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Discrete Packing and Covering: An Annotated Bibliography

1. Introduction

Suppose G = (V,E) is a digraph with vertices V, edges E and with
distinct s,t ¢ V. We denote by A = [aij] the (edge-) incidence matrix of

directed (s,t)-paths in G, whose rows index the (s,t)-dipaths of G and

whose columns index the edges of G; thus a 1 when the jth edge

1]
appears in the ith (s,t)-dipath and otherwise a5 = 0. Then for any non-
negative vector of edge capacities c¢ = (c(e): e ¢ E) the maximum f1ow

problem can be modeled as

max{ley: yA < c, y > O}. P(A,c)

In the introductory pages of

[11 L.R. Ford, Jr. and D.R. Fulkerson, Flows in Networks (Princeton
University Press, Princeton, New Jersey, 1962).

this path-edge formulation of the maximum flow problem is shown to be
equivalent to the "standard" formulation based on the vertex-edge incidence
matrix of G.

In the integer programming restriction of P(A,c),

max{lsy: YA <c, ¥y >0, ¥ integral}, PI(A,c)

one seeks a maximum cardinality (integral) "packing" of the rows of A into
the vector c¢. For any nonnegative matrix A and any nonnegative vector ¢

we will refer to PI(A,C) as a discrete packing model. Thus the integral




maximum flow problem with integral capacities is termed an (s,t)-dipath
packing model. For discrete packing models it is generally the case that A
is an integral matrix and one usually insures boundedness of objective value
in PI(A,C) by assuming that A has no row all of whose entries are 0.

Also for any nonnegative A and c, the problem

min{ley: YA > ¢, y > 0, y integral} CI(A,C)

is termed a discrete covering model. Consider, for instance, the case in

which A is the (vertex-) incidence matrix of stable sets in a simple graph
G CI(A,c) is then the weighted vertex coloring problem for G. In most
covering applications A will again be an integral matrix and usually fea-
sibility of CI(A,c) for all nonnegative vectors ¢ 1is guaranteed by
assuming that A has no O-valued columns. The linear programming relax-
ation of CI(A,C), denoted C(A,c), is obtained by deleting the integrality
stipulation in CI(A,C).

In the sequel we categorize and briefly survey certain discrete packing
and covering models. The models which we consider will be well-behaved in
the sense that for a given matrix A the optimum values of P(A,c) and

P.(A,c), or the analogous values for covering models, will always be equal

I
or nearly equal, i.e., for all nonnegative integral c. For brevity we omit
explicit definitions of the combinatorial structures which give rise to
these models; for such definitions the reader is referred to the references

cited. For additional surveys of this and closely related topics, the

reader should consult references [2] - [7] below, which we now briefly



describe. Reference [2] provides the initial and fundamental survey of
blocking theory and antiblocking theory. These are polyhedral duality
theories treating, respectively, polyhedra of the forms given by the linear
programming duals of P(A,c) and C(A,c). Important initial examples of
discrete packing and covering models are presented here. In Chapter 2 of the
dissertation [3] several combinatorial optimization models are discussed in a
manner stressing their common algebraic features and a general survey of
discrete packing and covering models is presented in Chapter 2 of the
dissertation [4]. Reference [5] demonstrates that the ellipsoid method
provides an important and powerful tool for the analysis of discrete packing
and covering models. Finally, in [6] combinatorial min-max statements
arising from discrete packing and covering models are surveyed and in [7]
min-max statements are studied from the viewpoint of establishing such
results using total dual integrality (see §2 below) arguments. These
comprehensive surveys provide an indispensible overview of discrete packing

and covering models.

[2] D.R. Fulkerson, "Blocking and Anti-Blocking Pairs of Polyhedra,"
Mathematical Programming 1 (1971) 168-194.

[3] S. Baum, "Integral Near-Optimal Solutions to Certain Classes of Linear
Programming Problems," Ph.D. Thesis, Cornell University, School of
Operations Research and Industrial Engineering, Technical Report 360
(Ithaca, New York, 1977).

[4] 0. M.-C. Marcotte, "Topics in Combinatorial Packing and Covering,"
Ph.D. Thesis, School of Operations Research and Industrial Engineering,
Cornell University (Ithaca, New York, 1983).



