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Introduction

The last twelve months have been one of the most exciting and creative periods in the
study of structural complexity theory. It seems that during this short period, more progress
has been made than during the previous five years in the understanding of the structure of
feasible computations. Some of the intellectual excitement can already by surmised from the
proceedings of the Second Structure in Complexity Theory Conference published by the Com-
puter Society. The full excitement though was best felt at this conference held at Cornell
University during June, 1987. Besides some of the very nice results in the Proceedings, a good
deal of excitement was created by more recent results obtained just before the conference.
Because of the leisurely pace of the conference there were many opportunities to explain and
discuss the most recent results and several of them were presented in well attended poster ses-
sions. Finally, possibly the most exciting result solving a well known twenty- three year old
open problem, was obtained right after the conference (and, we hope, inspired by the new

results discussed at the conference and [thaca’s beauty).

In this column, we will discuss a cluster of these recent results about various complexity
hierarchies (mostly collapsing) and the use of the census function as a unified proof technique.

These results show that several recently defined hierarchies collapse, pleasantly simplifying
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our world, and that all of these results can be derived with one proof technique using census
functions. Quite surprisingly, the Boolean Hierarchy and the intertwined Query Hierarchy
gained new respectability with the recent proof that the collapse of either hierarchy at any
level implies that the classic Polynomial Time Hierarchy collapses to at least the third level,
PH = A}. Finally, we will discuss the surprising result that the nondeterministic space
bounded computations are closed under complementation. As a corollary, this shows that the
context-sensitive languages are closed under complement, a problem which had been open
since 1964. The proof that nondeterministic tape bounded computations are closed under com-
plement was a surprise (few of us believed that they would be), but an even greater surprise

was the elegance and simplicity of this solution again exploiting a census argument.

Census Functions and Collapsing Hierarchies

The study of computational complexity of feasible computations was substantially
enriched by the definition and investigation of the Polynomial Time Hierarchy, PH. This
hierarchy, the polynomial time analogue of the Kleene Hierarchy of recursive function theory
[Rog 67], gave a natural classification of feasible computations above NP, either in terms of
the number of alternating quantifiers over /NP problems or in terms of height of NP oracle
computations with NP oracles [Sto 77, Wra 77]. Since then, a bewildering variety of new com-
plexity classes and hierarchies have been defined and investigated, reflecting and modeling
different quantitative aspects of computation: various relativized computations, optimization
problems, probabilistic and random computations, parallel computations, etc. In short, the
structure of feasible computations is looking more and more intricate and new complexity is
added almost with every conference on this topic. Unfortunately, the exact quantitative rela-
tions between most of these classes are not known and should P =PSPACE most of them
would be compressed into P. We should hasten to say, that it is not very likely that
P =PSPACE and that all the "intellectual experimental evidence" points to the conclusion
that the major feasible complexity classes are all different. In structural complexity theory,

we assume as a working hypothesis that PH is infinite.
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On the other hand, very recently it has been shown that several of the hierarchies of
complexity classes are indeed finite. These are unexpected results and, quite surprisingly,
after careful study of their original proofs, they can now all be derived quite simply using
census functions.

We illustrate this by outlining a proof that the so-called strong exponential hierarchy col-
lapses. The original proof of this collapse was obtained by Lane Hemachandra [Hem 87].
Lane initially tried to construct an oracle to show that this hierarchy could be infinite in rela-
tivized worlds and the impossibility of such a construction led him to his quite complex proof
that the hierarchy collapses. This illustrates an interesting use of oracles to explore the logi-
cal possibilities and indicate possible new results. The original proof was dramatically simpli-
fied by Uwe Schoning and Klaus Wagner [Sch W 87] using Kadin’s lemma [Kad 87]. See also,

the previous Structure in Complexity Column for a discussion of Kadin’s work [Har 87].
The strong exponential hierarchy, SEH, is built up inductively:

E U DTIME([2®*], NE, NPNE, NPNPY*

= =1
(One can also define E = C;IDTIME[Z”C] and observe that E # E , but PNE = P‘VE',

etc).

