PARTIALIY BAIANCED DESIGNS AND PROPERTIES A AND B

U. B. Paik

Korea University, Seoul, Korea
W. T. Federer

Cormell University, Ithaca, New York
Reviewed by: B. V. Shah, Research Triangle Inst., Research Triangle Park, N. C.

ABSTRACT

The following relations have been demonstrated in this paper: an incomplete block design with property A in the Kurkjian-Zelen sense, is a balanced factorial experiment in the Shah sense which in turn is a partially balanced incomplete block design having a "binary number association scheme" and conversely; likewise, a rectangular design which has property A in columns and property B in rows in the Zelen-Federer sense, is a balanced factorial rectangular experiment which in turn is a partially balanced rectangular design, and conversely. The establishment of these relations is useful in constructing block and row-column designs which are partially balanced and in constructing fractional replicates which are balanced.

1. INTRODUCTION AND SUMMARY

Kurkjian and Zelen [1963] introduced a structural property, which was designated as Property A, of the (block) incidence matrix N associated with a class of block and direct product experiment designs. Extending this idea, Zelen and Federer [1964] introduced two structural properties, which were
designated as Property A and Property B, associated with experiment designs for two-way elimination of heterogeneity, such as a k-row by b-column rectangular experiment design, and direct product designs. Property A is associated with the column (block) incidence matrix N and Property B is associated with the row incidence matrix \tilde{N}. In the paper by Paik and Federer [1971], the incomplete block designs (IBD) possessing Property A were designated as PA type incomplete block designs and likewise, those two-way elimination of heterogeneity designs possessing both Property A and Property B were designated as $P A B$ type designs. Also, these authors showed that, under factorial structure, PA type incomplete block designs are "balanced factorial experiments (BFE)", as defined by Shah [1960], and are partially balanced incomplete block (PBIB) designs, with relevant parameters.

In this paper, we show that every BFE is a PA type incomplete block design but a PBIB design is not always a balanced factorial incomplete block design (BFIBD) nor a PA type incomplete block design. We define a "binary number association scheme (BNAS)" and obtain a condition for which a PBIB design is a BFIBD or a PA type IBD. Also, we define n-ary partially balanced block (NPBB) designs which may have a specified treatment appearing an arbitrary number of times in a block, and discuss some properties of NPBB designs.

The relationships discussed herein may be summarized as follows:
(i) $\quad(P A$ and $P B) \leftrightarrows P A B$
(ii) $\quad \mathrm{BFE} \leftrightarrows \mathrm{PA} \leftrightarrows$ (NPBB with BNAS)
(iii) PBIB without BNAS is not a BFE
(iv) PBIB \rightarrow NPBB but not conversely
(v) BFIBD \leftrightarrows (PBIB with BNAS)
(vi) (PA type IBD) \leftrightarrows (PBIB with BNAS)
(vii) $\mathrm{PAB} \leftrightarrows$ (NPBB in rows and in columns)
(viii) $\mathrm{PAB} \rightarrow$ balanced factorial rectangular experiment (BFRE), but not conversely.

2. PRELIMINARIES

The following notation (after Kurkjian and Zelen [1963]) will be used:

$$
\begin{aligned}
& 1_{m_{1}}: m_{i} \times l \text { column vector having all elements unity, } \\
& J_{m_{1}}=1_{m_{1}} 1_{m_{1}}^{\prime}: m_{i} x_{m_{i}} \text { matrix with all elements unity, } \\
& I_{m_{1}}: m_{i} x_{m_{i}} \text { identity matrix, } \\
& I_{i}^{x_{1}}=\left\{\begin{array}{ll}
1_{m_{1}} \quad \text { if } x_{i}=0 \\
I_{m_{1}} & \text { if } x_{i}=1
\end{array}, \quad \begin{array}{ll}
M_{i}=m_{i} I_{m_{1}}-J_{m_{1}} \\
I_{m_{1}} & \text { if } \delta_{i}=0 \\
J_{m_{1}} & \text { if } \delta_{i}=1
\end{array},\right.
\end{aligned}
$$

The direct product, or Kronecker product, of $M_{i}^{X_{1}}$ and M_{j}^{X} will be written as $M_{i}^{X_{1}} \& M_{j}^{X_{j}}$ and in general, the joint direct product of $n M_{i}^{X_{1}}(i=1,2, \ldots, n)$ will be written as $\prod_{i=1}^{n} M_{i}^{X_{1}}$.

Let there be v treatments, each replicated r times in b blocks of k plots each. Let $N=\left\|n_{i j}\right\|, i=1,2, \ldots, v ; j=1,2, \ldots, b$, be the incidence matrix of the design, where $n_{i j}(=0,1,2, \ldots$,$) is equal to the number of times the 1^{\text {th }}$ treatment occurs in the $j^{\text {th }}$ block. The model assumed is

$$
\begin{equation*}
y_{i j}=\mu+t_{i}+b_{j}+\epsilon_{i j} \tag{2.1}
\end{equation*}
$$

\cdot where $y_{i j}$ is the yield of the plot in the $j^{\text {th }}$ block to which the $i^{\text {th }}$ treatment is applied, μ is the overall effect, t_{i} is the effect of the $i^{\text {th }}$ treatment,
b_{j} is the effect of the $j^{\text {th }}$ block, and $\epsilon_{i j}$ is the experimental error. The effects μ, t_{i}, b_{j}, are assumed to be fixed constants, while the error $\epsilon_{i j}$'s are assumed to be independent normal variates with mean zero and variance σ^{2}. Let T_{i} be the total yield of all plots having the $i^{\text {th }}$ treatment, B_{j} be the total yield of all the plots of the $j^{\text {th }}$ block and t_{i} be a solution for t_{i} in the normal equations. Further, denote the column vectors $\left(T_{1}, T_{2}, \ldots, T_{v}\right)^{\prime},\left(B_{1}, B_{2}, \ldots B_{b}\right)$ ', $\left(t_{1}, t_{2}, \ldots, t_{v}\right)$, and $\left(\hat{t}_{1}, \hat{t}_{2}, \ldots, \hat{t}_{v}\right)^{\prime}$ by $\mathbb{T}, \underline{B}$, and \underline{t} and \hat{t} respectively. It is known that the reduced normal equations for intra-block estimates of treatment effects are

$$
\begin{equation*}
\hat{C} \underline{\hat{t}}=\underline{Q} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{align*}
& C=r I_{v}-\frac{1}{k} N N, \text { and } \tag{2.3}\\
& \underline{Q}=\underline{T}-\frac{1}{k} N B .
\end{align*}
$$

The matrix C defined in (2.3) will be called the C-matrix of the design. The solution of (2.2) is $\hat{t}=C^{+} \underline{Q}$, where C^{+}is a generalized inverse of C.

