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Microstructures play an important role in controlling distribution of properties in

engineering materials. It is possible to develop components with tailored distri-

bution of properties such as strength and stiffness by controlling microstructure

evolution during the manufacturing process. When forming metallic components

by imposing large deformations, mechanisms such as slip and lattice rotation drive

formation of texture in the underlying polycrystalline microstructure. Such mi-

crostructural changes affect the final distribution of material properties in the

component. By carefully designing the imposed deformation, one could poten-

tially tailor the microstructure and obtain desired property distributions. This

thesis focuses on development of novel computational strategies for designing de-

formation processes to realize materials with desired properties. The techniques

presented are an interplay of several new tools developed recently, such as reduced

order modeling, graphical cross-plots, statistical learning, microstructure homoge-

nization and multi-scale sensitivity analysis. The primary outcomes of this thesis

are listed below:

• Development of reduced-order representations and graphical methodologies

for representing process-property-texture relationships.

• Development of adaptive reduced-order optimization techniques for identi-

fication of processing paths that lead to desirable microstructure-sensitive

properties.



• Development of homogenization techniques for predicting microstructure evo-

lution in large deformation processes.

• Development of multi-scale sensitivity analysis of poly-crystalline material

deformation for optimizing microstructure-sensitive properties during indus-

trial forming processes.

The framework for design of polycrystalline microstructures leads to increased

product yield in industrial forming processes and simultaneously allows control

distribution of properties such as stiffness and strength in forged products. Multi-

scale design problems leading to billions of unknowns have been solved using par-

allel computing techniques. The computational framework can be readily used for

selecting optimal processing paths for achieving desired properties. The method-

ology developed is a fundamental effort at providing detailed deformation process

design solutions needed for controlling properties of performance-critical hardware

components in automotive, structural and aerospace applications.
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Chapter 1

Introduction

Realization of optimal material properties is important for hardware components

in aerospace, naval and automotive applications where there is a continuous need to

reduce material utilization for reduced process cost, fuel consumption and higher

mobility. Critical components involve performance indices [1] that are related

to the microstructures obtained during processing. Computational materials-by-

design approaches aim to integrate processing, structure and properties through

multi-scale material models [2]. In the area of composites, such techniques have

enabled design of structures with interesting extremal properties such as negative

thermal expansion [3] and negative Poisson’s ratio [4]. In contrast to composites,

techniques that allow tailoring of properties of polycrystalline metals involve tailor-

ing of preferred orientation of crystals manifested as the crystallographic texture.

The thermo-mechanical description of metallic materials, as considered in this the-

sis, is based on two different length-scales. The macro-scale is associated with the

component being modeled (10−3 to 101 m) and the meso-scale is characterized by

the underlying polycrystalline microstructure (10−6 to 10−3 m). During forming

processes, mechanisms such as crystallographic slip and lattice rotation drive for-

mation of texture and variability in property distributions in such materials. A

useful method for designing materials is through control of deformation processes

leading to the formation of textures that yield desired property distributions. Sev-

eral applications exist where certain textures are desirable to improve properties.

Materials with tailored properties are useful in a spectrum of applications includ-

ing high-performance engines, protective structures and structural materials. For

example, a Goss texture is desirable in transformer cores to reduce power losses
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Figure 1.1: The overall aim of this work is to optimize the microstructure
and hence, properties, during deformation processing of poly-
crystalline materials. Optimization of properties would allow for
engines, armor and structural components with improved perfor-
mance.

during magnetization [5]. In deformation processes such as deep drawing, a high

value of texture-dependent R parameter [6] and low planar anisotropy is necessary

to prevent earing and to increase drawability of the sheet. This thesis addresses

property and yield optimization problems in deformation processes (see Fig. 1.1)

using a rigorous computational framework.

Deformation processing of metals is associated with two major requirements:

(1) the production of usable shapes while maximizing yield; and (2) the opti-

mization of mechanical properties through microstructure control. Available mod-

els [7, 8, 9, 10, 11, 12, 13, 14, 15, 16] that only satisfy the first requirement do not

incorporate microstructure-induced anisotropy and hence, are incomplete. Models

for optimization of properties rely on costly metallurgical experiments for gen-

erating correlations between processes and properties and associated processing

maps [17, 18, 19]. Because of the large variety of microstructures (and associated

properties) possible, construction of property-microstructure correlations purely
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through experiments is an intractable task. Polycrystalline microstructures differ

in several characteristics that can be characterized by stereological (grain sizes,

shapes, grain boundary networks) or orientational (crystallographic texture) at-

tributes. Correlations exist between stereological characteristics and properties

such as grain boundary segregation [20], inter-granular corrosion [21], stress cor-

rosion cracking [22], and creep [23]. Physical properties of interest to this work

such as elastic stiffness, thermal conductivity, and initial yield-strength depend

on crystallographic texture and higher order correlations of crystal orientations

[24]. Crystallographic texture is mathematically represented using the orientation

distribution function (ODF) which describes local densities of crystals over the

orientation space. ODFs are defined based on parameterizations for the crystal

lattice rotation, such as Euler-angles [25] and classes of angle-axis representations,

most popular being the Rodrigues parametrization [26]. Conversion of continuous

orientation space to a finite degrees of freedom for material property optimization

requires discretization techniques. Most of the discretization schemes developed

concentrate on global basis representations using spectral methods [25, 27, 28, 29].

An alternate approach presented in [30, 31] is used in this work that represents

the ODF using a finite element discretized Rodrigues space with polynomial shape

functions defined locally over each element. In contrast to the global basis func-

tions used in the spectral representation, finite element shape functions provide

local support and are especially useful for capturing sharp textures. To compute

evolution of texture during deformation processes, a texture evolution equation is

solved over the fundamental region using the finite element method [30].

Once microstructure evolution is correctly modelled, it becomes possible to

track the variation in properties at the macroscopic scale using homogenization

relationships. For linearly elastic heterogeneous solids, exact averaging theorems
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and several homogenization models have been developed in [32], starting with the

pioneering work of [33, 34]. There are also several contributions to the devel-

opment of a similar treatment for homogenization of finitely deformed heteroge-

neous solids (e.g. see [35, 36, 37, 38]). These approaches allow calculation of

the effective response of a polycrystalline microstructure through averaging rela-

tions. Simulation of texture evolution in polycrystals has also been well studied

in the past (e.g. for a review see [27]). Many of the related works apply the

Taylor-type micro-macro transition which assumes a purely kinematic constraint

that all grains are subjected to the same deformation. This assumption satis-

fies compatibility but fails to account for equilibrium across grain boundaries. The

effect of stereology and formation of disoriented regions within crystals due to non-

uniform deformation are not taken into account. Although recent developments

in bounding theories enable prediction of non-linears response of polycrystalline

microstructures [39, 40, 41, 42, 43, 44, 45], they still do not incorporate effects

such as misorientation evolution and grain boundary accommodation. In order to

model these effects, several researchers have modelled discretized grain structures

[46, 47, 48, 49, 50] where microstructural constituents are idealized grains with a

fixed topology, or realistic polyhedral grains in two or three dimensions [51, 52].

In many of these cases, velocity-based finite element formulations [49, 51, 50] or

displacement-based finite element formulations are used, frequently implemented

into commercial finite element codes [48].

Alternative methods of linking length-scales have also been derived using the

theory of homogenization[35]. In such models, the Taylor assumption arises nat-

urally as a linking assumption [53] and new linking assumptions that satisfy the

basic averaging theorems of [36] are identified. This thesis advances such ho-

mogenization techniques for interrogation of complex 2D and 3D microstructures
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using single-crystal constitutive models based on continuum slip theory [54]. The

polycrystal representative volume element is modelled with a displacement-based

fully-implicit updated Lagrangian finite element formulation in thermo-mechanical

loading conditions using multi-scale boundary conditions arising from the theory

of large strain homogenization. Once the response at a material point is calcu-

lated, it becomes possible to model manufacturing processes such as cold forming

in a multi-scale framework. This allows modelling of the effect of variation in

process variables such as die and preform shapes on the final property distribu-

tion in the component. The macro-scale process modeling framework developed

in [12, 55] is extended in this work to model texture development in polycrys-

talline materials during deformation. Evolution of the micro-scale during forming

is modelled using continuum representation of texture [56] and incorporates crystal

elasto-viscoplasticity through the constitutive equations in Ref. [57].

Based on the microstructure homogenization approach, it is possible to accu-

rately model the effect of deformation on the microstructure and hence, the final

properties of a metallic material. The emphasis of this thesis is on the design aspect

of the problem, where our aim is to develop means to identify deformation process

variables that lead to desired properties in the final product. The following means

of addressing the problem are discussed: (1) selection of optimal microstructural

features (2) design of process sequences and (3) design of process parameters (e.g.

forging rates, die shapes). The following tasks are addressed in this work:

• Development of a graphical representation scheme that allows visualization

of property-process-texture relationships and identification of optimal mi-

crostructures.

• Development of adaptive model reduction strategies for identification of op-
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timal processing paths.

• Development of sensitivity analysis of microstructure homogenization for de-

signing microstructure-sensitive properties.

• Integration of process design tools with sensitivity analysis of texture evo-

lution for designing process parameters such as die and preform shapes in

industrial forming processes.

A brief summary of the thesis discussing the salient features of the above de-

velopments and advantage over existing methodologies are presented here.

Graphical representation of texture-process-property relationships : Considering the

high dimensionality of the space of microstructural features, it becomes essential

to develop efficient means to represent such features for the purpose of graphical

representation of process-property-structure relationships. Representation tech-

niques such as Fourier series [25, 27, 28, 58] or localized finite element shape func-

tions [30, 31, 56] have allowed efficient representation of crystallographic textures

for optimization. However, the dimensionality of the space of all possible textures

is still considerably high, prompting development of more compact representation

schemes. Recently, model reduction methods [59, 60, 61, 62] has emerged that

allow generation of basis functions using which dynamics of texture evolution can

be modelled with a small set of coefficients without compromising accuracy.

Optimization techniques based on linear analysis for addressing this problem

were first developed in [58]. While the work in [64] involved optimization in the

spectral representation space for obtaining optimal processing paths, the present

work establishes the mathematical tools required to perform optimization using

the finite element representation. The complete set of feasible textures is simply

a plane in the space of nodal values (termed ‘material plane’) while the similar
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space in the space of spectral coefficients is a more complicated geometrical entity

(termed ‘material hull’ in [28, 29]). Texture evolution paths can be visualized in

a low dimensional space of basis coefficients for different processes in a represen-

tation called the ‘process plane’. Optimization techniques presented in chapter 2

allow selection of textures in the ‘process plane’ that are as close as possible to

optimal textures in the ‘material plane’. Additionally, this allows selection of pro-

cessing paths for obtaining desired stiffness and strength properties using graphical

techniques.

Process sequence selection: Once the appropriate processing paths for realizing a

particular property are obtained, we could perform a local optimization procedure

to identify the optimal strain rates involved to realize desired properties. For this

purpose, an adaptive reduced order optimization approach is proposed. ODFs from

direct simulations of texture evolution are utilized from a database to help improve

the efficiency of optimization. Class hierarchies of ODFs are created based on

features in the form of pole density functions over prominent fiber families [30, 66]

in the fundamental region. Several processing paths are associated with each class

of textures, enabling identification of multiple processing sequences that can lead to

the desired properties. Once the processing sequences and associated parameters

are identified through classification, fine-tuning of the parameters is performed

through a reduced-order gradient-based optimization approach. As demonstrated

in [60], reduced order representation of the ODF results in reduction in degrees

of freedom in the representation of texture and appreciable computational gains

in the control of texture. However, one needs to select an ODF basis that also

represents the new physical mechanisms encountered in the intermediate stages

of the control problem. Such a basis is selected from the existing ODFs in the

database using the adaptive basis approach [67] as reported in chapter 3.
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Process parameter design: Primary industrial goal for metallic materials continues

to be to lower processing costs in order to allow affordable component designs [68].

Forging of cast slabs to produce structural components is associated with material

wastage which affects the product cost. Using accurate multi-scale models incor-

porating anisotropic behavior of microstructures, it is possible to design processes

to tailor properties as well as to optimize material usage. Theoretical develop-

ments for addressing the problem at the microstructural scale without including

processing effects are first addressed in Chapter 4 and 5. In chapter 6, a cou-

pled macro-micro framework for multi-scale process design is proposed. In such an

approach, sensitivities of microstructure field variables such as slip and twin resis-

tances due to perturbations in macro-scale parameters such as forging rates, die and

perform shapes are exactly defined using multi-scale sensitivity analysis. An aver-

aging principle is developed to compute sensitivity of stress and various material

properties at the macroscopic level from microstructural sensitivity fields. These

sensitivities are used within a gradient-based optimization framework for compu-

tational design of metal forming processes. Chapter 5 and 6 are devoted to address

the mathematical developments needed to obtain sensitivities of microstructural

fields to deformation process variables and perform multi-scale optimization.

Finally, in Chapter 7, conclusions of this work and suggestions for future re-

search are summarized.
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Chapter 2

Microstructure representation and

exploration of

property-process-structure spaces

1 This chapter discusses techniques for exploring texture-property-process rela-

tionships in various deformation processes as derived from a reduced-order model

of texture evolution. The orientation distribution function (ODF) in polycrystals

is represented over the Rodrigues space in a discrete form using finite element inter-

polation techniques. Linear programming algorithms are developed for retrieving

ODFs with extremal or optimal properties from the complete ODF space. The

relationship of optimal textures with processing is addressed by representing tex-

ture evolution in a space of reduced basis coefficients called the process plane. This

involves generation of orthogonal basis functions for representing spatial variations

of the ODF in a given process using proper orthogonal decomposition. These basis

functions are found to work in interpolatory and extrapolatory processing modes

and allow representation of texturing for deviations in the process variables. Op-

timization problems are posed in the reduced space for retrieving textures with

desired properties.

A graphical technique is discussed that allows identification of optimal process-

ing paths for reaching desired textures in association with process plane databases.

In Section 2.1, representation of FCC texture in Rodrigues space is defined followed

1 Reproduced from V. Sundararaghavan and N. Zabaras, ”Linear analysis of texture-property
relationships using process-based representations of Rodrigues space”, Acta Materialia, Vol. 55,
Issue 5, pp. 1573-1587, 2007.
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by the reduced-order technique for computing texture evolution. In Section 2.2, we

introduce linear programming techniques for obtaining extremal ODFs or desired

property distributions from the material plane (i.e. from the space of all possible

ODFs without considerations to processing). Section 2.3 introduces similar design

problems in the process plane (i.e. in the space of reduced-order coefficients of a

process basis). Section 2.4 provides an approach for selection of processing paths

that realize desired properties. Discussion of limitations and potential extensions

are finally discussed in Section 2.5.

2.1 Modeling of FCC texture

Orientation distribution function (ODF) [25, 27], the probability density function

for orientations, is employed for the quantification of crystallographic texture. Tex-

ture evolution methodologies use parameterizations for the crystal lattice rotation

which together with the crystal symmetry define the problem domain. Angle-axis

representations define an alternative way of representing texture compared to the

use of Euler angles [25, 69]. We employ the axis-angle parametrization of the

orientation space proposed by Rodrigues [30].

2.1.1 Representation in Rodrigues space

Axis-angle parametrization is based on the unique association of an orientation

with a rotation axis, and an angle of rotation about the axis. The Rodrigues’

parametrization is created by scaling the axis of rotation n as r = ntan( θ
2
), where

θ is the rotation angle. A proper rotation R relates the lattice orientation to a
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reference orientation. Given the Rodrigues parametrization r, the rotation R can

be obtained as,

R =
1

1 + r.r
(I(1− r.r) + 2(r⊗ r + I× r)) (2.1)

The fundamental region represents a region of the orientation space such that each

crystal orientation is represented uniquely within the space. Fundamental region

for the cubic symmetry group results in a truncated cube. The planes that form

the faces of the cube are introduced by symmetry rotations about the 〈100〉 family

of axes and the corners are truncated by planes introduced by rotations about the

〈111〉 axes. The ODF (represented byA) describes the local density of crystals over

this fundamental region of orientation space. The volume fraction of crystals within

a part (<∗) of the fundamental region is given by vf (<∗) =
∫
<∗ Adv. The ODF

is normalized to unity over the fundamental region. Here dv =
√

detg dr1dr2dr3.

Since the orientation space is non-Euclidean, the volume element is scaled by the

term
√

detg = cos4(θ/2) where g is the metric for the space. If the orientation-

dependent property for a single crystal χ(r, t) is known, any polycrystal property

can be expressed as an expectation value or average given by:

< χ >=

∫

R
χ(r, t)A(r, t)dv (2.2)

The evolution of ODF is governed by the ODF conservation equation. The

conventional Eulerian rate form of the conservation equation is given by [30]:

∂A(r, t)

∂t
+5A(r, t) · v(r, t) +A(r, t)5 ·v(r, t) = 0 (2.3)

where v(r, t) is the Eulerian reorientation velocity. To compute the ODF evolution,

the fundamental region is meshed using tetrahedral elements and the evolution

equation is solved using a stabilized finite element method [30]. The reorientation
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velocity in the above equation is evaluated through crystal constitutive relations.

In the examples used in the ensuing sections, texturing in FCC materials with

twelve {111} < 110 > slip systems is modeled using a rate-dependent viscoplastic

Taylor model with material parameters taken from [60].

2.1.2 Reduced-order model of the ODF

The discussion here follows the work in [60, 61] where model reduction of crystal

plasticity was first introduced using the technique of proper orthogonal decompo-

sition (POD). Model reduction involves generation of basis functions optimal for

representing ODFs obtained from a process path. Using such basis functions, any

ODF A(r, t) from the time-history of ODF evolution in a given process can be

approximated as follows:

A(r, t) =
b∑

m=1

am(t)φm(r) (2.4)

In the above equation φm represents ‘b’ basis functions (independent of time)

and am(t) denotes the corresponding time-dependent coefficients. Once such basis

functions φm are computed, time-dependent coefficients can be used to reconstruct

the textures arising from the process path. Readers are referred to [60] where tex-

ture evolution is computed by using the Eq. (2.4) to convert the partial differential

equation (Eq. (2.3)) to an ordinary differential equation. Texture evolution can

also be computed across a set of extrapolatory regimes of the process (i.e. condi-

tions deviating from those used to generate the basis functions) using the same set

of basis functions.

The ‘method of snapshots’ is an efficient technique of obtaining basis functions

from an ensemble of ODF data {A(r, t)}Ni=1 consisting of ODFs at various times
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during texture evolution over a deformation path. Here, the basis functions φ take

the form [60]:

φm =
N∑

i=1

um
i Ai (2.5)

where Ai represent textures from the ensemble, and um
i is determined by solving

the following linear eigenvalue problem:

CU = ΛU (2.6)

where C is the spatial correlation matrix defined as

Cij =
1

N
∫

R
Ai(r)Aj(r)dv (2.7)

Λ and U comprise of the eigenvalues and the eigenvectors of the system, respec-

tively. To determine a suitable basis size b, one must ensure that the eigen-modes

selected capture as much ‘system energy’ as possible. This is possible by select-

ing the basis functions that correspond to the largest eigenvalues in Λ. Once the

modes have been evaluated, the optimal basis is generated from Eq. (2.5). The

coefficients a corresponding to any ODF in a deformation path can be retrieved

from:

am =

∫

R
A(r)φmdv (2.8)

The ODFs in the deformation path follow a curve in the space of reduced coef-

ficients a. The success of the technique for representing texture evolution was

shown in [60] where just three basis functions were found to be sufficient for cap-

turing most features of the evolving ODF in any given process. Basis functions are

obtained for different processing modes using a 3403 element discretization of the

fundamental region. Basis used in the examples consist of modes generated from

an ensemble of data obtained for tension, shear and rolling processes up to time of

0.1 s when deformed with a strain rate of 1 s−1 using a time step of ∆t = 0.01 s.
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Figure 2.1: First three eigen-basis functions for the texture evolution in a
tension process from a initial random texture with a strain rate
of 1 s−1.

Fig. 2.1 shows the three major basis functions of the tension process. The basis

depends upon the initial texture A(r, t = 0) that is used in the solution of ODF

evolution (Eq. 2.3). However, the strength of POD analysis used here lies in the

fact that the reduced basis works in extrapolatory modes to represent texturing

under various deviations in the initial texture. As a result, ODFs resulting from

processing to a different strain or processing a starting texture that deviates from

the one used to build the basis are well approximated using the same set of ba-

sis functions. Different basis functions are generated to simulate different process

sequences [62]. The reduced modes used to represent the deformation path are dif-

ferent, for example, when modeling tension process on a rolled specimen compared

to a process of tension acting on an annealed specimen with random texture.

2.2 Property representation and optimization in Rodrigues

space

Finite element discretization of the orientation space and associated integration

schemes using Gauss quadrature allows matrix representation of several properties
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of the ODF. ODF is assumed to be discretized into N independent nodes with

Nelem finite elements and Nint integration points per element. The constraint that

the ODF is normalized to unity over the fundamental region can then be written

as:

∫

R
Adv =

Nelem∑
n=1

Nint∑
m=1

A(rm)wm|Jn| 1

(1 + rm · rm)2
= 1, (2.9)

where A(rm) is the value of the ODF at the m-th integration point with global

coordinate rm of the n-th element, |Jn| is the jacobian determinant of the n-th

element and wm is the integration weight associated with the m-th integration

point. This is equivalent to the linear constraint: qintT Aint = 1, where qint
i =

wi|Ji| 1
(1+ri·ri)2

and Aint
i = A(ri), where each i corresponds to a combination (n,m),

i = 1, . . . , Nint × Nelem. If the orientation-dependent property for a single crystal

χ(r) is known, any polycrystal property can be expressed in a linear form as

follows:

< χ >=

∫

R
χ(r)A(r)dv =

nel∑
n=1

nint∑
m=1

χ(rm)A(rm)wm|Jn| 1

(1 + rm · rm)2
(2.10)

This is again equivalent to an equation linear in the ODF: < χ >= pintT Aint,

where pint
i = χ(ri)wi|Ji| 1

(1+ri·ri)2
and Aint

i = A(ri), i = 1, . . . , Nint ×Nelem.

An additional constraint in the representation of the material set is the symme-

try of the ODF. Orientations on each pair of planes in the fundamental region are

equivalent under the symmetries. In the cubic fundamental region, orientations on

the {100} faces are identified with orientations on the diametrically opposed faces

following rotations through π/4 about the corresponding < 100 > axes. Similarly,

symmetric orientations on the various {111} faces are obtained following rotations

through π/3 about the < 111 > axes. The space of ODF values at integration
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points of the FE mesh does not represent this symmetry. Symmetry conditions

are enforced by considering the set of independent nodal points instead of the in-

tegration points. Independent nodal points are the reduced set of nodes obtained

by accounting for symmetry conditions at the boundaries of the ODF. Let H be

the matrix converting the independent nodal values Anode to the integration point

values Aint through the shape functions, then, Aint = HAnode. The independent

nodal values Anode are sufficient to describe the ODF due to the symmetry of

the fundamental region. Vector containing the values of the ODF at independent

nodal points Anode is hereafter referred to as A. The ODF constraint can then be

written in terms of the modified qT = qintT H as qT A = 1,A ≥ 0. Properties are

specified using the modified pT ≡ pintT H as < χ >= pT A. Another constraint is

based on the positivity of the ODF which constrains the nodal values of the ODF

to be positive (A ≥ 0). Space of all possible ODFs thus includes three constraints:

normalization, positiveness and symmetry. The constraint qT A = 1,A ≥ 0 means

that the complete set of all possible ODFs is a hyperplane in the space of inde-

pendent nodal values, which we call the ‘material plane’. Optimization to obtain

ODFs with extremal properties from this representation is described in the next

section.

Formation of property (p) and constraint (q) matrices: For calculating

more than one property, p is written in a matrix form. The form of p and q

for the design problems addressed here is provided below. A variety of higher

order integration techniques can be used to accurately estimate properties from the

finite element disretization of the orientation space. For simplicity, the discussion

in this chapter uses reduced integration, which for a tetrahedral element used to

discretize the fundamental region, translates to one integration point per element.

Using reduced integration at local coordinate of each element (0.25, 0.25, 0.25) and
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an integration weight of w = 1
6

at each integration point, the simplified property

matrix pint corresponding to polycrystal average properties [< χ1 >, . . . , < χnp >]

and the normalization constraint vector (qint) are given as:

pint =




1
6
χ1(r1)|J1| 1

(1+r1·r1)2
. . . 1

6
χnp(r1)|J1| 1

(1+r1·r1)2

1
6
χ1(r2)|J2| 1

(1+r2·r2)2
. . . 1

6
χnp(r2)|J2| 1

(1+r2·r2)2

. . .

1
6
χ1(rNel

)|JNel
| 1
(1+rNel

·rNel
)2

. . . 1
6
χnp(rNel

)|JNel
| 1
(1+rNel

·rNel
)2




qint =




1
6
|J1| 1

(1+r1·r1)2

1
6
|J2| 1

(1+r2·r2)2

. . .

1
6
|JNel

| 1
(1+rNel

·rNel
)2




The H matrix can be defined from the equation Aint
e = 0.25

∑4
i=1 Ai

e where

Aint
e is the integration point ODF value at element e and Ai

e, i = 1, . . . , 4 refers

to the ODF values at the four nodes of the tetrahedral element e. The p matrix

is formed as p = HT pint so that any property d can be represented as the scalar

product pT A with the ODF values (A) at the independent nodal points.

2.2.1 Calculation of properties

For the examples in this section, the property matrix p corresponding to poly-

crystal average properties [< χ1 >, . . . , < χnp >] is generated for calculating the

diagonal components of the stiffness matrix and the Taylor factor representing the

material strength. The methodologies used for the calculation of these properties

are briefly explained here.
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1. Polycrystal stiffness calculation: Values of elastic parameters for FCC cop-

per crystal are taken as c11 = 168.0GPa, c12 = 121.4GPa, c44 = 75.4GPa. The

polycrystal stiffness, C̄, is computed through a weighted average (over A) of the

stiffness of individual crystals expressed in the sample reference frame. The aver-

age values result in upper bound for the diagonal values of the stiffness matrix.

2. Yield strength calculation: The relationship between the macroscopic effective

yield strength Y , and average slip system hardness τ , can be expressed using the

Taylor factor M as follows:

Y = σij
dεij

dη
= Mτ (2.11)

Bishop and Hill analysis is used to determine the stress states (σij) for a given

deformation in the above equation. Let us apply a deformation to the polycrystal

given by the following strain:

dε = dη




1 0 0

0 −0.5 0

0 0 −0.5




(2.12)

where the principal directions correspond to the rolling direction (RD), transverse

direction (TD) and the normal direction (ND). η can be considered as the absolute

amount of the deformation. For a FCC crystal there are 56 stress states which

could activate five or more slip systems simultaneously. For a given shape change

(here Eq. (2.12)), the crystal stress state which produces the maximum work is

active and the Taylor Factor is calculated corresponding to that stress state, from

which one can compute the yield stress. More details about this method can be

found in Chapter 4 of [6]. To compute the yield stress for different angles to the

rolling direction the procedure is the same as above but with applied deformation

state (Eq. (2.12)) rotated by the appropriate angle to the rolling direction. The

polycrystal Taylor factor < M > can then be determined by averaging using
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Eq. (2.2). The random texture value thus computed compares well with the actual

value Y/τ = 3.067 for a random polycrystal [6]. Note that the linear relationship

provided here computes the strength corresponding to yielding under the particular

deformation mode given by Eq. (2.12) and is not related to either the bounds on

yield strength or the uniaxial tensile yield strength. Interested readers are referred

to [70] for the methodology used to compute upper bound of uniaxial yield strength,

in which case, the deformation is varied so that a uniaxial stress state results in

the polycrystal.