The collapse is based on the proof that NP = P¥F and  therefore

PNE

NPYP™ = NpPY = NPNE = pNE

Theorem (L. Hemachandra):

NPNE — pNE 454 therefore SEH = PNE,

Proof outline following [Sch W 87]:

Clearly
NPNE 5 pNE

To show
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NPNE C PNE,

let A be in NE and N any NP machine running in time n* + k. Let U be a standard NE
complete language. We will construct a deterministic polynomial time machine D such at:
L(N*) = LDY).

The strategy for this proof is beautifully simple: DY for input x, queries oracle U to find
out exactly how many strings in A could be queried by N“(x). From this information D can
construct a NE machine, N,, which decides how N4 (x) queries to A are answered. Now D
constructs the description of an NE machine Ny which simulates N4(x) and uses N, to
answer the queries to A. Since N4(x) accepts iff Ng(x) accepts, DU queries U if N g accepts
x to determine what N4 (x) does.

The following outlines this procedure in more detail.

Given x, DY queries U, and by binary search in polynomially many queries in | determines
the exact number of strings in A up to size kf + % (which could be queried by N on x). Let
this number be n,.

Clearly, once n. is known to D, it can construct in polynomial time in | the description
of an NE machine, N,, which decides if y, [y| < kf + £, is or is not in A. N, first guesses n,
strings up to length kf + % and then guesses the verification that these strings are in A. For
the right guesses, N, will find exactly n, strings in A and then it just has to check if y is or is
not one of these strings.

Now D constructs the description of an NE machine, Ny, which simulates the NP
machine N4 on x. If N4 queries the oracle A, Ny uses N, to obtain the answer (since N,
will give yes or no answers for the right sequence of guesses). Thus, Ng accepts x iff N4
accepts x. As a final query DY asks U if Ng accepts x. Thus L(N4) = L (DY) which shows

at:

NPNE = PNE,

and therefore SEH collapses to PVE.
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With this proof in mind, the reader is challenged to prove the interesting fact that poly-
nomially many queries to SAT can be replaced by 0(logn) sequential queries to SAT. More
precisely, let PSATl genote the set of languages accepted by deterministic polynomial time
machines which, for each input x, k| = n, can construct one vector query of Boolean functions,
(F1, Fy, ..., Fp(n) and receive as answer a binary vector indicating which ¥; are and are
not satisfiable. PSAT00ogn)] ganotes the set of languages acceptable by a deterministic poly-
nomial time machine which can make an input x O[log k|] queries to SAT. The following

fact has been observed by several people, for example, see Therem 3.10 in [Hem 87].

Fact:
P SAT[0(logn)] — P SATI|

Another exponential hierarchy, EH, can be defined analogously to the PH either by
using alternations of exponentially bounded quantifiers or as an oracle hierarchy as follows:
E, NE, NENP, NENP™
which can be written as:
=f b1
E, NE, NE“', NE* , ...
This hierarchy was discussed, for example, in [HIS 85].
Though we now know that
NPNE' = PA,E
the same proof does not show that
NENP — ENP
and cannot collapse this hierarchy.

The key difference is that a PF machine can find the census function for an A in NE
(by binary search successively guessing and verifying that there are at least a given number
of strings in A up to a given length).

An ENP machine, on the other hand, cannot find the census function of an A in NP by

the same method, because an NP machine on an accepting pass can make at most polynomi-
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ally many guesses and there may be many more strings in A up to length n.

Furthermore, it can be shown that this hierarchy is infinite iff the PH restricted to
sparse sets is infinite [HIS 85]. In other words:

P P
NE2®* = NEZ*-! iff there are sparse sets in 2§ ., - =4.

We know of no oracle construction which separates EH from EXSPACE nor one which
makes it infinite. Nor do we know what happens to EH with probability one for random ora-
cles.

In retrospect, the strong exponential hierarchy, SEH, turned out to be “weak” and the

above hierarchy, £H, has turned out to be the better or true exponential analogue of PH.

Space Bounded Hierarchies

Several other hierarchies based on nondeterministic space bounded computations were
defined and investigated following the polynomial hierarchy model. To our pleasant surprise,
several of them were shown to be finite by S. Toda [To 87] and K-J. Lange, B. Jenner and B.
Kirsig [LJK 87]. A very nice extension of these results and unified, easy proofs of them are
given in [Sch W 87].