Consider a factorial experiment with n factors $F_{1}, F_{2}, \ldots, F_{n}$, where factor F_{i} has m_{i} levels for $i=1,2, \ldots, n$, there being $v=\prod_{i=1} m_{i}$ treatments. Kurkjian and Zelen [1963] introduced a structural property of the design which was related to the block (or column) incidence matrix N of the design. This atructur al property was termed Property A and may be defined as follows: A block design will be said to have Property A, or will be called a PA type block design, if

$$
N N^{\prime}=\sum_{s=0}^{n}\left\{\begin{array}{c}
\Sigma \tag{A}\\
\delta_{1}+\delta_{2}+\ldots+\delta_{n}=s \\
h\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \\
\prod_{i=1}^{n} \otimes D_{i}^{\delta_{i}}
\end{array}\right\}
$$

where $\delta_{i}=0$ or 1 for $i=1,2, \ldots, n$, and $h\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ are constants. In this case, we obtain the following solution for equation (2.2):

$$
\begin{equation*}
\hat{t}=\sum_{s=1}^{n}\left\{\sum_{x_{1}+x_{2}+\ldots+x_{n}=s}^{\prod_{i=1}^{n} \otimes I_{i}^{x_{1} m_{i}}} \underset{\operatorname{rv\theta }\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{ }\right\} \underline{Q} \tag{2.5}
\end{equation*}
$$

where $\theta\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the efficiency factor associated with the estimate of generalized interaction $F_{1}^{x_{1}} F_{2}^{x_{2}} \ldots F_{n}^{x_{n}}$ and

$$
\begin{align*}
& r \theta\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{2.6}\\
& =\sum_{s=0}^{n-1}\left\{\begin{array}{c}
\sum \\
\delta_{1}+\delta_{2}+\ldots+\delta_{n}=s \\
g\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \prod_{i=1}^{n} m_{i}^{\left(1-x_{i}\right)} \delta_{i}\left(1-x_{i} \delta_{i}\right)
\end{array}\right\}
\end{align*}
$$

for $g(0,0, \ldots, 0)=r-\frac{1}{k^{h}}(0,0, \ldots, 0), g\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)=-\frac{1}{k^{h}}\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ if $\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \neq 0$.

In a k-row by b-column rectangular experiment design with $v=\prod_{i=1}^{n} m_{i}$ treatments being replicated r times each, suppose the column incidence matrix N has Property A and the row incidence matrix \tilde{N} of the experiment design has Property B as introduced by Zelen and Federer [1964], i.e.,

$$
\tilde{N} \tilde{N}=\sum_{s=0}^{n}\left\{\begin{array}{c}
\Sigma \tag{B}\\
\delta_{1}+\delta_{2}+\ldots+\delta_{n}=s \\
\tilde{H}\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \prod_{i=1}^{n} \otimes D_{i} \delta_{1}
\end{array}\right\},
$$

where $\tilde{K}\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ are constants, then the $k \times b$ rectangular design will be said to have Property A and Property B or will be called a PAB type $k \times b$ rectangular design. It is known that, in a $k \times b$ rectangular design with v treatments being replicated r times each, the reduced normal equations for estimating the treatment effects may be written as

$$
\begin{equation*}
\hat{\mathbf{C}_{\underline{t}}}=\underline{\widetilde{Q}} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{align*}
& \tilde{C}=r I_{v}-\frac{1}{k} N N^{\prime}-\frac{1}{b^{N N N}}+J_{v}(r / v), \text { and } \tag{2.8}\\
& \tilde{Q}=\underline{I}-\frac{1}{k} \underline{N B}-\frac{1}{b} \tilde{N} \underline{R}+1_{v}(g / v), \tag{2.9}
\end{align*}
$$

where $\underline{R}=\left(R_{1}, R_{2}, \ldots, R_{k}\right)^{\prime}, R_{S}=$ total yield of all the plots of the $s{ }^{\text {th }}$ row; $g=$ total yield of all the plots in the experiment. The solution of (2.7) is $\hat{t}=\widetilde{C^{+}} \underline{Q}$ where $\widetilde{\mathrm{C}}^{+}$is a generalized inverse of matrix $\tilde{\mathrm{C}}$. In the PAB type design,
where
(2.11)

$$
\begin{aligned}
& r \boldsymbol{\theta}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =\sum_{s=0}^{n-1}\left\{\begin{array}{c}
\sum \\
\delta_{1}+\delta_{2}+\ldots+\delta_{n}=s \\
\left.\tilde{s}\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \prod_{i=1}^{n} m_{i}^{\left(1-x_{1}\right) \delta_{1}}\left(1-x_{i} \delta_{i}\right)\right\},
\end{array}\right]
\end{aligned}
$$

for $\tilde{g}(0,0, \ldots, 0)=r-\frac{1}{k} h(0,0, \ldots, 0)-\frac{1}{b} \tilde{h}(0,0, \ldots, 0), \tilde{g}\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ $=-\frac{l_{h}}{k}\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)-\frac{l_{n}}{b}\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ if $\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \neq 0$.

Paik and Federer [1971] have proved that PA type incomplete block designs are BFE and PAB type rectangular designs achieve "complete balance" over each of the interactions in the sense of the following definitions given by Shah [1960]:

Definition 2.1. (Shah). "Complete balance" is achieved over an interaction If and only if all the normalized contrasts belonging to the seme interaction are estimated with the same variance.

Definition 2.2. (Shah). An experiment will be called a balanced factorial experiment (BFE), if the following conditions are satisfied:
(a). Each of the treatments is replicated the same number of times.
(b). Each of the blocks has the same number of plots.
(c). Estimates of contrasts belonging to different interactions are uncorrelated with each other.
(d). "Complete balance" is achieved over each of the interactions.

