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Summary

The transferability of agrotechnology questions the feasibility
of extrapolating a response-input relationship, estimated from experimental
sites, to other sites with similar condifions. One specific example is
testing the hypothesis that crop production technology is transferable
within the soil family classification. The general approach to the
transfer hypothesis incorporates into the data analysis the prediction
of yields not used in the estimation of the transfer function. Three
transfer models, using a second order response surface and measured
site variable information, are formulated and yields for each experimental
site are predicted using a transfer function estimated from the other
sites. The resulting transfer residuals are compared with the ordinary
within-site residuals. A prediction test statistic based on a sum of
squares criterion is developed and shown to have a distribution of a
ratio of independent quadratic forms. The transfer residual methodology
for testing the transfer hypothesis 1s applied to data from the Bench-

mark Soils Project.

Key Words: Regression; Prediction; Extrapolation; Controlled 'nd uficon—

trolled variables.



1. Introduction

Agrotechnology transfer is the extrapolation of a response-input relation-
ship, estimated from a series of experiments, to new but similer sites. Agron-
omists have long been concerned with the analogous problem of making inferenteé
to farmers' fields. The target population for transfer casn be defined as a
gecgraphical area or defined by other criteria such as soil and past manage-
ment information. Recommendations based on a relatively large number of site
specific experiments, coupled with long-term experience of agronomists, has

been the modus operandi for transferring agrotechnology. In less develuped

countries, however, a need presently exists to shorten the time end ellort
required for extensive site specific experimentation.

i major objective of the Benchmark Soils Project, established bty U.4.A.
1.D (Agency for International Development) in cooperaiion with the Unive;fim
ties of Hawail snd Puerto Ricc, is to test the hypothesis that crop production
technology 1s trensferable fram one tropical region to :iother on ia: b~z;a 55
siwilority of soils as indicated by the soil family in the Soi! Mae -omy
Massification Systems (Soil Suzve§ Staff 1975). The soil femily wos seled hod
for the hypothesis since the family classification integrates sl Jacuiors v .iu
the long-term envirommental factors that influence crop yield. The theory is
that experimental results, specifically the response of maize to applications
of phosphorus and nitrogen, obtained from one country can be applied to sites
on the same soil femily in arother country. Figure 1 schematically demonstrztes

the inferential structure of the project.
[Figure 1 here]

A straightforward statistical procedure for evaluating the transfer hy-

pothesis is to test the homogeneity of the regression coefficiencts in the k
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transfer functions relating response to the controlled variazbles at each of
the k experimental sites. If the transfer function model is the same for all
the selected sites, then agrotechnology can te transferred from cne site Lo
another through a coumon transfer function. Specifically, if the howogenaity
hypothesis is not vejected, there is not sufficient evidence to indicate that
a different model holds for each cite. Then a common transfer fuunction can
be estimated and in this sense, the agrotechnclogy can te “Lransferrsd.
In Figure 1, soil and long-term climatic constants are those factors

interent to the soil family clacsification. However, within the discreie snil
family designations, soil properties do vary and csunot te neid at o constant

level., Cerxbaila scil propertics misht alsc vas, dus Lo pest ourag

(S

e, Unfor

L

1 and man-mece veriability ithin the sof" Fard™ - osually

)

sunately; the netua
cannot be contrcilea in fi2ld experimentaticn, Conseguentiy, the banclensiby
hypothesis uscally will e re’ected in practice. Tnterprsting ithis rejection
Lo wean that agrote tvclegy fen't trousfera®hle can be failty.  Tre 107
site respense-imput relatioushir car be aff-otod by the snezific b o ic envicon-

mant of the site. Only by measaring the vncopirolled zite wiriabl:s, and ine’ui-
ing them in the response-imput relationship, will the resporz: be thie condleulied
variable be clearly focused.

In addition, a test of e transfer hyoothesis should simlete the actusl
transfer of agrotechnology to sites where erperimentation has not boen carrvied
out. Our approach is to predict the yields, denoted as Q(f:), for one of k
experimental sites using a lransfer function estimated from the other (k-1)
sites., This is then repeated for predicting the yields for zazch of the k sites

tased on a transfer function estimsted from the other (k-1) sites. The transfer

~

residuals, Yi"Y(-i)’ can be compared with the ordinary Y. -7, residuals, cal-

culated by fitting a response funciion individually to each of the k sites. The
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specific objectives here are (i) to develop the transfer residual methédology
for testing the transfer hypothesis and (ii) to demonstrate the methodology
with yield and site variable results from maize transfer experiments on the
thixotropic, isothermic soil family of Hydric Dystrandepts. The first step
is the development of a test statistic for evaluating the transfer residuals.

