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Summary 

The transferability of agrotechnology questions the feasibility 

of extrapolating a response-input relationship, estimated from experimental 

sites, to other sites with similar conditions. One specific example is 

testing the hypothesis that crop production technology is transferable 

within the soil family classification. The· general approach to the 

transfer hypothesis incorporates into the data analysis the prediction 

of yields not used in the estimation of the transfer function. Three 

transfer models, using a second order response surface and measured 

site variable information, are formulated and yields for each experimental 

site are predicted using a transfer function estimated from the other 

sites. The resulting transfer residuals are compared with the ordinary 

within-site residuals. A prediction test statistic based on a sum of 

squares criterion is developed and shown to have a distribution of a 

ratio ~f independent quadratic forms. The transfer residual methodology 

for testing the transfer hypothesis is applied to data from the Bench-

mark Soils Project. 

Key Words: Regression; Prediction; Extrapolation; Controlled 'nd uncon-

trolled variables. 



1. Introduction 

Agrotechnology transfer is the extrapolation of a response-input relati or ... · 

ship, estimated from a series of experiments, to new but sirnil&.r s.:. te~. :\gron·-

ornists have long been concerned with the analogous problem of making 5.nf'eren,:.<-;s 

to fazmers' fields. The target population for transfer can be defined as a 

geographical area or defined by other criteria such as soil and past manage 

ment information. Recotumendations based on a relatively large nwnbe:r 0f si·r;e 

speci.fic experiments, coupled with long·-term experience of agronomists, has 

been the ~1odus ~:candi for transferrlng agrotechnology. In less dev·e 1_,ped 

c.01.mtries, however .• a need presently F:!xists to shorten the tJ.rr,e £<'10. P-Ci'ort 

re•tulred for extensive site specific expet'i>G~:r1tation. 

1\ ma;jor objective of the Be:1e"unark Soj.ls Project, establisrr:d 'by u.~·.A. 

r. D (Agency .Por r:·,·:JernationaJ. Develupment) ln coopera;,;_ )!\ with +hF IJni ve:r~:L .. 
. •, 1;. 

ties 0f Hawaii a.nd '?1.1erto ru ,..c, ~ s to test the hypothesis that crop p:r')d:ucti.on 

sit1i1;•ri ty of soils as inii:tcated by the soil family in the Soj ~ .. 'f''u . c:'Tn:,Y 

l"'la~>sification Systems (Soil Sur'Vey Staff 1975). The soil famt? y ·er.: .::; s~le, t: .• 1 

fo:r the hypothesis si.nce the fam.ily classification integrate<:; s-); .. 'a(1;vt'S •.. L1 

the long-term environmental factors that influence cro-p yield. 'l'he theory ~s 

that experimental results, specifically the response of ml'tize to applications 

of phosphorus and nitrogen, obta i.ned from one country can be applied to sites 

on the same soil fam.i.ly in at"'other country. Figure 1 schematically demonstrst,~s 

the 1-n.ferential structure of the project. 

[Figure 1 here] 

A straightforward statistical procedure for evaluating the transfer hy-· 

pothesis is to test t:'1e homogeneity of the regression coefficiencts in the k 

-1-
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transfer functions relating response to the controlled variables A-t eac:h. of 

the k experimental si tr:s. If the transfer function model is the same for all 

the selected sites, then agrotechnology can be transfE.rred f~-om cne s:L t;e to 

another through a cor_:_rrnon transfer fu.nctirm. Spec.ificaJ..l.y, i1:' 'the how.:)gen"'i ty-

l:cy-pothesis is r:ot ·~ejected, there is not s1.~f:f:id.€nt eviJence to i.noi.cat.~~ th::~.t 

a different model holds for each ::::Lte. Thr->n a 00Ttiillon transfer fu.uction :.~an 

br: estim<".ted and in this sense, the agrotechnolc,gy can te ':.r-ansfe::.~r':'o. 

