5 in Spec. 8). Robot C assumes A passes

ingredients when they arrive (line 5 in Spec. 9) and C then cooks any ingredients received

from A (line 6-12 in Spec. 9). The robots C and A always stay in place (line 5 in Spec. 7,

line 3 in Spec. 8 and 9); robot D never enters the kitchen, which consists of the regions

prepArea and cookingArea (line 4 in Spec. 8 and 9).

As an example, for D, RegD = {⇡company,D, ⇡road,D, ⇡storage,D} and similarly for Regc
D;

eAPD = {⇡openDoor,A⇡openDoor,A⇡openDoor,A, ⇡c
cookingArea,C⇡c
cookingArea,C⇡c
cookingArea,C, ⇡c

prepArea,A⇡c
prepArea,A⇡c
prepArea,A}; ActD = {⇡deliver,D, ⇡pickup,D} ; S enD = {⇡order,D};

MemD = {⇡orderReceived,D}.

Specification 9 Chef’s task 'C for Example 13

'i
s,C =⇡cookingArea,C1
'i

e,C =⇡
c
cookingArea,C ^ ⇡c

prepArea,A⇡c
prepArea,A⇡c
prepArea,A ^ ⇡c

company,D⇡c
company,D⇡c
company,D2

't
e,C =⇤(�⇡c

prepArea,A⇡c
prepArea,A⇡c
prepArea,A)^3

⇤¬(�⇡c
cookingArea,D⇡c
cookingArea,D⇡c
cookingArea,D _�⇡c

prepArea,D⇡c
prepArea,D⇡c
prepArea,D)^4

⇤(� ⇡ingredientArrived ! �⇡passIngredient,A⇡passIngredient,A⇡passIngredient,A)5
'g

s,C =⇤ ⇤((⇡ingredientArrived _ ⇡receivedIngredient,C)! (⇡cooking,C ^ ⇡c
cooking,C))

'g
e,C =⇤ ⇤(⇡passIngredient,A⇡passIngredient,A⇡passIngredient,A ! ⇡c

passIngredient,A⇡c
passIngredient,A⇡c
passIngredient,A)6

't
s,C =⇤((�⇡c

passIngredient,A⇡c
passIngredient,A⇡c
passIngredient,A ^ ¬⇡c

cooking,C)! � ⇡receivedIngredient,C)^
⇤((⇡c

cooking,C ! ¬� ⇡receivedIngredient,C)^7
⇤((⇡ingredientArrived,C ^ ¬⇡c

cooking,C)! � ⇡receivedIngredient,C)^
⇤((¬⇡receivedIngredient,C ^ ¬�⇡c

passIngredient,A⇡c
passIngredient,A⇡c
passIngredient,A)! ¬� ⇡receivedIngredient,C)^

⇤(� ⇡receivedIngredient,C $ � ⇡cooking,C)8

129

Specification 7 Delivery agent’s task 'D in Example 13

'i
s,D =⇡company,D1
'i

e,D =⇡
c
company,D ^ ⇡c

cookingArea,C⇡c
cookingArea,C⇡c
cookingArea,C ^ ⇡c

prepArea,A⇡c
prepArea,A⇡c
prepArea,A2

'g
s,D =⇤ ⇤(¬⇡orderReceived,D! (⇡company,D^⇡c

company,D))^3
⇤ ⇤(⇡orderReceived,D ! (⇡storage,D ^ ⇡c

storage,D))4
't

e,D =⇤(�⇡c
cookingArea,C⇡c
cookingArea,C⇡c
cookingArea,C) ^ ⇤(�⇡c

prepArea,A⇡c
prepArea,A⇡c
prepArea,A)^5

⇤((� ⇡c
road,D _� ⇡c

storage,D)! (�⇡openDoor,A⇡openDoor,A⇡openDoor,A)6
't

s,D =⇤((�⇡order,D^¬�⇡orderReceived,D)!�⇡pickup,D)^7
⇤(((� ⇡order,D ^ ⇡c

pickup,D) ^ ¬⇡c
deliver,D)! � ⇡orderReceived,D)^

⇤((⇡c
deliver,D ! ¬� ⇡orderReceived,D)^8

⇤((⇡orderReceived,D^¬⇡c
deliver,D)!�⇡orderReceived,D)9

⇤((¬⇡orderReceived,D ^ ¬(� ⇡order,D ^ ⇡c
pickup,D))! ¬� ⇡orderReceived,D)^

⇤((� ⇡orderReceived,D^� ⇡c
storage,D)$� ⇡deliver,D)^10

⇤(¬�⇡openDoor,A⇡openDoor,A⇡openDoor,A ! ¬� ⇡storage,D)^11
⇤((⇡orderReceived,D^⇡c

storage,D)!�⇡storage,D)^12
⇤((¬⇡orderReceived,D^⇡c

company,D)!�⇡company,D)13

Specification 8 Kitchen assistant’s task 'A in Example 13

'i
s,A =⇡prepArea,A1
'i

e,A =⇡
c
prepArea,A ^ ⇡c

cookingArea,C⇡c
cookingArea,C⇡c
cookingArea,C ^ ⇡c

company,D⇡c
company,D⇡c
company,D2

't
e,A =⇤(�⇡c

cookingArea,C⇡c
cookingArea,C⇡c
cookingArea,C)^3

⇤¬(�⇡c
cookingArea,D⇡c
cookingArea,D⇡c
cookingArea,D _�⇡c

prepArea,D⇡c
prepArea,D⇡c
prepArea,D)4

't
s,A =⇤((¬⇡ingredientArrived ^ ⇡prepArea,A)! ¬� ⇡passIngredient,A)