2. The General Problem

Our approach utilizes a sum of squares criterion to campare the megni-
tude of the transfer residuals, Yi"Q(-i)’ to the ordinary’within—site resid-
uals, Yi"Qi . In particular, Cady (1974) proposed the ratio of the pooled
sum of squared transfer residuals to the pooled sum of squared within-site

residuals; i.e.,
k k
i izl(Yi “Feay) (- Fy)/ i;(Yi %) (u-h)

For two sites (P-1) is a symmetrized version of Gardner's (1972) ratio
bias statistic used for assessing the predictive ability of one sample for a
second sample. In the more general case of k sites, P is the natural extension
camparing the predictive ability of the ith site for itself with the predic-
tive ability of the remaining (k -1) sites.

Here we consider the distribution of the P statistic under several

predictive models. Throughout, we assume that Y., i=1, ..., k, arise as

17
observed ylelds from an equally replicated quantitative treatment design
cammon to all k sites. ZPFurther, assume that Yi have a multivariate normal
distribution with identity covariance matrix, In . Let Y denote the vector
of all observations; i.e., Y' = [Yi' Poees Yk'] . Also, X (an nXp matrix)
will denote the common design matrix with p variables including a column of

ones. The non-constant columns of X have been centered at zero.

Model 1: The simplest predictive model is one in which a common response

- . e . - - B -\ . - - - -
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remaining site. 1In Section 3, (P-1) is expressed as a constant times a ratio
of two quadratic forms, Y'BlY and Y'BY, where Bl is idempotent and of rank

p(k-1) and B,B=0 . The structure for B is given in (1) and B, in (3) of

1
Section 3. It is also shown in Section 3 that (P-1) is distributed as a con-
stent times Flp(k -1)],[{k(n-p)] .

Model 2: Often due to differences in weather, previous management prac-
tices, or other site specific variables, one would not expect a common response
surface to fit all sites. However, it is conceivable that these differences
may be explained by measured site variables. Attention is restricted to second-
order response surfaces wheré the two linear factors are offhogonal. We assume
that any differences among the true surfaces involve only (1) differences in
mean yields which may be explained by site variables and (ii) differences in the
linear response rates which may be explained by interactions with site variables.
Once these site variables and interactions have been identified, the predictive
ability of the equations, incorporating the site variable information, again
can be investigated.

For this model, it is found that (P-1) is no longer proportional to an F
statistic, but is distributed as a constant times the ratio of a linear combi-
nation of independent X2 (1 d.f.) variables to an independent X®[k(n -p)d.f.]
veriable. In particular, the numerator of P-1 is proportional to a quadratic

formY"B2Ywhich, under the assumption of normality, is distributed as Ekn 8,x2

1=1"1" 1°

where X2i are independent X% (1 d.f.) variables and Gi, i=1, «++, kn are the
eigenvalues of B2 (see Section 5). While B2B==O, unlike the first predictive
model, B2 i1s not idempotent. Therefore the eigenvalues, while positive, are
not restricted to be O or 1 .

In general, the aistribution of a linear combination of X2 variables does

not exist in closed form. However, in a particular problem, once P has been

computed from the data and the eigenvalues of 32 have been determined, the

attadand olmmiPlramna Tevel Af D rarn he armratelvr actimated Ty Mornte Carlo
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Model 3: The last predictive model considered is one in which we prefer
to allow unexplained differences in mean yield, yet explain any differences
in response surfaces with interactions of site variables with linear response
rates. Not surprisingly, we find that by centering the observed yields about
the mean for that site, the results for Model 2 remain valid with simple modi-
fications. In particular, the above results hold if we delete the column of
ones fram the design matrix for each site and correspondingly replace p with
(p-1) in the rmumerator.

In each of the last two models the dimension of B, (33) is extremely large
for moderate k and n . This makes direct mumerical computations of the eigen-
values not feasible. Fortunately, this problem can be reduced to the computa-
tion of the eigenvalues of several matrices, each of dimension k, a problem
readily handled by available computer packages (Section 5).