Shah [1960] proved that a BFE is a PBIB design with relevant parameters. Therefore, we state that a PA type block design is a BFE and is a PBIB design with relevant parameters. Also, a PAB type rectangular design is a balanced factorial rectangular experiment (BFRE).

3. BAIANCED FACTORIAL EXPERTMENTS AND PA TYPE BIOCK DESIGNS

We shall prove that every BFE is a PA type block design. Consider a $B F E$ in n factors, $F_{1}, F_{2}, \ldots, F_{n}$ at $m_{1}, m_{2}, \ldots, m_{n}$ levels respectively, with each treatment combination replicated r times in b blocks of k plota each, n
there being $v=\prod_{i=1} m_{i} \underset{n}{\text { treatments. }}$ Let $L_{q_{1}} q_{8} \ldots q_{n}$, where q_{1} is 0 or 1 for $i=1,2, \ldots, n$, be a $v \times \prod_{i=1}^{n}\left(m_{i}-1\right)^{q_{1}}$ matrix formed by a complete set of $\prod_{i=1}^{n}\left(m_{i}-1\right)^{q_{i}}$ normalized orthogonal vectors forming the generalized interaction $i=1$
$F_{1}^{q_{1}} F_{2}^{q_{2}} \ldots F_{n}^{q_{n}}$, then using the results of Shah $[1958,1960]$ and Paik and Federer [1971], the C-matrix defined in (2.2) is uniquely represented and given by

$$
\left.\begin{array}{l}
\left.c=r \sum_{s=1}^{n}\left\{\begin{array}{l}
\sum \\
q_{1}+q_{2}+\ldots+q_{n}=s \\
\\
\text { also be written as }
\end{array}\right\} . q_{1}, q_{2}, \ldots, q_{n}\right) L_{q_{1}} q_{2} \ldots q_{n} L_{q_{2}}^{\prime} q_{2} \ldots q_{n} \tag{3.1}
\end{array}\right\}
$$

which can also be written as

$$
\left.\left.c=r \| \sum_{\varepsilon=1}^{n}<\sum_{i, j} \sum_{1}=1,2, \ldots, v, \ldots+q_{n}=s=1 q_{1}, q_{2}, \ldots, q_{n}\right) f_{i j}^{\left(q_{1}, q_{2}, \ldots, q_{n}\right)}\right\} \|,
$$

where the $\left.f_{i j}^{\left(q_{1}, q_{2}\right.}, \ldots, q_{n}\right)$ are the elements of $L_{q_{2}} q_{2} \ldots, q_{n}{ }^{I_{q_{2}}^{\prime} q_{2}} \ldots, q_{n}$ corresponding to the $i^{\text {th }}$ row and $j^{\text {th }}$ column. Under the assumed model (2.1), the variance-covariance matrix of a contrast set corresponding to the generalized interaction $F_{1}^{q_{1}} F_{2}^{q_{2}} \ldots F_{n}^{q_{n}}$ will be

$$
\sigma^{2} / r \theta\left(q_{1}, q_{2}, \ldots, q_{n}\right) I_{n} \prod_{i=1}\left(m_{i}-1\right)^{q_{1}}
$$

and since representation of the matrix C is unique, i.e., if $I_{q_{2}} q_{2}, \ldots, q_{n}$ and $L_{q_{1}}^{*} q_{2} \ldots q_{n}$ are two matrices formed by two sets of $\prod_{i=1}^{n}\left(m_{i}-1\right)^{q_{1}}$ normalized orthogonal vectors forming the generalized interaction $F_{1}^{q_{1}} F_{2}^{q_{n}} \ldots F_{n}^{q_{n}}$, then

$$
\begin{equation*}
L_{q_{1} q_{2}} \ldots q_{n} L_{q_{1}}^{\prime} q_{2} \ldots q_{n}=L_{q_{1}}^{*} q_{2} \ldots q_{n} L_{q_{1}}^{*}, q_{2} \cdots q_{n} . \tag{3.4}
\end{equation*}
$$

Define P_{i} to be an $m_{i} \times\left(m_{i}-1\right)$ matrix such that $P_{i} P_{i}^{\prime}=I_{m_{1}-1}$ and $1_{m_{i}}^{\prime} P_{i}=0$ for $i=1,2, \ldots, n$, and define, for $i=1,2, \ldots, n$,

$$
P_{i}^{q_{1}}= \begin{cases}\frac{1}{\sqrt{m_{i}}} 1_{m_{1}}, & \text { if } q_{i}=0 \tag{3.5}\\ p_{i}, & \text { if } q_{i}=1 .\end{cases}
$$

Let

$$
\begin{equation*}
\mathbf{L}_{q_{1}}^{*} q_{n} \ldots q_{n}=\prod_{i=1}^{n} \otimes P_{i}^{q_{1}} ; \tag{3.6}
\end{equation*}
$$

then $L_{q_{1}}^{*} q_{2} \ldots q_{n}$ is a $v \times \prod_{i=1}^{n}\left(m_{i}-1\right)^{q}$ matrix formed by a complete set of $\pi_{i=1}^{n}\left(m_{i}-1\right)^{q_{1}}$ normalized orthogonal vectors and we obtain: $i=1$

$$
\begin{align*}
L_{q_{1} q_{2}}^{*} \ldots q_{n} I_{L_{1}}^{*} q_{2} \ldots q_{n} & =\left(\prod_{i=1}^{n} \otimes P_{i}^{q_{1}}\right)\left(\underset{i=1}{n} \otimes p_{i}^{q_{1}}\right)^{\prime} \tag{3.7}\\
& =\prod_{i=1}^{n} \otimes P_{i}^{q_{1}}\left(P_{i}^{q_{1}}\right)^{\prime},
\end{align*}
$$

and from (3.5)

$$
P_{i}^{q_{1}}\left(p_{i}^{q_{i}}\right)^{\prime}= \begin{cases}\frac{I}{m_{1}} J_{m_{1}}, & \text { if } q_{i}=0 \tag{3.8}\\ \frac{I}{m_{1}}-\frac{I}{m_{i}} J_{m_{1}}, & \text { if } q_{i}=1\end{cases}
$$

Now, from (3.1), (3.4), (3.7) and (2.3), we obtain:

$$
\begin{align*}
& \text { NV }=k r\left(\prod_{i=1}^{n} \otimes I_{m_{1}}-\sum_{s=1}^{n}\left\{q_{1}+q_{2}+\ldots+q_{n}=s \quad \theta\left(q_{1}, q_{2} \ldots, q_{n}\right) .\right.\right. \tag{3.9}\\
& \left.\left.\prod_{i=1}^{n} \otimes P_{1}^{q_{1}}\left(P_{i}^{q_{1}}\right)^{\prime}\right\}\right),
\end{align*}
$$

and from (3.8), we know that the incidence matrix N has Property A.

