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ABSTRACT 

 

This thesis develops a new set of tools in Functional Data Analysis.  A general 

historical functional linear model called “convolution functional linear model” is 

developed to handle a stationary response to the recent history of a covariate process.  

We argue that the dependent variable 𝑦𝑖 𝑡  is continuously related to values of 

covariate 𝜉𝑖𝑃 𝑤  where 𝑤 ∈ [𝑡 − 𝛿𝑝 , 𝑡] explained by 𝛽𝑝(𝑤).   𝛽𝑝(𝑤) is the coefficient 

function of the convolution of the independent variable and  give a weight to the 

values of 𝜉𝑖𝑃 𝑤  for the estimation of 𝑦𝑖 𝑡  as 𝑤 → 𝑡.  The coefficient of the 

convolution 𝛽𝑝(𝑤) as well as  𝛿𝑝  are unknown and estimated by least squares and 

cross-validation methods.  In addition, diagnostic methods are also developed with the 

purpose of estimating the variability of 𝛽𝑝(𝑤), once 𝛿𝑝   has been estimated, and the 

effects that each curve sample has over model estimation or solution.  In particular, the 

methodology of the non-overlapping block bootstrapping (NBB) was expanded to 

provide a solution for the distortion caused by dividing the sample data into blocks of 

length "𝑙" and resample them with replacement.  This method handles the 

discontinuity caused at the interior points where the blocks ordinarily should be 

connected in the block bootstrapped sample.  In other words, the block bootstrapped 

sample becomes less rough and maintains the smoothness of the original data.  In 

addition, the block bootstrapped resembles the autocovariance structure of the original 

data allowing estimating accurate confidence interval for 𝛽𝑝(𝑤).  The statistical 

methods of Cook‟s and Mahalanobis distance also were modified with the objective of 

accounting for the time structure and serial correlation of the data.  This was 

specifically done by restricting the estimation of the covariance using the 

autocovariance estimates.  These two methods allow identifying curve or functional 



  

data that are causing a significant effect in the solution and estimates of the model.  

Finally, the model was used for the estimation of the continuous trajectory of 

particulate matter given driving behavior variables.  Estimates of the parameters and 

diagnostics for this particular case are provided.



iii 

BIOGRAPHICAL SKETCH 

Maria Asencio started to have a fascination in mathematics since early years.  

This sentiment was reborn when she started a Computer Science major at the 

University of North Texas (UNT).  The extensive requirement of mathematics classes 

stir up her excitement and passion with this subject.  This let to strive for a double 

major in Mathematics and Computer Science.  She had the opportunity to take a range 

of classes and work in projects that allow her to explore and acknowledge the 

usefulness of these two subjects in other areas such as environmental sciences and 

biology.  As a McNair Scholar, she became a research assistant in Dr. Acevedo‟s lab 

and was involved in a research project for the development of a mathematical model 

for the vegetation regeneration.  There, she learned different statistics methods under 

the guidance of Dr. Monticino while she contributed to the development and 

simulation of the statistical model.  She wanted to proceed further in her purpose of 

working as a research assistant for projects with the objective of modeling different 

environmental dynamics.  This led her to pursue a Master degree in Statistical Science 

at Cornell University.  She acquired a strong theoretical and computational 

background in statistics.  Specifically, she gained knowledge and had the opportunity 

to work in research projects with Dr. Giles in the area of Functional Data Analysis.  

This led to the development of the „convolution functional linear model” for the 

prediction of responses that have been perturbed and their recordings do not represent 

the effects of the instantaneous changes of the each stimulus. 

 

 



iv 

 

 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my dear parents, Mirna and Rafael, and two brothers, 

Alvaro and Raul 



v 

ACKNOWLEDGMENTS 
 

 

I would like to thank first of all to my family for their unconditional love and support. 

They are important key for my success and achievements.  I am particularly grateful to 

Dr. Giles Hooker whom has been a great supporter in all these years at Cornell 

University.  Under his guidance, I have the opportunity of working on research 

projects in the area of Functional Data Analysis.  I want to thank Dr. Oliver Gao for 

letting me work in the project of modeling particulate matter and for his helpful 

recommendations.  I want to thank the Sloan Foundation for their great support.  A 

very important thanks to Dr. Acevedo and Dr. Monticino for showing me the path of 

research.  Thank you to Ms. Judy and Ms. Diana from the McNair program that helped 

and guided me to pursue post-bachelor degree.          



vi 

TABLE OF CONTENTS 

 

BIOGRAPHICAL SKETCH ......................................................................................... iii 

DEDICATION .............................................................................................................. iv 

ACKNOWLEDGMENTS .............................................................................................. v 

TABLE OF CONTENTS .............................................................................................. vi 

LIST OF FIGURES .................................................................................................... ix 

LIST OF TABLES ........................................................................................................ xi 

CHAPTER 1:  LITERATURE REVIEW ..................................................................... 1 

1.1 FUNCTIONAL DATA ANALYSIS ............................................................... 2 

1.2 EMISSION MODELS ..................................................................................... 4 

1.2.1 TYPE OF EMISSION MODELS ............................................................. 5 

1.2.2 DISTORTION .......................................................................................... 7 

CHAPTER 2:  MODEL ................................................................................................ 9 

2.1 DESCRIPTION ............................................................................................... 9 

2.1.1 ESTIMATING 𝜶 AND 𝜷𝒑(𝒘) .............................................................. 10 

2.1.2 ROUGNESS PENALTY 𝝀 ..................................................................... 13 

2.1.3 ESTIMATING 𝜹  AND 𝝀 ....................................................................... 15 

2.2 MODEL DIAGNOSTICS.............................................................................. 18 

2.2.1 ESTIMATING RESIDUALS ................................................................. 18 

2.2.2 ESTIMATING THE COVARIANCE .................................................... 20 

2.2.3 CONFIDENCE INTERVAL .................................................................. 21 

CHAPTER 3:  CASE STUDY .................................................................................... 22 

3.1 PARTICULATE MATTER ........................................................................... 22 

3.2 E-55/59 PROGRAM ...................................................................................... 23 



vii 

3.2.1 CHASSIS DYNAMOMETER MEASUREMENTS ............................. 24 

3.2.2 DRIVING CYCLES ............................................................................... 25 

3.3 DATA ANALYSIS ........................................................................................ 29 

3.3.1 AVERAGE PARTICULATE MATTER AND AVERAGE DRIVING 

BEHAVIOR VARIABLES ................................................................................... 29 

3.3.2 TRAJECTORIES ................................................................................... 31 

3.3.3 CROSSCORRELATION ....................................................................... 33 

CHAPTER 4:  PARTICULATE MATTER MODEL ESTIMATES ......................... 36 

4.1 MODEL ......................................................................................................... 36 

4.2 ESTIMATING PARAMETERS.................................................................... 38 

4.2.1 VALUES FOR  𝜹𝒗𝒆𝒍 AND 𝜹𝒂𝒄𝒄𝒆𝒍 ...................................................... 38 

4.2.2 VALUES FOR 𝝀𝒗𝒆𝒍 AND 𝝀𝒂𝒄𝒄𝒆𝒍 ....................................................... 39 

4.2.3 ESTIMATES FOR  𝜷𝒗𝒆𝒍(𝒘) AND 𝜷𝒂𝒄𝒄𝒆𝒍(𝒘) .................................. 40 

4.3 PREDICTIONS ............................................................................................. 43 

CHAPTER 5:  BOOTSTRAPPING ............................................................................ 46 

5.1 GENERAL BOOTSTRAPPING ................................................................... 47 

5.2 BLOCK BOOTSTRAPPING ........................................................................ 50 

5.3 MODIFICATION OF BLOCK BOOTSTRAPPING .................................... 52 

5.3.1 ESTIMATING THE GENERAL COVARIANCE ................................ 53 

5.3.2 MODIFICATION ................................................................................... 54 

5.3.3 RESULTS ............................................................................................... 56 

CHAPTER 6:  INFLUENCE AND OUTLIERS ........................................................ 66 

6.1 INFLUENCE AND OUTLIER IN CLASSICAL LINEAR REGRESSION 67 

6.1.1 COOK‟S DISTANCE ............................................................................ 70 

6.1.2 MAHALANOBIS DISTANCE .............................................................. 72 



viii 

6.2 DISTANCES MODIFICATION ................................................................... 73 

6.2.1 COOK‟S DISTANCE ............................................................................ 74 

6.2.2 MAHALANOBIS DISTANCE .............................................................. 75 

6.2.3 RESULTS ............................................................................................... 75 

CHAPTER 7:  CONCLUSION .................................................................................. 79 

REFERENCES ............................................................................................................. 85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

LIST OF FIGURES 

 

Figure  3.1.  Velocity patterns applied to the medium heavy-duty trucks ................... 25 

Figure  3.2.  Acceleration trajectories as a result of a specific velocity pattern .......... 27 

Figure  3.3.  Comparison trajectories as a result of MHDTHI velocity pattern .......... 28 

Figure  3.4.  Relation between average pm and average velocity ............................... 30 

Figure  3.5.  Relation between average pm and average acceleration ......................... 30 

Figure  3.6.  Trajectories given two different velocity patterns .................................. 32 

Figure  3.7.  Cross-correlation between PM and velocity ........................................... 34 

Figure  3.8.  Cross-correlation between PM and acceleration ..................................... 34 

Figure  4.1.  Total sum square error results to estimate 𝜹 ........................................... 38 

Figure  4.2.  Sum square error results by vehicle ........................................................ 39 

Figure  4.3.  Total sum square error to estimate 𝝀 ....................................................... 40 

Figure  4.4.  Basis functions ........................................................................................ 40 

Figure  4.5.  Coefficient function and CI for velocity ................................................. 41 

Figure  4.6.  Coefficient function and CI for acceleration ........................................... 42 

Figure  4.7.  Comparing prediction and observation for TEST_D velocity pattern .... 44 

Figure  4.8.  Comparing predictions and observation for MHDTLO velocity pattern 44 

Figure  5.1.  Autocovariance of the rv, block bootstrapped rv, and modified rv ........ 58 

Figure  5.2.  Curve of the rv, block bootstrapped rv and the modified rv ................... 59 

Figure  5.3.  Autocovariance for the residuals of one vehicle ..................................... 60 

Figure  5.4.  Autocovariance result after applying the block bootstrapping ............... 63 

Figure  5.5.  Autocovariance results after applying the modification ......................... 63 

Figure  5.6.  Example of one block bootstrapped residual .......................................... 64 

Figure  5.7.  Confidence Interval for the convolution function of the velocity ........... 64 



x 

Figure  5.8.  Confidence interval for the convolution of the acceleration ................... 65 

Figure  6.1.  Results for Cook‟s Distance grouped by vehicle and velocity pattern ... 76 

Figure  6.2.  Results for Mahalanobis Distance grouped by vehicle and velocity 

pattern ........................................................................................................................... 76 

Figure  6.3.  Curves with the highest Mahalanobis and Cook‟s distance .................... 77 

Figure  7.1.  Autocovariance of the samples of two different vehicles ....................... 83 

 

 



xi 

LIST OF TABLES 

 

Table  7.1.  General characteristics of the medium heavy-duty trucks ........................ 81 

Table  7.2.  General results of the driving cycles ........................................................ 82 

 

 

 



1 

CHAPTER 1 

 

LITERATURE REVIEW 

 

There is an interest on studying quantities measured continuously over time.  This 

allows observing changes and variation on their behavior under specific conditions or 

dynamics.  Function Data Analysis (FDA) takes advantage of the continuity and 

smoothness that this serial recording has and presents it as a function of time instead 

of discrete points [4].  Representing the data as a curve allows observing features and 

characteristics of the data that are important for the analysis and understanding the 

mechanism that is causing specific behavior.  Functional data analysis has also 

propagated in the statistical area of linear regression model in which some or all 

variables are represented as a function of time [4].  We explain several functional 

linear regression models for specific type of relation between the dependent and 

independent variables.   

 

Furthermore, we discuss about the development of emission models to predict the 

amount of emissions a vehicle can produced.  These models are an important key for 

the planning and designing of air-quality programs that intend to control or minimize 

the emission levels in the air [3].  Emissions models give feedback about the 

appropriateness of the project prior to implementation.  These models generally rely 

on chassis dynamometer measurements to inquire about how several factor such as 

driving behavior variables affect the production of the emissions in vehicles.  Chassis 

dynamometer measurements allow conducting several experiments under almost the 

same conditions.  However, it is also important to notice that the emissions‟ travel 
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time is affected while they are being transported toward the equipment that keeps track 

of them [3].  We discuss this problem and the different categories in which these 

models fall. 

 

1.1 FUNCTIONAL DATA ANALYSIS 

 

Most classical statistics methods analyze the data gathered in a sequential manner as a 

sample of i.i.d. points ignoring the order in which they were recorded.  However, 

taking into account the time structure permits to observe whether the data have a 

periodic pattern or relevant peaks and it gives a better picture of the importance of the 

events in a continual manner.  Several statistical and mathematical methods have been 

developed with the purpose of handling this time dependency.  One of these methods 

is functional data analysis which is discussed by Ramsay and Silverman in their book 

“Functional Data Analysis (FDA)”[4].  FDA methods have found to be significantly 

useful in different research areas having the ability to represent complex patterns and 

curve structure by executing merely the least square method.   

 

For example, consider the observations 𝑦𝑗 , 𝑗 = 1, … , 𝑛.  The goal of FDA is to 

represent these discrete points as a function 𝑥(𝑡) [4].  This is accomplished by setting 

𝑦𝑗 = 𝑥 𝑡𝑗  + 𝜀𝑗 =  𝑐𝑘𝜑𝑘
𝐾
𝑘=1 (𝑡𝑗 ) + 𝜀𝑗  and minimizing for 𝑐𝑘‟s the expression 

 (𝑦𝑗 −  𝑐𝑘𝜑𝑘(𝑡𝑗 )𝐾
𝑘=1 )2𝑛

𝑗=1  [4].  The discrete points 𝑦𝑗  are linearly related to a set of 

𝑘 basis functions 𝜑𝑘 .  There exists several types of basis functions and their selection 

and definition depend on the curve structure of the data.  It is common to use cubic B-

splines for nonlinear curves since they have the ability to represent any pattern by 

having the same mechanism of polynomials.  As a result, this method allows defining 
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a continuous function 𝑥(𝑡) with infinite elements by using finite number of basis 

function.  We have the function definition of 𝑥 𝑡 :  𝑡1, 𝑡𝑛 → (𝑦1, 𝑦𝑛).  

Looking at the data as a function of time has also been adapted or expanded in the area 

of linear regression.  The distinction between functional linear regression and classical 

linear regression is that one or more of the linear equation‟s components are 

represented as a function of time [4].  Several type of functional linear regression have 

been developed and in particular, we consider the following type of model: 

𝑦𝑖 𝑡 = 𝛼 𝑡 +  𝑋𝑖 𝑠 𝛽 𝑠, 𝑡 𝑑𝑠
𝑏

𝑎
+ 𝜀𝑖 𝑡 , 𝑡 ∈ [0, 𝑇]. 

We see that in this case all the components are considered as function of time and that 

the influence of  𝑋𝑖 𝑠   in 𝑦𝑖 𝑡  is accounted by the surface function of coefficients 

𝛽 𝑠, 𝑡 .  By changing the values of (𝑎, 𝑏), a specific relation between the variables can 

be defined.   

 

The simplest or less complex case is when 𝑎 = 𝑏  which implies that 𝑠 = 𝑡 and thus, 

current values of 𝑦𝑖 𝑡  are influenced only by the current values of the predictor [4].  

This relation is expressed as the following: 

𝑦𝑖 𝑡 = 𝛼 𝑡 + 𝑋𝑖 𝑡 𝛽 𝑡 + 𝜀𝑖 𝑡 , 𝑡 ∈ [0, 𝑇]. 

The significance of the model is that the values of the coefficients are time variant 

which implies that the predictors do not have a fixed effect for the response [4].   

 

Moreover, Ramsay and Silverman discussed the case when the current value 𝑦𝑖(𝑡) of 

the response is affected by the predictors‟ values 𝑥𝑖 𝑠  over the entire time interval.  