3. Common Response Surfaces

In the simplest model, we assume that a common response surface is to be
fitted to all but one site and then used to predict for the remaining site.

The predicted values ?(-i)’ i=1, ..., k, then take a simple form
Y1) = %)

where X is the common design matrix and b(-i) is the vector of regression coeffi-
cients estimated from all but the ith site. Since we are fitting a common re-
sponse surface,
By = (k-l)-l(X'X)-lZX'YJ. )
JHL
In order to derive the result given in Section 2 for Model 1, we need to

write the combined vector of transfer residuals as AY; i.e.,



R [(a-Fe) ot (V) | e

~ t A
- - — YA .
Then Ei (Yi Y(_i)> (% Y(_i)> Y'A'AY and the result follows if
[A'A -B]B = O, where B is defined by

k
.21<Yi - §i> '(Yi - ’fi) = v'BY . (1)
i=

. s . - 1 - 1
Since Y, = P,Y,, where Py = X(X'X) x s

X
Y, - ?r(_i) =Y, - (k-l)'lPX; I, = (In+ (k—l)-]'PX)Yi - (1@:-1)’113X z LA
J#L =1

Introducing Kronecker products and J

o @ (kX k) matrix of ones,

R = [Ik ® (In; (k-l)'lpx)]y - (1.~:-1)'1(Jk ® PX>Y

and
A= [Ik ® (In+ (k-l)-lPX)] - (k-J.)'l(Jk ® PX> (2)

is the required matrix.



Next, in order to identify the quadratic form, we note that

[k2/(k-1)2][A'A - B] = [(Ik - k'le) ® PX]

is an idempotent matrix with rank p(k-1). Since B = [I ® (In-Px)], (A'A-B]B=0

and the two quadratic forms are independent. Setting
B, = (1 -k’lJ)e:P - (3)
1 k k X’

1

k2Y'B. Y k2  x3(p(k-1)d.f.] kp
) (k-1)2Y'BY ) (k-1)2 x3[k(n-p)d.f.] B (k-l)(n—p)

P-1

Flp(k-1)1, [k(n-p)] .

4., Predictions Using Site Variable Information

Site variable information may be incorporated into the predictions to
explain both differences in the mean yield and differences in the linear com-
ponents of the response surfaces of various sites. The predicted values for
the ith site based on the other (k-1) sites can again be represented as
§(-i) = Xib 1)’ where Xi is now the design matrix X augmented by the site
variable information for the ith site and b(-i) is the vector of estimated
regression coefficients estimated from the remaining sites using both X and
the site variable information. As before, the combined vector of transfer
residuals is written as a linear combination of Y, say R2, and properties of
the resulting quadratic form are investigated.

TLet ¢ (£ < k - 1) denote the number of site variables used to explain

differences in intercepts. Then Ti , i=1, ¢+, k will denote a [(k-1)x 2]

1

matrix of site variables for all sites except the ith site which are used to

explain the differences in intercepts. Without loss of generality, assume
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that the columns of Til are centered at zero. Also, let ml(mg) <k -1

be the mumber of variables used as interactions between sites and the first
(second) linear design variable. Then Ti2(Ti3)’ i=1, «+<, k, will denote the
(k-1) x ml(mz) matrix of centered interaction variables for all sites except

the ith site.

Returning to §(-i)’ it follows that b(-i) is based on the data matrix

°

X(-i) =[1(k-l) ® X : Til® ln : 'l’j_2 ® X ¢ Ti3 ® xg:' R

where xl(xg) is the linear component of the first (second) design variable.
-1
In particular b(-i) = (X(-i)'x(—i)> X(-i)'Y(-i)’ where Y(-i) is the combined

vector of yields excluding the ith site. Also, if we let T, denote the

ij-l
row vector of centered site variables for the previously excluded ith site

corresponding to the site variables in Tij’ j=12,3 and i=1, «--, k, then

X3 = [X Pl @ty P T @K P T3, @ Xz]
~ -1
— 1 1
and 305y = %(Ko1) %on) Ken) o) -
With these definitions, it can be shown (Appendix 1) that the transfer

residuals, Ry, can be expressed as

R, = {4 -[(T e 7))+ (vyer)+(ye P2):| }e ‘,

where (i) A is as defined in (2), (ii) € is a multivariate normal vector with
1

xi',
(iv) T is a2 (kx k) metrix with diagonal elements equal to zero and the remain-