Theorem 3.1. Every BFE is a PA type block design and conversely.
Example 3.1. In a BFE with $v=m_{1} m_{2}$,

$$
\begin{aligned}
C & =r \sum_{s=1}^{2}\left\{q_{q_{1}} \sum_{q_{2}=s} \theta\left(q_{1}, q_{2}\right) \prod_{i=1}^{2} \otimes P_{i}^{q_{i}}\left(P_{i}^{q_{i}}\right)^{\prime}\right\} \\
& =r\left\{\theta(0,1) P_{1}^{0}\left(P_{1}^{0}\right)^{\prime} \otimes P_{2} P_{2}^{i}+\theta(1,0) P_{1} P_{1}^{\prime} \otimes P_{2}^{0}\left(P_{2}^{0}\right)^{\prime}+\theta(1,1) P_{1} P_{1}^{\prime} \otimes P_{2} P_{2}^{\prime}\right\}
\end{aligned}
$$

$$
\begin{aligned}
=r\left\{\theta (0 , 1) \left(\frac{I}{m_{1}} J_{m_{1}} \otimes I m_{m_{2}}\right.\right. & \left.-\frac{1}{m_{1} m_{2}} J_{m_{1} m_{2}}\right)+\theta(1,0)\left(\frac{1}{\left.m_{2} I_{m_{1}} \otimes I_{m_{2}}-\frac{1}{m_{1} m_{2} J_{1} m_{3}}\right)}\right. \\
& \left.+\theta(1,1)\left(I_{m_{1}}-\frac{1}{m_{1}} J_{m_{1}}\right) \otimes\left(I_{m_{2}}-\frac{1}{m_{2}} J_{m_{2}}\right)\right\} \\
= & r \theta(1,1) I_{m_{1} m_{2}}+r\left(\frac{\theta(1,0)}{m_{2}}-\frac{\theta(1,1)}{m_{2}}\right) I_{m_{1}} \otimes J_{m_{2}}+r\left(\frac{\theta(0,1)}{m_{1}}-\frac{\theta(1,1)}{m_{1}}\right) J_{m_{1}} \otimes I I_{m_{2}} \\
& +r\left(\frac{\theta(1,1)}{m_{1} m_{2}}-\frac{\theta(0,1)}{m_{1} m_{2}}-\frac{\theta(1,0)}{m_{1} m_{2}}\right) J_{m_{1} m_{2}} .
\end{aligned}
$$

Hence, $g(0,0)=r \theta(1,1), g(0,1)=r\left(\frac{\theta(1,0)}{m_{2}}-\frac{\theta(1,1)}{m_{2}}\right)$, and $g(1,0)=r\left(\frac{\theta(0,1)}{m_{1}}\right.$ $\left.-\frac{\theta(1,1)}{m_{1}}\right)$. Then, we obtain:

$$
r \theta(1,1)=g(0,0), \quad r \theta(1,0)=g(0,0)+m_{2} g(0,1),
$$

and

$$
r \theta(0,1)=g(0,0)+m_{1} g(1,0) .
$$

4. BAIANCED FACTORIAL EXPERIMENTS AND PBIB DES IGNS

Consider a BFE with n factors as described in section 3. Two treatments are $p_{1} p_{2} \ldots p_{n}^{\text {th }}$ associates, where $p_{i}=1$, if the i th factor occurs at the same level in both the treatments and $p_{i}=0$ otherwise; $\lambda_{p_{1}} p_{2} \ldots p_{n}$ Will denote the number of times these treatments occur together in a block. Then we have

$$
\begin{equation*}
n_{p_{1}} p_{2} \ldots p_{n}=\sum_{s=0}^{n}\left\{p_{1}+p_{2}+\ldots+p_{n}=s_{i=1}^{n}\left(m_{i}-1\right)^{1-p_{i}}\right\} \tag{4.1}
\end{equation*}
$$

This association is called the "binary number association scheme (BNAS)". Note: The above association scheme was defined by Shah [1960], but the association scheme was not named. Also, the association scheme could be called the "factorial association scheme" but Srivastava and Anderson [1971] have used the name "factorial association scheme" in Multidimensional Partially Balanced designs in a more general sense.

In the above BFE, suppose that model (2.1) is assumed. Using (2.3). and (3.2), let

$$
\begin{equation*}
C=r I_{v}-\frac{1}{k} N N^{\prime}=r \| \sum_{s=1}^{n}\left\{_{i, j=1,2, \ldots, v} \sum_{q_{1}+\ldots q_{n}=s} \quad \theta\left(q_{1}, q_{2}, \ldots, q_{n}\right) f_{i j}^{\left(q_{1}, q_{2}, \ldots, q_{n} \|, ~\right.}\right. \tag{4.2}
\end{equation*}
$$

where $f_{i j}^{\left(q_{1}, q_{2}, \ldots, q_{n}\right)}$ is the element of $L_{q_{1}}^{*} q_{2} \ldots q_{n}^{I_{1}} q_{1}^{*} q_{2}^{*} \ldots q_{n}$ corresponding to the $i^{\text {th }}$ row and $j^{\text {th }}$ column. Shah [1958] showed that $f_{i j}\left(q_{1}, q_{3}, \ldots q_{n}\right)$ depends only on the associates, say $p_{1} p_{2} \ldots p_{n}$, between the $i^{\text {th }}$ and $j^{\text {th }}$ treatment. Let us denote this by f_{p}^{q}, where $p=\sum_{h=1}^{n} p_{h} 2^{n-h}, q=\sum_{h=1}^{n} q_{h} 2^{n-h}$, $p=m=2^{n}$ denotes all levels equal $(i=j)$, and f_{m}^{q} is a diagonal element. Then, from (4.2)

$$
\begin{aligned}
& r \sum_{q=1}^{m} \theta_{q} f_{m}^{q}=r-\frac{r}{k}, \text { where } \theta_{q}=\theta\left(q_{1}, q_{2}, \ldots, q_{n}\right) \text { such that } \\
& q=\sum_{h=1}^{n} q_{h} 2^{n-h}
\end{aligned}
$$

and

$$
r \sum_{q=1}^{m} \theta_{q} f_{p}^{q}=-\frac{\lambda_{p}}{k}, p \neq m
$$

where $\lambda_{p}=\lambda_{p_{1} p_{2} \ldots p_{n}}$ such that $p=\sum_{h=1}^{n} p_{h} 2^{n-h}$ and λ_{p} equals the number of times two $\mathrm{p}^{\text {th }}$ associate treatments occur together.