The three specifications are all realizable and the robots start executing their controllers

(Fig. 4.5a). First, D receives an order, picks up the ingredients and proceeds to storage. On

its way, it notices that the door is closed and this prevents its entry to storage (Fig. 4.5b). A

violates D’s assumption that ‘when you are in road or storage, A opens the door’ (line 6

in Spec. 7). D triggers Environment Characterization but appending the new environment

behaviors results in an unrealizable specification. Knowing robot A can control the door, D

130

(a) Starting positions of the three robots. (b) D heads to storage with ingredients.

(c) A opens the door. (d) D delivers the ingredients.

(e) A passes ingredients to C. (f) C cooks the ingredients.

Figure 4.5: DeliveryAgent (‘D’), the Johnny5 robot; KitchenAssistant (‘A’), the blue Aldebaran
Nao, and Chef (‘C’), the orange Aldebaran Nao, performing their tasks as described in Example 13.

initiates the Integrative Negotiation approach with A.

In this case, A can incorporate D’s assumption that it should open the door when D

is in road or storage (line 6 in Spec. 7). This is added as a system guarantee 't
s,A to A’s

specification: 't
s,A = 't

s,A ^ ⇤((�⇡c
road,D⇡c
road,D⇡c
road,D _ �⇡c

storage,D⇡c
storage,D⇡c
storage,D) ! (� ⇡openDoor,A). Both revised

specifications are realizable and updated controllers are synthesized.

With the door opened, D enters storage and delivers the ingredients (Fig. 4.5d). Both C

and A now know that the ingredients have arrived. However, to cook, C requires A to pass

the ingredients (line 5 in Spec. 9). Since A is not doing so, C negotiates with A and asks it

to pass the ingredients when they arrive. A modifies its system safety guarantees 't
s,A to

131

't
s,A = '

t
s,A ^ ⇤(� ⇡receivedIngredient ! � ⇡passIngredient,A).

The Integrative Negotiation is successful and A passes the ingredients to C (Fig. 4.5e).

Once C receives the ingredients, it cooks the ingredients (Fig. 4.5f). D has finished its

delivery task and it returns to company.

4.10.4 Comparison

We compare the relative resilience of the approaches presented in this work by examining

the di↵erent examples.

Example 11

• Base Case: With only a controller synthesized from [23], the controller fails immediately

when the door is broken.

• Environment Characterization (EC): Out of the four assumption violations detected

in the example, we resynthesize a controller successfully twice with Eq. 4.3 and once with

Eq. 4.4 before the update with the observed environment behaviors renders the specification

unrealizable, and we employ the technique from [74] to provide feedback.

• Recovery: With this approach, the synthesized controller contains 154 states compared

to 73 states when using [23]. By including these extra states and transitions, Alice can

make 6 transitions in her controller with the door broken until the violation is resolved

when Alice goes back to company.

Example 12

132

We can reduce the number of resyntheses leveraging both the Recovery approach and

the EC approach. With only the EC approach, we would resynthesize a new controller

three times; while leveraging both the Recovery approach and the EC approach, we only

resynthesize a new controller once.

Example 13

• Base Case: With the synthesized controller using [23], when D is in road and the door

is closed, it would abort its mission.

• Recovery: D would wait infinitely long in front of the door when the door is closed.

• EC: D updates its specification but it cannot synthesize a new controller. The user pauses

the execution of both D and A, changes both specifications manually and resynthesizes two

new controllers. This can only be done if the user can control both robots. Otherwise, D

still aborts its mission.

• Integrative Negotiation: D can modify its environment through communication with A

in the shared workspace. D can finish its delivery task.

The Integrative Negotiation increases the chance that a robot can maintain its guar-

antees during execution. However, the challenge increases with the number of agents

in the workspace and the number of negotiations conducted. It is in general harder to

successfully finish the Integrative Negotiation approach with more agents as it implicitly

assigns priorities to the agents. Depending on the priority queue, it can result in di↵erent

outcomes and the robots may or may not have controllers.

133

4.11 Evaluation

In this section, we qualitatively evaluate the three approaches proposed in this work.

Recovery: As discussed in Section 4.9, the synthesis complexity using the Recovery

approach remains the same as the original algorithm in [10]. The approach adds in ‘recovery’

transitions which allows the robot to continue its task when an environment assumption is

violated. However, the approach does rely on the violation being resolved eventually. A

robot can be stuck forever if the violation persists. We advise using the approach alongside

an assumption monitor that keeps track of violations at runtime and triggers termination

when a violation persists.