-1
- 03 - S 1 1 i = e o0
ing elements in the ith row given in order by Til°l<Til Til) Til s 1=1, s Kk

mean vector zero and covariance matrix I ., (iii) P, = xi(xi'xi)- i=1,2,

and (v) Yl(Yg) is a (kx k) matrix with diagonal elements equal to zero and the

-1
remaining elements in the ith row given in order by Ti2-l(T12’ 12) T.2'
-1 L

1 [ . . .
[I&3u1(Ti3 Ti3> Ti3 ] . Notice that R2 now involves both the design variables
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through A, the site variables used to explain differences in intercepts
through T ® n-lJn, and the interaction variables used to explain differences
in the linear trend in the first (second) design variable through Y, ® By
(vy; ® Py) «

The sum of squared transfer residuals can then be expressed as
_ 2(1_1\-2 2(1_1\~2 \ 2(1_1\-2 ¥
R,'R, = e'[A'A+k (k-1) <C®Jn)+k (k-1) <D1®Pl)+k (k-1) <D2®P2>_Je ,

1

where k2(k-1)"2C = n"'T'T - n k(k-1)"H(T+ ') + 07 (k-1) (3, T+ T'3,) and

2 -2n _ 1y 1 - ' =
k=(k-1) D, = Yi'Yi k(k-1) l[yi+yi ]+(k 1)<JkYi+Yi Jk>, i=1,2 .

From Section 3, recall that A'A-B = 11:2(1c-1)'?-[(1k —k_le)®PX] and define
- % 2( 2 1A
B, = k"2(k-1)2(A'A - B) +(C®Jn)+ (D1®Pl)+<D2®P2> . ()

It now follows that

k2 e'Bze

(k-1)2 €'Be

The mumerator and denominator are independent, if BB = 0 . But since PXPi
= Pi’ i=1,2 and PXJn = Jn, B2B =0.

Model 3, allowing unexplained differences in mean yield over different
sites, is a transfer function consisting of both design variables and site
variable interactions with the linear design variables. It is now convenient
to separate the design variables in X from the column of ones. In particular,
Xi = [X: Ti2-l &® xl : Ti3-l 3¢ xe], where X contains only design variables.
Then, Yi = Bil-FXiB-kei, where B is now redefined so as not to contain the

common intercept and 511 is the mean of the ith site. Since the columns of

X are centered at zero, &i = Bil'kéi’ and Yi"glin = XiB-F(In--n-lJn)ei .
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Thus, adjusting the yields by the intrasite means eliminates the differences
in intercepts. The transfer functions are then calculated by estimating g
fram only (k-1) sites, say b(—i)’ using the adjusted yields. These coefficients
are used for calculating the transfer residuals for the excluded ith site.
Following the method of generalized least squares and the previously outlined
procedure (Appendix 1),
b1 - K2 Y'B3Y
(k-1)2 Y'BY

where B3 is found by deleting the C ® J camponent from B, as given in ().

5. Distributional Properties

In the previous two sections, we have found that for Model 2 and Model 3,

respectively,

(k-1)2 €e'Be

(P-1)=[ L5 1 ] 1=2,3 .

In addition it was shown that BiB =0, 1i=2,3 . Therefore, in each case, the
rumerator and denaminator are independent. Also, since B is idempotent, the
denominafor is a X®[k(n-p)d.f.] . In this section, we consider the distribu-
tion of the mumerator. We will deal with 32 directly, since the arguments
are identical and the results are analogous for B3 . :

Since E(e) = 0, we have from Searle (1971), Theorem 2.2 that €'B, €
~'022§2161X21(1 d.f.) where xzi(l d.f.) are independent X2 random variables,
each with 1 4.f., and Gi are the eigenvalues of B, - Since this matrix is
of dimension kn, we must find simplified expressions for the eigenvalues before

proceeding to do any computations. First we will state the results for B2 .