In FJ.gure 1, soil and long-te:crn climatic eonstants are '"Ghc::e fact0rs 

:family destgr1at:Lons, s0il propert1.<oS do vax:r and cc:;unot C(::' ::(<ui a+. :1. \>)r.J.st.qnt 

h:ypothes.i::; u~>~.::.aJly wi~.l "Je rF:ect.o.d irt pract.:..cc. Tnterp:r·eti::-~: i.h:is reje.t.~on 

vadable be clearly focused. 

In addition, a te~t of · ;le tr<:<.n.sfer hY?(:;tl"esis should s :..rmlate the ac'L>..:£>1 

transfer of agrotechnology to site;:; wltere E.''-J::•er.;.mentation has not '!>:::0~n carri"~.:l 

" out. Our a:p:proach is to predict the yields, denoted as Y ( ":), for one of k 

e"Xperimental sites using a t'L·an.s""e:::· f'nndi.on estimated from the other (k-1) 

sites. This is then repeated foj· predicti.ng the yields for each of the k sites 

based on a transfer function esti~~ted from the other (k-1) sites. The transfer 

" " residuals, Yi- Y( -i)' can be compared with the ~E.~.~_c:ry Y.: - Y1_ re~~iduals, cal-

culated by fitting a res:ponse f'unctio11 inci5 vi dually to each of the k sites. The 
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specific objectives here are (i) to develop the transfer resifr~al methodology 

for testing the transfer hypothesis and (ii) to de·monstrate the methodology 

with yield and site variable results from ·maize transfer experiments on the 

thixotropic, isothermic soil family of Hydric Dystrandepts. The first step 

is the development of a test statistic for evaluating the transfer residuals. 

2. The General Problem 

Our approach utilizes a sum of squares criterion to compare the magni-

" tude of the transfer residuals, Y1 - Y( -i)' to the ordinary within-site resid-
,.. 

uals, Yi- Yi • In particular, Cady (1974) proposed the ratio of the pooled 

sum of squared transfer residuals to the pooled sum of squared within-site 

residuals; i.e. 1 

For two sites (P -1) is a symmetrized version of Gardner's (1972) ratio 

bias statistic used for assessing the predictive ability of one sample for a 

second sa~le. In the more general case of k sites, P is the natural extension 

comparing the predictive ability of the ith site for itself with the predic­

tive ability of the remaining (k -1) sites. 

Here we consider the distribution of the P statistic under several 

predictive models. Throughout, we assume that Y1, 1 = 1, • • •, k, arise as 

observed yields fro:m an equally replicated quantitative treatment design 

common to all k sites. Further, assume that Y. have a multivariate normal 
:l 

distribution with identity covariance matrix, I • Let Y denote the vector 
n 

of all observations; i.e., Y' = [Y1 ' : •• • : Yk'] • Also, X (an nXp matrix) 

will denote the common design matrix with p variables including a colut:L."l of 

ones. The non-constant columns of X have been centered at zero. 

M;)del 1: The simplest predictive model is one in which a common response 

- ' 
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remaining site. In Section 3, (P -1) is expressed as a constant times a ratio 

of two quadratic forms, Y'B1Y and Y'BY, where B1 is idempotent and of rank 

p(k -1) and B1B = 0 • The structure for B is given in (1) and ~ in (3) of 

Section 3. It is also shown in Section 3 that (P -1) is distributed as a con-

stant times F[p(k -1) ], [k(n- p)] • 

Model 2: Often due to differences in weather, previous management prac-

tices, or other site specific variables, one would not expect a common response 

surface to fit all sites. However, it is conceivable that_ these differences 

may be explained by measured site variables. Attention is restricted to second-

order response surfaces where the two linear factors are orthogonal. We assume 

that any differences among the true surfaces involve only (i) differences in 

mean yields which may be explained by site variables and (ii) differences in the 

linear response rates which may be explained by interactions with site variables. 

Once these site variables and interactions have been identified, the predictive 

ability of the equations, incorporating the site variable information, again 

can be investigated. 

