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This dissertation was inspired by two exciting developments in the field of ge-

nomics. The first is the high-quality genome sequencing of ancient archaic in-

dividuals, including two Neanderthals and one Denisovan, which has made

possible many new insights about human and archaic hominin evolution over

the past half million years. Previous studies have demonstrated strong evidence

for multiple interbreeding events between these groups, as well as with other

unsequenced hominins.

The second development is a new method, called ARGweaver, which infers

ancestral recombination graphs (ARGs) from the genome sequences of multi-

ple individuals. The ARG describes the genetic relationships between these

individuals along the genome, in the form of local trees with branch lengths

describing times to the most recent common ancestor.

In the first chapter, I provide an introduction to ARGweaver and describe

several new features that make it applicable to a wider range of data, including

integration over phase, accounting for ancient sampling dates, correcting for

low-quality genomes, and sampling under the more accurate SMC′ model.

In the second chapter, I show how ARGweaver was used to provide strong

evidence in favor of a migration event from ancient humans out of Africa over

a hundred thousand years ago. These humans likely encountered Neanderthals

and admixed with them, leaving segments of their DNA in the Neanderthal



genome.

In the final chapter, I introduce an extended version of ARGweaver that can

sample ARGs conditional on a generic demographic model that may include

population divergences and migrations. Once ARGs are inferred under this

model, the posterior probability of introgression can be computed along the

genome for any migration event. I apply this method to human and archaic ho-

minins, and classify 3% of the Neanderthal genome as potentially introgressed

from humans. The properties of these segments suggest that this admixture

occurred roughly 250 thousand years ago, and there are no signs that natural

selection acted against these regions. I also detect lower levels of introgres-

sion from an unknown archaic hominin in the Denisovan genome, and possible

traces of the same type of introgression in the Neanderthal genome.
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CHAPTER 1

ARGWEAVER: OVERVIEW, IMPROVEMENTS, AND EXTENSIONS

1.1 ARGweaver overview

ARGweaver is software originally written and published by Matt Rasmussen

as the product of his postdoctoral work in the Siepel lab at Cornell [1]. It

was the end of his academic career (at least for now, as he moved to indus-

try), and formed the beginning of my doctoral research. All of the work in

this dissertation is based upon using, improving, and extending ARGweaver,

and interpreting the resulting ARGs. I shall therefore start this chapter with an

introduction to ARGs and ARGweaver. Section 1.1 is adapted from a chapter

about ARGweaver, written by Melissa Hubisz and Adam Siepel, in the book

”Statistical Population Genomics” and which will be published open-source by

Springer.

In the remainder of this chapter, I will describe and demonstrate some of

the major modifications that I have made to ARGweaver. The section on phase

integration was originally published as part of the Supplementary material for

[2].

1.1.1 Introduction

The ARG can rightly be considered the holy grail of statistical population ge-

netics. The ARG represents the history of a collection of related genome se-

quences, in terms of the coalescence events by which segments of genomes

1



trace to common ancestral segments and the historical recombination events that

cause patterns of ancestry to differ from one genomic site to the next. Pro-

vided the sequences under study are orthologous and co-linear—meaning that

they trace to a common ancestral sequence without genomic duplications or

rearrangements—the ARG is a complete description of their evolutionary rela-

tionships. Moreover, in statistical terms, the ARG provides a highly compact

and precise description of the correlation structure of such a collection of se-

quences. Importantly, the ARG naturally defines a set of recombination break-

points, a set of haplotypes, and a genealogy for each non-recombining interval

in the genome—all objects that are useful starting points for countless popula-

tion genetic analyses.

Many questions in applied population genetics can be reframed as questions

about ARG structure. For example:

• Recombination rate estimation. Recombination rates can be estimated by

simply counting recombination events and dividing by the total branch-

length of the ARG.

• Estimation of allele ages or mutation rates. Mutation events can easily be

mapped to branches within the ARG by maximum parsimony, enabling

straightforward estimation of allele ages and mutation rates.

• Local ancestry inference. The local ancestry structure of an admixed indi-

vidual (i.e., which genomic segments derive from which distinct source

populations) can be determined by tracing the individual’s two diploid

lineages in the ARG and identifying the source population with which

each genomic segment clusters, as well as the recombination events that

terminate these segments.

2



• Demography inference. More general information about demographic his-

tory (such as population sizes, migration rates, and divergence times) is

also embedded in the ARG. A demographic model can fairly easily be es-

timated from a known ARG by making use of the counts of coalescence

events within and between populations.

• Detection of sequences under selection. Natural selection can be detected by

identifying local distortions in the ARG, for example, unusual clusters of

coalescence events or extremely deep times to most recent common ances-

try. Recent progress using this approach has recently been published [3]

In practice, however, the true ARG is impossible to know with certainty. The

“ARG space,” consisting of every possible ancestral history of a set of genomes,

is astronomically large, and the information in genome sequences is insufficient

to choose a specific ARG above all others. But, given a model of coalescence,

recombination, and nucleotide substitution, it is possible to compute the prob-

ability of an observed data set under a particular ARG, and it will generally

be true that some ARGs are much more likely to have produced the data than

others. The approach taken by ARGweaver is to sample from the posterior dis-

tribution of ARGs, given a collection of genome sequence data and a reasonable

set of modeling assumptions. This approach is computationally expensive, and

it has the drawback of producing a complex and unwieldy output—a collection

of potential ARGs, none of which is exactly correct, but which, in the aggregate,

reflect certain properties of the true ARG. Nevertheless, this approach can be

extremely powerful, potentially providing insights into the structure of the data

and the evolutionary history of the sample that are not easily obtained using

simpler methods.
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1.1.2 What is an ARG?

An ARG represents all ancestral relationships among a collection of genomes

(see Figure 1.1). If n is the number of (haploid) genomes under study (usually

from n
2 diploid individuals), then at the present day, there are n lineages in the

ARG. As we trace these lineages back in time at a particular genomic location,

we will find that distinct lineages gradually coalesce into shared ancestral lin-

eages, until all n lineages have found a single most recent common ancestor.

These coalescence events define a tree known as a genealogy that fully describes

the evolutionary relationships among the present-day genomes at the locus in

question.

However, recombination events in the history of the sample can cause the ge-

nealogy to change from one genomic location to the next. Looking backward in

time, a recombination at a particular genomic location has the effect of splitting

a lineage into two, with one path representing the evolutionary history to one

side of the breakpoint and another path representing the history to the other

side. The ARG captures these recombination events together with the coales-

cence events. As one follows a lineage upward in the ARG, that lineage may

either merge with another lineage, representing a coalescence event, or it may

split into two lineages, representing a recombination event (Figure 1.1A). In the

case of recombination events, the junction in the ARG is also labeled with the

genomic position of the recombination (this information is not relevant for coa-

lescence events).

Based on these labels for recombination events, one can extract a local tree

for any position in the genome from the ARG. First, one identifies the lineage

associated with each present-day sample. These lineages are traced backward

4
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Figure 1.1: A. Schematic of an ARG with 4 lineages in the present, and
2 ancestral recombination events along a region of length L.
Tracing the history backwards until all lineages have reached a
common ancestor. B. An alternative view of the ARG depicted
in A, showing the local tree between each pair of recombina-
tion breakpoints. The dotted lines on the tree show the recom-
bination event which transforms the tree on the left side of the
breakpoint into the tree on the right side. C. The data under-
lying this ARG, where only derived alleles at variant sites are
shown. Figure adapted from [1].
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through the ARG, and coalescences between them are noted. When a recombi-

nation event is identified, one of the two possible paths is selected based on the

relationship of the position in question to the annotated recombination break-

point. Specifically, if position is to the left of the breakpoint, then the left path

is taken; and if the position is to the right of the breakpoint, then the right path

is taken. (Because recombination breakpoints by definition occur between nu-

cleotides, one of these two cases must hold.) Thus, the paths from the present-

day samples to the root will coalesce only, never splitting, and therefore must

define a tree. Furthermore the tree will be the same for all genomic positions

between two recombination breakpoints, differing only between positions on

opposite sites of a breakpoint.

Another way to think about the ARG, then, is that it defines a series of op-

erations on trees along the length of a chromosome. As one walks along a chro-

mosome from left to right, the local tree remains fixed until a recombination

breakpoint is encountered, and then that tree is altered to form a new tree, in

the specific manner defined by the change in path at the corresponding recom-

bination node in the ARG (Figure 1.1B). The ARG, therefore, can be thought

of as being interchangeable with a sequence of local trees and the associated

recombination events that transform each tree to the next. In practice, this is

the representation of the ARG assumed by the Sequentially Markov Coalescent

(SMC′) and used by ARGweaver, and in this chapter we will generally treat the

ARG as a collection of trees and recombination events. Nevertheless, it should

be noted that this representation does not strictly capture all of the information

in the ARG. The full ARG also describes “trapped genetic material” that falls be-

tween two linked ancestral loci, but is not passed on to any present-day sample.

Ignoring this trapped material substantially simplifies modeling and inference
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algorithms, with what appear to be only minor costs in accuracy [1, 4, 5].

1.1.3 Why would you want to estimate an ARG?

As discussed above, if the ARG could be estimated accurately and easily, it

would be useful for almost every question in population genetics. In practice,

of course, there are limitations in the accuracy of inferred ARGs, and they re-

quire substantial time and effort to obtain. So, when does it make sense to take

the trouble to run ARGweaver, instead of making use of simpler or more stan-

dard population genetic summary statistics and tools? Some reasons to consider

sampling ARGs with ARGweaver include:

• Trees/genealogies. ARGweaver estimates explicit genealogies (with branch

lengths) along the genome, considering both patterns of local mutation

and local linkage disequilibrium. It may be particularly interesting to in-

spect trees at particular regions suspected to be under selection or to have

experienced introgression.

• Times/dates. These trees allow the timings of various events to be esti-

mated, including times to most recent common ancestry, other coalescence

times, and the ages of derived alleles. If desired, posterior expected values

of these times can be computed by averaging over the sampled trees.

• Ancient introgression. ARGweaver is a powerful method for detecting in-

trogression and identifying specific introgressed haplotypes, particularly

ancient introgression events that conventional methods may miss (e.g.,

[2]).
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• Bayesian treatment of uncertainty. Unlike many simpler methods,

ARGweaver attempts to fully account for the uncertainty in the ARG

given the sequence data and an evolutionary model, by sampling from

a posterior distribution of ARGs. This approach can mitigate biases from

the inference method in addressing biological questions of interest.

• Flexibility in addressing “custom” evolutionary questions. By producing ex-

plicit ARGs, ARGweaver allows almost any evolutionary question to be

addressed, including unusual ones not easily addressed with standard

summary statistics (For example: at what fraction of sites do individuals A

and B coalesce with one another before either coalesces with individual C?

What is the average TMRCA for genes of functional category X? Are re-

combination events more likely to occur in introns or intergenic regions?)

• Technical limitations of the data. ARGweaver can accommodate unphased

data, low-coverage sequences, archaic samples, and other unusual data

types that may not be easy to analyze using other methods.

1.1.4 Practical considerations

ARGweaver is designed to run on genome sequencing data for small to mod-

erate numbers of individuals—anywhere from two to a maximum of about

100. These individuals should be unrelated but come from the same species

or from recently diverged species (such as humans and chimpanzees). Phas-

ing of diploid genome sequences is not necessary—ARGweaver can phase “on

the fly,” integrating over possible phasings—but the algorithm converges faster

and, in some cases, performs better on phased data (depending on the rate of

phasing errors). Similarly, ARGweaver can be used on low-coverage sequenc-
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ing data, making use of genotype probabilities to weight the observed bases,

but high-coverage sequence data is always preferable.

In gauging the feasibility of ARG inference, it is important to recognize that

the processes of mutation and recombination are opposing forces in reconstruct-

ing an ARG. The more mutations there are, the more information there is to

guide the inference of tree topologies (genealogies). Recombination events,

however, break up the sequences into smaller blocks, effectively limiting the

information for tree inference in each block. Thus, the quality of ARG inference

depends on the ratio of mutation to recombination rates per nucleotide posi-

tion. In human data, this ratio is close to one, but recombination events tend

to be concentrated in recombination hotspots, which makes the effective ratio

greater than one for most of the genome. ARGweaver appears to work quite

well in this setting. Nevertheless, the method works better when this ratio is

even higher, and it will break down if this ratio falls significantly below one.

Another consideration is ARGweaver’s assumption of at most one recombina-

tion event per site (see below), which generally appears to have little effect but

could lead to biased estimates in cases of particularly high recombination rates,

large sample sizes, large evolutionary distances, or large effective population

sizes. Finally, because ARGweaver depends on haplotype-scale information for

inference, it is generally not useful for short sequences, deriving, for example,

from RAD-seq or a de novo short-read assembly.

In terms of the number of genomes analyzed, the “sweet spot” for

ARGweaver is generally between a handful of individuals and a few dozen.

As the number of genomes increases, more approximate models (such as the

Li and Stevens model [6]) or conventional population genetic summary statis-
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tics become increasingly accurate and informative, and the relative advantage

of using ARGweaver over other methods decreases. In addition, the run time

and size of the ARGweaver output increases with the number of genomes, and

these factors become prohibitive with more than about 100 samples. Running

ARGweaver genome-wide generally requires breaking the genome into chunks

of a few megabases and running ARGweaver in parallel on each chunk using

a computer cluster. When running ARGweaver genome-wide is not a realistic

possibility, it may still be of interest to apply ARGweaver to specific genomic

regions of interest, such as candidate selective sweeps or introgressed regions.

It may also be useful to run ARGweaver on subsets of the available genome

sequences, for example, to shed light on genealogy structure, ancient introgres-

sion, or allele age—features ARGweaver may estimate more accurately than

other methods.

Another practical consideration is that while ARGweaver’s output is richly

informative, it is not straightforward to interpret. The program does come with

tools to compute various local summary statistics from sampled ARGs, includ-

ing times to the most recent common ancestor, allele ages, and distances be-

tween samples. But many less standard analyses will require custom programs

to extract the desired information from ARGs or local genealogies.

1.1.5 ARGweaver algorithm

ARGweaver uses a Markov chain Monte Carlo (MCMC) algorithm to sample

ARGs at frequencies proportional to their probability, conditional on the ob-

served DNA sequence data (X) and the model parameters (θ). The MCMC al-
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gorithm starts with an initial ARG, G0, and then repeatedly removes a subset

of the ARG and resamples that subset from an appropriate conditional proba-

bility distribution. This process generates a sequence of ARGs, G0,G1, . . . ,Gm,

where m is the total number of iterations of the algorithm. Although G0 may

be a poor guess with low probability, by sampling each new Gi according to

the appropriate distribution, the chain will eventually converge to the desired

distribution—i.e., for sufficiently large i, Gi will represent a draw from the pos-

terior distribution over ARGs given the data and the model, P(Gi|X, θ). In prac-

tice, it is customary to plot the posterior probability as a function of the iteration

number, i, observe the point at which it ceases to trend upward and becomes

stable, and then to discard the ARGs sampled before this point (from what is

known as the “burn-in” of the MCMC algorithm).

Even once the algorithm has converged, successive samples Gi and Gi+1—

while they both represent samples from the posterior distribution—are not in-

dependent samples. Rather they are strongly correlated, since only part of the

ARG is resampled on each step of the algorithm. Therefore, in order to achieve

a distribution of nearly independent ARGs—both to save space and processing

time, and to better assess the variance of estimates derived from the samples—it

is useful to “thin” the chain, recording only every jth sample (the default thin-

ning parameter in ARGweaver is j = 10). After discarding the initial “burn-in”

and performing thinning, the ARGs Gi that remain can be stored and treated as

a collection of samples representative of the distribution of ARGs given the data

and the model, P(G|X, θ).

The technical details of the ARGweaver algorithm will not be reviewed here

(see [1]), but the main idea is to remove a single haploid genome from the ARG,
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and then to “thread” this genome back through the ARG, by sampling both

its coalescence points with the remaining sequences and the the associated re-

combination points. There is also another, slightly more complicated, version

of this threading operation, called “subtree threading,” that resamples internal

branches in genealogies, and is essential for ARGweaver to efficiently explore

the full space of possible ARGs. In both cases, a hidden Markov model (HMM)

is used to efficiently sample new coalescent points for the new lineage across

the chromosome. This HMM depends on several key modeling assumptions,

which are important for users to understand, and which, therefore, will be re-

viewed in the next section.

ARGweaver model and assumptions

The HMM underlying ARGweaver depends on the following assumptions:

• SMC′ or SMC: ARGweaver was originally written under the Sequentially

Markov Coalescent model [4], but has been adapted to use the closely

related SMC′ [5]. The differences between these models are subtle and

will be described in Section 1.5. These models posit that the distribution

over genealogies at each nucleotide position directly depends only on the

genealogy at the previous position, not on the genealogies at positions

further upstream—a feature known in probability theory as the Markov

property, after the Russian mathematician Andrey Markov. More formally,

the SMC and SMC′ assume that the genealogy at position i + 1 is inde-

pendent of the genealogies at positions 1, . . . , i − 1, given the genealogy at

position i. While the SMC′ is technically more accurate, the SMC model

may be considerably faster on data sets with large numbers of samples.
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ARGweaver therefore allows the user to choose either model (SMC by de-

fault, --smc-prime for the SMC′).

• Discrete time: All recombination and coalescent events are assumed to

occur at a predefined collection of discrete time points. The total num-

ber of time points, K, can be chosen by the user (using --ntimes <K>)

and can be arbitrarily large, with the ARGweaver model approaching a

continuous-time model as K approaches infinity. However, the compu-

tational complexity of the threading algorithm is proportional to K2, so,

in practice, K must be kept modest in size. The default value of K in

ARGweaver is 20. The time points are uniformly spaced on a logarithmic

scale, so that they are more closely clustered at recent time points, when

there are more lineages and coalescence rates are larger. The algorithm

forces all lineages to coalesce by the final time point, tK .

• No more than one recombination event between neighboring nucleotides. For

simplicity, the algorithm permits at most one recombination event at ev-

ery “step” along the sequence, meaning between two adjacent nucleotide

positions. This assumption means that adjacent genomic positions must

either have identical genealogies or ones that differ by a single recombina-

tion event. In practice, this assumption is minimally restrictive, because

the information about genealogies comes primarily from variable sites,

which tend to be sparse along the genome. If ARGweaver should need to

account for multiple recombination events between variable sites, it typi-

cally can spread those events across a series of intervening invariant sites

with minimal impact on accuracy. If the data are such that multiple recom-

binations between neighboring sites occur frequently, then it is likely that

the haplotype structure is too broken down to make use of ARGweaver.
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• Population size known: ARGweaver assumes that the effective population

size Ne (which determines the coalescence rate) is provided by the user.

In the simplest case, a single global value of Ne can be provided. But

ARGweaver can accommodate different values of Ne for different discrete

time intervals. Values of Ne can typically be obtained from the literature

or estimated from the same data using one of the many available pro-

grams for inferring demographic histories (such as SMC++ [7], PSMC [8],

MSMC [9], G-PhoCS [10], and diCal [11]). Note the user-provided values

of Ne define a “prior” for coalescence rates in ARGweaver, so it is not nec-

essary for them to be perfectly estimated; ARGweaver will consider the

data together with this prior distribution in sampling coalescence events.

• Mutation and recombination rates known. The ARGweaver model also de-

pends on pre-defined mutation and recombination rates. These rates can

be assumed to be constant across the genome, or variable rates can be pro-

vided in a position-specific map along the genome. These values are also

“priors” in the same sense as the population size (see above).

• Jukes-Cantor model of base substitution. ARGweaver makes use of a Jukes-

Cantor model for nucleotide substitutions. This model assumes that all

nucleotide substitutions are equally probable—an obvious oversimplifi-

cation, but one that seems to have minimal costs at the close evolutionary

distances typically considered by ARGweaver. The symmetries inherent

in the Jukes-Cantor model can be exploited to optimize the likelihood cal-

culations in ARGweaver.
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1.2 Integrating over haplotype phase

The original ARGweaver method was designed for phased genomes, however

most sequencing technologies produce unphased genomes. Many methods ex-

ist for computationally phasing genomes [12–14]; however accurate phasing re-

quires a large reference panel, which is not always available. Even then, switch

errors between 0.5-5% are observed [12], depending on the reference panel size

and method used. When phasing is performed prior to running ARGweaver,

the ARG will be conditioned on all the phase errors. An error in the phase usu-

ally causes ARGweaver to erroneously infer recombination or mutation events.

Ideally, ARGweaver would be able to create ARGs for unphased samples, or

take phase uncertainty into account. To this end, we developed an approach

to integrate over possible phasings while running ARGweaver. This saves the

user a data processing step, eliminates the need for a reference panel, and is

more robust to specific phasing errors.

When using phase integration, all individuals are randomly phased at the

start of the algorithm (or if available, initialization may be done with pre-

phased haplotypes). Most of the algorithm is performed conditional on the

current phase of each individual. However, the leaf threading operation is

performed without regard to the phase of the individual whose lineage is be-

ing re-threaded, and is followed by re-sampling the phase for that individual.

The genotype phases of other individuals are held constant during this step.

Leaf threading can be performed on an unphased individual by summing over

the two possible phase configurations of each heterozygous site when comput-

ing the probability of the sequence data for a particular ARG. These proba-

bilities are used as the emissions probabilities in the hidden Markov Model,
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which is used to sample the new threading. After the threading is complete,

the phase for that individual is sampled at each heterozygous site according to

the relative probabilities of the two possible phasings under the newly sam-

pled ARG. Note that the phasings are held constant during subtree thread-

ing steps. Phase sampling is implemented in the ARGweaver source code

available at http://github.com/CSHLSiepelLab/argweaver, using the

--sample-phase option.

We performed a simulation study to assess the effectiveness of phase integra-

tion. We used ms [15] to simulate a 1Mb region with population size 10,000, mu-

tation rate 2.5e-8/bp/generation, and recombination rate 1.5e-8/bp/generation

for 2, 4, and 8 diploid individuals. We then ran ARGweaver on each data set,

with and without phase integration, and with increasing levels of phase errors

in the initial data. Figure 1.2 shows the ability of ARGweaver to recover the total

branch length of an ARG, as well as the number of recombination events, as the

error rate in phase increases. Overall the effects are promising; phase integra-

tion seems to help the inference, and works quite well for 2 and 4 genomes even

when the phase is completely random. For larger numbers of genomes it still

overestimates the statistics, however not as badly as without phase integration,

and does quite well when the amount of phase error is ≤ 10%. We therefore

recommend a hybrid solution, in which the samples are initialized with pre-

phased haplotypes when possible, but phase integration is used to integrate

over possible switch errors.
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Figure 1.2: Simulation results showing effects of phase integration. ARGs
were simulated with n = 2 (green), n = 4 (blue), and n = 8 (red)
diploid genomes. The true phases were randomized with prob-
ability shown on the x-axis. ARGs were inferred with phase
integration (solid lines) and without (dashed lines). The y-axis
shows the inferred total length of the ARG (left) and number
of recombinations (right), compared to the truth.

1.3 Accounting for ancient sampling dates

The original implementation of ARGweaver was not written with ancient sam-

ples in mind; it assumed that all genomes represented current-day individu-

als. However, ancient genomes are becoming increasingly common; not only

the Neanderthal [16] and Denisovan [17] genomes, which will be extensively

analyzed in this thesis, but there are now thousands of ancient modern hu-

man genomes available [18–22]. There are also ancient DNA data available for

other species, including the woolly mammoth [23], cave bear [24], and ancient

horse [25].

Although it might be possible to estimate the age of ancient samples along

with the ARG, in practice the age of an ancient genome is estimated more sim-

ply by computing the fraction of missing mutations to an outgroup, compared

to a modern-day sample. Given the age of the genome as an input, it is fairly

17



straightforward to modify ARGweaver to take this age into account. First, the

age of the sample is rounded to the nearest discrete time used in the ARGweaver

model, ta. The leaf branches coming from an ancient sample start at this time,

instead of at t = 0. This means that, when threading an ancient sample, the

only valid states in the HMM are those with times ≥ ta. Ancient samples also

affect the coalescence rates used when threading any branch. When thread-

ing non-ancient samples, the rates of coalescence depend on the number of

branches in each time interval. When all the samples are present-day, this num-

ber only decreases going backwards in time, as coalescences reduce the number

of branches. However, with ancient samples, this value may increase, since lin-

eages not present at t = 0 do appear at ta.