If Gi, i=1, ..., kn are the eigenvalues of B2,



ei=l+|,.l,i ) i=l’ S} (k-l)(P)
and

ei = 0 P i=[(k"l)p+l], coay, kn )

where p,, 1=1, -+, (k-1) are the nonzero eigenvalues of C, uy, 1=k, <+, 2(k-1)
are the nonzero eigenvalues of D;, i, i=2(k-1)+1, «--, 3(k-1) are the nonzero
eigenvelues of D,, and u, =0, i=3(k-1)+1, --., (k-1)p . Thus we have reduced
the problem of computing the eigenvalues of B2 to the problem of camputing the
eigenvalﬁes §f c, Dl’ and D2 . Details are given in Appendix 2.

A similar argument for B3 yields the following result: If 62 represent
the eigenvalues of B3, then 8, =0, i=[(k-1)(p-1)+1], ¢++, kn and 8, =14y,
i=1, .o, (k-1)(p-1), where Mgy 1=1, 00, (k-1) are the nonzero eigenvalues
of Dl’ Hyo i=k, ««, 2(k-1) are the nonzero eigenvalues of D2 and ui==0, i=
2(k-1) +1, ++-, (k-1)(p-1) .

6. Example

The Benchmark Soils Project is described by Silva and Beinroth (1978).

As indicated in Section 1, a major objective of the project is to test the
feasibility of transferring agrotechnology in the tropics on the basis of

soil taxonomic units, thereby reducing the amount of site specific experi-
mentation. Specifically, the hypothesis that an estimated response-input
relationship can be transferred within the same soil family néeds to be

tested. This example uses data from five maize experiments on the Hydric
Dystrandept soil family; two sites (PUC-K and BUR-B) are in the Philippines,

two in Hawaii (KUC-C and KUK-D) and one in Indonesia (LPH-E). The same‘lg_point
treatment design was used at each site, a partial 5 X 5 factorial with

applied phosphorus and applied nitrogen as the controlled variables. An

estimated second order response surface model in the two factors adequately
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fits the treatment means. As expected, calculation of the P statistic for
Model 1 resulted in rejection of the transfer hypothesis. Given here are

the mumerical details of calculating the P statistic under Model 3 which
introduces site variable information in the transfer function as iqteractions
between the site variables and the linear effects of applied phosphorus and
applied ﬁitrogen. Table 1 gives the basic site variable information, (EXTN
= extractable soll nitrogen, MINT =average daily minimum temperature for
eight weeks arougd tasseling and TRUOG = soil phosphorus), the within-site
residual sum of squares (SS) based on fitting a responmse function to each
site, énd the transfer SS based on the transfer function estimated from the
other sites. Four interactions are included in the transfer function, applied

phosphorus with TRUOG and EXTN and applied nitrogen with MINT and EXTN.
[Insert Table 1 here]

From Table 1, we see that the prediction statistic is

p = 120,433,780
88,006, 681

In other words, a UL% increase in unexplained variability when predicting
the ith site from the remaining sites is observed using the model with five
design variables (quadratic polynomial) and four interactions with the site
variables.

The next step is to assess whether this U4% increase is to be expected,
or is so large as to contradict the ability to transfer results fram one

experiment to another. From Section 5, we have that

i .
(1) 5.1y = 0.64 (p-1) ~ —2=L
k2 o2 2(165 4.f.)
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where 20 = (k-1)(p-1) and 165=k(n-p) . The 6, are the eigenvalues of B3,

xzi (1 a.f.) are independent, @, =l+p;, i=1, ..., 8 and 8,=1, 1=9, «++, 20,
where Hys **°y 1 are the nonzero eigenvalues of D1 and gy **°5 Hg are the

nonzero eigenvalues of D2 .

Following the construction method outlined in Section k4, Dl is computed

from the site variables TRUOG and extractable nitrogen (EXTN). In particu-

lar, Dl and its nonzero eigenvalues are:

[ 3.070 -1.837 0.267 0.462 -1.963 ]
He = 5.208
-1.837 0.k0 0.659 -0.507 1.245 = - 2.56L
D) =| 0.267 0.659 0.657 -1.470 -0.113 | end te _ -1'ooo
0.462 -0.507 -1.470 1.145 0.370 3 1 ooo
| -1.963  1.245 -0.113 0.370 0.461 | M T

Similarly, D2 is computed from minimum temperature (MINT) and extractable

nitrogen (EXTN). This yields the eigenvalues

kg =10.705, ug= 1.666, Moy = -1.000, and pg=-1.000 .
Cambining these facts we see that
20
0.64 (P-1) ~ ogzeix2i (1 a.f.)/0%X3(165 d.£.)
i=1

where 0, =1+y,, i=1, .-, 8, and 8i=1, i=9, «+., 20 .