2.2.2 Linear programming for property optimization

Linear programming (LP) allows us to address problems involving linear objective

function and linear constraints using techniques such as the simplex and the interior

point algorithms. General problems that can be solved using linear programming

involve a set of equality constraints and a set of inequality constraints as given

below [71]:

min
x

fT x such that Mx ≤ m, Px = d, lb ≤ x ≤ ub (2.13)

Methods for identifying ODFs with extremal or desirable properties and ob-

taining property closures from the complete ODF space (the ‘material plane’) are

discussed next. Later sections deal with problems of similar character using a

reduced-order representation where we emphasize on process selection strategies

for obtaining optimal properties.

Identification of textures with extremal properties Geometrically, lin-

ear constraints define a convex polyhedron, which is called the feasible region.
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Such problems have some interesting properties including the fact that all local

optima are automatically global optima and the optimal solution can only occur

at a boundary point of the feasible region. This allows extraction of ODFs with

global extrema properties, also called ‘extremal ODFs’. The problem of generat-

ing extremal ODFs uses x = A as the variable to be identified such that property

pT A is maximized with the constraints that qT A = 1 and A > 0. An example is

shown in Fig. 2.2 where extremal ODFs that maximize a few strength and stiffness

properties in FCC Cu are provided. As is evident from the plots, extremal ODFs

correspond to microstructures with a unique set of orientations (and symmetric

equivalents). Extremal ODFs correspond to Dirac delta functions at these orienta-

tions. Extremal textures that lead to maximal strength properties are dominated

by specific fibers in the orientation space. For example, Fig. 2.2(a) shows that the

ODF for maximum Taylor factor along the rolling (x−) direction is dominated by

the x-axis < 110 > fiber. Uniaxial compression along x-axis is a natural way to

obtain strong texturing along this fiber to increase the yield strength along the

rolling direction. Extremal ODFs are calculated using a mesh with 12096 tetra-

hedral elements over the orientation space. Note that in examples (a) and (b) in

Fig. 2.2, objectives are defined so as to optimize the Taylor factor calculated along

the rolling direction and the transverse direction.

Range of properties obtainable from the material plane

Property closures represent complete range of properties obtainable from the space

of ODFs. These are approximated by the space between upper and lower bounds

of the given property. Upper bound closure of diagonal stiffness values in FCC

Cu represent the range of properties obtainable by the upper bound homogeniza-

tion relation in Section 2.2. The hull in Fig. 2.3(a), for example, maps the full

20



500

400

300

200

100

0

500

400

300

200

100

0

(b)

(c)

(a)

0

3000

2000

1000

(d)

X Y

Z

0

3000

2000

1000

Figure 2.2: Extremal ODFs for different properties: (a) ODF for maximum
Taylor factor along RD (= 3.668), (b) ODF for maximum Taylor
factor along TD (= 3.668), (c) ODF for maximum C44 (= 74.923
GPa) and (d) ODF for maximum C55 (= 74.923 GPa.

range of upper bound values of a combination of diagonal stiffness values. In Sec-

tion 2.2.2 where we consider extreme points for a single property, the extremal

textures were found to correspond to single crystals. The closure in this case can

indeed be calculated in a straightforward manner by searching over all single crys-

tals. Computation of multi-property closures entails maximization of one property

while enforcing constraints on other properties. Extreme points in such closures,

however, are found to result in polycrystalline textures [58]. Linear programming

as discussed previously provides a convenient way of automating the search for ex-

tremal textures in the material plane for calculating multi-property closures. Let

v1, v2 be the set of properties for which the closure is required. The closure for prop-

erty v1 is first found by obtaining the extremal values (v1max, v1min) as explained

in Section 2.2.2. Then, property v1 is discretized into m values vi
1, i = 1, .., m
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between v1max and v1min. The property closure of the combined set of properties

(v1, v2) is found by executing a similar extremum LP problem at each point vi
1 with

the additional constraint that pT
1 A = vi

1. In general, the closure for a combined

set of n properties (v1, v2, ..., vn) is a n-dimensional volume found by executing an

LP problem extremizing vn at a set of discrete points (vi
1, v

j
2, .., v

l
n−1) in the clo-

sure area of (v1, v2, .., vn−1). The corresponding LP problem for minimizing vn is

written below:

min
A

vn = pT
nA satisfying the constraints

qT A = 1

A > 0

pT
1 A = vi

1

pT
2 A = vj

2

...

pT
n−1A = vl

n−1 (2.14)

To maximize vn another similar problem is executed where the objective is

changed as minA vn = −pT
nA.

The full range of Taylor factors is also shown in Fig. 2.3(b). The closure repre-

sents the range of properties obtainable when using the homogenization method-

ology given in Section 2.2.

Identification of ODFs with desired distribution of properties

Problems involving identifications of ODFs with desired combination of several dif-

ferent properties can be performed using the following methodology. The problem
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is posed as identification of ODF that minimizes the absolute value of error from

a desired set of properties, min
A

e0 such that pT A + e = d, where d is the desired

property set and qT A = 1. Positivity of the ODF dictates the constraint A ≥ 0.

We specify a bound e0 ≥ 0 in the value of the error from a desired property set

which is the quantity that is minimized. This additional constraint is defined as

|ei| ≤ e0, for i = 1, . . . , np, where np denotes the number of properties to be opti-

mized. This is equivalent to pairs of linear inequalities of the form, −ei − e0 ≤ 0

and ei− e0 ≤ 0. This LP problem uses x = [e1, . . . , enp , A, e0] as the variable to be

identified. The error ei is allowed to be of either sign. The constraints are posed by

augmenting the p and q matrices (provided in Appendix A) to form the complete

linear system of equality constraints.

Although the algorithm highlighted here presents means to identify optimal
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ODFs on the ‘material plane’, it does not ensure that such ODFs can be realized

through processing. We discuss the reduced basis technique in the next section that

allows affiliation of deformation process paths and ODFs with optimal properties.

2.3 Reduced representation of the ODF for property opti-

mization in deformation processes

The search for optimal ODFs in the ‘material plane’ did not incorporate any phys-

ical aspects of texture evolution. However, the reduced basis technique explained

in Section 2.1.2 allowed representation of texture evolution in a given process using

b basis functions φ as A =
∑b

m=1 amφm ≥ 0. Any ODF from this processing path

was represented completely in the space of coefficients a = [a1, . . . , ab]
T . Such a

representation allows visualization of textures from any given process in the space

of reduced coefficients which we call the ‘process plane’. Similar to the constraints

in the ‘material plane’, this space also invokes the positiveness, normalization and

symmetry constraints. The normalization constraint in this reduced space is given

as
∫
R

∑b
m=1 amφmdv = 1. Based on this, the equation of the reduced material

plane is given as
∑b

m=1 amϕm = 1 where
∫
R φmdv = ϕm with the positiveness

constraint
∑b

m=1 amφm ≥ 0. Here, φm corresponds to the ODF values at the

independent nodal locations of the basis. The additional constraint on symmetry

that was applied previously for the material plane is not required in the space of

reduced-order coefficients since the individual basis functions themselves are pe-

riodic and thus, symmetry constraints are enforced on any linear combination of

this basis.

Planar representation of the universe of ODFs obtained from a tension process
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Figure 2.4: (a) Process planes for a tension process with a random initial
texture. (b) Process plane for tension colored by property (Taylor
factor along RD). Figures (c) and (d) show similar process plane
representations for shear in the x− y plane.

acting on a sample with a random starting texture is shown in Fig. 2.4(a). Since

the constraints are themselves linear, the process plane in Fig. 2.4(a) is seen as a

simple and convex polygon compactly represented close to the origin of the space

of reduced coefficients. The process plane is described in a three-dimensional space

of reduced-order coefficients [a1, a2, a3]. The plane can be conveniently visualized

in two-dimensions of [a1, a2] by coloring the points on the plane based on the

third dimension a3. Each point on the process plane in Fig. 2.4(a) corresponds

to an ODF realization. Properties corresponding to these ODFs can be visualized

on this plane using color contours on the process plane. Fig. 2.4(b) shows color

contours of the Taylor factor along the rolling direction on the process plane. The

third dimension (a3) is not shown in the property plot since, using Fig. 2.4(a) the

z-coordinate of any point can be retrieved. Figs. 2.4(c) and 2.4(d) show similar

process plane representations for the process of x− y shear.
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2.3.1 Processing paths on the process plane

The primary success of proper orthogonal decomposition (POD) is the ability of the

reduced basis functions to represent textures arising from various perturbations in

conditions used in generating the basis. Robust performance of the basis functions

under interpolations and extrapolations of process conditions has especially found

applications in other areas such as fluid flow simulation and control problems [72].

Quantification of the extrapolatory limits of performance of the reduced modes

requires extensive experimentation. Indeed, there have been many such studies

in different fields (e.g. [73]) devoted to identifying the level of extrapolation that

can be accommodated by POD modes within desired robustness limits. One such

study is presented here where we quantify the error in representation of an ODF

on the process plane as 100× ‖A−Arec)‖2
‖A‖2 , where A is the actual ODF resulting from

the process (from full-order simulation) and Arec is the ODF reconstructed from

the coefficients of the reduced-order basis along the path identified in the process

plane.

Fig. 2.5(a) shows a process plane constructed using basis functions generated

from an ensemble of textures where an initial random texture is deformed to 0.1

strain under x-axis tension. The ensemble consisted of 10 sets of texture snapshots

(obtained at times T = {0.01, 0.02, .., 0.1} secs) from crystal plasticity simulation

of the process at a strain rate of 1sec−1. The ‘process plane’ represents all possible

ODFs that can be generated using the set of basis functions obtained from this en-

semble and represents ODFs from the x-axis tension process for various deviations

in strains and initial textures from those used for constructing the ensemble. The

ensemble of ODFs used to construct the basis functions are represented as points

along the path R−R′ on the process plane. Two different points are chosen on the
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process plane with ODFs deviating by 10% from the random ODF. These ODFs

were subjected to x-axis tension up to 0.1 strain. The different resulting points

obtained at times T in these process paths are depicted on the process plane as

curves A-A’ and B-B’. The actual ODFs obtained from a crystal plasticity simu-

lation of the process follow a path on the high-dimensional ‘material plane’ and

cannot be easily visualized. It was verified numerically that the points shown on

these process paths on the x-axis tension ‘process plane’ reconstruct the actual

ODFs within an error of 2%.

Another example for extrapolatory performance is depicted in a x-axis tension

process plane shown in Fig. 2.5(b). The ensemble from which the basis functions for

this process plane was generated also corresponds to snapshots for x-axis tension

up to 0.1 strain, but the difference from the earlier example being that the initial

texture in this case is obtained from y-axis rolling of a random texture to 0.1

strain. Textures in the ensemble used to generate the basis functions at times T
are represented as points on the curve A− A′ in the process plane in Fig. 2.5(b).

We now consider two other process paths where the initial texture for the tension

process is changed by varying the strain involved in the rolling process to 0.17 and

0.07. The points in these two process paths computed at times T are represented

with the curves B−B′ and C−C ′, respectively in the figure. These extrapolatory

process paths are within 2% error of the actual ODF paths in the process plane.

The lines m −m′ and n − n′ at the left and right in Fig. 2.5(b) delineate the

region within which the error in reconstruction of textures in the processing path

is less than 10% when compared to textures from a full-order simulation. These

curves are generated by comparing actual textures generated from crystal plastic-

ity simulations with textures represented on the process plane when initial textures
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corresponding to different strains in the y-axis rolling process are deformed in x-

axis tension. The curves bound the extrapolation in the initial texture that can

be tolerated and follow the process path of these initial textures. This points to

the fact that process paths of optimal textures falling within such a region can be

predicted with reasonable accuracy. However, process paths traversing points at

the far left and right corners of the process plane possess larger errors in recon-

struction and thus, the process resulting in these textures cannot be established

with confidence. Process selection strategies described later in this work do not

incorporate knowledge of inaccessible regions of the process plane. There are sit-

uations where an optimal ODF computed could lie in regions (e.g. edges of the

process plane) that are inaccessible. An ad hoc way of addressing the problem is

to disregard solutions that are close to the edges of the process plane.

In addition to variations in the initial texture, the same basis also works for

extrapolations of strains used in constructing the basis. For example, Fig. 2.5(b)

shows the texturing paths (points on these paths computed again at times T ) a-a’,

b-b’ and c-c’ for x-axis compression to strain of 0.1 with the same initial textures

as discussed before, captured within an error of 2%. In principle, it is also possible

to construct basis functions using a combined ensemble of textures from different

processes in a process sequence. Such basis functions would be able to represent

the actual textures (or process path) from all processes in the sequence within a

single process plane. The only difficulty with such an approach is that more than

three basis functions are required to capture the textures and consequently, the

process planes are not amenable to plotting and visualization.

Naive methodologies for selection of process sequences depend on a large database

of computed processing paths requiring a large number of crystal plasticity simula-

28



-0.2 0 0.2 0.4

-0.2

0

0.2

0.4

0.6

-1.7

-1.65

-1.6

-1.55

-1.5

-1.45

-0.1 0 0.1 0.2
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-1.75

-1.7

-1.65

-1.6

-1.55

-1.5

B

B’

A

A’ C’

C
b

b’ a’

a c

c’m

m’

n

n’

a1

a2

a3

a1

a2

a3

A

A’

R

R’

B

B’

m

m’

n

n’

Figure 2.5: (a) Process plane for x-axis tension (ensemble obtained by pro-
cessing an initial random texture to 0.1 strain). Point R cor-
responds to a random texture, points A and B represent initial
textures that deviate from the random texture by 10%. Texture
path R-R’, A-A’ and B-B’ are process paths when these initial
textures are subjected to x-axis tension up to 0.1 strain. (b)
Process plane for x-axis tension process (ensemble obtained by
processing the texture obtained by y-axis rolling of a random tex-
ture to 0.1 strain to an additional 0.1 strain under x-axis tension).
The process paths on the x-axis tension plane for a strain in the
y-axis rolling process of 0.1, 0.07 and 0.17 are marked A-A’, C-
C’ and B-B’, respectively. Paths a-a’, c-c’ and b-b’ represent the
texture paths for x-axis compression to strain of 0.1 with these
initial textures. In both figures, m-m’ and n-n’ delineate the re-
gion within which reconstruction of textures from such process
paths is at least 90% accurate.

tions. Use of process planes for performing process sequence selection is a concept

worth pursuing since a process plane constructed from a single simulation captures

a number of extrapolatory processing paths. Thus, a search for optimal ODFs over

a large set of computed process paths is replaced with a search over a smaller set

of process planes. Analysis in the rest of the section introduces methods for identi-

fying process sequences that can be used to reach desired final properties. Once a

process sequence is established, existing optimization techniques such as the gradi-

ent based techniques in [60, 61, 62] can be used to identify parameters such as strain

rates for each processing stage. Computational details and key issues in process

plane optimization problems are presented in detail in the following sections.
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2.3.2 Identification of ODFs (from a given process) closest

to an optimal ODF in the ‘material plane’

As described in Section 2.2.2, location of optimal ODFs on the ‘material plane’

does not convey information on how to realize such ODFs in practice. There

may be several processing solutions to this problem. Here, we choose a particular

processing path and check if it can closely produce an optimal texture in the

material plane. The optimal ODF from the ‘material plane’ is assumed to be given

by a perturbation (r) to an ODF in the ‘process plane’. We wish to minimize the

perturbation from the ‘process plane’ in some sense such that an ODF from the

process plane is as close as possible to the optimal ODF in the material plane.

The optimal ODF is written as Aopt =
∑b

m=1 amφm + r > 0, where A =
∑b

m=1 amφm provides the closest solution in the basis φ and r is the perturba-

tion (or error) from the optimal ODF. The normalization constraint is given as

qT Aopt = 1, and qT A = 1 such that in the LP problem, the former constraint is

equivalently specified as qT r = 0. The bound in the value of the solution ODF from

the given ODF, r0 ≥ 0, is minimized. The problem is posed as min
a

r0 such that

pT
∑b

m=1 amφm+pT r = d, where d is the desired property distribution. Positivity

of the optimal ODF dictates the constraint A + r ≥ 0. In the solution procedure,

the basis (φm) and the error (r) are represented as a vector containing values at

independent nodes (set of nodes representing distinct orientations while account-

ing for crystal symmetries). The ODF in the basis also requires the positivity

constraint
∑b

m=1 amφm ≥ 0. The additional constraint on the bound in the value

of the solution ODF from the given ODF is defined as |ri| ≤ r0 equivalent to pairs

of linear inequalities: −ri − r0 ≤ 0 and ri − r0 ≤ 0, i = 1, . . . , N , where N is the

number of independent nodes. This problem uses x = [r1, . . . , rN , a1, . . . , ab, r0]
T
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as the variable to be identified. The error (ri) from the nodal values of the optimal

ODF is allowed to be of either sign. Interested readers are referred to Appendix B

which provides details on the LP implementation of this problem.

Fig. 2.6 depicts an example where the problem is to identify the point on a pro-

cess plane that best represents an optimal ODF in the material plane with desired

stiffness properties {c11 = 210.8575GPa, c22 = 210.4191GPa, c66 = 66.3110GPa}.
The basis functions {φ1, φ2, φ3} for the process plane considered for this problem

were generated from snapshots for x-axis tension up to 0.1 strain of an initial tex-

ture that was obtained from y-axis rolling of a random texture to 0.1 strain. The

process plane is then constructed from the equations a1ϕ1+a2ϕ2+a3ϕ3 = 1, where

ϕi =
∫

V
φidv with the constraint a1φ1 + a2φ2 + a3φ3 ≥ 0. Texturing during the

x-axis tension process for various deviations in strain involved during the y-axis

rolling process trace curves (process paths) along this plane as shown by paths 1,

2 in Fig. 2.6(b) with the initial point being the textures obtained for various per-

turbations in strains of the y-axis rolling process and rest of the points following

the plane dynamics based on the basis functions (φ).

Formation of augmented system in LP problems. Augmented LP prob-

lem for the algorithm in Section 2.3.2 is presented here. Problem objective is iden-

tification of an ODF satisfying given property values (d) in the ‘material plane’

that is closest to a ‘process plane’. The equality constraint is specified by three

independent equations as described in Section 2.3.2:

pT (
b∑

m=1

amφm + r) = d

qT (
b∑

m=1

amφm) = 1

qT r = 0.
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Three basis functions φ1, φ2 and φ3 with corresponding coefficients a1, a2 and a3

are used to fully represent the ODFs during a particular process. The unknowns in

the LP tableau are then written as x = [r1, . . . , rN , a1, a2, a3, r0]
T . Thus, the aug-

mented system combining the constraints in Eq. (2.15) can be written as P augx = b

where b = [d, 1, 0]T and

P aug =




pT pT φ1 . . . pT φ3 0

0T
N×1 qT φ1 . . . qT φ3 0

qT 0 . . . 0 0




Similar augmentations are performed for the inequality constraints for the problem

given as:

−ri − r0 ≤ 0

ri − r0 ≤ 0
b∑

m=1

amφm + r ≥ 0

b∑
m=1

amφm ≥ 0

The augmented system combining the constraints in Eq. (2.15) can be written

as M augx ≤ 0 where each row of M augmented corresponds to the inequalities in

Eq. (2.15) as indicated below:

M aug =




−IN×N 0N×1 0N×1 0N×1 −1N×1

IN×N 0N×1 0N×1 0N×1 −1N×1

−IN×N −φ1 −φ2 −φ3 0N×1

−0N×N −φ1 −φ2 −φ3 0N×1




where I is the identity matrix and the notation 1N×1 and 0N×1 indicates a vector

of ones and zeros, respectively, of size N × 1. The objective is to minimize the

bound on the error r given by r0. The objective is given as fT x where

f =

[
01×N 01×3 1

]T
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Thus, the final LP problem reduces to the solution of the following problem:

min
a

fT x satisfying the constraints

P augx = b

M augx ≤ 0

Our objective is to identify the location {a1, a2, a3} on the process plane which

best represents the optimal ODF on the ‘material plane’. Once this location is

found, the process path on which the point lies can be identified. The desired

stiffness constants and the stiffness constants for the optimal ODF identified in the

process plane using the procedure above are compared in Fig. 2.6(a). The ODF in

the material plane that obtains the desired property is shown in Fig. 2.6(d) but the

processing route for this ODF is unknown. The ODF from the process that closely

represents this ODF is shown in Fig. 2.6(c). This ODF is represented by the point

A′ on the process plane shown in Fig. 2.6(b). From the fact that the ODF in the

process plane closely represents the ODF in the material plane, it is established

that the process under consideration is well-suited for achieving the desired set

of properties. A possible process path to reach point A′ is marked as A − A′

in the figure. Location of point A and the strains involved to reach A cannot

be obtained in the context of the present analysis and need to be obtained by

solving a separate optimization problem such as those presented in [60, 61, 62]. In

such an optimization problem, strain rates of the sequence of processes identified

from this analysis (rolling and tension) are incrementally varied from an initial

guess so as to minimize the deviation from the optimum texture A′ at the end of

the process. The strain rates in the ensemble (that generated the basis functions

for the process planes) are used as the initial guess. The optimization problem

is considerably faster since it solves a reduced-order texture evolution problem at
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plane. (d) Exact ODF that reproduces the desired property.

each iteration, utilizing the basis functions already calculated for each process [62].

In this problem, we started by assuming a process sequence that we wanted to

work with and then checking whether it can achieve an optimal ODF. In general,

this search is repeated over several process planes from a database until a viable

solution is found.

2.3.3 Identification of ODFs (from a given process) to ob-

tain properties closest to a desired set of properties

Similarly to the optimization problem described in Section 2.3.2 where process

plane ODFs closest to optimal ODFs in the material plane were identified, another

optimization problem can be posed where the objective is to identify ODFs in the
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Figure 2.7: (a) For a desired property distribution shown, the closest prop-
erty distributions obtainable in the x-axis tension, rolling and x-y
shear process planes are shown. (b) The optimal solution ODF
from tension process plane and (c) The optimal solution ODF
identified in the rolling process plane.

process plane that closely reproduce a desired set of properties. The optimization

problem in this case is posed so as to identify ODFs in the process plane whose

properties are closest to a desired set of properties in some sense.

The objective is to minimize the bound (e0 ≥ 0) on the absolute value of

error from a desired property: min
a

e0 such that
∑b

m=1 pT φmam + pT e = d,

where d is the desired set of properties. The normalization constraint is given as
∑b

m=1 qT φmam = 1. Positivity of the ODF dictates the constraint
∑b

m=1 φmam ≥
0. Bound on the absolute value of error is defined as |ei| ≤ e0. This is equivalent

to pairs of linear inequalities: −ei − e0 ≤ 0 and ei − e0 ≤ 0, where i = 1, . . . , np,

where np denotes the number of properties to be optimized. This problem uses

x = [e1, . . . , enp , a1, . . . , ab, e0]
T as the variable to be identified. The error ei is

allowed to be of either sign.

As an example, for a desired variation of Taylor factor from the rolling to trans-

verse direction shown in Fig. 2.7(a), the closest property distributions obtainable
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from the x-axis tension, y-axis rolling and x-y shear process planes are shown. Ba-

sis functions for each process was computed from an ensemble of textures obtained

by deforming an initial random texture to 0.1 strain with the respective process.

As seen in Fig. 2.7(a), the optimal ODF obtained from the x-y shear process plane

fails to reproduce the desired property distribution. The property distribution

however is represented well by the optimal ODFs identified from the tension or

rolling process planes which are shown in Fig. 2.7(b) and (c), respectively.

2.4 Identification of process paths and optimal ODFs from

process-property spaces

Property closures similar to those constructed for the material plane (in Sec-

tion 2.2.2) can be constructed for visualizing the range of properties obtainable

from different process planes. They represent the set of all properties (for a

given homogenization method) obtainable from ODFs represented by a process

plane. The procedure to obtain extremum properties from the process plane is

to pose the LP problem as: min
a

fT a where fm = −pT φm for maximizing prop-

erties and fm = pT φm for minimizing properties, with m = 1, . . . , b. The lin-

ear constraint is that the solution ODF is normalized to unity, gT a = 1 where

gm = qT φm,m = 1, . . . , b.

Positivity of the ODF dictates that
∑b

m=1 φmam ≥ 0. The procedure for map-

ping the range of properties obtainable from a process plane is similar to that

presented in Section 2.2.2. The nature of property-process space inherently allows

development of several processing routes for obtaining a desired property. Pro-

cesses can be associated with properties by superimposing the property closures
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of process planes in the property space. As an example, Fig. 2.8 shows the prop-

erty space of Taylor factors along the rolling and transverse directions. Property

closures of four different process planes are superimposed in this property space.

Process plane for x-axis tension was constructed using basis functions calculated

from an ensemble of textures obtained by deforming a random starting texture (R)

to a strain of 0.1. Properties for this ensemble fall along path R-e in the figure.

Process plane for y-axis rolling was constructed using basis functions calculated

from an ensemble of textures obtained by deforming random texture (R) to a strain

of 0.2. Properties for this ensemble fall along path R-d in the figure. Third pro-

cess plane was constructed using basis functions calculated from an ensemble of

textures obtained by y-axis rolling of a random texture up to strain of 0.1 (corre-

sponding to point a) as the starting texture which is processed to an additional 0.1

strain under x-axis tension to end point b. Properties for this ensemble fall along

path a-b in the figure. Fourth process plane is constructed using basis functions

calculated from an ensemble of textures obtained from z-axis rolling of texture

at point b to an additional strain of 0.1. Properties for this ensemble fall along

path b-f in the figure. Now, to tailor properties of a random texture (point R -

(3.067,3.067)) and reach desired property (point C - (3.077,3.084)), two different

process paths can be graphically seen. Simplest route is a direct tension process

(path R − C). However, route R − a − b − C is also possible for reaching the

desired property. The presence of such a route could have been inferred from the

superimposed property closures of process planes shown in Fig. 2.8 since desired

property point C lies on the fourth process plane which involves a process path of

the type R− a− b− C.