[5] M. Grotschel, L. Lovész and A. Schrijver, "The El1lipsoid Method and
Its Consequences in Combinatorial Optimization," Combinatorica 1
(1981) 169-197.

[6] A. Schrijver, "Min-Max Results in Combinatorial Optimization," In:
A. Bachem, M. Grotschel and B. Korte (Eds.), Mathematical Programming,
Bonn 1982 - The State of the Art (Springer, Berlin, 1983) pp. 439-500.

[7] A. Schrijver, "Total Dual Integrality From Directed Graphs, Crossing
Families, and Sub- and Supermodular Functions," Mimeographed Manuscript
(1982).

2. Strong Integrality

Considering again the maximum flow problem we note that generally the
dipath incidence matrix will not be totally unimodular. Nevertheless, when

A is such a matrix the following (see [2]) strong max-min property is

valid: for any nonnegative integral vector c, P(A,c) has an
integer-valued pptimum solution vector. This is not difficult to show by
interpreting P(A,c) and its linear programming dual in Tight of the
max-flow, min-cut theorem (see [1]). Analogously, when A is the

(edge-) incidence matrix of vertex stars in a bipartite graph, it follows
from the famous theorem of Konig (min vertex cover = max matching) that the

following strong min-max property (defined in [2]) holds: C(A,c) and

CI(A,C) have the same optimum solution value for any nonnegative integral
vector c. The terminology used here stems from the fact that the strong
max-min and min-max properties give rise to discrete or combinatorial

strengthenings of the usual max-min and min-max statements arising from

1inear programming duality considerations. In the present section we
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indicate several combinatorial instances for which such strong integrality

results hold.
As noted above, the maximum flow problem provides a prototypical

discrete packing model for which strong integrality holds. It follows from

[8] J. Edmonds, "Edge-Disjoint Branchings,” In: R. Rustin (Ed.),
Combinatorial Algorithms (Algorithmics Press, New York, 1972)
pp. 91-96.

also an early and fundamental result in this area, that strong integrality
holds for the incidence matrix of rooted spanning branchings in a digraph.
For both of these examples, blocking duality (see [2]) suggests a "dual"
jnstance of strong integrality. For the maximum flow case, the related
family of positive parts of minimal (s,t)-cuts gives a discrete packing

model for which strong integrality holds--see [2] and

[9] J.T. Robacker, "Min-Max Theorems on Shortest Chains and Disjunct Cuts
of a Network," The RAND Corporation, Research Memorandum RM-1660-PR
(Santa Monica, California, 1956).

With regard to rooted spanning branchings, strong integrality for positive

parts of rooted cuts follows from

[10] J. Edmonds, "Optimum Branchings," in: G.B, Dantzig and A.F. Veinott,
Jr. (Eds.), Mathematics of the Decision Sciences, Lectures in Applied
Mathematics, Vol. 11 (Am. Math. Soc., Providence, Rhode Island, 1968)
pp. 346-361.

and
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[11] D.R. Fulkerson, "Packing Rooted Directed Cuts in a Weighted Directed
Graph," Mathematical Programming 6 (1974) 1-14.

Note that the previous two examples arise from classes of cutsets in a
digraph. A related, though apparently deeper, result of Lucchesi and
Younger establishes strong integrality for the (edge-) incidence matrix of

directed cutsets in a digraph.

127 C.L. Lucchesi and D.H. Younger, "A Minimax Relation for Directed
Graphs," Journal of the London Mathematical Society (2) 17 (1978)
369-374,

In contrast to the earlier examples, it has been shown by Schrijver in

[13] A. Schrijver, "A Counterexample to a Conjecture of Edmonds and
Giles," Discrete Mathematics 32 (1980) 213-214.

that strong integrality does not generally hold for the blocking clutter
(see [2]) of directed cutsets. For particular classes of digraphs, however,

for which the latter model does have the strong integrality property, see

[147 A. Frank, "Kernel Systems of Directed Graphs," Acta Scientiarium
Mathematicarum (Szeged) 41 (1979) 63-76.

and

[15] A. Schrijver, "Min-Max Relations for Directed Graphs," Annals of
Discrete Mathematics 16 (1982) 261-280.
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Several recent papers have considered generalizing certain of the above
models in a manner so that strong integrality will still hold. Most

notably, in

[16] P.D. Seymour, "The Matroids with the Max-Flow Min-Cut Property,"”
Journal of Combinatorial Theory (B) 23 (1977) 189-222.

a natural matroid generalization of the maximum flow model is considered and
a forbidden minor characterization is given for the class of matroids for
which the associated discrete packing model has the strong integrality
property. Relying on the work of Seymour in [16], Korach has given a
characterization of those instances of P(A,c) for which strong integrality
will hold when A 1is the (edge)-incidence matrix of T-cuts in an undirected

graph.