Environment Characterization (EC): The EC approach updates the user specifica-

tion automatically at runtime based on any newly observed environment behaviors and

resynthesizes a new controller. Even though the EC approach preserves the most up-to-date

observations about the environment, the resynthesis process can be time-consuming as the

number of propositions increases. Also, if the environment behavior is random, we should

not execute this approach at runtime as it permanently updates the specification with random

observations in this case. We advise using this approach when the controller synthesis

time, which depends on the number of propositions and the specification, is less than 1

minute. Resynthesis is relatively frequent in this approach so any synthesis time longer

than a minute can make the approach infeasible. An alternative for specifications with large

amount of propositions is to execute the EC approach with the Recovery approach such

that we update the specification with new environment behaviors at runtime, but we only

134

resynthesize a new controller when the robot is not making progress towards its goals.

Integrative Negotiation: The Integrative Negotiation approach initiates communica-

tion between a pair of conflicting robots. The robots then modify their behaviors such that

both robots can finish their tasks. It is challenging to use the approach when a conflict

involves more than two robots. In this case, preprocessing is needed to separate the group

of robots into pairs before carrying out the approach. The outcome of the negotiation can

also be di↵erent depending on the order of negotiations between multiple pairs of robots.

The chance of successful negotiation in general decreases as the number of robots operating

in the shared workspace increases. The approach is analogous to creating a priority queue

at runtime. One robot may defer its actions so that another robot can complete its task

before the robot continues. It is more challenging to insert another robot into the queue as

the number of robots increases. With more robots to consider, the robot may not be able to

finish its task taking into account the task of the other robots and the negotiation would fail.

We advise using the approach when it is a two-robot conflict and when the communication

between the robots is stable, so that the robots can receive the full information exchange.

In the future, quantitative analysis and evaluation of the three approaches would be

useful for comparison with other similar approaches.

4.12 Summary

In this work, we have explored di↵erent approaches to formally tackle unexpected envi-

ronment behaviors that are detected during the execution of provably-correct controllers,

135

thereby creating controllers that are robust to violations of assumptions about the environ-

ment. We argue that every robot controller is created with underlying assumptions about

the environment, whether implicit or explicit, and our contribution is in developing formal

techniques that can automatically adjust the controller in response to violations of those

assumptions while maintaining task guarantees, whenever possible.

The Recovery approach in Section 4.6 tackles the problem o✏ine through adding extra

transitions and states in the controller before the execution begins; the Environment Char-

acterization in Section 4.7 resolves the issue online through appending newly observed

environment behaviors to the specification; the Integrative Negotiation initiates an exchange

of specification between two robots if the conflict is caused by another robot in the same

workspace. These approaches create fallback for abnormal events during execution. Pre-

viously without our approaches, the controller synthesized with [10] results in unknown

execution when the environment assumptions are violated at runtime. The robot may

not complete its task but here our approaches allow the robot to continue its task safely

when violations occur. Towards the end of the work, we have also showed how the three

approaches can be combined and used together in the Examples section. We furthermore

compare our controllers with an original controller from [10] in the Section.

The Integrative Negotiation approach is currently limited to two robots at a time and

cannot deal with a multi-way conflict, i.e, a conflict involving three robots or more. In

future work we will explore whether it is possible to decompose a multi-robot conflict into

pairwise conflicts and investigate approaches when such decomposition is not possible.

136

CHAPTER 5

CONCLUSION

Robotics technology is undergoing rapid development. The improvement in both

robotic software and hardware has enabled robots to conduct tasks outside of organized

factories and operate in unpredictable and challenging environments. With these changes

in operating environments, robots face new challenges in coping with unexpected scenarios

before and during execution. It is crucial that robot execution is robust against anomalies.

This thesis has investigated di↵erent anomalies that can arise in robot task execution and

presented solutions to improve task execution.

Chapter 2 presents an approach to transfer programs between robots when a source robot

is no longer available. The approach leverages the standardized framework of the Robot

Operating System (ROS). It divides the problem into finding the correct communication

channels and modifying robot commands to create similar behaviors. These behaviors

include mobile-base movement, joint trajectory planning and path planning. The approach

allows another robot with similar capabilities to continue a time-critical task with reduced

delay. The approach can furthermore reduce the development time of robotic software

when researchers and engineers can reuse robot programs easily. Besides the automatic

aspect, the approach keeps the user in the loop by providing feedback on the transfer result

which allows verification by the user before execution. Future work on robot program

transfer includes finding correlations among di↵erent communication channels for better

channel replacements. The transfer of robot programs from one robot with one kinematic

model to another robot with another model, such as from an UAV to a mobile base robot,

137

also poses challenge as it requires finding similarities in the robot pairs. Another direction

is leveraging symbolic or concolic testing techniques to obtain commands generated from

sensors for command analysis and replacement.

Besides transferring and executing these robot programs, which are also called the low-

level robot controllers, these controllers usually execute together with high-level controllers

to form hybrid controllers. The high-level controllers are automatically generated from user

commands and the low-level controllers communicate and send commands with the actual

robot. Users often deploy these hybrid controllers on robots, but the interactions between

low-level and high-level controllers are rarely analyzed and can result in erratic execution.