The values for (𝑎, 𝑏) are (0, 𝑇) in this case.   
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We have the following model: 

𝑦𝑖 𝑡 = 𝛼 𝑡 +  𝑋𝑖 𝑠 𝛽 𝑠, 𝑡 𝑑𝑠
𝑇

0
+ 𝜀𝑖 𝑡 , 𝑡 ∈ [0, 𝑇]. 

This expression allows 𝑦𝑖(𝑡) to be influenced even by future values of the predictors.  

This type of model holds for cyclical or periodic data since the dynamics have a 

consistent and repeated behavior.   

However, responses with no periodic behavior are more common.  Malfait and 

Ramsay [2] developed the model in which the dependent variable is influenced only 

by the current and past values of the independent variable.  They considered the 

following model: 

𝑦𝑖 𝑡 = 𝛼 𝑡 +  𝑥𝑖 𝑡 𝛽 𝑠, 𝑡 𝑑𝑠
𝑡

𝑡−𝛿
+ 𝜀𝑖 𝑡 , 𝑡𝜖 0, 𝑇 . 

The response 𝑦𝑖 𝑡  is only affected by the predictors 𝑥𝑖 𝑠  at 𝑠 ∈ [𝑡 − 𝛿, 𝑡].  They 

called historical functional linear regression to this feed-forward type of model.  In 

this type of modeling, it is also of interest to estimate the time lag 𝛿 from the data.  

The model developed in this research is the general case of the historical functional 

linear regression model.  This model is explained in chapter 2. 

 

1.2 EMISSION MODELS 

 

As mentioned before, emission models are an important tool for the successful 

planning and application of projects for the control and reduction of the vehicles 

emission production.  This is because measuring emissions at each traffic situation is 

not feasible.  One way to measure how much emission a vehicle produces given a 

traffic situation and driving behavior is by using a chassis dynamometer.  In this case, 
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prescribed driving cycles can be applied to different types of vehicles.  This type of 

experiments not only get rids of the effects of non significant factors but also decrease 

the variation and uncertainty in the experiments.  Chassis dynamometer measurements 

provide the opportunity to find out how instantaneous change in the engine affects the 

production of the emission in vehicles. 

 

1.2.1 TYPE OF EMISSION MODELS   

 

There exist several emissions models which provide an estimate of the emissions 

generated or produced by different type of vehicles [5].  In general, these emissions 

models can be classified in three main categories: 

 

 Average model  

 Map model  

 Load-based model  

 

Each type of model differs in the way that they explain the relation between the 

response (emission values) and independent variables (driving behavior variables).  

 

Average Model is the least complex model.   In this case, the average of the driving 

behavior variables, velocity and acceleration, are used to estimate the total emissions 

produced over a time interval.  The total emissions are related to polynomial functions 

of the average values.  The advantage of this model is that it provides an accurate 

estimate of the total emissions from a large area.  However, any inference in smaller 
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scales such as a specific intersection or road is not feasible given that the 

instantaneous data of the driving behavior variables is averaged [5].   

 

Map Model, in comparison with the average model, uses the instantaneous values of 

the variables for the estimation of the model.  In this case, they classify the values of 

the instant velocities and acceleration in different numerical levels or categories and 

given this category an estimation of the rate of emission is given.  This model relates 

emission rates with polynomial function of these velocity and acceleration levels.  The 

advantage of this model is that it gives evidence of the effects that instantaneous 

values of acceleration and velocity have in the production of emissions.  However, this 

model fails to account for driving cycles that were not included for the estimation of 

the model.  This implies that the accurateness of the model depends on the driving 

cycle [5].  

 

Load Based Models divide the dynamics of the emissions from their production, 

release and transportation into different sub-models [3]. The delay that happens in the 

dynamics of transportation is accounted by a sub-model [3]. These sub-models have 

their own function and parameters and some of them depend on the outcome of other 

sub-models.  This implies a deeper understanding of the dynamics production and 

transportations of the emissions [5].  However, these models are complex and need the 

information of several variables making it inconvenient and difficult to estimate. 

 

 

 

 



7 

1.2.2 DISTORTION 

 

It is necessary to take into consideration that the recorded trajectory of the emission is 

not the instantaneous response of the effects of the driving cycle.  This is because the 

particles are affected by several factors such as the air flow, temperature, and 

interaction with other particles while being transported from the tailpipe to the 

analyzer [3].  There are some suggestions to solve this alteration while the emission 

model is being developed.   

Some of these suggestions are:  

 

 No change.  It is assumed that the data does not suffer any distortion and thus 

the records represent the instantaneous response of the effects of the driving 

behavior variables.  The data is not changed and used to estimate the model 

parameter as it is.   

 Offset the data.  The trajectory of the response is assumed to be offset 𝑡 

seconds from the values of the driving behavior values.  This offset time can 

be found by looking at the estimated sum square error (SSE) or correlation 

between the observation and the predictions [6].  That is, the data is offset a 

second each time until the minimum SSE or maximum correlation is found.  

This implies that the response values 𝑦𝑖(𝑡 + 𝑠) are related with 𝑥 𝑡  values of 

the independent variables and the SSE (correlation) is found each time the 

offset time 𝑠 increments.  The offset time 𝑡 is chosen by looking at the 𝑠 value 

with the smallest SSE or largest correlation.  In this case, it is assumed that the 

emissions particles are affected in similar degrees and thus their travel are the 
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same.  This is not the case since as it was mentioned earlier, there are many 

factors that can affect the particles and thus they might not travel uniformly. 

 Model the distortion.  Weilenmann suggested that the engine and the transport 

dynamics affect the travel of the particles and thus emissions that are recorded 

during the time of the experiment are not after-the-catalyst emission 

information [3].  This was fixed by modeling the pure time delay for the 

transport of the gas and a dynamic signal deformation phenomenon separately 

[3].  This adds complexity to development of emission model.   

 

We show an alternative emission model that can be applied to this type of data.  We 

first discuss the mechanics of the model at chapter 2 and then the results at chapter 4.
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CHAPTER 2 

 

MODEL 

 

In this thesis, we develop a general case of the historical functional linear regression 

model discussed in previous chapter.  This model identifies the relation between the 

instantaneous changes in the dynamics and its response even when these are not the 

result of the instantaneous effects but a distortion.  This implies that the instantaneous 

reaction as a result of the stimulus is not the same as the recorded value.  The response 

suffers a delay, and the measurement of the response at time t is the sum of portions of 

the instantaneous reactions happened at the interval [𝑡 − 𝛿, 𝑡].  The purpose of our 

model is to account for the continuity and smoothness of the data and find the 

continuous influence that the stimuli have over the response.  

 

2.1 DESCRIPTION 

 

Suppose we have the records {𝑦1 𝑡 ,… , 𝑦𝑁(𝑡)} and with their own P stimuli given by 

{𝜉11 𝑡 , … , 𝜉1𝑃 𝑡 , … , 𝜉𝑁1 𝑡 , … , 𝜉𝑁𝑃 𝑡 }.  This data was taken at time intervals given 

by 𝑡 ∈ [0, 𝑇𝑖] for 𝑖 = 1, … , 𝑁.  We assume that these records 𝑦𝑖 𝑡  can be explained by 

a linear combination of recent and current values of the stimuli {𝜉𝑖1 𝑡 ,… , 𝜉𝑖𝑃 𝑡 } by 

𝑦𝑖(𝑡) = 𝛼 +   𝛽𝑝 𝑤 𝜉𝑖𝑝  𝑤 
𝑡

𝑡−𝛿𝑝
𝑑𝑤𝑃

𝑝=1 + 𝜀𝑖(𝑡). 

Each stimulus 𝜉𝑖𝑃 𝑡  influences 𝑦𝑖 𝑡  over a time lag of length 𝛿𝑝 .  We call the 𝛽𝑝(𝑤) 

coefficient of the convolution.  The coefficient of the convolution tells us the effects 

that stimulus have over 𝑦𝑖 𝑡  as they change over time.  We have that 𝛼 is the fixed 
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intercept and 𝜀𝑖 𝑡  is the random error.  As in classical linear regression, we assume 

that 𝐸 𝜀𝑖(𝑡) = 0.  However, given the nature of the data, the random error might 

have some auto-correlation and thus, we consider that 𝑐𝑜𝑣(𝜀𝑖(𝑡), 𝜀𝑖(𝑠)) ≠ 0 for 

∀ 𝑡 − 𝑠 ≥ 0 but 𝑐𝑜𝑣  𝜀𝑖 𝑡 , 𝜀𝑖 ′ 𝑠  = 0 for ∀ 𝑡 − 𝑠 ≥ 0 when 𝑖 ≠ 𝑖′. 

 

This model accounts for the smoothness and continuity of the data curves by looking 

at the components as function of time and the delay suffered by the response by 

integrating the convolution of length 𝛿𝑝  for each continuous stimulus.  Our first task is 

to estimate the fixed intercept 𝛼 and for each stimulus, the coefficient function 𝛽𝑝 𝑤  

and the lag 𝛿𝑝  parameters by using the recordings {𝑦1 𝑡 ,… , 𝑦𝑁(𝑡)} and stimuli 

{𝜉11 𝑡 , … , 𝜉1𝑃 𝑡 , … , 𝜉𝑁1 𝑡 , … , 𝜉𝑁𝑃 𝑡 }. 

 

2.1.1 ESTIMATING 𝜶 AND 𝜷𝒑 𝒘  

 

We use the ordinary least square criterion which is the same method applied in 

classical linear regression and functional linear regression models for the estimation of 

𝛼 and {𝛽1 𝑤 ,… , 𝛽𝑝 𝑤 } .  We are interested in representing the coefficients of each 

stimulus as function of time in which 𝛽𝑝(𝑤) is a functional object in an interval given 

by [1, 𝛿𝑝] where 𝛿𝑝  is the time lag dependency and unknown.  Assuming we know 𝛿𝑝  

for each stimulus, we then represent the coefficients as function of time by using basis 

function expansion:  

𝛽𝑝 𝑤 =  𝑐𝑝𝑘𝜙𝑝𝑘  𝑤 

𝐾𝑝

𝑘=1

 , 𝑝 = 1, … , 𝑃 

where 𝑃 is the number of stimulus included in the model and 𝐾𝑝  the number of basis 

used to represent the convolution of a specific stimulus 𝑝.  We have that 𝜙𝑝𝑘  is the 
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basis functional building block which in this case is in b-spline and 𝑐𝑝𝑘 is its respective 

coefficient which is unknown.  By letting 𝒄′ to be a vector of length 𝐾𝑝  with the 

coefficients {𝑐𝑝1𝑐𝑝2 …𝑐𝑝𝐾𝑝
} and 𝝓𝒑(𝒘) to be the functional vector of length 𝐾𝑝   with 

elements {𝜙𝑝1 𝑤  𝜙𝑝2 𝑤  … 𝜙𝑝𝑘𝑝
 𝑤 }, we express the function of convolution in 

matrix notation as 

𝛽𝑝 𝑤 = 𝒄′
𝒑𝝓𝒑(𝒘). 

We can see now that the model is redefined as  

𝑦𝑖(𝑡) = 𝛼 +    𝒄′
𝒑𝝓𝒑(𝒘)𝜉𝑖𝑝(𝑤)𝑑𝑤

𝑡

𝑡−𝛿𝑝

𝑃
𝑝=1 + 𝜀𝑖 𝑡 . 

Looking at the last expression, we can see that that it is of interest in finding the values 

of the coefficients of the b-splines 𝑐𝑝𝑘   in addition to the fixed intercept 𝛼.  Next, we 

know that our data is composed of records of the responses {𝑦1 𝑡 , … , 𝑦𝑁(𝑡)} and the 

stimulus {𝜉11 𝑡 , … , 𝜉1𝑃 𝑡 , … , 𝜉𝑁1 𝑡 ,… , 𝜉𝑁𝑃 𝑡 }.  However, the observations 𝑦𝑖 𝑡  

and {𝜉𝑖1 𝑡 , … , 𝜉𝑖𝑃 𝑡 } do not have to have the same curve pattern and recording time 

length as the observations 𝑦𝑗  𝑡  and {𝜉𝑗1 𝑡 , … , 𝜉𝑗𝑃  𝑡 }, where 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈

{1, … , 𝑁}.  We use matrix methods to integrate the information of all the recordings 

and find the solution of the parameters.   

 

First, we do this for a specific record 𝑖 and express the model as the following matrix 

notation:  

𝒀𝑖 = 𝒁𝑖𝜽 + 𝜺𝑖 . 
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The elements of the matrix notation are defined as 

𝒀𝒊 =

 
 
 
 
 
 
 
 

𝑦𝑖𝑡1

𝑦𝑖(𝑡1+1)

⋮
𝑦𝑖(𝑡𝑗 )

⋮
𝑦𝑖(𝑡𝑇𝑖

−1)

𝑦𝑖(𝑡𝑇𝑖
)  
 
 
 
 
 
 
 

  ,    𝜽 =

 
 
 
 
 
 
 

𝛼
𝒄𝟏

⋮
𝒄𝒑

⋮
𝒄𝑷−𝟏

𝒄𝒑  
 
 
 
 
 
 

   , 𝜺𝒊 =

 
 
 
 
 
 
 
 

𝜀𝑖𝑡1

𝜀𝑖(𝑡1+1)

⋮
𝜀𝑖(𝑡𝑗 )

⋮
𝜀𝑖(𝑡𝑇𝑖

−1)

𝜀𝑖(𝑡𝑇𝑖
)  
 
 
 
 
 
 
 

  , and 

 

𝒁𝒊   =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1  𝜉𝑖1(𝑤)𝝓′

𝟏
 𝒘 𝑑𝑤

𝑡1

𝑡1−𝛿1
 𝜉𝑖2(𝑤)𝝓′

𝟐
 𝒘 𝑑𝑤

𝑡1

𝑡1−𝛿2
…  𝜉𝑖𝑝 (𝑤)𝝓′

𝒑
 𝒘 𝑑𝑤

𝑡1

𝑡1−𝛿𝑝
…

1  𝜉𝑖1(𝑤)𝝓′
𝟏
 𝒘 𝑑𝑤

𝑡1+1

𝑡1+1−𝛿1
 𝜉𝑖2(𝑤)𝝓′

𝟐
 𝒘 𝑑𝑤

𝑡1+1

𝑡1+1−𝛿2
…  𝜉𝑖𝑝 (𝑤)𝝓′

𝒑
 𝒘 𝑑𝑤

𝑡1+1

𝑡1+1−𝛿𝑝
…

⋮

1
⋮

1

1

⋮

 𝜉𝑖1(𝑤)𝝓′
𝟏
 𝒘 𝑑𝑤

𝑡𝑗

𝑡𝑗−𝛿1

⋮

 𝜉𝑖1(𝑤)𝝓′
𝟏
 𝒘 𝑑𝑤

𝑡𝑇𝑖
−1

𝑡𝑇𝑖
−1−𝛿1

 𝜉𝑖1(𝑤)𝝓′
𝟏
 𝒘 𝜉𝑖1(𝑤)𝑑𝑤

𝑡𝑇𝑖
𝑡𝑇𝑖

−𝛿1

⋮

 𝜉𝑖2(𝑤)𝝓′
𝟏
 𝒘 𝑑𝑤

𝑡𝑗

𝑡𝑗−𝛿2
…

⋮

 𝜉𝑖2(𝑤)𝝓′
𝟏
 𝒘 𝑑𝑤

𝑡𝑇𝑖
−1

𝑡𝑇𝑖
−1−𝛿2

…

 𝜉𝑖2(𝑤)𝝓′
𝟏
 𝒘 𝑑𝑤

𝑡𝑇𝑖
𝑡𝑇𝑖

−𝛿2
…

⋮

 𝜉𝑖𝑝 (𝑤)𝝓′
𝒑
 𝒘 𝑑𝑤

𝑡𝑗

𝑡𝑗−𝛿𝑝
…

⋮

 𝜉𝑖𝑝 (𝑤)𝝓′
𝒑
 𝒘 𝑑𝑤

𝑡𝑇𝑖
−1

𝑡𝑇𝑖
−1−𝛿𝑝

…

 𝜉𝑖𝑝 (𝑤)𝝓′
𝒑
 𝒘 𝑑𝑤

𝑡𝑇𝑖
𝑡𝑇𝑖

−𝛿𝑝
…

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 

 

Putting everything together, the matrix notation of the model using records {1, … , 𝑁} 

is 

Y=  
𝑌1

⋮
𝑌𝑁

 =  
𝒁1𝜽 + 𝜺1′

⋮
𝒁𝑁𝜽 + 𝜺𝑁

 = 𝒁𝜽 + 𝜺. 