The changes described above were implemented in the ARGweaver soft-

ware and can be used with the option --age-file, which takes a file name

listing ancient samples and their ages in generations. Figure 1.3 shows that

this feature effectively corrects for bias in statistics that exist when the age of

ancient samples are ignored. In this example, we simulated 10 haploid lin-

eages; 4 of which were modern-day samples, and one each with ages 50kya,

100kya, 150kya, 200kya, 250kya, and 300kya. We used a generation time of

29 years, and other demographic parameters matching ARGweaver’s defaults

(a mutation rate of 2.5e-8/bp/generation, and a recombination rate of 1.5e-

8/bp/generation, and a constant population size of 10000). This example is

fairly extreme, in that most of the samples are ancient, and many of them are

older than most ancient samples from which DNA has been successfully ex-

tracted and sequenced. Overall, it is impressive that many of the statistics of

the ARG are estimated quite well even when all of the samples are incorrectly

treated as present-day samples. This is true for the time to the most recent com-
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mon ancestor (TMRCA) as well as the total branch length. However, there is

a noticeable bias in the branch lengths of the ancient leaves, as well as in esti-

mates of allele age. When ARGweaver is given the sample ages, it successfully

incorporates these into the algorithm and the biases disappear.

1.4 Correcting for low-quality genomes and application to

Sporophila

ARGweaver has also been extended to work on low-quality genomes. This was

inspired by a collaboration with researchers at the Cornell’s Lab of Ornithol-

ogy. They had sequenced the genomes of 72 individuals from nine species of

capuchino seedeaters from the genus Sporophila, collected across South Amer-

ica [26]. The sequencing coverage of each individual ranged from 1.9x to 9.8x.

When running ARGweaver on higher-coverage genomes, standard practice is

to mask out uncertain genotypes. In this case, however, most of the genotypes

have some uncertainty and it is necessary to account for this in a more rigorous

way, as masking would sacrifice too much of the data.

The implementation of this feature was fairly staightforward. It only re-

quired a modification to the emissions probabilities used in ARGweaver’s

threading HMM. These are computed at each site using Felsenstein’s algo-

rithm [27]. The algorithm is initialized by assigning a vector (pA, pC, pG, pT ) at

each leaf so that pi = I[a = i], where a is the observed allele for the sample

corresponding to the leaf node. But, this vector represents probabilities of each

allele, so they can simply be used instead, allowing ARGweaver to account for

genotype uncertainty.
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Figure 1.3: Effect of accounting for ancient sampling ages. Looking at
the ARG across a 2Mb region, at every base we compute the
difference between the true statistic and the median from ARGs
sampled across 2000 MCMC iterations. The pink distribution
shows the ARGs inferred while accounting for ancient sam-
pling dates; the blue uses the default parameter. (Purple is the
overlap between the two). The dotted black line is at x = 0,
and the red and blue lines are at the medians of the pink and
blue distributions. The statistic for each plot is named in the
x-axis, and the names are as follows: TMRCA (time to most
recent common ancestor, in generations); Pi (average distance
between two leaf nodes, in generations); Allele age (age of de-
rived alleles); Modern leaf (coalescence time of a leaf node for a
present-day sample); Ancient 150kya leaf (coalescence time of
a leaf sampled 150kya), and Ancient 300kya leaf (coalescence
time of a leaf sampled 300kya).
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I demonstrate the effectiveness of this approach with a simple simulation

study. I used msprime [28] to simulate 10 500kb regions with 6 haploid

genomes, population size 10000, mutation rate 2.5e-8/bp/generation, recom-

bination rate 1.25e-8/bp/generation. I then used a custom script to introduce

errors, so that with probability r ∈ {0.0001, 0.0005, 0.001, 0.005}, the true allele

was changed to a randomly chosen allele. I then ran ARGweaver on each data

set twice; an “uncorrected” run which did not use allele probabilities, and a

“corrected” run in which this simple error model was taken account (so that

the probability of the observed, sometimes incorrect allele, is set to (1 − r) + r/4,

and all other alleles have probability r/4). The difference in performance is il-

lustrated in Figure 1.4 and shows a striking improvement. Each plot shows the

difference in estimated TMRCA from the true TMRCA. When r = 0.0001, the

distributions are both centered at 0 and mostly overlapping. For all other val-

ues of r, the “uncorrected” TMRCA is overestimated, getting worse as the error

rate increases. But in the “corrected” ARGs, the distribution of TMRCAs does

not appear to change as the error rate increases.

In real data, the application is more complicated, both because models of

genotyping error are different for heterozygous and homozyous sites, and be-

cause most variant calling algorithms do not output well-calibrated probabili-

ties of error that properly corrects for reference bias [29]. Nevertheless, popular

genotype callers, including GATK [30], compute genotype probabilties. I mod-

ified ARGweaver to read in VCF files and genotype probabilities encoded in

them using any of the PL (phred-scaled genotype likelihoods), GL (genotype

likelihood), or PP (genotype posterior probability) formats [31].

Applying this to the Sporophila set, we seem to have at least some success in
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Figure 1.4: Effectiveness of incorportating allele probabilities. Each
histogram shows a distribution showing the difference in
ARGweaver’s estimate of the TMRCA from the true TM-
RCA, calculated at every base across a 5Mb simulation. For
ARGweaver’s estimate I used the 50% quantile over 50 ARGs
sampled across 500 iterations, after 500 iterations of burn-in.
Each plot shows two overlayed historgrams calculated on the
same data set. The alleles in each data set are randomized at
every individual/base at the rate indicated in the heading. The
blue plots show the distribution obtained when the data is used
without allele probabilities; the pink plots show the distribu-
tion when ARGweaver takes the error model into account. The
vertical blue/pink lines show the median of each distribution,
and a dotted black line is at x = 0 for reference.

generating reasonable ARGs despite the low coverage of many of the samples.

While the data set consisted of samples from nine different species, they have

diverged in the past 100,000 years and have a very high population size [32], so

that almost no genetic variation is observed between individuals from different

species [26] A previous analysis of the same data set [26] identified several local

peaks in FS T [33] between different species, that may underlie the phenotypic

differences in color pattern and mate selection observed in the field. The ARGs

produced by ARGweaver tell the same story; the local trees do not seem to be

organized by species along most of the genome. However, we see regions where

species are clustered that coincide with the previously detected FS T peaks. Fig-
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Figure 1.5: Tree sampled by ARGweaver for the Sporophila data set at Con-
tig252 position 470000. This position overlaps peak in FS T at a
gene (ASIP) associated with plumage color [26]. This tree rep-
resents individuals from the five species with the most indi-
viduals sampled. The species name is written underneath each
leaf and is color-coded: purple=S. pileata; red=S. hypoxantha;
orange=S. palustris; green=S. nigrorufa; blue=S. melanogaster.

ure 1.5 shows one example tree produced by ARGweaver in the ASIP gene on

Contig252, which is one of the highest FS T peaks. In this tree, there is a high

degree of clustering by species. There is also rapid coalescence of most of the S.

melanogaster individuals (blue), and also of the S. nigrorufa (green) individuals

to a lesser extent, which is suggestive of selective sweeps in these populations

at this gene. Other members of our group are developing methods to more for-

mally classify potential selective sweeps from the ARG output.

23



1.5 Estimating ARGs under the SMC’

1.5.1 Introduction to the SMC and SMC′

ARGweaver was originally designed under a discretized approximation of the

Sequentially Markov Coalescent (SMC) model. However, it has been shown

that the SMC′ more accurately captures the properties of the full coalescent-

with-recombination (CwR) [5,34]. The SMC and SMC′ are both Markov models

which describe the distribution of a local tree at position i + 1 on a chromosome,

given the local tree at position i and demographic parameters (rates of coales-

cence and recombination). The only difference between the SMC and the SMC′

is a subtle change in how branches broken by recombination are treated by each

model. To describe the difference, it is necessary to first overview the mod-

els. A tree at position i with n leaf nodes is denoted as T n
i . Each branch of the

tree represents a path, tracing the genetic ancestors who passed along this locus

through the generations. When two branches merge (coalescence), it means that

the branches have found a common genetic ancestor.

If recombination did not occur between sites i and i + 1 in any of the ances-

tors represented in T n
i ’s branches, then T n

i+1 will be identical to T n
i . Otherwise,

we assume that recombination is rare enough, and the branches short enough,

that no more than one recombination event occurs between any two sites. This

recombination is assigned a branch (b) adn time (t) according to which ancestor

was the source of the recombined chromosome. This ancestor passed along, as a

single chromosome, a fusion of their mother’s and father’s chromosomes, with

the split point being between positions i and i + 1. The genetic history at site i

might follow this ancestor’s mother, while the history at site i + 1 follows their
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father. So, while this chromosome has the same history from present day until

time t, the history before time t is split into two separate branches, until farther

back in time when these branches recoalesce.

Thinking about this as a spatial process across a chromosome, when a re-

combination event is encountered on a local tree at position i, T n
i+1 will have

all the same branches as T n
i , except that the recombination branch b “breaks”

at time t and has a different history at position i + 1. In the SMC, this branch

would choose a new common ancestor among all the other branches remaining

in the tree at or before time t (including the root branch, which extends to in-

finity). The SMC′ improved this model by recognizing that the broken branch

also represents an existing lineage in the population, and that it may so happen

to be the most recent common ancestor of the new branch. In other words, the

recombining ancestor’s parents may happen to be more closely related to each

other at site i + 1 than to any other lineages in the tree. In this case, while T n
i

and T n
i+1 technically trace through different ancestors, the topology and branch

lengths of the two trees are identical. This type of recombination is referred to

as “invisible”, “circular”, or “bubble” recombination, and it is allowed under

the SMC′ but not the SMC.

Note that invisible recombinations are already possible in ARGweaver un-

der the SMC due to the discretization of time, because the broken branch may

re-coalesce on the sister or parent branch at the same time as in the previous tree

(an event that would be virtually impossible using a continuous-time model).

However, the SMC′ models these invisible recombinations in a way that is more

consistent with coalescent theory. The fewer lineages that exist in the local tree

at the time of recombination, and the longer the branch, the more likely that
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the broken branch will choose itself as its recoalescence point. Conditional on

the coalescence of a recombining branch occuring at a given time, the coales-

cence branch is a priori chosen uniformly among all branches that exist at that

time. So, the probability of choosing the recombining branch is inversely pro-

portional to the number of branches in the tree at the time of coalescence. In

general, when performing inference, the SMC may under-estimate the recombi-

nation rate because it does not infer enough invisible recombination events, and

this problem will be worse in time intervals when there are fewer lineages and

invisible recombinations are more likely.

1.5.2 SMC′ implementation

Internally, ARGweaver stores the ARG as a series of “blocks” across a chromo-

some. Each block has a start and an end coordinate, a local tree that is constant

across the entire block, and a recombination/recoalescence event which occurs

after the final site in the block, producing the local tree in the next block. The

transition probabilities of the HMM (i.e., the probability of the new branch coa-

lescing at a particular point in the tree given its coalescence point at the previous

site) are the same for all pairs of sites within a block, and need only be computed

once per block (assuming that the recombination rate is also constant across

the block). Furthermore, because of the assumption of only one recombination

event per local tree, new recombination events can only be sampled between

sites within the same block, since a recombination event already exists between

neighboring blocks. Also recall that ARGweaver samples recombinations and

coalescence events separately. The threading HMM samples coalescence points

for the new branch, while integrating over possible recombination events. The
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recombination events are chosen in a subsequent step, conditional on the chosen

coalescence points.

When implementing the SMC′, we chose to treat self-recombinations as a

separate case. Self-recombinations are not stored in the ARG structure at any

point during the algorithm, but can optionally be sampled prior to storing the

ARG (with the option --invisible-recombs). Most of the challenge in im-

plementing the SMC′ is in adjusting the transition probabilities of the HMM to

account for the possibility of invisible recombinations. The fact that a lineage

which is broken by recombination may re-coalesce back onto itself means that

this extra lineage must be accounted for in the coalescence probabilities.

The possibility of a lineage re-coalescing back on itself means that calculat-

ing the transition probabilities under the SMC′ will be more computationally

complex than it was under the SMC. Intuitively, the reason for this is that under

the SMC, when the new branch is broken by recombination, it must recoalesce

onto an already-existing lineage of the tree, and these branches are all known, so

that the recoalescence probabilties are a function of the tree with the broken lin-

eage removed, T n−1
i . Therefore, the recoalescence probabilities are independent

of the state chosen at site i. Under the SMC′, we need to consider the coalescence

time of the new branch at the previous site in order to calculate the probability

of recoalescence at any point in the tree. Fortunately, we can simplify this de-

pendence by breaking the calculations into three cases: time intervals when the

new branch at the previous site has not yet coalesced, the time interval when the

new branch coalesces, and time intervals when the new branch does not exist

because it coalesced more recently. In the first case, we add one to the lineage

counts which go into the coalescence probabilities; in the second case, we add
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one in the half-time interval immediately before the coalescence but not after,

and also need to consider the existence of an additional node when computing

the probabilities of choosing a specific branch; in the third case, there is no extra

branch to consider and the calculations are the same as in the SMC.

As an example, consider the case of computing the transition probability

of the threading branch ν coalescing at state (y, b) at site i + 1 given that it has

coalesced at state (x, a) at site i. The state notation (x, a) indicates that ν coalesces

onto branch x at time ta. For now, assume that sites i and i + 1 are in the same

block, so that there is no recombination currently sampled between them, and

the local trees T n−1
i and T n−1

i+1 are the same. We will further assume that x , y,

so that a recombination must have occurred on branch ν for this transition to

be possible. This situation is illustrated in Figure 1.6, and shows the ”broken

lineage” that must be considered under the SMC′. The broken lineage exists in

the time range [tk, ta].

When b < a, the broken lineage is present throughout the duration of the

recombination and recoalescence of ν. Therefore, it is simple to adjust the tran-

sition probability from the original SMC in this case: we simply add 1 to the

lineage counts used for computing coalescence probabilities. This includes both

the number of lineages used for computing coalescence rates, as well as the fac-

tor describing the probability of choosing a specific branch for coalesence.

When a < b, it is somewhat more complicated. In this case, the extra lineage

exists in the range [tk, ta], and 1 is added to the coalesence rates used in this

time interval. But in the range [ta, tb], the extra lineage no longer exists, and the

coalescence rates used by the original SMC model are used.
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Figure 1.6: Example of a recombination on the threading branch ν
between two sites with no previous recombination events.
Branch ν coalesces at state (x, a) at site i, and at state (y, b) at
state i + 1, with a recombination on ν at time k. Under the
SMC′, the broken lineage is a candidate for re-coalescence of
ν and needs to be taken into account when computing coales-
cence probabilities.

When a = b, the coalescence rate in the half-time interval above a (which is

rounded to a) does not contain an extra lineage, whereas the intervals below a

do. Furthermore, because the broken branch forms an additional node at time

b, the number of possible branches existing at this time increases by 2 (this does

not affect the coalescence rate, but the probability of choosing each branch when

coalescence occurs).

Similar logic is used for other cases (such as x = y, or when there is already a

recombination between the adjacent trees). The derivations are much the same

as in the SMC model, with additional lineage counts added when the broken

lineage exists, and an extra node added where it coalesced at the previous site.

One other addition is in the case where there is no previous recombination, and

ν coalesces at the same point at sites i and i + 1. As in the SMC, this could
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happen because there was no recombination, or because of recombination and

re-coalescence back to the same discrete point. However, in the SMC′, we also

need to account for the possibility of invisible recombinations. Because invisible

recombinations are not represented in the tree, there could potentially be an

invisible recombination on any of the branches. The probability of this is not

trivial to compute; it requires summing across all branches and computing the

probability of a recombination at any point along the branch which coalesces at

any point farther up the same branch. This probability is dependent on where

the new branch coalesces, so has to be computed for every possible state.

With the exception of the ”invisible recombination” addition above, the tran-

sition probabilities are all identical to those in the SMC model, except with ad-

justments to the input lineage/node counts that are input. However, the fact

that the lineage counts depend on the previous state make optimization of these

calculations more complicated. For example, in the original SMC algorithm, the

cumulative coalescence rate was stored in a variable Cm =
∑m

j=0
l j∆t j

2N j
. Then, the

coalescence rates between times k and b would be given by Cb −Ck−1. Under the

SMC′, we need to store a second version of the cumulative coalescence rates, in

which an extra lineage exists: C′m =
∑m

j=0
(l j+1)∆t j

2N j
. Then, in this example where the

extra lineage exists until time a, the coalescence rate between time k and b would

be given by Cb−Ca−1 +C′a−1−C′k−1. In the same way, the probability of coalescence

at a particular time interval was previously stored in a single vector; under the

SMC′, three versions of this vector are required: one in which no broken lin-

eage exists, one where it coalesces and forms a node, and one where it exists

but does not coalesce. The derivations and optimized formulas are described in

Appendix A.
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1.5.3 SMC′ demonstration

In this section, I present a few simulation results demonstrating that the SMC′

implementation seems to work at least as well, and sometimes better, than the

original SMC model.

First I present a simple demonstration that key parameters are estimated

as accurately with the SMC′ as with the SMC. In the following figure, I gen-

erated 100 data sets of length 2Mb and 8 haploid samples with the program

ms [15]. I used a constant diploid population size of 10000, mutation rate of

2.5e-8/gen/bp, and recombination rate of 1.5e-8/gen/bp.

I then ran ARGweaver on each data set 6 times, varying the number of hap-

loid samples (2, 4, or all 8) and the model used (SMC or SMC′). All other

ARGweaver parameters were set to the default. Then, I extract various statis-

tics from the ARG., such as the time to most recent common ancestor (TMRCA),

total branch length (branchlen), or average distance between leaf nodes (pi). In

Figure 1.7, I show the distribution of the difference between the median of the

estimated statistics, and the true statistics. There is no discernable difference

between this distribution computed under the SMC′, vs under the SMC.

To look a bit deeper into the accuracy of statistics, I then looked at the dis-

tribution of statistics predicted by ARGweaver as a function of the true statistic.

Figure 1.8 shows that there is no difference in the accuracy for any quantile of

the true TMRCA between the SMC and SMC′. For higher quantiles, there is a

tendency for ARGweaver to underestimate the TMRCA. This is likely due to the

discretization, and the fact that there is a maximum time set in ARGweaver, so

that any true TMRCA past this time will be necessarily underestimated.
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Figure 1.7: Tree statistic accuracy SMC vs SMC′. These plots show the
difference between the median estimated statistic (Pi, TMRCA,
and total branch length) from the true statistics. The distribu-
tions are taken from sampling the difference in these statistics
at every base across each simulated data set (total 2e8 bases).

Next, I looked at estimated recombination rates across these regions. Figure

1.9 shows the estimated rate in each set of inferred ARGs, compared to the true

value of 1.5e-8 events/bp/generation. It also shows the rate of invisible recom-

binations inferred, which is higher for smaller sample sizes and old branches, as

expected. It does appear that the SMC′ is more accurate in estimating recombi-

nation rate. It is not clear why there is such an over-estimation in the first time

interval using the SMC. This may not have to do with the SMC model, but with

improvements in how the rounding of recombination times is handled in the

SMC′.

Finally, I looked at the joint distribution of coalescence times between sites

separated by various distances, under n = 2. This distribution captures the main

difference in the two models, and a previously published analysis showed that
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Figure 1.8: Parameter accuracy by value. The true TMRCA distribution,
taken as the TMRCA at every base along the 2e8 bases in the
statistic, was divided into 8 quantiles. This plot shows the dif-
ference in the estimated vs true TMRCA for each quantile, for
SMC and SMC′

this distribution matches the full coalescent-with-recombination (CwR) much

better under the SMC′ than the SMC [34]. That was just done for ARGs simu-

lated with continuous-time models. Here, we compare whether this is true for

ARGs generated by ARGweaver under the two models. The results are shown

in Figure 1.10. This plot is generated with a different data set than the previ-

ous ones. Here, I have run ARGweaver with a masked data set, so that ARGs

are generated from the prior distribution. With n = 2, each threading operation

removes one lineage and replaces it, so that the ARGs generated at each itera-

tion can be thought of as independent samples; from each sample I record the

TMRCA for two sites at the distances of interest (100bp, 1kb, 10kb, 100kb).

Figure 1.10 does show that there seems to be a better match between the

SMC′ and CwR than between the SMC an CwR. However, the difference be-
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Figure 1.9: Estimated recombination rate in the SMC vs SMC′. The true
value (black dotted line) is 1.5e-8. The x-axis (Time index)
refers to the ARGWeaver discretized time index, with the low-
est values being the most recent time. The recombination rate
was estimated as number of inferred events in each discrete
time interval, divided by the total branch length in each time
interval. The orange line shows only invisible recombination
events, inferred under the SMC′, whereas the red line shows
the total recombination rate.

tween the two plots is fairly subtle. Overall, I conclude that many other approx-

imations of the ARGweaver model also contribute to differences with the CwR,

especially discretization of time, and ways for spreading probability mass for

coalescence and recombination onto zero-length nodes.

Lastly, I examine at the run-time of the SMC vs SMC′. For this, I performed

additional simulations with n = 16, n = 32, and n = 64, and compare the runtime
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in hours using the two models. The results are shown in Figure 1.11. Despite

my efforts to optimize the SMC′ equations, I was not able to simplify the equa-

tion for the probability of no invisible recombinations, creating a bottle-neck in

the run-time and increasingly worse performance as n increases. If I were to

re-do this implementation, I would choose to keep invisible recombinations in

the ARG structure, so that I would not have to integrate over their presence.

However, given that overall the SMC′ does not significantly improve inference,

it does not seem like a worthwhile endeavour.

To summarize, I implemented the SMC′ in ARGweaver, but it is not clear

that it makes a significant difference to the quality of inference, and for large n

it is much slower. Therefore, ARGweaver continues to use the SMC by default;

the SMC′ can be used with the option --smc-prime.

However, the effort spent implementing the SMC′ is not entirely a loss. First,

the SMC′ was a requested feature of ARGweaver, and is now available to any-

one who wants to try it out and compare results with those from the SMC. Ad-
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ditionally, there turn out to be some parallels between the SMC′ and the multi-

population model, which will be the focus of Chapter 3. As will be described

there, the multi-population model also requires knowledge of which state was

chosen at the previous site to compute lineage counts, as different states will add

a lineage to different populations. It also turns out that the multi-population

model makes more sense under the SMC′ than the SMC, because some recombi-

nation events may change populations but not change the tree topology. There-

fore, the SMC′ model will get extensive use in Chapter 3.

1.6 Conclusion

The first half of this chapter was an introduction to ARGweaver, written by M.

Hubisz and A. Siepel as the first half of a book chapter on using ARGweaver,

which will be published in the book “Statistical Population Genomics”, edited

by J. Dutheil and published open-source by Springer. After that, I described and

demonstrated several important features that have been added to ARGweaver

over the course of my dissertation and used in various studies. These include:

integration over phase, ancient sample ages, low-quality genomes, reading VCF

files, and implementation of the SMC′. An additional feature, sampling from a

demographic model with population divergences and migrations, will be pre-

sented as part of Chapter 3.
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CHAPTER 2

AN EARLY ADMIXTURE EVENT BETWEEN ANCIENT HUMANS AND

NEANDERTHALS

Note: With the exception of the introduction and conclusion (which are not pub-

lished elsewhere), this chapter was adapted from text published in [2]. While I

was not a first author on that paper, all the text and figures used here are taken

from my contributions to that paper and its Supplementary Material.

2.1 Introduction

When I first started studying human evolution, the chimpanzee was regarded

as the closest relative to human that could potentially be used for genetic com-

parison. I was even involved in some of the early studies comparing the newly

sequenced human and chimp genomes, sometimes with an outgroup, and look-

ing for signals of adaptation [35, 36]. But this approach gives us insight into

adaption along a lineage which is estimated anywhere between 6-12Mya in

length [37]. The sequencing of the Neanderthal genome [16, 38, 39], and later

the Denisovan genome [17], has enabled us to zoom in on the past half million

years of hominin history, revolutionizing the study of human evolution and

leading to many new insights about ancient hominin history.

The most notable discovery was that humans and Neanderthals interbred,

and that the hybrids were healthy enough that thir genes persist in the genomes

of humans today, so that all non-African humans contain ∼ 2% Neanderthal

DNA [16,39,40]. This was followed by the discovery of the Denisovans, and the
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realization that they too left an even higher amount of DNA (4-6%) in mod-

ern Oceanian humans [41]. There has been much speculation about the ef-

fect of these introgressed genome segments on humans. Because Neanderthals

adapted to the cold Eurasian climate several hundred thousand years earlier

than humans, it seems possible that the interbreeding may have had adaptive

benefits for humans, allowing us to inherit gene variants that helped us survive

the harsh climate. However, it has also been argued [42, 43] that the smaller

population size of Neanderthals means that they carried a higher genetic load,

and that interbreeding therefore contributed unhealthy variants to the human

gene pool. Furthermore, it is also possible that some hybrid incompatibilities

had arisen between humans and Neanderthals, so that gene variants that are

healthy on a Neanderthal background may be deleterious in a human, or vice

versa. Likely, all of these possibilities are true to some extent. For example, a

recent study [44] showed evidence of adaptive introgression in genes that inter-

act with viruses, and there is also the striking example of Tibetans inheriting a

variant of EPAS1 from Denisovans which helps them survive high altitudes. On

the other hand, there are also signals that some archaic DNA was deleterious,

including an almost complete lack of introgression on the X chromosome, as

well as several autosomal “deserts of introgression” [40, 45]. While it has been

claimed that introgressed Neanderthal and Denisovan DNA is depleted near

genes [40, 45], this has lately been called into question [46, 47], but there does

remain some signal of depletion near regulatory elements [47]. Understanding

the effects of this interbreeding is made difficult by the lack of archaic hominin

data, and the many biases in our ability to detect introgression, as well as the

complexity of ancient hominin interbreeding events.