Chapter 3 starts by describing a framework that naturally connects controllers synthe-

sized from high-level task specifications with low-level robot programs using ROS. With

the framework, users can then analyze the interaction of low-level controllers which in

return lead to modifications of the high-level specifications. The approach ensures that the

high-level task specifications take into account the behaviors of the low-level controllers

automatically. In the past, the low-level behaviors were only encoded in the high-level task

specification based on user insight. Future work includes analyzing interactions among

robots each with a controller synthesized from a high-level task specification. Another di-

rection for future study is suggesting high-level specification changes based on interactions

of robot sensors.

Finally, Chapter 4 illustrates approaches in response to unexpected environment events

in terms of environment assumption violations, during the execution of high-level provably-

correct controllers. The chapter outlines three approaches to maintain robot safety and

138

allow the robot to continue and finish its task. The Recovery approach adds in recovery

transitions during the synthesis of robot controllers, such that the robot can still proceed to

its goals during violations as long as the robot is safe. The Environment Characterization

approach automatically modifies the specification at runtime to incorporate any newly

observed environment behaviors into the specification. The unexpected environment can

also involve other robots working in the shared workspace. In this case, the Integrative

Negotiation approach allows any two robots in conflict to exchange and modify their

specifications. This changes the environment behaviors created by the other robot and

allows both robots to complete their tasks. Previously without our approaches, the controller

execution is unknown after a violation in [10]. The robot may not finish its task and the

controller cannot guarantee robot safety. Here our work allows the robot to continue its task

with safety guarantees when violations occur. If the robot cannot continue its task safely,

we abort execution and provide feedback to the user. Future work includes prioritizing

and sequencing robot negotiations when conflicts involve more than two robots. Another

possible future study is exploring the removal or addition of robot goals as another robot

enters or leaves a shared workspace.

139

BIBLIOGRAPHY

[1] Alexandre Albore and Piergiorgio Bertoli. Safe LTL Assumption-Based Planning. In
ICAPS, pages 193–202, 2006.

[2] Javier Alonso-Mora, Stuart Baker, and Daniela Rus. Multi-robot formation control
and object transport in dynamic environments via constrained optimization. I. J.
Robotics Res., 36(9):1000–1021, 2017.

[3] Rajeev Alur, Salar Moarref, and Ufuk Topcu. Counter-strategy guided refinement of
GR(1) temporal logic specifications. In FMCAD, 2013.

[4] Rajeev Alur, Salar Moarref, and Ufuk Topcu. Compositional synthesis of reactive
controllers for multi-agent systems. In Computer Aided Verification - 28th Interna-
tional Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part II, pages 251–269, 2016.

[5] Tim Baarslag and Koen V. Hindriks. Accepting optimally in automated negotiation
with incomplete information. In AAMAS, 2013.

[6] Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric Klavins, and
George J. Pappas. Symbolic planning and control of robot motion [Grand Challenges
of Robotics]. IEEE Robot. Automat. Mag., 14(1), 2007.

[7] Amit Bhatia, Lydia E. Kavraki, and Moshe Y. Vardi. Sampling-based motion planning
with temporal goals. In ICRA, pages 2689–2696, 2010.

[8] Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A. Henzinger,
Georg Ho↵erek, Barbara Jobstmann, Bettina Könighofer, and Robert Könighofer.
Synthesizing robust systems. Acta Inf., 51(3-4):193–220, 2014.

[9] Roderick Bloem, Rüdiger Ehlers, and Robert Könighofer. Cooperative reactive
synthesis. In Automated Technology for Verification and Analysis - International
Symposium, ATVA, pages 394–410, 2015.

[10] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.
Synthesis of Reactive(1) designs. J. Comput. Syst. Sci., 78(3), 2012.

140

http://www.aaai.org/Library/ICAPS/2006/icaps06-020.php
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6679387
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6679387
http://dl.acm.org/citation.cfm?id=2485033
http://dl.acm.org/citation.cfm?id=2485033
http://dx.doi.org/10.1109/MRA.2007.339624
http://dx.doi.org/10.1109/MRA.2007.339624
http://dx.doi.org/10.1109/ROBOT.2010.5509503
http://dx.doi.org/10.1109/ROBOT.2010.5509503
http://dx.doi.org/10.1007/s00236-013-0191-5
http://dx.doi.org/10.1016/j.jcss.2011.08.007

[11] Roderick Bloem, Bettina Könighofer, Robert Könighofer, and Chao Wang. Shield
Synthesis: - Runtime Enforcement for Reactive Systems. In TACAS, 2015.

[12] J. Bohren and S. Cousins. The smach high-level executive [ros news]. IEEE Robotics
Automation Magazine, 17(4):18–20, Dec 2010.

[13] ROSwiki. Vicon Bridge. http://wiki.ros.org/vicon_bridge [2016].

[14] José Cano, Alejandro Bordallo, Vijay Nagarajan, Subramanian Ramamoorthy, and
Sethu Vijayakumar. Automatic configuration of ROS applications for near-optimal
performance. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS, 2016.

[15] Yushan Chen, Jana Tumova, and Calin Belta. LTL robot motion control based on
automata learning of environmental dynamics. In ICRA, 2012.

[16] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, Strong, and Strong Cyclic
Planning via Symbolic Model Checking. Artif. Intell., 147(1-2):35–84, July 2003.

[17] Alessandro Cimatti and Marco Roveri. Conformant Planning via Symbolic Model
Checking. CoRR, abs/1106.0252, 2011.