 

The next step is to find the estimation of 𝜽 = [𝛼, 𝒄1 , . . . , 𝒄𝑘 ].  This is done by first 

fixing 𝜹 = {𝛿1, … , 𝛿𝑝} and then using the least square methods or minimizing 

𝑆𝑀𝑆𝑆𝐸 𝑌 𝜃 =  𝒀 − 𝒁𝜽 ′ 𝒀 − 𝒁𝜽 = ||𝒀 − 𝒁𝜽||2. 
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The estimate of 𝜽 is 

𝜽 = (𝒁′𝒁)−𝟏𝒁′𝒀. 

 

This implies that the estimation of {𝛽 1 𝑤 ,… , 𝛽 𝑝 𝑤 } is found by 𝛽 𝑝 𝑤 = 𝒄 ′
𝒑𝝓𝒑(𝒘) 

for 𝑝 = 1, … , 𝑃. 

 

2.1.2 ROUGNESS PENALTY 𝝀  

 

In addition, we can introduce a roughness penalty to the least square expression so that 

it gives us smoother estimated curves and handles the problem of over fitting the data.  

This is included in the model expression as  

𝑃𝐸𝑁𝑆𝑆𝐸𝜆 =   [𝑦𝑖𝑡𝑗
− 𝛼 −   𝛽𝑝 𝑤 𝜉𝑖𝑝  𝑤 

𝑡𝑗

𝑡𝑗−𝛿𝑝

𝑑𝑤

𝑃

𝑝=1

]2

𝑇𝑖

𝑗=1

𝑁

𝑖=1
 

+  𝜆𝑝  [𝐷𝑚𝛽𝑝(𝑤)]2𝑑𝑤
𝑡𝑗

𝑡𝑗−𝛿𝑝

𝑃

𝑝=1

. 

We have that 

 

 𝜆𝑝  is the smoothing parameter for the p covariate and should be greater than 

zero.  The curve estimation is less penalized, varies more, and the bias is 

smaller when 𝜆𝑝 → 0 and vice versa when 𝜆𝑝 → ∞. 

 The roughness penalty is expressed by 

 [𝐷𝑚𝛽𝑝(𝑤)]2𝑑𝑤
𝑡𝑗
𝑡𝑗−𝛿𝑝

. 
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The roughness penalty is the 𝑚 derivative of function because they contain the 

information of how this is changing over time.  This new expression accounts for the 

variability in the curve that the SMSSE is not able to fit.   

 

In general,  𝝀 = {𝜆1, … , 𝜆𝑝 ,… , 𝜆𝑃} need to be estimated and this will be discussed in 

the next section.  Meanwhile, we show how to estimate 𝜽 = [𝛼 , 𝒄 𝟏𝒄 𝟐, … , 𝒄 𝒌] by fixing 

the values of 𝝀.  We represent first 𝛽𝑝 𝑤  and 𝐷𝑚𝛽𝑝 𝑤  as a basis expansion and 

redefined the sum square expression as 

𝑃𝐸𝑁𝑆𝑆𝐸𝜆 =   [𝑦𝑖𝑡𝑗
− 𝛼 +   𝒄𝒑′𝝓𝒑(𝒘)]2𝜉𝑖𝑝 𝑤 

𝑡𝑗

𝑡𝑗−𝛿𝑝

𝑑𝑤

𝑃

𝑝=1

]2

𝑇𝑖

𝑗=1

𝑁

𝑖=1
 

 𝜆𝑝  [𝐷𝑚𝒄𝒑′𝝓𝒑(𝒘)]2𝑑𝑤
𝑡𝑗

𝑡𝑗−𝛿𝑝

𝑃

𝑝=1

. 

 

We can write the roughness penalty expression as a matrix notation by    

 𝜆𝑝  [𝐷𝑚𝒄𝒑′𝝓𝒑(𝒘)]2𝑑𝑤
𝑡𝑗

𝑡𝑗−𝛿𝑝

𝑃

𝑝=1

= 𝜽′𝑹(𝝀)𝜽 

where 𝑹 𝝀 = 

 
 
 
 
 
 
 
 
0 0

0 𝜆1  [𝐷𝑚𝝓𝟏 𝒘 ]2𝑑𝑤 ⋯
0                                          0
0                                          0

⋮ ⋱ ⋮

0                  0                 
0   0  

⋯
𝜆𝑃−1  [𝐷𝑚𝝓𝑷−𝟏 𝒘 ]2𝑑𝑤 0

0 𝜆𝑃  [𝐷𝑚𝝓𝑷 𝒘 ]2𝑑𝑤
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The matrix notation for the penalized sum square error is  

𝑃𝐸𝑁𝑆𝑆𝐸 𝑌 𝜃 =  𝒀 − 𝒁𝜽 ′ 𝒀 − 𝒁𝜽 +  𝜽′𝑹(𝝀)𝜽. 

 

We estimate 𝜽 by minimizing the expression 𝑃𝐸𝑁𝑆𝑆𝐸(𝑌|𝜃) given by 

𝜽 = (𝒁′𝒁 + 𝑹 𝝀 )−𝟏𝒁′𝒀. 

 

In this case, we fix 𝜹 = {𝛿1,… , 𝛿𝑝} and 𝝀 = {𝜆1,… , 𝜆𝑝 , … , 𝜆𝑃} and then estimate 

𝜽 = [𝛼 , 𝒄 𝟏𝒄 𝟐, … , 𝒄 𝒌] which implies the estimation of {𝛽 1 𝑤 ,… , 𝛽 𝑝 𝑤 } by  

𝛽 𝑝 𝑤 = 𝒄 ′
𝒑𝝓𝒑(𝒘) 

for 𝑝 = 1, … , 𝑃. 

 

2.1.3 ESTIMATING 𝜹  AND 𝝀 

 

We discussed in the last section how to find 𝜽  given some fixed values of 𝜹 =

{𝛿1, … , 𝛿𝑝 ,… , 𝛿𝑃} and 𝝀 = {𝜆1, … , 𝜆𝑝 , … , 𝜆𝑃}.  However, these values also need to be 

estimated and thus a direct method does not exist.  Instead, they can be estimated by 

using the method of cross-validation.  The basic idea of cross-validation is to divide 

the data into two subsets  𝐴, 𝐵 . Subset 𝐴 is called the 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒 and used to 

fit the model and subset B which is called the 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 is used to validate 

the model by finding the difference between subset B and its estimation 𝐵  [4].  The 

next procedure is an explanation of how this is done to find 𝜹  and 𝝀 parameters.  
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Let assume that we have the observations of the recordings {𝑦1 𝑡 , … , 𝑦𝑖 𝑡 , … , 𝑦𝑁(𝑡)} 

and the stimulus  𝜉11 𝑡 , … , 𝜉1𝑃 𝑡  ,… {𝜉𝑁1 𝑡 ,… , 𝜉𝑁𝑃 𝑡 }.  First, we find the values 

of 𝜹 by following the next steps: 

 

1. Choose a starting value for 𝜹. 

2. Fix the values of 𝜹.  We have then that 𝜹(𝑑) = {𝛿1,… , 𝛿𝑝 , … , 𝛿𝑃} where 

𝛿𝑝 ≥ 0, ∀𝑝 and 𝑑 represents the state or specific values of the 𝛿𝑝 ′𝑠 .  If we 

have 𝑑′ ≠ 𝑑 then this implies that 𝜹(𝑑) ≠ 𝜹(𝑑′).   

3. Remove recording 𝑦𝑖 𝑡  and its respective {𝜉𝑖1 𝑡 ,… , 𝜉𝑖𝑃 𝑡 } from the data.  

The new data is defined as  𝑌(−𝑖) = {𝑦1 𝑡 ,… , 𝑦𝑖−1 𝑡 ,… , 𝑦𝑁(𝑡)} for the 

recordings and 𝜉(−𝑖) = {𝜉11 𝑡 , … , 𝜉1𝑃 𝑡 ,… , 𝜉𝑁1 𝑡 , … , 𝜉𝑁𝑃 𝑡 } for the 

stimulus.  We have that (−𝑖) represents the missing observation in the new 

data.    

4. Estimate 𝜽 (−𝑖)𝑑 = (𝒁,(−𝑖)𝑑𝒁(−𝑖)𝑑)−1𝒁,(−𝑖)𝑑𝒀 −𝑖 .   

5. Find the estimates of 𝒀𝑖  by 𝒀 (𝑖)𝑑 = 𝜽 (−𝑖)𝒁(𝑖). 

6. Find the Sum Square Error by 𝑆𝑆𝐸(−𝑖)𝑑 = (𝒀𝑖 − 𝒀 (𝑖)𝑑)′(𝒀𝑖 − 𝒀 (𝑖)𝑑). 

7. Repeat steps 3-5 for i=1,..., N. 

8. Find the Total Sum Square Error by 𝑇𝑆𝑆𝐸𝑑 =  𝑆𝑆𝐸(−𝑖)𝑑𝑁
𝑖=1 . 

9. Repeat 2-7 for 𝑑 by changing the values of the vector 𝜹.   

10. Find the minimum of the 𝑇𝑆𝑆𝐸 by 𝑀𝑇𝑆𝑆𝐸 = min⁡(𝑇𝑆𝑆𝐸𝑑). 

 

Once we know the minimum, then we will know the best combination of 𝛿𝑝 ′𝑠. We set 

𝜹 𝑩𝑬𝑺𝑻 = {𝛿 1, … , 𝛿 𝑝 , … , 𝛿 𝑃} which are the values that with the smaller TSSE.  

However, we want also to find the roughness penalty 𝝀 = {𝜆1, … , 𝜆𝑝 ,… , 𝜆𝑃} for the 

coefficients of the stimulus.  We follow similar steps as before and the difference is 
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that instead of changing the length or value of the 𝛿𝑝 ′𝑠 we change the values of the 

𝜆𝑝 ′𝑠.  The penalized sum square error is used in this case instead.  Next, we estimate 𝝀 

by the following steps: 

 

1. Get 𝜹 𝑩𝑬𝑺𝑻 and thus we have 𝜹 𝑩𝑬𝑺𝑻 = {𝛿 1, … , 𝛿 𝑝 , … , 𝛿 𝑃} where 𝛿 𝑝 > 0∀𝑝. 

2. Choose initial values for 𝝀. 

3. Fix the values of 𝝀 and thus we have 𝝀(𝑑) = {𝜆1, … , 𝜆𝑝 ,… , 𝜆𝑃} where 𝜆𝑝 ≥

0, ∀𝑝 and (𝑑) represents the state or specific values of the 𝝀𝑝 ′𝑠 .  If we have 

𝑑′ ≠ 𝑑 then this implies that 𝝀(𝑑) ≠ 𝝀(𝑑′).   

4. Take out recording 𝑦𝑖 𝑡  and its respective {𝜉𝑖1 𝑡 , … , 𝜉𝑖𝑃 𝑡 } from the data 

and thus the new data is defined as  𝑌(−𝑖) = {𝑦1 𝑡 ,… , 𝑦𝑖−1 𝑡 , … , 𝑦𝑁(𝑡)} for 

the recordings and 𝜉(−𝑖) =  𝜉11 𝑡 ,… , 𝜉1𝑃 𝑡  ,… {𝜉𝑁1 𝑡 ,… , 𝜉𝑁𝑃 𝑡 } for the 

stimulus.  We have that (−𝑖) represents the missing observation in the new 

data.    

5. Estimate by 𝜽 (−𝑖)𝑑 = (𝒁,(−𝑖)𝑑𝒁(−𝑖)𝑑+𝑹 𝝀 )−1𝒁,(−𝑖)𝑑𝒀 −𝑖 .   

6. Find the estimates of 𝒀𝑖  by 𝒀 (𝑖)𝑑 = 𝜽 (−𝑖)𝒁(𝑖). 

7. Find the Sum Square Error by 𝑆𝑆𝐸(−𝑖)𝑑 = (𝒀𝑖 − 𝒀 (𝑖)𝑑)′(𝒀𝑖 − 𝒀 (𝑖)𝑑). 

8. Repeat steps 3-5 for i=1,..., N. 

9. Find Total Sum Square Error by  𝑇𝑆𝑆𝐸𝑑 =  𝑆𝑆𝐸(−𝑖)𝑑𝑁
𝑖=1 . 

10. Repeat 2-7 for 𝑑 by increasing the value of the 𝜆𝑝 ′𝑠. 

11. Find the minimum of the 𝑇𝑆𝑆𝐸 by 𝑀𝑇𝑆𝑆𝐸 = min⁡(𝑇𝑆𝑆𝐸𝑑). 

12. Once we know the minimum, then we will know the best combination of 𝛿𝑝 ′𝑠.  

 

We set 𝝀 𝑩𝑬𝑺𝑻 = {𝜆 1,… , 𝜆 𝑝 , … , 𝜆 𝑃} which are the values that with the smaller TSSE.  

Iterating these two cross-validation procedures will result in an algorithm that attempts 



18 

to minimize TSSE over both 𝜹  and 𝝀 jointly.  However, this is likely the result in a 

local minimum and will be computational expensive.  We therefore run each 

procedure once, providing one-step approximation to the minimum TSSE estimate.  At 

the end, we find also  𝛽𝑝 𝑡 ,𝑝 = 1, . . . , 𝑃  since 𝜽 = [𝛼 , 𝒄 𝟏𝒄 𝟐, … , 𝒄 𝒌] by  

𝛽 𝑝 𝑤 = 𝒄 ′
𝒑𝝓𝒑(𝒘) 

for 𝑝 = 1, … , 𝑃. 

 

2.2 MODEL DIAGNOSTICS  

 

Once we estimate the parameters of our model the next step is to look at how well our 

model predicts the observations. In this section, we discuss the estimation for different 

components that at the end gives us a feedback about how our model is doing and if 

we can rely in its output. 

 

2.2.1 ESTIMATING RESIDUALS  

 

The analysis of residuals is an important step for the diagnostic of our model.  This is 

because 

 

 By analyzing the residuals, we can find out if the assumptions about our model 

are correct.  

 The residuals give us feedback about how close we are to the observations.  

 They allow seeing how each element of the data influences the estimation of 

the parameters. 
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In our case, we have that out model is the following:     

𝑦𝑖(𝑡) = 𝛼 +   𝛽𝑝 𝑤 𝜉𝑖𝑝 𝑤 
𝑡

𝑡−𝛿𝑝

𝑑𝑤

𝑃

𝑝=1

+ 𝜀𝑖(𝑡) 

assuming the 𝐸 𝜀𝑖(𝑡) = 0 and 𝑐𝑜𝑣(𝜀𝑖(𝑡), 𝜀𝑖(𝑠)) ≠ 0 for ∀ 𝑡 − 𝑠 ≥ 0 but 

𝑐𝑜𝑣  𝜀𝑖 𝑡 , 𝜀𝑖 ′ 𝑠  = 0 for ∀ 𝑡 − 𝑠 ≥ 0 when 𝑖 ≠ 𝑖′.  

 

In matrix notation, we have that the model can be written as  

𝒀 = 𝒁𝜽 + 𝜺 𝐸 𝜺 = 𝟎, 𝑐𝑜𝑣 𝜺 = 𝚺 

where 𝒁 is the design matrix and its number of columns depends on the length of 𝜽 

which contains the unknown coefficients of the basis and the fixed intercept.  The 𝜺 is 

the unobservable random variable and 𝚺 the covariance matrix.   