For this model, it is found that (P -1) is no longer proportional to an F 

statistic, but is distributed as a constant times the ratio of a linear combi-

nation of independent x2 (1 d. f.) variables to an independent x2 [k(n- p )d. f.] 

variable. In particular, the numerator of P -1 is proportional to a quadratic 

formY'B2Ywhich, under the assumption of normality, is distributed as E~~leix 2i' 

where X2 • are independent X2 (1 d. f.) variables and e., i = 1, • • •, kn are the 
~ 1 

eigenvalues of B2 (see Section 5). w11ile B2B = 0, unlike the first predictive 

model, B2 is not idempotent. Therefore the eigenvalues, while positive, are 

not restricted to be 0 or 1 • 

In general, 'the cUstdbution of a linear combination of X2 variables does 

not exist in closed for.m. However, in a particular problem, once P has been 

computed from the data and the eigenvalues of B2 have been determined, the 
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~odel 2: The last predictive model considered is one in which we prefer 

to aJ~ow unexplained differences in mean yield, yet explain any differences 

in response surfaces with interactions of site variables with linear response 

rates. Not surprisingly, we find that by centering the observed yields about 

the mean for that site, the results for MOdel g remain valid with simple modi-

fications. In particular, the above results hold if we delete the column of 

ones from the design matrix for each site and correspondingly replace p with 

(p-1) in the numerator. 

In each of the last two models the dimension of B2 (B3) is extremely large 

for moderate k and n • This makes direct numerical computations of the eigen-

values not feasible. Fortunately, this problem can be reduced to the computa-

tion of the eigenvalues of several matrices, each of dimension k, a problem 

readily handled by available computer packages (Section 5). 

~ Cammon Response Surfaces 

In the simplest model, we assume that a common response surface is to be 

fitted to all but one site and then used to predict for the remaining site. 
A 

The predicted values Y(-i)' i = 1, ••• , k, then take a simple form 

A 

y(-i) = Xb(-i) , 

where X is the common design matrix and b(-i) is the vector of regression coeffi­

cients estimated from all but the ith site. Since we are fitting a common re-

sponse surface, 

b(-i) = (k-l)-1(X'X)-li X'Yj 

j~ 

In order to derive the result given in Section 2 for Model 1, we need to 

write the combined vector of transfer residuals as AY; i.e., 
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Then L. (Yi -Y(-i))'(Yi -Y(-i)) oo-: Y'A'AY and the result follows if 
~ 

[A 'A- B]B = 0, where B is defined by 

Introducing Kronecker :products and Jk' a (kX k) matrix of ones, 

and 

is the required matrix. 

(1) 

(2) 
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Next, in order to identify t~e quadratic form, we note that 

is an idempotent matrix with rank p(k-1). Since B = [Ik ® (I0 - PX) ], [A 'A- B]B = 0 

and the two quadratic forms are independent. Setting 

k2Y'B Y 
1 P-1 = ___ :;;;..__ = 

(k-1) 2 Y'BY 

k 2 x2 [p(k-l)d.f.] 

(k-1) 2 x2 [k(n-p)d.f.] 

(3) 

kp 
= ---- F[p(k-1) ], [k(n-p)] 

(k-l)(n-p) 

4. Predictions Using Site Variable Information 

Site variable information may be incorporated into the predictions to 

explain both differences in the mean yield and differences in the linear com-

ponents.of the response surfaces of various sites. The predicted values for 

the ith site based on the other (k-1) sites can again be represented as 

"' Y(-i) = Xib(-i)' where Xi is now the design matrix X augmented by the site 

variable information for the ith site and b(-i) is the vector of estimated 

regression coefficients estimated from the remaining sites using both X and 

the site variable infor.ruation. As before, the combined vector of transfer 

residuals is written as a linear combination of Y, say ~' and properties of 

the resulting quadratic form are investigated. 

Let i (i < k - 1) denote the number of site variables used to explain 

differences in intercepts. Then Til' i = 1, • • •, k will denote a [ (k- 1) x t] 

matrix of site variables for all sites except the ith site which are used to 

explain the differences in intercepts. Without loss of generality, assume 
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that the col~~s of T11 are centered at zero. Also, let ~(m2 ) < k- 1 

be the number of variables used as interactions between sites and the first 

(second) linear design variable. Then Ti2(Ti3), i = 1, • · •, k, vd.ll denote the 

(k-1) x ~ (.m2) matrix of centered interaction variables for all sites except 

the ith site. 