In association with databases of process planes, such a methodology would be

able to identify several process sequences that might lead to a desired property
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at R) are shown. Route R-C follows a x-axis tension process and
route R-a-b-C follows a process sequence of y-axis rolling, x-axis
tension followed by z-axis rolling.

point C starting from a random texture. Once process sequences are identified,

the exact process parameters (locations of point ‘a’ and ‘b’) can be found by

existing gradient optimization algorithms such as in [60, 61, 62] as explained in

Section 2.3.2. To retrieve the optimal ODF (at point C) for the tension process, the

property iso-lines of Taylor factor in rolling and transverse direction corresponding

to point C are drawn on the property contours of tension process plane as shown in

Figs. 2.9(b) and (c), respectively. The intersection point of the iso-property lines

in Figs. 2.9(b,c) gives the desired ODF as shown in Fig. 2.9(d). The graphical

solution described here is useful for optimizing up to three properties, which allows

visualization of the space. In other cases, where a large number of properties (or

a property distribution) need to be optimized, the first step of identifying best

processing route needs to be replaced with a linear programming problem of the

type used for obtaining desired properties in Fig. 2.6 or Fig. 2.7.
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Figure 2.9: (a) Shows property closure for x-axis tension process with a path
leading from property R to C. The ODF corresponding to op-
timal property C needs to be identified. This is identified from
the point of intersection of property iso-lines from the structure-
property space shown in (b) and (c). The intersection point of
the isolines in plots (b) and (c) gives the desired ODF as shown
in (d).

2.4.1 Identification of ODFs with desired non-linear prop-

erties

Properties presented until now were linear in the ODF represented by the rela-

tionship < χ >= pT A. In the space of coefficients of basis functions for a process,

iso-property surfaces for linear properties are represented as a family of parallel

planes given by pT
∑3

m=1 φmam =< χ >. Iso-property surfaces for non-linear prop-

erties are represented by a non-linear equation of the form < χ >= f(a1, a2, a3) in

the {a1, a2, a3} space. Fig. 2.10(b), for example, represents the iso-property surface

for a non-linear property, the Lankford R-parameter, in the space of reduced-order
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coefficients of basis functions in a x-axis tension process.

Method of computing the R-parameter is presented in [60]. The basis functions

were constructed from an ensemble of textures obtained from processing a random

texture to 0.1 strain under x-axis tension. The solution to R = f(a1, a2, a3) = 1.023

at 45 degrees to the rolling direction corresponds to two surfaces out of which only

one intersects the process plane. Points lying along the curve of intersection of

iso-property surface and the process plane represent valid ODFs in the {a1, a2, a3}
space with R = 1.023.

Similar surfaces of the Young’s modulus along the rolling direction are plotted

in Fig. 2.10(a). The Youngs Modulus along the RD is calculated by first inverting

the average stiffness matrix found using the approach in Section 2.2.1 to obtain

the average compliance matrix (< S >). Young’s modulus is then represented

as E = 1

<S>11
. The solution of E = 143.5GPa corresponds to 6 surfaces out of

which only one intersects the process plane. In both Fig. 2.10(a) and Fig. 2.10(b),

the process planes are colored according to the value of the non-linear property

at each point. It is interesting to note that the property iso-surface intersecting

the process plane is planar in both cases suggesting that the property may be

represented in a linear basis of coefficients as f(a1, a2, a3) =
∑3

m=1 p∗m
T am =< χ >

and similar linear programming methodologies as before may be used to invert the

property-ODF relationship.

2.5 Conclusions

Developments presented here advance materials-by-design for polycrystalline ma-

terials through the following new contributions:
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• Concept of ‘material plane’ in Rodrigues space was employed to construct

linear programming solutions to several problems including identification of

optimal or extremal ODFs and construction of property closures for given

linear homogenization relations.

• A new concept of ‘process plane’ was established that represents the space of

reduced-order coefficients for a given process. The process plane is capable

of extrapolating several different processing paths.

• Linear programming methods were constructed to solve problems involving

identification of ODFs on the process plane that are as close as possible to

desired ODFs on the ‘material plane’.

• Graphical solution to the process sequence selection problem was enabled

through identification of process paths on property spaces that represent

ranges of properties represented by a process plane.

Selection of optimal textures and processing paths is enabled using databases

of reduced-order basis functions and the optimization techniques described in this

chapter. The error in reconstruction of process paths increases gradually with in-

crease in extrapolation. This means that processing paths for some parts of the

process plane cannot be established accurately. The optimization methodology at

present is for linear properties, although studies indicate that iso-property curves

of non-linear properties such as the Lankford R-parameter are almost linear in the

process plane. This suggests the possibility that these properties may be approxi-

mated in a linear basis of reduced coefficients. In order to extend the optimization

strategy for identifying microstructures with desired non-linear properties, we re-

sort to gradient optimization approaches. Taking advantage of the model reduc-

tion methodology presented in this chapter, we present an adaptive optimization
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Figure 2.10: ODFs with a desired non-linear property lie on the curve of
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methodology that allows optimization of a variety of texture-dependent properties

and identification of processing paths to reach these properties in the next chapter.
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Chapter 3

On the synergy between microstructure

classification and deformation process

sequence selection for the control of

material properties

2 The previous chapter presented the model reduction methodology for tex-

tures and a novel graphical representation scheme for identifying processing paths

that lead to desired properties. This section details the methodology required to

identify the process parameters in such optimal processing paths using gradient

optimization. In particular, classification of F.C.C. polycrystal texture is used as a

scheme to adaptively select reduced order models for each iteration of the gradient

optimization scheme. Given a desired ODF, a hierarchical classifier matches its

ODF features in the form of pole density functions of important orientation fibers

to a class of textures in the database. Texture classes are affiliated with processing

information, hence, enabling identification of multiple process paths that lead to a

desired texture. The process parameters identified by the classifier are fine-tuned

using a gradient optimization algorithm driven by sensitivity analysis of texture

evolution. An adaptive reduced-order model for texture evolution based on proper

orthogonal decomposition is employed in which the reduced ODF modes corre-

sponding to the intermediate stages of the design process are adaptively selected

from the database.

2 Reprinted from V. Sundararaghavan and N. Zabaras, ”On the synergy between classification
of textures and deformation process sequence selection”, Acta Materialia, Vol. 53/4, pp. 1015-
1027, 2005.
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In section 3.1, the representation of F.C.C. texture in Rodrigues space is defined

followed by introduction to the concept of orientation fibers. In section 3.2, we

introduce our classification framework. In section 3.3, a texture evolution model

based on reduced representation of texture is discussed followed by the process

design methodology in section 3.4. In section 3.5 we present relevant applications

of the methodology.

3.1 Texture representation and feature extraction

Orientation distribution function (ODF) [27, 25], the probability density func-

tion for orientations, is employed for the quantification of crystallographic texture.

Various methods are available for computing ODF evolution (see [77]) during de-

formation processing. Texture evolution methodologies use parameterizations for

the crystal lattice rotation which together with the crystal symmetry define the

problem domain. We employ the Rodrigues-Frank axis-angle parametrization of

the orientation space. This is based on the unique association of an orientation

with a rotation axis, and an angle of rotation about the axis.

3.1.1 Representation of FCC texture in Rodrigues space

The Rodrigues’ parametrization is created by scaling the axis of rotation as r =

ntan( θ
2
). A proper rotation R relates the lattice orientation to a reference orien-

tation. Given the Rodrigues parametrization r, the rotation R can be obtained

as,

R =
1

1 + r.r
(I(1− r.r) + 2(r⊗ r + I× r)). (3.1)
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The fundamental region represents a region of the orientation space such that each

crystal orientation is represented uniquely within the space. Fundamental region

for the cubic symmetry group results in a truncated cube. The planes that form

the faces of the cube are introduced by symmetry rotations about 〈100〉 family of

axes and the corners are truncated by planes introduced by rotations about the

〈111〉 axes. The ODF (represented by A) describes the local density of crystals

over this fundamental region of orientation space. The volume fraction of crystals

within a part (<∗) of the fundamental region is given by vf (<∗) =
∫
<∗ Adv.

3.1.2 Classification for identifying processes that lead to

desired ODF

ODF classification framework creates a self-organizing database of textures from

which relationships between processes and textures can be identified. The task

of the classifier is to identify a class of textures (and associated process parame-

ters) that may result in a desired ODF. Apart from using numerical control al-

gorithms, the underlying inverse problem can also be approached using pattern

recognition approaches over large and comprehensive databases. Direct classifica-

tion of the ODFs using the finite element representation (the nodal values) over

such databases are not computationally feasible due to high-dimensionality of the

data set. We employ the approach in [78, 134] where classification is carried out

over a hierarchy of classes using lower-order microstructural features. The lower

order features for the ODF is realized in the form of pole-density functions of im-

portant orientation fibers in the fundamental region and are used to create the

class hierarchy. These features are extracted from a given desired ODF and pat-

tern recognition is employed to propagate the information over the existing class
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hierarchy to identify the required texture class (and process parameters). The sig-

nificance of the lower order features employed is briefly explained in the following

sub-section.

Orientation Fibers

A 〈h〉 fiber about sample axis y connects orientations that align the crystal h

axis with the sample y direction. The rotation R required to align h with y is

based on a rotation of h through an angle φ = cos−1h · y about axis h × y.

Note that h and y remain aligned even if the orientations change due to rotations

about h or y axis. These orientations define the orientation fiber. In the Euler

angle space, the fibers are curves described by trigonometric functions. Orientation

fibers reduce to straight lines over Rodrigues’ space. The orientations along the

fiber over Rodrigues space is obtained by varying the parameter λ in the following

equation,

r =
1

1 + h.y
(h× y + λ(h + y)) (3.2)

Here, λ = tan(φ+ φ̄)/2 where φ and φ̄ are arbitrary, corresponding to rotations

about h and y, respectively. Fiber textures develop as flow of crystals over the

space of orientations are channeled along particular orientation fibers. Certain

families of fibers are of particular importance in F.C.C textures. For example, the

〈110〉 family of fibers appear under uniaxial compression, plane strain compression

and simple shear. FCC metals are typically associated with texturing to 〈111〉 and

〈100〉 fibers under tension and 〈110〉 under compression. In torsion tests, the z-

axis 〈111〉 fibers and x-axis 〈110〉 are seen to predominate. The texturing of FCC
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metals under plane strain compression is dominated by the α fiber (ND 〈110〉)
connecting the ideal Goss and brass orientations, and the β fiber connecting the

brass, S, and copper orientations ([30]).

For a particular h, the pole figure takes values P(h,y) at locations y on an unit

sphere. The pole density function, P(h,y) gets contributions from orientations for

which the mapping R brings ±h (or symmetric equivalent) into alignment with

the sample axis(y) as, R ·h = ĥ, ĥ ‖ y. Using the crystal symmetries in the ODF,

the expression for pole density function can be obtained as [66],

P(h,y) =
1

2
[P0(h,y) + P0(−h,y)] (3.3)

where, P0(h,y) represents a path integral given as,

P0(h,y) =
1

2π

∫
ˆh‖y

Adθ (3.4)

The integration is performed over all the fibers in the fundamental region corre-

sponding to crystal direction h and sample direction y. Given the finite element

discretization of the fundamental region, integration is done by tracking the fiber

through each finite element. Within a finite element, A is interpolated using the

element shape functions and the nodal point values associated with the element.

The vector of all independent nodal values is represented by Anp. Pole density

function (P(h,y)) of an orientation fiber family (h) is found over a sample direc-

tion (y) using a system vector (m(h,y), computed using Eq. 3.3,3.4 through a

vector dot product as,

P(h,y) = m(h,y)T Anp (3.5)

The feature vector (xl
i) for the ith ODF in the database at level l in the classi-

fication scheme is found as follows. The level l is associated with a particular

fiber family (h) and the pole density functions are calculated at various values
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of y = [y1,y2, ...,ym] as, xl
i = MAnp

i where the system matrix (M) is formed as

M = [m(h,y1)
T ;

m(h,y2)
T ; ...; m(h,ym)T ].

The system matrix is calculated and stored beforehand for the fiber families

used for classification. Fig. 3.1 shows the classification scheme for textures based

on Pole density functions as lower-order features at various levels. An advantage of

the clustering scheme is its ability to capture non-uniqueness in the process-design

solutions. Through classification, identification of several processing paths that

can lead to the desired texture is made possible.

Classifier Model The unsupervised classification problem aims to unearth

the relationships between a set of data without the need for any user-defined data

in the form of class labels. Given a data-set (D) consisting of n features of the

ODF, xi, i = 1, ..., n, with each feature attribute being a vector of m values as

xT
i = {x1i, ..., xmi},xi ∈ <m. The unsupervised classification problem is posed as

follows:

Find the cluster centers {C1,C2, . . . ,Ck} in <m such that the sum of the 2-

norm distance squared between each feature xi and its nearest cluster center Ch is

minimized.

The clustering problem can be written using the above mentioned ‘distortion

measure’ as the problem of finding the cluster centers {C1,C2, . . . ,Ck} so that the

cost function (J) is minimized,

J(C1, . . . ,Ck) =
n∑

i=1

minh=1,...,k(
1

2
‖xi −Ch‖2

2) (3.6)
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Level 1: 
<100> fiber

Level n: 
<111> fiber

Level 2: 
<110> fiber

Figure 3.1: The classification hierarchy for ODFs. The feature vector con-
tains the pole density functions at different sample directions for
the family of fibers specified at each classification level.

3.2 K-Means Clustering Algorithm

The cluster center (Ci) needs to be the centroid of the closest set of features (xi)

for the distortion to be the minimum. Given a database D of n points in <m and

cluster centers {C1,i,C2,i, . . . ,

Ck,i} in <m at iteration i, the Lloyd’s algorithm computes the cluster centers,

{C1,i+1, . . . ,Ck,i+1} at iteration i + 1 in the following 2 steps: 1. Cluster Assign-

ment : For each data xi, assign xi to cluster h(i) such that center Ch(i),i is nearest

to xi in the 2-norm. 2. Cluster Update: Compute Ch(i),i+1 as the centroid of all

points assigned to cluster h.

The algorithm is stopped when Ch,i+1 = Ch,i, h = 1, . . . , k, otherwise i is

incremented by 1 and steps 1 and 2 are repeated. At the start of the algorithm, the

k cluster centers, {C1,0,C2,0, . . . ,Ck,0} are randomly initialized. The cluster center
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solutions produced depend on these initial values, and bad initial guesses may

result in suboptimal partitioning. The standard solution is to try several starting

configurations. The results of the k-means algorithm depends on the number

of clusters (k) required to be provided by the user. For the ODF classification

problem, the number of classes are not known a-priori. We employ the ‘x-means’

algorithm [79] for discovering the actual number of classes that exist in the set

of ODFs. The Schwarz criterion, based on the Bayesian information criterion is

employed in the x-means algorithm to estimate the actual number of clusters in

the data-set. Given the data-set (D), the model chosen maximizes the Bayesian

information criterion (BIC) given as,

BIC = l̂(D)− p

2
log(n) (3.7)

where, l̂(D) is the log-likelihood of the data taken at the maximum likelihood

point, p is the number of free parameters in the model, p = m.k + k − 1 + k,

consisting of m.k cluster center coordinates, k − 1 class probabilities and k vari-

ance estimates. The maximum likelihood estimate for the variance, assuming

spherical-Gaussian distribution of data within a cluster (i) consisting of ri data

points (xi
j, j = 1, . . . , ri) is given as,

σ̂2
i =

1

ri − 1

ri∑
j=1

‖xi
j −Ci‖2 (3.8)

The probabilities of each point within the cluster (i) is given as,

P̂ (xi
j) =

ri

n

1√
2πσ̂i

m
exp(− 1

2σ̂i
2‖xi

j −Ci‖2) (3.9)

The log-likelihood of all the data within the cluster is given as,

l(Di) = log

ri∏
j=1

P (xi
j)

=

ri∑
j=1

(log(
1√

2πσ̂i
m

)− 1

2σ2
i

‖xi
j −Ci‖2 + log

ri

n
) (3.10)
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Hence, at the maximum likelihood estimate, the log-likelihood of the data be-

longing to cluster i is given as,

l̂(Di) = −ri

2
log(2π)− ri.m

2
log(σ̂i

2)

− ri − 1

2
+ ri log(ri)− ri log(n) (3.11)

The log-likelihood of the entire data set is the sum of the log-likelihoods of all

clusters, hence, the BIC (Eq. 3.7) for the entire data-set can be written as,

BIC = −n

2
log(2π)− m

2

k∑
i=1

ri log(σ̂i
2)− n− k

2

+
k∑

i=1

ri log(ri)− n log(n)− (m + 2)k − 1

2
log(n) (3.12)

In the x-means algorithm, the Schwarz criterion is tested for configurations aris-

ing from different values of k, and the best configuration is chosen. Convergence

properties are further improved in the algorithm by letting few cluster centers

(parent clusters) obtained from the k-means step to split further into two centers.

This is performed through local k-means operation on the parent cluster using two

new centers. The Schwarz criterion is then tested locally within the parent cluster.

The parent cluster is retained only if the BIC degrades due to the splitting opera-

tion. Fig. 3.2 shows a comparison of the x-means and the k-means methodologies

for a two-dimensional feature set. Fig. 3.2(a) shows a configuration produced by

the k-means algorithm with the number of classes (k) is given as 4. The config-

uration has converged but has not produced the distortion corresponding to the

global minimum. Fig. 3.2(b) shows the k-means results with number of classes
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(a) (b) (c)

Figure 3.2: Results of the x-means and k-means algorithm on a 2D feature
set. The squares represent the cluster centers (a) Clustering us-
ing k-means: local optimum produced by the k-means algorithm
(k = 4) (b) Clustering using k-means with number of classes
fixed at k = 6 (c) 4 clusters identified by the x-means algorithm

k = 6. With k-means, it is not possible to extract the true clustering in the data-

set. Higher the number of classes, the lesser is the distortion but the possibility of

overfitting the data increases. Fig. 3.2(c) shows the cluster centers identified by

the x-means algorithm. Based on the Schwarz criterion, x-means identified the 4

natural clusters in the data-set.

3.3 Texture evolution model

The evolution of ODF is governed by the ODF conservation equation. The con-

ventional Eulerian rate form of the conservation equation is given by [30]:

∂A(r, t)

∂t
+5A(r, t) · v(r, t) +A(r, t)5 ·v(r, t) = 0 (3.13)

where v(r, t) is the Eulerian reorientation velocity. The polycrystal average of an

orientation dependent property, χ(r, t), is determined using the Eulerian ODF by

an integral over the fundamental region:

〈χ〉 =

∫

R

χ(r, t) A(r, t) dv (3.14)
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A desired property 〈Φ〉 distribution at the material point can hence be obtained

by controlling the ODF (A). From Eq. 3.13, it is seen that the evolution of the

ODF (A) is controlled by the reorientation velocity v(r, t). Hence, desired property

〈Φ〉 can be obtained through control of the macro-design variable, namely the

velocity gradient, L, which is linked with v(r, t) using the extended Taylor macro-

micro linking hypothesis. The hypothesis assumes that each crystal experiences the

corresponding macroscopic deformation identically and hence, equates the crystal

velocity gradient and the macro velocity gradient (L).

The reorientation velocity is then evaluated through crystal constitutive rela-

tions, which involve the crystal velocity gradient. The velocity gradient of a crystal

with orientation, r, yields the following form [30]:

L = Ω + R
∑

α

γ̇αT̄
α
RT (3.15)

where Ω is the lattice spin, γ̇α is the shearing rate along the slip system α and T̄
α

is the Schmid tensor for the slip system α, given by (m̄α ⊗ n̄α), where m̄α is the

slip direction and n̄α is the slip plane normal, both in the crystal lattice frame.

The expressions for the spin and symmetric parts are obtained as shown below:

Ω = W −
∑

α

γ̇αRQ̄
α
RT (3.16)

D̄ =
∑

α

γ̇α P̄
α

(3.17)

where P̄
α

and Q̄
α

are the symmetric and skew parts of the Schmid tensor respec-

tively and D̄ is the macroscopic deformation rate expressed in the lattice frame

through, D̄ = RT DR. The shearing rate on slip systems is given by a power

law and we further assume that all slip systems have identical hardness.

γ̇α = γ̇0|τ
α

s
|
1/m

sign

(
τα

s

)
(3.18)
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where s is the slip system hardness, m is the strain rate sensitivity, γ̇0 is a reference

rate of shearing and τα is the resolved shear stress on slip system α. Further, the

resolved stress is related to the crystal Cauchy stress as

τα = σ̄• P̄
α

(3.19)

By solving the system of equations (3.17 − 3.19), the crystal cauchy stress (σ̄)

and the shear rate (γ̇α) can be evaluated. Next, using Equation (3.16), we can

evaluate the lattice spin vector as,

ω = vect (Ω) (3.20)

which is then used to evaluate the reorientation velocity as,

v =
1

2
(ω + (ω · r)r + ω ⊗ r) (3.21)

Finally, the ODF, A, over the current fundamental region R is evaluated from

the Eulerian form (Equation (3.13)) of the conservation equation. The full and

reduced order methodologies for solving the PDE (Equation (3.13)) is given in the

next subsection.

3.3.1 Full and reduced order approaches

Eq. (3.13) has the form of the advective transport equation and is subject to

discontinuities in the velocity divergence. The finite element formulation (full-

order model) involves SUPG stabilization and takes the following form:

∫

R

{
∂A
∂t

+5A · v +A5 ·v
}

w dv +

∫

Rt

5 · (ε5A) ψ dv = 0 (3.22)

where w and ψ are the Petrov-Galerkin and classical Galerkin weighting functions

respectively and ε is the shock capturing parameter.
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In multi-scale deformation problems where several ODFs need to be controlled,

the full-order model requires considerable computational resources due to large

number of degrees-of-freedoms needed for the analysis as well as the associated

mathematical and computational complexity. The proper orthogonal decomposi-

tion (POD) technique is popular reduced order modeling approach for decreasing

the computational burden in such problems. Reduced-order modeling is based

on the development of a reduced set of basis functions, φ(r), to represent the as-

sociated ODF. The method of snapshots is introduced for generating the basis.

It assumes that the basis, φ, can be expressed as a linear combination of the N

snapshots from direct simulation as:

φj =
N∑

i=1

wj
iA(i) (3.23)

where wj
i can be determined by the solving the eigenvalue problem:

C W = Λ W (3.24)

where, C is the spatial correlation matrix defined as,

Ci,j =
1

N

∫

R

A(i)(r) A(j)(r) dV (3.25)

and Λ and W are the complete eigen- description of the system. Once the modes

have been evaluated, Equation (3.23) is used to generate the basis for reduced-order

modeling, such that at any processing stage j,

A(j)(r, t) =
M(j)∑
i=1

a
(j)
i (t)φ

(j)
i (r) (3.26)

where M j is the number of modes used in stage j, and a
(j)
i are the reduced order

coefficients used for representing the ODFs in stage j. Using this approximation in

the weak form of the ODF conservation equation results in the following ordinary

differential equation (ODE):

ȧ = Ra (3.27)
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where,

Ri,j =

∫

R

(5φj · v φi + φj φi 5 ·v)dv (3.28)

Eq. 3.27 is solved over n timesteps (0 to tn) at each stage. At any stage j,

j = 1, . . . , p, the initial value of a is given through the following equation,

a
(j)
i (0) =

∫

R

A(j−1)(r, tn)φ
(j)
i (r)dv (3.29)

where, φ(j)(r) is the reduced basis at stage j. The initial microstructure is assumed

to be random and taken as A(1)(r, 0) = 2.435. Equations (3.27) − (3.29) define

the reduced-order model for the ODF conservation equation. Thus, to obtain

desired orientation distribution functions (e.g. desired texture and thus desired

properties), one needs to only control a small finite number of degrees of freedom

(i.e. the vector a).

3.4 Design of processes

The objective of the microstructure-sensitive design process is to control the prop-

erties in the micro-scale through design of appropriate deformation processes. The

direct problem described in Section 3.3 simulates the ODF evolution given the

macro velocity gradient. The process design methodology aims to identify the

macro velocity gradient that yields a desired ODF (or desired property distribu-

tion). Given a good initial guess, gradient based methods converge to a local

optimum within a few iterations and hold computational advantage over heuristic

global solution search techniques. Intelligent choice of the initial guesses can be

made using prior information available in the form of a database through clas-
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sification. Refer [60, 61] for complete details on the implementation of the de-

sign problem for a single stage using gradient-based approach. The calculation of

gradients in the optimization framework involves reduced-order modeling of the

polycrystal continuum sensitivity equation and calculation of sensitivities of the

reorientation velocity through the crystal plasticity relations by design differenti-

ation of the linking hypothesis. The following section addresses the extension of

the technique to a multi-stage design process.

3.4.1 Multi-stage design process

Let us consider Equation (3.13). We denote the sensitivity of the ODF to a small

change in the process parameter (α) as
◦
A =

◦̂
A(r, t; α, ∆α). Taking the design

differentiation of Equation (3.13) results in the following partial differential equa-

tion:

∂
◦
A

∂t
+ 5 ◦

A · v + 5A· ◦v +
◦
A5 ·v + A5 · ◦v = 0 (3.30)

The PDE can be solved to develop the sensitivity of the ODF field assuming that

the sensitivity of the reorientation velocity and its divergence are known. This is

evaluated in the constitutive sensitivity problem (Refer [60, 61]).

In this reduced-order model, we utilize the basis developed earlier for the direct

problem and approximate the sensitivity fields as linear combinations of these basis

functions. The computations are similar to those performed for the direct analysis,

and the reduced system is obtained as follows:

ḃ = Gb + H (3.31)
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where

Gi,j =

∫

R

(5φj · v φi + φj φi 5 ·v)dv (3.32)

Hi = −
∫

R

(5A· ◦v φi + A φi 5 · ◦v)dv (3.33)

For the first stage,
◦
A

(1)

(r, 0) = 0. At the end of stage j,
◦
A

(j)

(r, tn) is calculated

from the coefficients obtained from the solution of Eq. 3.31 at the final time step

as,

◦
A

(j)

(r, tn) =
M(j)∑
i=1

b
(j)
i (tn)φ

(j)
i (r) (3.34)

where φ(j)(r) the reduced basis at stage j. The initial value of b for (j +1)th stage

is given through the following equation,

b
(j+1)
i (0) =

∫

R

◦
A

(j)

(r, tn)φ
(j+1)
i dv (3.35)

where φ(j+1)(r) is the set of reduced basis employed for the sensitivity problem at

stage j + 1. Once the sensitivity at the last time step of the final stage is found,

the expectation of the sensitivity of a property to a small change in the process

parameter is found as,

〈◦χ〉 =

∫

R

χ(r, t)
◦
A

(p)

(r, tn) dv (3.36)

The design variable, namely the macro-velocity gradient (L) is decomposed

uniquely as in Equation (3.37). Each matrix in the decomposition of Equation

(3.37) corresponds to a given deformation process namely tension/compression

(α1), plane strain compression(α2), shear modes(α3, α4, α5) and rotation modes
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(α6, α7, α8).

L = α1




1 0 0

0 −0.5 0

0 0 −0.5




+ α2




0 0 0

0 1 0

0 0 −1




+ α3




0 1 0

1 0 0

0 0 0




+ α4




0 0 1

0 0 0

1 0 0




+ α5




0 0 0

0 0 1

0 1 0




+ α6




0 −1 0

1 0 0

0 0 0




+ α7




0 0 −1

0 0 0

1 0 0




+ α8




0 0 0

0 0 −1

0 1 0




(3.37)

We define the design problem of interest as the selection of the processing

sequence, with stages involving tension/compression, plane strain compression,

shear or rotation, and the corresponding process parameters α that lead to a

desired property Ω that is a function of the ODF. This can be stated as follows:

min
α

F(α) =
1

Ns

Ns∑
i=1

(Ωi (A(α))− Ωdesiredi

)2 (3.38)

where Ns is the total number of sampling points, Ωdesired is the discrete repre-

sentation of the desired microstructural property and α is the design parameter

involved in the iterative optimization algorithm corresponding to the process pa-

rameter (αj) from stage j = 1 to p. The calculation of sensitivities of property χ

to a component αi of α require solution to sensitivity problems at p− j +1 stages.