To estimate the residuals, we use the estimate of 𝜽 discussed in previous sections.  We 

have 𝜽 = (𝒁′𝒁 − 𝑹 𝝀  )−𝟏𝒁′𝒀 .  Using the estimate 𝜽 , we find the fitted values of 𝒀 

by 𝒀 = 𝒁𝜽 .  The estimates of the residuals are just the difference between the 

observation and fitted values.  That is, we have that the residuals are found by  

𝒆 = 𝒀 − 𝒀 . 

 

These residuals are then used for the estimation of the covariance of the model as it is 

explained in the following section. 
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2.2.2 ESTIMATING THE COVARIANCE   

 

We assume that the covariance of the model is estimated as Σ𝑡𝑠 = 𝑐𝑜𝑣 𝑦𝑖 𝑡 , 𝑦𝑖(𝑠) =

𝑐𝑜𝑣 𝜀𝑖 𝑡 , 𝜀𝑖 𝑠  = 𝑅(𝑠, 𝑡).  Under the assumption that  𝑦1 𝑡 , … , 𝑦𝑖 𝑡 , … , 𝑦𝑁 𝑡   

has stationary covariance, we can define 𝑅 𝑠, 𝑡 = 𝑅  𝑠 − 𝑡   for 𝑠, 𝑡 ∈ 𝑇𝑖 .   

 

This means that we can write the Σ𝑖   as the following:  

Σ𝑖 =  

𝑅(0) 𝑅(1) ⋯ 𝑅(𝑛 − 1)
𝑅(1) 𝑅(0) ⋯ 𝑅(𝑛 − 2)

⋮
𝑅(𝑛 − 1)

⋮ ⋯
𝑅(𝑛 − 2) …

⋮
𝑅(0)

  

Given that the random errors are not observed, we use the residuals to estimate the 

covariance.  For each 𝑦𝑖(𝑡), we estimate Σ 𝑖  by using the sample autocovariance of the 

residuals.  This is done by   

(Σ i)𝑙 = 𝑅   𝑠 − 𝑡  =
1

𝑇𝑖
 𝑒𝑠+𝑙𝑒𝑠

𝑇𝑖−𝑙

𝑠
. 

We locate then these autocovariance values in the covariance matrix as  

Σ 𝑖 =

 

 

𝑅 (0) 𝑅 (1)⋯ 𝑅 (𝑛 − 1)

𝑅 (1) 𝑅 (0)⋯ 𝑅 (𝑛 − 2)
⋮

𝑅 (𝑛 − 1)
⋮ ⋯

𝑅 (𝑛 − 2) …
⋮

𝑅 (0)  

  

Then, we find the general estimation of 𝚺 by the mean of the estimated covariance 

matrices  

(𝚺 1 + ⋯ + 𝚺 𝑖 + ⋯ + 𝚺 𝑁)
1

𝑁
= 𝚺 . 
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This general estimation will be useful in the chapters of Block Bootstrapping and 

Influence and Outlier to make inference about the variability and effects of the data in 

the estimation of the model. 

 

2.2.3 CONFIDENCE INTERVAL  

 

Once we have an estimate of the coefficient function 𝛽 𝑝 𝑤  for each of the stimulus, 

we are interested in knowing about the accurateness and variability of our estimates.  

One simple way to observe the variability of the estimates of the model parameters is 

by using the delta method.  

 

First, we show how the variance of  𝜽      

𝑐𝑜𝑣(𝜽 ) = 𝑐𝑜𝑣((𝒁′𝒁 − 𝑹 𝝀 )−𝟏𝒁′𝒀) 

= (𝒁′𝒁 − 𝑹 𝝀 )−𝟏𝒁′𝑐𝑜𝑣(𝒀)𝒁(𝒁′𝒁 − 𝑹 𝝀 )−𝟏 

= (𝒁′𝒁 − 𝑹 𝝀 )−𝟏𝒁′𝚺 𝒁(𝒁′𝒁 − 𝑹 𝝀 )−𝟏. 

 

The confidence interval of 𝜽 then can be estimated by using the delta method as  

𝜽 ± 2 ∗  𝑑𝑖𝑎𝑔(𝑐𝑜𝑣(𝜽 )). 
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CHAPTER 3 

 

CASE STUDY 

 

We found the solution for an alternative emission model using chassis dynamometer 

measurements gathered as a result of the application of several driving cycles to a 

group of medium heavy-duty trucks (MHDT).  The objective of this chapter is to 

describe the data and inquire about the relation between particulate matter and the 

driving behavior variables.  This provides evidence that the model developed in this 

thesis is good fit for the nature and behavior of the chassis dynamometer 

measurements.  This is because the particulate matter (response) and driving behavior 

variables (predictors) had been recorded second-by-second over a time interval and the 

response was affected by various factors while being transported from the tailpipe to 

the emission analyzer equipment.  This implies that these recordings do not represent 

the instantaneous effects of the independent variables in this case the effects of 

velocity and acceleration.   

 

3.1 PARTICULATE MATTER 

 

Particulate matter is a pollutant that can cause serious cardiovascular and respiratory 

illnesses and in some cases even the death of the individual [12, 13].  It has been 

shown it leads to approximately 100,000 early deaths per year in the United States 

[14].  Recent research has shown that certain characteristics of the particles such as 

size and chemical properties are linked to specific effects in the human health.  In 

particular, fine particles are particulate matter smaller than 2.5 𝜇𝑚.  This characteristic 

gives them the ability to stay suspended in the air and to be easily inhaled and get 
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attached to the human body affecting the functioning of respiratory or cardiovascular 

components.  In addition, there is a significant connection between the exposure to 

these fine particles and daily deaths in six eastern U. S. cities [8].  These specific types 

of particles are mainly produced by mobile sources.  Although the production of 

particulate matter by vehicle has decreased significantly in recent decades, it has been 

shown that they still are an important contributor [9].  In urban environments, almost 

90% of traffic-generated particulate matter is from diesel exhaust [10].  This case 

study was done with the purpose to relate the particulate matter with driving behavior 

variables, velocity and acceleration.  We wanted to come with an alternate emission 

model that gives the trajectory estimates of the particulate matter and helps to come up 

with a course of actions to regulate and control this substance in cities where its levels 

are significantly high and its main contributors are diesel trucks. 

 

3.2 E-55/59 PROGRAM  

 

We used data from the E-55/59 program to serve as an example for the application of 

this model.  The purpose of this program was to quantify heavy and medium heavy-

duty trucks emissions production in the South Coast Air Basin of California.  Data 

was gathered from 76 trucks with similar characteristics as the trucks used in the roads 

of that area at the moment of the experiment.  We are interested in the analysis and 

modeling of data gathered from the medium heavy-duty trucks.   
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3.2.1 CHASSIS DYNAMOMETER MEASUREMENTS 

 

The data set of medium heavy-duty trucks consists in chassis dynamometer 

measurements of eleven trucks.  Chassis dynamometers allow the consistent 

application of specific driving cycles to more than one truck and the almost continuous 

recording of variables linked with the instant physical change of the engine and 

emission production of the vehicles over a period of time.  These measurements are 

frequently used for the development of emission models since they permit us to 

consider the effects that driving behavior variables have while maintaining an almost 

steady or unchanging environment. 

 

However, the recording of the emissions does not represent the effect of the 

instantaneous change of velocity.  This is because the tailpipe is not connected directly 

to the emission analyzer.  Instead, the emissions are transported through a exhaust 

system to the emission analyzer.  These particles can experience a delay caused by the 

interaction with other factors and particles.  Weilenmann suggested that this delay is 

the consequence of many factors affecting the particles at the transportation dynamics.  

This problem was solved by modeling the pure time delay for the transport of the gas 

and a dynamic signal deformation phenomenon separately as it was discussed in 

chapter 1 [3, 7].  This model is complex and needs the information of several 

variables.   

 

In contrast, our model is an alternative for the modeling of particulate matter that 

intends to take into consideration the delay experienced by some of the particles.  We 

specifically observe the dependence between past and current values of the particulate 
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matter with the velocity and acceleration.  In addition, we discuss the estimates of the 

model in chapter 4. 

 

3.2.2 DRIVING CYCLES  

 

Driving cycles consist on a velocity patterns and weight load applied to the vehicle in 

the chassis dynamometer.  Figure 3.1 shows the four velocity patterns applied to the 

medium heavy-duty trucks for the observation and study of emission production.  The 

purpose of this driving cycles is to represent the weight carried and driving behavior 

follow by these trucks in the roads of California.  We can see that the velocity patterns 

differ in several ways such as the length of time, the wiggleness of the curve, and the 

limit of velocity. 

 

 
Figure  3.1.  Velocity patterns applied to the medium heavy-duty trucks 
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These cycles can represent different traffic scenarios.  For example, in the plot of 

HHDDT_S velocity pattern, the following can be observed: 

 

 The velocity keeps incrementing until a little after 200 seconds  

 The velocity remains constant at 60m/h.   

 

This type of driving behavior is very common in highways were the limit of velocity is 

around 60 miles/hour and no stops are found.  

 In contrast, for the plot of MHDTLO velocity pattern, it can be seen that 

 

 The trajectory fluctuates between 0 m/h to 30 m/h 

 It has multiple stops  

 The time between stops varies and can last various seconds   

 

This velocity patterns represents the road or street traffic in which there are many stop 

signs or traffic lights and the maximum limit of velocity is 30 m/h.   

 

Besides observing velocity patterns, it is also of interest to study the relation between 

acceleration and particulate matter.  Figure 3.2 shows the acceleration pattern for each 

as a result of the velocity trajectories shown previously.  Here, we see that  

 

 The trajectories differ in pattern 

 Their fluctuations are steadier than in the velocity patterns since they are 

between (-5, 3) in all the four trajectories.  
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Figure  3.2.  Acceleration trajectories as a result of a specific velocity pattern 

 

In total, the data set consisted in 69 chassis dynamometer measurements gathered from 

different trucks.  Figure 3.3 contains the curves of the particulate matter, the velocity 

and acceleration as a result of the application of MHDTHI velocity pattern to a group 

of trucks.  We observe that most trajectories of the particulate matter follow a general 

pattern with exception of two curves.  This implies that overall the trucks' emission 

production follows a particular trajectory that can be estimated by relating the PM 

with the velocity and acceleration. We also observe that the curves are smooth and 

continuous making it appropriate to apply methods from functional data analysis.
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Figure  3.3.  Comparison trajectories as a result of MHDTHI velocity pattern 
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3.3 DATA ANALYSIS  

 

We present results of several analyses to infer about the relation between particulate 

matter with the velocity and acceleration.  In fact, we show evidence that particulate 

matter does not only significantly relate to current values of the driving behavior 

variables but also to past values.  This dependence is related to the distortion that the 

particles experience while they are transported from the tailpipe to the analyzer. 

 

3.3.1 AVERAGE PARTICULATE MATTER AND AVERAGE DRIVING 

BEHAVIOR VARIABLES 

 

Given that the total time interval varies among the samples, we look at the relation 

between the averages values of particulate matter and driving behavior variables.  The 

relation among these variables is shown in Figure 3.4 and 3.5.  In particular, we 

observe that the samples have similar average velocity if they belong to the same 

velocity pattern in Figure 3.4.  For example, we can see that all average velocity 

values from the HHDDT_S velocity pattern are around 50 m/h.  However, we cannot 

make any inference about the relation between the average particulate matter and the 

average velocity.  This is because the average values of particulate matter do not show 

a significant correlation with the average values of the velocity.  Furthermore, the 

values of the average acceleration do not follow the same behavior as the average 

velocity values as it is shown in Figure 3.5.  That is, the values of the average 

acceleration do not cluster by driving cycle.  In addition, we also conclude that there is 

not strong relation between average particulate matter and average acceleration values.  

These two figures demonstrate that by averaging the variables important information 
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is lost and as a result, the estimation of particulate matter using these values is not 

enough and possible.   

 

 
Figure  3.4.  Relation between average pm and average velocity 

 

 
Figure  3.5.  Relation between average pm and average acceleration 
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3.3.2 TRAJECTORIES  

 

In this section, we show the trajectories as result of the application of two different 

velocity patterns in the same truck.  We are interested to show that the instantaneous 

changes in velocity and acceleration are important for the estimation of the particulate 

matter.  In Figure 3.6, we observe that the way the trajectories of the particulate matter 

behave depends in the instantaneous values of velocity and acceleration.  That is, the 

wiggly (steady) behavior of the velocity trajectory in plot a (plot b) is reflected in the 

trajectory of the particulate matter.  We can see that the particulate matter fluctuates 

more in plot (a) than in plot (b).  Also, it seems that the peaks in the particulate matter 

trajectories are the result of major increments and decrements on the velocity and 

acceleration.  However, we analyze further the relation between particular matter and 

the driving behavior variables by looking at the cross-correlation which is discussed in 

the next section.   
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a) TEST_D 

 
b) HHDDT_S 

 

 

 

 

Figure  3.6.  Trajectories given two different velocity patterns 
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3.3.3 CROSSCORRELATION  

 

In this section, we study the relation of particulate matter with past values of the 

velocity and acceleration.  One way to show the dependence over time between two 

different time series is by looking at the cross-correlation.  We consider the following 

expressions 

(𝑅   𝑠 − 𝑡  =
1

𝑇𝑖
 𝑉𝐸𝐿𝑠+𝑙𝑃𝑀𝑠

𝑇𝑖−𝑙

𝑠
 

(𝑅   𝑠 − 𝑡  =
1

𝑇𝑖
 𝐴𝐶𝐶𝐸𝐿𝑠+𝑙𝑃𝑀𝑠

𝑇𝑖−𝑙

𝑠
 

 

Figures 3.7 and 3.8 show that particulate matter does not only depend on present 

values of velocity and acceleration but also it is significantly related to past values of 

both.  This is because the cross correlation curves do not go to zero at lag 1. That  is, 

the correlation between velocity (acceleration) and particular matter is still significant 

even when the values of velocity (acceleration) go farther away from the current 

values of the particular matter. In addition, we observe that the cross correlation 

curves have similar patterns.   In the case of cross correlation between particular 

matter and acceleration, we can see that the dependency is significant until lag 20 as it 

is shown in Figure 3.8.  We can conclude that it is important to take in consideration 

past values of velocity and acceleration for the estimation of particulate matter.
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Figure  3.7.  Cross-correlation between PM and velocity  

Figure  3.8.  Cross-correlation between PM and acceleration 
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Based on the description and analysis of the data, we deduce that  

 

 The trajectories of the variables are continuous and smooth. 

 Values of particulate matter are significantly related to the instantaneous 

values of the driving behavior variables and not to the average of these. 

 There is significant cross-correlation between particulate matter and driving 

behavior variables that is believed to be related to the distortion experienced by 

the response. 

 

These are conclusive evidence that the model developed in this thesis is a good fit for 

the data.  We discuss the estimate results in the next chapter.  
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CHAPTER 4 

 

PARTICULATE MATTER MODEL ESTIMATES 

 

We examined general characteristics and behavior of the trajectories of particulate 

matter, velocity and acceleration in previous chapter.  In this chapter, we discuss the 

estimation results of the statistical model for the prediction of the continuous 

trajectory of the particulate matter given a driving behavior.  This model reports an 

alternative that is simpler and more accurate than the models discussed in chapter 1.  

In particular, we want to consider the smoothness and continuity of the data and the 

dependence over time between particular matter and the driving behavior variables. 