[17] E. Korach, "Packings of T-Cuts, and Other Aspects of Dual
Integrality," Ph.D. Thesis, Department of Combinatorics and Opti-
mization, University of Waterloo (Waterloo, Ontario, Canada, 1982).

In [14] Frank introduces the notion of a kernel system of a digraph and
uses this combinatorial structure to generalize the maximum flow and rooted
spanning branching models mentioned above. A generalization is also
obtained for the respective blocking models, namely, the positive parts of
minimal (s,t)-cuts and the positive parts of rooted cuts. In [15] Schrijver
also has generalized these results using the concept of strong connectors
for a digraph; the strong integrality result of Lucchesi and Younger [12]
can also be deduced using the model of [15]--see [7]. The reader is

especially referred to [7] in which Schrijver details the interrelationships
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among various combinatorial models, including many which give rise to strong

integrality results. Finally, in

[18] A. Schrijver, "Packing and Covering of Crossing Families of Cuts,"”
Mimeographed Manuscript (1983).

Schrijver characterizes certain crossing families which, when defined on the
vertices of any digraph, give rise to strong integrality, both for the
collection of cuts induced by the crossing family and for the (blocking)
collection of covers of the crossing family. This setting subsumes many of
the examples of strong integrality discussed in [15].

We now consider strong integrality results for discrete covering
models. For covering models it is plain that when matrix A has integral
entries, the strong min-max condition can hold only if A is a (0,1)-valued
matrix. Thus we restrict attention to models for which A is (0,1)-valued
and observe the well-known result that strong integrality holds here
precisely when the (set-wise) maximal rows of A correspond to the maximal
cliques in a perfect graph. The subject of perfect graphs is covered

thoroughly by the following two recent references:

[19] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic
Press, New York, New York, 1980).

and

[20] C. Berge and V. Chvatal (Eds.), Topics on Perfect Graphs (to appear
in Annals of Discrete Mathematics).

Essentially two approaches have emerged for establishing strong

integrality results such as those outlined above. The first we consider is



algebraic in nature and is based on the concept of total dual integrality,

first stated in full generality in

[21] J. Edmonds and F.R. Giles, "A Min-Max Relation for Submodular
Functions on Graphs," Annals of Discrete Mathematics 1 (1977)
185-204,

For packing models total dual integrality of the Tinear system {Ax > 1,

x > 0} arising from the linear programming dual of P{A,c) 1is a restatement
of the strong max-min stipulation relating P(A,c) and PI(A,C), and
similarly for covering models and systems of the form {Ax <1, x > 03,

The use of total dual integrality as a tool for establishing combinatorial
max-min and min-max statements {(and hence for establishing strong integral-
ity properties) is surveyed extensively by Schrijver in [7]. Additional

important references on the topic of total dual integrality are

[22] F.R. Giles and W.R. Pulleyblank, "Total Dual Integrality and Integer
Polyhedra" Linear Algebra and Its Applications 25 (1979) 191-196.

where it is shown that any integral polyhedron can be represented by a

totally dual integral system of the form {Ax < b} with b integral and

[23] A. Schrijver, "On Total Dual Integrality," Linear Algebra and Its
Applications 38 (1981) 27-32.

which establishes existence of a unique minimal totally dual integral system
{Ax < b} with A integral for representing a full dimensional rational
polyhedron. In the latter case {x: Ax < b} is integral if and only if b

is integral.
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One interesting and important consequence of total dual integrality of
the system {Ax > 1, x > 0} is that {x: Ax > 1, x > 0} is an integral
polyhedron (a similar statement holds for covering models). This was

observed by Fulkerson in [2]; generalizations of this result are proved in

[24] A.J. Hoffman, "A Generalization of Max Flow-Min Cut," Mathematical
Programming 6 (1974) 352-359.

and in [21].