The ith multi-stage sensitivity problem is driven by ∆αi = 10−2 with ∆αj = 0 for

j 6= i. The gradients of property (χ) with respect to αi is calculated as,

∂χ

∂αi

=

◦
χ (r, t, α1, .., αp, 0, .., ∆αi, .., 0)

∆αi

(3.39)

The sensitivities are then used in a gradient descent algorithm to obtain the opti-

mum process parameters that minimize the objective function in Eq. 3.38.
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3.4.2 Adaptive reduced order model

The classification technique is database-driven and the availability of existing in-

formation can be further utilized to accelerate the texture evolution models. As

discussed in [60, 61], the reduced order model needs to fully represent not only the

optimal solution but also all the intermediate solutions during the optimization

process. This calls for a method where the bases for the ODF are chosen adaptively

during the control algorithm. We follow the method proposed by Ravindran([67]).

At processing stage j, we begin optimization step 1 with reduced order modes

(φ(j,1)(r)) obtained from the database corresponding to the initial process param-

eter estimate up to stage j, α(j,1) = [α(1,1),

..., α(j,1)] obtained through classification. This reduced-order model is now used

in the gradient optimization algorithm to find the new iterate in the second opti-

mization step, α(j,2) = [α(1,2),

.., α(j,2)]. In general, the reduced order basis corresponding to a new iterate α(j,i+1)

at optimization step (i + 1) in stage j is found through the following steps:

1. Select the new reduced order basis (φ(j,i+1)(r)) from the existing database

by searching for the closest parameter (βD) within a user-defined tolerance

limit,

‖βD − α(j,i+1)‖2 ≤ ε (3.40)

2. If ‖βD−α(j,i+1)‖2 > ε, then compute the snapshots corresponding to α(j,i+1),

generate the new reduced basis (φ(j,i+1)(r)) from the snapshots and update

the existing database with the new α(j,i+1) and φ(j,i+1)(r).

Remark 1: An initial uniform texture is assumed at the first processing stage.

The reduced-order basis corresponding to the pure deformation modes (obtained
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from an ensemble of data corresponding to a deformation αi = 1, if mode i is used

in the first stage) is found to be sufficient to represent the texturing in the first

stage.

Remark 2: The sensitivity problem uses the same basis as the direct problem.

However, a sensitivity problem of stage i (where process variable corresponding to

stage i is perturbed) uses the stage i basis for the sensitivity problems in stages

i + 1 to p.

Remark 3: Over large databases, the search procedure in step (1) of the adap-

tive reduced order algorithm can be addressed efficiently using classification algo-

rithms.

3.4.3 Effect of adaptive basis threshold

The difference between the reduced and full order control solutions depend upon

the sensitivity of the desired property to the numerical error induced by the intro-

duction of reduced basis. Selection of the threshold parameter (ε) plays a critical

role in the adaptive basis scheme described above. Small thresholds result in more

accurate solutions but are computationally expensive due to frequent basis changes.

Larger thresholds involve less frequent basis changes but may result in inaccurate

solutions since the basis might not model the process employed accurately. Fur-

ther, the sensitivities may be inaccurate leading to divergence in the objective

function. Fig. 3.3 shows the increase in error caused with increasing values of ε

used for the basis selected. The strain rate for the first stage is fixed and that

of the second stage is increased which results in different values of ε. The ODF

resulting from a basis with ε = 0 after a time of 0.1 sec is used as the reference
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Figure 3.3: Error induced due to different thresholds for the basis, the error
not only depends on the threshold but also on the sequence of
processing stages involved.

(Aref ). The error is defined as 100 × ‖Aref−A)‖2
‖A‖2 . The error not only depends on

the threshold but also on the types of processing stages involved. With tension

as the second processing stage, changing the first stage to shear from plane strain

compression results in about 30 % increase in error at the same threshold. Within

a processing sequence, however, the increase in error due to change in processing

parameters is small. The results also indicate that the thresholds can be varied

based on the processing sequence, a tension-plane strain compression processing

sequence can have twice as much threshold than the shear-tension sequence with

similar errors induced by the reduced order approximation.

3.4.4 Database architecture

The database contains several data sets, each set corresponding to a particular

process sequence and associated processing parameters. Every data set also con-

tains a reduced ODF basis for the process that it represents. The final ODF in
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each data set is used in the classification scheme to identify classes of textures.

The processing parameters that lead to a desired final texture is found by first

identifying the class of texture to which the desired texture belongs. The required

processing parameters and process sequences are then found from the data sets in

the identified class. The best process path can then be selected from this set.

Let data set ‘A’ containing a processing sequence of tension and shear be found

to result in a particular desired texture using the classifier. In a control problem

involving the above 2 stages, a basis corresponding to the pure deformation mode

(tension) is used for the first processing stage and is unchanged during the inter-

mediate iterations of the control problem. For the second stage (shear), a basis

of data set ‘A’ is initially used. If during an intermediate stage of the control

problem, the process parameters for the tension and shear stages change beyond

the allowed threshold (ε), then the database is initially searched for a data set

with process parameters within the allowed threshold. If such a data set is not

available, a new data set is added to the database corresponding to the new pro-

cess parameters. The basis for this data set is used in subsequent iterations of the

design problem until the process parameters once again change above the selected

threshold. Using this scheme, just three modes of the basis (with three unknowns)

are found to adequately represent the texturing at any stage in an optimization

step, enhancing the computational efficiency of the algorithm. The success of the

data-mining approach is limited to the amount of information in the database.

Selection of good processing sequence solutions require a comprehensive database

with data sets containing rich combination of processes. New information added

to the database during the optimization process improves the possibility of iden-

tification of processing parameters and reduced basis functions directly from the

database in future optimization runs.
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3.5 Applications in materials design

A validation of the adaptive reduced order approach is provided together with rele-

vant design problems utilizing the classification framework. F.C.C. materials with

12 slip systems are modeled in the examples. An initial uniform texture is assumed

which corresponds to a value of A(r, 0) = 2.435. Relevant material constants used

in the design examples are γ̇α = 1.0s−1,m = 0.05 and s = 27.17MPa [30]. The

reduced order basis for each design iteration is generated from an ensemble of data

obtained from a deformation test for a time of 0.1s with a time step of δt = 0.01s.

The first three modes of the selected reduced basis is used for modeling the texture

evolution at any deformation stage. For the examples, the time for which each de-

formation stage acts is fixed at 0.1 s. The optimization problem is executed until

the objective function normalized with the initial objective showed less than 10−4

improvement between iterations.

A study of the adaptive reduced basis algorithm is conducted comparing the

reduced-order results with full-order approach. A 3 stage problem with each stage

corresponding to a deformation test for a time of 0.1 s was carried out. The three

stages employed are (1) Tension (Strain rate: 0.8s−1) (2) Plane strain compres-

sion (Strain rate: 0.2s−1) (3) Shear (Strain rate: 0.2s−1). The full model and the

reduced-order ODF at the end of the three stages are shown alongside in Fig. 3.4.

In Fig. 3.5, the final reduced-order sensitivity of the ODF with a perturbation of

0.01s−1 in the strain rate of the first stage is compared with the sensitivities ob-

tained using (1) the full order sensitivity problem and (2) Finite difference method

by perturbation of the full-order direct problem. The sensitivity of the first stage

is transferred to the second stage and subsequently to the third stage. The basis

of the first stage is utilized for all three stages for the sensitivity problem.
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(a) (b)

Figure 3.4: Comparison of the ODF at the third and final stage obtained
through (a) the full-order model, (b) the reduced-order model

 
  

(a) (b) (c)

Figure 3.5: Comparison of the sensitivity of the ODF at the third and final
stage due to perturbation in the process parameter (α) of the first
stage obtained using (a) the full-order model, (b) the reduced-
order model and (c) FDM solution at the final stage (t = 0.30
seconds)

3.5.1 Design for desired ODF

The optimization problem involves designing the macro velocity gradient to ob-

tain desired orientation distribution function (ODFs). Given the initial processing

sequence and the parameters identified by the classifier, the reduced-order op-

timization scheme identifies the processing parameters that lead to the desired

texture. As an example, the desired ODF shown in Fig. 3.6(a) was initially

identified to arise from a two-stage problem, with plane strain compression and
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(a) (b) (c)

Figure 3.6: Control of material texture: (a) the desired texture, (b) the initial
guess identified by the classifier and (c) reduced order optimized
ODF

compression modes respectively by the classifier. The initial ODF corresponding

to the strain rates for the two stages, 0.65 and −0.1s−1 respectively is shown in

Fig. 3.6(b). The strain rates for the two processes after the adaptive reduced order

optimization procedure is obtained as 0.9472 and −0.2847s−1 respectively and the

optimized ODF is shown in Fig. 3.6 (c).

The advantage of the the data-mining methodology lies in the identification

of multiple processing paths that lead to a desired texture. Fig. 3.7(b) shows a

class of textures with different processing routes that can result in a desired ODF.

Given the desired ODF, the classifier uses the lower order features, namely, the pole

density functions, over 4 levels in the class hierarchy corresponding to the fibers

in the < 110 >,< 100 >,< 111 >, and < 211 > fiber families respectively. The

orientation fibers are chosen based on their particular importance in FCC textures

(see section 3.1.2) and their close affiliation with the processes involved. The

desired texture in Fig. 3.7(a) is seen to be dominated by two fibers, the z-axis <

110 > fiber and the alpha fiber (running from brass to the goss component) shown

in Fig. 3.7(c). ODF intensities in the alpha fiber are associated with the process

of plane strain compression, although the texture shows stronger development of
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Figure 3.7: ODF:1,2,3,4 represent a class of ODFs similar to the desired
ODF in their lower order features. Positions of z-axis < 110 >
(AA’) and alpha fibers (BB’) in the boundaries of the fundamen-
tal region are indicated in (c)

Table 3.1: Process parameters of the ODF class in Fig. 3.7.

ODF: Stage 1 Stage 2 Stage 3

1 PSC (−0.677s−1) Shear (−0.165s−1) Tension (−0.881s−1)

2 Tension (−0.835s−1) PSC (−0.606s−1)

3 Tension (−0.917s−1) Shear (−0.074s−1) PSC (−0.760s−1)

4 Tension (−0.907s−1) PSC (−0.669s−1) Rotation (0.179s−1)

the brass component relative to Goss. Texturing to the z-axis < 110 > fiber is

normally associated with F.C.C. metals under compression along the z-axis. From

the processing sequences identified (Table. 3.1), we see that these two processes

are dominant in all the processing sequences found by the classifier.
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3.5.2 Design for desired Elastic modulus

The data-mining methodology can be extended to classification of ODFs based

on material property distribution exhibited by the ODF. Given a desired texture-

dependent property, the classification is performed based on the property feature

(variation of the property as a function of angle from the rolling direction) for the

ODFs in the database. The clustering scheme enables identification of ODFs and

the corresponding processes that can reproduce a desired property distribution.

This example demonstrates the control of the velocity gradient of a sequence

of processes in order to obtain a particular distribution of the elastic modulus

of an FCC Copper polycrystal about the normal direction away from the rolling

direction. The stiffness in the crystal is given by the fourth tensor Cijkl (values in

GPa) in the crystal lattice frame for crystals with cubic symmetry as follows:

C =




168.0 121.4 121.4 0 0 0

121.4 168.0 121.4 0 0 0

121.4 121.4 168.0 0 0 0

0 0 0 75.4 0 0

0 0 0 0 75.4 0

0 0 0 0 0 75.4




The polycrystal stiffness, C̄, is computed through a weighted average (over A) of

the stiffness of individual crystals expressed in the sample reference frame. The

elastic modulus is then computed through this polycrystal stiffness as

E =
1.0(

C̄
)−1

(11)

(3.41)

Furthermore, the elastic modulus about an angle with the rolling direction (RD)

can be evaluated using the above equation, but after a coordinate transformation
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Figure 3.8: (a) Classification based on property distribution: Young’s modu-
lus distribution of a class of ODFs (b) The corresponding ODFs.

of C̄.

The classification scheme captures the non-uniqueness in process design, identify-

ing several different textures (and processes) that might result in a desired property

distribution. An example of a class of ODFs obtained from the database based

on the Youngs modulus property variation from rolling direction to the transverse

direction in the sample is shown in Fig. 3.8 (b). The property distribution feature

for a set of 4 ODFs within a class is shown in Fig. 3.8 (a). In contrast to the texture

design problem, the property design problem clearly illustrates the presence of mul-

tiple solutions. A range of different processing sequences (indicated in Fig. 3.8(a))

yield similar distributions of the young’s modulus. Thus, the methodology enables

identification of new processes and selection of the economical process routes that

leads to a desired property distribution based on available database of information.

To achieve a desired Young’s modulus distribution as shown in Fig. 3.9 (a),

we resort to the gradient based optimization scheme with the processing sequences

found using the classifier as the initial guess. As an example, a processing sequence

69



of stage 1 of shear mode (mode 1) and stage 2 of tension mode is employed in the

optimization procedure for achieving the desired property. A threshold of 0.05 is

used for the selection of the adaptive basis. Using an initial guess -0.7 s−1 , and

0.15 s−1 for the strain rates as found from classification, the final optimized process

parameters were obtained as -0.03579 s−1 and 0.17339 s−1 respectively. The elastic

property distribution corresponding to the optimized process parameters identified

are shown are shown along with the desired distribution in Fig. 3.9(a). The

variation in the objective during the iteration process is shown in Fig. 3.9(b).

The classification methodology is general and can be extended towards problems

involving design of several other texture dependant properties through appropriate

design of the processing sequence and process parameters.

3.6 Conclusions

The chapter presents a data-driven reduced order optimization procedure for the

design of a process sequence to control the texture and texture-dependent proper-

ties. The inverse problem of identifying processes corresponding to desired texture

is initially solved using the classifier algorithm over a database. The classifier

matches the lower order features of the texture in the form of the pole density

function over a class hierarchy to identify the sequence of processes that lead to the

desired texture, hence, identifying multiple process paths that lead to the desired

texture. These parameters are then fine tuned using gradient based optimization

schemes. An unsupervised classifier based on the k-means algorithm is used for

the identification of natural clusters within the database. The number of classes in

the texture database is not known a-priori, hence, a Bayesian information criterion

is used to identify the number of clusters.
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Figure 3.9: Optimization of Youngs modulus distribution: (a) Comparison of
the desired distribution and optimized distribution (b) Variation
of the objective function with iterations

Compared to the full order optimal control approach, reduced-order control is

computationally feasible and provides an efficient method for solving process design

problems in reasonable time. The method of proper orthogonal decomposition

provides a systematic way to obtain reduced-order models, however, the basis

functions used for the control problem not only needs to represent the solution but

also the textures arising from intermediate iterates of the design variable.

This chapter demonstrates a adaptive reduced-order model in which modes

corresponding to the intermediate stages of the design process are adaptively se-

lected from a database. Further, the database continuously improves during the

optimization problems by addition of new, unknown data sets, which would be

useful during future optimization runs. Evolution of properties during processing

of materials depends not only on the texture as discussed in this chapter but also

a variety of other features such as inter-granular misorientations and higher order

correlations of crystal orientation. In the next chapter, a framework for extending

the model to include additional microstructural features is presented.
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Chapter 4

Development of multi-scale

homogenization techniques

2 Evolution of properties during processing of materials depends not only on

the texture but also a variety of other features such as intergranular misorientation

and higher order correlations of crystal orientation. A finite element homogeniza-

tion approach is presented for calculating the evolution of macro-scale properties

during processing of microstructures. This approach enhances the models pre-

sented in the previous chapters by incorporating effects such as misorientation and

higher order correlations of crystal orientation, veritably increasing the range of

properties that can be modelled. In addition, the method lends itself to subse-

quent development of multi-scale processing model. Macro-scale parameters such

as forging rates can be linked with microstructure deformation using boundary

conditions drawn from the theory of multi-scale homogenization. Homogenized

stresses at the macro-scale are obtained through volume-averaging laws. A consti-

tutive framework for thermo–elastic-viscoplastic response of single crystals is then

utilized along with a fully-implicit Lagrangian finite element algorithm for mod-

elling microstructure evolution. Development of texture and stress-strain response

in 2D and 3D FCC Aluminum polycrystalline aggregates using the homogenization

algorithm is compared with both Taylor-based simulations and published experi-

mental results. In the next few sections, the microstructure interrogation technique

used is introduced. Examples of homogenization and applications to design prob-

3 Reproduced from V. Sundararaghavan and N. Zabaras, ”Design of microstructure-sensitive
properties in elasto-viscoplastic polycrystals using multi-scale homogenization”, International
Journal of Plasticity, Vol. 22, pp. 1799-1824, 2006.
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lems of practical significance are then presented.

4.1 Microstructure interrogation

The approach adopted here for interrogation of microstructures involves finite ele-

ment based elasto-visco-plastic analysis of microstructures using constitutive mod-

els based on the continuum slip theory. The overall response of the microstructure

at the macro-scale is derived on the basis of homogenization. In this section, the

microstructure interrogation and property evaluation scheme is systematically de-

veloped using the theory of non-linear homogenization. Let y : Bref → B represent

the non-linear deformation map of the microstructure at time t, and F = ∇refy

the associated tangent map (see Fig. 4.1). F maps points Y ∈ Bref onto points

y(Y , t) of the current configuration B.

The reference microstructure configuration is considered of volume V (Bref ) and

boundary ∂Bref with outward normal N . The microstructure at time t of volume

V (B) and boundary ∂B with outward normal n is attached to the material point

X in the macro-continuum (see Fig. 4.1). Further, we use superposed bars (e.g.

F̄ ) to denote homogenized quantities and angular brackets (e.g. 〈F 〉) to denote

volume-averaged quantities. In the subsequent analysis, the standard tensorial

notation developed in [81] is followed. The most general assumption behind ho-

mogenization theory is that the deformation gradient as seen at the macro-scale

can be represented purely in terms of the motion of the exterior boundary of the

microstructure [36],

F̄ =
1

V (Bref )

∫

∂Bref

y ⊗NdA (4.1)

The deformation of the microstructure is then related to the homogenized defor-
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Figure 4.1: The microstructure homogenization technique: Each integra-
tion point in the macro-continuum is associated with an under-
lying microstructure. The microstructure reference configuration
(Bref ) and the mapping to the present microstructure configu-
ration (B) are shown in contrast with the homogenized macro-
continuum.

mation gradient in the macro-continuum based on the assumption,

y = F̄Y + w̃ (4.2)

where the deformation consists of a homogeneous part F̄ Y and an inhomogeneous

part w̃ referred to as the fluctuation field. As a consequence, we have the re-

lationship, F = F̄ + F̃ (with F̃ = ∇w̃) between the microscopic (F ) and the

macroscopic (F̄ ) deformation gradients. From the homogenization law (Eq. (4.1))

and the decomposition described above, it can be shown that the superposed field

w̃ follows the equation,

1

V (Bref )

∫

∂Bref

w̃⊗NdA = 0 (4.3)

The condition is satisfied by the use of any one of the three linking assump-

tions: (1) w̃ = 0 in Bref , (2) w̃ = 0 in ∂Bref , and (3) a periodic boundary

condition (refer [53]) which is not dealt with in the present work. The first two

multi-scale boundary conditions are popular in homogenization (i) based on Taylor

hypothesis that all crystals deform identically (F = F̄ ) and (ii) homogeneous de-

formation on the boundaries of the microstructure while allowing for non-uniform
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deformations within the microstructure. The Taylor hypothesis poses a stringent

kinematic constraint on the grains and thus provides a stiff response. In addition,

as explained earlier, this assumption fails to model inter- and intra-granular mis-

orientation development which is a key feature in polycrystalline materials. The

second hypothesis, which allows for homogeneous deformations at the boundary

of the microstructure (referred to as the HB (homogeneous boundary) condition

from here on) and inhomogeneous deformation within grains allowing study of

mis-orientation evolution, is adopted in this work.

Macroscopic stress is defined according to a simple virtual work consideration.

Here, the variation of the internal work δWint performed by the homogenized PK-I

stress tensor P̄ at the macroscopic point on arbitrarily virtual displacements of

the microstructure δy is required to be equal to the work δWext performed by the

external loads on the microstructure. Internal work done by the macroscopic stress

can be written as

δWint =

∫

Bref

P̄ •∇refδydV (4.4)

= P̄ •

∫

∂Bref

δy ⊗NdA (4.5)

External work is given as δWext =
∫

∂Bref
p · δydA, where p is the traction vector

at the boundary of the reference microstructure. For the HB condition, the vir-

tual displacements at the boundary of the microstructure are obtained from the

variation of the macroscopic deformation gradient as,

δy = δF̄ Y (4.6)

Thus, the external work can be written as δWext = δF̄ •
∫

∂Bref
Y ⊗ pdA. For

satisfying the balance of virtual work,

δF̄ •

∫

∂Bref

Y ⊗ pdA = P̄ •

∫

∂Bref

δy ⊗NdA
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= P̄ δF̄ •

∫

∂Bref

Y ⊗NdA

= δF̄ • P̄V (Bref )

Taking into account the fact that the equality should be satisfied for any arbi-

trary variation of the deformation gradient tensor δF̄ , we obtain the macroscopic

stresses to be of the form

P̄ =
1

V (Bref )

∫

∂Bref

Y ⊗ pdA (4.7)

An equilibrium state of the micro-structure at a certain stage of the deformation

process is then assumed with the equations,

∇ref • P = 0 in Bref (4.8)

P T N = p on ∂Bref (4.9)

Using the divergence theorem, macroscopic stresses as defined by Eq. (4.7) can be

shown to be the volume-average of the microscopic stresses (P )

P̄ =
1

V (Bref )

∫

Bref

P dV = 〈P 〉 (4.10)

The following relationship between the homogenized PK-1 stress and homogenized

Cauchy stress is then assumed,

P̄ = (detF̄ )T̄ F̄
−T

(4.11)

Readers are referred to the fact that virtual work principle similar to that used in

the derivation of homogenized PK-1 stress can be used to prove that the macro-

scopic Cauchy stress (T̄ ) is also a volume-average (in the current configuration) of

the microstructural counterpart (T ) as,

T̄ = 〈T 〉 (4.12)
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However, once Eq. (4.10) is assumed, then Eq. (4.11) is used to define the homog-

enized Cauchy stress. Thus, in the present approach, Eq. (4.12) is abandoned in

favor of Eq. (4.10) (refer [35]). It is to be noted that [37] and [35] advocate the

nominal stress tensor (S = (detF )F−1T ) as the averaging measure. The choice

of PK-I stress as the stress measure for averaging in our work is motivated by the

fact that P and F are work conjugated.

Apart from these definitions, in macro-problems with temperature effects, the

temperature linking is achieved through equating the macro- (θ̄) and micro- (θ)

temperatures and the macro- and micro- mechanical dissipation. Microstructure

(material point) simulations are deemed isothermal in this work since the macro-

scale temperature evolution problem is not solved.

The kinematic problem for microstructure deformation employs the updated

Lagrangian framework. Here, the total micro-scale deformation gradient F n+1

at time t = tn+1 of configuration Bn+1 with respect to the initial undeformed

configuration (B0) at time t = 0 is assumed to be decomposed as

F n+1 = ∇0ỹ(Y 0, tn+1) = ∇nŷ(Y n, t)∇0ỹ(Y 0, tn) = F rF n = F eF p (4.13)

where F e is the micro-scale elastic deformation gradient at time n + 1, F p is the

micro-scale plastic deformation gradient at time n + 1, F r is the relative deforma-

tion gradient with respect to the configuration at time n and F n refers to the total

micro-scale deformation gradient in the reference configuration (Bn) with respect

to the initial undeformed configuration. Going back to Fig.4.1, using the updated

Lagrangian description of kinematics, Bref would now refer to Bn. Quantities used

in the derivation of homogenized stresses would now be defined with respect to

Bn. For example, the microscopic deformation gradient F would be equal to F r
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as defined in Eq. (4.13).

The equilibrium equations can be expressed in the reference configuration Bn

as,

∇n · P r = 0 (4.14)

where the PK-I stress P r(Y n, t) is expressed as P r(Y n, t) = (det F r)TF−T
r .

The solution of a generic loading increment involves the solution to the principle

of virtual work (PVW) given as follows: Calculate y(Y n, t) such that

∫

Bn

P r · ∇nũdVn = 0 (4.15)

for every admissible test function ũ expressed over the reference configuration Bn.

The weak form is solved in an incremental-iterative manner as a result of material

non-linearities. FEM is used for the solution of the weak form and bilinear quadri-

lateral elements are used for the microstructure along with the assumed strain

analysis scheme to counter the effect of near-incompressibility. Microstructure

homogenization and multi-scaling procedure has been implemented in an object-

oriented and parallel environment in C++ and PetSc parallel toolbox and is ap-

plicable to both 2D and 3D microstructures, building from our earlier work on

large deformation process modeling and design in [13]. The microstructure mate-

rial point problem has been parallelized by efficiently partitioning microstructure

elements to every processor. Microstructure interrogation can be thought of as a

material point simulator with the macro-point under consideration being subject

to deformations corresponding to various processing conditions that are transferred

to the boundaries of the microstructure using the HB condition.

In this work, the equivalent strain is computed based on the volume-average of

the deformation rate (D̄ = 〈D〉) following the measure for which the constitutive
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laws in [54] were originally developed. This is performed as a post processing step

and is not required for multi-scaling. The average effective plastic strain ε̄eff is

defined as

ε̄eff =

∫ t

0

√
2

3
D̄ · D̄dt (4.16)

Average strain measures can be alternatively derived [84] through an additional

assumption that the macroscopic plastic work rate equals the plastic work rate

of the microstructure in an averaged sense [80]. It should be noted that this

assumption does not hold for the definition of average deformation rate used in

this work.

The equivalent stress for the microstructure is represented using the von-Mises

norm as,

σ̄eff =

√
3

2
T̄
′
.T̄

′
(4.17)

4.1.1 Single crystal constitutive problem

The constitutive problem adopted for a single FCC crystal T = T (F n+1, θ, state),

and computation of reorientations of crystals is described in detail in [54]. Useful

features of this model include its ability to accurately model large strain elasto-

viscoplastic response incorporating strain rate and temperature effects. A fully-

implicit integration scheme with implicit evaluation of consistent tangent moduli

as proposed in [56] is used in the microstructure deformation simulation. The

constitutive problem uses a total-Lagrangian description of deformation gradient

(with F n+1 denoting the deformation gradient at current time with respect to the

initial undeformed configuration).