From (4.3), we obtair the following expression:
(4.4) $\mathrm{r}\left[\begin{array}{cccc}f_{0}^{0} & f_{0}^{1} & \ldots & f_{0}^{m} \\ f_{1}^{0} & f_{I}^{I} & \ldots & f_{I}^{m} \\ & \cdots & \cdots & \\ f_{m}^{0} & f_{m}^{I} & \cdots & f_{m}^{m}\end{array}\right]\left[\begin{array}{c}\theta_{0} \\ \theta_{I} \\ \vdots \\ \theta_{m}\end{array}\right]=-\frac{1}{k}\left[\begin{array}{c}\lambda_{0} \\ \lambda_{I} \\ \vdots \\ \lambda_{m}\end{array}\right]$,
where $\lambda_{m}=r-r k, f_{p}^{0}=\frac{l}{v}$ for $p=0,1, \ldots, m$, and θ_{0} is a dumny parameter always equal to zero, introduced to simplify the inverse relation. Shah [1958] also obtained the following relation for (4.4):

$$
\begin{equation*}
\prod_{i=1}^{n} \otimes F_{i}(1) \cdot \underline{\theta}=-\frac{1}{k^{\lambda}}, \tag{4.5}
\end{equation*}
$$

where

$$
F_{i}(I)=\frac{1}{m_{i}}\left(\begin{array}{lr}
1 & -1 \\
1 & m_{1}-1
\end{array}\right), \underline{\theta}=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{m}\right)^{\prime}, \text { and } \underline{\lambda}=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{\mathrm{I}}\right)^{\prime}
$$

Since $\theta_{0}=0, \theta_{m}=r-r k$, equation (4.4) can be written as:

$$
\text { (4.6)r}\left[\begin{array}{cccc}
f_{0}^{1} & f_{0}^{2} & \cdots & f_{0}^{m} \\
f_{1}^{1} & f_{1}^{2} & \cdots & f_{1}^{m} \\
\cdots & \cdots & \\
f_{m}^{1} & f_{m}^{2} & \cdots & f_{m}^{m}
\end{array}\right]\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{m}
\end{array}\right]=-\frac{1}{k}\left[\begin{array}{c}
\lambda_{0} \\
\lambda_{1} \\
\vdots \\
\lambda_{m-1} \\
r-r k
\end{array}\right]
$$

For convenience, let us denote this as follows:

$$
r F_{\underline{*}}{ }^{+}=-\frac{1}{\mathrm{k}}
$$

Consider a PBIB design having parameters $v=\prod_{i=1}^{n} m_{i}, b, r, k$, and $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}$, then we may obtain equation (4.6) for the unknown variables $\theta_{1}, \theta_{2}, \ldots, \theta_{m}$. Suppose

$$
\begin{equation*}
\rho\left(F^{*}\right)=\rho\left(F^{*}, \lambda\right)=m, \tag{4.7}
\end{equation*}
$$

where $\rho\left(F^{*}\right)$ denotes the rank of the matrix F^{*}, then we may obtain a unique solution for $\underline{\theta}^{+}$. Furthermore, if the above PBIB design is connected, none of $\theta_{i}, i=1,2, \ldots, m$, are zero. Hence, the above PBIB design is a balanced factorial incomplete block design (BFIBD) and is a PA type incomplete block design. Now, we proceed to prove relation (4.7). That $\rho\left(F^{*}\right)=m$, is clear from (4.4).

Next, since f_{p}^{q} only depends upon the $p^{\text {th }}$ associates between two treatments in the $L_{q} L_{q}^{\prime}$, where p replaces $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and q replaces $\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ such that $p=\sum_{h=1}^{n} p_{h} 2^{n-h}$ and $q=\sum_{h=1}^{n} q_{h} 2^{n-h}$ respectively, the number of f_{p}^{q} in any row or column of the $L_{q} L_{q}^{\prime}$ is n_{p} or $n_{p_{1}} p_{2} \ldots p_{n}$ and since $\mathcal{I}_{v}^{\prime}\left(I_{q} I_{q}^{\prime}\right)=0$, we have

$$
\begin{equation*}
\sum_{p=0}^{m} n_{p} f^{q}=0 \quad \text { for } q=1,2, \ldots, m \tag{4.8}
\end{equation*}
$$

or

$$
\sum_{p=0}^{m-1} n_{p} f_{p}^{q}=-f_{m}^{q} \text { for } q=1,2, \ldots, m
$$

Also, it is known that

$$
\begin{equation*}
\sum_{p=0}^{m-1} n_{p} \lambda_{p}=r-r k \tag{4.10}
\end{equation*}
$$

Thus, from (4.9) and (4.10), we hare proved that $\rho\left(F^{*}\right)=\rho\left(F^{*}, \underline{\lambda}\right)$.
Theorem 4.1. Every BFIBD is a PBIB with BNAS and conversely. Also, every PA type IBD is a PBIB with BNAS. and conversely. .

In a PBIB design with $v=\prod_{i=1}^{11} m_{i}$, each of the $\lambda_{q_{q}} q_{8} \ldots q_{n}$ for all $q_{i}=0$ or 1 , does not always have a unique value, i.e., a PBIB design does not always have a "binary number association scheme".

Example 4.1. $v=2 \times 5, r=2, k=4, b=5$.