[18] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, 1999.

[19] William Cushing and Subbarao Kambhampati. Replanning: a new perspective. In
Poster of ICAPS, 2005.

[20] Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki.
Incremental Task and Motion Planning: A Constraint-Based Approach. In RSS, 2016.

[21] Pedro Henrique de Rodrigues Quemel e Assis Santana and Brian Charles Williams.
Chance-Constrained Consistency for Probabilistic Temporal Plan Networks. In ICAPS,
2014.

[22] Rüdiger Ehlers. Generalized Rabin(1) Synthesis with Applications to Robust System
Synthesis. In NASA Formal Methods NFM. Proceedings, 2011.

141

http://dx.doi.org/10.1007/978-3-662-46681-0_51
http://dx.doi.org/10.1007/978-3-662-46681-0_51
http://wiki.ros.org/vicon_bridge
https://doi.org/10.1109/IROS.2016.7759347
https://doi.org/10.1109/IROS.2016.7759347
http://dx.doi.org/10.1109/ICRA.2012.6225075
http://dx.doi.org/10.1109/ICRA.2012.6225075
http://dx.doi.org/10.1016/S0004-3702(02)00374-0
http://dx.doi.org/10.1016/S0004-3702(02)00374-0
http://arxiv.org/abs/1106.0252
http://arxiv.org/abs/1106.0252
http://mitpress.mit.edu/books/model-checking
http://www.roboticsproceedings.org/rss12/p02.html
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7949
http://dx.doi.org/10.1007/978-3-642-20398-5_9
http://dx.doi.org/10.1007/978-3-642-20398-5_9

[23] Rüdiger Ehlers, Robert Könighofer, and Roderick Bloem. Synthesizing cooperative
reactive mission plans. In IROS, 2015.

[24] Rüdiger Ehlers and Vasumathi Raman. Slugs: Extensible gr(1) synthesis. In CAV,
2016.

[25] Rüdiger Ehlers and Ufuk Topcu. Resilience to Intermittent Assumption Violations in
Reactive Synthesis. In HSCC, pages 203–212, 2014.

[26] Esra Erdem, Kadir Haspalamutgil, Can Palaz, Volkan Patoglu, and Tansel Uras.
Combining high-level causal reasoning with low-level geometric reasoning and motion
planning for robotic manipulation. In ICRA, 2011.

[27] S. Shaheen Fatima, Michael Wooldridge, and Nicholas R. Jennings. An agenda-based
framework for multi-issue negotiation. Artif. Intell., 152, 2004.

[28] Jie Fu, Herbert G. Tanner, and Je↵rey Heinz. Adaptive planning in unknown environ-
ments using grammatical inference. In CDC, 2013.

[29] Fausto Giunchiglia and Paolo Traverso. Planning As Model Checking. In Proceedings
of the European Conference on Planning: Recent Advances in AI Planning, ECP ’99,
pages 1–20, 2000.

[30] Dick Grune, Henri E. Bal, Ceriel J. H. Jacobs, and Koen G. Langendoen. Modern
Compiler Design, chapter Introduction. John Wiley & Sons, Ltd, 2000.

[31] Sumit Gulwani. Automating String Processing in Spreadsheets Using Input-output
Examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’11. ACM, 2011.

[32] Sumit Gulwani. Synthesis from examples: Interaction models and algorithms. In Sym-
bolic and Numeric Algorithms for Scientific Computing (SYNASC), 14th International
Symposium on. IEEE, 2012.

[33] Jason Hardy and Mark E. Campbell. Contingency Planning Over Probabilistic Obsta-
cle Predictions for Autonomous Road Vehicles. IEEE Trans. Robotics, 29(4):913–929,
2013.

142

http://dx.doi.org/10.1145/2562059.2562128
http://dx.doi.org/10.1145/2562059.2562128
http://dx.doi.org/10.1109/ICRA.2011.5980160
http://dx.doi.org/10.1109/ICRA.2011.5980160
https://doi.org/10.1016/S0004-3702(03)00115-2
https://doi.org/10.1016/S0004-3702(03)00115-2
http://dx.doi.org/10.1109/CDC.2013.6760732
http://dx.doi.org/10.1109/CDC.2013.6760732
http://dl.acm.org/citation.cfm?id=647868.737106
http://doi.acm.org/10.1145/1926385.1926423
http://doi.acm.org/10.1145/1926385.1926423
http://dx.doi.org/10.1109/TRO.2013.2254033
http://dx.doi.org/10.1109/TRO.2013.2254033

[34] Keliang He, Morteza Lahijanian, Lydia E. Kavraki, and Moshe Y. Vardi. Towards
manipulation planning with temporal logic specifications. In ICRA, pages 346–352,
2015.

[35] Frederik W. Heger and Sanjiv Singh. Robust robotic assembly through contingencies,
plan repair and re-planning. In ICRA, pages 3825–3830, 2010.

[36] Qiang Huang, Kazuhito Yokoi, Shuuji Kajita, Kenji Kaneko, Hirohiko Arai, Noriho
Koyachi, and Kazuo Tanie. Planning walking patterns for a biped robot. IEEE Trans.
Robotics and Automation, 17:280–289, 2001.