In the constitutive model, it is assumed that deformation takes place in a single
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crystal through dislocation glide and the evolution of the plastic flow is given by

Ḟ p(F p)−1 = L =
∑

α

γ̇αSα
0 (4.18)

where Sα
0 = mα ⊗ nα is the Schmid tensor, γ̇α is the plastic shearing rate

on the slip system α and mα and nα are the slip directions and the slip plane

normals, respectively in the initial configuration (at t = 0). An Euler-backward

time integration procedure leads to the following approximation:

F p = exp(∆t
∑

α

γ̇αSα
0 )F p

n ≈ (I + ∆t
∑

α

γ̇αSα
0 )F p

n (4.19)

for small ∆t. Substituting Eq. (4.19) into Eq. (4.13) results in:

F e = F e
trial(I −∆t

∑
α

γ̇αSα
0 ) (4.20)

where F e
trial is the trial elastic deformation gradient and is given as F n+1(F

p
n)−1.

In the constitutive equations to be defined below, the Green elastic strain measure

defined on the relaxed configuration (plastically deformed, unstressed configura-

tion) B̌ is utilized. It is computed using Eq. (4.20) as

Ě
e

=
1

2

(
F eT F e − I

)

= Ě
e

trial −
∆t

2

∑
α

γ̇α
(
(Sα

0 )T (F e
trial)

T F e
trial + (F e

trial)
T F e

trialS
α
0

)
(4.21)

where Ě
e

trial = 1
2

(
(F e

trial)
T F e

trial − I
)
.

The conjugate stress measure is then defined as

Ť = detF e(F e)−1T (F e)−T (4.22)

where T is the Cauchy stress for the crystal in the sample reference frame. All

vector and tensorial quantities are expressed in the initial configuration B0. Fur-

thermore, crystal specific properties like the stiffness and compliance have to be
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transformed to this sample reference frame using the crystal orientation (r). The

constitutive relation, for stress, for small temperature changes about the initial

temperature, θ0, is given by

Ť = Le
[
Ě

e − A(θ − θ0)
]

(4.23)

where Le is the fourth-order anisotropic elasticity tensor expressed in terms of

the crystal stiffness parameters and the orientation r, and A is the second-order

anisotropic thermal expansion tensor. Substitution of Eq. (4.21) into Eq. (4.23)

results in the following

Ť = Ť trial − ∆t

2

∑

β

γ̇βLe
[
(Sβ

0 )T (F e
trial)

T F e
trial + (F e

trial)
T F e

trialS
β
0

]

− (θ − θ0)Le [A] (4.24)

where Ť trial = Le
[
Ě

e

trial

]
.

Further, if sα(θ) is the slip system resistance at temperature θ K, then the

thermal and athermal components of the slip system resistance and the resolved

shear stress are defined as

sα = sα
at + sα

t (4.25)

τα
t = |τα| − sα

at (4.26)

where the subscripts t and at denote the thermal and athermal parts, respectively

and τα, the resolved shear stress for the αth slip system, is computed as Ť • Sα
0 .

Such a formulation was developed in [54] and [82]. Here, part of the resolved

shear stress has to overcome the athermal barriers (such as strong precipitates).

Thermal barriers (such as Peierls stress and forest dislocations) are overcome by

a combination of thermal energy and the resolved shear stress. Stress levels with

resolved shear stress (|τα|) greater than slip resistance (sα)are unattainable. If
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the resolved shear stress exceeds the athermal resistance, slip is activated. The

shearing rate is then expressed accordingly as,

γ̇α =





0 τα
t ≤ 0

γ̇0exp
{
−∆Gα(τα

t ,sα
t )

kBθ

}
sign(τα), 0 < τα

t < sα
t

(4.27)

where, the activation enthalpy is given by

∆Gα(τα
t , sα

t ) = ∆Fα

[
1 −

{
τα
t

sα
t

}p]q

(4.28)

In the equation above, ∆Fα is the activation energy at 0K, p and q are material

parameters (generally, 0 < p < 1 and 1 < q < 2) and kB is the Boltzmann

constant. Furthermore, the slip system resistance parameters sα
at and sα

t evolve

with deformation as

ṡα =
∑

β

hαβ|γ̇β| (4.29)

and hαβ is defined as

hαβ = qαβhβ (no sum on β) (4.30)

hβ = hβ
0 |1− sβ/sβ

s |r1 sign

{
1− sβ

sβ
s

}
(4.31)

In Eq. (4.30), qαβ represents the latent-hardening parameter with the following

property

qαβ =





1 if α = β

qh = 1.4 if α 6= β
(4.32)

Further, sβ
s represents the saturation value of sβ, hβ

0 and r1 are material response

parameters. For FCC materials, sβ
s , the saturation state of sβ is considered as a

constant in this work. Interested readers are referred to [54] and references therein

for a more detailed physical interpretation of parameters in the constitutive model.

An Euler-backward time integration of Eq. (4.29) along with Eqs. (4.30) and (4.31)

82



result in the following

sα
n+1 = sα

n + ∆t
∑

β

qαβgβ(τβ
n+1, s

β
n+1, θ) (4.33)

where gβ = hβ|γ̇β|. For FCC materials, the ratio η =
sα
t

sα
at

, which is a constant,

is utilized to evaluate the thermal and athermal parts of slip system hardness as

sα
at = sα

n+1

1

1 + η
(4.34)

sα
t = sα

n+1

η

1 + η
(4.35)

The resolved shear stress τα and the slip system resistance sα is solved from the

coupled system given by Eqs. (4.24), (4.27) and (4.33) using an iterative scheme

(algorithm can be found in [56].

For calculation of texture, we employ the Rodrigues-Frank space representation

of texture. Details of neo-Eulerian representations and the use of Rodrigues-Frank

space can be found in [56]. The re-orientation velocity is here evaluated as:

v =
∂r

∂t
=

1

2
(ω + (ω · r)r + ω × r) (4.36)

where r is the orientation (Rodrigues’ parametrization) and ω represents the spin

vector defined as ω = vect
(
ṘeReT

)
= vect (Ω), where Re is evaluated through

the polar decomposition of the elastic deformation gradient F e as F e = ReU e.

Considering the Euler-backward time integration of ṘeReT = Ω, where Ω is the

spin tensor, leads to the following:

Re
n+1 = exp(∆tΩn+1)R

e
n (4.37)

and

Ωn+1 =
1

∆t
ln

{
Re

n+1R
eT
n

}
(4.38)

Once the constitutive problem is solved, F e
n+1 can be evaluated from Eq. (4.20).

From the elastic deformation gradient, Re
n+1 and Re

n are evaluated and one can
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then evaluate the spin tensor Ωn+1 using Eq. (4.38). The re-orientation velocity

can be computed from Eq. (4.36) which is used to update the orientation of the

crystal r.

This completes the constitutive problem which is solved at each integration

point of the discretized microstructure. In addition, to solve the non-linear Eq. (4.15)

for the microstructure, a Newton-Raphson (NR) iterative scheme along with a line

search procedure is employed. An implicit technique for linearization of the PK-I

stress for the NR iterations based on the constitutive problem described here can

be found in [56].

Although FE homogenization provides an improved model accounting for non-

uniform deformations within the microstructure, two shortcomings need to be

pointed out in the context of multi-scaling. Firstly, the dimensions of the mi-

crostructure representative volume element (RVE) do not influence the averaging

procedure. This arises from the assumption that the microstructure is infinitesimal

compared to the macro-scale and hence, is seen as a macroscopic material point.

Thus, the homogenization result is independent of the overall dimensions of the mi-

crostructure. Secondly, use of first-order expansion of microstructural deformation

(Eq. (4.2)) restricts the analysis to simple deformation modes (rotation, tension,

shear or combinations thereof) at the micro-scale. In spite of these drawbacks, the

homogenization approach followed here allows additional convenience of using the

same algorithm as a plug-in in large strain continuum scale simulations with min-

imal modifications to account for microstructural degrees of freedom. To perform

multi-scaling, the consistent tangent moduli for the macro-scale is derived in the

next section.

Consistent tangent moduli at macro-scale for multi-scale modelling
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using the homogenization approach: Eq. 4.7 shows the homogenization rela-

tion for the PK-I stress tensor. When using finite element method to numerically

evaluate this integral (for the case of HB condition), the equation is approximated

as follows,

P̄ =
1

V (Bref )

Nb∑
i=1

Y i ⊗ f i (4.39)

where, f i is the external force at boundary node i; Y i is the position vector

of boundary node i in the reference state and Nb is the number of nodes on the

boundary of the microstructure. The consistent tangent modulus can be obtained

from the relation:

δP̄ =
1

V (Bref )

Nb∑
i=1

Y i ⊗ δf i (4.40)

To obtain δf as a function of δF r, the global stiffness matrix obtained from

finite element solution of Eq. 4.15 is used [85]. The global matrix is rearranged to

the following form:




Kbb Kbi

Kib Kii







δub

δui


 =




δf b

0




where, indices b and i refer to quantities at the boundary nodes and at the

internal nodes respectively. Kbb, Kbi , Kib and Kii correspond to the rearranged

sub-matrices of the total RVE stiffness matrix K so that the incremental forces at

boundary nodes δf b and the incremental displacements δub are arranged at the

top rows of the force and displacement matrix. The stiffness matrix K is obtained

at the end of a converged microstructural sub-problem at an integration point
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on the macro-scale. Matrix equation above is then re-arranged further to obtain

the matrix KB relating incremental boundary displacements to the corresponding

change in boundary forces.

KBδub = δf b (4.41)

KB = Kbb −KbiK
−1
ii Kib. (4.42)

This equation is further rearranged into the following form,

Nb∑
j=1

κijδuj = δf i (4.43)

(4.44)

where, δf i is the change in boundary force at boundary node i due to incremental

boundary displacements δuj at all boundary nodes j = 1, .., Nb; and κij are sub-

matrices corresponding to rows and columns of degrees of freedom associated with

boundary nodes i and j in matrix KB. The above equation is then substituted

into Eq. 4.40 so that we obtain δP̄ in the following numerical form:

δP̄ =
1

V (Bref )

Nb∑
i=1

Y i ⊗ (

Nb∑
j=1

κijδuj) (4.45)

The final step is the use of the homogenization boundary condition δuj = δFY j

as follows,

δP̄ =
1

V (Bref )

Nb∑
i=1

Nb∑
j=1

Y i(κijδFY j)T (4.46)

The above equation can be rearranged as follows (written in indicial notation

for clarity):

δP̄ mn =
1

V (Bref )

Nb∑
i=1

Nb∑
j=1

Y i
nκij

moY
j
pδF op (4.47)
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This leads to the form of consistent tangent moduli at the macroscopic scale

at the material point for the homogenization problem by comparing with the lin-

earized equation δP̄ r = C : δF r where the consistent tangent moduli C is given as

follows,

Cmnop =
1

V (Bref )

Nb∑
i=1

Nb∑
j=1

Y i
nκij

moY
j
p. (4.48)

4.2 Numerical examples

In the numerical examples that follow, idealized grain structures are used to com-

pare the performance of homogenization model vis-a-vis Taylor-based models in

example 1 and experimental results in example 2. Interrogation of realistic 3D

polyhedral micro-structure is demonstrated in example 3. A material composed

of 99.987% pure polycrystalline FCC aluminum is used in these examples. The

anisotropic elasticity tensor for FCC aluminum can be specified in terms of the

three stiffness parameters (crystal stiffness tensor C in the crystal frame) which

are approximated (in GPa) in terms of the temperature θ (in K) in [54] as follows

c11 = 123.323 + 6.7008 ∗ 10−8θ3 − 1.1342 ∗ 10−4θ2 − 7.8788 ∗ 10−3θ

c12 = 70.6512 + 4.4105 ∗ 10−8θ3 − 7.5498 ∗ 10−5θ2 + 3.9992 ∗ 10−3θ

c44 = 31.207 + 7.047 ∗ 10−9θ3 − 1.214 ∗ 10−5θ2 − 8.327 ∗ 10−3θ (4.49)

Furthermore, the saturation values of the slip system resistances are taken equal

for all slip systems as ss(300K) = 50.6 MPa. Slip is assumed to occur in the

twelve {111} < 110 > slip systems. Additional material properties taken from [54]

are listed in Table 4.1.

Example 1 : Comparison of response of idealized 2D polycrystal in simple shear
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Table 4.1: Material properties of FCC Aluminum.

Material parameter value

γ̇0 1.732E+06 /s

h0 250 MPa

r1 2.0

p 0.141

q 1.1

sat,0 8.76 MPa

st,0 8.76 MPa

$ 1.0

ρ 2.77 Mg/m3

c 920.0 J/kg-K

and plane strain compression with Taylor models:

The result of pure shear and plane strain compression of a 99.98% pure FCC

aluminum aggregate using homogenization are compared with Taylor models based

on stress-strain curves and texture evolution. The parameters used for the simu-

lations are temperature of 300 K with strain rate of 6.667E-4 s−1. Microstructure

is modeled as a collection of 400 grains with each grain represented with a single

finite element as shown in Fig. 4.2(a). The corresponding initial ODF is plotted

in Fig. 4.2(d). The ODF is obtained by assuming that each orientation acts as a

Gaussian point source within the fundamental region. This converts the discrete

set of 400 orientations to a continuous distribution of orientations in the funda-

mental region. This representation was used in the ODF-Taylor simulation of [56]
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for comparing with the FE-homogenized model. The reference fundamental region

is discretized into 148 tetrahedral elements with cubic symmetry enforced in the

solution procedure (for more details of this technique refer to [56]). The ODF-

Taylor method utilizes a finite element solution of ODF conservation law which

conserves the crystal volume fractions over the polycrystal when grains reorient

during deformation. The other model used for comparison is based on discrete-

Taylor analysis of the aggregate of grains in Fig. 4.2(a). The constitutive law was

calibrated with experimental results in [54] to suit Taylor based computations.

Here, same constitutive law parameters are used for both Taylor model and FE

homogenization. From Fig. 4.2(c) it can be seen that homogenization technique

provide a softer response than the Taylor model. The equivalent stress-strain curve

obtained from ODF-Taylor and aggregate-Taylor almost exactly match. These

models theoretically provide the upper bound of the stress-strain curve for the

given microstructure due to strong kinematic constraint of equal deformation in

all crystals. On the contrary, using finite element homogenization we find that

crystal deformation is partitioned so that both compatibility and equilibrium are

satisfied leading to a softer response. Uneven distribution of deformation among

grains due to the effect of neighbors with various degrees of misorientation can

be seen from the final microstructure in Fig. 4.4(a). Comparison of the ODFs in

Figs. 4.2(e-f) and Figs. 4.4(c-d) show that Taylor model provides sharper textures

as expected, while over-predicting the final texture. The < 110 > and the < 111 >

pole figure from both the ODF-Taylor model and FE-homogenized model are fur-

ther compared in shear (Fig. 4.3(a)) and plane strain compression (Fig. 4.3(b)) at

equivalent strain of 0.3 reveal the sharper features of the Taylor model compared

to FE-homogenization.

Example 2 : Comparison of response of idealized 3D polycrystal in simple shear
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Figure 4.2: Homogenization of an idealized 2D polycrystal: (a) Idealized 2D
polycrystal with 400 grains with 1 finite element per grain. (b)
Equivalent stress field after deformation in pure shear mode at
a strain rate of 6.667E-4 s−1. (c) Comparison of the equivalent
stress-strain curve predicted through homogenization with Taylor
simulation. (d) The initial texture of the polycrystals represented
as an ODF in Rodrigues space. (e) Texture prediction using
finite element homogenization and (f) texture prediction using
the Taylor model at time t = 210 sec. The Taylor model gives
sharper and stronger textures and provides upper bound of the
stress-strain curve.

with experimental results from literature.

The experimental results of simple shear of an aggregate of FCC Aluminum

crystals were obtained by digitizing the stress-strain curves presented in [93]. The

experiment was performed at a constant strain rate of 6.667E−4s−1 and a temper-

ature of 300 K. The numerical experiment simulated a simple shear motion with

the final state of the microstructure depicted in Fig. 4.5(c). The initial texturing of

the material is modelled to be random with the initial < 110 > and < 111 > pole
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FEM

Taylor                                                          
(a) (b)

Figure 4.3: Comparison of the FEM and Taylor predictions of final < 110 >
and < 111 > textures after (a) pure shear and (b) plane strain
compression.

figures shown in Fig. 4.5(b). A 512 grain idealized microstructure (with 1 finite

element per grain) is used in the homogenization procedure to numerically gen-

erate the response to simple shear. The predicted and experimental stress-strain

responses are superposed in Fig. 4.5(d). The simulation was also carried out using

the the 400 grain 2D idealized microstructure in example 1 using an initial random

texture and the corresponding stress-strain curve is also superposed in Fig. 4.5(d)

showing that a 2D approximation is equally valid in this case. Numerical response

closely follows the experimental response but is softer since parameters calibrated

using Taylor model (in [54]) were used in the homogenization model. The final

texture of the material represented using the < 110 > and < 111 > pole figures

are also depicted in Fig. 4.5(b). As expected, simulated texture is dominated by

x-axis < 110 > fibers, (along the x-face of the ODF) at the strain level of 0.3, as

seen from the final ODF obtained in Fig. 4.5(a).
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Figure 4.4: (a) Final deformed state of the microstructure in example 1
after plane strain compression. (b) Comparison of the equiva-
lent stress–strain curve predicted through homogenization with
Taylor simulation. (c) Texture prediction using finite element
homogenization and (d) the Taylor model at t = 130 sec.

Example 3 : Response of realistic 3D microstructures.

Example of interrogation of realistic 3D microstructures obtained from Monte

Carlo Potts grain growth program from the work in [134] is demonstrated in

Fig. 4.6. Finite element discretization of the 3D microstructure was directly trans-

ferred from the structured mesh used in the Monte Carlo Potts simulation. The

domain is discretized using a 24× 24× 24 grid and is shown in Fig. 4.6.

The homogenized response of the microstructure in plane strain compression

and shear are compared and presented in Fig. 4.6(b). The equivalent stress field

for both shear and plane strain compression are compared at a homogenized strain

level of 0.060 in Fig. 4.6(c) and (d), respectively. The simulation was performed
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Figure 4.5: Homogenization of an idealized 3D polycrystal with 512 grains:
(a) The final ODF obtained after simple shear. (b) The initial
random texture of the material (top) represented using the <
110 > and < 111 > pole figures. The final pole figures after
deformation are shown at the bottom (c) Equivalent stress field
after deformation in pure shear mode. (d) Comparison of the
equivalent stress-strain curve predicted through homogenization
with experimental results from [93].

on 60 X64 Intel processors with a clock speed of 3.6 GHz using PetSc KSP solvers

on the Cornell theory center’s supercomputing facility. Each simulation was car-

ried out over 2000 equal time steps and took about 1200 minutes to solve in the

parallel environment. In all examples, an assumed strain analysis scheme is used

to treat the effect of near-incompressibility based on the work in [13]. To aid in

speeding up the solution process for complex forging processes, the design simu-

lator was also parallelized using MPI. The simulator was developed using object

oriented programming and dynamically linked to the PetSc for parallel assembly
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Figure 4.6: (a) Microstructure obtained from a MC grain growth simulation
(b) Comparison of equivalent stress-strain curve for the two cases
and equivalent stress field of a 3D microstructure (above) after
(c) simple shear and (d) plane strain compression.

and solution of linear systems.

4.3 Conclusions

A finite element homogenization model is presented for modelling elasto-viscoplastic

behavior and texture evolution in a polycrystal subject to finite strains. The

technique utilizes macro-micro linking techniques obtained from homogenization

theory. An updated Lagrangian finite element formulation is invoked to interro-

gate the microstructure and averaging schemes are utilized to identify the macro-
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response. The model is found to be capable of predicting non-homogeneous stress

and deformation fields in 2D and 3D microstructures. Comparison to ODF-Taylor,

aggregate-Taylor and experimental results with respect to the equivalent stress-

strain curves and texture development reveals that the model performs as expected

providing softer response and smoother textures.

Work presented here is focused on the material point problem of controlling

microstructures to obtain desired response. The method lends itself to subsequent

development of multi-scale processing model. The homogenization approach can

be easily linked with large strain continuum scale simulations with minimal mod-

ifications to account for microstructural degrees of freedom. In the next chapter,

we explore the applicability of controlling process parameters such as strain rates

in order to obtain desired response.
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Chapter 5

Design of microstructure-sensitive

properties in elasto-viscoplastic

polycrystals using multi-scale

homogenization

Deformation process design for desired material properties has for long been

empirical in nature. Such approaches are not only time consuming but also quite

costly. With these issues in mind, in this section, an efficient framework is de-

veloped for computational design for desired microstructure-sensitive properties.

The design framework adopted here is based on a gradient optimization method.

To calculate the gradients of the objective function and constraints, one needs

to calculate the sensitivities i.e. change in the property to be controlled due to

infinitesimal perturbations to the design parameters.

The sensitivities are evaluated using the continuum sensitivity method (CSM).

The continuum sensitivity method (CSM) used for designing processes involves

differentiation of the governing field equations of homogenization, as explained in

the previous chapter, with respect to the processing parameters and development

of the weak forms for the corresponding sensitivity equations that are solved using

finite element analysis. The sensitivity of the deformation field within the mi-

crostructure is exactly defined and an averaging principle is developed to compute

4 Reproduced from V. Sundararaghavan and N. Zabaras, ”Design of microstructure-sensitive
properties in elasto-viscoplastic polycrystals using multi-scale homogenization”, International
Journal of Plasticity, Vol. 22, pp. 1799-1824, 2006.

96



the sensitivity of homogenized stresses at the macro-scale due to perturbations in

the process parameters.

Computed sensitivities are used within a gradient-based optimization frame-

work for controlling the response of the microstructure. Processing parameters that

would lead to a desired equivalent stress-strain curve in a sample poly-crystalline

microstructure are identified for single and two-stage loading using the design al-

gorithm.

5.1 Continuum sensitivity technique for process optimiza-

tion at a material point

A problem of interest to manufacturing engineers is to identify improved processing

parameters that would closely achieve desired properties in materials. We define

the design problem of interest as identification of the right combination of process

modes involving plane strain tension/compression (rolling), shear and rotation,

and the corresponding process parameters α that would lead to a desired property

χ that is a function of the given microstructure. The macro-velocity gradient

(L̃ = ˙̄F F̄
−1

) is decomposed uniquely for 2D microstructure analysis as follows

L̃ = α1




1 0 0

0 −1 0

0 0 0




+ α2




0 1 0

1 0 0

0 0 0




+ α3




0 −1 0

1 0 0

0 0 0




(5.1)

Similar decomposition for 3D deformation problems can be found in [61]. Each

matrix in the decomposition of Eq. (5.1) corresponds to a given deformation process
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namely plane strain tension/compression (α1), plane shear mode (α2) and rotation

mode (α3). Note that here L̃ is introduced to define the deformation modes at the

macro-scale as in our earlier work and that L̃ 6= L̄.

The macroscopic deformation gradient at time step n + 1 (F̄ n+1) is computed

based from the definition of L̃n+1 using a backward Euler approximation as,

F̄ n+1 = F̄ n(I + L̃n+1∆t) (5.2)

The design problem is posed as the identification of process parameters α =

[α1, α2, α3] that would lead to a desired homogenized property χ. This can be

stated by the minimization problem:

min
α

F(α) =
1

Ns

Ns∑
i=1

(χi (B(α))− χdesiredi

)2 (5.3)

where Ns is the total number of sampling points and χdesired is the discrete repre-

sentation of the desired homogenized microstructural property.

We denote the sensitivity (directional-derivative) of the microstructure to a

small change in the process parameter (α) as
◦
B =

◦̂
B(r, t; α, ∆α). The ith sensi-

tivity problem is driven by ∆αi = 10−5 with ∆αj = 0 for j 6= i. The gradients of

property (χ) with respect to αi is calculated as,

∂χ

∂αi

=

◦
χ (r, t, α1, .., α3, 0, .., ∆αi, .., 0)

∆αi

(5.4)

In general, the homogenized property (χ) is a function of a homogenized field

(Ῡ). In examples 1 and 2 of Section 5.2, the property to be optimized is taken to

be the time history of homogenized equivalent stress (χ = σ̄eff ). Calculation of the

homogenized equivalent stress involves calculation of the sensitivity of the PK-1

stress (in this case, Υ = P ). The expression for the sensitivity of a homogenized
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field (Ῡ) over the microstructure configuration (B) is determined as follows,

◦̄
Υ =

◦
1

V (B)

∫

B

Υ(y, t; α)dV

= −
◦
V (B)

V (B)
Ῡ +

1

V (B)

∫

B

(
◦
Υ (y, t; α) + Υ(y, t; α)tr(

◦
F n+1 F−1

n+1)) dV (5.5)

Sensitivities of the homogenized property are then used in the steepest descent

optimization algorithm to obtain the optimum process parameters that minimize

the objective function in Eq. (5.3). Computational schemes for rigorously com-

puting these sensitivities from the governing equations of microstructure evolution

are described next.

5.1.1 Deformation sensitivity problem

The interest in this problem is to compute how perturbations on the macro-design

variables α affect the micro-fields - mainly the stresses within the microstructure.

We compute the resulting variation of the microstructure and other microstructural

properties from the perturbation
◦̄
F n+1 of F̄ n+1.

◦̄
F n+1 is in turn obtained from

perturbation
◦
L̃n+1 of the macro-velocity gradient L̃n+1 as,

◦̄
F n+1= (I + L̃n+1∆t)(

◦̄
F n +

◦
L̃n+1 F̄ n+1∆t) (5.6)

Similar multi-scale boundary conditions such as those developed in the previ-

ous section can be used for the sensitivity problem. In particular, we define the

sensitivity linking as follows: the sensitivity of the averaged deformation gradient

at a material point is taken to be the same as the sensitivity of the deforma-

tion gradient on the boundary of the underlying microstructure, in the reference
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frame. The equilibrium equation for the microstructure is then considered and

design-differentiated. This differential, sensitivity equilibrium equation is posed in

a weak form so as to establish a principle of virtual work like equation for the cal-

culation of the sensitivity of deformation fields in the microstructure. Consistent

with this mode of analysis, the sensitivity constitutive problem is directly derived

by differentiating the constitutive equations given in the previous section. De-

scribed below is the analysis for the development of a total Lagrangian sensitivity

formulation for the kinematic problem (with microstructure at time step t = t0

as the reference configuration at time step n). The design-differentiation of the

equilibrium equation (Eq. (4.14)) results in:

◦︷ ︸︸ ︷
∇0• P= 0 (5.7)

where P is the PK-I stress defined earlier. A variational form for the sensitivity

equilibrium equation (for parameter sensitivity) can be posed as follows: Evaluate

◦
y=

◦̂
y(Y 0, t; α, ∆α) such that

∫

B0

◦
P •∇0η̃dV0 = 0 (5.8)

for every η̃, a kinematically admissible sensitivity deformation field expressed over

the reference configuration. In order to solve the weak form, defined by Eq. (5.8),

relationships between (a)
◦
F n+1 and

◦
y (sensitivity of the kinematic problem) and

(b)
◦
P and [

◦
F n+1,

◦
θ] (sensitivity of the constitutive problem) needs to be defined.