A second approach for establishing strong integrality results is
algorithmic. In many of the examples cited above, a polynomial-time
algorithm is known for solving PI(A,C) or CI(A,C) which yields strong

integrality as a by-product. For such algorithms the reader can refer to,

eogcg

[25] E.L. Lawler, Combinatorial Optimization: Networks and Matriods (Holt,
Rinehart and Winston, New York, 1976). (for the max flow problem),

[26] L. Lovgsz, “On Two Minimax Theorems in Graph Theory," Journal of
Combinatorial Theory (B) 21 (1976) 96~103. (for rooted spanning
branchings and directed cutsets),

and to [2], [117, [14] and [15] for algorithmic discussions concerning,
respectively, (s,t)-cut positive parts, rooted cut positive parts, kernel
systems and strong connectors. Finally, a major contribution of [5] is the
use of the ellipsoid algorithm to construct a polynomial-time algorithm for
solving CI(A,C) when A 1is the (vertex-) incidence matrix of maximal
cliques of a perfect graph.

It is important to point out that all the algorithms mentioned in the

previous paragraph are polynomial-time in the input length required to
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describe the associated graph as opposed to the length required to describe
the matrix A. The point here is that, for example in the case of a perfect
graph G on n vertices, even though G may have exponentially (in n)
many maximal cliques (rows of A), the algorithm of [5] for solving CI(A,c)
runs in time which is a polynomial function of n and the length required
to describe the vector c. If we do consider matrix A as the given data,

however, then it has been shown in

[27] S. Baum and L.E. Trotter, Jr., "Finite Checkability for Integer
Rounding Properties in Combinatorial Programming Problems,"
Mathematical Programming 22 (1982) 141-147.

that the optimal values of P(A,c) and PI(A,C) are equal for all non-
negative integral vectors ¢ if and only if equality holds for a certain
easily described finite set of nonnegative integral ¢, and similarly for
covering. Hence strong integrality for a given matrix A can be verified

in finite time. More generally, building on the algorithmic approach in

[28] R. Chandrasekaran, "Polynomial Algorithms for Totally Dual Integral
Systems and Extensions" In: P. Hansen (Ed.), Studies on Graphs and
Discrete Programming, Annals of Discrete Mathematics 11 (1981) 39-51.

Cook has shown that recognition of whether a given linear system is totally

dual integral is a problem in co-NP. This result appears in

[291 W. Cook, "Recognition of Totally Dual Integral Systems," CORR Report
82-20, University of Waterloo (Waterloo, Ontario, Canada, 1982).
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These computational complexity results extend naturally to the setting of

integer rounding, which is the topic of the following section.

3. Integer Rounding

Suppose we are given a nonnegative matrix A and a nonnegative vector
¢ for which the optimum value of P(A,c) is not an integer. Then strong
integrality fails for this discrete packing model, but it is reasonable to
ask whether the optimum values of P(A,c) and PI(A,C) remain “"close".

Thus it is said that a discrete packing model has the integer round down

property when, for any nonnegative integral vector c, the optimum value of
PI(A,C) is given by the largest integer which does not exceed the value of

P(A,c). An integer round up property is defined analogously for discrete

covering models. In this section we indicate several packing and covering
models which have these properties; we mention again that a survey of such
models also appears in the dissertation [4].

Perhaps the most well-known integer rounding results arise when A is
the incidence matrix of bases in a matroid. Then integer rounding holds for
both packing and covering by the rows of A; this is a consequence of the

work in

[30] J. Edmonds, "Minimum Partition of a Matroid into Independent
Subsets," Journal of Research of the National Bureau of Standards
698 (1965) 67-72.

and

[31] J. Edmonds and D.R. Fulkerson, "Transversals and Matroid Partition,"
Journal of Research of the National Bureau of Standards 698 (1965)
147-153.