"" Returning to Y(-i)' it follows that b(-i) is based on the data .matrix 

where x1 (x2) is the 

In particular b(-i) 

linear component of the first (second) design variable. 
-1 

= (x(-i) 'X(-i)) X(-i) 'Y(-i)' where Y(-i) is the combined 

vector of yields excluding the ith site. Also, if we let T .. 1 denote the 
1J• 

row vector of centered site variables for the previously excluded i th site 

corresponding to the site variables in Tij' j = 1, 2, 3 and i = 1, • • •, k, then 

Xi= [x: Til•l ® 1n : Ti2•1 ® ~ : Ti3•1 ® x2] 

-1 

and y(-i) = xi(x(-i) 'X(-i)) x(-i) 'Y(-i) • 

With these definitions, it can be shown (Appendix 1) that the transfer 

residuals, R2, can be expressed as 

where (i) A is as defined in (2), (ii) € is a multivariate normal vector with 

mean vector zero and covariance matrix I_,p, (iii) P. = x.(x.'x.)-1x.', i=l,2, · 
llA 1 1 1 1 1 

(iv) T is a (kx k) matrix with diagonal elements equal to zero and the re.main­
-1 

ing elements in the i th row given in order by Til·l( T11 ' Til) Til', i = 1, • • •, k 

and (v) y1 h 2) is a (k X k) matrix with diagonal elements equal to zero and the 
-1 

remaining elements in the ith row given in order by T. 2 1(T. 2 'T. 2) T ' 
- 1 • 1 1 i2 -1 

[Ti3.1(Ti3'Ti 3) Ti3 ']. Notice that~ now involves both the design variables 
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through A, the site variables used to explain differences in intercepts 

-1 through T ® n J , and the interaction variables used to explain differences 
Il 

in the linear trend in the first (second) design variable through y1 ® P1 

The sum of s~uared transfer residuals can then be expressed as 

i = 1,2 

' 

(4) 

It now follows that 

p -l = [ 

The numerator and denominator are independent, if B2B = 0 • But since P~i 

= P., i = 1, 2 and P-~T = J , B2B = 0 • 
~ x-n n 

Model 3, allowing unexplained differences in mean yield over different 

sites, is a transfer function consisting of both design variables and site 

variable interactions with the linear design variables. It is now convenient 

to separate the design variables in X from the column of ones. In particular, 

Xi = [X : Ti2•1 ® ~ : T13 •1 0 x2], where X contains only design variables. 

Then, Y. = t3 .1 +X. t3 + Ei' where t3 is now redefined so as not to contain the 
~ ~ ~ 

colr'mon intercept and f3. 1 is the mean of' the ith site. Since the columns of 
~ --

- - - ( -1 ) X are centered at zero, y. = f3. 1 +E., andY. -y11 = X.f3+ I -n J € •• 
1. 1. l. l. n 1. n n1. 
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Thus, adjusting the yields by the intrasite means eliminates the differences 

in intercepts. The transfer functions are then calculated by estimating ~ 

from only (k-1) sites, say b(-i)' using the adjusted yields. These coefficients 

are used for calculating the transfer residuals for the excluded ith site. 

Following the method of generalized least squares and the previously outlined 

procedure (Appendix 1), 

p -1 = 
Y'B Y 

k 2 3 

(k-1) 2 Y'BY 
, 

where B3 is found by deleting the C ® J n component from B2 as given in ( 4). 