We need to campare the observed va.lue. of (k-1)2/k2(P-1) = .280 with the
quantiles of the distribution of zieixzi (1 4.£.)/x3(165 4.f.) . As stated
earlier, the distribution of such a linear combination of )(2i (1 a.f.) as
found in the numer=+~r does not exist in closed form, while the dencminator
is an independent X2(165 4.f.) variable.

Even though no tables exist for the distribution of [(k-1)2/k2](P-1),

the attained significance level may be readily estimated by Monte Carlo
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simulation. Using the fact that a standard normal variable squared is

X? (1 d.f.) and that the numerator and denominator are independent, many
variables with the above distribution may be camputed and the proportion
which falls above the camputed value of 0.280 recorded. This will give an
accurate estimate of the attained significance level. 1In this example, we
may make a further simplification. Since the d.f. of the denominator is so

2

large, MS Residual is very close to o<, the unknown experimental error, with

high probability. Rewriting

20
2 2
o= I 8.X i(1 da.f.) 20

[(x-1)2/x2](P-1) & =L or 165[(k-1)2/x2](p-1) = ZG.XZ.(l a.£.)
16502 L3
i=1

This implies that we need only compare 165(.280) = 46.2 with the quantiles of
£;8,x% (1 a.f.).

Ten thousand random variables with the distribution given above were
generated. 1In particular, at each iteration, twenty standard normal random
variables, ssy Ni’ i=1, ..., 20, were generated using GGUSN from the IMSL Sta-
tistical Package. Then each variable was formed as the linear combination of
X2i (1 a.f.) (Niz) variables given above. The attained significance level is
0.292, thereby giving evidence that the response surface for applied phosphorus
and applied nitrogen can be transferred with an estimated transfer function
including interactions between the site variables and the linear effects of

the controlled variables.
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Appendix 1
Representation of the Sum of Squared Transfer Residuals

for Model 2 and Model 3

Using the notation developed in Section 4 the combined vector of trans-
fer residuals for Model 2, R2, is developed by first considering the transfer

residuals for one excluded site; e.g., site 1. Recall that

X =[X Pl @, T @ %) P Ty xe:l

and
1 -1 1 -1 ! ! -1 ' -1
(1) (80 K1) Koy Teay <L TR T (g ) Ty e

] -l ] (]
T5.1(Typ'T1p) Typ' ® Py + Ty3.9(Ty3'Ty5)" T 3® P Y1) -

) -1
= ' 1 =
where J is an (nXx n) matrix of ones and P, = xi(xi xi) %' i=1,2. Note

that T )" T ', i=1,2,3 are [1x (k-1)] row vectors. Augmenting

li-l( 11 11

each by a zero in the first position, we can define the (1Xk) row vectors.
-1 -1

= b ' ! = ¢ ! '

Ty T [O ' Tll-l(Tu Tll) T11 ]’ Y11 [O ' Tle-l(Tla T:Le) le:l

and
-1 -

Yo, = [o : Tl3,l(Tl3 'T13> T1 '_J .
-1 ) -1
Y(-l) = [(k-l) 1k-; ® &:lz/—l) + [Tl®n Jn+Yll®Pl+Y12®P2]Y

Yl'§(-l) {[ P o(k-1)” 11 oP__J [1’ on Ly >+(yll®Pl>+(Y12®P2>]}Y

Next define Ty Yil’ and YiZ’ i=2, ««+, k, analogously to Ty Yll’ and Y

12¢
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. Voo
e.g., T, is the (1x k) row vector formed from Tsy. (T o1 21) T 5" with a

zero element inserted as the second element, Y,, is the (1xk) row vector

- ] s X s N
formed fraom T 5o, l( o0 T22) lTQl with a zero element inserted as the second

element, and Yoo is defined similarly. Then
' . o ' . . a !
B=[(a%y) (%) o (%= %) ]

- [(wor ) (e (o)

where A is defined in (2),

t

1 et 12
"1 o1 Yoo
T=1 b Yp=| | snd Yo =) :
] Tk | ] Ykl - i Yk2 |

At this point it is convenient to note that since we assume that, includ-

ing site variables and site variable interactions, a common response surface

fits all sites,

l

(e +es) - %(%a) X)) X(-i>["(-i)ﬁ*€<-i>]

-1
% (X0) %) Keay'Se)

"

RREY

1l
m

where e(_i) is the combined vector of all errors excluding the ith site.