[37] Austin Jones, Zhaodan Kong, and Calin Belta. Anomaly detection in cyber-physical
systems: A formal methods approach. In IEEE CDC, 2014.

[38] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. Phrase-based statistical
translation of programming languages. In Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software. ACM, 2014.

[39] Sertac Karaman and Emilio Frazzoli. Sampling-based motion planning with deter-
ministic µ-calculus specifications. In CDC, 2009.

[40] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating
image descriptions. IEEE Trans. Pattern Anal. Mach. Intell., 39(4):664–676, April
2017.

[41] Marius Kloetzer and Calin Belta. A Fully Automated Framework for Control of
Linear Systems from Temporal Logic Specifications. IEEE Trans. Automat. Contr.,
53(1):287–297, 2008.

[42] Antonı́n Komenda, Peter Novák, and Michal Pechoucek. Domain-independent multi-
agent plan repair. J. Network and Computer Applications, 37, 2014.

[43] Robert Könighofer, Georg Ho↵erek, and Roderick Bloem. Debugging formal specifi-
cations using simple counterstrategies. In FMCAD, pages 152–159, 2009.

143

http://dx.doi.org/10.1109/ICRA.2015.7139022
http://dx.doi.org/10.1109/ICRA.2015.7139022
http://dx.doi.org/10.1109/ROBOT.2010.5509274
http://dx.doi.org/10.1109/ROBOT.2010.5509274
http://dx.doi.org/10.1109/CDC.2014.7039487
http://dx.doi.org/10.1109/CDC.2014.7039487
http://dx.doi.org/10.1109/CDC.2009.5400278
http://dx.doi.org/10.1109/CDC.2009.5400278
http://dx.doi.org/10.1109/TAC.2007.914952
http://dx.doi.org/10.1109/TAC.2007.914952
https://doi.org/10.1016/j.jnca.2012.12.011
https://doi.org/10.1016/j.jnca.2012.12.011
http://dx.doi.org/10.1109/FMCAD.2009.5351127
http://dx.doi.org/10.1109/FMCAD.2009.5351127

[44] H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. Temporal Logic based Reactive
Mission and Motion Planning. IEEE T-RO, 2009.

[45] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Where’s Waldo?
Sensor-Based Temporal Logic Motion Planning. In ICRA, 2007.

[46] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Translating struc-
tured english to robot controllers. Advanced Robotics, 22(12):1343–1359, 2008.

[47] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Temporal-Logic-
Based Reactive Mission and Motion Planning. IEEE T-RO, 25, 2009.

[48] Orna Kupferman and Moshe Y. Vardi. Model Checking of Safety Properties. Formal
Methods in System Design, 19(3):291–314, 2001.

[49] Morteza Lahijanian, Matthew R. Maly, Dror Fried, Lydia E. Kavraki, Hadas Kress-
Gazit, and Moshe Y. Vardi. Iterative Temporal Planning in Uncertain Environments
With Partial Satisfaction Guarantees. IEEE T-RO, 2016.

[50] Tessa Lau, Steven A Wolfman, Pedro Domingos, and Daniel S Weld. Learning
repetitive text-editing procedures with smartedit. Your Wish Is My Command: Giving
Users the Power to Instruct Their Software, 2001.

[51] M. Lauer, M. Amy, J. C. Fabre, M. Roy, W. Exco↵on, and M. Stoicescu. Engineering
adaptive fault-tolerance mechanisms for resilient computing on ros. In 2016 IEEE
17th International Symposium on High Assurance Systems Engineering (HASE), pages
94–101, Jan 2016.

[52] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning.
Technical report, 1998.

[53] Vu Le and Sumit Gulwani. FlashExtract: a framework for data extraction by exam-
ples. In Michael F. P. O’Boyle and Keshav Pingali, editors, Proceedings of the 35th
Conference on Programming Language Design and Implementation. ACM, 2014.

[54] Xuan Bach D Le, David Lo, and Claire Le Goues. History driven program repair. In

144

http://dx.doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1109/ROBOT.2007.363946
http://dx.doi.org/10.1109/ROBOT.2007.363946
http://dx.doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1109/TRO.2016.2544339
https://doi.org/10.1109/TRO.2016.2544339
http://doi.acm.org/10.1145/2594291.2594333
http://doi.acm.org/10.1145/2594291.2594333

Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd Interna-
tional Conference on. IEEE, 2016.

[55] Martin Leucker and Christian Schallhart. A brief account of runtime verification. J.
Log. Algebr. Program., 78(5):293–303, 2009.

[56] A Solar Lezama. Program synthesis by sketching. PhD thesis, PhD thesis, EECS
Department, University of California, Berkeley, 2008.

[57] Wenchao Li, Lili Dworkin, and Sanjit A. Seshia. Mining assumptions for synthesis.
In MEMOCODE, pages 43–50, 2011.

[58] Wenchao Li, Dorsa Sadigh, S. Shankar Sastry, and Sanjit A. Seshia. Synthesis for
human-in-the-loop control systems. In Tools and Algorithms for the Construction and
Analysis of Systems - 20th International Conference, TACAS 2014, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014. Proceedings, pages 470–484, 2014.