It turns out that ARGweaver is very well-suited to studying the history of
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archaic hominins. First, there are very limited numbers of archaic samples avail-

able (at the time of this study, there was only 1 each of high-quality Neanderthal

and Denisovan genomes). While ARGweaver is a computationally expensive

tool to use, it makes full use of this very limited data set, taking full haplotype

patterns into account with no reduction to summary statistics. There are high

levels of incomplete lineage sorting (ILS) between Neanderthals, Denisovans,

and humans, so that the local trees produced by ARGweaver are a natural way

to model their relationships, and to examine coalescence times to try to tease

apart introgression from ILS.

The study in this chapter was part of a collaboration with the other authors

in [2]. Before I was involved, they had already devised a hypothesis that there

may have been some introgression of human DNA in the Neanderthal genome

(due to evidence I describe below). This was a surprising idea, since the only

available Neanderthal genome at the time (the Altai Neanderthal) is estimated

to be far older (∼ 115 kya) than human’s out-of-Africa migration, which oc-

curred roughly 50kya. The idea was that an ancient group of humans left Africa

earlier than 115kya and encountered Neanderthals, possibly in the Middle East,

and interbred with them, leaving some of their genes in the Neanderthal gene

pool. This group of humans then died out, or perhaps was subsumed into the

Neanderthal population, so that they are not direct ancestors of any current-day

human.

It was already known that Neanderthals share more alleles with African

humans than Denisovans, but this was attributed to a hypothesized introgres-

sion from an unknown super-archaic hominin (possibly Homo erectus) into the

Denisovan (referred to as Sup→Den). This event is supported by especially high
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D statistics (which measure the increase in Neanderthal/African allele sharing

compared to Denisovan/African sharing) at variant sites that have reached a

high-frequency, or have fixed, in the African population [16]. The presence of

this event makes it more difficult to make a case for Hum→Nea introgression,

as both cause a skew in allele sharing in the same direction.

The initial evidence for a Hum→Nea event came observations about di-

vergence and heterozygosity measured in 100kb genomic windows. It turns

out that the windows with the lowest divergence between Neanderthals and

African humans have higher Neanderthal-Denisovan divergence than expected,

as well as higher Neanderthal heterozygosity levels [2]. This cannot be ex-

plained by Sup→Den, but would be expected under a Hum→Nea event. By

contrast, the regions with the highest African-Denisovan divergence also have

high Neanderthal-Denisovan divergence, and high Denisovan heterozygosity,

which can be explained by Sup→Den, but not Hum→Nea. This analysis sug-

gest that both events may be true, and was backed up by a simulation study.

The group also undertook an analysis using G-PhOCS [10], to try to infer a

demographic model, including population size changes and migration events.

G-PhoCS is a Bayesian method which examines many short, neutral, unlinked

regions of aligned genomes, and samples local trees for each region, fitting these

trees to a demographic model. The analysis did find support for both Sup→Den

and Hum→Nea migrations.

However, it would be desirable to have another line of evidence which

looked at all the available data, and modeled the relationship between humans,

Neanderthals, and Denisovans. This was the motivation for the study described

below. The main idea was to run ARGweaver on Neanderthal, Densiovan, and
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African human data, and identify regions where Neanderthal and Africans co-

alesce more recently than the Neanderthal/African split: these are candidate

Hum→Nea regions. Regions where the inferred local trees have unusually high

coalesence times for the Denisovan are candidate Sup→Den regions. The lo-

cal trees produced by ARGweaver make the difference between Sup→Den and

Hum→Nea very clear, whereas other allele sharing statistics do not. In the anal-

ysis described below, I show how this approach helped make a convincing case

for the Hum→Nea event.

2.2 Results and Discussion

2.2.1 Excess of young ’African’ haplotypes in Neanderthal

genome

We ran ARGweaver on all the autosomal chromosomes, with a data set that

included the Neanderthal, Denisovan, 4 Africans, and chimpanzee (haploid)

genomes. We then scanned the resulting ARGs for contiguous regions (≥ 50kb)

where one archaic individual coalesces with Africans before it coalesces with

the other archaic individual. We refer to these segments as ’African’ haplo-

types, and we recorded the archaic/African coalescence time for these seg-

ments. More details about the ARGweaver runs and the ’African’ haplotype

criteria are in Section 2.3.2. Figure 2.1a shows the distribution of these segments

identified in both Neanderthal and Denisovan, for each of the discrete times in

the ARGweaver model. There is clearly an excess of young ’African’ haplotypes

in the Neanderthal.
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Figure 2.1: Distinguishing between two scenarios of introgression into
archaic humans (From [2]) a, The age distribution of ’African’
haplotypes (≥ 50 kb) in the Altai Neanderthal and the Deniso-
van genomes as inferred by ARGweaver. Error bars represent
the 95% credible intervals from 302 Markov chain Monte Carlo
(MCMC) replicates. An ’African’ haplotype coalesces within
the African subtree before coalescing with the other archaic
individual (inset), and its age is inferred as that coalescent
time (arrowhead). The majority of the young ’African’ hap-
lotypes in the Altai Neanderthal genome are estimated to co-
alesce 100,000-230,000 years ago, with just a few estimated to
coalesce less than 100,000 years ago. b, The age distribution of
’deep ancestral’ haplotypes (≥ 50 kb) in the Altai Neanderthal
and Denisovan genomes. A ’deep ancestral’ haplotype coa-
lesces above the African subtree and the other archaic lineage
(inset), and its age is inferred as that coalescent time (arrow-
head). ky, thousand years.

We also identified regions where the local tree indicates one of the archaic

individuals is an outgroup to all other samples: we refer to these as ’deep an-

cestral’ haplotypes. The distribution of these and their ages are shown in Figure

2.1b. We observe a slight excess of these regions in Denisovan compared to

Neanderthal for the time intervals t = 780ky and t = 1170ky.

Potentially introgressed segments in the Altai Neanderthal We expect most of

the inferred ’African’ segments to be a result of incomplete lineage sorting and
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not necessarily the result of introgression. We thus wanted to choose a set of

’African’ segments in the Altai Neanderthal that are strong candidates for be-

ing introgressed from modern humans. We chose a length cutoff of 50Kb be-

cause we expect introgressed segments to be long, relative to older haplotypes

resulting from incomplete lineage sorting. In addition, long haplotypes har-

bor more mutations, giving ARGweaver more power to accurately date coa-

lescence events, so this length cutoff also filters out less informative regions.

However, none of our results changed substantially when varying the length

cutoff from 20kb up to 100kb (affecting the overall but not relative counts be-

tween the Altai Neanderthal and Denisovan). Looking at Figure 2.1a, which

uses a length cutoff of ≥ 50kb and shows the distribution of haplotype ages for

’African’ haplotypes, the age cutoff ≤ 230ky was chosen to classify potentially

introgressed segments in Altai Neanderthal, as there are few ’African’ segments

in the Denisovan genome meeting this criteria. There are an average of 97 (95%

CI: 86-108) ’African’ segments in the Altai Neanderthal genome meeting this

length and age criteria, covering 7.2Mb (95% CI: 6.5-7.9 Mb). Conversely, in the

Denisovan genome, there are an average of 20 ’African’ segments (95% CI: 13-

28) covering 1.3Mb (95% CI: 0.9-1.9Mb). Some of the ’African’ segments in the

Altai Neanderthal that are older than 230ky may also be due to the proposed in-

trogression event, however, given the high levels of ’African’ haplotypes in the

Denisovan older than 230ky, it seems likely that most of these segments are bet-

ter explained by incomplete lineage sorting. This observation is also confirmed

by simulations (see Simulation study section below).

African source population of potentially introgressed segments Looking at the set

of potentially introgressed segments in the Altai Neanderthal genome, we ex-

amined whether these segments primarily coalesce within a particular African
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population. In Figure 2.2, we show the number of segments in the Altai Nean-

derthal defined by their coalescence time with each African individual. There

appear to be somewhat fewer ’African’ segments from the individuals from the

Mbuti population; however this difference is not statistically significant, and the

data support a model in which the three African populations contribute equally

to the introgression event.

Overlap of segments with ’African’ haplotypes and ancestral segments As shown

in Figure 2.1b, there is an excess of ancestral segments in the Denisovan, which

is presumably due to introgression of an unknown archaic population into the

Denisovan genome [16]. This archaic introgression complicates interpretation
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of the ARGs. Both scenarios of introgression – super-archaic introgression into

Denisovan lineage and modern human introgression into Altai Neanderthal lin-

eage – are likely to lead to an excess of Denisovan ancestral lineages, as well as

an excess of ’African’ Altai Neanderthal lineages. However, the observed excess

of ’African’ haplotypes in the Altai Neanderthal at ≤ 230ky is not expected from

super-archaic introgression into the Denisovan lineage alone. Nevertheless, we

wanted to check that this signal is not an artifact due to the excess ancestral

segments in the Denisovan genome.

To this end, we created a version of Figure 2.1a, which shows the excess of

young segments in the Altai Neanderthal genome with ’African’ haplotypes.

In this version, we removed all ’African’ segments which overlap any ancestral

segment in either lineage of the other archaic individual. The ancestral seg-

ments used for this purpose were not filtered for informativeness or length, in

order to use the most complete (rather than confident) set of ancestral segments.

The results are shown in Figure 2.3. 67% of the Altai Neanderthal segments

with ’African’ haplotypes were removed, and 62% of the Denisovan segments

were removed; however the excess of young Altai Neanderthal segments with

’African’ haplotypes is still statistically significant.

Argweaver analysis of the two European Neanderthals on chromosome 21

ARGweaver was also run on chromosome 21 with the addition of data from

two additional Neanderthals (El Sidrón and Vindija), for which targeted se-

quencing was used on chromosome 21. We then called ’African’ haplotypes as

described above. Having three Neanderthals in the analysis makes it less likely

that a Neanderthal lineage will coalesce into the human subtree before coalesc-

ing with another Neanderthal, under a model with no modern human intro-
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gression. Therefore, we expect fewer ’African’ haplotypes in any of the three

Neanderthals compared to the Denisovan. Still, the analysis yielded one region

on chromosome 21 which was called as a long, young homozygous ’African’

haplotype in Altai Neanderthal (chr21:30,368,000-30,458,000; hg19 coordinates).

No such region was found for the El Sidrón, Vindija or Denisovan chromosome

21 (Figure 2.4).

Simulation study to address the ages of the archaic individuals One limitation of

ARGweaver is that, at the time of this study, it did not have an option to handle

the age of archaic individuals. For this reason, all individuals in each data set

were treated as if they were present-day individuals, but we were concerned
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that this approach could potentially lead to a bias in the coalescence times in-

ferred by ARGweaver. If the archaic individuals were all of the same age, we

would expect this bias to be the same for the Altai Neanderthal and Denisovan.

However, since the Altai Neanderthal is likely older than the Denisovan, there

is an additional concern that this could lead to a larger bias in the Altai Nean-

derthal compared to the Denisovan, and this differential bias could be falsely

interpreted as a signal of introgression.

In order to explore the effects of this model misspecification, we conducted

a simulation study. We generated data sets using realistic demographic param-

eters, including ancient sampling ages for the archaic individuals, but without

any migration between populations (see Section 2.3.3 for details).

ARGweaver was run on each simulated data set as in the real data analysis:

sample ages were ignored, haplotype phases were randomized for each individ-
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Figure 2.5: Distribution of the ages of segments with ’African’ haplotypes
in the simulated data set, which was generated with no recent
modern human admixture, but with sampling times of 70ky for
the Altai Neanderthal and 50ky for the Denisovan. Bar height
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ual, and the phase integration feature was used. Then, ’African’ segments in the

Altai Neanderthal and Denisovan were identified, and the distribution of their

ages compared. Unlike in the real data analysis, there was no significant excess

of young segments with ’African’ haplotypes in the Altai Neanderthal genome

(Figure 2.5). Therefore, the excess observed in the real data analysis appears not

to be an artifact due to the difference in the ages of the archaic individuals.

Effect of phase integration We analyzed the simulated data sets in two ways:

once with the true haplotype phase treated as known, and once with random-

ized phase and phase integration. All results presented here are from the analy-

sis with phase integration, as this is how the real data was analyzed. Similar fig-

ures produced from the runs with known phase look extremely similar in shape

(not shown). However, the absolute numbers of long ’African’ haplotypes were

49



40% lower in the runs with phase integration. This appears to be largely a result

of long haplotypes being broken up by phase errors. On a basewise level, the

performance of the two runs was more similar: ’African’ segments were identi-

fied with a true positive rate of 77.7% and a false positive rate of 3.9% when the

true phase was used, compared to a true positive of 74.2% and false positive of

4.7% with phase integration. Overall, we expect that, if phase were known in

the real data, our analysis would have yielded more long ’African’ haplotypes,

but phase integration does not seem to have impacted the ages or relative counts

of these segments.

Simulations with archaic introgression into the Denisovan We conducted an addi-

tional simulation study to explore the effects of introgression into the Denisovan

from an unknown archaic hominin. The simulation parameters were similar to

the above section, but with an additional population simulated with 1Mya di-

vergence from the other hominins, and 10% migration rate into the Denisovan

300kya. Further details are in Section 2.3.4.

Applying the same ARGweaver analysis to this data set, we obtain an age

distribution of ’African’ haplotypes shown in Figure 2.6; the distribution for

deep ancestral haplotypes is in Figure 2.7. In this case, the excess of ancestral

segments in Denisovan compared to Altai Neanderthal is much higher than ob-

served in the real data, suggesting that the simulations contain an exaggerated

amount of super-archaic introgression into the Denisovan. As expected, this in-

trogression does cause the Altai Neanderthal to have more ’African’ haplotypes

than the Denisovan. However, it does not cause any skew in the ages of these

haplotypes compared to those shown in the simulations without archaic intro-

gression. Notably, there are no ’African’ haplotypes in the Altai Neanderthal
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Figure 2.6: Distribution of ’African’ haplotype ages in data simulated with
introgression into the Denisovan from an unknown archaic ho-
minin.

with ages ≤ 350ky, and only a small excess in the 350kya category compared to

the Denisovan. Therefore, it is unlikely that the youngest ’African’ haplotypes

identified for in the Altai Neanderthal genome could be explained by super-

archaic introgression into the Denisovan.

Simulations with modern human introgression into the Altai Neanderthal We per-

formed a final simulation study to test the power of the ARGweaver approach

to detect the type of introgression event proposed in this manuscript. These

simulations included migration from a modern human population into the Al-

tai Neanderthal lineage 100kya at a rate of 3.55% for a single generation, and

also included Sup→Den introgression at a more modest rate than the previous

section. Full details are given in Section 2.3.5. We ran ARGweaver on this data

set, and produced ’African’ haplotypes ≥ 50kb; these are shown in Figure 2.8.

In the top panel, the distribution of African haplotype ages is shown for the

Altai Neanderthal and Denisovan. These simulations show an excess of young
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African haplotypes dated ≤ 234kya, as well as an absence of such haplotypes in

the Denisovan, which is quite similar to the results from the real data. There-

fore, a migration event similar to the one simulated can produce a signal much

like the one we observe, and our ARGweaver analysis has the power to detect

this signal.

These simulations also allowed us to compare the haplotype ages computed

by ARGweaver to the true haplotype ages available in the trees produced by

ms. For each ’African’ haplotype predicted by ARGweaver, we computed its

true age as the average time (from present) to the first coalescence between an

African lineage and a target lineage (either the Altai Neanderthal or Denisovan)

across the predicted region. In Figure 2.8b, we show the distribution of true

ages for each set of ’African’ haplotypes sharing a particular estimated age from

ARGweaver. The figure is divided into true positives, false positives, true neg-
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Figure 2.8: a. Distribution of African haplotype ages in sequences sim-
ulated with introgression into the Altai Neanderthal lineage
from modern humans 100,000 years ago. ’African’ haplotypes
are identified as in Figure 2.1. Error bars represent the 95%
Bayesian credible intervals from 302 MCMC replicates. b. Dis-
tribution of true haplotype ages for each of the estimated ages.
The horizontal dotted lines show the estimated age. The plot is
divided into four quadrants; the lower half represents ’African’
haplotypes having true ages between 100,000 and 620,000 years
ago (the divergence time between archaic and present-day hu-
mans), which are necessarily due to post-divergence gene flow
from modern humans. The left side of the plot represents
regions that would be identified as introgressed based on a
threshold of≤234,000 years. The counts in each quadrant are
for Altai Neanderthal (red) and Denisovan (blue), respectively.
The counts for the Denisovan in the lower two quadrants are
zero because there was no simulated migration from modern
humans into the Denisovan lineage. Note that this is a some-
what nonstandard plot of true age versus estimated age; a more
standard, reversed view is given in Figure 2.9 and demon-
strates that the estimated ages are largely unbiased. Error bars
as in the standard Tukey box plot (R boxplot function).
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atives, and false negatives based upon ARGweavers ability to identify these in-

trogressed haplotypes resulting from the modern human gene flow into the an-

cestors of the Altai Neanderthal, using an identification threshold of ≤ 234kya.

Note that this figure considers only ’African’ haplotypes which were identified

by ARGweaver and which pass the length threshold of 50 kb; there are many

more false and true negatives which are not considered here. Overall, these

simulations reinforce our choice of 234kya as a threshold for choosing a confi-

dent set of potential introgressed regions in the Altai Neanderthal genome with

a very low false positive rate. This choice is supported both by the distribution

of true ages in each age bin for the Altai Neanderthal, as well as by the contrast

between the Altai Neanderthal and Denisovan. A higher threshold would iden-

tify more truly introgressed regions, but would disproportionately increase the

false positive rate.

It is apparent from Figure 2.8b that the times produced by ARGweaver be-

have reasonably, with the expected linear relationship between estimated and

true times. However, the estimated times are quite noisy, and cannot be used

to precisely date a particular haplotype. It also appears from this figure that

the ARGweaver age estimates may be biased downward, but this is actually an

artifact of our simulation settings and the distribution of true haplotype ages.

For example, because the simulated migration into Altai Neanderthal occurred

at 100kya, all haplotypes with age estimates less than 100kya are necessarily un-

derestimated in this scenario. The same effect is seen for the Denisovan, which

has no haplotypes with true ages younger than the archaic/modern human di-

vergence time of 620kya. To confirm that the bias is an artifact, we show in Fig-

ure 2.9 a more standard view of the accuracy of the ARGweaver age estimates,

with the estimated ages shown as a function of (binned) true ages. Figure 2.9
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confirms that the estimates are largely unbiased, especially for the younger ages

where ARGweavers discrete times are sampled densely. However, Figure 2.8b

demonstrates that the youngest haplotypes predicted by ARGweaver are almost

certainly underestimates, due to their noise; therefore the ages of the youngest

haplotypes do not provide a lower bound on the date of introgression. In the

simulation, 13.2% of haplotypes with ages estimated ≤ 234kya have dates ear-

lier than the true introgression event. In the real data, only 8.6% of haplotypes

are dated more recently than 100kya, suggesting that the true introgression was

likely older than 100kya.

2.3 Methods

2.3.1 ARGweaver settings

Data used ARGweaver was run genome-wide using a data set consisting of

the Altai Neanderthal and Denisovan, six present-day humans, and chim-

panzee (panTro4). The six present-day African humans included two each of

Yoruban (HGDP00927, SS6004475), Mbuti (SS6004471, HGDP0456), and San

(HGDP01029, SS6004473) individuals, all sequenced to high coverage [16]. For

this study, we only examined autosomal chromosomes. We had additional se-

quence data for two Neanderthals (El Sidrón and Vindija) on chromosome 21

only; these were included in a separate analysis of chr21.

Genomic Filters Genomic filters Various genomic filters were applied to min-

imize the influence of sequencing and alignment errors. The following regions

were masked in the analysis: 1) simple repeats identified by Tandem Repeats
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Figure 2.9: Haplotype age accuracy. Distribution of estimated ’African’
haplotype ages in Altai Neanderthal genome as a function
of true haplotype ages, in a simulation scenario with migra-
tion from modern humans into the Altai Neanderthal lineage
100kya. The gray boxes in the background show the range of
true haplotype ages in each bin; the boxplot shows the distri-
bution of estimated ages for each bin. Note that the boxplots
represent distributions over a somewhat coarse collection of
discretized times used by ARGweaver.

56



Finder (TRF) [48] (Simple Repeats track for GRCh37/hg19 downloaded from

the UCSC Genome Browser); 2) recent segmental duplications in the human

genome [49] (Segmental Dups tracks for GRCh37/hg19), 3) transposable ele-

ments identified by Repeat Masker (http://www.repeatmasker.org) with

≤ 20% divergence from their consensus sequences, 4) regions with a mappabil-

ity score in the Duke 20mer uniqueness score different from 1; 5) sites flagged as

systematic errors [50]; and 6) regions not showing conserved synteny between

human and chimpanzee (according to the UCSC syntenic net of the alignment

between GRCh37/hg19 and panTro2).

Demographic Parameters ARGweaver requires prior distributions for the co-

alescence, mutation, and recombination rates, and these were chosen as in [1].

Specifically, a population size of 11,534 was used, and the recombination rate

was based on the HapMap Phase II recombination map [51]. The average

per-generation mutation rate was 1.26x10-8, with the rate in every 100kb seg-

ment scaled to reflect the observed substitution rate in that region between

chimpanzee (panTro2), orangutan (ponAbe2), and macaque (rheMac2). Other

ARGweaver parameters were a maximum time of 1,000,000 generations, 20 dis-

crete time steps (distributed on a logarithmic scale, such that recent time in-

tervals are shorter than more ancient ones, using the ARGweaver parameter

δ = 0.01) and 5,000 MCMC iterations. We used a site compression rate of 10 (-c

10), which decreases compute time 10-fold by combining groups of 10 sites into

a single compressed site, and increasing mutation and recombination rates cor-

respondingly. Site compression is implemented in a dynamic way, ensuring that

variant sites are never compressed together, so that information is not lost. The

genome was divided into 5Mb chunks with 1Mb overlap, in order to run the

analysis in parallel across many processors. The ARGs for each chunk of a chro-
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mosome were then pasted together at the midpoints of the overlaps between

them before they were analyzed for signs of introgression. ARGs were sam-

pled every 20th iteration starting with iteration 2000. ARGweaver did not take

the ages of the archaic individuals into account, however we expected that the

six present-day samples would dominate in determining the coalescence times.

We explored the effect of this model misspecification using simulations (see the

Simulation study section below).

Integration over phase Phase integration was used for all samples in the data

(except the chimpanzee sequence, which was treated as a single haploid sam-

ple). The effects of using phase integration for this analysis were explored by

simulation (described below).

2.3.2 Identifying ’African’ and ’deep ancestral’ haplotyes

’African’ haplotypes Segments coalescing within the African subtree (2.1a) were

identified for each haploid chromosome of each archaic individual, based on

an ARG output by ARGweaver (representing a single MCMC sample from the

posterior distribution of ARGs). The ARG defines a local tree at every position

along the genome, with each tree having two leaf nodes per individual repre-

senting its two haploid chromosomes or lineages. The ’African’ haplotypes for

a particular archaic lineage (the target lineage) are determined by looking at the

times to the most recent common ancestor (TMRCA) between the target lineage

and other lineages in each local tree. Let TA f r be the set of TMRCAs between

the target lineage and all African lineages in the tree, and let TAnc be the set of

TMRCAs between the target lineage and all lineages coming from other archaic
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individuals. Then, if min(TA f r) < min(TAnc) and min(TA f r) < max(TA f r), the lo-

cal tree is considered discordant, and thus, may contain ’African’ haplotypes.

These two conditions guarantee that the archaic lineage is more closely related

to at least one African lineage than to other archaic individuals, and that it falls

within the range of African variation for the segment in question. Note that the

other lineage from the target individual is not used to define TAnc, so that both

heterozygous and homozygous ’African’ haplotypes will be detected.