5. Distributional Properties 

In the previous two sections, we have found that for Mbdel 2 and MOdel 3, 

respectively, 

(P -1) = [ _k_2 __ e_'B~i_e ], 

(k-1)2 E 'Be 
i =2,3 

In addition it was shown that BiB= 0, i =2,3 . Therefore, in each case, the 

numerator and denominator are independent. Also, since B is idempotent, the 

denominator is a X2 [k(n-p)d.f.] • In this section, we consider the distribu-

tion of the numerator. We will deal with B2 directly, since the arguments 

are identical and the results are analogous for B3 • 

Since E(e) = 0, we have from Searle (1971), Theorem 2.2 that e'B2 e 

- a2~~~leix2i(l d.f.) where X2i(l d.f.) are independent X2 random variables, 

each with 1 d.f., and ei are the eigenvalues of B2 • Since this matrix is 

of dimension kn, we must find simplified expressions for the eigenvalues before 

proceeding to do any computations. First we will state the results for B2 • 

If 9 i' i = 1, ••• , k...'"l are the eigenvalues of B2, 
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i:l, ••• , (k-l)(p) 

and 

i = [ (k-l)p+l], • • •, kn 
' 

where lli' i ""'1, •. •, (k-1) are the nonzero eigenvalues of c, lli' i = k, • • ·, 2(k-l) 

are the nonzero eigenvalues of D1, lli' i == 2-(k-1) + 1, • · ·, 3(k-1) are the nonzero 

eigenvalues of n2, and J..li = 0, i = 3(k-l) + 1, • • •, (k-l)p • Thus we have reduced 

the probletn of computing the eigenvalues of B2 to the problem of computing the 

eigenvalues of c, n1, and D2 • Details are given in Appendix 2. 

A similar argument for B3 yields the following result: If e2 represent 

the eigenvalues of B3, then 6 i ""' O, i = [ (k-1) (p-1) + 1], • • ·, kn and 6 i = 1 + IJ.i' 

i =1, ••• , (k-l)(p-1), where J.l., i =1, ••• , (k-1) are the nonzero eigenvalues 
l. 

of n1, IJ.i' i =k, ••• , 2(k-l) are the nonzero eigenvalues of n2 and IJ.i = o, i = 

2(k-l) + 1, ••• ' (k-1) (p-1) • 

6. Example 

The Benchmark Soils Project is described by Silva and Beinroth (1978). 

As indicated in Section 1, a major objective of the project is to test the 

feasibility of transferring agrotechnology in the tropics on the basis of 

soil taxonomic units, thereby reducing the amount of site specific experi-

mentation. Specifically, the hypothesis that an estimated response-input 

relationship can be transferred within the same soil family needs to be 

tested. This example uses data from five maize experiments on the Hydric 

Dystrandept soil family; two sites (PUC-K and BUR-B) are in the Philippines, 

two in Hawaii (KUC-C and KUK-D) and one in Indonesia (LPH-E). The satne 13-point 

treatment design was used at each site, a partial 5 X 5 factorial with 

applied phosphorus and applied nitrogen as the controlled variables. An 

estimated second order response surface model in the two factors adequately 
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fits the treatment means. As expected, calculation of the P statistic for 

~bdel 1 resulted in rejection of the transfer hypothesis. Given here are 

the numerical details of calculating the P statistic under Model 3 which 

introduces site variable information in the transfer function as interactions 

between the site variables and the linear effects of applied phosphorus and 

applied nitrogen. Table 1 gives the basic site variable information, (EXTN 

= extractable soil nitrogen, MINT= average daily minimum temperature for 

eight weeks around tasseling and TRUOG = soil phosphorus), the within-site 

residual sum of squares (SS) based on fitting a response function to each 

site, and the transfer SS based on the transfer function estimated from the 

other sites. Four interactions are included in the transfer function, applied 

phosphorus with TRUOG and EXTN and applied nitrogen with MINT and EXTN. 

[Insert Table 1 here] 

From Table 1, we see that the prediction statistic is 

P -- 126,433,780 = 44 1. 
88,006,684 

In other words, a 44% increase in unexplained variability when predicting 

the ith site fram the remaining sites is observed using the model with five 

design variables (quadratic polynomial) and four interactions with the site 

variables. 