$\frac{b_{1}}{}$	$\frac{b_{2}}{}$	b_{3}	$\frac{b_{4}}{(00)}$	$\frac{b_{5}}{(04)}$
(12)	$\frac{14)}{(14)}$	$\frac{(03)}{(03)}$		
(01)	(10)	(13)	(02)	(11)
(02)	(11)	(01)	(10)	(13)
(03)	(00)	(04)	(12)	(14)

This design is a triangular PBIB design with two associate classes. However, if we consider the BNAS, we may find $\lambda_{00}=1$ or $0, \lambda_{01}=1$, and $\lambda_{11}=6$, so the above PBIB design is not a BFE.

5. n-ary PARTIALLY BATANCED BLOCK DESIGNS (NPBB DESIGNS)

In the classical $B I B$ design or PBIB design, no treatment appears more than once in a block. However, we may wish to apply some treatments more than once in a block. In such cases, the following definition of n-ary partially balanced block designs (NPBB (see Tocher [1952])) may be userul for application.

Definition 5.1. (i). The experimental material is divided into b blocks of k units each, some treatments may appear $n_{i j}=0,1,2, \ldots, n-1=a$ specified number, times in the same block.
(ii). All treatments will be replicated the same number (say r) of times in the same number (say q) of blocks.
(iii). There can be established a relation of association between any two treatments satisfying the following requirements.
(a). Two treatments are either first associates, second associates,..., or $u^{\text {th }}$ associates.
(b). Each treatment has exactly $n_{i} i^{\text {th }}$ associates ($i=1,2, \ldots, u$).
(c). Given any two treatments which are $i^{\text {th }}$ associates, the number of treatments common to the $j^{\text {th }}$ associate of the first and $k^{\text {th }}$ associate of the second is $p_{j k}^{i}$ and is independent of the pair of treatments we start with. Also $p_{j k}^{i}=p_{k j}^{i}(i, \dot{j}, k=1,2, \ldots, u)$.
(iv). Two treatments which are $i^{\text {th }}$ associates occur together the same number (say λ_{i}) of times. For example, if two treatments, t and t ' say, are $i^{\text {th }}$ associates and they are replicated $r_{t j}$ and $r_{t}{ }^{\prime} j$ times in the $j^{\text {th }}$ block respectively, and $r=\sum_{j=1} r_{t j}$ for $t=1,2, \ldots, v$, then

$$
\lambda_{i}=\sum_{j=1}^{b} r_{t j} r_{t}{ }^{\prime} j
$$

is constant as long as two treatments t and t^{\prime} are $i^{\text {th }}$ associates. If $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{u}=$ constant, the design may be called an n-ary balanced block design (NBB design).
(v). $\quad r^{*}=\sum_{j=1}^{b} r_{t j}^{2}$ is constant for $t=1,2, \ldots, v$.

The following relation between the parameters will hold:
(1). $\quad \mathrm{vr}=\mathrm{bk}$
(2). $n_{1}+n_{2}+\ldots+n_{u}=v-1$.

Suppose that the $t^{\text {th }}$ treatment is replicated $\dot{r}_{t j}$ times in the $j^{\text {th }}$ block, then the $t^{\text {th }}$ treatment appears together with others $r_{t j}\left(k-r_{t j}\right)$ times in the same block, and $\lambda_{i}=\sum_{j} r_{t j} r_{t}{ }^{\prime} j$ times. with each of its $i^{\text {th }}$ associates
if treatments t and t^{\prime} are $i^{\text {th }}$ associates. So,

$$
\sum_{i=1}^{b} r_{t i}\left(k-r_{t j}\right)=\sum_{i=1}^{u} n_{i} \lambda_{i}
$$

Hence, we obtain:
(3). $n_{1} \lambda_{1}+n_{2} \lambda_{c_{1}}+\ldots+n_{u} \lambda_{u}=r k-r^{*}$.

Also,
(4). $\quad p_{j 1}^{i}+p_{j 2}^{i}+\ldots+p_{j u}^{i}= \begin{cases}n_{j}-1 & \text { if } i=j \\ n_{j} & \text { if } i \neq j\end{cases}$
(5). $\quad n_{i} p_{j k}^{i}=n_{j} p_{i k}^{j}$.

Now we define a BNAS for an NPBB design having $v=\prod_{i=1}^{n} m_{i}$ treatments applied in b blocks of k plots of each. In a factorial system of n factors $F_{1}, F_{2}, \ldots, F_{n}$ at $m_{1}, m_{2}, \ldots, m_{n}$ levels respectively, the two treatments are the $p_{1} p_{2} \ldots p_{n}^{\text {th }}$ associates, where $p_{i}=1$, if the $i^{\text {th }}$ factor occurs at the same level in both treatments and $p_{i}=0$ otherwise; $\lambda_{p_{i}} p_{n} \ldots p_{i n}$ will denote the number of times these treatments occur together in the same blocks. Suppose two treatments t and t are $p_{1} p_{n} \ldots p_{n}$ th associates and these treatments are replicated r_{t}, and r_{t}, j times in the $j^{\text {th }}$ block respectively, then

$$
\begin{equation*}
\lambda_{p_{1} p_{n}} \ldots p_{n}=\sum_{j=1}^{b} r_{t j} r_{t \prime j} \tag{5.1}
\end{equation*}
$$

If $\lambda_{p_{2}} p_{g} \ldots p_{n}$ does not depend upon a particular pair of $p_{1} p_{2} \ldots p_{n}$ th associates and if $r=\sum_{j=1} r_{t j}$ is a constant for $t=1,2, \ldots, v$, then the above block design is an NPBB design with respect to the "binary number association scheme".