Once the sequence segments with ’African’ haplotypes have been identified,

the age for each segment is set to min(TA f r). Adjacent segments with ’African’

haplotypes with the same age are combined into a single segment. Finally, a

filter was applied which removed any segment in which the overall polymor-

phism level (across all individuals in the data set excluding the chimpanzee

outgroup) was less than 1 polymorphic site per 1000 bases. This was done in

order to remove segments with long stretches of masked sites.

Sequence segments coalescing beyond the African and archaic tree The ancestral

segments shown in Figure 2.1b were defined using the same quantities de-

fined in the previous section; in this case choosing regions for which min(TA f r),

max(TA f r), min(TAnc), and max(TAnc) are all equal. This indicates that the target

lineage is an outgroup to all African lineages as well as all lineages from other

archaic individuals. The age of the ancestral segments was set to the TMRCA

of this lineage with all other lineages, and adjacent ancestral segments with the

same age were combined. The same filter for the polymorphism level in each

segment was applied to these ancestral segments.

Averaging over MCMC replicates and the effect of homozygosity The ARGweaver

analysis produced 151 sampled ARGs, as samples were taken every 20th
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MCMC iteration from iteration 2000 to 5000. Each of these 151 ARGs produced a

set of ’African’ and ancestral haplotypes for each haploid lineage of each archaic

individual (Altai Neanderthal and Denisovan). For a given archaic individual,

then, there are 302 sets of segments with ’African’ haplotypes as well as 302

sets of ancestral segments. Statistics presented here (such as counts or genomic

coverage of these segments, or a selected subset of them) are calculated on each

of the 302 replicates separately, and means and 95% confidence intervals across

these values are reported.

Note that all ’African’ and ancestral segments are defined for a single hap-

loid lineage of an archaic individual, while ignoring the other lineage from that

individual, so that segments are identified without regard to whether they are

homozygous or heterozygous. This was done in order to fairly compare num-

bers between the Altai Neanderthal and the Denisovan, despite the higher level

of homozygosity in the Altai Neanderthal. Homozygous segments are expected

to be identified in both lineages, so that the effective number of replicates in

homozygous regions will be closer to 151 rather than 302. This may result in

somewhat more noise in our estimates for the Altai Neanderthal compared to

the Denisovan, but it should be a minor effect, and importantly, there should be

no impact on the expected values of our statistics due to an individuals level of

homozygosity.

2.3.3 Simulations to assess the effects of ancient sample ages

We used ms [15], to simulate one hundred 2 Mb regions consisting of four

Africans, one Altai Neanderthal, and one Denisovan individual. We used de-
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mographic parameters consistent with estimates from G-PhoCS on our data [2]:

an African population size of 24,000, an Altai Neanderthal population size of

750 from 70kya to 140kya, changing to 3,200 from 140kya to 450kya, a Deniso-

van population size of 2,500 from 50kya to 450 kya, the Altai Neanderthal and

Denisovan populations coalesce at 450kya and have a population size of 8,000,

and this population coalesces with Africa at 620kya, with an ancestral popula-

tion size of 17,800. The Altai Neanderthal age was modeled at 70kya, and the

Denisovan at 50kya. In order to do the simulations with ms, we set the Altai Ne-

anderthal and Denisovan population sizes to a very high number (10,000 4N0

generations) from the present until the sampling time, so that the two lineages

from each individual would not coalesce with each other. A recombination rate

of 1.25x10-8 recombs/generation/base pair was chosen (by trial and error), with

the aim of producing a similar distribution of lengths of ’African’ haplotypes as

observed in the real data. The following is the ms command used, obtained by

converting the above sizes into units of 4xN0, and converting times to units of

4xN0 generations by dividing by 29x4xN0. N0 can be chosen arbitrarily and

was set to 1000. The first eight samples correspond to the African population,

the next two to the Altai Neanderthal, and the final two to the Denisovan. The

ms command is as follows:

ms 12 1 -T -seeds <seed1> <seed2> <seed3> -r 10 2000000 -I

3 8 2 2 -n 1 24 -n 2 10000 -n 3 10000 -en 0.431 3 2.5 -en 0.603

2 0.75 -en 1.21 2 3.2 -ej 3.88 3 2 -en 3.88 2 8 -ej 5.34 2 1

-en 5.34 1 17.8

The trees output by ms were then modified (using a custom perl script) to

shorten the branches of each ancient individual, subtracting the sample age.
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These modified trees were then given to the program Seq-Gen v1.3.3 [52] to

simulate the sequences. The Seq-Gen call was the following:

seq-gen -q -z <seed4> -p <nump> -mHKY -t3.0 -f0.3,0.2,0.2,0.3

-l2000000 -s 0.00005 < trees.txt

where <nump> is the number of trees output by ms, and trees.txt contains

the modified output from ms. The mutation rate corresponds to 4N01.25e − 8.

The ms and seq-gen commands above were run 100 times with different values

of seed1, seed2, seed3, seed4 to produce 100 sets of 2Mb sequences.

2.3.4 Simulations to assess the effects of Sup→Den migration

The simulation parameters were the same as before, except that we now include

an unsampled archaic hominin population with a divergence time of one mil-

lion years from the ancestral human population. Admixture with the Deniso-

van was simulated to occur 300kya, such that 1% of the Denisovan genome

came from this archaic hominin every generation for 10 generations. The ms

command was:

ms 12 1 -T -seeds <seed1> <seed2> <seed3> -r 10 2000000 -I

4 8 2 2 0 -n 1 24 -n 2 100000 -n 3 100000 -n 4 5 -en 0.431 3

2.5 -en 0.603 2 0.75 -en 1.21 2 3.2 -ej 3.88 3 2 -en 3.88 2

8 -ej 5.34 2 1 -en 5.34 1 17.8 -em 2.586 3 4 40 -em 2.589 3

4 0 -ej 12.93 4 1

Sequences were generated from the trees created by this command as before,

followed by the same ARGweaver analysis.
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2.3.5 Positive simulations with Hum→Nea migration

This simulation was done similarly to the previous ones, with the addition of

migration from a modern human population into the Altai Neanderthal lin-

eage 100kya at a rate of 3.55% for a single generation. While we did include

Sup→Den migration, we used a more modest rate (1% migration for a single

generation 300kya). Ancient sample ages of 70kya for the Altai Neanderthal

and 50kya for the Denisovan were implemented as before by post-processing

the ms output. The ms command was:

ms 12 1 -T -seeds <seed1> <seed2> <seed3> -r 10 2000000 -I

4 8 2 2 0 -n 1 24 -n 2 100000 -n 3 100000 -n 4 5 -en 0.431 3

2.5 -en 0.603 2 0.75 -en 1.21 2 3.2 -ej 3.88 3 2 -en 3.88 2

8 -ej 5.34 2 1 -en 5.34 1 17.8 -em 0.862069 2 1 142 -em 0.862319

2 1 0 -em 2.586207 3 4 40 -em 2.586457 3 4 0 -ej 12.93 4 1

1000 replicates of this simulation were created and analyzed by ARGweaver

in the same manner as the real data analysis, including randomizing the initial

haplotype phasings and use of ARGweavers phase integration feature.

2.4 Conclusion and Future Directions

The ARGweaver analysis conclusively shows that there is an excess of young,

long ’African’ haplotypes in the Altai Neanderthal genome. The simulations

show that this excess cannot be explained by the ages of the archaic individuals,

or by introgression into the Denisovan from an unknown archaic hominin. Our

simulations do find that this excess is consistent with the signal produced by
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an early modern human population into the Altai Neanderthal lineage 100kya.

However, the noise in ARGweaver’s haplotype ages, as well as the large num-

ber of possible migration scenarios to consider, makes it difficult to get a precise

estimate of the time of this gene flow event. It is also difficult to precisely iden-

tify the introgressed regions; in particular, there is a large excess of ’African’

haplotypes that are 350ky old, but they cannot be confidently distinguished

from ILS (Figure 2.1a). We also cannot confidently identify potentially intro-

gressed segments of the genome shorter than 50kb without risking a very high

false positive rate.

Thus, while this approach was powerful to establish strong evidence for the

Hum→Nea migration event, it falls short in its ability to identify and char-

acterize the introgressed regions. We also saw that it had no power at all to

confidently detect regions in the Denisovan genome introgressed from a super-

archaic hominin (Figure 2.1b). These shortcomings motivate the next chapter of

this dissertation. There, we will build ARGs under a demographic model and

get much finer resolution and higher power to examine genomic introgression.
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CHAPTER 3

MAPPING GENE FLOW BETWEEN ANCIENT HOMININS THROUGH

DEMOGRAPHY-AWARE INFERENCE OF THE ANCESTRAL

RECOMBINATION GRAPH

3.1 Introduction

It is well established that gene flow occurred among various ancient hominin

species over the past several hundred thousand years. The most well-studied

example is the interbreeding that occurred when humans migrated out of Africa

and came into contact with Neanderthals in Eurasia roughly 50,000 years ago

[16, 39]. This left a genetic legacy in modern humans which persists today: be-

tween 1-3% of the DNA of non-African humans can be traced to Neanderthals

[40]. We also now know that an extinct sister group to the Neanderthals, the

Denisovans, intermixed with humans in Asia, leaving behind genomic frag-

ments in 2-4% of the DNA of modern Oceanian humans [17, 45].

Many other admixture events have been hypothesized, creating a com-

plex web of ancient hominin interactions across time and space. These in-

clude: between Neanderthals and Denisovans (Nea↔Den) [16, 53]; between

Neanderthals and ancient humans who left Africa over 100 thousand years

(Hum→Nea) [2]; between an unknown diverged or “super-archaic” hominin

(possibly Homo erectus) and Denisovans (Sup→Den) [16, 54]; and between

other unknown archaic hominins and various human populations in Africa

(Sup→Afr) [55, 56]. (In the above notation, the arrows indicate the direction

of gene flow hypothesized; in many cases it may have gone both ways, but we

lack samples to test the other direction).
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As the network of interactions gets more complex, it becomes more diffi-

cult to apply standard methods to test for gene flow or identify introgressed

regions [47]. For example, a positive value has been observed for the statis-

tic D(Neaderthal,Denisovan, A f rican,Chimp) [16], indicating that there is excess

allele sharing between Neanderthals and African humans, as compared to

Denisovans and Africans. But, this could be explained by gene flow between

Neanderthals and Africans, or from super-archaic hominins into Denisovans,

or some combination. The main strategy for teasing apart these scenarios is

to examine the age of shared alleles. In this case, the D statistic is highest at

sites where the derived allele is fixed or high-frequency in Africa, implying

that many of the excess shared alleles are older than the Neanderthal/human

divergence, so cannot be explained by Hum↔Nea gene flow. This forms the

basis for the hypothesis of super-archaic introgression into Denisovans [16],

which predicts a deficit of African-Denisovan shared alleles, as opposed to a

surplus of African-Neanderthal sharing. However, it has also been noted that

many genomic windows with the lowest Neanderthal-Africa divergence never-

theless have high Neanderthal-Denisovan divergence, which is best explained

by Hum→Nea gene flow [2]. Currently, both events have support from multi-

ple studies, including: model-based demography estimation by GPhoCS [2,10],

using ARGweaver [1] to examine coalescence times for gene trees that do not

match the species tree [2], and comparing the frequency-stratified D-statistics

with those from extensive simulations under various models of gene flow [54].

While both Sup→Den and Hum→Nea events have substantial support, it

remains challenging to identify introgressed genomic regions that result from

them. This problem is more difficult than identifying regions introgressed into

modern non-African humans from Neanderthals and Denisovans, both because
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we do not have a sequence from the super-archaic hominin, and because these

events are likely older, and therefore the haplotypes more broken up by recom-

bination. We are further limited by the very small numbers of sequenced Ne-

anderthal and Denisovan genomes. Current approaches, including the condi-

tional random field (CRF) [40, 45] and the S* statistic [57, 58] (and recent variant

Sprime [59]), have been tuned to the problem of finding recent introgression

into humans. Furthermore, they only use a small number of summary statis-

tics, such as locations of specific patterns of allele sharing. When the genomic

signal is more subtle, it may be necessary to incorporate all the data with care-

ful methodology in order to have sufficient power to confidently detect these

regions.

In this paper, we present ARGweaver-D, which infers ancestral recombina-

tion graphs (ARGs) [60–62] conditional on a generic demographic model that

includes population splits, size changes, and migration events. The ARG con-

sists of local trees across a chromosome, representing the ancestral relationships

among a set of sequenced individuals at every genomic position. In this exten-

sion to ARGweaver, the ARGs also contain information about the population

membership of each lineage at every time point, so that introgressed regions

are encoded in the ARG as lineages that follow a migrant path. Unlike most

other methods, this approach allows multiple types of introgression to be in-

ferred simultaneously, and takes into account the full haplotype structure of the

input seqeunces. It works on unphased genomes and can accommodate chang-

ing migration and recombination rates. ARGweaver-D is a Bayesian method,

using Markov chain Monte Carlo (MCMC) iterations to remove and “rethread”

branches into the local trees; as a result, the output of ARGweaver-D is a series

of ARGs that are sampled from the posterior distribution of ARGs conditional
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on the input data and demographic model. From these, we can extract posterior

probabilities of introgression for any lineage at any genomic position.

Another recent method, dical-admix [46], is similar to ARGweaver-D in

that it is designed to accommodate generic demographic models, and takes the

full haplotype structure of the input sequences into account. However, there

are some important differences that make our approach more applicable to the

complex history of ancient hominins. dical-admix assumes that there are

only a few admixed individuals, and that other genomes are “trunk” lineages

that help define the haplotype structure of their respective populations. It there-

fore cannot infer admixture from an unsampled population, nor is it designed

to work when all individuals have some degree of admixed ancestry. Addition-

ally, ARGweaver-D can handle unphased genomes, which is important since

there are not enough Neanderthal or Denisovan samples to reliably phase these

archaic genomes.

After introducing ARGweaver-D, we present simulation studies showing it

can successfully detect Nea→Hum introgression, even when using a limited

number of genomes. We then use simulations to show that it can also de-

tect older migration events, including Hum→Nea, Sup→Den, and Sup→Afr,

depending on the underlying demographic parameters. We then apply this

method to African humans and ancient hominins, classifying 3% of the Nean-

derthal genome as introgressed from ancient humans, and 1% of the Deniso-

van genome as introgressed from a super-archaic hominin. In contrast to

Nea→Hum introgression, we do not see any evidence of selection against

Hum→Nea introgression.
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3.2 Results

3.2.1 ARGweaver-D can estimate genealogies conditional on

arbitrary demographic model

ARGweaver-D is an extension of ARGweaver [1]that can infer ARGs condi-

tional on a user-defined population model. This model can consist of an ar-

bitrary number of present-day populations that share ancestry in the past, co-

alescing to a single panmictic population by the most ancestral discrete time

point. Population sizes can be specified separately for each time interval in each

population. Migration events between populations can also be added; they are

assumed to occur instantaneously, with the time and probability defined by the

user.

Recall that ARGweaver is a MCMC sampler, in which each iteration consists

of removing a branch from every local tree in the ARG (“unthreading”), fol-

lowed by the “threading” step, which resamples the coalescence points for the

removed branches. This threading step is the main engine behind ARGweaver,

and is accomplished with a hidden Markov model (HMM), in which the set of

states at a particular site consists of all possible coalescence points in the local

tree. In the original version of ARGweaver (with a single panmictic popula-

tion), each of these states is defined by a branch and time. In ARGweaver-D,

each state has a third property, which we call the “population path”, represent-

ing the population(s) assigned to the new branch throughout its time span. The

modified threading algorithm is illustrated and further described in Fig 3.1.

Without migration events, and assuming that present-day population as-
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Figure 3.1: Illustration of the “threading” operation under a model with
two populations and a single migration band. The gray
horizontal dashed lines represent the discrete time points in
the ARGweaver model, when coalescence and recombination
events occur; migration and population divergence times are
pre-specified by the user and rounded to the nearest “half
time-point” (midway between the dashed lines). Migration
is assumed to occur instantaneously at a rate pM specified by
the uesr. This ARG currently has three haploid samples, in-
dicated by the solid black lines. A fourth sample from the
right-hand population is being threaded into the ARG, with
the dotted black line representing one possible threading out-
come. Each dot on the tree is a potential coalescence point for
the new branch, representing a state in the threading HMM.
The black dots are states from a population path with no mi-
gration, whereas the blue dots are from the migrant popula-
tion path. Recombination events occur immediately before po-
sitions b2, b3, and b4, as indicated by the red X on the trees
preceding those positions. The dotted red line shows the re-
coalescence of the broken branch, which defines the tree at the
next site. The recombinations before b2 and b4 would be sam-
pled after the threading algorithm, as they occur on the branch
being threaded, whereas the recombination before b3 is part of
the ARG before the threading, and therefore not modified at
this stage. Here, we only show a single tree in each interval
between recombination events; the local tree is identical within
each of these intervals. The lineage being threaded enters an
introgressed state at position b2, and leaves it at b4. The transi-
tion probabilities of the HMM are calculated between each pair
of adjacent states; the probability of migration pM is a factor in
the transition observed at b2. It is not a factor at b3 because the
new branch is already in a migrant state. The transition proba-
bility at b4 includes a factor of 1 − pM.
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signment for each branch is known, the ARGweaver-D is more efficient than

the original panmictic version. This is because coalescence is not possible un-

less two branches are in the same population at the same time, and so the state

space of potential coalescence points will be a subset of the original state space.

However, as migration events are added, coalescence points in other popula-

tions become possible, and some coalescence points may be reachable by mul-

tiple population paths (see Fig 3.1). Therefore, the complexity of the algorithm

can quickly increase. Whereas the original threading algorithm had an asymp-

totic running time of O(Lnk2) (where L is the number of sites, n the number of

samples, and k the number of time points), ARGweaver-D is O(Lnk2P2), where

P is the maximum number of population paths available to any single lineage.

One way to improve the efficiency is to allow at most one migration event at

any genomic location. Note that this assumption still allows multiple lineages

to be introgressed at the same genomic position, if they are descended from

a common migrant ancestor. This assumption is reasonable when the num-

ber of samples is small and the migration rate is low, and is set as a default in

ARGweaver-D that we use throughout this paper. It has two advantageous side-

effects: it avoids strange parts of the state space that could cause MCMC mixing

problems (such as back-migrations, or population label switching issues). It

also means that if we are modelling introgression from a ”ghost” population

such as a super-archaic hominin (from which we have no samples), there will

be at most one (migrant) lineage in the population at any location. Therefore,

the population size of ghost populations does not matter as coalescence will not

occur within them.

After running ARGweaver-D, it is straightforward to identify predicted in-
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trogressed regions; they are encoded in each ARG as lineages that follow a mi-

gration band. By examining the set of ARGs produced by the MCMC sampler,

ARGweaver-D can compute posterior probabilities of introgression across the

genome; this can be done in any way that the user would like: as overall proba-

bilities of migration anywhere in the tree, or probabilities of a specific sampled

genome having an ancestral lineage that passes through a particular migration

band. For a diploid individual, we can look at probabilities of being heterozy-

gously or homozygously introgressed. Throughout this paper we use the cutoff

of p ≥ 0.5 to define predicted introgressed regions, and compute total rates of

called introgression for a diploid individual as the average amount called across

each haploid lineage.

More details of the ARGweaver-D algorithm are given in Fig 3.1 and the

Supplementary Text. ARGweaver-D is built into the ARGweaver source code,

which is available at: http://github.com/CshlSiepelLab/argweaver.

3.2.2 ARGweaver-D can accurately identify archaic introgres-

sion in modern humans

We performed a set of simulations to assess the performance of ARGweaver-D

for identifying Neanderthal introgression into modern humans. These simula-

tions realistically mimic human and archaic demography, as well as variation

in mutation and recombination rates (see Methods). We compared the perfor-

mance with the CRF algorithm [40]; Fig 3.2 summarizes the results. Overall,

ARGweaver-D has improved performance over the CRF, which is subtle for

long segments but becomes more pronounced for shorter segments. This gain in
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Figure 3.2: Performance on Nea→Hum simulations. A: ROC curves
showing basewise performance of ARGweaver-D (red) and
the CRF (blue) for predicting introgressed regions in simu-
lated data. The two methods predicted introgression in the
same simulated European individuals, however the CRF made
use of the full reference panel (43 diploid Africans), whereas
ARGweaver-D only used a small subset of the reference panel
(2 diploid Africans). Different line patterns correspond to dif-
ferent maximum segment lengths. B: The length distribution
of real and predicted introgressed regions for the same simula-
tions and predictions shown in panel A.

power is despite the fact that the CRF used a much larger panel of African sam-

ples than was used by ARGweaver-D. (CRF used 43 Africans, ARGweaver-D

used only 2 to save computational cost).

Next, we predicted introgressed regions in two non-African human samples

from the Simons Genome Diversity Panel (SGDP), one European (Basque) and

a Papuan. The ARGweaver-D model used is illustrated in Fig 3.3; in this case

only the “Recent migration” bands were included. We compared to calls on

the same individuals from the CRF. Again, ARGweaver-D used two Africans,

whereas the CRF used 43. And while the CRF uses Africans as a control group,
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ARGweaver-D allows for introgression into any of the human samples. The

results are summarized in Fig 3.4. Overall, the two methods call a large fraction

of overlapping regions, but each method also produces a substantial fraction not

called by the other method (between 15-40%), and ARGweaver-D generally calls

more regions. While ARGweaver-D seems to have greater power in simulations,

another factor in the discrepancy may be that the ARGweaver-D segments were

called with the inclusion of both the Altai and Vindija Neanderthals, whereas

the CRF calls were produced with the Altai Neanderthal only. Both methods

show a strong depletion of introgression on the X chromosome, especially in

the Basque individual.

Notably, ARGweaver-D calls close to 0.5% introgression from Neanderthal

into each of the African individuals. These calls may be explained by a combina-

tion of false positives and back-migration into Africa from Europe. Another pos-

sibility is that regions introgressed into Neanderthals from ancient humans [2]

may be identified in the wrong direction under this model. With few samples,

it is likely difficult to determine the direction of migration between two sister

populations. Indeed, when we simulate migration in both directions, but still

have only a Nea→Hum migration band in the ARGweaver-D model, 8% of

Hum→Nea bases are identified as Nea→Hum. (See Supplementary Text). This

is our motivation for excluding non-African samples when looking for intro-

gressed regions from older migration events in the next section.

Finally, we compared the rate of calls in the Basque individual to predictions

of Neanderthal ancestry based on the F4-Ratio statistic F4(Altai, chimp; Basque,

African)/F4(Altai, chimp; Vindija, African) [47]. Both ARGweaver-D and CRF

predicted fewer elements (1.95% and 1.56%, respectively), compared to the F4
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have been proposed by previous studies. All parameters ex-
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ratio statistic (2.31%). Looking across the chromosomes, there is a higher corre-

lation between coverage predicted by ARGweaver-D and the expectation from

the F4 ratio (Spearman’s ρ = 0.75), than between CRF and the F4 ratio (ρ = 0.51)

(Fig 3.5).

3.2.3 ARGweaver-D can detect older introgression events

We next did a series of simulations to assess ARGweaver-D’s power to detect

other ancient introgression events that have been previously proposed. To fo-
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cus on these older events, we simulated the modern human samples using on a

model of African human population history, and as such did not include the

migration from Neanderthals or Denisovans into non-African humans. The

simulations included three migration events: from modern humans into Nean-

derthals (Hum→Nea), from a “super-archaic” unsampled hominin into Deniso-

vans (Sup→Den), and also from super-archaic into Africans (Sup→Afr). (Note

that although both Sup→Afr and Sup→Den involve introgression from the

same super-archaic population, it is only meant to represent introgression from

any unsampled, diverged hominin species, and does not necessarily imply that

the same population admixed with both Africans and Denisovans.) The simu-

lations included many realistic features: ancient sampling dates for the archaic

hominins, variation in mutation and recombination rates, randomized phase,

and levels of missing data modeled after the SGDP and ancient genomes that

76



0.00 0.01 0.02 0.03 0.04

0.
00

0.
01

0.
02

0.
03

0.
04

F4 ratio

F
ra

c 
co

ve
re

d

1

2

3 4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21
221 2

3
45

6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

21

22

ARG chrom N
CRF chrom N

N

N

Figure 3.5: Coverage of introgression predictions vs. F4 Ratio. For each
autosomal chromosome, we plot the expected fraction pre-
dicted introgressed by ARGweaver-D (red) and CRF (blue) into
the Basque individual, vs the F4Ratio statistic F4(Altai, chimp,
Basque, Afr)/F4(Altai, chimp, Vindija, Africa) computed for
variants on each chromosome. The dashed red and blue lines
show the best linear fit for each method, whereas the gray
dashed line shows x = y for reference. Dotted gray lines con-
nect results from the same chromosome.