These results were dramatically superseded by Neil Immerman’s unexpected and
elegantly simple proof that nondeterministic space bounded computations are closed under
complement [Imm 87]. As a corollary of this result we now know that the context-sensitive
language [AHU 74, HH 74] are closed under complement; a problem which has been open
since 1964. This result also shows decisively that all the nondeterministic space bounded
hierarchies collapse to the first level, improving the results of [To 871, [LJK 87] and [Sch W

871.

Theorem (Immerman):

For all space constructible s(n) = log n

NSPACE[s(n)] = coNSPACE[s(n)l.



Proof Outline:

We outline the two key ideas of the proof on the special case:

NSPACE([n] = coNSPACE [n].

The first idea is that if for any NSPACE [n ] machine N another NSPACE [n ] machine
N, could compute for each x the exact number of distinct configurations N can reach from x,
then an NSPACE([n] machine N could recognize L (V). Let n, be the number of configura-
tions N (x) can reach. The recognition of L (V) by N is done as follows: N on x computes
n, and then cycles successively through all possible sequences N (x) could reach and checks for
each sequence if NV(x) reaches it. For the right sequence of guesses N (x) will reach 7, dis-
tinct configurations and x is in L (N) iff none of these configurations is an accepting confi-

guration of N.

The proof that the number of reachable configurations is NSPACE [n] computable is
shown by induction on the number of steps to reach a configuration. Let d; be the number of
configurations reached by N (x) in ¢ steps. We will describe N, which computes d;. Clearly,
d is easily computable. Given d;, N, will successively check for each sequence if it can be
reached in one step from one of the d; configurations reached in ¢ steps. To do this, for each
target sequence y IV, tries to guess successively d; configurations reachable from x in ¢ steps,
and tries to verify that they are so reachable. If d; such sequences are found and y is not
reachable from any of them in one step, then go to the next target sequence, if y is reachable,
add one to the d;.; counter and go to next y. Combining both results we get that

NSPACE([n] = NSPACE[n].

Michael Fischer has observed that if NSPACE [s(n)] is closed under complement then
one can easily diagonalize over these classes to get a very sharp hierarchy result just as was

done for deterministic tape bounded classes ([SHL 65].

Theorem: For any tape constructible s (n)=logn

lim ¢(n) -0




implies
NSPACE[t(n)] # NSPACE[s(n)].

It should be recalled that before we knew that these classes were closed under comple-
ment, we could not diagonalize over them and only much weaker separation results were
known. Furthermore, these results were obtained in a cumbersome, ad hoc manner using
translation lemmas. To appreciate the simplification of these proofs, see Chapter 12 in [AHU
74] for the cumbersome old proofs.

Historically, it is interesting to recall that Mahaney’s proof that the existence of sparse
many-one complete NP sets implies that P = NP also exploited the census functions [Mah
80, Mah 82]. In this case, the exact census function could not be computed, but the proof used
a pseudo census function and cycled through all possible values of the census function for the

sparse set. An early discussion of the use of the census function can be found in [HM 80].

Similarly, the proof that EXPTIME = NEXTIME iff there exist sparse sets in
NP —P uses the census function [HIS 85] and so did J. Kadin’s optimal collapse of PH to
PpSATO0Uogn)] ynder the assumption that these exist sparse S in NP such that NP c PS
[Kad 87, Har 87]. It was the proof of this last result which inspired Schoning and Wagner
[Sch W 87] to derive their simple proof of the various collapses of hierarchies, some of which

were superseded by Immerman’s closure result [Imm 87].

Finally, one is struck by the exhaustive use of nondeterminism in Immerman’s proof to
compute the complement of an NSPACE [s(n)] language. This brutal use of nondeterminism
is reminiscent of the Book and Greibach proof that for nondeterministic time computations

“two tapes are as good as any number of tapes” [BGW 70].

Boolean, Query, and Polynomial Hierarchies

One of the most recent additions to the arsenal of computational complexity hierarchies
was the Boolean Hierarchy, BH, and the intertwined Query Hierarchy, QH. Both of these

hierarchies have been intensively investigated and they have escaped the fate of the collapsing
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hierarchies. As a matter of fact, a very recent result by J. Kadin shows that if these hierar-
chies collapse then so does the classic PH [Kad 87a). Since it is widely believed that PH is
infinite we have to assume that BH and QH do not collapse either.