Any contrast belonging to the generalized interaction $F_{1}^{q_{1}} F_{2}^{q_{2}} \ldots F_{n}^{q_{n}}$ in the above design is estimated with variance

$$
\begin{equation*}
\sigma^{2} / r \rho\left(q_{1}, q_{2}, \ldots, \dot{q}_{n}\right), \tag{5.2}
\end{equation*}
$$

where q_{i} is 0 or 1 , ther the relation between θ 's and λ 's is

$$
\begin{equation*}
r \prod_{i=-I}^{n} \otimes F_{i}(I) \cdot \underline{\theta}=-\frac{I}{k} \underline{I}, \tag{5.3}
\end{equation*}
$$

where

$$
\begin{gather*}
F_{i}(1)=\frac{1}{m_{i}}\left(\begin{array}{cc}
1 & -1 \\
1 & m_{1}-1
\end{array}\right), \tag{5.4}\\
\underline{\theta}=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{m}^{\prime}\right)^{\prime}, \text { and } \underline{\lambda}=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)^{\prime},
\end{gather*}
$$

where θ_{q} and λ_{p} stand for $\theta\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ and $\lambda_{p_{1}} p_{B} \ldots p_{n}$ such that
$q=\sum_{h=1}^{n} q_{h} 2^{n-h}$ and $p=\sum_{h=1}^{n} p_{h} 2^{n-h}$ respectively and $\theta_{0}=0$ and
$\lambda_{m}=\sum_{j=1}^{b} r_{t j}^{2}-r k=r^{*}-r k$.

Now we conclude the following:
Theorem 5.1. Any NPBB design having BNAS is a BFE and is a PA type block design, and conversely.

Example 5.1. Consider the following block design having $\mathrm{v}=2 \times 3, \mathrm{r}=4$, $\mathrm{k}=8$, and $\mathrm{b}=3:$

| b_{1} | (00), | $(10),(01)$, | (02), | $(11),(12),(00),(10)$. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| b_{2} | (01), | $(11),(00),(11)$, | $(02),(10),(12),(01)$. | |
| b_{3} | $(02),(12),(12)$, | $(10),(00),(01),(11),(02)$. | | |

In this design, treatment (00) is a $(1,0)^{\text {th }}$ asscoiate with treatments (01) and (02); a $(0,1)^{\text {th }}$ asscciate with treatment (10); and a $(0,0)^{\text {th }}$ associate with treatments (11) and (12). Sirice $r_{(00), 1}=2, r_{(00), 2}=1, r_{(00), 3}=1$, and $r_{(01), 1}=1, r_{(01), 2}=2, r_{(01), 3}=1$, then $\lambda_{10}=5$, and since $r_{(10), 1}=2, r_{(10), 2}=1, r_{(10), 3}=1$, then $\lambda_{O 1}=6$, and lastly, since $r_{(11), 1}=1, r_{(1 I), 2}=2, r_{(11), 3}=1$, then $\lambda_{00}=5$. Also, we obtain $r^{*}=6$ and $\lambda_{11}=6-32=-26$. Hence, the above design is an NPBB design with $v=2 \times 3, r=4, k=8, b=3$ and $\lambda_{00}=5, \lambda_{01}=6, \lambda_{10}=5, \lambda_{11}=-26$, is an NBFE, and is a PA type block design.

6. PAB TYPE RECTANGULAR DESIGNS AND n-ary

PARTIALUY BAIANCED RECTANGUIAR DESIGNS

Consider a $k X b$ rectangular design in n factors $F_{1}, F_{2}, \ldots, F_{n}$ at m_{1}, m_{2}, \ldots, m_{n} levels having $v=\prod_{i=1} m_{i}$ treatments and each treatment being replicated r times. Suppose that the design is a BFE with respect to columns (a PA type column design) and any contrast belonging to the generalized interaction $F_{I}^{q_{1}} F_{2}^{q_{m}} \ldots F_{n}^{q_{n}}$ is estimated with variance

$$
\sigma^{2} / r \theta\left(q_{1}, q_{2}, \ldots, q_{n}\right), \text { where } q_{i}=0 \text { or } 1 \text { for } i=1,2, \ldots, n
$$

or

$$
\begin{equation*}
\sigma^{2} / r \theta_{q} \text { where } q=\sum_{h=1}^{r_{1}} q_{h} 2^{n-h}, \tag{6.1}
\end{equation*}
$$

then we may obtain the parameter vector $\mathbf{\lambda}$ from the following relation:

$$
r \prod_{i=1}^{n} \otimes F_{i}(1) \cdot \underline{\theta}=-\frac{1}{k} \lambda,
$$

where $\underline{\theta}=\left(0, \theta_{1}, \ldots, \theta_{\mathrm{II}}{ }^{\prime}\right.$ ' and $\underline{\lambda}=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{\mathrm{m}-1}, r-\mathrm{rk}\right)^{\prime}$. Also, suppose that the design is an NBFE with respect tc rows. or a PA type row design, and any contrast belonging to generalized interaction $F_{]}^{q_{2}} F_{2}^{q_{n}} \ldots F_{n}^{q_{n}}$ is estimated with variance

$$
\sigma^{2} / r \tilde{\theta}\left(q_{1}, q_{2}, \ldots, q_{n}\right) \text {, where } q_{i}=0 \text { or } 1 \text { for } i=1,2, \ldots, n \text {, }
$$

or

$$
\begin{equation*}
\sigma^{2} / r \tilde{\theta}_{q}, \text { where } q=\sum_{h=1}^{n} q_{h} 2^{n-h} ; \tag{6.2}
\end{equation*}
$$

then, we may obtain the parameter vector $\tilde{\mathcal{1}}$ from the following relation:

$$
\prod_{i=1}^{n} \otimes F_{i}(I) \cdot \underline{\tilde{G}}=-\frac{1}{b} \tilde{\lambda}
$$

where $\underline{\tilde{\theta}}=\left(0, \tilde{\theta}_{1}, \ldots, \tilde{\theta}_{m}\right)^{\prime}, \tilde{\underline{\lambda}}=\left(\tilde{\lambda}_{0}, \tilde{\hat{\lambda}}_{1}, \ldots, \tilde{\lambda}_{m-1}, r^{*}-\mathrm{rk}\right)^{\prime}$.
In the above kxb rectangular design (from 2.8),

$$
\begin{align*}
\widetilde{C} & =r I_{v}-\frac{1}{k} N N N^{\prime}-\frac{1}{b} \tilde{N N}^{\prime}+J_{v}\left(\frac{r}{v}\right) \\
& =\left(r I_{v}-\frac{1}{k} N N^{\prime}\right)+\left(r I_{v}-\frac{1}{b} N N^{\prime}\right)-r\left(I_{v}-\frac{1}{v} J_{v}\right) \tag{6.3}
\end{align*}
$$