Therefore,
R, = {A-[T@n'lJn] + (rom) + <Y2®P2>:|}§ ,

where € is the combined vector of errors.

Next, consider the sum of squared transfer residuals for Model 2. With
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the above representation,

2

R,'R, =€ '{A'A - A'[(T@n'lJn> + i <Y1®Pi>] '[(T' ®n;lJn> ¥ Z (Yi@ Pi)]A

2

[renin)- § (wer][(ro)- § (nons])

Since X contains a column of ones, PXJn = Jn and

A‘<T® n‘lJn> = k(k-l)'l(T® n'lJn> - (k-l)'l[JkTé n‘lJn] .

Similarly, since PXPi=Pi’ i=1, 2,
Ay, ®P ) = k(k-1)"Y(y. &P )-(k-l)‘l JY, ®P )
1 ®Fy 18P K1 ®F) -

, -1 -1 . -1 . _
Next, (T' ® n Jn)(T ® n Jn) =(T'T®n Jn) and, since PP, =0,

}iv e, ) ][zym:] i( ('Y OF;)

i=1

Combtining these facts, we have that R2'R2 is as expressed in Section 4.
As noted in Section 4, X, X5 X(—i)’ and B must be modified in Model 3
so as not to contain intercept terms. The combined vector of adjusted yields,

excluding the ith site, can then be written as

X(_q)P +[I(k_l) ® (In -n'lJn>:|e(_i), 1=1, oo, k .

Since the adjusted yields are not independent, we follow the methods of
generalized least squares. Noting that the covariance matrix of the adjusted
yields is given by [I(k_l)®(1n-n-lJn)], which is idempotent, and that

T S6 -lv \ Vv _
I_I(k_l) -4 (In“n Un}JA(_i) = X("i),
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-1 )
= (%0 %) o[ ® () [ {enp [ @ @ 20 Jr o)
-1
=B + (X(-i)'x(-i)> X(-i)'e(-i)’ i=1, «ee, k.
Therefore

A - -1 -
YTy = (T m ) - KXy K e) Ky [ Taen) @ (Famm ) ey -

Following the arguments for R2, the transfer residuals are given by

s - [ar(aem)-(eor] ook

where A is defined as in (2) but using the redefinition of X and P, = X(X'X)-lX' .
Since len = 0, we have

-1 -1 -1 T

A[Ik®(Iu-n Jn>]—[1k®(ln-n Jn>] [(Ik-k Jk)®PX_|
-1
—[Ik-k Jk]®PX .

Also, since the columns of Tjg and Tj3’ j=1, «++, k, are centered at zero,
V)T = YoIg = O

v.®p, |[(1, -x% )er, | = (V.eP

1 1_”;(1; k) X “(1® 1)
and

[Y2 ® P2:| [(Ik -x7lg e PX] - (,&r,) -

Combining these facts, we have that
R = [ (Y ®P (Y ®P2>] :

Following the argument used for Model 2, we can show that
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2 Y'B.Y
p-1=| —& 3
- (k-1)2 Y'BY

where

B, = k'z(k-l)z[(A'A -B) + (Dl® Pl> +(D2®P2)] and BB =0 .

éggendix 2

Eigenvalues of B2 and B3

First we state some useful properties of the matrices involved in BE;

i.e., for
B, = [(Ik - k'le> ® Py + (C ® Jn> + (Dl ® él) + <D2 ® P2>] ,
(1) [Ik - k-le] [Ik - k'le] = [_Ik - k'le:I ;

(11) [<1k -k‘le> ® PX](C ® Jn> = (C ® Jn) ;

andl
(111) [<1k-k'1Jk> ® PX:](Di ® Pi> - <Di ® Pi> )

The first relationship shows that [Ik-k-le] is idempotent. Therefore the
eigenvalues of [Ik"k-le] are either O or 1 . Since the rank of [Ik-k'le]
is (k-1), there are exactly (k-1) eigenvalues which are 1 and one eigenvalue
which is zero. Since PX is also idempotent with rank p, PX has p eigenvalues
which are 1 and [n-p)] eigenvalues which are zero. Combining these two facts,
it follows from Bellman (1970), Theorem 12.k, that [(I, -k™'3,) ® P,] has
(k-1)(p) eigenvalues which are one and the remaining eigenvalues are zero.