These results are extended in
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[32] S. Baum and L.E. Trotter, Jr., "Integer Rounding for Polymatroid and
Branching Optimization Problems,"” S.I.A.M. Journal on Algebraic and
Discrete Methods 2 (1981) 416-425,

to the setting in which the rows of A correspond to the bases of an
integral polymatroid. The approach in [32] is algebraic, using (Tocal)
total unimodularity to establish a form of polyhedral integral decomposition
(see below), whereas in [30] a polynomial-time algorithm is given for
covering the elements of a matroid by its bases. In [4] a min-max result

for machine scheduling presented in

[33] T.C. Hu, "Parallel Sequencing and Assembly Line Problems," Operations
Research 9 (1961) 841-848.

is derived from the integer round up property for matroid basis covering.
Next suppose we are given an integral supply-demand network (all
supply, demand and capacity data are integral) and that the rows of A are

the integral feasible (edge-) flows of this network. It is shown in

[34] D.R. Fulkerson and D.B. Weinberger, "Blocking Pairs of Polyhedra
Arising From Network Flows," Journal of Combinatorial Theory 13 (1975)
265-283.

that integer round down holds for the associated discrete packing model.
Note that the special case of 1 source, 1 sink with unit supply, demand and
capacities corresponds to the maximum flow model considered in the previous
section. Similiar results are obtained in [34] for uncapacitated integral

supply-demand networks (using minimal integral feasible flows) and in
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[35] D.B. Weinberger, "Network Flows, Minimum Coverings, and the Four-
Color Conjecture," Operations Research 24 (1976) 272-290.

corresponding integer round up results are developed for the analogous

covering models. These packing and covering results are extended in

[36] L.E. Trotter, Jr. and D.B. Weinberger, "Symmetric Blocking and Anti-
Blocking Relations for Generalized Circulations," Mathematical Program-
ming Study 8 (1978) 141-158,

to models defined by matrices whose rows consist of the integral solutions
to linear systems of the form {Nx = 0, a <X £ b}, where N 1is a totally
unimodular matrix and 0 < a < b with vectors a and b integral. The
results of these three references are established algebraically; in [4] and

in

[37] R.E. Bixby, 0. M.-C. Marcotte and L.E. Trotter, Jr., "Packing and
Covering with Integral Feasible Flows of Integral Supply-Demand
Networks" (to appear).

polynomial-time (in the size of the network data) algorithms are given which
can be used to solve PI(A,C) and CI(A,C) in the network cases.

In special cases the incidence matrix of certain common independent
sets for two matroids (defined on the same ground set) exhibits integer
rounding properties. When the rows of A correspond to the maximum
cardinality common independent sets of two strongly base orderable matroids,

integer rounding results for packing and covering are obtained in

[38] C.J.H. McDiarmid, "On Pairs of Strongly-Base-Orderable Matroids,"
Cornell University, School of Operations Research and Industrial
Engineering, Technical Report 283 (Ithaca, New York, 1976).
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Integer round up results are also obtained in [38] for the case in which the
rows of A give the incidence of (set-wise) maximal common independent sets
of two strongly base orderable matroids. For general matroids these results

fail (see [38]). In

[39] M.D. McDaniel, "Network Models for Linear Programming Problems with
Integer Rounding Properties," M.S. Thesis, School of Operations
Research and Industrial Engineering, Cornell University (Ithaca,
New York, 1981).

it is shown that similar results for two gammoids (a class of matroids
properly subsumed by strongly base orderable matroids) can be derived from
the model of [34] by consideration of an appropriate supply-demand network,
thus tracing these integrality results back, in an algebraic sense, to total
unimodularity of the vertex-edge incidence matrix of a digraph. The

approach of [38] is algorithmic, relying on earlier work in

[40] J. Davies and C.J.H. McDiarmid, "Disjoint Common Transversals and
Exchange Structures," Journal of the London Mathematical Society 14
(1976) 55-62.

Branchings provide another "matroid intersection” example for which
integer rounding properties hold. Integer round down for the family of
maximum cardinality branchings in a digraph and integer round up for both
this family and the family of maximal branchings are established in [32]
using Edmonds' "edge-disjoint (rooted) branchings theorem" (see [8l).
Integer round up for the case of rooted spanning branchings (the covering
analogue of Edmonds' packing result in [8]) follows from min-max results in

147 and 1in
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[41] K. Vidyasankar, "Covering the Edge Set of a Directed Graph with
Trees," Discrete Mathematics 24 (1978) 79-85.

and

[421 A. Frank, "Covering Branchings," Acta Scientiarum Mathematicarum

(Szeged) 41 (1979) 77-81.