The relationship between
◦

F n+1 and
◦
y is purely kinematic (

◦
F n+1= ∇0

◦
y ). The

relationship between
◦

P and [
◦
F n+1,

◦
θ ] is obtained from the sensitivity constitutive

problem to be discussed in Section 5.1.2 and takes the form:

◦
P = B [

◦
F n+1 ] + A

◦
θ + B (5.9)

where B is a fourth order tensor and A,B are second order tensors. These tensors,

are constants, defined from known direct and sensitivity fields at the previous time
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step, are obtained by considering the crystal constitutive response as described in

the next subsection.

5.1.2 Sensitivity constitutive problem

Through the crystal sensitivity constitutive sub-problem, the relationship between

the crystal parameters,
◦
T and

{ ◦
F ,

◦
θ

}
is computed. As part of the update pro-

cedure, one computes the set

{ ◦
T ,

◦
s,

◦
τ ,

◦
F e,

◦
F p

}
at each integration point in

the microstructure at the end of the time increment tn+1, where the sensitivity

of the deformation gradient at the boundary of the microstructure
◦
F n+1 (and the

sensitivity of the temperature field
◦
θn+1) are known from the macro-perturbations.

The microstructure configuration Bn+1 is known at tn+1 from the direct prob-

lem. The constitutive sensitivity problem for a crystal orientation is history-

dependent and the solution of the sensitivity problem at time tn is known for

each crystal orientation, yielding the variables

{ ◦
T ,

◦
s,

◦
τ ,

◦
F e,

◦
F p

}
at the begin-

ning of each time increment. Although the microstructure interrogation problem

is at a fixed temperature, the following discussion also includes thermal sensitivity

effects based on
◦
θn+1 from the macro-scale.

Computing the linear relation between
◦
sα and

{ ◦
Ť n+1,

◦
θn+1

}
Consider

the design-differentiation of the evolution equation for the deformation resistance,

sα (Eq. (4.29)). It results in:

∂
◦
sα

∂t
=

∑

β

[ ◦
hαβ |γ̇β| + hαβ

◦
|γ̇β|

]
(5.10)

Incorporating Eqs. (4.30) and (4.31) and performing an Euler-backward integration
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results in:

◦
sα

n+1 −∆t
∑

β

qαβ ∂gβ

∂sβ

◦
sβ

n+1 =
◦
sα

n +

∆t
∑

β

qαβ ∂gβ

∂τβ

◦
τβ

n+1 + ∆t
∑

β

qαβ ∂gβ

∂θ

◦
θn+1 (5.11)

Solving the above set of equations for
◦
sα

n+1 results in:

◦
sα

n+1 =
∑

β

mαβ
◦
τβ

n+1 + υα
1

◦
θn+1 + υα

2 (5.12)

where mαβ, υα
1 and υα

2 are constants. It is further known that τβ = Ť • Sα
0 ; design-

differentiation of this relation results in
◦
τβ=

◦
Ť • Sα

0 . Note that Sα
0 is a constant

as it is expressed in the plastically deformed configuration which has the same

crystal orientation as in the reference configuration. Substituting this relation into

Eq. (5.12) results in the desired linear relation:

{◦
sn+1

}
=

[
Ds

Dτ

]
:
◦
Ť + {υ1}

◦
θ + {υ2} (5.13)

where
[

Ds
Dτ

]
is a 3rd order tensor and υ1, υ2 are vectors.

Computing the linear relation between
◦

F p
n+1 and (

◦
Ť n+1,

◦
θn+1)

The evolution equation for
◦

F p is evaluated, by design-differentiating Eq. (4.18),

as:

∂
◦

F p

∂t
= L

◦
F p +

◦
L F p (5.14)

where
◦
L =

∑
α

[ ◦
γ̇α Sα

0

]
can be computed as,

◦
L =

∑
α

[
∂γ̇α

∂τα

◦
τα +

∂γ̇α

∂sα

◦
sα +

∂γ̇α

∂θ

◦
θ

]
Sα

0 (5.15)
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Euler-backward integration of Eq. (5.14), with Eqs. (5.13), (5.15) and the earlier

definition of
◦
τα results in the following:

◦
F p

n+1(F
p
n+1)

−1 = E + F
[ ◦
Ť n+1

]
+ G

◦
θn+1 (5.16)

where E, G are constant second-order tensors and F is a fourth-order tensor. Fur-

thermore,
◦
Ť n+1 is related to

◦
F e

n+1 and
◦
θn+1 as (by design differentiating Eq. (4.24)):

◦
Ť =

(
∂Le

∂θ

) [
Ě

e] ◦
θ + Le

[
Sym

(
F eT

◦
F e

)]
(5.17)

where Le, the fourth-order anisotropic elasticity tensor, is assumed to be a function

of temperature only. Using Eqs. (5.16) and (5.17), one can further obtain
◦

F p

n+1(F
p
n+1)

−1 as a function of
◦

F e
n+1 and

◦
θn+1.

Computing the linear relation between
◦

F e
n+1 and (

◦
F n+1,

◦
θn+1)

Starting from the multiplicative decomposition of the deformation gradient, one

can write
◦
F n+1=

◦
F e

n+1F
p
n+1 + F e

n+1

◦
F p

n+1, which can then be simplified to,

(
F e

n+1

)−1
( ◦

F n+1 F−1
n+1

)
F e

n+1 =
(
F e

n+1

)−1 ◦
F e

n+1+
◦

F p
n+1

(
F p

n+1

)−1
(5.18)

Substitution of the linear relationship between
◦

F p
n+1 and [

◦
F e

n+1,
◦
θn+1] results in

the desired linear relationship:

◦
F e

n+1 = C′ (V n+1)

[ ◦
F n+1

]
+ H

(
V n+1,

◦
V n

)
+ M (V n+1)

◦
θn+1 (5.19)

where H and M are known second-order tensor functions and C′, a known fourth-

order tensor function. The relationship between
◦
T n+1 and [

◦
F n+1,

◦
θn+1] is obtained

by design differentiating Eq. (4.22):

◦
T = −tr

( ◦
F e (F e)−1

)
T +

1

det(F e)

◦
F e Ť F eT

+
1

det(F e)
F e

◦
Ť F eT +

1

det(F e)
F eŤ

◦
F e

T

(5.20)
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Substitution of the linear relation between
◦

F e
n+1 and [

◦
F n+1,

◦
θn+1] in Eq. (5.20),

results in a linear relation between
◦
T n+1 and [

◦
F n+1,

◦
θn+1]. This can be converted

in terms of the PK I stress as,

◦
P = tr

( ◦
F n+1 F−1

n+1

)
detF n+1TF−T

n+1 + detF n+1

◦
T F−T

n+1

− detF n+1TF−T
n+1

◦
F

T

n+1F
−T
n+1 (5.21)

From these equations, one can generate the constants in Eq. (5.9) and use this in

the solution of the sensitivity kinematic problem.

5.1.3 Sensitivity of macro-properties

Finally, once the sensitivity micro-problem (Eq. (5.8)) is solved for stress sensitiv-

ities in the microstructure due to a perturbation in the process parameter (strain

rates), the macro-stress sensitivities (∂
¯T

∂αi
) need to be calculated from Eq. (5.4)

to drive the gradient optimization problem. This requires calculation of sensitiv-

ities of homogenized PK-1 stress using microstructure-average of the sensitivity

fields using Eq. 5.5. This is followed by conversion of sensitivity of PK-1 stress

to sensitivity of homogenized Cauchy stress using the homogenized counterpart of

Equation 5.21. Sensitivity of the equivalent stress is then evaluated as,

◦̄
σeff=

3

2σ̄eff

T̄
′ ·
◦
T̄
′

(5.22)

The design examples as presented in the next section aim to control equivalent

stresses over the deformation history of the material through design of strain rates

(α). Gradients of the desired property (χi = σ̄eff (t = ti), i = 1, .., Ns) with

respect to each process parameter αj is then calculated using Eq. (5.4) and used in

the gradient optimization algorithm which converges to an optimum value of the

process parameter α over a few iterations.
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5.2 Numerical examples

We present design examples where the equivalent stress history of complex 2D

microstructures are controlled by designing the deformation strain rates in single

(example 1) and two-stage (example 2) processes.

Example 1 : Design for desired plastic response under a combination of process

modes.

Two 2D microstructures (Fig. 5.1(a,b)) (from now on referred to as microstruc-

tures A and B, respectively) with 151 and 162 grains, respectively generated using

a standard voronoi construction and meshed using OOF-2 (2004) is employed in

the design examples. Microstructure A is meshed using 3989 quadrilateral elements

and microstructure B is meshed using 4200 quadrilateral elements. The mesh con-

forms to grain boundaries such that each element is fully within a particular grain.

An initial random ODF is assigned to these microstructures as shown in the pole

figures in Fig. 5.1(c,d) corresponding to microstructures A and B, respectively.

Aim of this example is to demonstrate the technique for obtaining desired equiv-

alent stress response in microstructure A by controlling a combination of process

modes applied on the microstructure. Sensitivities are computed with a perturba-

tion of ∆αi = 1E − 5 for each process mode i. Thus, optimization is comprised of

one direct and three sensitivity problems. The optimization problem is executed

until the objective function becomes less than 1E − 3 or if the objective function

normalized with the initial objective showed less than 1E−4 improvement between

iterations. The response is computed for a total time of 11 seconds with a total of

200 time steps.

The desired response is shown in Fig. 5.2(a) and is assumed to occur during
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Figure 5.1: Initial microstructure for the design problems. (a) Microstruc-
ture A with 151 grains (b) Microstructure B with 162 grains.
Initial random texture depicted using the < 110 > and < 111 >
pole figures for microstructure A in (c) and microstructure B in
(d).

a single processing stage with unknown velocity gradient. Through optimization,

we desire to identify the velocity gradient applied on the microstructure. The

desired response for the microstructure under consideration is assumed to be a

simple cubic curve with equivalent stress vs time characteristics of 30 MPa at 0.5

sec, 40 MPa at 3 sec, 47.5 MPa at 7 sec, and 55 MPa at 11 sec of deformation

as shown in Fig. 5.2(a). Initial guess strain rate of 5E-4 is given to all three

process modes of shear, rotation and plane strain compression, i.e. a vector of

α = [5e − 4, 5e − 4, 5e − 4] is used in the first iteration. The response obtained

in the first iteration, two intermediate iterations and the final iteration are shown

in Fig. 5.2(b). The desired response is obtained with a converged mean square

error (Eq. (5.3)) of 0.51 and final parameters are found as α = [1.66E−3, 8.42E−
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3, 5E − 4]. Fig. 5.2(d) shows rapid convergence of the objective function with

increasing number of iterations showing the numerical efficiency of the algorithm.

Final microstructure at a time of 11 sec is shown in Fig. 5.2(c). Initially each grain

was assigned a unique orientation. During deformation, misorientation develops

within grains leading to spread of orientations and development of strong intra-

granular texture. The misorientation development can be visualized using the

change in neo-eulerian angle of rotation ξ(t) at time t from the values of ξ(t = 0)

of the initial texture. ξ is obtained from the Rodrigues parametrization given by

r = n tan( ξ
2
) where n denotes the axis of rotation. The change in the neo-eulerian

angle from the initially assigned orientation of grains shown in Fig. 5.2(c) clearly

shows the formation of disoriented regions within grains at moderate deformation.

Example 2 : Design of desired second stage microstructure response in two-stage

processes with unloading and development of residual stresses.

The same model can be extended towards control in a multi-stage set up where

a sequence of process modes can be designed to achieve desired response in the

processed microstructure. A crucial aspect in multi-stage simulation is an accurate

model of mechanics in-between stages. This phase consists of removal of loads from

the microstructure and development of residual stresses. The unloading process

here is modelled as a non-linear (finite deformation) elasto-static boundary value

problem. If B represents the final configuration of the workpiece at the end of the

loading phase with the total deformation gradient given as F n+1 = F eF p, then

the solution to the unloading process results in the final body configuration (Bu)

with the total deformation gradient after unloading given as F u = F e
uF

p.

In this work, two assumptions are made to model unloading: firstly, no crystal

reorientation is assumed to occur on unloading and secondly, no recovery (or evo-
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Figure 5.2: Design for desired material response (a) Desired response of the
material given by a smooth cubic interpolation of 4 desired coor-
dinates. (b) Change in the microstructure response over various
iterations of the optimization problem. (c) Final microstructure
at time t = 11 sec of the design solution with mis-orientation
distribution over grains (d) Change in objective function over
various design iterations of gradient minimization algorithm,

lution of state) is assumed to occur. Microstructure proceeds from one stage to

another stage immediately upon completion of the unloading process. For design

problems involving the unloading stage, we need to consider the sensitivity of a

finite deformation elasto-static problem. The sensitivity constitutive problem is

modified and the material deformation behavior treated as elastic in the unloading

phase. During the unloading process, we assume for simplicity that the bottom

edge of the microstructure is fixed to prevent motion in the normal direction.

Microstructure B is used in this example. A perturbation of 1E-5 is applied

108



0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

Equivalent Stress (MPa): 0.00 5.71 11.43 17.14 22.86 28.57 34.29 40.00

0 0.5 1 1.5 2
x 10

-3

5

10

15

20

25

Initial iteration
Intermediate iter.
Final iteration
 

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(a) (b) (c)

(d) (e) (f)

Equivalent plastic strain

E
qu

iv
al

en
t s

tr
es

s 
(M

P
a)

Iterations

C
os

t f
un

ct
io

n

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

Equivalent Stress (MPa): 0.00 6.43 12.86 19.29 25.71 32.14 38.57 45.00

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

Equivalent Stress (MPa): 0.00 5.71 11.43 17.14 22.86 28.57 34.29 40.00

0.1 0.15 0.2 0.25 0.3 0.35 0.4

23.5

24

24.5

25

25.5

26

26.5

Initial response
Intermediate response
Final response
Desired response
 E

qu
iv

al
en

t s
tr

es
s 

(M
P

a)

Second stage time (sec)

Figure 5.3: (a) Desired response in the second stage and response obtained
at various design iterations. (b) Microstructure response in the
first deformation stage at various design iterations. (c) Change in
objective function over various design iterations of gradient min-
imization algorithm. (d) Equivalent stress distribution (at final
design solution) at the end of first deformation stage (time t = 1
sec). (e) Residual equivalent stress distribution after unloading
at the end of first stage. (f) Equivalent stress distribution at the
microstructure at time t = 0.45 sec of the second stage (plane
strain compression).

to the strain rate in the first stage. Sensitivity of residual stresses after unload-

ing in the first stage are transferred to the second stage. Aim of this example is

to demonstrate the technique for obtaining desired initial microstructure response

after unloading from a process by controlling the strain rate of initial loading.

Unloading produces a heterogeneous distribution of residual stresses in the mi-

crostructure. High residual stresses are displayed by grains in the vicinity of grains

that displayed high stresses at the end of first stage as seen by comparing residual
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stress distribution in Fig. 5.3(e) and the final stress state at the end of first stage

in Fig. 5.3(d). The second stage response is not only affected by the heterogeneity

of residual stresses but also due to changes in texture and slip system resistance

(state variable) distribution at the start of second stage.

By controlling the strain rates used in the first stage, parameters such as initial

texturing and state variable at the start of the second stage are also controlled.

Numerical experiments reveal that the state variable distribution at the end of the

first stage is a dominant factor in determining the material response at the second

stage. Response shown in Fig. 5.3(a) corresponds to the desired equivalent stress-

time curve in the second stage under plane strain compression of the microstructure

at a strain rate of 5E-3 mm/s. The velocity gradient applied to the microstructure

in the first stage (simple shear) is unknown and is taken as the design variable.

Initial guess strain rate of 5E-4 s−1 is given to the first stage, i.e. a vector of

α = [0, 5e− 4, 5e− 4] is employed.

After optimization, the optimal first loading stage strain rates were found as

α = [0, 1.442E − 3, 1.442E − 3] resulting in a response which was within a mean

square error of 1E − 6 from the desired response. Equivalent stress field of the

microstructure before and after unloading (initial state for the second stage) and

after 0.45 sec of second stage are presented in Fig. 5.3(d,e and f), respectively.

Fig. 5.3(a-b) shows evolution of the response at various iterations of the optimiza-

tion algorithm and Fig. 5.3(c) shows rapid convergence of the objective function

with increasing number of iterations again demonstrating the numerical efficiency

of the design algorithm. For all examples in this chapter, solution process was

accelerated by parallelizing the program using MPI. The simulator was developed

using object oriented programming (C + +) and linked to the PetSc toolbox for
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parallel assembly and solution of linear systems arising in the direct and the sen-

sitivity problems. In the future, we plan to include techniques such as domain

decomposition and adaptive remeshing techniques to further increase the efficiency

and fidelity of 3D microstructure design simulations.

5.3 Conclusions

The problem of microstructure design is attempted using a novel continuum sen-

sitivity analysis of homogenization. This involves differentiation of the governing

field equations of homogenization with respect to the processing parameters and

development of the weak forms for the corresponding sensitivity equations that

are solved using finite element analysis. The technique is applied to identify opti-

mal strain rates in single and multi-stage processes (with intermediate unloading

stages) that would lead to a desired microstructure response. The algorithm is

computationally efficient and is found to converge to the desired response within

a few iterations. This analysis shows that there is a definite merit in further ex-

tending these approaches towards design of industrial forming processes so that

components with desired stiffness or strength properties are obtained. The multi-

scaling procedures involved are described in the next chapter, in a preliminary

study based on the Taylor model.
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Chapter 6

A multilength scale continuum

sensitivity analysis for the control of

texture-dependent properties in

deformation processing

An efficient multi-scale technique for controlling texture development is presented

in this section that allows tailoring properties in forming processes involving poly-

crystalline materials. This chapter is a culmination of the analysis developed in

the previous chapters, where the tools developed are used for controlling the effect

of macroscopic variables such as die and preform shapes on micro-scale features

such as the crystallographic texture. The approach presented in this chapter uses

continuum representation of texture over Rodrigues-Frank space for computing tex-

ture evolution at each integration point in the macro-simulation. A multi-length

scale finite element simulator has been developed [90] that allows for crystal elasto-

viscoplasticity and simulation of texturing in large deformation forming processes.

Sensitivity of microstructure field variables such as slip resistances and texture

due to perturbations in forming parameters such as forging rates, die shapes and

preform shapes are calculated using a novel two-scale sensitivity analysis. An av-

eraging principle is then developed to compute sensitivity of stress and various

material properties at the macroscopic level. These sensitivities are used within

a gradient-based optimization framework for computational design of metal form-

ing processes. Effectiveness of the developed finite element analysis and design

techniques are demonstrated in this chapter using numerical examples involving

control of Young’s modulus and yield strength variability in finished products.

112



6.1 Total Lagrangian approach for modelling texture evo-

lution

For accurately modeling the response of polycrystals undergoing deformation, one

needs to be able to accurately represent polycrystals. The most common tech-

nique for representing polycrystals is based on the use of a collection of discrete

grains/orientations. Such an approach needs the choice of the grain orientations

to accurately represent the texture in the material. The emphasis in this chapter

is on a continuum representation of polycrystals, based on the pioneering work of

[30, 31, 91]. A brief summary of the continuum representation of polycrystals is

provided for clarity of future developments. Consider a macroscopic material point

and let it be associated with the underlying microstructure M. Assume that the

response of any crystal of the polycrystal is determined only by its orientation R,

which is the rotation relating the crystal lattice frame, êi, to a sample reference

frame ei as ei = R êi. The orientation R ∈ O+ is not unique because of crystal

symmetries. This non-uniqueness has traditionally been resolved by restricting the

choice of orientation to a fundamental region of O+. Thus for a particular choice

of the fundamental region R, the orientation of the crystal is uniquely represented

by r ∈ R where

R = Q(r) (6.1)

and Q maps the orientation space to the set of all proper orthogonal tensors. The

notion of crystals being interchangeable with unique parameterized orientations is

developed in [31]. This is then used to define texture as a map of crystals to ori-

entations within the fundamental region. A microstructure, M, is then associated

with a collection of such mappings, Φ, so that each map, χ ∈ Φ, is a one-to-one

mapping of the microstructure M onto the fundamental region R. Further, the
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Figure 6.1: A Lagrangian framework describing the association of a poly-
crystal, at a material point X, with unique parameters s and
r, drawn from the fundamental region. Also shown is the re-
orientation vector r̂(s, t).

orientation of a crystal, r, is developed as

r = χ(p) (6.2)

where p represents the crystals associated with the microstructure M. A graphical

representation of this framework is shown in Figure 6.1. Through such a descrip-

tion, microstructure is treated as a continuum of crystals, that under the map χ

occupies a fundamental region of the orientation space. The ODF, represented

as A(r), describes the crystal density over the fundamental region. The ODF is

defined so that the crystal volume fraction for any part M∗ ⊆M,

vf (M∗) =

∫

χ(M∗)
A(r)dv (6.3)
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is independent of the map χ. dv is the volume element on the reference funda-

mental region. M can also be associated with a family of maps χt which take a

crystal to the fundamental region Rt. Such a description helps in modeling time

dependent texturing. Let χ be the reference map and correspondingly R is the

reference fundamental region. The family of maps χt along with the reference

map χ determine a family of mappings r̂(•, t) : R → Rt referred to as the

re-orientation, and given by (see Figure 6.1)

r̂(s, t) = χt(χ
−1(s)) (6.4)

The re-orientation vector, r̂, is associated with the one-parameter family of ODF’s,

A(r, t) = Aχt(r) = A(r̂(s, t), t) = Â(s, t). The representation of the ODF

given by A(r, t) is Eulerian and Â(s, t) is Lagrangian.

Consider the integral conservation equation, Equation (6.3). Applying this

conservation equation to arbitrary parts M∗ ⊆M under maps χ and χt, followed

by a transformation of variables to the reference fundamental region, results in the

following ∫

χ(M∗)

(
Â(s, t) J(s, t) − Â(s, 0)

)
dv = 0 (6.5)

where J(s, t) = det(∇r̂(s, t)) is the Jacobian determinant of the re-orientation of

the crystals and Â(s, 0) = A0(s) is the ODF associated with the reference map

and can be thought of as the initial texturing of the material. The Lagrangian

version of the conservation equation is then defined as [31]

Â(s, t) J(s, t) = Â(s, 0) = A0(s) (6.6)

In such a Lagrangian framework, the re-orientation, r̂, has to be evaluated from

the re-orientation velocity v̂(s, t) = v(r̂(s, t), t) = v(r, t) through the following

relation

∂r̂

∂t
(s, t) = v̂(s, t) (6.7)
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Texture evolution is thus modeled by an ODF at each of the material points of the

macro-continuum (see Figure 6.1).

For completeness, the neo-Eulerian parametrization of R is also briefly de-

scribed. The parametrization of R is derived from the natural invariants of R:

the axis of rotation n and the angle of rotation ξ. The angle-axis parametrization,

r, is obtained by scaling the axis n by a function of the angle ξ as r = n f(ξ).

In the particular case of Rodrigues’ parametrization, the function is defined as

f(ξ) = tan
(

ξ
2

)
. In this case, the orientation R is related to the parametrization

r as

R = Q(r) =
1

(1 + r• r)
{I(1− r• r) + 2(r ⊗ r + I × r)} (6.8)

where I is the second order identity tensor and ⊗ denotes the tensor product of

the two quantities. The ODF, in the present work, is approximated with finite

element polynomial functions defined over an explicit discretization of the orienta-

tion space based on Rodrigues’ parametrizations. The Rodrigues’ parametrization

was chosen over pole figures or Euler angle spaces because of its several advan-

tages, discussed in detail in [30]. In fact, if the initial texturing is known, and the

re-orientation of the crystal orientations is computed during deformation, then the

current mapping or the current Lagrangian ODF can be evaluated using Equation

(6.6). The polycrystal average of an orientation dependent property, Υ(r, t), is

determined as:

〈Υ〉 =

∫

Rt

Υ(r, t) A(r, t) dvt

=

∫

R

Υ(r̂(s, t), t) A0(s) dv (6.9)

where dvt is defined as the volume element on the current fundamental region.

From Equation (6.9), one can conclude that if the re-orientation and the initial

texture are known, then the average property for the polycrystal can be evaluated.
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6.2 Rate independent constitutive problem

During a deformation process, crystallographic slip and re-orientation of crystals

(lattice rotation) can be assumed to be the primary mechanisms of plastic de-

formation. The slip and re-orientation occur in an ordered manner such that a

preferential orientation or texture develops. We follow the rate-independent con-

stitutive model developed in [57] and build on it by developing compact representa-

tion of consistent tangent moduli for use in implicit large deformation formulation.

Consider a point on the reference fundamental region and this corresponds to a

particular crystal orientation. In an appropriate kinematic framework, such as the

one introduced in Ref. [92] for large deformation inelastic analysis, the total de-

formation gradient is decomposed into plastic and elastic parts as follows (Figure

6.2):

F = F e F p (6.10)

where F e is the elastic deformation gradient and F p, the plastic deformation gra-

dient, with detF p = 1. In this analysis, the Taylor hypothesis is utilized as

the macro-micro linking assumption. As a result of this assumption, the crystal

deformation gradient (in the sample reference frame) is taken to be the same as

the macroscopic deformation gradient.

In the following scheme, all vector and tensorial quantities are expressed in

the reference sample frame, i.e., the initial (macro-scale) configuration. Crystal

specific properties like the stiffness and compliance are transformed to the sample

reference frame for each crystal using the position r in the orientation space. In

the constitutive equations to be defined below, the Green elastic strain measure is

defined on the relaxed configuration (plastically deformed, unstressed configura-

tion) B̄. It is represented as Ě
e

= 1
2

(
F eT F e − I

)
. The conjugate stress measure
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Figure 6.2: Schematic of the various material configurations, for a single crys-
tal, used in the integration of the constitutive model. mα denotes
the slip direction and nα denotes the slip normal. These together
define the slip systems and are assumed to be known on the ref-
erence (initial) configuration. The Schmid tensor is evaluated
as Sα

0 = mα ⊗ nα. m̂α, m̄α are the slip directions in the
deformed configurations (different from mα because of crystal
re-orientation). Similarly, n̂α and n̄α are the slip normals in the
deformed configurations Bn and Bn+1, respectively. F r is the
relative deformation gradient from Bn to Bn+1.

is then defined as T̄ = detF e(F e)−1T (F e)−T where T is the Cauchy stress for

the crystal in the sample reference frame. It is assumed that deformation takes

place through dislocation glide and the evolution of the plastic flow is given by

Lp = Ḟ p(F p)−1 =
∑

α

γ̇αSα
0 sign(τα) (6.11)

where Sα
0 = mα⊗nα is the Schmid tensor and γ̇α is the plastic shearing rate on

the αth slip system. mα and nα are the slip direction and the slip plane normal,
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respectively. Fig. 6.2 clearly describes the constitutive problem along with the slip

systems in different configurations. An Euler-backward time integration procedure

leads to the following approximation:

F p = exp(∆t
∑

α

γ̇αSα
0 sign(τα))F p

n ≈ (I +
∑

α

∆γαSα
0 sign(τα))F p

n (6.12)

Substituting Eq. (6.12) into Eq. (6.10) results in the following:

F e = F e
trial(I −

∑
α

∆γαSα
0 sign(τα)) (6.13)

where F e
trial is the trial elastic deformation gradient and is given as F n+1(F

p
n)−1.