The next step is to assess w~ether this 44% increase is to be expected, 

or is so large as to contradict the ability to transfer results from one 

experiment to another. From Section 5, we have that 

(k-1)2 (P -1) = 
k2 

20 
a2 ~ e.x2 .(1 d.f.) 

i=l ~ ~ .. 
0.64 (P-1) ....... -------

a2x 2 (165 d. f.) 
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where 20= (k-l)(p-1) and 165 =k(n-p) . The ei are the eigenvalues of B3, 

x2 i (1 d.f.) are independent, ei = 1 + 1-li' i::: 1, ••. ' 8 and e i = 1, i = 9, •.. ' 20, 

where I-ll' • · • , l-l4 are the nonzero eiger:Jalues of D1 and l-l 5, • • ·, l-l8 are the 

nonzero eigenvalues of D2 • 

Following the construction method outlined in Section 4, D1 is computed 

from the site variables TRUOO and extractable nitrogen (EXTN). In particu-

lar, D1 and its nonzero eigenvalues are: 

3.Cf70 -1.837 0.267 0.462 -1.963 
5.2o8 

-1.837 0.440 0.659 1.245 
I-ll = 

-0.5Cf7 

0.267 0.659 0.657 -1.470 
l-l2 = 2.564 

Dl = -0.113 and 
l-l3 = -1.000 

0.462 -0.5CJ7 -1.470 1.145 0.370 

-1.963 1.245 -0.113 0.370 0.461 
l-l4 = -1.000 

Similarly, D2 is computed from minimum temperature (MJ:NT) and extractable 

nitrogen (EXTN). This yields the eigenvalues 

l-l6 = 1. 666' and l-l8 = -1.000 

Combining these facts we see that 

0.64 (P- 1) (1 d.f.)/cr2X 2 (165 d.f.) 
' 

where e i = 1 + 1-li' i = 1, ••• , 8, and e i = 1, i = 9, ... ' 20 • 

We need to compare the observed value of (k-1) 2 /k?(P -1) = .28o with the 

quantiles of the distribution of 2::.9 .X2 . (1 d. f. )/x2 (165 d.f.) • As stated 
~ ~ ~ 

earlier, the distribution of such a linear combination of X2 . (1 d.f.) as 
~ 

found in the nume~+nr does not exist in closed form, while the denominator 

is an independent X2 (165 d.f.) variable. 

Even though no tables exist for the distribution of [(k-1) 2 /k2 ](P-l), 

the attained significance level may be readily estimated by MOnte Carlo 
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simu1ation. Using the fact that a standard normal variable squared is 

X2 (1 d. f.) and that the numerator and denominator are independent, many 

vuriab1es with the above distribution may be computed and the proportion 

which falls above the computed value of 0. 28o recorded. This will give an 

accurate estimate of the attained significance level. In this example, we 

may make a further simplification. Since the d.f. of the denominator is so 

large, MS Residual is very close to a2 , the unknown experimental error, with 

high probability. Rewriting 

20 
a2 l: e .x2 • (1 d. f.) 

. 1 1 1 1= 

20 

· \e.x2 .(ld.f.) L 1 1 
i=l 

This implies that we need only compare 165(.280) = 46.2 with the quantiles of 

Ten thousand random variables with the distribution given above were 

generated. In particular, at each iteration, twenty standard nor.mal random 

variables, say N., i = 1, • • ·, 201 were generated using GGUSN from the IMSL Sta-
1 

tistj.cal Package. Then each variable was formed as the linear combination of 

X2 . (1 d.f.) (N. 2 ) variables given above. The attained significance level is 
1 1 

0.292, thereby giving evidence that the response surface for applied phosphorus 

and applied nitrogen can be transferred with an estimated transfer function 

including interactions between the site variables and the linear effects of 

the controlled variables. 
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Appendix 1 

Representation of the Sum of Squared Transfer Residuals 

for Model 2 and Model 3 

Using the notation developed in Section 4 the combined vector of trans-

fer residuals for Model 2, ~' is developed by first considering the transfer 

residuals fo~ one excluded site; e.g., site 1. Recall that 

and 

-1 

y(-1) =Xl(x(-1) 'X(-1)) X(-1) 'Y(-1) =[ (k-lfl1k_,'e~+Tll·l(Tll,Tll)-1Tll'®n-1Jn 

' 

-1 
where J is an (nx n) :matrix of ones and P. = x1 (x1 •x.) x. ', i = 1, 2. Note 

n ~ ~ ~ 

that T1i. 1 (T1i 'T1i)-1T1i ', i =1, 2, 3 are [lx (k-1)] row vectors. Augmenting 

each by a zero in the first position, we can define the ( 1 X k) row vectors. 