Next we want to show that the nonzero eigenvalues of B2 are the nonzero

eigenvalues of [(Ik"k-le) ® PX] plus the eigenvalues of [(C ® Jn)-k(Dl1® Pl)
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' . -1
+ (D2 ® P2)] . Since (C® Jn), (Di ® Pi), i=1, 2, and [Ik-k Jk] are sym-

metric matrices, (ii) and (iii)‘ imply that [Ik -k-le] and [(C ® Jn) + (Dl ® Pl)

+ (D, ® PX)] commite. From Bellman (1970), Theorem 4.5, this yields the use-

. ful result that there exists a matrix N such that N'N = I and

N'{[(Ik - k'le) ® PX]+ (c ® Jn) +(D1 ® Pl> + <D2 ® PQ)}N = diag()\i +“i)

where )‘i are the eigenvalues of [(Ik-k-le) ® PX] and g are the eigenvalues of
e = 3 = L .
[(c® Jn) +(D1 ® Pl) +(D2 ® P2)] - Note that 8, =, +p, i=1, , kn
Now there exists a square matrix U such that PXU =U and U'U = Ik .

Without loss of generality we may assume that

o= [a 2, ™ il ]

2,1/2
where ||x, || = (£35%;57) . Also let W = G where for i=1, «.., k and

J=1, o0y (k-1), woy = [(3-1) +i2]'1/2, for j <1, w4 = -i[(1-1)+12]“1/2,
-1
j = = j > W= - =
for j = i, zmdwij Ofor j>31. Then W'W Ik_la.nd[Ik k J]]W W .

That is, W are the eigenvectors of (Ik -k‘le) corresponding to the nonzero

eigenvalues. Our goal is to construct the eigenvectors which correspond to

the nonzero eigenvalues of [Ik-k'le] ® PX . But

[(:ck -k‘le) ® PX](W ® U> -WeU

and we have the required eigenvectors. Contained in the proof of Theorem
4.5 of Bellman (1970) is the fact that the ui's corresponding to nonzero )\i's';

say, Xi=1, e++, (k-1)(n-p) are the eigenvalues of

(v e U')[(c ® Jn>+(Dl ® Pl> +(p, ® Pe)](w @ v)

- T 1 1 1 1 ]
= [w WU JnU] +|:w DW e U PlU]+[w DW @ U PeU] )
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Now U'JnU is zero except for the first diagonal element which is equal
ton . Also U'PlU(U'PzU) is zero except for second (third) diagonal eleuwent

which is one. Combining these facts, we see that the eigenvalues of

t T 1 4 1 1 4
{w CWOU JnU:] + [w D,WOU PlU] + [w D WS U P2U]

is the set of values found by taking eigenvalues of W'Dlw, of W'D2W and of
the eigenvalues of W'CW multiplied by n . From this latter result and the
definition of C, without loss of generality, we mey assume n=1 when camput-

ing the eigenvalues.

Finally, we note that Ek ® U is the eigenvector of (Ik -k_le) ® Py

corresponding to the one zero eigenvalue. But

(1,'®U'] [(C®Jn>+(Dl®Pl)+<D2®P2):| [,euvl=0,

therefore the eigenvalues of [(C ® Jn) + (Dl ® Pl) + (D2 ® Pz)] corresponding
to the zero eigenvalue of [Ik -k_le] are identically zero. A similar argu-

ment yields the results for B3 .
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Figure 1
Schematic of Imput Factors and Steps Required
to Implement the Benchmark Soils Project

TABLE 1
Site Variable Data, Residual Sum of Squares

and Transfer Sum of Squares

Site EXTN MINT TRUOG SS Residual SS Transfer
PUC-K 79 23.00 10 5,869, 074 14,700, 000
BUR-B 29 21.50 5 25,055,220 36,584,690
KUK-C 46 18.83 e 13,602,420 18,695,610
KUK-D 29 17.90 62 25,599,730 32,792,720
LPH-E 119 16.76 23 17,880,240 23,660,760

88, 006,684 126,433,780