 

4.1 MODEL 

 

We consider particulate matter as the dependent variable and velocity and acceleration 

as the stimuli.  The model developed for this case study identifies the relation between 

the instantaneous change of velocity and acceleration and the values of particulate 

matter even when the amount recorded by the emission analyzer is not the same 

amount of particulate matter released at tailpipe.  The model is expressed as  

𝑃𝑀𝑖𝑗  𝑡𝑖 = 𝛼 +  𝛽𝑣𝑒𝑙  𝑤 𝜉𝑖𝑗𝑣𝑒𝑙  𝑤 𝑑𝑤
𝑡𝑖𝑗

𝑡𝑖𝑗−𝛿𝑣𝑒𝑙

+  𝛽𝑎𝑐𝑐𝑒𝑙  𝑤 𝜉𝑖𝑗𝑎𝑐𝑐𝑒𝑙  𝑤 𝑑𝑤
𝑡𝑖𝑗

𝑡𝑖𝑗−𝛿𝑎𝑐𝑐𝑒𝑙

 

+ 𝜀𝑖𝑗 (𝑡) 
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where 𝑖 = 1, … ,4 (number of the driving cycles) and 𝑗 = 1, … ,11 (number of the 

trucks)  and   

𝑃𝑀𝑖𝑗  𝑡𝑖  is the response or dependent variable  

𝜉𝑖𝑗𝑣𝑒𝑙  𝑤  and 𝜉𝑖𝑗𝑎𝑐𝑐𝑒𝑙  𝑤  are the stimuli  

𝛽𝑣𝑒𝑙  𝑤  and 𝛽𝑎𝑐𝑐𝑒𝑙  𝑤  are the coefficient function 

𝛿𝑣𝑒𝑙  and 𝛿𝑎𝑐𝑐𝑒𝑙  are the length of the convolution  

𝜀𝑖𝑗  𝑡  is the random error 

From the expression of the model, we can see that  

 The components of the equation are represented as function of time.  This is 

because we believe that the chassis dynamometer data are continuous and 

smooth.   

 The model relates the current value of particulate matter with the convolution 

of the velocity and acceleration.  This type of relation pertains to account for 

the distortion that the particles experienced when they were being recorded.   

 The coefficient function weights the values of the velocity and acceleration 

which depends of how far away they are from the current value of the 

particulate matter.  

 The model gives the trajectory of particulate matter. 

The next section shows the values of the estimates for 𝛿𝑣𝑒𝑙 , 𝛿𝑎𝑐𝑐𝑒𝑙 , 𝜆𝑣𝑒𝑙 , 

𝜆𝑎𝑐𝑐𝑒𝑙 ,  𝛽𝑣𝑒𝑙  𝑤  and 𝛽𝑎𝑐𝑐𝑒𝑙  𝑤 . 
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4.2 ESTIMATING PARAMETERS 

 

We apply the same procedures discussed in chapter 2 to estimate the parameters 𝛿𝑣𝑒𝑙 , 

𝛿𝑎𝑐𝑐𝑒 𝑙 , 𝛽𝑣𝑒𝑙  𝑤  and 𝛽𝑎𝑐𝑐𝑒𝑙  𝑤 .   

 

4.2.1 VALUES FOR  𝜹 𝒗𝒆𝒍 AND 𝜹 𝒂𝒄𝒄𝒆𝒍 

 

To estimate 𝛿𝑣𝑒𝑙  and 𝛿𝑎𝑐𝑐𝑒𝑙 , we apply the cross-validation method discussed in 

previous chapter.  In this case, the starting values were 𝜹 = (𝛿𝑣𝑒𝑙 , 𝛿𝑎𝑐𝑐𝑒𝑙 ) = (1,1).  

The algorithm was stopped at 𝜹 = (25,25).  Figure 4.1 contains the results of this 

procedure.  We observe that the values of 𝛿𝑣𝑒𝑙  and 𝛿𝑎𝑐𝑐𝑒𝑙   that minimize the Total Sum 

Square Error are (𝛿𝑣𝑒𝑙 ,𝛿𝑎𝑐𝑐𝑒𝑙 ) = (21,21).   

 

 
Figure  4.1.  Total sum square error results to estimate 𝜹 

 

Figure 4.2 shows the sum square error results by vehicle.  Here, most curves follow 

the same pattern and in general, they are minimizes by values greater than 15.   

However, there is one curve that shows strange behavior.  This behavior is explained 
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in the chapter 6 where it is shown that one of the data samples from truck 76 is an 

outlier and the one causing this strange behavior.   

  

 
Figure  4.2.  Sum square error results by vehicle 

 

4.2.2 VALUES FOR 𝝀𝒗𝒆𝒍 AND 𝝀𝒂𝒄𝒄𝒆𝒍  

 

To estimate 𝝀 = (𝜆𝑣𝑒𝑙 ,𝜆𝑎𝑐𝑐𝑒𝑙 ), we also use the method of cross-validation.  Unlike the 

plots shown in the last section, specific values of 𝝀 that minimize the Total Sum 

Square Error could not be found.  That is, the TSSE did not reach a minimum value 

since it keeps decreasing as the values of 𝝀 were increasing as it is shown in Figure 

4.3.  This might be as result of the large amount of data to be considered.  For that 

reason, we let 𝝀 =  𝜆 𝑣𝑒𝑙 , 𝜆 𝑎𝑐𝑐𝑒𝑙  = (100,100). 
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Figure  4.3.  Total sum square error to estimate 𝝀 

 

4.2.3 ESTIMATES FOR  𝜷𝒗𝒆𝒍 𝒘  AND 𝜷𝒂𝒄𝒄𝒆𝒍 𝒘    

 

By previous section, we found that the length of convolution for the acceleration and 

velocity is length 21.  Since they have the same length, we use the same linear basis 

expansion for each of them.  That is, we represent the coefficients function as a basis 

expansion of 7 b-splines which are shown in Figure 4.4.   

 

 
Figure  4.4.  Basis functions  

 

In addition, the order of these b-splines was chosen to be 4 and the range is from 1 to 

21 which is the length of the convolution.   
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Let 

𝛽 𝑣𝑒𝑙  𝑤 =  𝑐 𝑣𝑒𝑙𝑘 𝜙𝑣𝑒𝑙𝑘  𝑤 7
𝑘=1  and 𝛽 𝑎𝑐𝑐𝑒𝑙  𝑤 =  𝑐 𝑎𝑐𝑐𝑒𝑙𝑘 𝜙𝑎𝑐𝑐𝑒𝑙𝑘  𝑤 7

𝑘=1  

be the estimates of the coefficients by applying the procedure discussed in chapter 2.   

 

Also, we estimate their confidence of interval (CI) by  

𝛽 𝑣𝑒𝑙  𝑤 ± 2 ∗ 𝑠𝑑(𝛽 𝑣𝑒𝑙  𝑤 ) and 𝛽 𝑎𝑐𝑐𝑒𝑙  𝑤 ± 2 ∗ 𝑠𝑑(𝛽 𝑎𝑐𝑐𝑒𝑙  𝑤 ). 

 

Figures 4.5 and 4.6 show the estimates of the coefficient function of both velocity and 

acceleration with their respective confidence intervals.  We can see that both have 

different patterns and thus they affect the estimate of particulate matter differently.   

 

 
Figure  4.5.  Coefficient function and CI for velocity 

 

We see that the coefficient function give more weight to the past values of the velocity 

than to the present values as it is shown in Figure 4.5.  This means that values of the 

velocity that are father away from the current value of particulate matter are more 
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important for the estimation of the particulate matter than the ones that are closer to it.  

The confidence intervals are close to the estimates of the coefficient estimates of the 

velocity. 

 

 
Figure  4.6.  Coefficient function and CI for acceleration 

 

The coefficient function for the acceleration instead weights more negatively the 

values of acceleration that are between 10 and 15 seconds away from the current value 

of particulate matter.  We observe that the confidence intervals are wider than those 

found for the coefficient function of the velocity.  There is more variability in the 

estimates of the acceleration than in the estimates of the velocity. 
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4.3 PREDICTIONS  

 

Once the coefficient functions are estimated, we can predict the observations.  This is 

done by  

𝑃𝑀 𝑖𝑗  𝑡𝑖 = 𝛼 +  𝛽 𝑣𝑒𝑙  𝑤 𝜉𝑖𝑗𝑣𝑒𝑙  𝑤 𝑑𝑤
𝑡𝑖𝑗

𝑡𝑖𝑗 −𝛿 𝑣𝑒𝑙

+  𝛽 𝑎𝑐𝑐𝑒𝑙  𝑤 𝜉𝑖𝑗𝑎𝑐𝑐𝑒𝑙  𝑤 𝑑𝑤
𝑡𝑖𝑗

𝑡𝑖𝑗−𝛿 𝑎𝑐𝑐𝑒𝑙

 

where 𝑖 = 1, … ,4 (number of the driving cycles) and 𝑗 = 1, … ,11 (number of the 

trucks)  and   

𝑃𝑀𝑖𝑗
  𝑡𝑖  is prediction for the 𝑖𝑡𝑕  cycle from 𝑗𝑡𝑕  vehicle 

𝜉𝑖𝑗𝑣𝑒𝑙  𝑤  and 𝜉𝑖𝑗𝑎𝑐𝑐𝑒𝑙  𝑤  are the stimuli  

𝛽 𝑣𝑒𝑙  𝑤 , 𝛽 𝑎𝑐𝑐𝑒𝑙  𝑤  , 𝛿 𝑣𝑒𝑙  and 𝛿 𝑎𝑐𝑐𝑒𝑙  were estimated in previous sections  

 

Figures 4.7 and 4.8 show the predictions of two observations or curves as a result of 

two different velocity patterns.  We observe that although the patterns of the velocity 

are different, the model give good estimates of the trajectory of the particulate matter.    
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Figure  4.7.  Comparing prediction and observation given TEST_D velocity pattern 

 

 
Figure  4.8.  Comparing predictions and observation given MHDTLO velocity pattern 
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Looking at the previous figures, we can see that this model is capable of: 

 

 Estimating the second-by-second trajectory of the particulate matter.  

 Giving estimates for different trajectories of the particulate matter which 

depend on the applied velocity pattern. 

 

This model accounts for the time structure, smoothness, and distortion of the data by 

integrating the components as function of time and convolution function for each of 

the driving behavior variables.  In conclusion, we have a simpler model that can infer 

about how much particulate matter is produced during a time interval by a medium 

heavy-duty truck.  
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CHAPTER 5 

 

BOOTSTRAPPING 

 

 In this chapter, the variability of the estimated coefficient function is explored by a 

novel bootstrapping method.  This computational method allows inference about the 

certainty of the estimation of parameters without knowing about the distribution of the 

population of the sample [15].  Instead, the observations are used as the principal 

source of information of the entire population.  This method was developed by Efron 

who showed its usefulness in several areas of statistics [16, 17].  In particular, we 

discuss the ”general” bootstrapping and the residual bootstrapping used for the 

classical linear regression.  In these two techniques, the data bootstrapped is assumed 

to be identically distributed and independent (i.i.d.).  However, there are cases in 

which the data does not fulfill the condition of independence.  Several modifications 

of bootstrapping have been suggested with the purpose of taking into consideration the 

characteristic and dynamics of the model and specific parameter but also for data that 

do not follow the general assumptions accounted by Efron.  One of these 

modifications is the method of block bootstrapping which permits to infer about the 

parameters when the data is fitted in a time series model and assumed to be serially 

correlated or weakly dependent [15].  We look upon to the general process of this 

statistical technique to examine its usefulness for the statistical model developed in 

this thesis.   We specifically exploit the bootstrapping process used in the linear 

regression and block bootstrapping to extend this computational method to find the 

confidence interval of the estimated coefficients for the model developed in this 
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research project.  This new method and its results are discussed at the end of the 

chapter. 

 

5.1 GENERAL BOOTSTRAPPING  

 

In the simplest case, the observations are assumed to be independent and identically 

distributed random variables. The main idea of bootstrapping is to resample with 

replacement the sample observations allowing an element of the sample observation to 

be repeated.  The bootstrapped data have to be the same size as the sample 

observation.  This “bootstrapped” data is treated as a new observation and used it to 

make inference about the parameter of interest. The key of this method is to realize 

and take advantage of the randomness characteristic of the observations and parameter 

estimates so that each resample or bootstrap is a new case or observation of the 

population [15].  By repeating the same process a number of times, we can state the 

accurateness and stability of the parameter estimation without needing to specify the 

data distribution but only relying in the observations.  We show two different cases of 

how this method allows us to find the confidence interval and infer about how close 

the estimate is from the true. 

      

CASE 1.  Confidence Interval for mean 𝜃   

 

Consider the i. i. d. {𝑋1, … , 𝑋𝑖 ,… , 𝑋𝑛} from the unknown population distribution F.  

We are interested in estimated the mean which is estimated by 𝜃 = 𝐸[𝑋𝑖].  Let assume 

that {𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛} is the available sample observation drawn from the population.  

 



48 

The sample mean is estimated by 

𝜃 =
1

𝑛
 𝑥𝑖

𝑛
𝑖=1 . 

 

To find the confidence interval, the following process is done: 

 

1. Resample with replacement sample observation.  Let the new sample to be 

{𝑥(1)
𝑏 , … , 𝑥(𝑖)

𝑏 , … , 𝑥(𝑛)
𝑏 }. 

2. Estimate the sample mean by   

𝜃 𝑏 =
1

𝑛
 𝑥𝑖

𝑏𝑛
𝑖=1 . 

3. Repeat 1-2 B times. 

4. Find the mean of {𝜃 1, … , 𝜃 𝑏 ,… , 𝜃 𝐵} by 

𝜃  =
1

𝐵
 𝜃 𝑏𝐵

𝑏=1 . 

5. Find the standard deviation by 

𝑠𝑑𝑏𝑜𝑜𝑡  𝜃  =  
1

𝐵−1
 (𝜃 𝑏 − 𝜃  )2𝐵

𝑏=1 . 

6. Estimate the confidence interval by  

𝜃 ∓ 2 ∗ 𝑠𝑑𝑏𝑜𝑜𝑡  𝜃  . 

 

CASE 2. Confidence interval for the coefficient in the linear regression scenario 

 Consider the classical linear model  

𝒀 = 𝑿𝜷 + 𝜺 

 

where 

 

𝒀 is a 𝑛𝑥1 vector of responses or observations  
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𝑿 is a 𝑛𝑥𝑝 full rank matrix of known constant or predictors 

𝜷 is a px1vector of unknown coefficients of the known constants  

𝜺 is a nx1 vector of unknown i. i. d. random errors  

 

We are interested in finding the confidence interval of the coefficient 𝜷.  In this case, 

we resample the residuals since these are the components that are assumed to be  

random.  Let 𝜷  be the estimate of the coefficients.  We follow the next steps to 

estimate the CI: 

 

1. Estimate the predictions and residuals by 𝒀 = 𝑿𝜷  and 𝒆 = 𝒀 − 𝒀 . 

2. Resample the residuals and let 𝒆𝑏 = {𝑒 1 
𝑏 , … , 𝑒 2 

𝑏 , . . , 𝑒(3)
𝑏 } be the new 

residuals.   

3. Estimate the new responses by 𝒀 𝒃 = 𝒀 + 𝒆𝑏 . 

4. Estimate the coefficient using the new responses by 𝜷 𝑏 = (𝑿′𝑿)−𝟏𝑿′𝒀 𝑏 . 

5. Repeat steps 2-4 B times. 

6. Estimate the bootstrap mean by 

𝜷  =
1

𝐵
 𝜷 𝑏𝐵

𝑏=1 . 

7. Estimate the standard deviation by 

𝑠𝑑𝑏𝑜𝑜𝑡  𝜷  =  
1

𝐵−1
 (𝜷 𝑏 − 𝜷  )2𝐵

𝑏=1 . 

8. Find CI by 𝜷 ∓ 2 ∗ 𝑠𝑑𝑏𝑜𝑜𝑡 (𝜷 ).  

 

In these two cases, the data bootstrapped are discrete independent and identically 

distributed random variables.  In the next section, we discuss the case in which the i. i. 

d. condition does not apply.   
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5.2 BLOCK BOOTSTRAPPING   

 

The situation is more complicated when the observations are dependent such as in 

time series data.  This is because not only is the population distribution unknown but 

the dependence model of the sample is also unknown [18].  This data is said to be 

weakly dependent.  It is important to take in consideration this dependence to have an 

accurate estimate of the variance particular estimates.  For this purpose, the block 

bootstrapping method has been proposed.  In general, it follows the same steps as the 

previous cases discussed in the last section but with a small alteration which helps to 

take into account the dependency of the data.  The idea is to divide the available 

sample of observations  (𝑋1, … , 𝑋𝑛) into subseries of length “l” which is the length of 

dependence of the data.  These subseries are then considered to be i. i. d. and 

resampled with replacement.  This block bootstrapped samples are then assumed to be 

new observations and used to infer about the parameter of interest.  Although there 

exist several types of block bootstrap method, we discuss the one developed by 

Carlstein called non-overlapping block bootstrapping.   