77



we use for analysis (see Methods). Each set of simulations contained all three

types of migration and ARGweaver-D detected all migration events in a single

run with multiple migration bands in the model.

We analyzed these data sets with ARGweaver-D using the model depicted

in Fig 3.3, with only the “old migration” bands. As we do not have good prior

estimates for the migration time (tmig) or super-archaic divergence time (tdiv), we

tried four values of tmig (50kya, 150kya, 250kya, 350kya) and two values of tdiv

(1Mya, 1.5Mya). We generated data sets under all 8 combinations of tmig and

tdiv, and then analyzed each data set with ARGweaver-D under all 8 models, in

order to assess the effects of model misspecification on the inference.

The power of ARGweaver-D to detect introgression is summarized in Fig

3.6. The left side of the plot represents simulations generated with tdiv = 1Mya,

whereas the right side used tdiv = 1.5Mya. Power to detect super-archaic intro-

gression is clearly much higher when the divergence is higher, but (as expected)

does not affect power to detect Hum→Nea introgression. Looking from top to

bottom, the plots show the effect of increasing the true time of migration. In

the top plot with tmig = 50kya, only results for Sup→Afr are shown because the

archaic hominin fossil ages pre-date the migration time. For all events, we see

power decrease as the true migration time decreases.

For a given simulation set, the effect of the parameters used by ARGweaver-

D are generally more subtle. We note that power tends to be better when older

migration times are used in the model, even when the true migration time is re-

cent; in particular, the power when tmig = 150kya (red bars) is often much worse

than when later times are used, especially for the Hum→Nea event. Similarly,

power is often better when tdiv is set to 1Mya in the ARGweaver-D model, as
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Figure 3.6: Simulation results. Each shaded box represents a set of simu-
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Because the archaic hominin fossil ages are older than 50kya,
results for tmig = 50kya (top) are only applicable for introgres-
sion into humans.

opposed to 1.5Mya.

In summary, ARGweaver-D has reasonably good power to detect super-

archaic introgression when the divergence time is old, but power is more limited

as the divergence decreases. The power to detect Sup→Afr is always lower than

the power to detect Sup→Den, as the African population size is much larger,

making introgression more difficult to distinguish from incomplete lineage sort-
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ing. For the Hum→Nea event, we have around 50% power if the migration time

is 150kya, and around 30% power when it is 250kya.

False positive rates are less than 1% when a posterior probability threshold

of 0.5 is used (Fig 3.7). When analyzing the simulated data sets, we included two

additional migration bands in the ARGweaver-D model as controls: one from

the super-archaic population to Neanderthal (Sup→Nea), and another from hu-

mans into Denisova (Hum→Den). The rates of calling these events were also

less than 1% for all models. Importantly, the rate of mis-classification is very low

for all categories (Fig 3.8); in particular, the model can easily tell the difference

between Hum→Nea and Sup→Den events, despite both resulting in similar D

statistics [2, 54].

More details about the simulation results are available in the Supplementary

Text. One issue to note is that, although the simulated data sets were generated

with a human recombination map, the ARGweaver-D model used a simple con-

stant recombination rate. Performance is somewhat better when ARGweaver-D

uses the true recombination map, but in practice there are not enough Nean-

derthal or Denisovan samples to generate a reliable recombination map, and

there is no data to infer the recombination map for the super-archaic population.

The Supplementary Text also shows results when we simulate more African in-

dividuals. We find that performance does not improve as samples are added, so

in the main text we focus on analysis with two African samples (four haploid

genomes).
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3.2.4 Deep introgression results

We next applied the models from the previous section to real modern and ar-

chaic human genomes. Our goals were to identify and characterize introgressed

regions from previously proposed migration events, as well as to see if we find

evidence for other migrations which may not be detectable using other meth-

ods. Our data set consisted of two Africans from the SGDP [63], two Nean-

derthals [16,54], the Denisovan [17], and a chimpanzee outgroup. We again use

the demography illustrated in Fig 3.3, with old migration events only. We fo-

cus on the model with tmig=250kya and tdiv=1Mya, because this model seemed to

have high power in all our simulation scenarios, and because our results sug-
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gest that it may be the most realistic (as discussed below). The results using

other models are consistent with those presented here, and are described in the

Supplementary Text.

An overview of the coverage of predicted introgressed regions is depicted in

Fig 3.9; a more detailed summary is given in Fig 3.10. The most immediate ob-

servation is that Hum→Nea regions are called most frequently, at a rate of ∼ 3%

in both the Altai and Vindija Neanderthal. This number is almost certainly an

underestimate, given that the true positive rate for this model was measured be-

tween 30-55%. By contrast, only ∼ 0.37% of regions are classified as Hum→Den.

As no previous study has found evidence for Hum→Den migration, this serves

as a control, verifying that our false positive rate estimated in simulations is

likely fairly accurate, as we estimated a FP rate of 0.41%.
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Whereas there is a depletion on the X chromosome of archaic introgression

into humans, we see high coverage of Hum→Nea on the X for both Altai and

Vindija. The fact that it is somewhat higher on the X than the autosomes might

be partially explained by increased power on the X; simulations suggest that

power will be ∼ 20% higher for this event when population sizes are multiplied

by 0.75 (Fig 3.11). Overall, there is a lot of variation in detected introgression

across the chromosomes, and several autosomal chromosomes have higher pre-

dicted coverage than the X, including 1, 6, 21, and 22 (Fig 3.10).

Although the Vindija sample is 70ky younger than the Altai sample [54],
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there is no apparent depletion of human ancestry on Vindija compared to Altai

on the autosomes, suggesting that negative selection did not cause a significant

loss of human introgressed regions in the Neanderthal during that time. Several

chromosomes do show drops in coverage from Altai to Neanderthal, with the

largest drop on the X chromosome (Fig 3.10).

Other migrations are detected at lower levels. We identify 1% of the Deniso-

van genome as introgressed from a super-archaic hominin, which is double our

estimated false positive rate for this event. The fact that we found much less

than the ∼ 6% estimated by previous methods [54] might suggest that the super-

archaic divergence time is closer to 1Mya, since we would expect to have more

power with a higher divergence time. Still, this analysis resulted in 27Mb of

sequence that may represent a partial genome sequence from a new archaic

hominin. ARGweaver-D also predicted a small fraction of the Neanderthal

genomes as introgressed from a super-archaic hominin (0.75% for Altai and

0.70% for Vindija). These amounts are only slightly above the estimated false

positive rates (0.65%), and the Sup→Nea event has not been previously hypoth-

esized.

One interesting aspect of Sup→Den and Sup→Nea regions is that, to

the extent that these predictions are accurate, there is the potential that this

super-archaic sequence was passed to modern humans through subsequent

Den→Hum and Nea→Hum migrations. We explored these regions further

by intersecting them with introgression predictions across the full SGDP data

set. This analysis is detailed in the Supplementary Text. It first confirms that

most Sup→Den and Sup→Nea regions have higher-than expected divergence

to the Denisovans and Neanderthals (respectively) across all humans, and not
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just the two African humans used by ARGweaver-D. 15% of the Sup→Den re-

gions overlap with sequence introgressed into Asian and Oceanian individuals

from Denisovans, and many of these regions also contain a high number of

variants consistent with super-archaic introgression. We also see that 35% of

the Sup→Nea regions are introgressed in at least one modern-day non-African

human. We also identified one region of hg19 (chr6:8450001-8563749) which

appears to be Neanderthal-introgressed and overlaps a Sup→Nea region. We

compiled a list of Sup→Den and Sup→Nea regions that overlap human intro-

gressed regions, and the genes that fall in these regions. These are given in

Tables 3.1 and 3.2.

Location (hg19) count overlapping genes
chr15:56880301-56943860 10 RP11-1129I3.1, ZNF280D
chr5:35268551-35472820 9 U3

chr15:79936231-80045380 7
chr2:183978771-184038340 7 NUP35

chr1:40622111-40751801 6 RLF, RNU6-1237P, TMCO2, RP1-39G22.7,
ZMPSTE24

chr4:143486431-143606100 6 INPP4B, RP11-223C24.1
chr15:63493991-63599658 5 RAB8B, APH1B
chr17:30992260-31232970 3 MYO1D, RP11-220C2.1, Y RNA,

AC084809.2, AC084809.3
chr5:74577091-74897550 3 CTD-2235C13.2, HMGCR, COL4A3BP,

CTD-2235C13.3, POLK, RNU7-175P,
CTC-366B18.2

chr20:18369011-18456230 3 DZANK1, RNA5SP476, POLR3F, MIR3192
chr2:104441221-104575299 2 AC013727.1, AC013727.2, RP11-76I14.1
chr3:156394341-156515810 2 TIPARP, RP11-392A22.2

chr8:97918711-98192640 2 CPQ, KB-1958F4.2, KB-1958F4.1
chr8:56673021-56798570 2 TMEM68, TGS1, LYN

chr13:77606499-77899730 1 MYCBP2, MYCBP2-AS1, RP11-226E21.2
chr4:85723291-85798820 1 WDFY3, RP11-147K21.1

chr6:131062559-131237440 1 SMLR1, EPB41L2
chr7:83335141-83452959 1

chr10:52582401-52700350 1 A1CF, RP11-449O16.2
chr3:129951121-130100515 1 COL6A5, AC093004.1
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Table 3.1: Sup→Den regions overlapping Den→Hum
regions predicted by the CRF. The “count” column
shows the number of non-African SGDP individuals
who have Denisovan introgression at this locus. We
restricted this list to Sup→Den regions for which at
least 90% of SGDP individuals without Denisovan in-
trogression have a higher divergence to the Denisovan
than to Neanderthals.

Location (hg19) count overlapping genes
chr6:8450001-8563749 71 HULC

chr7:44396121-44543978 37 RP5-844F9.1, NUDCD3, RNU6-1097P
chr4:121531631-121587672 32 RP11-501E14.1

chr9:30239959-30438940 21 LINC01242
chr7:50432351-50497990 17 IKZF1, CTC-736O2.1
chr9:94891421-95445440 17 snoU13, RP11-62C3.6, IARS, SNORA84, NOL8,

CENPP, OGN, OMD, ASPN, ECM2, MIR4670, IPPK
chr3:16970431-17045770 15 PLCL2, MIR3714

chr6:120748701-120851630 14 RNU6-214P
chr7:85753641-85880460 14
chr9:73603471-73725370 13 TRPM3

chr11:42691811-42766780 13
chr4:106603601-106693390 9 INTS12, GSTCD, RP11-45L9.1
chr15:67472779-67650950 8 SMAD3, AAGAB, IQCH
chr6:41014213-41153400 7 APOBEC2, OARD1, NFYA, TREML1, TREM2
chr2:84214131-84279410 7
chr4:42929991-43023170 5 GRXCR1

chr4:161759472-162023170 5 AC106860.1
chr5:342721-451430 5 AHRR, C5orf55, EXOC3

chr9:88250001-88377170 4 AGTPBP1, RP11-202I11.2
chr4:117545891-117601428 4

chr4:18307191-18446628 3
chr12:92114981-92187270 3
chr4:18307191-18368540 3
chr6:46356781-46434892 3 RCAN2

chr18:47574231-47700390 2 MYO5B
chr4:81260001-81631350 2 C4orf22
chr6:44893490-45311660 2 SUPT3H, MIR586, RUNX2

chr13:84262861-84384570 1
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chr13:87243951-87386382 1
chr3:100416521-100565100 1 TFG, ABI3BP

chr4:18084421-18196990 1
chr4:98345401-98553210 1 RP11-18N21.2, RP11-681L8.1, AC034154.1, STPG2

chr13:65910681-66015839 1
Table 3.2: Sup→Nea regions overlapping Nea→Hum
regions predicted by the CRF. The “count” column
shows the number of non-African SGDP individuals
who have Neanderthal introgression at this locus. We
restricted this list to Sup→Nea regions for which at
least 90% of SGDP individuals without Neanderthal
introgression have a higher divergence to the Nean-
derthal than to Denisovans.

We examined lengths of all our sets of predicted regions, as they might be

informative about the time of migration. However, we find that there is strong

ascertainment bias towards finding longer regions, so that the length distribu-

tions are highly overlapping for different migration times. (See Supplementary

Text).

Instead, we looked at the frequency spectrum of introgressed regions to gain

insight into the times of migration events. The older the migration, the more

likely that an introgressed region has drifted to high frequency and is shared

across the sampled individuals. For the Hum→Nea event, we observed 37% of

our regions are inferred as “doubly homozygous” (that is, introgressed across

all four Neanderthal lineages). This is very close to what we observe in regions

predicted from our simulations with migration at 250kya (38%), whereas sim-

ulations with migration at 150kya and 350kya had doubly-homozygous rates

of 10% and 55%, respectively. To further narrow down the range of times,

we did additional simulations with tmig =200, 225, 275, and 300kya, and com-

pared the frequency spectrum of introgressed regions after ascertainment with

89



F
ra

ct
io

n

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

AltHet VinHet AltHom VinHom AltHet/
VinHet

AltHom/
VinHet

AltHet/
VinHom

AltHom/
VinHom

t_mig

150 kya
200 kya
225 kya
250 kya

275 kya
300 kya
350 kya

Figure 3.12: Frequencies of Hum→Nea introgression categories. For
both the real and simulated data, Hum→Nea regions were
ascertained with ARGweaver-D using a model with tmig =

250kya and tdiv = 1Mya. These regions were classi-
fied as heterozygous/homozyogus in the Altai Neanderthal
(AltHet/AltHom), and in the Vindija Neanderthal (Vin-
Het/VinHom), depending on which branches are in the mi-
grant state in the majority of sampled ARGs. Here, the colored
bars represent the fraction of Hum→Nea bases in each cate-
gory for simulated data sets generated with different values of
tmig; the error bars show 95% confidence intervals (CIs) com-
puted using 100 bootstrap replicates across the introgressed
elements. The horizontal black lines represent the amount ob-
served in the real data, with the gray boxes showing the CIs,
also obtained by the same bootstrap process.

ARGweaver-D. We find that the observed frequency spectrum is consistent with

200kya < tmig < 300kya (Fig 3.12). The same approach suggests that tmig > 225kya

for the for the Sup→Den event (Fig 3.13).
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Figure 3.13: Frequencies of Sup→Den introgression categories. This
figure is analygous to Fig 3.12; here we look at putative
Sup→Den regions. Because there is only one Denisovan in-
dividual, there are only two categories: heterozygous or ho-
mozygous. Note that while we expect rates of heterozygosity
to decrease with migration time, the confidence intervals here
are wide, and there may be conflicting ascertainment effects
that cause the apparent increase in heterozygous segments for
the simulated data sets with oldest tmig values.

Data release and browser tracks

Our predictions and posterior probabilities can be viewed as a track hub

on the UCSC Genome Browser [64], using the URL: http://compgen.

cshl.edu/ARGweaver/introgressionHub/hub.txt. The raw results can

be found in the sub-directory: http://compgen.cshl.edu/ARGweaver/

introgressionHub/files. Fig 3.14 shows a large region of chromosome

X as viewed on the browser, with a set of tracks showing called regions, and an-

other showing posterior probabilities. Fig 3.15 shows a zoomed-in region with a

Sup→Den prediction, and Fig 3.16 shows an example Hum→Nea region. When

zoomed in, there is a track showing the patterns of variation in all the individu-
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Figure 3.14: Introgression results for a large section of chromosome X
displayed on UCSC Genome browser. The top set of tracks
show predicted introgressed regions, with green indicating
introgression from humans, and gray indicating introgression
from a super-archaic hominin. Darker colors are used for ho-
mozygous introgression. Below that can be seen the posterior
probabilities for each type of introgression into each individ-
ual.

als used for analysis, with haplotype phasing sampled from ARGweaver-D.
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Figure 3.15: UCSC Genome Browser shot of a region with predicted het-
erozygous Sup→Den introgression. This browser shot is
zoomed in on a ∼ 170kb region. The first two tracks show
the predicted regions and posterior probabilties as in Fig 3.14,
except only the supToDen probabilities are shown. The track
just below shows the variants observed in this region that
are used in the ARGweaver-D analysis. Alternating colors
are used for each variant site. When chimpanzee alignments
are available, the non-chimp allele is colored; otherwise the
minor allele is colored. Lack of a color may mean that the
haplotype has the chimpanzee or major allele, or that it has
missing data. The phasing of the variants represents the fi-
nal phase sampled by the ARGweaver-D algorithm. Here, the
Denisovan is usually homozygous and shares variants with
Africans and Neanderthals outside of the introgressed region;
but within it, the Denisova 2 haplotype has many singleton
variants, whereas Denisova 1 continues to share many vari-
ants with Neanderthals and Africans.
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Figure 3.16: UCSC Genome Browser shot of a region with predicted ho-
mozygous Hum→Nea introgression in Vindija. This region
on chromosome 10 has a high-probability introgressed region
in both Vindija (but neither Altai) haplotypes. The top green
bar indicates a predicted Hum→Nea region in Vindija, and
below this is the posterior probability of introgression across
the region in both Neanderthals. The variant track is simi-
lar to Fig 3.15. Here, we see almost identical haplotypes be-
tween Vindija and the Africans, whereas Altai shares haplo-
types with the Denisovan.

Functional analysis of introgressed regions

Some observations in the previous section suggest that there was not strong

selection against the Hum→Nea regions. We sought to look for other signals

that might hint at possible functional consequences of this event.

We first looked at deserts of introgression that were detected in [45]. They

noted four 10Mb deserts in which the rate of both Nea→Hum and Den→Hum

introgression is < 1/1000. The coverage of Hum→Nea introgression within

these deserts is shown in Table 3.3; the fairly high coverages suggest that these

deserts are unidirectional. For two of the deserts, the Hum→Nea coverage is
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Table 3.3: Amount of Hum→Nea introgression in deserts of Nea→Hum
and Den→Hum introgression.

Location (hg19) cov Altai cov Vindija num Altai num Vindija

chr1:99-112 Mb 0.097 0.024 4 3

chr3:78-90 Mb 0.101 0.078 6 5

chr7:108-128 Mb 0.023 0.031 4 5

chr13:49-61 Mb 0.029 0.048 6 5
The columns “cov Altai” and “cov Vindija” show the coverage of Hum→Nea

within the given region on each Neanderthal; “num Altai” and “num Vindija”

show the number of introgressed regions > 50kb. The genome-wide average

coverage for Altai and Vindija is 0.034 and 0.033, respectively.

very high, especially in the Altai Neanderthal. The third region is interesting

as it overlaps the FOXP2 gene, which contains two human-chimp substitutions

that have been implicated in human speech [65, 66], although the Hum→Nea

introgressed region is upstream of these substitutions (Fig 3.17).

We next looked at all deserts of Nea→Hum ancestry, to see if this larger

set of regions are are depleted for introgression in the other direction. Based

on the CRF regions, we identified 30 regions of at least 10Mb which qualify as

deserts. We looked at several statistics, including coverage of Hum→Nea in

these regions, number of elements, and change in coverage between the Altai

and Vindija Neanderthals; but we do not see any difference in the distribution

of these statistics within deserts, as compared to randomly chosen genomic re-

gions matched for size (Fig 3.18).

Finally, we checked for enrichments or depletions of various functional el-

ements in our introgressed segments, relative to what would be expected if
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Figure 3.17: UCSC Genome Browser shot of a predicted Hum→Nea re-
gion overlapping FOXP2. Exon 7, which contains human-
chimp substitutions shared by Neanderthals that may be in-
volved with human speech, is located at the very right of this
plot, and is not predicted introgressed. As in Fig 3.14, the
light green implies heterozygous Hum→Nea introgression,
whereas dark green is homozygous.

the introgressed segments were randomly distributed throughout the genome.

However, the interpretation of these numbers is difficult, as local genomic fac-

tors (such as effective population size, mutation and recombination rates) affect

the power to detect regions. While the overall levels of enrichment are therefore

difficult to interpret, it is interesting to note that the enrichment of functional

regions (such as CDS, promoters, and UTRs) tends to be higher in the Altai than

the Vindija Neanderthal, which is the opposite pattern we might expect from

negative selection (since the Vindija Neanderthal’s fossil is much more recent).
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Figure 3.18: Properties of Hum→Nea regions within Nea→Hum deserts.
We compared the distribution of various statistics across all
non-overlapping 15Mb windows in the genome (black), to
the distribution within deserts of Neanderthal introgression
in humans of at least 10Mb (red). We excluded any window
that crosses a telomere or centromere, or where ≥ 50% of the
window does not pass our filters. In the bottom-right cor-
ner of each plot is shown the Kolmogorov-Smirnov statistic
p-value, indicating that there is no significant difference be-
tween the black and red distributions. The statistics shown
are indicated on the x-axis label. “Hum→Nea coverage” is
average fraction of the window that contains any Hum→Nea
region. “Mean Hum→Nea frequency” is the average number
of introgressed haploid lineages of Hum→Nea across the win-
dow (where a frequency of zero indicates no introgression,
and a frequency of 4 indicates homozygous introgression in
Altai and Vindija). “Mean frequency of Hum→Nea regions”
is the mean frequency, among regions with Hum→Nea calls.
“Altai - Vindija coverage” is difference in mean coverage be-
tween the Altai and Vindija within each window.
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Further enrichment results are detailed in the Supplementary Text.

3.3 Discussion

We present a new method for building ARGs under an arbitrary demographic

model, and use this method as a powerful new way to identify introgressed re-

gions. While it can detect introgressed Neanderthal and Densiovan sequences

in human genomes, ARGweaver-D is too computationally complex to be used

on a large scale over many human samples. However, it is very powerful even

on small samples and older migration events, and has several other benefits

over other methods. It does not require a reference panel of non-introgressed

individuals, and can simultaneously identify introgression stemming from mul-

tiple migration events, as well as from both sampled or unsampled populations.

ARGweaver-D does not rely on summary statistics, but uses a model of coales-

cence and recombination to generate local gene trees that are most consistent

with the observed patterns of variation, even for unphased genomes. By in-

corporating all this information, it can successfully distinguish migration from

incomplete lineage sorting, and tease apart different migration events that pro-

duce similar D statistics (such as Sup→Den and Hum→Nea). The code is freely

available and can be applied to any number of species or demographic scenar-

ios.

Applying this method to modern and archaic hominins, we confirm that

a significant proportion of the Neanderthal genome consists of regions intro-

gressed from ancient humans. While we identified 3% of the Neanderthal

genome as introgressed, a rough extrapolation based on our estimated rates of
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true and false positives suggests that the true amount is around 6%. Thus, the

Neanderthal genome was likely more influenced by introgression from ancient

humans, than non-African human genomes are by Neanderthal introgression.

Our follow-up analysis suggests that the Hum→Nea gene flow occurred be-

tween 200-300kya. This time estimate is largely based on the frequency of intro-

gressed elements among the two diploid Neanderthal genomes, and thus will

be sensitive to the accuracy of the demographic model we used for simulation,

as well as other factors such as mutation rate and generation time.

Making conclusions about the possible impact of the Hum→Nea migration

has proved challenging due to the myriad ascertainment biases—known and

unknown—that affect our power to detect introgressed regions. Even in the case

of Nea→Hum migration, in which power to detect introgression is much higher,

earlier claims of depletion near genes, as well as decreasing levels of introgres-

sion over time, have been recently called into question [46,47]. The strongest re-

maining pieces of evidence for negative selection against Nea→Hum introgres-

sion are the depletion on the X chromosome and several other genomic deserts.

But for Hum→Nea, we see no depletion on the X, and while we do not have

enough samples to detect deserts across Neanderthals, we confirm that previ-

ously identified Nea→Hum deserts are not depleted for introgression in the op-

posite direction. We do see a slight decrease in Hum→Nea introgression on the

X chromosome in the Vindija Neanderthal compared to the Altai, which could

be explained by weak negative selection removing some introgressed regions

in the ∼70ky that separate these fossils. An interesting question is whether this

lack of selection is because human introgression introduced healthy variation

into the Neanderthal genome, or because the Neanderthal population was too

small for natural selection to act against anything but the most harmful variants.
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However, without more archaic samples, these questions will be challenging to

answer.

ARGweaver-D also identified 1% of the Denisovan genome as introgressed

from a super-archaic hominin. Previous studies have estimated the total amount

of Sup→Den as roughly 6% [54], but this is the first study to be able to iden-

tify specific introgressed regions. The fact that we only find a small fraction

of the total amount suggests that the introgressing population was not too

highly diverged from other hominins; this low power is much more consistent

with a divergence time of 1Mya than 1.5Mya. Still, we report 27Mb of puta-

tive super-archaic sequence from this previously-unsequenced hominin, and

we note that 15% of these regions have been passed on to modern humans

through Den→Hum introgression. It may be possible to obtain more of this

super-archaic sequence by applying ARGweaver-D to the set of 161 Oceanian

genomes recently sequenced [67], looking for super-archaic segments passed

through the Denisovans.