In the constitutive equations to be defined below, the Green elastic strain mea-

sure defined on the relaxed configuration (plastically deformed, unstressed config-

uration) B̄ is utilized. It is computed using Eq. (6.13) as

Ě
e

=
1

2

(
F eT F e − I

)

= Ě
e

trial −
1

2

∑
α

sign(τα)∆γαBα (6.14)

where Ě
e

trial = 1
2

(
(F e

trial)
T F e

trial − I
)

and Bα = (Sα
0 )T (F e

trial)
T F e

trial +

(F e
trial)

T F e
trialS

α
0 . The conjugate stress measure is then defined as

T̄ = detF e(F e)−1T (F e)−T (6.15)

where T is the Cauchy stress for the crystal in the sample reference frame. For

future reference, it is stated that all vector and tensorial quantities are expressed

in the reference sample frame, i.e., the initial (macro-scale) configuration B0. Fur-

thermore, crystal specific properties like the stiffness and compliance have to be

transformed to the sample reference frame using the crystal orientation r. The

constitutive relation, for stress, for small temperature changes about the initial

temperature, θ0, is given by

T̄ = Le
[
Ě

e]
(6.16)
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where Le is the fourth-order anisotropic elasticity tensor expressed in terms of the

crystal stiffness parameters and the orientation r. Eq. (6.16) further simplifies to

the following

T̄ = T̄ trial − 1

2

∑

β

∆γβLe
[
Bβ

]
sign(τ β

trial) (6.17)

where T̄ trial = Le
[
Ě

e

trial

]
. The resolved shear stress τα = T̄ · Sα

0 attains a

critical value sα on the systems where slip occurs with plastic shearing rate on

the αth slip system γ̇α > 0. Further, the resolved shear stress does not exceed sα

on the inactive systems with γ̇α = 0. A potentially active set PA of slip systems

can be identified initially based on the trial resolved stress as the systems with

|τα
trial| − sα > 0.

The hardening law for the slip resistance sα is given as,

ṡα(i) =
∑

β

hαβγ̇β (6.18)

During plastic flow, the active systems are assumed to follow the consistency con-

dition: |τα| = sα. Increment in shearing rates ∆γβ at each time step is obtained by

solving the following equation obtained by resolving Eq. 6.17 along slip directions:

|τα| = sα = |τα
trial| −

1

2

∑

β

sign(τα
trial)sign(τβ

trial)∆γβLe
[
Bβ

] · Sα
0

(6.19)

where, α, β ∈ PA. A system of equations is obtained of the following form,

∑

β∈PA
Aαβ∆γβ = bα (6.20)

where,

Aαβ = hαβ +
1

2
sign(τα

trial)sign(τ β
trial)Le

[
Bβ

] · Sα
0

bα = |τα
trial| − sα

(6.21)
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If for any system ∆γβ ≤ 0, then this system is removed from the set of potentially

active systems. The system is repeatedly solved until for all systems ∆γβ > 0.

Following this step, the plastic and elastic parts of the deformation gradient are

updated using Eq. 6.12 and Eq. 6.10 respectively. Conjugate stress measure,

T̄ is then obtained from Eq. 6.17, followed by the update of cauchy stress as

T = F e[det(F e)]−1T̄ (F e)T . The slip resistances are also updated at the end of the

time step. Finally, the reorientation velocity is found as follows:

v =
∂r

∂t
=

1

2
(ω + (ω · r)r + ω × r) (6.22)

where r is the orientation (Rodrigues’ parametrization) and ω represents the spin

vector defined as ω = vect
(
ṘeReT

)
= vect (Ω) where Re is evaluated through

the polar decomposition of the elastic deformation gradient F e as F e = ReU e.

Considering the Euler-backward time integration of ṘeReT = Ω, where Ω is the

spin tensor, leads to the following:

Re
n+1 = exp(∆tΩn+1)R

e
n (6.23)

and

Ωn+1 =
1

∆t
ln

{
Re

n+1R
eT
n

}
(6.24)

From the elastic deformation gradients, Re
n+1 and Re

n are evaluated and one can

evaluate the spin tensor Ωn+1 using Equation (6.24) and then the re-orientation

velocity from Equation (6.22). Further, post-processing involves computing the

average Cauchy stress from

〈T 〉 =

∫

R

T (r̂(s, t), t) A0(s) dv (6.25)

From the above equation, it is seen that if the initial texturing is known, and

the re-orientation of the crystal orientations is computed during deformation, then

the average Cauchy stress can be computed.
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6.3 Solution of the kinematic problem

A total Lagrangian framework is adopted for the kinematic problem. The equilib-

rium equation is expressed on the reference configuration, based on the polycrystal

plasticity approach highlighted earlier, as:

∇0• 〈P 〉+ f = 0 (6.26)

where ∇0• represents the divergence in the reference/initial configuration (total

Lagrangian approach). The polycrystal average Piola-Kirchhoff-I stress, 〈P 〉 is

expressed as

〈P 〉 = 〈det F T F−T 〉

= det F 〈T 〉 F−T (6.27)

using the Taylor hypothesis for the macro-micro linking assumption. The incre-

mental quasi-static problem is to determine the displacement field or the incre-

mental displacement field that satisfies Equation (6.26). The weak form of this

equation, for any kinematically admissible test function ũ, is written as

G(un+1, ũ) ≡
∫

B0

〈P 〉 • ∇0ũdV −
∫

∂B0

λ• ũdA −
∫

B0

f • ũdV = 0 (6.28)

where the applied surface traction λ and body forces f are given. It is further

assumed that the contact problem is independent of the nature of the underlying

microstructure, and that texture plays a role in this equation only through the

stress response. To solve this non-linear equation, a Newton-Raphson iterative

scheme along with a line search procedure is employed. The linearization process

of the micro-averaged PK-I stress is given by:

δ〈P 〉 = det F
(
tr(δFF−1)〈T 〉 − 〈T 〉 (δFF−1

)T
+ 〈δT 〉

)
F−T (6.29)
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where δT = δ( 1

detF e F eT̄ (F e)T ) requires the evaluation of δF e and δT̄ using the

constitutive model. In order to obtain δT̄ , consider the linearization of Equation

(6.17), one obtains:

δT̄ = Le
[
δĚ

e

trial

]− 1

2

∑

β

sgn(τβ
trial)δ(∆γβ)Le

[
Bβ

]

−
∑

β

sgn(τβ
trial)∆γβLe

[
Sβ

0

T
δĚ

e

trial + δĚ
e

trialS
β
0

]
(6.30)

This computation of δT̄ requires the evaluation of δ(∆γβ), obtained by lineariza-

tion given by:

δ(∆γβ) = (Aαβ)−1(δbα − δAαβ∆γβ) (6.31)

δbα = sgn(τα
trial)Le

[
δĚ

e

trial

] · Sα
0 (6.32)

δAαβ = sgn(τα
trial)sgn(τβ

trial)S
α
0 ·Le

[
Sβ

0

T
δĚ

e

trial + δĚ
e

trialS
β
0

]
(6.33)

Using the definition of δĚ
e

trial = sym(F eT
trialδFF p−1

n ), the above set of equation

yield an implicit form δ(∆γβ) = mβ · δF for use in Eq. 6.30. Next, δF e is

obtained from:

δ(F e) = δF (F p)−1 − F e
trial

∑

β

sgn(τβ
trial)δ(∆γβ)Sβ

0 (6.34)

In all of the above analysis, the standard tensorial notation developed in [81] is

followed.

6.4 Definition of shape sensitivities

In this section, the shape sensitivities of a field Φ, expressed in an updated La-

grangian (UL) framework, are briefly described. Sensitivities of the deformation

and material state are quantitative measures of changes in the deformation and
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material state, respectively, as a result of infinitesimal perturbations to variables

that define the initial preform shape βs (shape sensitivity) [86]. Typical process

parameters include the ram speed history, the die surface and the initial material

state among others. Figure 6.3 presents a schematic that shows the variation of

various fields induced by a variation in a shape parameter. Even though an updated

Lagrangian analysis is considered here, a similar representation can be introduced

for the total Lagrangian (TL) formulation with B0 as the corresponding reference

configuration. The variables Q, shown in Figure 6.3, denote the set of material

state variables necessary to define the material state and plastic deformation of

the workpiece (e.g. Q = {F e, s, f, T }).

A design independent reference material configuration BR is introduced and a

smooth one-to-one design dependent geometric mapping defined on BR results in

an initial configuration B0. The geometric mapping which defines B0 is described

as

X = X̄(Y ; βs) ∀ Y ∈ BR (6.35)

Note that the initial configuration B0 varies with the perturbations ∆βs. Therefore

one needs to follow the variation of the field for each given particle Y defined in

the configuration BR, before evaluating the shape derivatives of a field. It is from

this configuration that all preforms are obtained via the deformation gradient F R.

The dependence of the field Φ = Φ̂(xn, t) on βs can thus be expressed as:

Φ = Φ̂(xn, t; βs) = Φ̃(X, t; βs) = Φ̄(Y , t; βs) (6.36)

The shape sensitivity
◦
Φ =

◦̂
Φ(xn, t; βs, ∆βs) is then defined as the total Gateaux

differential of Φ = Φ̂(xn, t; βs) in the direction ∆βs computed at βs

◦̂
Φ(xn, t; βs, ∆βs) =

◦̃
Φ(X, t; βs, ∆βs) =

◦̄
Φ(Y , t; βs, ∆βs)

=
d

dλ
Φ̄(Y , t; βs + λ∆βs)

∣∣∣∣
λ=0

(6.37)
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Figure 6.3: Schematic definition of the shape sensitivities in the time incre-
ment [tn, tn+1] using an UL sensitivity formulation. Bn, n =
1, 2, . . ., refer to the configurations that the workpiece occupies
at various times in a given deformation process for a preform
B0 defined by the shape parameters set to the value βs (reference
problem), whereas B′n, n = 1, 2, . . ., refer to the perturbed config-
urations resulting from the same deformation process but with a
preform B′0 defined by the shape parameters βs +∆βs (perturbed
problem). The process parameters (die surface, ram speed, etc.)
remain the same in both reference and perturbed problems.

Now the shape sensitivity
◦
Φ can also be approximated as the difference between

two values of the field Φ, that result due to two different initial configurations

defined by the shape parameters βs + ∆βs and βs, i.e.

◦̂
Φ(xn, t; βs, ∆βs) =

Φ̂(x̃(X, tn; βs + ∆βs), t; βs + ∆βs)− Φ̂(x̃(X, tn; βs), t; βs) + O
(||∆βs||2

)
=

Φ̃(X̄(Y ; βs + ∆βs), t; βs + ∆βs)− Φ̃(X̄(Y ; βs), t; βs) =
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Φ̄(Y , t; βs + ∆βs)− Φ̄(Y , t; βs) (6.38)

Note that once the shape differentiation in Equation (6.38) has been performed,

one can set F R = I. It is then the perturbation
◦

F R (or equivalently the velocity

design gradient L0 ≡
◦

F R F−1
R ) that drives the subsequent calculation of shape

sensitivities. The above definitions can be applied to both total and updated

Lagrangian framework with the appropriate choice of the reference configuration.

At this point, the interested reader is referred to [55] for additional details on

the TL, UL sensitivity formulations and the sensitivity analysis in the context of

multi-stage processing.

6.5 Deformation sensitivity problem

The definitions for sensitivity fields, discussed in the previous section, are ex-

tended towards a multi-length scale framework. The process of evaluating the

sensitivities of fields on the micro-scale due to perturbations on the macro-scale

is shown schematically in Figure 6.4. This requires a macro-sensitivity problem

where the interest is to compute how perturbations on the macro-design variables

β affect the continuum fields - the deformation gradient F and the velocity gradi-

ent L. The dependence of the deformation gradient F on β, in a total Lagrangian

framework, can be expressed as F = F (X, t; β). The parameter sensitivity
◦
F =

◦
F (X, t; β, ∆β) is defined as the total Gateaux differential of the deformation

gradient in the direction ∆β computed at β:

◦
F (X, t; β, ∆β) =

d

dλ
F (X, t; β + λ∆β)

∣∣∣∣
λ=0

(6.39)

The micro-sensitivity problem, also defined in Figure 6.4, computes the resulting

variation of the ODF and other microstructural properties from the perturbation
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Figure 6.4: Pictorial of the two-length scale sensitivity analysis. On the left,
the macro-sensitivity problem (following a Lagrangian approach)
computes the sensitivities of continuum fields (e.g. of the velocity
gradient) with respect to macro-design variables (here the die
surface). On the right, the micro-sensitivity problem (following
an Eulerian approach) computes the sensitivity of the ODF and
properties related to the ODF.

∆F of F (or ∆L of the velocity gradient L). In extending the direct analysis in

earlier sections, which was based on the Taylor hypothesis, a similar hypothesis

for the sensitivity problem is developed. In particular, this is defined as follows:

the sensitivity of the deformation gradient at a material point is taken to be the

same as the sensitivity of the deformation gradient of the underlying crystals, in

the sample reference frame.

This is used extensively in developing the constitutive sensitivity analysis for

a single crystal. For the material point simulator developed here, a design vector

β on the micro-scale is defined such that it has a one-to-one relation with F . The
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salient feature of such an approach is that equations governing the sensitivity fields

are computed at the continuum level in all length scales. The equilibrium equation

is considered and design differentiated. This continuum, differential, sensitivity

equilibrium equation is then posed in a weak form so as to establish a principle of

virtual work like equation for the calculation of the sensitivity of deformation fields.

Consistent with this mode of analysis, the sensitivity constitutive and sensitivity

thermal are derived from their corresponding continuum equations rather than

their numerically integrated counterparts.

Before the sensitivity problems are discussed, the polycrystal average of sensi-

tivity fields needs to be defined. Based on our earlier definition, the polycrystal

average of the corresponding sensitivity field is determined as follows

〈
◦
Υ〉 =

◦∫

Rt

Υ(r, t; β) A(r, t; β) dvt

=

∫

R

◦̂
Υ(s, t; β) A0(s) dv (6.40)

where dvt is defined as the volume element on the current fundamental region and

it is assumed that the initial texture is fixed (i.e.
◦
A0= 0). From Equation (6.40),

one can conclude that at no point in the analysis, the sensitivity of the ODF

is needed to compute the polycrystal average of different properties. Examples

discussed later in this Chapter, however, do report the sensitivity of the ODF as

a post-processing step for validating the developed analysis.

Described below is the analysis for the development of a total Lagrangian sen-

sitivity formulation for the kinematic problem. Let the reference configuration be

B0. The design differentiation of the equilibrium equation (Equation 6.26) results

in:
◦

∇0• 〈P 〉 +
◦
f= 0 (6.41)
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where 〈P 〉 is the polycrystal averaged PK-I stress defined in earlier chapters. A

variational form for the sensitivity equilibrium equation (for parameter sensitivity)

can be posed as follows: Evaluate
◦
x=

◦̂
x(X, t; β, ∆β) such that

∫

B0

◦
〈P 〉 •∇0η̃dV0 =

∫

∂B0

◦
λ • η̃ dA0 (6.42)

for every η̃, a kinematically admissible sensitivity deformation field expressed over

the reference configuration B0. In order to solve the weak form, defined by Equation

(6.42), relationships between (a)
◦
F and

◦
x (b)

◦
〈P 〉 and [

◦
F ,

◦
θ] and (c)

◦
λ and

◦
x need

to be developed. The relationship between
◦

F and
◦
x is purely kinematic and has

been described in Chapter 3. The relationship between
◦

〈P 〉 and [
◦
F ,

◦
θ ] is obtained

from the sensitivity constitutive problem to be discussed in Section 6.6 and takes

the form:
◦

〈P 〉 = B [
◦
F ] + A

◦
θ + B (6.43)

where B is a fourth order tensor and A, B are second order tensors. These ten-

sors are constants defined from known direct and sensitivity fields at the previous

time step, and are obtained by considering the polycrystal average of each crystal

response (see Section 6.6). The relationship between
◦
λ and

◦
x is obtained from the

sensitivity contact problem as
◦
λ= H [

◦
x] + d, where H is a second order tensor

and d a vector. The non-trivial derivation of these tensors resulting by design-

differentiation of a regularized contact problem can be found in [13].

6.6 Sensitivity constitutive problem

Through the crystal sensitivity constitutive sub-problem, the relationship between

the polycrystal average,
◦
〈T 〉 and

{ ◦
F

}
is computed. As part of the update pro-

cedure, one computes the set

{ ◦
T ,

◦
s,

◦
F e,

◦
F p

}
for each crystal orientation at the
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end of the time increment tn+1, where the sensitivity of the total deformation gra-

dient
◦
F n+1 are assumed known. The solution of the direct deformation problem

is known at time tn+1, the body configuration Bn+1 is known at tn+1. The con-

stitutive sensitivity problem for a crystal orientation is history dependent and the

solution of the sensitivity problem at time tn is assumed known for each crystal

orientation, yielding the variables

{◦
sn,

◦
F e

n,
◦

F p
n

}
at the beginning of each time

increment. Following steps are followed to update the sensitivities at the end of

each time step.

As the first step in the sensitivity constitutive problem, the trial sensitivities
◦

F e
trial and

◦
Ě

e
trial are obtained as:

◦
F e

trial=
◦
F F p−1

n − F e
trial

◦
F p

n F p−1
n

◦
Ě

e
trial= sym(F eT

trial

◦
F e

trial) (6.44)

Consider sensitivity of Eq. 6.20 to perturbations in F given by:

◦
∆γβ = (Aαβ)−1(

◦
bα −

◦
Aαβ ∆γβ)

◦
bα= sgn(τα

trial)Le

[ ◦
Ě

e
trial

]
· Sα

0−
◦
sα

n

δAαβ =
◦

hαβ +sgn(τα
trial)sgn(τβ

trial)S
α
0 ·Le

[
Sβ

0

T
◦

Ě
e
trial +

◦
Ě

e
trial Sβ

0

]
(6.45)

Remark: Here, α, β ∈ PA are the active systems identified in the direct prob-

lem. This assumes that slip systems activated under a perturbed deformation

gradient (F+
◦
F ) are the same as when a deformation gradient of F is acting

on the crystal. This is a valid assumption since the applied perturbations to the

design variables are small (∼ 1E−7) and hence, no new slip systems are activated.

The above set of equations along with Eq. 6.44 yield an linear relation
◦

∆γβ =

nβ·
◦
F +nβ

o . This relation is then used to compute the linear relationship of
◦

F p
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and
◦

F e with
◦
F using the equations:

◦
F p= F pF p−1

n

◦
F p

n +(
∑

β

sgn(τβ
trial)

◦
∆γβ Sβ

0 )F p
n

◦
F e=

◦
F F p−1 − F e

◦
F p F p−1 (6.46)

Following this step, a linear equation relating
◦
F and

◦̄
T is obtained using the rela-

tion
◦̄
T= Le

[
sym(F eT

◦
F e)

]
. The dependency between

◦
T and

◦
F is then obtained

by design differentiating Equation (6.15). Sensitivities of slip system resistance

(sα) are updated and stored for use in the next time step.

The above analysis dealt with finding linear relations between various sensi-

tivity terms for a given crystal orientation. This analysis has to be performed at

all orientations to compute the polycrystal average. Consider, for example, the

sensitivity of PK-I stress:

◦
〈P 〉 = 〈

[
tr

( ◦
F F−1

)
detFTF−T + detF

◦
T F−T − detFTF−T

◦
F

T

F−T

]
〉

= tr

( ◦
F F−1

)
detF 〈T 〉F−T + detF

◦
〈T 〉 F−T

− detF 〈T 〉F−T
◦
F

T

F−T (6.47)

where
◦
〈T 〉= ∫

R0

◦
T A0dv and

◦
T is described by the relations developed earlier.

From these equations, one can generate the constants in Equation (6.43) and use

this in the solution of the sensitivity kinematic problem.

6.6.1 Sensitivity of the spin vector

Once
◦

F e
n+1 has been evaluated from the previous sub-sections,

◦
Re

n+1 can be

obtained as [87] (subscript n + 1 is dropped in this Equation):

◦
Re =

◦
F e F e−1Re −Resym

{
U e−1sym

(
F eT

◦
F e

)}
F e−1Re (6.48)
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Sensitivities of spin vector and the spin tensor are obtained as:

◦
ω = vect

( ◦
Ω

)
(6.49)

◦
Ω =

◦̇
ReReT − Ω

◦
ReReT (6.50)

where

◦
ReT = −ReT

◦
Re ReT . Euler-backward integration of Equation 6.50 results

in:
◦
Ω =

1

∆t

[ ◦
Re ReT − ReReT

n

◦
Re

n ReT

]
(6.51)

where the subscript (n+1) has been dropped for convenience and
◦

Re was evaluated

in Equation (6.48). Further,
◦
ω can be evaluated from Equation (6.49).

6.7 Sensitivity analysis of the orientation distribution func-

tion

Consider the re-orientation velocity defined in Equation (6.22). The design-differentiation

of this equation results in the sensitivity of the re-orientation velocity:

◦
v =

∂
◦
r

∂t
=

1

2

[ ◦
ω + (

◦
ω ·r)r +

◦
ω ×r

]
+

1

2
[ω ⊗ r + (ω · r)I + Ω]

◦
r (6.52)

which can further be written as

∂
◦
r

∂t
−M 2

◦
r =

1

2

( ◦
ω + (

◦
ω ·r)r +

◦
ω ×r

)
(6.53)

where M 2 = 1
2
{ω ⊗ r + (ω · r)I + Ω} and

◦
ω was defined in the previous sec-

tion. Assuming small time steps and applying an Euler-backward time integration

scheme, leads to the following linear system:

◦
rn+1 =

{
I +

∆t

2
{ωn+1 ⊗ rn+1 + (ωn+1 · rn+1)I + Ωn+1}

} ◦
rn +
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∆t

2

[ ◦
ωn+1 + (

◦
ωn+1 ·rn+1)rn+1 +

◦
ωn+1 ×rn+1

]
(6.54)

which can be solved for
◦
rn+1 to compute sensitivity of the current fundamental

region.

Now consider the Lagrangian version of the ODF conservation equation (Equa-

tion (6.6)). Design differentiation of this equation, assuming that the initial texture

is independent of the design parameters, leads to the following:

◦
Â (s, t; β, ∆β) J(s, t; β) = −Â(s, t; β)

◦
J (s, t; β, ∆β) (6.55)

where
◦
J (s, t; β, ∆β) =

◦
det(∇r̂(s, t; β, ∆β)) = J(s, t; β)

[
∇•

◦
r (s, t; β, ∆β)

]

and
◦
r has been evaluated in Equation (6.54).

6.8 Numerical examples

The slip system hardening model used in the examples is given as:

hαβ = [q + (1− q)δαβ]hβ(no sum on β) (6.56)

where hβ is a single slip hardening rate, and q is the latent-hardening ratio. The

parameter q is taken to be 1.0 for coplanar slip systems and 1.4 for non-coplanar

slip systems. For the single slip hardening rate, the following specific form is

adopted:

hβ = ho(1− sβ

ss

)a (6.57)

where ho,a, and ss are slip hardening parameters taken to be identical for all

slip systems, with values ho = 180 MPa, ss = 148 MPa and a = 2.25 for f.c.c

copper single crystals. The initial value of slip system resistance is taken as

so = 16MPa [57]. Values of elastic parameters for copper crystal are taken as
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C11 = 170 GPa, C12 = 124 GPa, C44 = 75 GPa. Slip is assumed to occur in the 12

{111} < 110 > slip systems in the FCC crystal. As a validation of the micro-scale

texture evolution model, results are compared with the numerical example of [57].

The experiment corresponds to an x-axis compression with a strain rate of 0.001

/s of FCC copper polycrystal. The initial texturing of the material is assumed to

be random, and this corresponds to a constant Lagrangian ODF of 2.435. The ref-

erence fundamental region is discretized into 448 tetrahedral elements with cubic

symmetry enforced in the solution procedure. Comparison of results of [57] with

the present ODF-Taylor model is shown in Figure. 6.5.
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Figure 6.5: (a) Texture obtained using the Taylor model after 135 sec of
simple compression of a copper polycrystal at the rate of 1e −
3s−1. (b) Comparison of equivalent stress-strain response with
results from [57].

To validate the continuum sensitivity algorithm we consider the problem of

simple plane strain compression of a block and compare the sensitivities obtained

using finite difference approximation (FDM) which is the difference in solutions

of two non-linear direct problems with compression rates α and α + δα and the

continuum sensitivity method(CSM) (obtained through solution of one non-linear

direct problem and a linear sensitivity problem). The initial block size is taken

as 1.0 mm by 1.0 mm. The straining rate is fixed at 10−2s−1, and simulation is

134



for a total time of 3.2 sec. Parameter sensitivities are computed with respect to

a perturbation of 1e − 7 mm/s to the compression rate. Fig. 6.6 shows compar-

ison of texture sensitivity of the two techniques in the two-scale problem where

it is seen that CSM produces exactly the same sensitivity results with much less

computational effort.
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Figure 6.6: (a) Multi-scale plane strain compression of a block, final texture
at the bottom left corner element is shown. (b) Sensitivity of this
texture calculated using the CSM technique is compared with (c)
sensitivities obtained using the finite difference technique.

The parameter sensitivities in the design problem, as discussed later, are com-

puted with respect to a perturbation of 1e − 7 units to the design parameters.

First two examples involve control of properties in axi-symmetric extrusion and

closed die forging processes, simulated without remeshing. The last two examples

relates to control of strength and magnetic hysteresis losses in complex forging pro-

cesses in the presence of remeshing and data transfer. In all examples, an assumed

strain analysis scheme is used to treat the effect of near-incompressibility based on

the work in [13]. To aid in speeding up the solution process for complex forging

processes, the design simulator was parallelized using MPI. The simulator was de-

veloped using object oriented programming and dynamically linked to the parallel

toolbox PetSc for parallel assembly and solution of linear systems. In particular,

for solution of linear systems a GMRES solver along with block Jacobi and ILU

preconditioning from the PetSc toolbox was employed.
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6.8.1 Example 1. Design of Youngs modulus distribution

during extrusion

In this example, we study the feasibility of controlling Young’s Modulus distri-

bution in the finished product through control of extrusion die shape. An axi-

symmetric extrusion process is considered with a fixed reduction in cross-section

over a fixed length. During extrusion process, texturing and material state strongly

varies over the final cross-section due to the loading conditions. Through control

of loading conditions, in particular, the die shape, it is possible to minimize varia-

tions in properties in the finished product. The objective is to design the die shape

such that the Young’s modulus distribution at the exit is as uniform as possible.

The objective function for the design problems is defined as follows:

min
α

F (α) =
N∑

i=1

(
(Ei(α)− Ē(α))2

)
(6.58)

where Ei(i = 1..N) is the Youngs modulus at the N nodal points in the exit cross

section and Ē is the mean property over those points defined as Ē = 1
N

∑N
i=1 Ei.