 

Let assume that {𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛} is the available sample observation drawn from the 

population and thus, the sample mean is estimated by  

𝜃 =
1

𝑛
 𝑥𝑖

𝑛
𝑖=1 . 

 

To find the confidence interval, the following process is done: 

 

1. Assume that observation have a length of dependence "𝑙" 
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2. Divide the observations on non-overlapping blocks as  𝐵1, … , 𝐵𝑗 , … , 𝐵𝑛

𝑙
 =

{ 𝑥1, … , 𝑥𝑙 , … .  𝑥𝑛−𝑙 , … , 𝑥𝑛 } .  

3. Resample with replacement the blocks  𝐵1, … , 𝐵𝑗 , … , 𝐵𝑛

𝑙
 .  Let the new sample 

to be {𝐵(1)
𝑏 , … , 𝐵(𝑗 )

𝑏 , … , 𝐵(𝑛/𝑙)
𝑏 }. 

4. Estimate the sample mean 𝜃 𝑏  using the new sample. 

5. Repeat 3-4 B times. 

6. Find the mean of {𝜃 1, … , 𝜃 𝑏 ,… , 𝜃 𝐵} by 

𝜃  =
1

𝐵
 𝜃 𝑏𝐵

𝑏=1 . 

7. Find the standard deviation by 

𝑠𝑑𝑏𝑜𝑜𝑡  𝜃  =  
1

𝐵−1
 (𝜃 𝑏 − 𝜃  )2𝐵

𝑏=1 . 

8. Estimate the confidence interval by  

𝜃 ∓ 2 ∗ 𝑠𝑑𝑏𝑜𝑜𝑡  𝜃  . 

 

The data has to be divided into blocks before it is resample and once this is done, the 

next steps are similar as before.  The following section shows the results of the 

modification of block bootstrapping technique for the functional data and that helps to 

retain the smoothness properties of this type of data.  
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5.3 MODIFICATION OF BLOCK BOOTSTRAPPING 

 

We are interested in inferring about the variability of the coefficients of the model 

developed in this research.  As in the classical linear regression method, the residuals 

play an important role for the inference about the accuracy of the coefficient estimates.  

This is because they carry information concerning the appropriateness of the 

assumptions of the model.  The model considered in this research is the following:  

𝑦𝑖(𝑡) = 𝛼 +   𝛽𝑝 𝑤 𝜉𝑖𝑝 𝑤 
𝑡

𝑡−𝛿𝑝

𝑑𝑤

𝑃

𝑝=1

+ 𝜀𝑖(𝑡) 

where  

 

𝑦𝑖(𝑡) is the response or dependent variable  

𝜉𝑖𝑝  𝑤  is the 𝑝 stimulus  

𝛽𝑝 𝑤  is the coefficient function of the 𝑝 stimulus 

𝛿𝑝  is the length of the convolution of the 𝑝 stimulus 

𝜀𝑖(𝑡) the random error 

 

𝐸 𝜀𝑖(𝑡) = 0  and by letting 𝜀𝑖 𝑡 = {𝜀𝑖1 … , 𝜀𝑖𝑇} the covariance of the random error 

can be found by 𝑐𝑜𝑣 𝜀𝑖𝑠 , 𝜀𝑖𝑠 = Σss  𝑎𝑛𝑑 𝑐𝑜𝑣 𝜀𝑖𝑠  , 𝜀𝑖𝑡 = Σ𝑠𝑡  where both are not equal 

to zero.  That is, the random errors in this case have some serial dependency unlike of 

the common assumption for most linear regression models where the random errors 

are i. i. d.  This is a restriction of the residual variance, requiring it to have a strict 

autocorrelation structure.  The random error dependency can be found by looking at 

the autocovariance of the residuals.  We take into consideration this behavior of the 

residuals to estimate the “general covariance”.  This “general covariance” is a key 
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component in the modification of the non-overlapped block bootstrapping.  Moreover, 

the main purpose of this modification is to take advantage of the usefulness of the 

block bootstrapped method while also maintaining the smoothness of the data.  We 

discuss first how this “general covariance” is estimated using the estimated residuals.      

 

5.3.1 ESTIMATING THE GENERAL COVARIANCE 

 

We assume that the covariance of the model is estimated as Σ𝑡𝑠 = 𝑐𝑜𝑣 𝑦𝑖 𝑡 , 𝑦𝑖(𝑠) =

𝑐𝑜𝑣 𝜀𝑖 𝑡 , 𝜀𝑖 𝑠  = 𝑅(𝑠, 𝑡).  Under the assumption that  𝑦1 𝑡 , … , 𝑦𝑖 𝑡 , … , 𝑦𝑁 𝑡   

has stationary covariance, we can defined 𝑅 𝑠, 𝑡 = 𝑅  𝑠 − 𝑡   for 𝑠, 𝑡 ∈ 𝑇𝑖 .   

 

This means that we can write the Σ𝑖   as the following:  

Σ𝑖 =  

𝑅(0) 𝑅(1) ⋯ 𝑅(𝑛 − 1)
𝑅(1) 𝑅(0) ⋯ 𝑅(𝑛 − 2)

⋮
𝑅(𝑛 − 1)

⋮ ⋯
𝑅(𝑛 − 2) …

⋮
𝑅(0)

  

Given that the random errors are not observed, we use the residuals to estimate the 

covariance.  For each 𝑦𝑖(𝑡), we estimate the residuals by 𝜀 𝑖 𝑡 = 𝑦𝑖(𝑡) − 𝑦 𝑖(𝑡) and the 

covariance matrix Σ 𝑖  by using the sample autocovariance.  This is expressed as    

(Σ i)𝑙 = 𝑅   𝑠 − 𝑡  =
1

𝑇𝑖
 𝑒𝑠+𝑙𝑒𝑠

𝑇𝑖−𝑙

𝑠
. 

 

This is done for ∀𝑖 where 𝑖 = 1, … , 𝑁.  To find the length of dependency, we look at 

the autocovariances estimates of all residuals.  The value of “l” is decided to be the 

maximum lag value in which autocovariance values are significantly different from 
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zero.  We let the estimate of the covariance estimate for each residual 𝑖 to be defined 

by the following expression:     

𝚺 i =

 

 

𝑅 𝑖(0) 𝑅 𝑖(1) ⋯𝑅 𝑖(𝑙) … 0

𝑅 𝑖(1) 𝑅 𝑖(0) ⋯𝑅 𝑖(𝑙 − 1) … 0

⋮
0

⋮ ⋯
…

⋮
𝑅 𝑖(0) 

  

Then, we find the general estimation of 𝚺 by the mean of the estimated covariance 

matrices  

(𝚺 1 + ⋯ + 𝚺 𝑖 + ⋯ + 𝚺 𝑁)
1

𝑁
= 𝚺 . 

 

5.3.2 MODIFICATION  

 

We developed a modification of the non-overlapping block bootstrapping method with 

the purpose of fixing the perturbation that the block bootstrapping methods caused to 

the functional residuals.   We have that this method causes  

 

 Discontinuity to the trajectory 

 Alteration in the autocovariance 

   

We consider the following relationship between the random error and residuals: 

𝜀𝑖   𝑡 ~𝑁 𝟎,𝚺∗ => 𝜀 𝑖 𝑡 ~𝑁(𝟎, 𝚺 ) 

where 𝚺  is the ”general covariance” which was estimated previously.  We see that the 

covariance of the residuals has a defined structure  𝚺 .  However, the smoothness 
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structure of the residuals and its covariance is perturbed or modified when block 

bootstrapping is applied.  Instead, we have the following:  

𝜀 𝑖 𝑡 
𝑏~𝑁(𝟎,𝐴𝚺 A) 

 

This implies 

𝜀 𝑖 𝑡 
𝑏~𝑁(𝟎,𝐴𝚺 A) ≠ 𝜀 𝑖 𝑡 ~𝑁(𝟎,𝚺 ) 

 

To recover the continuity and covariance structure of the data, the flowing procedure 

is applied:  

 

1. Divide the curve residual 𝜀 𝑖 𝑡  in blocks of length 10 as 

𝜔𝑖 =  𝜔𝑖1,… , 𝜔1𝑞𝑖
 = { 𝜀 1,… , 𝜀 10 ,… 𝜀 𝑁𝑖−10 ,… , 𝜀 𝑁𝑖

 } where 𝑞𝑖  is the total 

number of blocks for the 𝑖𝑡𝑕  sample and defined by 

𝑞𝑖 =
𝑇𝑖

𝑙
. 

2. Resample with replacement the block residuals of case 𝑖𝑡𝑕and let 𝜔𝑖
𝑏 =

{𝜔𝑖 1 
𝑏 , … , 𝜔𝑖 2 

𝑏 , . . , 𝜔𝑖(𝑞𝑖)
𝑏 } be the bootstrapped residuals. 

3. Apply step 1-2 for ∀𝑖 where 𝑖 = 1, … , 𝑁. 

4. Assume that {𝜔1
𝑏 ,… , 𝜔𝑖

𝑏 , … , 𝜔𝑁
𝑏 }~𝑁 0, 𝐴𝚺 𝐴′ = 𝑁(0, 𝚺 𝑏) . 

5. Estimate the covariance of the block bootstrapped residuals 𝚺 𝑏  as discussed 

in previous section using 𝑙 and the autocovariance of  𝜔1
𝑏 ,… , 𝜔𝑖

𝑏 , … , 𝜔𝑁
𝑏 }. 

6. Estimate 𝐴 by  

𝚺 1/2𝐴′ = 𝚺 𝑏1/2
, 𝐴 = 𝚺 −1/2𝚺 𝑏1/2

. 

7. Find the new smooth residuals by modifying the bootstrapped residuals 

{𝜔1
𝑏 ,… , 𝜔𝑖

𝑏 , … , 𝜔𝑁
𝑏 } by 

𝜔1
𝑏 𝑡 = 𝐴𝜔1

𝑏 ,… , 𝜔𝑁
𝑏  𝑡 = 𝐴𝜔𝑁

𝑏 . 
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8. Estimate the new responses by 𝑦 𝑖
𝑏(𝑡) = 𝑦 𝒊(𝑡) + 𝜔𝑖

𝑏 𝑡 . 

9. Apply step 8 ∀𝑖 where 𝑖 = 1, … , 𝑁. 

10. Estimate the coefficient using the new responses by 

𝜽 𝑏 = (𝒁′𝒁−𝑹(𝝀))−𝟏𝒁′𝒀 𝑏 . 

Refer to chapter 2 to look at the description of  𝜽, 𝒁, 𝑹(𝝀) and 𝒀. 

11. Repeat steps 2-10 B times. 

12. Estimate the bootstrap mean of coefficients by  

𝜽  =
1

𝐵
 𝜽 𝑏𝐵

𝑏=1 . 

13. Estimate the standard deviation by 

𝑠𝑑𝑏𝑜𝑜𝑡  𝜽  =  
1

𝐵−1
 (𝜽 𝑏 − 𝜽  )2𝐵

𝑏=1 . 

 

5.3.3 RESULTS 

 

In this section, we discuss two case scenarios for the application of the modification of 

block bootstrapping.  These are done with the purpose of looking at the difference 

between parametric bootstrapping and non-parametric bootstrapping for the estimation 

of the variability.   

   

5.3.3.1 PARAMETRIC BOOTSTRAP  

 

Parametric bootstrap method uses data simulated from a distribution instead of the real 

data.  This is because it is assumed that the data follows a distribution.   Once the 

parameters of the distribution of the data or observations are estimated, then random 

variables are simulated from the distribution using the estimated parameters.  These 
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random variables are then block bootstrapped.  This is done with the purpose of 

showing that our modification works in other statistical settings.   

 

We alter our block bootstrapped modification to handle parametric bootstrapping and 

follow the next steps:  

1. Simulate 200 hundred random variables 𝑥 𝑖 𝑡 of length 100 from the 

distribution 𝑁 0, 𝚺   where 𝚺  was estimated by using the residuals. 

2. Divide the curve residual 𝑥 𝑖 𝑡  in blocks of length 10 as 𝜔𝑖 =  𝜔𝑖1, … , 𝜔10 =

{ 𝑥 1, … , 𝑥 10 ,… 𝑥 100−10 , … , 𝑥 100 } . 

3. Resample with replacement the block of case 𝑖𝑡𝑕and let 

𝜔𝑖
𝑏 = {𝜔𝑖 1 

𝑏 , … , 𝜔𝑖 2 
𝑏 , . . , 𝜔𝑖10

𝑏 } be the bootstrapped samples. 

4. Apply step 2-3 for ∀𝑖 where 𝑖 = 1, … ,200. 

5. Assume that {𝜔1
𝑏 , … , 𝜔𝑖

𝑏 ,… , 𝜔200
𝑏 }~𝑁 0, 𝐴𝚺 𝐴′ = 𝑁(0, 𝚺 𝑏) . 

6. Estimate the covariance of the block bootstrapped residuals 𝚺 𝑏  as discussed in 

previous section using 𝑙 = 20 and the autocovariance of  {𝜔1
𝑏 ,… , 𝜔𝑖

𝑏 , … , 𝜔𝑁
𝑏 }. 

7. Estimate 𝐴 by 

𝚺 1/2𝐴′ = 𝚺 𝑏1/2
 

𝐴 = 𝚺 −1/2𝚺 𝑏1/2
. 

8. Find the new smooth residuals by modifying the bootstrapped residuals 

{𝜔1
𝑏 ,… , 𝜔𝑖

𝑏 , … , 𝜔𝑁
𝑏 } by  

𝜔1
𝑏 𝑡 = 𝐴𝜔1

𝑏 ,… , 𝜔𝑁
𝑏  𝑡 = 𝐴𝜔𝑁

𝑏 . 

9. Estimate the autocovariance of 𝜔1
𝑏 𝑡 = 𝐴𝜔1

𝑏 , … , 𝜔𝑁
𝑏  𝑡 = 𝐴𝜔𝑁

𝑏 . 
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Figure 5.1 shows the autocovariance of the 200 simulated random variables, block 

bootstrapped random variables, and the modified block bootstrapped random 

variables.  We observe that our modification reduced the distortion of autocovariance 

due to the block bootstrap method.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 shows what happens with the block bootstrapped random variables when 

the modification is applied.  The black curve is the random variable simulated from 

the normal distribution.  The red curve is the result of the random variable being block 

bootstrapped.  As it can be seen, the curve of the block bootstrapped random variable 

is not continuous anymore.  However, applying the transformation gives a smother 

curve (green line) by minimizing the discontinuity of the block bootstrapped random 

variable.  

 

 

 
Figure  5.1.  Autocovariance of the rv, block bootstrapped rv, and modified rv 
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Figure  5.2.  Curve of the rv, block bootstrapped rv and the modified rv 

 

5.3.3.2 BOOTSTRAP USING REAL DATA  

 

In this section, we show the application of the modification of the block bootstrapping 

method using the functional residuals from the case study.  We experienced some 

difficulty in the process of applying this method using the full data.  We believe that 

this was as result of the high variability of the data.  To show the application, we 

decided to use the samples of one particular truck which is referred in here as case 𝑗.   

First, we discuss how the “general covariance” is estimated using 𝑛𝑖  samples gathered 

from this truck 𝑗.      

 

Let consider  

𝜽 = (𝒁𝒋′𝒁𝒋−𝑹(𝝀))−𝟏𝒁𝒋′𝒀𝒋 and 𝑃𝑀 𝑖 𝑡 = 𝜽 𝒁𝒊𝒋 for 𝑖 = 1, … , 𝑛𝑗  

where 𝑛𝑗  is the number of samples from truck 𝑗. The elements 𝒁𝒋 and 𝒀𝒋 contain only 

the information of truck 𝑗. 
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We estimate the residuals by 𝜀 𝑖 𝑡 = 𝑃𝑀𝑖 𝑡 − 𝑃𝑀 𝑖 𝑡  for ∀𝑖 where 𝑖 = 1, … , 𝑛𝑗 .  