There have been several studies suggesting super-archaic introgression into

various African poulations [55, 56, 68]. However, ARGweaver-D only detected

a small amount of Sup→Afr introgression, which was somewhat lower than

our estimated false positive rate. One aspect to note here is that the power to

identify introgression from an unsequenced population is highly dependent on

the population size of the recipient population. The larger the population, the

deeper the coalescences are within that population, making it more difficult to

discern which long branches might be explained by super-archaic introgression.

In the case of Africans, we used a population size of 23,700, which was our best

estimate from previous runs of GPhoCS [2, 10]. If we had used a smaller pop-
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ulation size, ARGweaver-D would have produced more Sup→Afr predictions,

but most of these would be false positives unless that smaller population size

is closer to the truth. Overall, we caution that the problem of detecting super-

archaic introgression into a large and structured population such as Africas is

very difficult, and that claims of such introgression need to be robust to the de-

mographic model used in analysis. It may not be possible to address the ques-

tion of ancient introgression into Africans without directly sequencing fossils

from the introgressing population.

We also explored some introgression events that do not have any support

from previous literature; namely the Hum→Den and Sup→Nea events. A priori,

we expected that levels predicted for these events would likely serve to confirm

our false positive rates in real data. However, it is also possible that there is some

amount of these types of gene flow, which has not been detected previously

because it goes against the net direction of gene flow. For the Hum→Den event,

we predicted a slightly smaller fraction (0.37%) than our predicted false positive

rate from simulations (0.41%). For Sup→Nea, we predicted 0.75% of the genome

introgressed, which is slightly higher than our predicted false positive rate for

this event (0.65%). While these fractions are small, it seems entirely plausible

that if there was admixture between Homo erectus and the Denisovans, there may

have also been some with Neanderthals, perhaps in the Middle East; or genes

may have passed from Homo erectus to Neanderthal through the Denisovans.

Given the number of known interactions between ancient hominins, it may be

more reasonable to assume that gene exchange likely occurred whenever these

groups overlapped in time and space.
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3.4 Materials and Methods

3.4.1 General ARGweaver-D settings

For all ARGweaver-D runs in this paper, the MCMC chain was run for 2000 it-

erations, with the first 500 discarded as burnin, and ARGs sampled every 20

steps thereafter. Except where otherwise noted, phase was randomized for

all individuals and the phase integration feature of ARGweaver-D was used

(--unphased). We used site compression throughout (--compress 10). We

also used --start-mig 100, which disallows migrations for the first 100 iter-

ations of the sampler, enabling ARGweaver-D to establish an ARG with a good

general structure before exploring the migration space.

Recombination rate. Rather than use a recombination map calculated from

modern humans, which may not be accurate for ancient hominins, we used a

constant recombination rate of 5e-9/bp/generation for all analyses. This value

was chosen for being somewhat between the mean and median genome-wide

recombination rates (1.3e-8 and 1.7e-9 per bp per generation, respectively), and

for providing reasonable power while still maintaining a low false positive rates

in simulations (see Supplementary Text). Note that all simulated data sets were

nonetheless created with a real human recombination map (see “Simulations”,

below).

Mutation rate. For real data analysis, the mutation rate map was based

on primate divergence levels in 100kb sliding windows, using genome-wide

alignments of human, chimp, gorilla, orangutan, and gibbon sequences (see

Supplementary Text for details), and scaled to an average rate of 1.45e-
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8/generation/site. Simulated data sets were generated by sampling rates from

this map, and the same map was used for analysis.

Demographic model

The demographic model used in all ARGweaver-D analyses is depicted in Fig

3.3. The divergence times used were taken from [54], and population sizes from

[2] (which were based on estimates from GPHoCS [10]). When analyzing chrX,

population sizes were scaled by a factor of 0.75. When analyzing non-African

humans, we only included the “recent” migration bands from Neanderthals and

Denisovans into humans, whereas when looking for older introgression events,

we excluded the “recent” bands as well as non-African humans.

Recall that ARGweaver uses a discrete-time model; 20 discrete times were

chosen to span the range of relevant times, with more density near the leaves

(where more coalescences occur) and to allow for coalescences between migra-

tion and population divergence events in the models. The discrete times (in

kya) were: 0, 100, 200, 300, 400, 450, 500, 550, 600, 700, 950, 1200, 1450, 1700,

2000, 3000, 5000, 7000, 13,000, 15,000. Migration events occurred at half-time

points including 50, 150, 250, and 350kya. Note that on this time scale, the Eu-

ropean/African split is very recent, so that we did not model the population di-

vergence among modern humans or recent growth in out-of-Africa populations.

Similarly, we did not model the divergence between the Altai and Vindija Nean-

derthals, which are estimated to split only ∼ 15ky before the Altai Neanderthal

individual lived. Throughout, we assume a generation time of 29 years [69].
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3.4.2 Calling introgressed regions

Once ARGweaver-D has been run, introgressed tracts can be identified for each

migration event by scanning the resulting ARGs for local trees whose branches

follow that migration band. Throughout this paper we use a probability thresh-

old of 0.5 to identify introgressed regions, indicating that the region was intro-

gressed in at least half of the sampled ARGs. To predict introgressed regions

for a particular individual, we compute the posterior probability that either of

the individual’s two haploid lineages are introgressed. The probability of being

in a heterozygous or homozygous introgressed state can be calculated as the

fraction of ARG samples in which one or two lineages (respectively) from an

individual are introgressed in the local tree.

The coverage of introgressed regions for an individual is computed as one-

half times the coverage of heterozygous regions, plus the coverage of homozy-

gous regions. In theory, this fails to account for sites that switch between the

heterozygous and homozygous states without reaching the threshold for either,

but in practice this occurs at a negligible fraction of sites.

3.4.3 Analysis of hominin data

Data preparation

We ran a series of ARGweaver-D analyses on freely available hominin data, de-

scribed in Table 3.4. The panTro4 chimpanzee sequence was used as a haploid

outgroup. The chimp alignment to hg19 was extracted from the alignments of

99 vertebrates with human available on the UCSC Genome Browser (http://
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hgdownload.soe.ucsc.edu/goldenPath/hg19/multiz100way). Any

region which did not have an alignment for chimp is masked in the chimp se-

quence.

Table 3.4: Hominin samples used in this study.

name region source ID sex coverage age (ky)

Vindija Neanderthal Europe Max Planck Vindija33.19 F 30x 52

Altai Neanderthal Siberia Max Planck Altai F 52x 115

Denisovan Siberia Max Planck Denisova F 31x 72

Papuan Oceania SGDP LP6005441-DNA B10 F 41x 0

French Basque Europe SGDP LP6005441-DNA D02 F 36x 0

Khomani San Africa SGDP LP6005677-DNA D03 F 44x 0

Mandenka Africa SGDP LP6005441-DNA F07 F 37x 0
We downloaded samples generated by investigators at the Max Planck Institute from:

http://cdna.eva.mpg.de/neandertal/Vindija/VCF; this directory contains

genotype calls for several ancient genomes using a consistent pipeline and genotype caller

(snpAD) throughout.

SGDP: Simons Genome Diversity Panel.

Filtering

For each individual, we masked genotypes with quality scores less than 20 or se-

quencing depths outside the range [20, 80]. For each ancient individual, we also

used the filters recommended by [54] and provided here: http://cdna.eva.

mpg.de/neandertal/Vindija/FilterBed. We also masked (for all indi-

viduals): any site which belongs to a non-unique 35mer, according to the UCSC
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Genome Browser table hg19.wgEncodeDukeMapabilityUniqueness35bp; “black-

listed” sites falling under the tables hg19.wgEncodeDacMapabilityConsensusExcludable

or hg19.wgEncodeDukeMapabilityRegionsExcludable; ∼ 9% of the genome for

which SGDP genotype calls were not provided (85% of this set overlapped pre-

viously mentioned filters). ARGweaver-D was run in 2.2Mb windows, but we

excluded any window for which any of the ancient filters, or the combined site

filters, exceeds 50% of bases. In total we analyzed 1,166 autosomal windows

and 52 windows on the X chromosome, covering 2.56Gb of hg19.

CRF calls

Introgression calls from [45] were downloaded from https://sriramlab.

cass.idre.ucla.edu/public/sankararaman.curbio.2016/summaries.

tgz. As recommended by the README contained therein, “set1” calls were

used for Neanderthal ancestry in the Basque individual, whereas “set2” calls

were used for Denisovan ancestry in both the Basque and Papuan, as well as for

Neanderthal in the Papuan. For each individual, we took the set of regions with

probability of introgression ≥ 0.5 in either haplotype.

F4 Ratio

The F4 ratio statistic F4(Altai, chimp; Basque, African)/F4(Altai, chimp; Vin-

dija, African) was calculated across the autosomal genome, and for each indi-

vidual chromosome. For the African samples, we used allele frequencies across

29 African individuals from the SGDP data set (this excludes 15 individuals

with the highest Neanderthal ancestry according to [47]). For this analysis we
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masked all sites that did not have a filter level (FL) field of 9 in the SGDP indi-

viduals. For the Neanderthals we used the same filters described previously.

3.4.4 Simulated data sets (deep introgression)

We performed a series of simulations to assess ARGweaver-D’s ability to detect

older migration events. Each simulated data set consists of a 2Mb region with

5 unphased diploid individuals and one haploid outgroup, mimicking the de-

mographic histories and sampling dates of the individuals from the real data

analysis. All simulations were produced with the software msprime [28].

The population tree used in the simulations is identical to the one depicted

in Fig 3.3, and sampling dates correspond to the sample ages in Table 3.4. The

human population size history also corresponds to the one in Fig 3.3. For

the archaic hominins, we simulated a more detailed model of population size

change, using piecewise-constant estimates produced by PSMC [8] and pub-

lished in [54]. For the Neanderthal population history, we averaged the histo-

ries produced separately for the Altai and Vindija individuals, for the time peri-

ods when they overlap. Similarly, we averaged the Denisova and Neanderthal

population size estimates during the time frame of their common ancestral pop-

ulation (415-575 kya).

For each data set, a random 2Mb region of the autosomal genome was cho-

sen as a template region from which we chose recombination rates and mutation

rates used to generate the simulated data. We used the recombination map es-

timated from African-American samples [70]. For the mutation map, we used

the same map as in the real data analysis (based on primate divergence levels).
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Missing data patterns were also taken from the template region; we applied the

same ancient genome masks and mapability/blacklist masks to the simulated

data. (We did not mimic the sequencing depth or quality score masks, which

affected a relatively small fraction of sites).

Overall we produced several sets of simulations, each consisting of 100

2Mb regions. One set served as a control and contained no migration events.

All other sets each had three types of migration (Hum→Nea at a rate of 8%,

Sup→Den at 4%, and Sup→Afr at 0.5%). The rates of each event were chosen so

as to have enough events per data set to be able to assess power, while still being

less common than the non-migrant state. They were also chosen (by trial and

error) to produce roughly similar levels of predicted introgression as observed

in the real data. The simulated data sets varied in the demographic parameters

used (migration time and super-archaic divergence time). A smaller set of ad-

ditional simulations was produced with population sizes scaled by 0.75 to see

how power might change on the X chromosome (see Fig 3.11).

All false positive and true positive rates were calculated basewise; separate

false positive and true positive rates were calculated for each type of migration

in the ARGweaver-D model. To be classified as a true positive, the method

must infer the correct type of migration in the correct individual. False positives

presented here were assessed using the simulated data set with no migration.

3.4.5 Simulated data sets (Nea→Hum introgression)

We also did a smaller simulation study to assess performance on the Nea→Hum

event and compare performance to the CRF. Most of the settings were the same
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as above, except that we sampled 86 haploid African lineages and 4 Europeans,

along with the two diploid Neanderthals and a haploid chimpanzee outgroup.

Demographic parameters were the same as above, except that a European pop-

ulation diverged from the African population 100kya and had a initial size

of 2100; at 42kya it experienced exponential growth at a rate of 0.002, for a

present-day population size of 37236. (These parameters were roughly adapted

from [71], but modified to reflect current smaller estimates of the mutation rate

in humans.) We then added 2% migration from Neanderthal into Europeans at

50kya. In some supplementary analysis we also included 5% migration from

human to Neanderthal 250kya.

For this analysis only, we used true haplotype phases, in order to have a fair

comparison with CRF, which assumes phased samples.

Annotations

CDS, 3’UTR, and 5’UTR annotations were taken from the ensGene (ensembl)

track on the UCSC genome browser. Enhancers and promoters were extracted

from the Ensembl regulatory build dated 2018-09-25. PhastCons elements

came from the phastConsElements46wayPrimates track on the UCSC Genome

Browser.
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3.6 Supplementary Methods

3.6.1 Threading an ARG conditional on population structure

The main engine behind ARGweaver-D is the “threading” operation, which

samples the coalescence points for a lineage that has been removed from the

ARG. The threading operation uses an HMM in which the state space changes

along the genome as the local tree changes. At a given genomic location, the

state space is defined as the set of all possible coalescence points on the local

tree, given by every time point along every branch. In the multiple population

model, the state space is augmented with a third dimension indicating the ”pop-

ulation path” of the new branch. Each population path is a vector of population

assignments at every time point. This population path is sampled as part of the

threading procedure, and retained in the new ARG, so that the full ARG defines

the local genealogies as well as the population assignments for every lineage at

each time point.

Recall that in the original ARGweaver model, time is discretized into K + 1
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points, t0, ..., tK , with half-time points t1/2, ..., tK−1/2 between them. Coalescence

and recombination events occur only at whole time points, based on their cu-

mulative probabilities between the adjacent half-time points. In the multiple

population model, both migration and population divergence are assumed to

occur instantaneously at one of the discrete half-time points. This separates the

coalescence process from the migration process, preventing ambiguities about

the order of events in the ARG, and ensures that the number of lineages within

a population is well-defined throughout a coalescence rounding interval.

Let each state be described by the vector (b, t, p), where b is a branch of the lo-

cal tree, t is a time (looking in backwards in time; t = 0 is present-day), and p is a

population path vector, such that pi gives the population of path p at time point

i. Each branch of the tree has its own population path, p(b). A state is only valid

if pt = p(b)
t , since coalescence can only occur if the lineages are in the same pop-

ulation at the same time. We also assume throughout that each sample comes

from a single known population (although this model could easily be extended

to work for unknown or admixed samples). Therefore, for leaf branches, p0 is

fixed (or for an ancient sample with date a, pa is fixed).

Due to these constraints, only a subset of all population paths are valid for

each possible coalescent point. In the absence of migration bands, every coa-

lescence point on the tree will be reachable by either zero or one population

paths. Therefore, the size of the state space will be reduced compared to the

single population model. However, as migration bands are added, more coales-

cence points become reachable, and some will be reachable by multiple distinct

population paths. The result is that the size of the state space - and the compu-

tational complexity of the HMM - increases as more migration bands are added,
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and can quickly exceed the single-population case. The cost of each migration

band, in terms of run-time, depends on how many samples are in the receiving

population, as well as the time of the migration band (recent migration events

increase the state space more than older ones in a particular population). In

order to improve both efficiency and mixing of the MCMC chain, we allow at

most one migration event in any local tree in the ARG. So, ”double migration”

or ”back migration” events are not allowed. When threading a branch into a lo-

cal tree that already contains a migration, only states with non-migrating paths

are valid. This assumption is reasonable when the rate of migration is low and

the number of samples is modest.

Given this multiple population model, the threading algorithm proceeds

similarly to the one described in the original ARGweaver paper [1]. The emis-

sions probabilities (computed as the probability of the sequence data condi-

tional on the local tree) are not affected by this model; nor are the probabilities

of recombination at any point in the local tree. However, the probability of coa-

lescence is now calculated conditional on the population path. The probability

of the path also needs to be taken into account (as the product of migrating or

not migrating as the branch passes through migration bands). Additionally, the

symmetries exploited by ARGweaver for optimizing the forward algorithm also

change. The algorithm takes advantage of the fact that the transition probabili-

ties from state xi−1 to state xi are not dependent on the branches assigned to each

state, except for when the two branches are equal. Otherwise, only the coales-

cent times for each state matter, and the forward algorithm can be performed in

O(LnK2) time, where L is the number of sites, n is the number of samples, and

K the number of time points. In the demographic-aware model, the calculation

also depends on the population path assigned to each state, so the complexity
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increaes to O(LnK2P2) where P describes the maximum number of population

paths that any lineage is able to take under the specified demographic model.

Threading migrant lineages

One additional difference is that a new type of threading has been implemented

for the population model. The original model has both leaf threading (which

removes and re-threads a single haploid lineage from the entire ARG), and sub-

tree threading (which removes and resamples a series of branches, both internal

and leaf). We found that neither of these algorithms are sufficient to achieve

good mixing of the MCMC chain when old migration events are present, be-

cause they are not able to add or remove entire migrant haplotypes in one step.

To remedy this, we have added a branch removal algorithm that focuses

on lineages and time points which may potentially reach a migrant state. Re-

call that subtree threading uses a ”branch graph” structure that is designed to

choose a series of removal branches from adjacent local trees, so as to minimize

constraints on how these branches need to be re-threaded to maintain consis-

tency with the remaining ARG. Given a removal branch at site i, the choice of

removal branch at site i+1 is often deterministic, as most branches have a single

analog in the neighboring tree with the exact same set of descendants. But when

a branch is involved in recombination and recoalescence, then there may be two

possible analogous branches to choose from. The original subtree threading al-

gorithm made this choice randomly, and also required a Metropolis-Hastings

rejection step to correct for the differing numbers of possible un-threadings in

different ARGs (which is related to the number of recombination events in each

ARG).
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In our modified threading algorithm, we start by randomly choosing a mi-

gration band and a haploid lineage from a population which may follow this

band. (For example, we may have a migration band between the 4th and 5th

time interval to represent human to Neanderthal introgression, and we would

randomly choose one of the Neanderthal lineages in the tree.) At the first site,

we choose the branch ancestral to our chosen lineage which crosses through

the time of the migration band (whether it migrates or not). We then follow

the branch graph procedure, with the additional constraint that we only choose

branches which span the time of the migration. In this way, there is never a

random choice to make; if a branch is split in two by recoalescence of another

branch onto it, then only one of the resulting segments spans the time of the

migration band. In some cases, the chosen branch may be broken by recombi-

nation, and recoalesce more recently than the migration band; in this case we go

back to the default of choosing the ancestral branch of the chosen lineage which

crosses the migration time.

This modified-subtree algorithm guarantees that any migration event un-

dertaken by an ancestor to the chosen lineage is completely removed from the

ARG, and helps the MCMC sampler move to likely migration states, and also

prevents the MCMC chain from getting “stuck” in a migration state. Note that

this procedure is agnostic to whether any migration events actually exist in the

ARG, and that the choice of a lineage and migration band is independent of the

current sampled ARG. Therefore, the Metropolis-Hastings acceptance ratio is

always 1, and the rejection step is unnecessary.

The effect of this threading algorithm is demonstrated in Figure 3.19, which

shows performance with and without the new algorithm on simulated data. The
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algorithm appears to make very little difference in detecting the Nea→Hum mi-

gration event. We expect this is because for recent migration events, the leaf

threading algorithm can effectively remove and replace entire introgressed re-

gions. However, the algorithm improves the power for the deep introgression

events significantly (except for Sup→Afr, which has very little power in either

case). When the algorithm is not used, the power is much lower, though the

false positive rate is still low. In this example at least, then, there is not a prob-

lem with getting “stuck” in a migration state, but in moving to the migration

state.

All other analyses presented in this paper use this new threading algorithm.

By default, when a migration model is being used, ARGweaver-D uses leaf

threading algorithm for half the iterations, and equally divides the other iter-

ations between the original and modified subtree pruning algorithms.

3.6.2 Ancient sample ages

Whereas the original implementation of ARGweaver assumed that all samples

came from present day, there is now an option to specify sample ages. The

option --age-file takes a file with the ages of ancient samples, and was used

throughout this study to model the Neanderthal and Denisovan lineages. All

sample ages are rounded to the nearest time point in the ARGweaver-D model.

Implementing this option required a few minor modifications to the soft-

ware, including removing the implicit assumption that the distance from leaf

to root is the same for all leaves. An ancient sample with age t has leaves that

start at time t instead of zero, and when threading this lineage, the only valid
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Figure 3.19: This ROC plot shows performance with (solid) and with-
out (dashed) the modified subtree pruning algorithm. The
Nea→Eur lines come from simulations in the main paper
with a single migration at 50kya. The other lines come from
“deep introgression” simulations with migration at 250kya
and super-archaic divergence of 1Mya, and analyzed with the
same model. The ”x” on each line represents the performance
when a posterior probability cutoff of 0.5 is used.

states are ones with ages ≥ t. The code also had to be altered to ensure that lin-

eages for an ancient branch do not contribute to coalescence probabilities in the

time range (0, t). Whereas the number of branches usually only decreases look-

ing backwards in time, with ancient samples, branches may come into existence

and the branch count can increase.

We did a simple simulation study to demonstrate that this option works as

expected. Using msprime [28], we simulated 10 haploid lineages from a pop-

ulation of size 10000 across a 2Mb region. Four of the samples were modern

day (sampled at t = 0); the other six were sampled at increasingly ancient times
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(50kya, 100kya, 150kya, 200kya, 250kya, 300kya). We used a recombination rate

of 1.5e-8/recomb/bp/generation and a mutation rate of 2.5e-8/bp/generation.

For this demonstration we treated samples as haploid with known phase. We

then compared properties of ARGs inferred with the --age-file option, to

ARGs inferred without the option, and also to the true known ARG. Figure 3.20

shows that this option effectively corrects for biases in the estimates caused by

ignoring sample ages. It also shows that, even in this fairly extreme example

with several very old samples, many statistics of the ARG are not too badly

skewed even when the sampling ages are not properly taken into account.

3.7 Supplementary simulation results

3.7.1 Out-of-Africa simulations with Hum→Nea

In addition to the out-of-Africa simulations with Nea→Eur migration presented

in the main paper, we performed a second set of simulations that also included

a true Hum→Nea migration event at 250kya at a rate of 0.02. We ran both CRF

and ARGweaver-D on this data set. We tried two different ARGweaver-D mod-

els, one with a single Nea→Eur migration band at 50kya, and one that also in-

cluded a Hum→Nea band at 250kya. The introgression predictions are summa-

rized in Figure 3.21. When ARGweaver-D has only one band, it performs sim-

ilarly to CRF, though with a somewhat lower false positive rate. Both methods

mis-classify a small fraction of Hum→Nea regions as Nea→Eur (9.0% for CRF

and 7.6% for ARGweaver-D). When a second band is added to the ARGweaver-

D model, the true positive rate (34%) for correctly identifying Hum→Nea is
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Figure 3.20: Looking at the ARG across a 2Mb region, at every base we
compute the difference between the true statistic and the me-
dian from ARGs sampled across 2000 MCMC iterations. The
pink distribution shows the ARGs inferred while accounting
for ancient sampling dates; the blue uses the default parame-
ter. (Purple is the overlap between the two). The dotted black
line is at x = 0, and the red and blue lines are at the medians
of the pink and blue distributions. The statistic for each plot
is named in the x-axis, and the names are as follows: TMRCA
(time to most recent common ancestor, in generations); Pi (av-
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alescence time of a leaf sampled 150kya), and Ancient 300kya
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identical to what we saw in the ”deep introgression” simulations presented in

the main paper. However, a large fraction (38%) of the Nea→Eur regions are in-

correctly classified as Nea→Hum. We are not sure why the misspecification is so

much higher in one direction than the other. However, we have observed in gen-

eral that getting the correct directionality when there are migrations between

sister populations is difficult. This is one reason for excluding non-African pop-

ulations when looking for older migration events.
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Figure 3.21: On the top is shown predictions for a set of simulations with
only Nea→Hum introgression. Each bar represents a true
(known) category; the colors show predictions for this cate-
gory using the CRF (left) and ARGweaver-D with a single mi-
gration band (right). On the bottom are results where there
are two true migration events. Here there are two sets of
ARGweaver-D results; one with only the Nea→Hum band,
and one that also has a Hum→Nea band.
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Recombination rate analysis

Most of the analysis in this paper was done assuming a constant mutation rate

across the genome. While this is unrealistic, little is known about the recom-

bination map in Neanderthals and Denisovans (and nothing is known about

possible super-archaic recombination maps).