The Young’s Modulus for loading along a particular direction at each material

point is found using the polycrystal stiffness, 〈C〉, computed through a weighted

average (over A) of the stiffness of individual crystals expressed in the sample

reference frame. Young’s modulus for the polycrystal is then computed through

the averaged stiffness matrix as:

E =
1.0

(〈C〉)−1
(11)

(6.59)

Initial texturing of preform is assumed to be random, and this corresponds to a

constant Lagrangian ODF of 2.435. The reference fundamental region with cubic

symmetry is discretized into 61 tetrahedral elements. We design an extrusion pro-

cess with a die of area reduction of 13.5% over a length of 0.5 mm. Initial radius of
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Figure 6.7: (a) The distribution of Youngs Modulus when the exit cross sec-
tion just leaves the extrusion die (b) Youngs Modulus distribution
in the final time step (c) ODF at a repreentative material point
close to the die surface. (d) The < 111 > pole figure of the ODF.

the workpiece is 0.5 mm and the initial height is 1.0 mm. It was extruded with a

nominal displacement rate of 0.1 s−1. A total of 400 time steps up to t = 10s were

performed to reach steady-state conditions at the exit. Die-workpiece interface

friction coefficient is taken as 0.01. The die surface is represented by a degree 7

Bezier curve as follows:

r(β) =
7∑

i=1

Ciφi(β), z =
β

2
in mm, 0 ≤ β ≤ 1, (6.60)

where Ci, i = [1, ..., 7], are the algebraic control parameters. The Bernstein func-

tions φi(β) are given as

φ1 = (1.0− β)6,
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iteration (b) The decrease in cost function at successive iterations

φ2 = 6.0(1.0− β)5β

φ3 = 15.0(1.0− β)4β2,

φ4 = 20.0(1.0− β)3β3,

φ5 = 15.0(1.0− β)2β4,

φ6 = 6.0(1.0− β)β5,

φ7 = β6,

(6.61)

We apply the constraints (in order to obtain the same reduction for different

die design parameters) that the radius and slope (with respect to the z-axis) at

the inlet and exit are fixed with C2 = C1 = 0.52 mm, C6 = C7 = 0.45 mm. With

this selection of parameters, there are three design parameters α = (C3, C4, C5)

for the control problem. An initial guess of C3 = 0.52, C4 = 0.52, C5 = 0.52 mm

was employed. The energy and displacement error norms for the finite element

solution are taken to be 10−4.

Fig. 6.7 shows the intermediate configuration (at 0.5 mm stroke) and the final
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Figure 6.9: Young’s modulus distribution on the exit cross section at the end
of extrusion in the (a) first iteration (b) second iteration (c) final
iteration

configuration (at 1 mm stroke) of the extrusion process along with a representative

ODF (Fig. 6.7(c)) obtained at a point on the circumference of the exit cross section

at 0.5 mm stroke. The ODF, as expected for an extrusion process, can be seen to

arise from a predominantly x-y axis shear deformation, as evidenced by the strong

x-axis < 111 > fiber in the < 111 > pole figure (Fig. 6.7(e)). Observe that due

to the natural symmetry of Rodrigues space, axes of the space relate directly to

sample axes. The x-axis < 111 > fibers lie near boundaries of the fundamental

region and are seen across the z- face of the ODF. Note that in Rodrigues-Frank

space, ideal orientations lie on boundaries of the fundamental region which allows

the structure of the textures to be reflected adequately by the boundary ODF.

The die shape identified at various iterations of the design problem and varia-

tion of the objective function over all iterations are shown in Fig.6.8. The optimal

die shape corresponds to Bezier coefficients C3 = 0.5229, C4 = 0.5099, C5 = 0.4765.

The Youngs’ modulus distribution on the curved surface at the end of forging at

the first, second and final iteration are shown in Fig.6.9. In the first iteration,

the Youngs’ modulus distribution is highly non-uniform with variation from 116
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GPa at the center to a maximum of 123 GPa halfway from the center. In the final

iteration, the deviation reduces to just 1 GPa from the center to about two-thirds

of the exit cross section. The optimal solution for the design problem is attained

in just 4 iterations showcasing the efficiency of the design algorithm.

6.8.2 Example 2. Design of yield strength variation during

closed die forging

In this problem, the forging of a circular disc is considered. The primary objective

is to design the preform for a final forged product (with fixed stroke) such that the

die cavity is fully filled. The secondary objective in this problem is to minimize

the variation of strength on the curved surface of the final product. One way

to ensure that the die cavity is filled is to consider a preform of a much larger

volume than that needed. In this case, the die cavity is filled up but there will

be considerable material wastage due to flash. Further, our secondary objective of

minimizing yield strength variation might not be satisfied. The objective function

for the design problem is defined so as to fulfill both objectives:

min
α

F (α) =
1

N

N∑
i=1

(
(Yi(α)− Ȳ (α))2

)

+
N∗∑
i=1

(
(ri(α)− rdesired

i )2 + (zi(α)− zdesired
i )2

)
(6.62)

where Yi(i = 1..N) are the yield strength values on the curved surface in the final

product and Ȳ is the mean property over those points defined as Ȳ = 1
N

∑N
i=1 Yi.

rdesired
i and zdesired

i are the closest point projections of the points ri(α) and zi(α)

on the die and N∗ denotes the number of points on the contact (top and curved)

surface. Crystal plasticity model described previously is used to calculate yield
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Figure 6.10: (a) Yield strength distribution at 0.02 mm stroke (b) Yield
strength distribution at 0.3 mm stroke (c,d) ODF at a point
close to the bottom corner of the preform at 0.02 and 0.3 mm
stroke. (e,f) The < 111 > and < 110 > pole figures of the ODF
in (d).

strength at all Gauss points using the ODF and slip system resistances at each

time step. In this method, polycrystal at each integration point in the macro-scale

mesh is separately subject to uniaxial (y- axis) tension conditions up to a strain

of 0.2% to obtain the corresponding 0.2% offset yield strength at each integration

point.

Initial surface of the preform (Rα(β)) is represented with a degree 6 Bezier

curve. Using the restriction R′
α(0) = 0, the representation of Rα can be defined

with 6 independent design variables αi, i = [1...6] as follows:

Rα(β) =
6∑

i=1

αiφi(β), 0 ≤ β ≤ 1, (6.63)

Where β = z
H

represents the z-coordinate normalized with the height of the
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preform. Basis functions are given as:

φ1 = (1.0− β)6 + 6β(1− β)5,

φ2 = 15.0(1.0− β)4β2,

φ3 = 20.0(1.0− β)3β3,

φ4 = 15.0(1.0− β)2β4,

φ5 = 6.0(1.0− β)β5,

φ6 = β6, (6.64)

The optimization iterations start with a preform of lesser volume than the

die cavity and the design iterations try to attain the optimum shape of the final

preform that satisfies the objectives. The specified forging velocity is taken as 0.01

mm/s and the shape parameters in the reference preform are αi = 1.0 for all i.

This corresponds to a cylindrical preform of radius 1.0 mm. The objective is to

design the free surface (represented by the degree 6 Bezier curve) of the preform of

fixed height H = 0.60 mm that when forged using the closed forming die results in

a fully filled die cavity and uniform distribution of yield strength on the external

surface after a specified stroke of 0.3 mm. The die is described as follows,

r(η) = 1.3(1− η),

z(η) = 548.357η3 + 1.35, η ∈ [0, 0.07692],

z(η) = 378.373(η − 0.16952)3 + 1.9, η ∈ [0.07692, 0.16952],

z(η) = 1.9, η ∈ [0.16952, 0.36663],

z(η) = 0.15(15.0463− 79.3599η + 295.8557η2 − 511.8711η3

+ 403.3830η4 − 118.0541η5) + 0.85, η > 0.36663.
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Figure 6.11: (a) Profile of the curved surface of the preform at the initial,
intermediate and final iterations of the design problem (b) De-
crease in cost function at successive iterations
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Figure 6.12: Final configuration at the end of forging in the (a) first iteration
(b) second iteration (c) final iteration

(6.65)

The workpiece is assumed to be isothermal. The initial temperature of the

billet is assumed to be uniform and equal to 300K. The forging die is modelled as

a rigid surface and to simulate sticking friction between the die and workpiece, a

coefficient of friction of 0.1 is applied. The energy and displacement error norms

for the finite element solution are taken to be 10−4.

Fig. 6.10 shows an intermediate step (at 0.02 mm stroke) and the final forged
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Figure 6.13: Yield strength distribution on the curved surface at the end of
forging at the (a) first iteration (b) second iteration (c) final
iteration

product (at 0.3 mm stroke) at the optimal preform shape along with a representa-

tive ODF calculated at the material point marked in the figure. The development

of y-axis compression texture is clearly captured in the simulation. FCC metals are

typically associated with texturing to < 110 > fibers under compression. At lower

strain (0.02 mm stroke, Fig. 6.10c), intensities can be seen to develop uniformly

along the compression (y-) axis < 110 > fibers that are seen across the z- and x-

faces of the ODF. At higher strains (0.3 mm stroke, Fig. 6.10d), the ODF within

the attracting regions about the < 110 > fibers intensifies and sharpens. Also,

note the boundary symmetry of the space that implies that structures associated

with fibers on opposing faces comprise a single feature. While the < 110 > fibers

correspond to regions attracting crystal flow, the < 100 > and < 111 > fibers

define regions that repel crystal flow. This is seen from the pole figures in Fig.

6.10(e), where compression axis < 110 > fiber develops high intensities.

The preform shape identified at various iterations of the design problem and

the objective function over 7 iterations are shown in Fig.6.11. The optimal solu-

tion for the design problem is attained in the sixth iteration. The optimal preform

shape corresponds to Bezier coefficients α = {1.00639, 1.02940, 1.08443,

144



1.15127, 1.16593, 1.13392}. The preform shape at the final time step of the opti-

mization problem for the first, second and final iteration of the design problem is

shown in Fig.6.12. The yield strength distribution on the curved surface at the end

of forging at the first, second and final iteration are shown in Fig.6.13. In the first

iteration (Fig.6.12(a)), the preform does not completely fill the die upon forging.

Almost complete fill is obtained in as early as the second iteration (Fig.6.12(b))

showcasing the efficiency of the design algorithm. However, in this iteration, the

requirement of uniform yield strength is not met and as much as 30 MPa variation

is seen on the curved surface in Fig.6.13(b). In the converged solution shown in

Fig.6.13(c), both requirements are met and the variation in yield strength reduces

to about 3 MPa on the curved surface.

6.8.3 Example 3. Design of yield strength distribution in

complex forging operations using remeshing schemes

Complex metal forming simulations often lead to severe distortions in the initial

mesh. Unless the distorted mesh is replaced periodically with a new mesh, the

simulation may terminate prematurely as a result of the severe mesh distortions.

As a result, periodic remeshing operations need to be carried out to ensure good

element quality throughout the simulation. In this work automatic hexahedral

remeshing was implemented. In this approach, an unstructured hexahedral mesh

is generated by first meshing the workpiece with a tetrahedral mesh following by

division of each tetrahedron into four hexes. Once the remeshing is completed, all

history dependent variables are transferred to the new mesh. For the integration

point data, a local smoothing operation is carried out in the old mesh first to

transfer the field values at the integration points to the nodes. Nodal data from
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the old mesh to the new mesh are transferred by direct interpolation. The field

values at the integration points of the new mesh are then obtained by interpo-

lation of the nodal data. In the multi-scale problem, micro-scale quantities are

interpolated using the macro-scale interpolation scheme. The quantities that need

to be transferred at the micro-scale include the deformed ODF grid, s, T̄ , ω and

F e. F p at each integration point on the ODF is updated after remeshing using

the recomputed macro- deformation gradient F . The sensitivity counterparts of

these quantities are also transferred in the same manner. Details of the remeshing

scheme for the direct and sensitivity problem are explained in [13].

In this problem, the forging of a spheroidal preform to form a cross-shaft is

considered. The primary objective is to design the preform for a final forged

product (with fixed stroke) such that the required shape is obtained. The secondary

objective is same as the previous problem, i.e. to minimize the variation of strength

on the curved surface of the final product. The objective function for the design

problem is same as in the previous example. However, the objective function is

only computed with a radius of 0.75 mm which is the required dimension of the

cross-shaft as indicated in Fig. 6.10(a).

For the design problem the free surface of the sphere is discretized using Bezier

curves in a similar fashion as the earlier preform design examples leading to a

total of 6 design variables. The forging velocity was assumed to be 0.01 mm/s

while the stroke was fixed at 0.1 mm. The shape parameters in the initial preform

are αi = 0.7 for all i. This corresponds to a spherical preform of radius 0.7 mm.

The objective is to design the free surface (represented by the degree 6 Bezier

curve) of the preform of fixed height H = 0.70 mm that when forged using the

closed forming die results in the desired dimensions (contact radius of 0.75 mm)
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Figure 6.14: Texturing at a representative material point during an (a) inter-
mediate and (b) final time step of the closed die forging problem.
The objective function is described in (a).
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Figure 6.15: Final configuration at the end of forging for various iterations
of the design problem.

and uniform distribution of yield strength on the external surface after a specified

stroke of 0.1 mm. The forging die is modelled as a rigid surface and sticking friction

between the die and workpiece is applied.

Fig. 6.14 shows an intermediate step (at 0.05 mm stroke) and the final forged
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product (at 0.1 mm stroke) at the optimal preform shape along with a represen-

tative ODF calculated at the material point marked in the figure. The ODF at

the material point is a result of the action of a variety of deformation modes over

the course of the complex forging process. The ODF in Fig. 6.14(c) indicates

predominantly z-axis plane strain compression mode on z-y plane as evidenced by

the strong α fiber on the y- face of the ODF, while at the final time step the ODF

(Fig. 6.14(d)) indicates predominantly a z- axis compression mode as seen from

the strong z- axis < 110 > fibers on the x- and y- face of the ODF. The preform

shape and yield strength distribution at the final time step of the optimization

problem for the first, second and final iteration of the design problem is shown in

Fig.6.15. The figure clearly shows the decrease in variability of yield strength in

successive design iterations.

6.8.4 Example 4. Design of magnetic hysteresis losses in

closed die forging process

When a ferromagnetic material is taken through a cycle of magnetization and

demagnetization in an alternating current field, energy is spent in aligning the

magnetization vectors of the individual crystals along the direction of the external

applied field. This alternating magnetization and demagnetization leads to a power

loss in the material defined as hysteresis loss. Power losses also occur due to eddy

currents. The total power loss can be expressed as a function of the external

magnetization direction h by the expression [60]:

P (h) = A0 + A1(l
2m2 + m2n2 + l2n2) + A2l

2m2n2 (6.66)
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where P is expressed in W/kg and l, m and n are the direction cosines of h as

represented in the crystal coordinate frame.

The coefficients A0 and A1 are different for the total power loss and the hystere-

sis loss and also depend on the frequency of magnetization. The coefficient A2 is

small and is generally ignored. FCC Nickel is used as the deforming material with

constitutive model parameters ho = 283 MPa, ss = 240 MPa, a = 3.0, so = 16 MPa.

Elastic parameters of Nickel used are C11 = 247 GPa, C12 = 147 GPa, C44 =

125 GPa. For computation of magnetic hysteresis loss, the values A0 = 0 and

A1 = 10.0 W/kg are used for computing the hysteresis loss of nickel at a frequency

of 30 Hz [60]. The corresponding polycrystal quantities can then be obtained by

averaging over the ODF as in Eq. (6.9). The external magnetization direction in

the sample coordinate system is taken as (1/
√

2, 1/
√

2, 0).

The particular process involved is a closed die forging of a circular disc. The

primary objective is to design the preform for a final forged product such that the

die cavity is fully filled with minimal flash after a stroke of 4.8 mm. The secondary

objective in this problem is to minimize the hysteresis loss on the curved surface

(along the perimeter) of the final product. The objective function for the design

problem is thus defined as:

min
α

F (α) =
1

N

N∑
i=1

(
(< P >i (α))2

)

+
N∗∑
i=1

(
(ri(α)− rdesired

i )2 + (zi(α)− zdesired
i )2

)
(6.67)

This example presents a forging process design for producing an axi-symmetric

ribbed disk. The initial billet is a right cylinder of 0.6 mm height and 1.15 mm

radius. The forging velocity is taken as 0.01 mm/s. The finishing die is defined as

follows:
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r(η) = 1.6(1− η), η ∈ [0.0, 1.0]

z(η) = 0.8, η ∈ [0.0, 0.125],

z(η) = 1111.1(η − 0.125)3 + 0.80, η ∈ [0.125, 0.1875],

z(η) = 946.75(η − 0.25)3 + 1.25, η ∈ [0.1875, 0.25],

z(η) = 1.25, η ∈ [0.25, 0.3125],

z(η) = −3.75 + 32.0η − 51.20η2, η ∈ [0.3125, 0.375],

z(η) = 10.70− 44.80η + 51.20η2, η ∈ [0.375, 0.4375],

z(η) = 0.90, η ∈ [0.4375, 0.5625],

z(η) = 17.10− 57.60η + 51.20η2, η ∈ [0.5625, 0.625],

z(η) = −22.90− 70.40η + 51.20η2, η ∈ [0.625, 0.6875],

z(η) = 1.30, η ∈ [0.6875, 0.75],

z(η) = −402 + 1536η − 1945η2 + 819η3, η ∈ [0.75, 0.8125],

z(η) = 20.60− 44.80η + 25.60η2, η ∈ [0.8125, 0.875],

z(η) = 1.00, η ∈ [0.875, 1.00],

(6.68)

This example involves four remeshing operations at times 10, 20, 30 and 40

seconds. The ODF grids are also transferred to integration points of the new mesh

through smoothing and data transfer operations. The details of the remeshing

procedure is same as example 3. The Bezier curve representation of the preform

is given by Eqns. 6.60 and 6.63. Fig. 6.16 shows an intermediate steps (at 0.22

mm and 0.44 mm stroke) of the preform shape in the second iteration along with a

representative ODF calculated at the material point marked in the figure. At 0.22

mm stroke, the ODF shown closely represents ODFs obtained from plane strain
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Figure 6.16: (a,b) Yield strength distribution at 0.22 mm and 0.44 mm stroke
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form at 0.22 and 0.44 mm stroke. (e and f) The < 110 > pole
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Figure 6.18: Hysteresis loss distribution and the die cavity fill is illustrated
in the (a) first iteration (b) second iteration (c) final iteration

compression along y- direction in the z-y plane. The texture is predominated by

the α fiber connecting the ideal Goss and brass orientations on the x- face of the

ODF. At 0.44 mm stroke, z- axis tension texture becomes more predominant due to

compressive strains developing along the x- direction as the preform progressively

comes into contact with the die. This is evidenced by the loss of intensity in the

z- axis < 110 > fibers seen on the x- and y- faces of the ODF in Fig. 6.16(d).

The < 110 > pole figures at 0.22 mm stroke and 0.44 mm stroke respectively, as

shown in Fig. 6.16(c) and (e), show the progressive loss of intensities of the z- axis

< 110 > fibers due to the change in the predominant deformation mode from y-

axis plane strain compression to z- axis tension.

Advantages are derived from the symmetry of Rodrigues’ space relative to the

sample axes. The effect of a permutation of the sample axes on texture results in a

corresponding permutation of the axes of Rodrigues space without any alteration

of the structure of the texture. For example, textures developed under compression

along the y-axis as seen in Fig. 6.10d were associated with increase in intensities

along y- axis < 110 > fibers located on the z- and x- faces of the ODF. In the
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case of z- axis tension texture in Fig. 6.16(d), decrease in intensities are found (by

corresponding permutation of axis) along z- axis < 110 > fibers located on the x-

and y- faces of the ODF. In contrast, over the Euler angle space, permutations of

sample axes modify the texture in complex ways.

The optimal solution for the design problem is attained in 4 iterations. The

preform shape identified at various iterations of the design problem and the objec-

tive function over 4 iterations are shown in Fig.6.17. The optimal preform shape

corresponds to Bezier coefficients α = {1.0681, 1.0825, 1.1141,

1.1845, 1.2374, 1.2403}. The magnetic hysteresis loss distribution on the curved

surface at the end of forging at the first, second and final iteration are shown in

Fig.6.18(a-c) respectively. In the first iteration, less material was used leading to

large underfill. In the second iteration, the underfill reduces drastically, however,

the magnetic hysteresis losses have not yet reached the optimal value. The final

iteration gives the optimal decrease in magnetic hysteresis loss as well as allows

complete filling of the die cavity as indicated in Fig.6.18(c).

6.9 Conclusions

With multi-length scale modeling advances in predicting behavior of materials,

it is increasingly becoming possible to devise methodologies to control metallic

polycrystalline microstructures and generate products with tailored property dis-

tributions. Using a multi-scale sensitivity analysis technique, control of properties

during deformation processes has been demonstrated. In this approach, sensitiv-

ity of microstructure field variables such as slip resistances and crystal orientation

changes due to perturbations in process parameters such as forging rates, die and
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perform shapes are exactly defined by direct differentiation of governing equations.

These sensitivities are used within a gradient optimization framework for compu-

tational design of forming processes. Effectiveness of the developed finite element

analysis and design techniques has been demonstrated using a numerical examples

involving control of Young’s Modulus and Yield strength variability in finished

products. The algorithm is computationally efficient and is found to converge to

the desired response within a few iterations. The simulator can be easily extended

towards computational design of other orientation-dependent properties such as

thermal conductivity or the thermal expansion coefficient as well as in the design

of devices with desired optical properties.

154



Chapter 7

Suggestions for future research

In spite of this increased use of computer and information technologies in the anal-

ysis of deformation processes, selection of actual process design variables to opti-

mize property distribution in materials still requires a significant amount of expert

knowledge. To overcome this dependency and to create products with optimal

properties, optimization-based design techniques for deformation processing are

integrated with microstructure analysis in this work. The methodology described

here would enable expansion of the conventional design space (with macroscopic

objectives such as product yield maximization) to include objectives such as to

obtain desired microstructure-sensitive properties in the final product.

The coupled macro-micro framework for multi-scale design provides a virtual

environment where the macro- process parameters and processing sequence in cold-

working processes can be altered to tune microstructure-sensitive material prop-

erties. The design problem of interest, such as to optimize engineering properties

such as stiffness and yield strength through control of process parameters like die

shapes and forging velocities, has several industrially relevant applications. Our

approach can also be extended towards the control of a variety of properties (e.g.

control of magnetic properties or material anisotropy [60]) that are dependent on

the microstructure.

There are various elements in the task of extending this work, and can be

broadly categorized into three areas: improvement in modeling physics of mi-

crostructure, modelling properties that depend on higher order microstructural

features and extension towards other processing techniques. These future research
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directions are listed below.

7.1 Optimization of Titanium alloy microstructure

Titanium alloys provide elevated specific strength, corrosion resistance, creep re-

sistance, high temperature strength and fatigue strength. These properties are

useful in a spectrum of applications including high-performance engines, armor

and structural materials. Recent developments in computerized metallography

have allowed unbiased and repeatable characterization of microstructural features

of HCP Titanium alloys [94, 17, 95, 96, 97, 98, 99]. Microstructural features are

statistical in nature prompting new work in stochastic modelling of microstruc-

tural features [100]. Studies have found strong correlation of many of the mi-

crostructural features of Titanium with properties such as strength and creep

performance [96, 101, 102, 103, 104, 105]. Titanium is characterized by highly

anisotropic mechanical behavior due to texture and wide variety of deformation

mechanisms [106, 107, 108, 109]. Recently, three distinct stages of strain hard-

ening have been documented [110, 111] in α−Titanium and correlated to twin

activity involving mechanisms such as slip-twin and twin-twin interactions and

twin saturation. Rigorous quantitative numerical models of Titanium behavior at

the meso-scale have only recently been developed using experimental insights [111].

Incorporation of these models in the simulation tools presented in this thesis is ex-

pected to yield significant improvements in controlling properties of commercially

important components such as turbine blades and protective armors. Apart from

texture, properties of metallic materials are affected by several characteristics that

are stereological (grain sizes, shapes, grain boundary networks) attributes. The

extension towards computing the effect of higher order features on properties is
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discussed next.

7.2 Higher order microstructural features

In metallic materials, correlations exist between the nature of grain boundary dis-

tribution and defect-sensitive properties such as inter-granular corrosion [21], grain

boundary segregation [20], stress corrosion cracking [22], and creep [23]. Proper-

ties such as elastic stiffness, thermal conductivity, and initial yield-strength are also

affected by higher-order correlations of crystal orientations [24]. Inelastic deforma-

tion also originates from intergranular deformation modes such as grain boundary

sliding. Grain boundary sliding has been found to occur in Aluminum alloys at

stress concentrations and crack tips causing stress relaxation. Grain boundary

modeling techniques can be used to model brittle fracture behavior of aluminum

alloys. In recent years, cohesive interface models have been widely used to numer-

ically simulate fracture initiation and growth by the finite element method either

as mixed boundary conditions [112, 113, 114, 115] or by embedding into cohesive

finite elements [116, 117, 118, 119]. Grain boundary physics could be incorporated

into the microstructure interrogation model using cohesive elements to model the

grain boundary or using appropriately modified constitutive laws [120] that ac-

count for grain size effects. For inversion of relationship of higher-order features

with computed properties, one could develop methods based on modern methods

of statistical learning. These techniques are being successfully employed in other

fields such as bio-informatics and macro-molecule and genome mapping [121]-[126]

and are especially useful for addressing microstructure-property inversion prob-

lems. Another interesting problem that can be addressed is the development of

methodologies to visualize high-dimensional microstructure-property-process maps
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graphically in three dimensions using model reduction of higher order microstruc-

tural features.

7.3 Control of thermal processing stages

Thermal processing involves recrystallization of deformed grains with dislocation-

free grains. A stored energy is introduced through an accumulation of dislocations

during deformation in the homogenization model. This involves modeling for strain

energy development and nucleation probabilities based on grain boundary (GB)

energy [127, 128, 129, 130]. GB nucleation is modelled by considering all orienta-

tions in the deformation texture as nuclei and distributing them in the deformed

matrix depending on the stored energy [131]. All kinds of deformation inhomo-

geneities are considered to be favoured sites for nucleation. The most prominent

are grains with large in-grain misorientations and transition bands [132] within

grains identified from the finite element model. Recovery kinetics of a deformed

grain is determined by the number of different activated slip systems during defor-

mation [133] with several different activated slip systems leading to faster recovery.

For modeling recrystallization textures, boundary mobilities of nuclei are assumed

to be given by a mean-field approximation where the rate of growth is proportional

to the variation in strain energy from the mean field energy. The driving force for

primary static recrystallization results from the difference between the stored en-

ergy densities of the deformed matrix and the nucleus obtained from finite element

simulations. Monte-Carlo (MC) method [134, 135, 136, 137, 138] can be used

to simulate aspects of grain growth kinetics. Information on residual stresses and

plastic work in the microstructure are transferred from the finite element model to

the Monte Carlo analysis. Although methods such as these are only approximate
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due to randomness in the process and the level of assumptions involved (e.g. in nu-

cleation locations), well-calibrated parameters [139] have indeed shown reasonable

comparisons with experimental results, prompting their potential use for designing

thermal stages during the manufacturing process.
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