Then, the \tilde{C}-matrix can be written as follows:
(6.4)

$$
\begin{aligned}
\widetilde{C} & =\sum_{q=1}^{m} r \theta_{q} L_{q} L_{q}^{\prime}+\sum_{q=1}^{m} r \tilde{\theta}_{q} L_{q} L_{q}^{\prime}-r \sum_{q=1}^{m} L_{q} L_{q}^{\prime} \\
& =\sum_{q=1}^{m} r\left(\theta_{q}+\tilde{\theta}_{q}-1\right) I_{q} L_{q}^{\prime}
\end{aligned}
$$

$$
=\sum_{q=1}^{m} r \theta_{q}^{*} L_{q} L_{q}^{\prime}
$$

where $\theta_{q}^{*}=\theta_{q}+\tilde{\theta}_{q}-1$ and i_{i} is $a v \times \prod_{i=1}^{n}\left(m_{i}-1\right)^{q_{1}}\left(q_{i}=0\right.$ or 1 and $q=\sum_{h=1}^{n} q_{h} 2^{n-h}$) matrix forred by a complete set of $\prod_{i=1}^{n}\left(m_{i}-1\right)^{q_{1}}$ normalized orthogonal vectors forming the eeneralized interaction $F_{1}^{q_{1}} F_{2}^{q_{D}} \ldots F_{n}^{q_{n}}$. Hence, the above design is a balanced factoral $k \times b$ rectangular experiment and is a PAB tym. $k \times b$ rectangular fesion. We now state the following theorem:

Theorem 6.1. If the design is an NPBB having BNAS with respect to rows and also to columns, then the design is BFRE and is a PAB type rectangular design.

From theorem 5.1 and the definition of a $P A B$ type rectangular design, we obtain:

Theorem 6.2. Every PAB type rectangular design is an NPBB rectangular design having BNAS with respect to rows and to columns, and conversely.

Remark: A BFRE is not always a PAB type rectangular design nor an NPBB design having BNAS with respect to both rows and columns (see Kshirsager [1957]).

Example 6.1. Consider the design in Example 5.1 as a 3×8 rectangular arrangement.
(1). With respect to columns, $v=2 \times 3, r=4, k=3, b=8$, and $\lambda_{00}=2$, $\lambda_{01}=0, \lambda_{10}=2$, and $\lambda_{11}=-8$.

Using the formula given by Shah [1960],

$$
\underline{\theta}=-\frac{1}{\text { rk }} \prod_{i=1}^{m} \otimes G\left(m_{i}\right) \cdot \underline{\lambda} \text {, where } G\left(m_{i}\right)=\left(\begin{array}{ll}
m_{1}-1 & 1 \\
-1 & 1
\end{array}\right)
$$

$$
=\frac{1}{12}\left[\begin{array}{cccc}
2 & 1 & 2 & 1 \\
-1 & 1 & -1 & 1 \\
-1 & -1 & 2 & 1 \\
1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
0 \\
2 \\
-8
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
2 / 3 \\
2 / 3
\end{array}\right]
$$

Hence,

$$
r \theta(0,1)=4, \quad r \theta(1,0)=8 / 3, \text { and } r \theta(1,1)=8 / 3 .
$$

(2). With respect to rows, $v=2 \times 3, r=4, k=8, b=3$, and $\lambda_{00}=5$, $\lambda_{01}=6, \lambda_{10}=5$, and $\lambda_{11}=-26$.

In this case

$$
\ddot{\underline{\theta}}=-\frac{1}{32}\left[\begin{array}{cccc}
2 & 1 & 2 & 1 \\
-1 & 1 & -1 & 1 \\
-2 & -1 & 2 & 1 \\
1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
5 \\
6 \\
5 \\
-26
\end{array}\right]=\left[\begin{array}{c}
0 \\
15 / 16 \\
1 \\
1
\end{array}\right]
$$

Hence,

$$
r \tilde{\theta}(0,1)=15 / 4, \quad r \tilde{\theta}(1,0)=4, \quad \text { and } r \tilde{\theta}(1,1)=4 .
$$

(3). From (1) and (2), the above design is a "balanced factorial 3×8 rectangular experiment" and is a PAB type rectangular design having the following efficiency factors:

$$
\theta^{*}(0,1)=15 / 16 ; \quad \theta^{*}(1,0)=2 / 3, \text { and } \theta^{*}(1,1)=2 / 3 .
$$

ACKNOWLLEDGEMENT

The authors are indebted to Dr. B. V. Shah for his thorough review of and for comments on the paper. In particular, they wish to thank him for suggesting the summary of relationships as presented in the Introduction and Sumary. This paper is Mimeo No. BU-415-M and Paper No. BU-238 in the Biometrics Unit Series, Cornell University; this work was partially supported under a National Institutes of Health Research Grant No. 5RO1-GM-05900.

REFERENCES

Bose, R. C., Clatworthy, W. H. and Shrikhande, S. S. [1954]. Tables of Partially Balanced Designs with Two Associate Classes. Tech. Bull. No. 107, N. C. Agri. Exp. Station.
Kshirsagar, A. M. [1957]. On balancing in designs in which heterogeneity is eliminated in two directions. Calcutta Stat. Assoc. Bull. 1, 161-166.
Kurkjian, B. and Zelen, M. [1963]. "Applications of the calculus of factorial arrangements. I. Block and direct product designs." Biometrika 50, 63-73.
Paik, U. B., and Federer, W. T. [1971]. "On PA type incomplete block designs and PAB type rectangular designs." (Submitted for publication)
Shah, B. V. [1958]. "(On balancing in factorial experiments." Ann. Math. Stat. 29, 766-779.
Shah, B. V. [1960]. "Balanced factorial experiments." Ann. Math. Stat. 31, 502-514.
Srivastava, J. N., and Anderson, D. A. [1971]. "Factorial association schemes with application to the construction of multidimensional partially balanced designs." Ann. Math. Stat. 42, 1167-1181.
Tocher, K. D. [1952]. The design and analysis of block experiments. J. Royel Stat. Soc., B, 14, 45-100.

Zelen, M., and Federer, W. T. [1964]. "Applications of the calculus for factorial arrangements. II. Two way elimination of heterogeneity." Ann. Math. Stat. 35, 658-672.