To explore the effects of recombination rate misspecification, we compared

the performance on our “deep introgression” simulations with four different re-

combination settings: one with the true map used in the simulations, one with a

constant rate of 5e-9/recomb/generation/base-pair, another with a higher rate

of 1e-8/recomb/generation/base-pair, and one with an incorrect recombination

map. All simulations were created with a true recombination map sampled

from some a random region of the human recombination map generated from

African-American samples [70]; the incorrect maps were sampled from a dif-

ferent random region of the human genome. The results are shown in Figure

3.22.

Overall, the recombination rate seems to have the biggest impact on the false

positive rate. Except for in Sup→Afr, where the power is low everywhere, the

best performance is when the true recombination rate is used, and the worst

are when a too-high or wrong rate is used. Using a constant rate of 5e-9 gave

intermediate performance, and fewer false positive than other incorrect maps.

Because hotspots identified in human may not apply to Neanderthal, Denisova,

or super-archaic hominins, we chose to use the low recombination rate.
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Figure 3.22: Performance on the “deep introgresion” simulations, in which
the only difference between ARGweaver-D runs is the recom-
bination map used for analysis.

Number of African samples

In theory, larger numbers of African samples might be expected to improve per-

formance for finding Hum→Nea introgression events, as the introgressing an-

cient human population is most closely related to modern Africans, and seems

to be equally related to various diverged African populations [2]. It is also pos-

sible that more African samples could boost the power of detecting Sup→Den

regions, as they contribute more information about the ancestral archaic popula-

tion. However, in practice we observed that power using 2 Africans was similar

to using 4 or even 8 African individuals (Figure 3.23). We are not sure why this

is, but suspect that the MCMC sampler does not mix as well as more individuals

are added. Because ARGweaver-D is faster with fewer individuals and it does

not seem to have much effect on performance, we did our main analysis with

two Africans.
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Figure 3.23: Effect of using more African individuals in the analysis. Here,
we used the same “deep introgression” simulations as in the
main paper, but sampled and used more African individuals
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the ARGweaver-D model had a migration band at 250kya and
super-archaic divergence of 1Mya. The ”x” on each line repre-
sents the performance when a posterior probability cutoff of
0.5 is used.

3.8 Supplementary analysis

3.8.1 Lengths of real vs simulated introgressed regions

The lengths of introgressed regions should be informative for the time of migra-

tion. However, there is more power to detect longer regions, creating a strong

ascertainment bias that makes interpretation of the lengths difficult. The rate of

recombination is also an important factor affecting the distribution of lengths,

and the recombination rates in Neanderthal and Denisovan are not well charac-

terized. Still, we looked at the distribution of lengths in our predicted set, and

compared to both the true and predicted regions in simulations with different
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migration times.

First, we wanted to see whether there is a difference in the length distribu-

tion of false positive regions compared to true ones.

We hoped that the lengths of predicted introgressed Hum→Nea elements

might be informative for the time of migration. However, there is more power

to find longer elements, and this ascertainment bias is so strong that informa-

tion about the timing of migration is almost completely lost. Overall, our pre-

dicted elements were somewhat longer (median 105kb) than those observed in

our simulations (median lengths ranging from 71kb-89kb), but the distributions

were largely overlapping (Supp Fig 3.24). While all the ARGweaver-D analysis

was done with a simple constant recombination model, the underlying recom-

bination map is also an important factor, and little is known about the Nean-

derthal recombination map.

3.8.2 Validation of super-archaic regions in SGDP individuals

We further explored the 27Mb of the genome which was putatively identified as

Sup→Den. This category had the strongest prior evidence for super-archaic in-

trogression [16,54], and is the only super-archaic category for which the amount

detected by ARGweaver-D (1%) significantly exceeds the false positive rate esti-

mated from simulations (0.5%). We first identified variants in Sup→Den regions

that map to the migrant lineage in our data set (which included the Denisovan,

two Neanderthals, SGDP individuals Khomani San 1 and Mandenka 2, and

chimpanzee); there are 15,470 variants over 16.8Mb of unmasked Denisovan se-

quence. This suggests an average substitution rate is 9.2e-4/bp, which translates
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Figure 3.24: The distribution of lengths in real vs simulated Hum→Nea re-
gions. The dotted lines show the true distribution of lengths
in three simulated data sets, each produced with different mi-
gration times, indicated by the color. The solid lines show the
distribution of regions found by ARGweaver-D in the simu-
lated and real (black) data sets when analyzed with a model
with a migration band at 250kya. The dashed lines show the
same except with a migration band at 150kya.

to a branch length of 1.8My (using a mutation rate of 1.45e-8/bp/generation

and a generation time of 29 years). However, we expect that this estimate is

biased upwards, as Sup→Den regions with more variants are easier to detect.

We compiled a VCF file containing all the substitutions on the super-archaic

haplotype.

We next looked at all 279 individuals in the SGDP data set, comparing their

divergence to Neanderthals and Denisovans in each region. If the Sup→Den
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prediction is correct, then the Denisovan divergence should be high for all hu-

mans, and not just the two humans used in the ARGweaver-D analysis. Two

example regions are shown in Figure 3.25. As described in the caption, and

explored further below, most Sup→Den regions do indeed show higher diver-

gence to the Denisovan across the SGDP individuals than to the Neanderthal,

excepting individuals with Den→Hum introgression in that region. There are

a small number of Sup→Den regions, such as the one shown in Figure 3.25B,

where the Denisovan divergence does not exceed Vindija divergence in most

humans and might be false positives of the ARGweaver-D approach.

While looking at example plots is helpful, we want to summarize the prop-

erties across all Sup→Den regions. We define a statistic f , which is the fraction

of SGDP individuals in a given region for which the Denisovan divergence is

greater than the divergence to either Neanderthal. This statistic can be visu-

alized as the fraction of individuals that fall above the diagonal in plots such

as those in Figure 3.25. In each region we exclude any individuals with Ne-

anderthal or Denisovan introgression (as assigned by the CRF [45]). We com-

puted f for each of the 161 putative Sup→Den regions with length ≥ 50kb, as

well as for 262 putatitve Sup→Nea regions, 384 putatitve Sup→Afr regions, and

500 100kb regions randomly selected from regions of the genome without any

ARGweaver-D introgression assignment. The distributions of f for each set of

regions are shown in Figure 3.26. We see that for about 80% of the Sup→Den

regions, f is close to 1. There are 29 Sup→Den regions with f < 0.9 (including

the region shown in Figure 3.25B), and which might be best regarded as false

positives.

For the Sup→Nea regions, where we would expect most individuals to have
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Figure 3.25: Average divergence of SGDP individuals to Neanderthal
and Denisovans in example Sup→Den regions The color
represents the population of each sample, whereas the sym-
bol indicates whether introgression has been detected in this
individual in at least half of the plotted region (according to
the CRF method). A) This region shows the expected pat-
tern for Sup→Den: most individuals have higher divergence
to the Denisovan than to the Vindija Neanderthal. However,
a few Oceanian individuals who have Denisovan introgres-
sion in this region have lower Denisovan divergence. Simi-
larly, some European individuals with Neanderthal introgres-
sion also show a decreased Neanderthal divergence. B) This
is a less typical Sup→Den region that is likely a false posi-
tive, as most SGDP individuals show lower divergence to the
Denisovan than to Neanderthal. It is interesting that one of
the outlying African dots represents an individual used in the
ARGweaver-D analysis (Khomani San 1).
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Figure 3.26: Distribution of the fraction of individuals with higher
Denisovan vs Neanderthal divergence. Each cumulative dis-
tribution shown here is taken across a set of regions assigned
to a particular introgression category by ARGweaver-D. For
each region, we calculate the number of individuals for which
the Denisovan divergence is higher than the Neanderthal di-
vergence (excluding individuals with calls of Neanderthal or
Denisovan introgression by the CRF). We see that Sup→Den
regions have a high proportion of individuals more closely re-
lated to Neanderthal, and the opposite pattern in Sup→Nea
regions. Both putative Sup→Afr and non-introgressed re-
gions are very slightly biased towards Neanderthal ancestry.

higher Neanderthal than Denisovan divergence, we see a similar large shift to-

wards small f ; most SGDP individuals are closer to Denisovans than Nean-

derthals in these regions. In this case, 73% of the regions have at least 90% of

individuals closer to the Denisovan.

It is important to note that while this analysis provides a check on
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ARGweaver-D’s predictions, and identifies some potential false positives, it

does not imply that the remaining regions are true positives. Other scenarios,

such as balancing selection, could also produce long regions of high divergence

that may be virtually indistinguishable from super-archaic introgression. But

this analysis does show that the signal identified using only two humans usu-

ally holds across a much larger set.

3.8.3 Analysis of Sup→Den regions passed to modern humans

Presumably, if there is super-archaic introgression into Denisovans, and later

Denisovan introgression into Oceanian and Asian humans, then it seems likely

that these modern humans harbor super-archaic alleles passed through the

Denisovans. Indeed, 15% of our Sup→Den regions overlap regions with

Den→Hum introgression calls in the SGDP (24 out of 161 regions, excluding

regions with lengths <50kb). We looked into this by comparing the variants on

the super-archaic lineage with those observed in individuals with Denisovan in-

trogression (according to the CRF calls). Figure 3.27 shows the fraction of shared

Denisovan variants vs. the number of hg19/Denisovan variants for individuals

that are annotated with Hum→Den introgression by the CRF method.

The black points in Figure 3.27 show the fraction of shared variants in re-

gions without any ARGweaver-D introgression calls in Africans or archaics. We

see that the fraction of shared alleles is high (between 60-100%) for these regions,

though the overall number of variants is moderate. The blue points show the

same values in regions that have been identified as Sup→Den introgressed in

both Denisovan lineages. For the most part, we also see high fraction of shared
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Figure 3.27: Fraction of shared variants with Denisovan, for individu-
als with Denisovan introgression. Each point is calculated
for a particular genomic region and individual with Deniso-
van introgression in that region. The x-axis shows the num-
ber of Denisovan hg19 differences; the y-axis shows the frac-
tion of these variants shared with the individual. The colors
represent the type of region; blue regions are homozygous
Sup→Den regions, red regions are heterozygous Sup→Den
regions, and black are regions without any ARGweaver-D in-
trogression calls in Africans or archaics.

variants, although the absolute number of variants is much higher overall. This

suggests that the individual is sharing super-archaic alleles, as the majority of

these variants occur on the super-archaic branch. Finally, the red points show a

subset of Sup→Den where the super-archaic introgression is only found in one

of the Denisovan lineages, so that our sampled Denisovan has both a ”super-

archaic” and a ”Denisovan” haplotype. The red points with the lowest fraction

shared may represent individuals who received the Denisovan haplotype.

One consideration here is that there is likely a bias towards identifying
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Denisovan introgression in humans when the Denisovan and human both share

the super-archaic haplotype, because introgression will be very easy to detect

with such a large number of shared variants. This may explain why there are

not many red points with lower fractions of shared Denisovan variants in Fig-

ure 3.27. Regardless, this analysis shows that many individuals with Denisovan

introgression share alleles that are predicted introgressed into Denisovan from

a super-archaic hominin.

3.8.4 Analysis of Sup→Nea regions passed to modern humans

(and the hg19 reference sequence)

We did a similar analysis on regions identfied as Sup→Nea, this time looking

at the overlap between these regions and Nea→Hum regions in SGDP humans.

35% of our Sup→Nea regions overlap regions with Nea→Hum introgression

according to the CRF predictions (55 out of 157 regions, excluding regions with

length <50kb). Figure 3.28 summarizes these regions; there are many more

points in this plot than in Figure 3.27 because there are many more SGDP sam-

ples with Neanderthal introgression.

The first surprising aspect of these results is that there was one region

(chr6:8450001-8563749) classified by ARGweaver-D as Sup→Nea, but which

had only 13 hg19 differences across 79kb of unmasked Neanderthal sequence

(giving an hg19/Neanderthal divergence of only 0.016%). After closer inspec-

tion, we suspect that this region has Neanderthal introgression in the hg19 ref-

erence sequence. Among SGDP individuals with annotated Neanderthal in-

trogression in this region, there are between 1 and 18 homozygous hg19 dif-
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ferences. Among the other SGDP individuals, there are between 68 and 369

homozygous hg19 differences. (This excepts one individual, Saharawi 1, fosr

whom CRF introgression calls were not made and which has only one hg19

difference; we presume it is also Neanderthal introgressed. The Saharawi

are a Northern African population that has been found to have almost as

much Neanderthal introgression as non-African populations [54]). Given that

the reference sequence is largely African-American, we should expect that it

would contain some Neanderthal ancestry. While the theory of possible intro-

gression from super-archaic introgression into Neanderthal does not yet have

strong support, if the annotated Sup→Nea regions are correct, this would

be an example of archaic hominin ancestry in the hg19 reference sequence,

passed through Neanderthals. We also note that we found one other region

(chr10:88106371-88206370), from our set of 500 randomly selected 100kb regions

without ARGweaver-D introgression calls, in which the number of hg19 differ-

ences is < 4 for SGDP individuals with Neanderthal introgression, and much

higher (median: 75) for other SGDP individuals. As our analysis in this section

only spanned 2.4% of the genome, a genome scan for Neanderthal introgression

on hg19 would discover many more such regions.

Beyond the observation of Neanderthal (and possibly super-archaic) ances-

try in hg19, Figure 3.28 shows that there are indeed a number of regions anno-

tated as Sup→Nea with a large number of hg19 variants, which are also shared

to a high degree with Neanderthal-introgressed humans in the SGDP. Again, we

see that the red points (representing non-fixed Sup→Nea regions) sometimes

share fewer variants with Neanderthal, suggesting that these individuals are

introgressed with the ’Neanderthal’ haplotype rather than the ’super-archaic’

haplotype.
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Figure 3.28: Fraction of shared variants with Neanderthal, for individ-
uals with Neanderthal introgression. Each point is calcu-
lated for a particular genomic region and individual with
Neanderthal introgression in that region. The x-axis shows
the number of Neanderthal hg19 differences in the region;
the y-axis shows the fraction of these variants shared with
the individual. The colors represent the type of region; blue
regions are Sup→Nea regions, red regions are a subset of
Sup→Nea that are not fixed in our Neanderthal sample, and
black are regions without any ARGweaver-D introgression
calls in Africans or archaics.

Overall, the analysis of both Sup→Den and Sup→Nea regions show that

these regions have a high number of variants compared to non-annotated re-

gions, and that these variants are often shared with humans with introgression

from Denisovans or Neanderthals (respectively). While the Sup→Nea event is

not well supported, and the Sup→Nea regions may simply be highly diverged

Neanderthal regions, there is stronger support for the Sup→Den migration, and

it seems that humans with Denisovan ancestry must also harbor some variants

from more diverged hominin species as well.
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3.8.5 Functional enrichment analysis of introgressed regions

We checked for enrichments or depletions of various functional elements in our

introgressed segments. However, the interpretation of these numbers is not

straightforward, as the power to detect the segments is confounded by many

factors, such as local population size, mutation rate, recombination rate, and

sequence quality filters. Indeed, even for introgression into humans where the

detection power is quite high, these depletions have been difficult to interpret

(see Discussion). The enrichments are shown in Supp Fig 3.29. It is clear that

biases for functional elements depend on the type of introgression event (from

a sample population or super-archaic). We found a 1.15x enrichment of en-

sembl CDS regions in our Hum→Nea calls, which is most likely explained by

higher power with lower effective population size. Perhaps the most interesting

aspect is that the enrichment Hum→Nea in most functional categories (includ-

ing CDS, phastCons, promoters) is larger in the Vindija Neanderthal than the

Altai, despite the fact that the Vindija and Altai Hum→Nea regions are highly

overlapping (55.6% of the combined set are called in both individuals). Again, it

appears that functional elements were not lost in the duration between the Altai

and Vindija individual’s lifetimes, suggesting an absense of negative selection

acting against these regions.

3.8.6 Deep introgression analysis with other models

In the main paper, we presented results using an ARGweaver-D model in which

all migration times (tmig) were set to 250kya and super-archaic divergence time

(tdiv) to 1Mya. We also ran ARGweaver-D genome-wide with tmig =150kya and
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Figure 3.29: Enrichment of predicted introgressed regions within differ-
ent annotation groups. Enrichment is calculated as the num-
ber of introgressed bases called within a particular category,
divided by the number expected assuming that the introgres-
sion calls are independent of the annotations. The distribu-
tions shown in the box plots are calculated from 100 boot-
strap replicates over the introgression calls. The width of each
bar is proportional to the total coverage of the predicted intro-
gressed elements genome-wide. These enrichments are likely
highly influenced by factors affecting the power and false pos-
itive rates of the calling algorithm (See discussion in Supple-
mentary Section XX).
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Figure 3.30: Introgression coverages under alternative demographic
model. Genome-wide coverages using a migration time of
150kya and a super-archaic divergence of 1.5Mya. Solid bars
show autosomal coverage; striped bars show X-chromosome
coverage. The dark bottom halves of each bar represent re-
gions that were also predicted by the model used in the main
paper.

tdiv=1.5kya. The coverage of the resulting elements is shown in Figure 3.30.

The results using this model are qualitatively similar to those presented in

the main paper; the largest coverage is in Hum→Nea, with increased coverage

on the X chromosome, and a somewhat smaller depletion from Altai to Vindija

on the X. We again see similar low levels of all other introgression categories,

and the same depletion for Sup→Den on the X chromosome. The coverages

of predicted introgressed Hum→Nea and Sup→Den elements are about half

what is presented in the main paper. This is consistent with our simulation

results which show that power is much lower using this model when the true

model more closely matches the one used in the paper, and further supports our

claims that the Hum→Nea migration was quite old, and that the super-archaic
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Figure 3.31: Coverages using out-of-Africa model and full population
tree. Notation as in Figure 3.30, with the addition of Papuan
and Basque individuals.

divergence was low.

We also did a genome-wide run in which we included the Papuan and

Basque, along with the two Africans and archaic individuals. We analyzed the

data as before, using tmig = 250kya and tdiv = 1Mya, but also added migra-

tion bands from Nea→Hum and Den→Hum at 50kya, for a total of 7 migration

bands. The introgression coverages for this run are presented in Supplementary

Figure 3.31. Although there are moderate differences in the absolute level of in-

trogression predicted, the results agree well with those presented in the main

paper. We do see an increase in the amount of Hum→Den and Hum→Nea re-

gions, which most likely can be explained by the algorithm calling the incorrect

direction of migration for some instances of Den→Hum and Nea→Hum.
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Fraction of Neanderthal genome introgressed from humans

Using the true and false positive rates in from the deep introgression simula-

tions in the main paper, we can make a rough estimate of the total amount of

Neanderthal genome introgressed from ancient humans. If the fraction of the

genome predicted to be introgressed is x , then the total amount is predicted

to be (x − FP)/T P. These numbers are of course very rough because there are

many unknown demographic parameters in the model. Using the results in

the main paper, this would predict that 7.4% of the Altai autosomal genome is

introgressed from Neanderthal, and 7.2% of the Vindija. If we instead use the

simulation and real results from the previous supplemental section, where the

demographic model has a migration at 150kya, we get predictions of 10.8% for

Altai and 10.3% for Vindija.

3.8.7 Calculating the mutation rate map

We first extracted the hg19 (human), panTro4 (chimp), gorGor3 (gorilla),

ponAbe2 (orangutan), and nomLeu3 (gibbon) sequences from the UCSC

Genome Browser’s 100-way vertebrate alignment. We then masked any seg-

ments of the alignment within 100bp of a phastCons element, using the

union of all hg19 phastCons elements (phastConsElements46way, phastCon-

sElements46wayPlacental, phastConsElements46wayPrimates, phastConsEle-

ments100way). We then ran phyloP on the alignment, using the options

--method LRT --features windows.bed --mode CONACC, where the

windows.bed file gives 100kb sliding windows of the human genome, stag-

gered by 10kb. The substitution model used for the phyloP run was down-
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loaded from http://hgdownload.soe.ucsc.edu/goldenPath/hg19/

phastCons100way/hg19.100way.phastCons.mod. The phyloP run pro-

duced tree scaling factors for every 100kb window. These were converted

to mutation rates by rescaling all factors to achieve a mean mutation rate

of 1.45e-8/bp/generation. The mutation rate for a particular base was then

mean of the mutation rates in the sliding windows which overlap that base.

For substitution rates on chromosome X, we used the same procedure, with

the exception that we used a substitution model specific to chromosome

X, downloaded from http://hgdownload.soe.ucsc.edu/goldenPath/

hg19/phastCons46way/primates.chrX.mod.
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CHAPTER 4

CLOSING REMARKS AND FUTURE DIRECTIONS

There are two threads running throughout this dissertation: ancient hominins

and ARGweaver, and I will comment on each of these in turn. The ancient DNA

revolution is just beginning, and it will be very exciting to see what new data

sets and discoveries are produced as new fossils are sequenced. It feels like

evidence keeps pushing the image of Neanderthals closer to that of humans.

Whereas Neanderthals used to be thought of as an entirely different, sub-human

species, we now know that all Eurasian humans have some Neanderthal ances-

try, and that Neanderthals have a sizeable chunk of human ancestry as well.

The evidence that this ancestry is deleterious also seems to be shrinking as the

science matures; it has recently been shown [47] that the apparent decline in Ne-

anderthal ancestry observed across time in ancient human fossils was an artifact

caused by unaccounted-for migration between European and African human

populations, and is not caused by negative selection. Similarly, the observed

depletion of Neanderthal ancestry near genes seems more likely due to bias in

the methods than a real effect, and has not been replicated in more rigorous

recent studies. The main piece of evidence left suggesting some level of delete-

riousness of Neanderthal ancestry is the depletion on the X chromosome, and

in a few “deserts of introgression”.

I had hoped that investigating the many other introgression events between

archaic hominins might shed light on possible hybrid incompatibilities between

the species, or at least reveal whether other types of hominin introgression also

show signs of negative selection. I did find that introgression from humans

to Neanderthals is not depleted on the X, which is an interesting contrast to
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the Nea→Hum case. However, overall, the biases in the ability to detect intro-

gression is so strong and complicated that it is almost impossible to make any

other conclusions about whether certain genomic regions are depleted for re-

sults. And the small sample sizes of Neanderthals and Denisovans do not allow

us to detect deserts of introgression in those genomes.

The speculation about super-archaic introgression into the Denisovans, as

well as into humans in Africa, is also a theory in its infancy. Until the source

of introgression is discovered and sequenced, the evidence for these events re-

mains indirect and therefore weak. It seems only a matter of time before the

Homo erectus genome is sequenced, which is likely to answer a lot of questions

about their relationship with the Denisovans and Neanderthals. The question

in Africa is much more difficult, both due to the large population size and deep

structure in African human populations, and the fact that the hot climate de-

stroys ancient DNA.

Overall, this field is driven by data and is just waiting for the next fossil to re-

veal its secrets. However, methodological improvements and refinements, such

as the ones presented in this paper, are also important. It is too easy to misinter-

pret the data by not accounting for all the factors that shape it, so sophisticated

methods and careful analysis are required to make sense of our complex history.

As for ARGweaver, going into this dissertation, it was my hope to identify

applications for this method where it outshines other approaches. ARGweaver

can be difficult and slow to use, but produces a wealth of information that can be

parsed in any way to look at population genetic questions from different angles.

I do feel that the archaic hominin example showcases ARGweaver’s strengths,

and that it is most likely to be useful in data sets that are limited in sample size.
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As the amount of information in a data set increases, it is more likely that faster,

more approximate methods will perform very well. At the same time, conver-

gence becomes an issue for ARGweaver as the sample size increases, so that

the quality of results in large samples often decreases. It may be the case that

ARGweaver is ultimately more useful for studying non-human data sets, where

sample sizes are generally smaller, and low-quality sequencing is common. Its

strength in distinguishing incomplete lineage sorting from migration, as well as

its potential to classify selective sweeps, may be instrumental to understanding

the speciation process in any number of closely related species.
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APPENDIX A

SMC′ TRANSITION PROBABILITY DERIVATIONS

Here we show the derivations of the optimized transition probabilities for the

SMC′ for the case where no previous recombination exists between the two ad-

jacent sites under consideration.

When a recombination already does exist, there are three cases to consider,

which are described in the Supplementary section of [1]. The ”deterministic”

and ”recombination-point” cases do not differ between the SMC and SMC′. The

”recoalescent-point” case can easily be adapted by adjusting the lineage counts,

which is straightforward as the recombination event is already sampled.

A.1 Case 1: no previous recombination, different branches

Here we look at the case where tree T n−1 does not currently have a recombina-

tion between position i−1 and position i (i.e., Rn−1
i = ∅, so that T n−1

i = T n−1
i+1 ≡ T n−1).

If the new branch ν coalesces to (branch x, time a) at position i and (branch y,

time b) at position i + 1, where x , y, then there must be a recombination on the

new branch at time k, where with 0 ≤ k ≤ min(a, b) (refer to Figure 1.6 for an

illustration).