-1 

~1 = [o : T11•1(Tl1 1Tl1) T11'J, 

-1 

Y11 = [o! T12•l(Tl2 1T12) Tl2 1
] 

and 

Then 

and 

Next define Ti' Yil' and Yi2, i = 2, • • •, k, analogously to -r1, y11, and y12; 
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e.c., T2 is the (lxk) row vector formed from T21 .1 (T21 •T21 )-1T21 • with a 

zero element inserted as the second element, y21 is the (lx k) row vector 

formed fram T22.1 (T22 'T22 ) -~21 ' wi.th a zero element inserted as the second 

element, and y22 is defined similarly. Then 

' 
~ =[(Yl-Y(-1))': (Y2-Y(-2))': • (Yk-Y(-k))] 

c: {A- [(T®n-1Jn)+(y1 ®P1)+(Y2®P2)]}Y 

where A is defined in (2), 

Tl Yu yl2 

Tl y21 y22 
T = ' yl = ' 

and y2 = 

Tk ykl yk2 

At this point it is convenient to note that since we assume that, includ-

ing site variables and site variable interactions, a common response surface 

fits all sites, 

-1 

= Ei - xi(x(-i) 'X(-i)) x(-i) 'E(-i) ' 

where €(-i) is the combined vector of all errors excluding the ith site. 

Therefore, 

where € is the combined vector of errors. 

Next, consider the sum of squared transfer residuals for Model 2. With 
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the above representation, 