The autocovariance values for this residual is found by 

𝑅 𝑖(𝑕) =
1

𝑇𝑖
  𝜀 𝑖𝑡+𝑕 (𝜀 𝑖𝑡)

𝑇𝑖−𝑕

𝑡=1

, 𝑕 = 0, … , 𝑇𝑖 − 1 

To find the length of dependency or 𝑙, we look at the plots of the sample 

autocovariances for this case.  We see that most of them decrease and get close to zero 

around lag 20 as it is shown in 5.3.     

 

 

 

 

 

 

 

Based on this information, we considered the following: 

𝑅𝑖 𝑕 =  
≠ 0 𝑖𝑓 𝑕 ≤ 20

0 𝑖𝑓 𝑕 > 20
 ,    ∀𝑖 

This implies that 𝑙 = 20.   

 

 

 

 
Figure  5.3.  Autocovariance for the residuals of one vehicle 
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We let the estimate of the covariance estimate for each sample or functional residual 

𝑖𝑡𝑕  to be defined as 

𝚺 i =

 

 

𝑅 𝑖(0) 𝑅 𝑖(1) ⋯𝑅 𝑖(20) … 0

𝑅 𝑖(1) 𝑅 𝑖(0) ⋯𝑅 𝑖(19) … 0

⋮
0

⋮ ⋯
…

⋮
𝑅 𝑖(0) 

  

Then, we find the general estimation of 𝚺 by the mean of the estimated covariance 

matrices  

(𝚺 1 + ⋯ + 𝚺 𝑖 + ⋯ + 𝚺 𝑛𝑖
)

1

𝑛𝑗
= 𝚺 . 

 

Then, the modified block bootstrapping is applied for this case as follow: 

 

1. Let 𝜽 = (𝒁𝒋′𝒁𝒋−𝑹(𝝀))−𝟏𝒁𝒋′𝒀𝒋 

2. Divide the curve residual 𝜀 𝑖 𝑡  in blocks of length 10 as 

𝜔𝑖 =  𝜔𝑖1,… , 𝜔1𝑞𝑖
 = { 𝜀 1,… , 𝜀 10 ,… 𝜀 𝑇𝑖−10 , … , 𝜀 𝑇𝑖

 } where 𝑞𝑖  is the total 

number of blocks for the 𝑖𝑡𝑕  sample for the 𝑗 vehicle and defined by 

𝑞𝑖 =
𝑇𝑖

10
. 

3. Resample with replacement the block residuals of case 𝑖𝑡𝑕and let 𝜔𝑖
𝑏 =

{𝜔𝑖 1 
𝑏 , … , 𝜔𝑖 2 

𝑏 , . . , 𝜔𝑖(𝑞𝑖)
𝑏 } be the bootstrapped residuals. 

4. Apply step 1-2 for ∀𝑖 where 𝑖 = 1, … , 𝑛𝑗 . 

5. Assume that {𝜔1
𝑏 ,… , 𝜔𝑖

𝑏 , … , 𝜔𝑛𝑗

𝑏 }~𝑁 0, 𝐴𝚺 𝐴′ = 𝑁(0, 𝚺 𝑏) . 

6. Estimate the covariance of the block bootstrapped residuals 𝚺 𝑏  as discussed 

in previous section using 𝑙 = 20 and the autocovariance of  

{𝜔1
𝑏 ,… , 𝜔𝑖

𝑏 ,… , 𝜔𝑛𝑗

𝑏 }. 
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7. Estimate 𝐴 by  

𝚺 1/2𝐴′ = 𝚺 𝑏1/2
, 𝐴 = 𝚺 −1/2𝚺 𝑏1/2

. 

8. Find the new smooth residuals by modifying the bootstrapped residuals 

{𝜔1
𝑏 ,… , 𝜔𝑖

𝑏 , … , 𝜔𝑛𝑗

𝑏 } by 

𝜔1
𝑏 𝑡 = 𝐴𝜔1

𝑏 ,… , 𝜔𝑛𝑗

𝑏  𝑡 = 𝐴𝜔𝑛𝑗

𝑏 . 

9. Estimate the new responses by 𝑃𝑀 𝑖
𝑏(𝑡) = 𝑃𝑀 𝒊(𝑡) + 𝜔𝑖

𝑏 𝑡 . 

10. Apply step 9 ∀𝑖 where 𝑖 = 1, … , 𝑛𝑗  

11. Estimate the coefficient using the new responses by 

𝜽 𝑏 = (𝒁𝒋′𝒁𝒋−𝑹(𝝀))−𝟏𝒁𝒋′𝒀𝑗
𝑏 . 

Refer to chapter 2 to look at the description of  𝜽, 𝒁, 𝑹(𝝀) and 𝒀. 

12. Repeat steps 2-11 B times. 

13. Estimate the bootstrap mean of coefficients by  

𝜽  =
1

𝐵
 𝜽 𝑏𝐵

𝑏=1 . 

14. Estimate the standard deviation by 

𝑠𝑑𝑏𝑜𝑜𝑡  𝜽  =  
1

𝐵 − 1
 (𝜽 𝑏 − 𝜽  )2

𝐵

𝑏=1

 

 

Figure 5.4 shows the result of applying the block bootstrapped technique to the 

residuals.  The green curve shows the autocovariance of the block bootstrapped 

residuals.  We can see that these autocovariances are smaller than the “general 

autocovariance”.  Using the information from these block bootstrapped residuals 

might give us the wrong estimate for the variability and thus the wrong confidence 

interval estimates.      
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Figure 5.5 shows that the autocovariance of the restored block bootstrapped residuals.  

We can see that the autocovariance of these are scattered around the “general 

covariance”.  In particular, their mean (black curve) is close to the “general 

covariance” (red curve). 

 

 
Figure  5.5.  Autocovariance result after applying the modification 

 

 Figure 5.6 shows the result of applying the block bootstrapped and modification to 

one residual.  We observe that the block bootstrapped residual (red curve) is not 

Figure  5.4.  Autocovariance results after the block bootstrapping application 
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continuous but after the application of the modification this discontinuity decreases 

(green curve).  

 

 

Figure  5.6.  Example of one block bootstrapped residual 

 

In addition, we show the coefficient of the convolution and confidence intervals for 

the velocity and acceleration in Figures 5.7 and 5.8 respectively.   

 

 
Figure  5.7.  Confidence Interval for the convolution function of the velocity 
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Figure  5.8.  Confidence interval for the convolution of the acceleration  

 

The confidence intervals were found by using the modification of block bootstrapping.  

We observe that 

 The patterns of the coefficient of the convolutions differ from the patterns 

found in chapter 4. 

 The confidence intervals are wider than the confidence interval found by the 

delta method. 

 

We plan to study further this phenomenon.  The discussion is expanded in chapter 7. 
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CHAPTER 6 

 

INFLUENCE AND OUTLIERS 

 

We discussed the methodology for estimating and finding the variability of the 

parameter of our statistical model in previous chapters.  It is also important to know 

how these estimates depend on the information given by the data.  That is, we want to 

know how robust and stable the estimates of the coefficients are and if we can rely on 

these estimates whenever the data is perturbed or changed.  One method commonly 

use to consider this situation is removing one or a group of points at a time from the 

full data and quantifying the effects in the estimates of the linear regression using 

statistical methods developed for this purpose [19].  In the classic linear regression, 

clear examples have been shown in which the deletion of points in the data causes a 

significant effect in the coefficient estimates.  These cases are commonly called 

influence and/or outlier points.  After additional examination of the nature of the 

points, it might be decided that their contribution is not important and be deleted 

completely from the full data [19, 20].  Cook‟s and Mahalanobis distance are two 

common methods use for finding influence and outliers cases in the data respectively.  

Our motive of this chapter is to expand the applicability of these two statistics for the 

identification of curve data which are serially correlated or weakly dependent.  In the 

following sections, we discuss their standard application in the linear regression, then 

we elaborate on the case of using curve data instead of discrete points, and lastly, we 

show the results for a specific case scenario. 
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6.1 INFLUENCE AND OUTLIER IN CLASSICAL LINEAR 

REGRESSION 

 

There is interest on knowing how the estimates of the coefficients are affected when 

the data is perturbed or modified [19].  This perturbation allows deducing about the 

robustness and stability of the coefficients and their reliability on estimating the 

responses.  The method of case deletion of one element or a group of elements from 

the full model has usually been used for coefficient inference of the classic linear 

regression model [19].   

 

Consider the usual linear model  

𝒀 = 𝑿𝜷 + 𝜺, 𝑣𝑎𝑟 𝜺 = 𝜎2𝑰 

where  

 

𝒀 is a 𝑛𝑥1 vector of responses or observations  

𝑿 is a 𝑛𝑥𝑝 full rank matrix of known constant or predictors 

𝜷 is a px1vector of unknown coefficients of the known constants  

𝜺 is a nx1 vector of unknown i. i. d. random errors  

𝑰 is the nxn identity matrix  

𝜎2is the common scalar variance  

 

The model states that the response 𝒀 is linearly related to the predictors 𝑿 and this 

relation is quantified by the coefficients 𝜷 which need to be estimated.  In addition, it 

is also assumed that the random error 𝜺 are uncorrelated and each has common 

variance 𝜎2.  The estimate of 𝜷 can be found by 𝜷 = (𝑿′𝑿)−1𝑿′𝒀.  By using the full 
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data for the estimation of the coefficients, it is explicitly suggested that this specific 

model is appropriate for all the elements of the data.  The model is said to be robust 

and this depends on the well behavior and the appropriate assumptions about the data.    

 

However, a point or a group of points of the data might behave differently from the 

rest of the other points in the data.  These types of disagreement on the behavior of 

these points can sometimes be identified visually however this is not always the case, 

especially for functional data.  It is important to determine if there exist points in the 

data that do not agree with the assumptions made.  Once this has been done, further 

investigation is advised to justify this behavior which can be a remote or extreme 

result of the experiment or error measurement.  As consequence, a decision can be 

made on whether to remove it permanently from the full data or classifying it as an 

important point for the model estimation.   

 

A common way to infer about the effects of each point has in the model estimation is 

the method of case deletion.  The basic idea is summarize in the following steps for a 

particular 𝑖 point of the data: 

 

1. Estimate 𝑦𝑖  by 𝑦 𝑖 = 𝑿𝑖𝜷  where 𝑿𝑖  is the 1 × 𝑝 vector of known constants.  

2. Take out the element 𝑦𝑖  and respective covariates {𝑥1, … , 𝑥𝑝} from the full 

data. 

3. Define the components of the linear model as 𝒀(−𝑖), 𝑿(−𝑖), 𝜷(−𝑖) to express that 

the 𝑖𝑡𝑕  case has been taken out from the data.  These are the components of the 

linear regression using the reduce data. 

4. Estimate 𝜷 (−𝒊) = (𝑿′(−𝑖)𝑿(−𝑖))−1𝑿′(−𝑖)𝒀(−𝑖). 
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As it can be seem, the estimates of the coefficients using the full and reduced data are 

found.  We are interested to see if deleting the 𝑖𝑡𝑕  data made a difference in the 

estimation of the coefficients 𝜷 or in the predictions.  A simple way to observe this is 

by subtracting the estimates from both cases.  For example, we can find the difference 

between 𝜷  and 𝜷 (−𝒊)  by 

𝐸𝐼𝐶𝑖 = (𝜷  −𝑖 − 𝜷 ) 

This difference is called the empirical influence curve (𝐸𝐼𝐶) [19].  The value or 

values of 𝐸𝐼𝐶𝑖  clearly show how the coefficients are modified by the perturbation of 

the data.  We can apply the same process for all points and find the empirical influence 

curve values for ∀𝑖 where 𝑖 = 1, … , 𝑛.  Clearly, the values {𝐸𝐼𝐶1, … , 𝐸𝐼𝐶𝑖 , … , 𝐸𝐼𝐶𝑛} 

give us feedback about the effect that each point has in the estimation of the 

coefficients.  Nonetheless, seeing which point has the largest effect is not a direct task 

unless 𝑝 = 1 or 𝑝 = 2.  This is because they can be represented and analyzed 

geometrically [19].  The following two methods provide a better way to compare the 

differences between the case using full and reduced data whenever 𝑝 > 1.  Cook‟s and 

Mahalanobis Distance allow us to expose the data points that are influence and/or 

outlier cases respectively. 
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6.1.1 COOK’S DISTANCE 

 

Cook developed a modification of empirical influence curve for the purpose of finding 

points that have a significant influence in the estimation of components of the linear 

regression model when the perturbation imposed to the data is deletion of cases [19].  

This statistic is called Cook‟s Distance and allows inferring about the stability and 

variation in the estimation results.  This statistic is useful to compare how influential 

each point is in p-dimensional space by given a scalar value for the quantification. 

 

6.1.1.1 LINEAR REGRESSION CASE 

 

Consider the same linear model explained in section 6.1 and the perturbation of 

deleting the 𝒊𝒕𝒉 element from the full data.  The Cook‟s distance is then defined as 

𝐷𝑖 𝑿
′𝑿, 𝑝𝑠2 =

(𝜷  −𝑖 − 𝜷 )′ 𝑿′𝑿 (𝜷  −𝑖 − 𝜷 )

𝑝𝑠2
 

=
𝐸𝐼𝐶𝑖 ′ 𝑿

′𝑿 𝐸𝐼𝐶𝑖

𝑝𝑠2
 

where   

 

𝜷  −𝑖  is the estimation of the coefficient using the reduced data 

𝜷  is the estimation of the coefficient using the full data 

𝑿 the design matrix for the full data  

𝑝 is degree of freedom  

𝐸𝐼𝐶𝑖  is the empirical influence curve discuss previously 
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𝑠2 is the sample variance estimated as  

𝑠2 =
 𝒀 − 𝒀 

′
(𝒀 − 𝒀)

𝑛 − 𝑝
=

𝒆′𝒆

𝑛 − 𝑝
 

 

The 𝐷𝑖 𝑿
′𝑿, 𝑝𝑠2  statistic is the measure or distance between 𝜷  −𝑖  and 𝜷  

standardized and scaled by 𝑿′𝑿 and 𝑝𝑠2 respectively [19].  This statistic does not 

change whenever the scale 𝑝𝑠2 is changed and rows are removed from 𝑿 [21].  

However, the most powerful property of this statistic is that, once the values 

{𝐷1, … , 𝐷𝑖 , … , 𝐷𝑛} are found, they can be categorized as influential by looking if 

𝐷𝑖 ≥ 1 for ∀𝑖 [19].  This cut-off is suggested when it can be assumed that 𝐷𝑖 ′𝑠 follow 

the 𝐹( 𝑝, 𝑛 − 𝑝) distribution which implies that   1 − 𝛼 𝑥100% confidence regions 

can be found for 𝜷 by  

{𝜷′|
(𝜷′ − 𝜷 )′ 𝑿′𝑿 (𝜷′ − 𝜷 )

𝑝𝑠2
< 𝐹(1 − 𝛼, 𝑝, 𝑛 − 𝑝} 

and since most random variables with distribution 𝐹(.5,𝑝, 𝑛 − 𝑝) are close to 1, we 

delete the 𝑖𝑡𝑕   case if 𝐷𝑖 ≥ 1.  This is because deleting 𝑖𝑡𝑕  move the estimate of 𝜷 to 

50% confidence region which is significant [19, 20, 21].  It is also important to notice 

that this not always true and thus we have to be careful with this cut-offs.  It is better 

to examine further the results to find out if this is an influential point.   

 

𝐷𝑖 𝑿
′𝑿, 𝑝𝑠2  can be rewritten as the following: 

𝐷𝑖 𝑿
′𝑿, 𝑝𝑠2 =

(𝒀 (−𝑖) − 𝒀   )′(𝒀 (−𝑖) − 𝒀  )

𝑝𝑠2
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In this case, we can interpret this statistic as how important the data point 𝑖𝑡𝑕  is for the 

estimation of all responses.     