[59] Jun Liu, Necmiye Ozay, Ufuk Topcu, and Richard M. Murray. Synthesis of reactive
switching protocols from temporal logic specifications. IEEE Trans. Automat. Contr.,
58(7):1771–1785, 2013.

[60] Scott C. Livingston, Richard M. Murray, and Joel W. Burdick. Backtracking temporal
logic synthesis for uncertain environments. In ICRA, 2012.

[61] Scott C. Livingston, Pavithra Prabhakar, Alex B. Jose, and Richard M. Murray.
Patching task-level robot controllers based on a local mu-calculus formula. In ICRA,
pages 4588–4595, 2013.

[62] Fan Long and Martin Rinard. Automatic patch generation by learning correct code.
In ACM SIGPLAN Notices, volume 51. ACM, 2016.

[63] Matthew R. Maly, Morteza Lahijanian, Lydia E. Kavraki, Hadas Kress-Gazit, and
Moshe Y. Vardi. Iterative temporal motion planning for hybrid systems in partially
unknown environments. In Proceedings of the international conference on Hybrid
systems: computation and control, HSCC, pages 353–362, 2013.

145

http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1109/MEMCOD.2011.5970509
http://dx.doi.org/10.1109/ICRA.2012.6225208
http://dx.doi.org/10.1109/ICRA.2012.6225208
http://dx.doi.org/10.1109/ICRA.2013.6631229
http://doi.acm.org/10.1145/2461328.2461380
http://doi.acm.org/10.1145/2461328.2461380

[64] ROSwiki. Common Messages. http://wiki.ros.org/common_msgs [2018].

[65] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. ORB-SLAM: a versatile and
accurate monocular SLAM system. CoRR, abs/1502.00956, 2015.

[66] ThanhVu Nguyen, Westley Weimer, Deepak Kapur, and Stephanie Forrest. Connect-
ing program synthesis and reachability: Automatic program repair using test-input
generation. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2017.

[67] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. Learning to generate pseudo-code from source code
using statistical machine translation (t). In Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference.

[68] E. Olson. Apriltag: A robust and flexible visual fiducial system. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pages 3400–3407, May
2011.

[69] Adi Omari, Sharon Shoham, and Eran Yahav. Cross-supervised synthesis of web-
crawlers. In Proceedings of the 38th International Conference on Software Engineer-
ing, ICSE, 2016.

[70] Hila Peleg, Shachar Itzhaky, and Sharon Shoham. Abstraction-based interaction
model for synthesis. In International Conference on Verification, Model Checking,
and Abstract Interpretation, 2018.

[71] Louise Pryor and Gregg Collins. Planning for Contingencies: A Decision-based
Approach. J. Artif. Intell. Res. (JAIR), 4:287–339, 1996.

[72] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating system. In
ICRA Workshop on Open Source Software, 2009.

[73] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M. Murray, and Sanjit A.
Seshia. Reactive synthesis from signal temporal logic specifications. In HSCC, pages
239–248, 2015.

146

http://wiki.ros.org/common_msgs
http://doi.acm.org/10.1145/2884781.2884842
http://doi.acm.org/10.1145/2884781.2884842
http://dx.doi.org/10.1613/jair.277
http://dx.doi.org/10.1613/jair.277
http://doi.acm.org/10.1145/2728606.2728628

[74] Vasumathi Raman and Hadas Kress-Gazit. Automated feedback for unachievable
high-level robot behaviors. In ICRA, pages 5156–5162, 2012.

[75] Vasumathi Raman, Nir Piterman, and Hadas Kress-Gazit. Provably correct continuous
control for high-level robot behaviors with actions of arbitrary execution durations. In
ICRA, pages 4075–4081, 2013.

[76] John W. Ratcli↵ and David E. Metzener. Pattern matching: The gestalt approach.
13(7):46, 47, 59–51, 68–72, July 1988.

[77] E. Ruiz, R. Acua, P. Vlez, and G. Fernndez-Lpez. Hybrid Deliberative Reactive
Navigation System for Mobile Robots Using ROS and Fuzzy Logic Control. In 2015
12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on
Robotics (LARS-SBR), pages 67–72, Oct 2015.

[78] Marcel Schoppers. Universal Plans for Reactive Robots in Unpredictable Environ-
ments. In IJCAI, pages 1039–1046, 1987.

[79] ROSwiki. Navigation Stack. http://wiki.ros.org/navigation [2016].

[80] Ioan A. Sucan and Sachin Chitta. Moveit! [Online]; available: http://moveit.ros.org
[2016].

[81] Tarik Tosun, Ross Mead, and Robert Stengel. A general method for kinematic
retargeting: Adapting poses between humans and robots. In ASME International
Mechanical Engineering Congress and Exposition, 2014.

[82] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M. Smeulders. Selective
search for object recognition. International Journal of Computer Vision, 2013.

[83] Roman van der Krogt and Mathijs de Weerdt. Plan Repair as an Extension of Planning.
In (ICAPS), 2005.

[84] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly expressive
sql queries from input-output examples. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, 2017.