This can also be deduced from the results in [32].

As a final example we mention that in [4] the integer round up property
is shown to hold for certain classes of cutting stock problems. Note that
the usual formulation of the cutting stock problem is as a discrete covering
model for which the rows of matrix A are the integral feasible solutions
to a knapsack problem.

The integer rounding properties for packing and covering models are
equivalent to a type of integral decomposition of related polyhedra (see
[32]). Thus integral decomposition provides a useful means for establishing
integer rounding results. Several variations of the notion of integral
decomposition, as well as an indication of certain combinatorial models for

which these alternative refinements hold, are presented in

[43] C.J.H. McDiarmid, "Integral Decomposition in Polyhedra," Mathematical
Programming 25 (1983) 183-198.

We mention again that the computational complexity results of [27], [28] and
[29] indicated in the previous section remain valid in the integer rounding

framework and we add that in
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[44]7 J. Orlin, "A Polynomial Algorithm for Integer Programming Covering
Problems Satisfying the Integer Round-Up Property," Mathematical
Programming 22 (1982) 231-235,

co-NP recognition of the integer rounding properties for discrete packing

and covering models was first established.

4, An Open Question

For certain combinatorial families of interest a slight weakening of
the notion of integer rounding may hold. In this section we indicate such a
possibility for the edge-coloring problem on an undirected graph. Suppose
A is the (edge-) incidence matrix of matchings in a simple undirected graph
G. Then CI(A,I) is the problem of determining a minimum coloring of the
edges of G. One can verify that when G 1is, for example, the Peterson

graph (see [45]), the values of C(A,1) and CI(A,l) differ by unity.

[45] J.A. Bondy and U.S.R. Murty, Graph Theory With Applications (North
Holland, New York, 1976).

Thus integer round up does not hold for this discrete covering problem.

Nevertheless, Vizing's theorem (see [45]) states that for any simple graph
G the minimum number of colors required to color the edges of G exceeds
the maximum degree of a vertex in G by at most 1, which implies that the

values of CI(A,l) and C(A,1) differ by at most unity. The latter

assertion follows because, for any nonnegative integral vector c,
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min{lsy: yA > c, y > 0, y integral}

|v
T~

b
g

min{ley: YA > ¢, y > 0}

= (2)
max{cex: Ax < 1, x > 0}

2 (3)

max{cex: x is the incidence vector of a star in G},

where relation (1) is obvious, relation (2) follows from linear programming
duality theory and (3) is valid because any incidence vector of the star of
a vertex in G satisfies the linear system {Ax <1, x > 0}. Vizing's
theorem for simple graphs thus insures that all the above expressions differ
by at most unity when ¢ = 1.

To what extent is the preceding development valid for multigraphs,
i.e., for arbitrary nonnegative integral ¢ in the above expressions?
Vizing's theorem for a multigraph G (see [45]) asserts that the difference
between the size of a minimum edge coloring and that of the largest star in
G is at most the largest multiplicity of an edge in G; it is easy to
construct examples for which this maximum possible difference is achieved.
Thus for general ¢ the first and last expressions above may differ by as

much as the largest component of <¢. In

[46] P.D. Seymour, "On Multi-Colourings of Cubic Graphs, and Conjectures
of Fulkerson and Tutte," Proceedings of the London Mathematical
Society 38 (1979) 423-460.
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Seymour raises the question of whether for general c¢ the difference
between CI(A,C) and C(A,c), i.e., the difference governing relation (1)

above, remains at most unity. Resolving this question seems to be quite

difficult, but were it to be settled in the affirmative, edge coloring would
provide a combinatorial model for which a natural weakening of the integer
round up property would hold. We conclude by recalling that an integer
rounding result is often accompanied by a polynomial-time algorithm for
solving the associated discrete packing or covering problem, In the present

instance, however, Holyer has shown in

[47] 1. Holyer, "The NP-Completeness of Edge-Colouring," S.I.A.M. Journal
on Computing 10 (1981) 718-720.

that the edge coloring problem is NP-complete.