The k —th level of the Query Hierarchy is given by the language accepted with %
queries to SAT"

QH, = PSATK] (>,

The Boolean Hierarchy is built up by Boolean operations over NP languages and we will
not discuss here the various and interesting normal forms. Suffice to say that the first level of
the BH is given by the well known class DY defined by Papadimitriou and Yannakakis [PY
82] and it is related directly to optimization problems. A complete language for D is:

A= {F#GlFinSATandGingA_T}.

Furthermore, it can be shown that QH is finite iff BH is finite.

Theorem (J. Kadin):

If the Boolean or Query Hierarchies are finite then PH is finite and

PH C A§ =pNP'",

Proof Outline:

We will sketch the key ideas for the proof that DY = coD? implies PH = A%. The
general case iterates this method and cleverly exploits special normal forms of BH to show

that the same collapse of PH is implied by any collapse of BH.

Since

A = {F#G |F in SAT and G in SAT}

is a complete language for D”, the “cleaned up complement” of A is complete for coD?,

A={F #G|F ¢ SATor G ¢ SAT}.

Note that A looks like a harder language since we must test for F in SAT and G in

SAT. In A the and is replaced by an or and thus it suffices to find ' in SAT or G in SAT.
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Clearly, the easy case is if G is in SAT. This simplification will now be exploited to extract a

sparse set S such at:

SAT ¢ NPS,

and this forces the collapse of PH.
Our assumption that D¥ = coD? implies that there is a polynomial time reduction, g,
of A to A. Two cases may occur.
Case 1. For a G in SAT there may exist an F, |F | = |G |, such that
gF #G) =F #G
and G in SAT. In this case, G in SAT is recognized by NP methods: guess F' and verify

that G is in SAT.

Case 2. No such luck: for G in SAT and for all F, |F | = (G,
gF #Go) =F #G
and G not in SAT. But then, F in SAT iff F' in SAT. Equivalently, F in SAT iff F' in
SAT. Thus, given G, we can recognize for all F, of length |G |if F is in SAT by checking
if the corresponding F' (of F' # G') is in SAT.
Therefore, we see that D¥ = coD? implies that for each n either Case 1 holds for all F,
with |F | = n, or there is a G such that Case 2 holds for all such F. Thus, there is a sparse

oracle S which for length n contains the proper G, in Case 2, or O" indicating Case I.

We now know that
SAT ¢ NPS.
With a bit of dexterity with quantifiers one can see that S is in NP and therefore it can be
generated in PNF ¥ Therefore, no additional NP oracles can help since with S an NP

machine can decide if F is in SAT or SAT. Thus,
PH C Af.
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It is fascinating that in this result the collapse of BH implies the existence of a sparse

set S such that

SAT ¢ NPS
and that then this sparse set forces the collapse of PH.

In the previous Structural Complexity Column [Har 87], we discussed various results

about how far PH collapses if there exist sparse oracles T such that

NP ¢ PT,

Clearly, the reason for all these collapses is that a sparse set with properties which can be
expressed in some level of the PH (for example NP ¢ PT or SAT ¢ NPS) can be computed
in the hierarchy and thus forcing the collapse. Note that sparseness is essential for this to
work because no more than polynomially many elements can be guessed and tested in this
manner. Thus, PH can get hold of such sparse sets (or their equivalents), but this method
does not work for denser sets. An extensive use of this method can be found in [BoCo 84]
where it is shown among other things that:

PH is finite iff PHS is finite for some sparse oracle.

It should also be mentioned that Ker-I Ko has just shown that there are oracles which

collapse the Polynomial Time Hierarchy to exactly % levels, for 2 = 0 [Ko 87].

In this area, we still do not know whether PH for random oracles is infinite with proba-
bility one. Similarly, because of the link of PH restricted to sparse sets with FH, it would be

interesting to see what happens to relativized PH on sparse sets or equivalently to EH.

Finally, in the previous Structural Complexity Column, the question was raised if the
Karp-Lipton-Sipser collapse of PH to 22 due to polynomial size circuits for NP (or a sparse
set S such that NP € PS)is optimal. Indeed, this question has been answered by Chris Wil-
son in [Wil 85]. In essence, Wilson shows that even if Ag would have linear size circuits, the

proof of the collapse of PH below 25 n I1§ would require non-relativizing proof techniques.
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