147

http://dx.doi.org/10.1109/ICRA.2012.6224807
http://dx.doi.org/10.1109/ICRA.2012.6224807
http://dx.doi.org/10.1109/ICRA.2013.6631152
http://dx.doi.org/10.1109/ICRA.2013.6631152
http://ijcai.org/Proceedings/87-2/Papers/096.pdf
http://ijcai.org/Proceedings/87-2/Papers/096.pdf
http://www.aaai.org/Library/ICAPS/2005/icaps05-017.php

[85] Eric M. Wol↵, Ufuk Topcu, and Richard M. Murray. Automaton-guided controller
synthesis for nonlinear systems with temporal logic. In IROS, 2013.

[86] Kai Weng Wong, Rüdiger Ehlers, and Hadas Kress-Gazit. Correct High-level Robot
Behavior in Environments with Unexpected Events. In RSS, 2014.

[87] Kai Weng Wong, Cameron Finucane, and Hadas Kress-Gazit. Provably-correct robot
control with ltlmop, OMPL and ROS. In 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Tokyo, Japan, November 3-7, 2013, 2013.

[88] Kai Weng Wong and Hadas Kress-Gazit. Let’s talk: Autonomous conflict resolution
for robots carrying out individual high-level tasks in a shared workspace. In ICRA,
pages 339–345, 2015.

[89] Kai Weng Wong and Hadas Kress-Gazit. From high-level task specification to robot
operating system (ROS) implementation. In First IEEE International Conference on
Robotic Computing, IRC 2017, Taichung, Taiwan, April 10-12, 2017, pages 188–195,
2017.

[90] Kai Weng Wong and Hadas Kress-Gazit. Robot operating system (ros) introspective
implementation of high-level task controllers. Journal of Software Engineering for
Robotics (JOSER), 2017.

[91] Kai Weng Wong and Hadas Kress-Gazit. Resilient, provably-correct, high-level robot
behaviors. ieee transactions on robotics. IEEE Transaction on Robotics (T-RO), 2018.

[92] Kai Weng Wong, Hila Peleg, and Hadas Kress-Gazit. Automatic ros code transfer
between robots. IEEE Robotics and Automation Letters (RA-L), 2018. In Submission.

[93] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray. Receding horizon
control for temporal logic specifications. In HSCC, pages 101–110, 2010.

[94] Shanchan Wu, Jerry Liu, and Jian Fan. Automatic web content extraction by combi-
nation of learning and grouping. In Proceedings of the 24th International Conference
on World Wide Web. ACM, 2015.

148

http://dx.doi.org/10.1109/IROS.2013.6696978
http://dx.doi.org/10.1109/IROS.2013.6696978
http://www.roboticsproceedings.org/rss10/p12.pdf
http://www.roboticsproceedings.org/rss10/p12.pdf
http://dx.doi.org/10.1109/ICRA.2015.7139021
http://dx.doi.org/10.1109/ICRA.2015.7139021
http://dx.doi.org/10.1109/TAC.2012.2195811
http://dx.doi.org/10.1109/TAC.2012.2195811

[95] O.R. Young. Bargaining: Formal Theories of Negotiation. University of Illinois Press,
Urbana, IL, 1975.

[96] Meital Zilberstein and Eran Yahav. Leveraging a corpus of natural language de-
scriptions for program similarity. In Proceedings of the 2016 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. ACM, 2016.

[97] Gilad Zlotkin and Je↵rey S. Rosenschein. Negotiation and Task Sharing Among
Autonomous Agents in Cooperative Domains. In IJCAI, 1989.

149

http://dl.acm.org/citation.cfm?id=1623891.1623901
http://dl.acm.org/citation.cfm?id=1623891.1623901

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Automatic ROS Code Transfer between Robots
	Introduction
	Preliminaries
	Problem Formulation
	Keyboard Control Example
	Approach
	Replace channel names based on message type (Communication)
	Check and modify variables (Parameters)

	Examples
	Keyboard control example revisited
	Obstacle avoidance example
	Joint trajectory following example
	Greet Example
	Path Planning Example with MoveIt!
	Localization Example

	Evaluation
	Challenges Ahead
	Conclusion and Future Work

	Robot Operating System (ROS) Introspective Implementation of High-Level Task Controllers
	Introduction
	Related Work
	Problem Formulation
	Preliminaries
	Approach
	Mapping from Propositions to ROS Nodes
	Detecting Possible Failure

	Example
	Clean and Patrol Example
	Homogeneous Robots Example
	Discussion

	Evaluation
	Conclusion

	Resilient, Provably-correct, High-level Robot Behaviors
	Introduction
	Related Work
	Planning
	Negotiation and Collaboration
	Controller Synthesis

	Preliminaries
	Problem Formulation
	Overview
	Recovery
	Adding Recovery Transitions to Winning States
	Adding Recovery Transitions to Non-Winning States

	Environment Characterization (EC)
	Runtime Monitoring
	Automatic rewriting of the specification

	Integrative Negotiation
	Both robots can incorporate the other's specification
	Only one robot can incorporate the other's specification
	Both robots cannot incorporate the other's specification

	Computational implications
	Examples
	No Other Robot in the Workspace
	Example with Recovery and Environment Characterization (3rd example in the online video??)
	Communicating Robots in the Workspace (4th example in the online video ??)
	Comparison

	Evaluation
	blackSummary

	Conclusion
	Bibliography