2 2 

~~~=E'{A'A-A((T®n-1Jn)+ I (-vi ®Pi)] -[(T'®n-1Jn)+ L (-vi®Pi)JA 
i~ i~ 

2 2 

+[(T'®n-lJn)+ L("Yi'®Pi)J[(T®n-lJn)+ I(Yi®Pi)]JE 
i~ i~ 

Since X contains a column of ones, P-~ = J and x-n n 

Similarly, since p _ _p. = P., i = 1, 2, 
x-~ ~ 

-1 )( -1 ) ( -1 ) Next, (T' ® n J T ® n J = T'T ® n J and, since P1P2 = 0, n n n 

Combining these facts, we have that ~ '~ is as expressed in Section 4. 

As noted in Section 4, X, X., X( •)' and~ must be modified in Mbdel 3 
~ -~ 

so as not to contain intercept terms. The combined vector of adjusted yields, 

excluding the ith site, can then be written as 

i = 1, ••. ' k 

Since the adjusted yields are not independent, we follow the methods of 

generalized least squares. Noting that the covariance matrix of the adjusted 

yields is given by [I (k-l) ®(In-n -lJn) ], which is idempotent, and that 

[I(k-1) Q9 (In- n-lJn)]X(-i) = X(-i)' 
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-1 

= ~ + (x(-i) 'X(-i)) x(-i) 1€(-i)' i = 1, ••• ' k 

Therefore 

Following the arguments for ~' the transfer residuals are given by 

where A is defined as in (2) but using the redefinition of X and PX = X(X'X)-1x' . 

Since PX1n = 0, we have 

Also, since the columns of Tj 2 and Tj 3, j = 1, • • ·, k, are centered at zero, 

YlJk = y2Jk = o, 

and 

Combining these facts, we have that 

Following the argument used for Model 2, we can show that 
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P-1 = [ 
Y'B Y ] k 2 3 

(k-1) 2 Y'BY 

~_Ependix 2 

Eigenvalues of B2 and B3 

and B B = 0 
3 

First we state some useful properties of the matrices involved in B2 ; 

i.e., for 

' 

and 

The first relationship shows that [Ik- k -lJk] is idempotent. Therefore the 

eigenvalues of [Ik- k -lJk] are either 0 or 1 • Since the rank of [Ik- k -lJk] 

is (k-1), there are exactly {k-1) eigenvalues which are 1 and one eigenvalue 

which is zero. Since PX is also idempotent with rank p, PX has p eigenvalues 

which are 1 and [n-p] eigenvalues which are zero. Combining these two facts, 

it follows from Bellman (1970), Theorem 12.4, that [(Ik-k-lJk) ® PX] has 

(k-l)(p) eigenvalues which are one and the remaining eigenvalues are zero. 

Next we want to show that the nonzero eigenvalues of B2 are the nonzero 

-1 ) eigenvalues of [ (Ik- k Jk ® PX] plus the eigenvalues of [ (C ® Jn) + (D1 ® P1 ) 
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+ (D2 ® P2 )] • Since (C ® Jn), (Di ~ Pi), i = 1, 2, and [Ik- k-1Jk] are syw­

:metric matrices, (ii) and (iii). imply that [Ik -k-1Jk] and [(C ® Jn) + (D1 ® P1 ) 

+ (D2 ® PX)] commute. From Bellman (1970), Theorem 4.5, this yields the use­

ful result that there exists a matrix N such that N'N = I and 

-1 ) where Xi are the eigenvalues of [(Ik- k Jk ® PX] and IJ.i are the eigemralues of 

[(C ® Jn) + (D1 ® P1 ) + (D2 ® P2)] • Note that ei =Xi+ IJ.i' i =1, ••• , kn • 

Now there exists a square matrix U such that PXU = U and U'U = Ik • 

Without loss of generality we may assume that 

where llxill = (r. jxij 2 ) 1 / 2 • Also let W = w(.ijP where for i = 1, • • ·, k and 

j =1, ••• , (k-1), w.j = [(i-1) +i2 r 112, for j < i, w .. = -i[(i-1) +i2 ]-l/2, 
1 1J 

-1 
for j = i, and wij = 0 for j > i • Then W'W = Ik-l and [Ik -k Jk]W = W • 

( -1 That is, W are the eigenvectors of Ik- k Jk) corresponding to the nonzero 

eigenvalues. OUr goal is to construct the eigenvectors which correspond to 

-1 
the nonzero eigenvalues of [Ik- k Jk] ® PX • But 

and we have the required eigenvectors. Contained in the proof of Theorem 

4.5 of Bellman (1970) is the fact that the ~1 •s corresponding to nonzero Xi's; 

say, X1 = 1, ••• , (k-l)(n-p) are the eigenvalues of 
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Now u 'J u is zero except for the first diagonal element which is equal 
n . . 

to n • Also U'P1U(U'P2u.) is zero except for second (third) diagonal elewent 

which is one. Combining these facts, we see that the eigenvalues of 

is the set of values found by taking eigenvalues of W'D1w, of W'D2W and of 

the eigenvalues of W'CW multiplied by n • From this latter result and the 

definition of C, without loss of generality, we may assume n:=l when comput-

ing the eigenvalues. 

-1 ) Finally, we note that ~k ® U is the eigenvector of (Ik- k Jk ® PX 

corresponding to the one zero eigenvalue. But 

therefore the eigenvalues of [(C ® Jn) + (D1 ® P1 ) + (D2 ® P2 )] corresponding 

-1 
to the zero eigenvalue of [Ik- k Jk] are identically zero. A similar argu-

ment yields the ~~sults for B3 • 
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Figure 1 

Schematic of Input Factors and Steps Required 

to Inrplement the Benchmark Soils Project 

TABLEl 

Site Variable Data, Residual Sum of Squares 

and Transfer Sum of Squares 

EXTN MINT TRJOG SS Residual SS Transfer 

79 23.00 10 5,869,074 14,700,000 
29 21.50 5 25,055,220 36,584,690 
46 18.83 74 13,602,420 18,695,610 
29 17-90 62 25,599,730 32,792,720 

119 16.76 23 17z88oz240 23z6602760 
88,oo6,684 126,433,780 