In this case, the transition probability can be written as:
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Pr(y, b|x , y, a,Rn−1
i = ∅,Θ,T n−1) =

min(a,b)∑
k=0

Pr(k|Θ,T n−1, a)Pr(b|k,Θ,T n−1)Pr(y|b,Θ,T n−1)

(A.1)

= Pr(y|a, b,Θ,T n−1)
min(a,b)∑

k=0

Pr(k|Θ,T n−1, a)Pr(b|k, a,Θ,T n−1)

(A.2)

The term Pr(k|Θ,T n−1, a) represents the probability of recombining at a par-

ticular time, given the previous coalescence time (a), local tree (T n−1), and demo-

graphic parameters (Θ). The term Pr(b|k,Θ,T n−1) is the probability of recoalesc-

ing at time b, and Pr(y|b,Θ,T n−1) is the probability that the recoalescence branch

is y.

In the remainder of this section I will drop the conditioning on T n−1, Rn−1
i = ∅,

and Θ for brevity. The equation above can be further broken into the following

three cases:

A.1.1 Case 1a: a < b

When a < b then the recombination time k is in 0 ≤ k ≤ a, so k must be strictly

less than b. In this case, P(y|b) = 1
lCb

, where lCb is the number of branches available

for coalescence at time b in tree T n−1
i . Because k < b, the broken branch is not

added to this count. The transition probability is:

Pr(y, b|a, x , y) =
1
lCb

a∑
k=0

Pr(k|a)Pr(b|k) (A.3)
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When k < a, the probability Pr(k|a) is the same as in the SMC, and is given

by: is (1−exp(−ρ|Ta |))∆sk(lk+1)
|Ta |(lRk +1) , where |Ta| is the total branch length of tree T n

i−1 given

that the new branch coalesces at time a, and ∆sk is the length of time interval

k. The factor 1 − exp(−ρ|Ta|) represents the probability of a recombination occur-

ring anywhere on the tree; ∆sk
|Ta |

is the probability of choosing a branch segment

of length ∆sk. lk+1
lRk +1 is a corrective factor introduced to the discretized model to

allow recombinations to occur on zero-length branches; lR
k is the total count of

branches existing in T n−1 at k (excluding the root branch, but including zero-

length branches), whereas lk is the number of those branches with length > 0.

We add 1 to lk and lR
k to account for the new branch.

For notational simplicity, let Da ≡
1−exp(−ρ|Ta |)

|Ta |
.

When k = a, the probability of recombination is slightly different. Because

recombinations events are rounded down, the calculation considers the time

interval after a, when the new branch has already coalesced. So the count in

the numerator is simply lk. But the coalescence at a creates a new node, which

adds 2 possible branches for recombination to the denominator lR
k , unless the

coalescence is at the root of the tree (then we only add 1). So the denominator

becomes lR
k + 1 + I(k < r), where r is the “root age” of the tree Ti−1.

Pr(b|k) is the probability of coalescing at time b given a recombination at

time k. This can be calculated by multiplying the probability of not coalescing

between times k and b − 1, by the probability of coalescing at time b. Let Qi

represent the coalescence rate during the half time-interval i in tree Ti−1. This

rate is given by:
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Qi =
lbi/2c(s i+1

2
− s i

2
)

2Nb i+1
2 c

(A.4)

Let Q′i represent the coalesence rate when an extra lineage is present in the

tree:

Q′i =
(lbi/2c + 1)(s i+1

2
− s i

2
)

2Nb i+1
2 c

(A.5)

Also, define Ci and C′i to represent cumulative coalescent rates from time

zero to i, as follows:

Ci =

i∑
i=0

Qi (A.6)

C′i =

i∑
i=0

Q′i (A.7)

(For convenience, let C−1 = C′
−1 = 0).

Because the recombination time k is strictly less than the coalescence time

b, the coalescence could have occurred in the half-time intervals immediately

preceding or following time b, which are the half-intervals indexed by 2b − 1

and 2b. And because the previous coalesence time a is also strictly less than b,

there is no extra lineage to account for, so the coalescence rate during these two

intervals is Q2b−1 + Q2b. Therefore the probability of coalescing during time b

is 1 − exp(−Q2b−1 − Q2b). However, there is an extra lineage until time a. The

probability of not coalescing between time k and half-time interval 2b − 1 is:
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exp

− 2a−1∑
i=2k

Q′i −
2b−2∑
i=2a

Qi

 (A.8)

= exp
(
−

(
C′2a−1 −C′2k−1

)
− (C2b−2 −C2a−1)

)
(A.9)

= exp
(
−C′2a−1 + C′2k−1 −C2b−2 + C2a−1

)
(A.10)

Notice that when a = k, this term simplifies to exp(−C2b−2 + C2a−1).

We can now combine the above terms to arrive at the final transition proba-

bility for this case. It is:

Pr(b|a, a < b) =
1
lCb

Da(1 − exp(−Q2b−1 − Q2b))

 a−1∑
k=0

(
∆sk(lk + 1)

lR
k + 1

exp
(
−C′2a−1 + C′2k−1 −C2b−2 + C2a−1

))
(A.11)

+
∆sala

lR
a + 1 + I(a < r)

exp(−C2b−2 + C2a−1)
]

(A.12)

Define the following substitutions for convenience. Note that these values

can be pre-computed in O(k) time:

B′a =

a∑
k=0

∆sk
lk + 1
lR
k + 1

exp(C′2k−1) (A.13)

Eb =
1 − exp(−Q2b − Q2b−1)

lCb
(A.14)

G′a = ∆sa
la

lR
a + 1 + I(a < r)

(A.15)

Substituting these terms gives the transition probability:
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Pr(b|a, a < b) =DaEb
[
exp(−C′2a−1 −C2b−2 + C2a−1)B′a−1 + G′a exp(−C2b−2 + C2a−1)

]
(A.16)

=DaEb exp(−C2b−2 + C2a−1)
[
exp(−C′2a−1)B′a−1 + G′a

]
(A.17)

A.1.2 Case 1b: a = b

The remaining cases are performed similarly to the previous case, with rates and

branch counts modified to reflect the placement of the branch at the previous

tree. When a = b, the transition probability is as follows:

Pr(y, b|a = b, x , y) =
1

lCb + 2

a∑
k=0

Pr(k|a)Pr(b|k) (A.18)

Note that the coalescence at time a = b increases the count of coalescence

nodes at time b by 2. When k < a, the terms in the sum are:

Pr(k|a) = Da∆sk
lk + 1
lR
k + 1

(A.19)

Pr(b|k) =
(
1 − exp(−Q2b − Q′2b−1)

)
exp(−

2b−2∑
i=2k

Q′i) (A.20)

=
(
1 − exp(−Q2b − Q′2b−1)

)
exp(C′2b−2 −C′2k−1) (A.21)

Note that since the extra lineage ends exactly at time b, the “prime” rate Q′

is used for the half time-interval 2b − 1, whereas the original rate Q is used for

the half time interval 2b.
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When k = a = b, then the coalescence could only have occurred in the half

time-interval 2b, immediately after the recombination. In this case, the terms in

the sum are:

Pr(k|a = k) = Da∆sa
la

lR
a + 1 + I(a < r)

(A.22)

Pr(b|k = b) = 1 − exp(−Q2b) (A.23)

Combining these cases, the transition probability for a = b becomes:

Pr(y, b|a = b, x , y) =
1

lCb + 2
Da

 a−1∑
k=0

∆sk
lk + 1
lR
k + 1

(
1 − exp(−Q2b − Q′2b−1)

)
exp(C′2b−2 −C′2k−1)

(A.24)

+ ∆sa
la

lR
a + 1 + I(a < r)

(
1 − exp(−Q2b)

)]
(A.25)

(A.26)

Using previously defined terms, as well as the following:

E′b =
1 − exp(−Q2b − Q′2b−1)

lCb + 2
(A.27)

F′a =
1 − exp(−Q2a)

lCb + 2
(A.28)

(A.29)

the transition probability can be computed efficiently using:
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Pr(y, b|a = b, x , y) =Da
[
E′b exp(−C′2b−2)B′a−1 + G′aF′a

]
(A.30)

A.1.3 Case 1c: a > b

This case is simplest of all, because the extra lineage exists throughout. It is

computed as:

Pr(y, b|a > b, x , y) =
1

lCb + 1

b∑
k=0

Pr(k|a)Pr(b|k) (A.31)

(A.32)

where:

Pr(k|a) = Da∆sk
lk + 1
lR
k + 1

(A.33)

(A.34)

and

Pr(b|k) =


(1 − exp(−Q′2b − Q′2b−1) exp(−C′2b−2 + C′2k−1) if b < k

1 − exp(−Q′2b) if b = k

If we make the subsitutions:
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E′′b =
1 − exp(−Q′2b − Q′2b−1)

lCb + 1
(A.35)

F′′a =
1 − exp(−Q′2a)

lCb + 1
(A.36)

G′′a = ∆sa
la + 1
lR
a + 1

(A.37)

then the transition probability simplifies to:

Pr(y, b|a > b, x , y) =Da
[
E′′b exp(−C′2b−2)B′b−1 + G′′b F′′b

]
(A.38)

A.2 Case 2: no previous recombination, same branch (x = y)

A.2.1 Case 2a: a , b

When the coalescence times are different at adjacent sites, we still know there

must be a recombination, and it could be on the new branch. Therefore, the

probability computed in the previous section describes one possible occurrence.

However, there is an additional probability that the recombination is on the

branch being coalesced to (branch x). The probability associated with this pos-

sibility is computed similarly to the probabilities above, however the recombi-

nation cannot happen before time c, where c is the starting time of branch x. The

transition is given by:
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Pr(y, b|x = y, a , b) =Pr(y|b)
min(a,b)∑

k=0

Pr(k|a)Pr(b|k, a) + Pr(y|b)
min(a,b)∑

k=c

Pr(k|a)Pr(b|k, a)

(A.39)

=2Pr(y|b)
min(a,b)∑

k=0

Pr(k|a)Pr(b|k, a) − Pr(y|b)
c−1∑
k=0

Pr(k|a)Pr(b|k, a)

(A.40)

The first term in this sum is just twice the term computed in Case 1, above.

The second term is also familiar. c is the branch start time, so it must be less

than or equal both a and b, so that c − 1 is less than both a and b. Therefore this

term is equivalent to the “summation” parts of the terms in the same-branch

case, with the summation limit replaced by c − 1 rather than b − 1 or a − 1. The

final transition probabilities for the same-branch, different time case are then:

Pr(b|a, a , b, x = y) =



DaEb

(
exp(−C′2a−1 −C2b−2 + C2a−1)(2B′a−1 − B′c−1)

+2G′a exp(−C2b−2 + C2a−1)
)

if a < b

DaE′b exp(−C′2b−2)(2B′a−1 − B′c−1) + 2G′aF′a if a = b∗

DaE′′b exp(−C′2b−2)(2B′b−1 − B′c−1) + 2G′′b F′′b if a > b

(A.41)

∗ Note that a = b does not apply directly here, since this section deals with

a , b, however this result will be used in the next section.
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A.2.2 Case 1b: a = b

The final case with no previous recombination is when the coalescence is onto

the same time and the same branch. There are several possibilities to consider

here: 1) a recombination on the new branch or the coalescing branch which re-

coalseces at the same point as the previous threading, and whose probability

can be computed as described in the previous section 2) no recombination at

all, which has a probability exp(−ρ|Ta|), or 3) any “self-recombination”, such as

is allowed by the SMC′ but not the original SMC. In this case, the recombina-

tion could be on any branch of the tree, so long as it coalesces back to that same

branch. This is a bit different than the case of recombinations which change the

tree topology. Those recombinations are stored as part of the local tree, and so

are already annotated in T n−1; if they are not in T n−1 then we know they did not

occur. However, in this implementation, we will not store invisible recombina-

tions in T n−1, so that we must sum over the possibility of their existence on any

branch when computing transition probabilities.

The total self recombination probability for a complete local tree T n
i is given

by:

Pr(self recomb|T n
i ) =

∑
x∈branches

 xe∑
k=xc

Pr(recomb on branch x, time k) (A.42) xe∑
j=k

Pr(coalescence on branch x, time j)


 (A.43)

=
∑

x∈branches

 xe∑
k=xc

Pr(k, x|T n)

 xe∑
j=k

Pr(y = x, j|k, x,T n)


 (A.44)

In the above, k represents the recombination time, x is the recombination
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branch (which starts at time xc and ends at time xe), y is the re-coalescence branch

(which is the same as x for self-recombinations), and j is the re-coalescence time.

These terms are all straightforward to calculate. The challenge is calculating this

efficiently; as it is written, the code must loop across all possible recombination

and recoalescence points on every branch, and then do this for every possible

coalescence point of a new branch ν. Using some of the same strategies in the

above derivations, we are able to pre-compute the inner two sums in O(k) time.

However, this value still needs to be calculated for every possible state, and

every branch, which is O(kn2) (since there are O(n) branches and O(nk) states). As

the number of samples increases, this calculation indeed becomes a bottleneck

of the algorithm and can lead to a significant slowdown of the SMC′ compared

to the SMC (see Section 1.5.3 and Figure 1.11).

A.3 Optimized SMC′ Transition probabilities

SMC′ transition probabilities

For reference, I present the formulas used in the code for the transition prob-

abilities. This also provides a translation between variables in the above formu-

las, and the objects in the ARGweaver code where they are stored.

First, I summarize all the symbols/variables used in this section:

Symbol meaning

Ni population size in time interval i

n number of samples

K The number of time points
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ν The new branch currently being threaded

x The coalescent branch of ν at site i

a The coalescent time of ν at site i

y The coalescent branch of ν at site i + 1

b The coalescent time of ν at site i + 1

k A recombination time

Θ demographic model parameters

Rn−1
i recombination events between T n−1

i and T n−1
i+1

ρ recombination rate

T n
i tree at site i with n samples

T n−1
i tree at site i with one sample removed

|T n−1
i | the total branch length of tree T n−1

i

|Ta| the total branch length of a tree with ν coalescing at time a

si the sth discrete time point (looking backwards in time: s0 = 0 = present day)

∆si si+1 − si

lb The number of linages passing through time b in T n−1

lCb The number of lineages available for coalescence in T n−1 at time b

lR
b The number of lineages available for recombination in T n−1 at time b

Table A.1: Variables used for transition probability cal-

culations

The table below summarizes the pre-comptued values required for efficient

computation of transition probabilities:

Symbol Name in Code Equation Description
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Qi Q0 prime
lbi/2c(s i+1

2
− s i

2
)

2Nb i+1
2 c

Coal rate in interval i with no extra linage

Q′i Q1 prime
(lbi/2c + 1)(s i+1

2
− s i

2
)

2Nb i+1
2 c

Coal rate in interval i with an extra lineage

Ci C0 prime
i∑

i=0

Qi Total coal rate from t = 0 to t = i, no extra lin-
eages

C′i C1 prime
i∑

i=0

Q′i Total coal rate from t = 0 to t = i, with an extra
lineage

Da D
1 − exp(−ρ|Ta|)

|Ta|
Recombination probability per unit time

Ba B0 prime
a∑

k=0

∆sk
lk

lR
k

exp(C2k−1) Sum of recomb probabilities from k = 0 to k = a,
normalized by probability of not coalescing be-
fore k, no extra lineage

B′a B1 prime
a∑

k=0

∆sk
lk + 1
lR
k + 1

exp(C′2k−1) Sum of recomb probabilities from k = 0 to k = a,
normalized by probability of not coalescing be-
fore k, when an extra lineage exists

Eb E0 prime
1 − exp(−Q2b − Q2b−1)

lCb
Probability of coalescing during time interval b,
no extra lineage

E′b E1 prime
1 − exp(−Q2b − Q′2b−1)

lCb + 2
Probability of coalescing during time interval b
when the extra lineage coalesces at t = b

E′′b E2 prime
1 − exp(−Q′2b − Q′2b−1)

lCb + 1
Probability of coalescing in time interval b when
an exta lineage always exists

Fa F0 prime
1 − exp(−Q2a)

lCb
Probability of coalescing in the top half of a time
interval, no extra lineage
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F′a F1 prime
1 − exp(−Q2a)

lCb + 2
Probability of coalescing in the top half of a time
interval, extra lineage coalesces at a

F′′a F2 prime
1 − exp(−Q′2a)

lCb + 1
Probability of coalescing in the top half of a time
interval, extra lineage

Ga G0 prime ∆sa
la

lR
a

Recombination probability in a single time inter-
val, no extra lineage

G′a G1 prime ∆sa
la

lR
a + 1 + I(a < r)

Recombination factor in a single time interval,
extra lineage coalesces at a

G′′a G2 prime ∆sa
la + 1
lR
a + 1 Recombination factor in a single time interval,

with an extra lineage
Table A.2: A description of ARGweaver variables used
to compute SMC′ transition probabilities in the code

Here are the transition probabilities:

Case Description Equation

1a a < b, νi , νi+1 DaEb exp(−C2b−2 + C2a−1)
[
exp(−C′2a−1)B′a−1 + G′a

]
1b a = b, νi , νi+1 Da

[
E′b exp(−C′2b−2)B′a−1 + G′aF′a

]
1c a > b, νi , νi+1 Da

[
E′′b exp(−C′2b−2)B′b−1 + G′′b F′′b

]
2a a < b, νi = νi+1 2 [Case 1a prob] −DaEb exp(−C2b−2 + C2a−1) exp(−C′2a−1)B′c−1

2c a > b, νi = νi+1 2 [Case 1c prob] −DaE′′b exp(−C′2b−2)B′c−1

2b a = b, νi = νi+1 2 [Case 1b prob] −DaE′b exp(−C′2b−2)B′c−1 + exp(−ρ|Ta|)+ [self recomb prob]

Table A.3: SMC′ transition probabilties used in

ARGweaver code
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APPENDIX B

LIST OF ABBREVIATIONS

Abbreviation Meaning

ARG ancestral recombination graph

bp base pair

CI confidence interval

gen generation

HMM hidden Markov model

kb kilo base

ky kilo year

kya kilo year ago

Mb Mega base

MCMC Markv chain Monte Carlo

My million years

Mya million years ago

TMRCA Time to the most recent common ancestor

Hum→Den Introgression from ancient humans into Denisovan genomes

Hum→Nea Introgression from ancient humans into Neanderthal genomes

Den→Hum Introgression from Densivans into human genomes

Nea→Hum Introgression from Neanderthals into human genomes

Sup→Afr Introgression from a super-archaic hominin into human populations from Africa

Sup→Den Introgression from a super-archaic hominin into Denisovans

Sup→Nea Introgression from a super-archaic hominin into Neanderthals

Table B.1: Abbreviations used in this document
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N, Mallick S, et al. The genomic history of southeastern Europe. Nature.
2018;555:197–203.

[19] Damgaard PdB, Marchi N, Rasmussen S, Peyrot M, Renaud G, Kor-
neliussen T, et al. 137 ancient human genomes from across the Eurasian
steppes. Nature. 2018;557(7705):369–374. doi:10.1038/s41586-018-0094-2.

[20] Moreno-Mayar JV, Vinner L, de Barros Damgaard P, de la Fuente C, Chan
J, Spence JP, et al. Early human dispersals within the Americas. Science.
2018;362(6419). doi:10.1126/science.aav2621.

[21] Olalde I, Brace S, Allentoft ME, Armit I, Kristiansen K, Booth T, et al. The
Beaker phenomenon and the genomic transformation of northwest Europe.
Nature. 2018;555(7695):190–196. doi:10.1038/nature25738.

[22] Posth C, Nakatsuka N, Lazaridis I, Skoglund P, Mallick S, Lamnidis TC,
et al. Reconstructing the deep population history of Central and South
America. Cell. 2018;175(5):1185–1197.e22. doi:10.1016/j.cell.2018.10.027.

[23] Palkopoulou E, Mallick S, Skoglund P, Enk J, Rohland N, Li H, et al.

159



Complete genomes reveal signatures of demographic and genetic de-
clines in the woolly mammoth. Curr Biol. 2015;25(10):1395–1400.
doi:10.1016/j.cub.2015.04.007.

[24] Barlow A, Cahill JA, Hartmann S, Theunert C, Xenikoudakis G, Fortes GG,
et al. Partial genomic survival of cave bears in living brown bears. Nature
Ecology & Evolution. 2018;2(10):1563–1570. doi:10.1038/s41559-018-0654-
8.

[25] Gaunitz C, Fages A, Hanghøj K, Albrechtsen A, Khan N, Schubert M, et al.
Ancient genomes revisit the ancestry of domestic and Przewalski’s horses.
Science. 2018;360(6384):111–114. doi:10.1126/science.aao3297.

[26] Campagna L, Repenning M, Silveira LF, Fontana CS, Tubaro PL, Lovette
IJ. Repeated divergent selection on pigmentation genes in a rapid finch
radiation. Science Advances. 2017;3(5). doi:10.1126/sciadv.1602404.

[27] Felsenstein J. Evolutionary trees from DNA sequences: A maximum
likelihood approach. Journal of Molecular Evolution. 1981;17(6):368–376.
doi:10.1007/BF01734359.

[28] Kelleher J, Etheridge AM, McVean G. Efficient coalescent simulation
and genealogical analysis for large sample sizes. PLoS Comput Biol.
2016;12(5):1–22. doi:10.1371/journal.pcbi.1004842.

[29] Günther T, Nettelblad C. The presence and impact of reference bias on
population genomic studies of prehistoric human populations. bioRxiv.
2018;doi:10.1101/487983.

[30] DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A
framework for variation discovery and genotyping using next-generation
DNA sequencing data. Nature Genetics. 2011;43:491 EP –.

[31] Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al.
The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–
2158. doi:10.1093/bioinformatics/btr330.

[32] Campagna L, Gronau I, Silveira LF, Siepel A, Lovette IJ. Distinguish-
ing noise from signal in patterns of genomic divergence in a highly
polymorphic avian radiation. Molecular Ecology. 2015;24(16):4238–4251.
doi:10.1111/mec.13314.

160



[33] Wright S. The genetical structure of populations. Annals of Eugenics.
1951;15(1):323–354. doi:10.1111/j.1469-1809.1949.tb02451.x.

[34] Wilton PR, Carmi S, Hobolth A. The SMC’ is a highly accurate approxima-
tion to the ancestral recombination graph. Genetics. 2015;200(1):343–355.
doi:10.1534/genetics.114.173898.

[35] Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, Todd
MA, et al. Inferring nonneutral evolution from human-chimp-
mouse orthologous gene trios. Science. 2003;302(5652):1960–1963.
doi:10.1126/science.1088821.

[36] Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ,
et al. A scan for positively selected genes in the genomes of humans and
chimpanzees. PLOS Biology. 2005;3(6). doi:10.1371/journal.pbio.0030170.

[37] Moorjani P, Gao Z, Przeworski M. Human germline mutation and the er-
ratic evolutionary clock. PLoS Biol. 2016;14(10):e2000744.

[38] Noonan JP, Coop G, Kudaravalli S, Smith D, Krause J, Alessi J, et al.
Sequencing and analysis of Neanderthal genomic DNA. Science.
2006;314(5802):1113–1118. doi:10.1126/science.1131412.

[39] Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A
draft sequence of the Neandertal genome. Science. 2010;328(5979):710–722.
doi:10.1126/science.1188021.

[40] Sankararaman S, Mallick S, Dannemann M, Prüfer K, Kelso J, Pääbo S, et al.
The genomic landscape of Neanderthal ancestry in present-day humans.
Nature. 2014;507:354–357.

[41] Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, et al. Ge-
netic history of an archaic hominin group from Denisova Cave in Siberia.
Nature. 2010;468:1053 EP –.

[42] Juric I, Aeschbacher S, Coop G. The strength of selection against
Neanderthal introgression. PLOS Genetics. 2016;12(11):1–25.
doi:10.1371/journal.pgen.1006340.

[43] Harris K, Nielsen R. The genetic cost of Neanderthal introgression. Genet-
ics. 2016;203(2):881–891. doi:10.1534/genetics.116.186890.

161



[44] Enard D, Petrov DA. Evidence that RNA Viruses Drove Adap-
tive Introgression between Neanderthals and Modern Humans. Cell.
2018;175(2):360–371.e13. doi:10.1016/j.cell.2018.08.034.

[45] Sankararaman S, Mallick S, Patterson N, Reich D. The combined landscape
of Denisovan and Neanderthal ancestry in present-day humans. Current
Biology. 2016;26:1241–1247.

[46] Steinrcken M, Spence JP, Kamm JA, Wieczorek E, Song YS. Model-based
detection and analysis of introgressed Neanderthal ancestry in modern hu-
mans. Molecular Ecology. 2018;27(19):3873–3888. doi:10.1111/mec.14565.
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