 

6.1.2 MAHALANOBIS DISTANCE 

 

Mahalanobis distance allows finding how far away or different a specific point is from 

the other points [20, 21].  By using this statistic, we can observe if there is a data point 

that is out of the ordinary or do not follow the same behavior as the others.  One 

example or case scenario in which this statistic has been largely used is to find how far 

away the random variables {𝑥1, … , 𝑥𝑛} are from their expected value 𝑢 [20].   

 

In this case, we have that the Mahalanobis Distance is defined as  

𝐷𝑖
2 =  𝑥𝑖 − 𝑢 ′Σ−1(xi − u) 

where 𝐸 𝑥𝑖 = 𝑢 and 𝑐𝑜𝑣 𝑥𝑖 = Σ for ∀𝑖 where 𝑖 = 1, … , 𝑛[20]. 

 

The distance is estimated by using  

𝐷 𝑖
2 =  𝑥𝑖 − 𝑥  ′𝑆−1(𝑥𝑖 − 𝑥 ) 

 where 𝑥  and 𝑆 are the sample mean and covariance respectively [20].  We can see that 

larger the distance is the less likely the sample mean can characterize the distribution 

of the 𝑖𝑡𝑕  random variable.  We look at how this statistic can be also applied to the 

linear regression case in the following section.   
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6.1.2.1  LINEAR REGRESSION CASE 

 

Consider the same linear model discussed in section 6.1 and the perturbation of 

deleting the 𝒊𝒕𝒉 element from the full data.  The Mahalanobis Distance is defined as 

𝐷𝑖
2 = (𝑦𝒊 − 𝑦 𝒊

 −𝒊 )′Σ−1(𝑦𝒊 − 𝑦 𝒊
 −𝒊 ) 

where   

 

𝑦𝒊 is the 𝑖𝑡𝑕observation 

𝑦 𝒊
(−𝒊)

 is the estimation of the 𝑖𝑡𝑕  observation using the reduce data  

 is the sample covariance  

 

In this case, we can interpret this statistic as how important the data point 𝑖𝑡𝑕  is for the 

estimation its own estimation.  

 

6.2 DISTANCES MODIFICATION 

 

We are interested in inferring about how influential or out of ordinary each individual 

sample is accounting that they are curves or function of time.  We also consider that  

𝜀𝑖 𝑡 ~𝑁(0, Σ) for ∀𝑖, using the estimated  covariance 𝚺 𝑖  for each residual 𝑖 obtained 

from the autocovariance estimate described in section 5.3.  We explain how the 

dependency of the data is integrated in the Cook‟s and Mahalanobis Distance method.  
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6.2.1 COOK’S DISTANCE 

 

To take into consideration that the residuals are serially correlated, we use the “general 

covariance” discussed in chapter 5 for the estimation of Cook‟s distance.  We follow 

the next procedure: 

  

1. Estimate 𝜽 = (𝒁′𝒁)−𝟏𝒁′𝒀. 

2. Estimate 

𝑐𝑜𝑣 𝒀 = (𝚺 1 + ⋯ + 𝚺 𝑖 + ⋯ + 𝚺 𝑁)
1

𝑁
= 𝚺 . 

3. Remove recording 𝑦𝑖 𝑡  and its respective {𝜉𝑖1 𝑡 ,… , 𝜉𝑖𝑃 𝑡 } from the data and 

thus the new data is defined as  𝑌(−𝑖) = {𝑦1 𝑡 , … , 𝑦𝑖−1 𝑡 , … , 𝑦𝑁(𝑡)} for the 

recordings and 𝜉(−𝑖) =  𝜉11 𝑡 , … , 𝜉1𝑃 𝑡  ,… {𝜉𝑁1 𝑡 ,… , 𝜉𝑁𝑃 𝑡 } for the 

stimulus.  We have that (−𝑖) represents the missing observation in the new 

data.    

4. Estimate  𝜽 (−𝑖) = (𝒁,(−𝑖)𝒁(−𝑖))−𝟏𝒁′(−𝑖)𝒀(−𝑖). 

5. Find the estimates of 𝒀𝑖  by 

a. 𝒀 𝑖 = 𝜽 𝒁 

b.  𝒀 (𝑖) = 𝜽 (−𝑖)𝒁(𝑖) 

6. Find the Cook‟s Distance by 

𝐷𝑖 =
(𝒀 𝑖−𝒀 (𝑖))(′ (𝒀𝑖−𝒀 (𝑖))

𝑡𝑟𝑎𝑐𝑒 ((𝒁′𝒁−𝑹 𝝀 )−𝟏𝒁′ )(
𝑠𝑢𝑚  𝑑𝑖𝑎 𝑔 Σ   

𝑇𝑖
)

. 

7. Repeat steps 3-6 for i=1,..., N. 
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6.2.2 MAHALANOBIS DISTANCE 

 

In the same manner as in Cook‟s Distance, we modify Mahalanobis Distance by 

substituting the estimated autocovariance for Σ. 

 

1. Estimate 𝜽 = (𝒁′𝒁)−𝟏𝒁′𝒀. 

2. Estimate  

𝑐𝑜𝑣 𝒀 = (𝚺 1 + ⋯ + 𝚺 𝑖 + ⋯ + 𝚺 𝑁)
1

𝑁
= 𝚺 . 

3. Remove recording 𝑦𝑖 𝑡  and its respective {𝜉𝑖1 𝑡 ,… , 𝜉𝑖𝑃 𝑡 } from the data and 

thus the new data is defined as  𝑌(−𝑖) = {𝑦1 𝑡 , … , 𝑦𝑖−1 𝑡 , … , 𝑦𝑁(𝑡)} for the 

recordings and 𝜉(−𝑖) =  𝜉11 𝑡 , … , 𝜉1𝑃 𝑡  ,… {𝜉𝑁1 𝑡 ,… , 𝜉𝑁𝑃 𝑡 } for the stimulus.  

We have that (−𝑖) represents the missing observation in the new data.    

4. Estimate  𝜽 (−𝑖) = (𝒁,(−𝑖)𝒁(−𝑖))−𝟏𝒁′(−𝑖)𝒀(−𝑖). 

5. Find the estimates of 𝑦𝑖  by 𝑦 𝑖 =  𝜽 (−𝑖)𝒁𝑖 . 

6. Find the Mahalanobis Distance by 𝐷𝑖 =  𝑦𝑖 − 𝑦 𝑖 
′(𝚺 )−1(𝑦𝑖

𝑖 − 𝑦 𝑖). 

7. Repeat steps 3-6 for i=1,..., N. 

 

6.2.3 RESULTS   

  

In this section, we discuss the application and results of Cook‟s and Mahalanobis 

distance for the case study.  Figures 6.1 and 6.2 have the values of these distances.  

We observe that most samples do not seem to be significantly influential with 

exception to the samples from trucks 68 and 70.  The distances values in both methods 

are larger than distances values from the other trucks.  This implies that these samples 

are farther away from the other samples and they might be categorized as outliers.   
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Figure  6.1.  Results for Cook‟s Distance grouped by vehicle and velocity pattern 

 

 
Figure  6.2.  Results for Mahalanobis Distance grouped by vehicle and velocity 

pattern 

 

Figure 6.3 has two of the curves with significant high Mahalanobis and Cook‟s 

distance values.  They are also compared with the other curves that resulted from the 

same type of experiment as them. 
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Plot (a) of Figure 6.3 shows the curves resulted from the HHDDT_S velocity pattern.  

We can observe that the curve with highest Cook‟s and Mahalanobis distance 

(highlighted in black) is out of the ordinary and does not follow the same behavior as 

the other curves.  Given these results, we infer that this case does not belong to this set 

of samples and thus need to be deleted.  In the other hand, we can see in plot (b) of 

Figure 6.3 the curves resulted from the MHDTHI velocity pattern.  The curve 

 
a) 

 
b) 

 
Figure  6.3.  Curves with the highest Mahalanobis and Cook‟s distance   
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highlighted is one with larger Cook‟s and Mahalanobis distance value than other 

samples but with smaller value than the curve discussed previously.  In fact, this curve 

was mentioned in 3.2.2 since it seems to not follow closely the general pattern of the 

other curves.  However, we cannot be certain that this is an outlier. 

 

 



79 

CHAPTER 7 

 

CONCLUSION 

 

We developed a functional linear regression model for fitting almost continuously data 

in which the responses have been distorted during the time recording by other factors 

in the environment or/and measure process.  This implies that the recordings do not 

represent the instantaneous effects of the independent variables but combination of 

responses happening at different times.  We argue that the distortion or alteration of 

the responses is well modeled by the convolution of the stimuli 𝜉𝑖𝑃 𝑤  with length 𝛿𝑝  

for𝑝 = 1, … , 𝑃.  The relation between the recording 𝑦𝑖 𝑡  and stimulus 𝜉𝑖𝑃 𝑤  is 

continuous and defined as 𝛽𝑝(𝑤) which is the coefficient of the convolution.  This 

coefficient function gives a weight to the values of 𝜉𝑖𝑃 𝑤  for the estimation of 𝑦𝑖 𝑡  

as𝑤 → 𝑡.  In addition, diagnostic methods were also developed with the purpose of 

estimating the variability of 𝛽𝑝(𝑤) and the effects that the individual data record have 

in the model estimation.  Specifically, we developed a block bootstrapped method that 

handles the discontinuity caused by the division in blocks and their resampling.  The 

statistical methods of Cook‟s and Mahalanobis distance were also modified with the 

objective of accounting for the time structure and serial correlation of the data and to 

identify curve or functional data that causes a significant effect in  the solution and 

estimates of the model. 

 

We presented the results for the statistical model for the prediction of the continuous 

trajectory of the particulate matter given driving behavior.  The model uses the data 

collected from a program called E-55/59 which had as an objective to improve the 
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emissions inventory in California.  Given the data from medium heavy-duty trucks, we 

were able the following:       

 

 The length of dependence between the particulate matter with the velocity and 

acceleration 

 The coefficient functions for both covariates 

 The confidence interval by the delta method for both covariates   

 The trajectories of the particular matter gathered from different vehicles and 

given different velocity patterns 

 Distance values that allows us to find curves that influenced the estimate of the 

model 

  

However, we experienced difficulty when we applied the modification of the block 

bootstrapping method to the residuals to find the variability of this emission model.  

As a result, we were not able to find confidence interval for the coefficient function of 

velocity and acceleration by using the full data.  Instead, we chose one vehicle to 

demonstrate the applicability of the modification of block bootstrapping.  In this case, 

we were able to estimate confidence interval for the coefficient function of the 

velocity and acceleration for this specific vehicle.  The plots of these coefficient 

functions are in Figure 5.6 and 5.7 in Chapter 5.  Given this, we observe that the 

pattern of the coefficient functions differ to the ones found by using the full data.  

These plots are in Figure 4.5 and 4.6. 

 

We believe that this problem is caused by the variability of the data and other factors 

that have not been accounted by the model. 
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As mentioned before, the data used for the development of this emission model comes 

from eleven medium heavy-duty trucks.  We notice that there is some variety among 

the trucks even though they pertain to the medium heavy-duty group.  Table 7.1 has 

the general physical characteristics of the trucks used for this particular study.  We 

observe that the range of engine year is from1988 to 2001 and vehicle weight is from 

25000 to 33000.  We are interested in adding this variability to the model as a random 

effect. 

 

Table  7.1.  General characteristics of the medium heavy-duty trucks 

ID 

VEH 

YEAR VEH_MAN 

VEH 

GVW 

ENG 

MAN 

ENG 

YEAR 

50 2001 INTERNATIONAL 26000 INTERNATIONAL 2001 

51 1994 INTERNATIONAL 29000 INTERNATIONAL 1994 

55 1992 FORD 31000 FORD 1991 

56 1988 FORD 33000 CATERPILLAR 1988 

57 2000 FREIGHTLINER 26000 CATERPILLAR 1999 

58 1982 FORD 25000 DETROIT 1999 

61 2000 GMC 25950 CATERPILLAR 1999 

68 1995 INTERNATIONAL 33000 INTERNATIONAL 1995 

70 1998 FREIGHTLINER 26000 CUMMINS 1997 

71 1995 FORD 33000 CUMMINS 1994 

76 1993 FORD 33000 FORD 1993 

 

Furthermore, Table 7.2 has the general results of the chassis dynamometer 

experiments.  This table has the identification of the truck, the velocity pattern and the 

load weight (test weight) applied to a specific truck, and the duration of the 

experiment. 
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Table  7.2.  General results of the driving cycles 

ID 

TEST 

CYCLE 

TEST 

WEIGHT 

 

TOTAL 

TIME 

50 HHDDT_S 14000 739.9 

51 TEST_D 14500 1060 

51 MHDTHI 14500 1190 

55 TEST_D 15500 1060 

55 MHDTHI 15500 1190 

55 HHDDT_S 15500 760 

70 TEST_D 13000 1039.9 

70 MHDTLO 13000 348 

70 MHDTHI 13000 1168 

70 HHDDT_S 13000 738 

 

 

It is important to notice that there is some variability in the way the experiments were 

applied and measured.  In particular, we observe that  

 

 Some cycles were not applied to all trucks.  

 The time length among similar cycles is not the same.   

 Two different weight loads were applied to the trucks.    

 

The variability generated by the first two points is not of relevance since the 

convolution model accounts for this naturally by assuming that the data is stationary.  

However, we plan to consider the weight load as fixed effect in future work. 

     

Moreover, Figure 7.1 shows the autocovariance of two vehicle residuals.  As discussed 

in previous chapter, we can see that they have similar pattern.  In particular, we can 

see that they get close to zero after lag 20.  However, we can see in the y-axis that the 
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values of the autocovariance between these two vehicles differ.  Similar behavior 

happens to the other vehicles.  This implies that we have to account for a 

heterogeneous variance among all the medium heavy-duty trucks of this case study. 

 

 

 

 

 

 

 

 

 

For further work, we plan to estimate a model such as the following expression: 

𝑃𝑀𝑖𝑗  𝑡𝑖 = 𝛼 +  𝛽𝑣𝑒𝑙  𝑤 𝜉𝑖𝑗𝑣𝑒𝑙  𝑤 𝑑𝑤
𝑡𝑖𝑗

𝑡𝑖𝑗−𝛿𝑣𝑒𝑙

+  𝛽𝑎𝑐𝑐𝑒𝑙  𝑤 𝜉𝑖𝑗𝑎𝑐𝑐𝑒𝑙  𝑤 𝑑𝑤
𝑡𝑖𝑗

𝑡𝑖𝑗−𝛿𝑎𝑐𝑐𝑒𝑙

 

+𝑤𝑒𝑖𝑔𝑕𝑡𝑖𝑗 + 𝛾𝑗 + 𝜀𝑖𝑗 (𝑡) 

𝜀𝑗  𝑡 ~𝑁(0, 𝜎𝑗
2( 𝑡 − 𝑠 )) 

𝛾𝑗 ~𝑁(0, 𝜎𝛾
2) 

 

where 𝑖 = 1, … ,4 (number of the driving cycles) and 𝑗 = 1, … ,11 (number of the 

trucks)  and   

𝑃𝑀𝑖𝑗  𝑡𝑖  is the response or dependent variable  

𝜉𝑖𝑗𝑣𝑒𝑙  𝑤  and 𝜉𝑖𝑗𝑎𝑐𝑐𝑒𝑙  𝑤  are the stimuli  

𝛽𝑣𝑒𝑙  𝑤  and 𝛽𝑎𝑐𝑐𝑒𝑙  𝑤  are the coefficient of the convolution 

  

Figure  7.1.  Autocovariance of the samples of two different vehicles 
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𝛿𝑣𝑒𝑙  and 𝛿𝑎𝑐𝑐𝑒𝑙  are the length of the convolution 

 𝑤𝑒𝑖𝑔𝑕𝑡𝑖𝑗  is the fixed effect of the weight load 

𝛾𝑗 is the random effect of the 𝑗𝑡𝑕  vehicle 

𝜀𝑖𝑗  𝑡  is the random error  

𝜎𝑗
2 is the variance given by a particular set of data 

𝜎𝛾
2 the variance of vehicle random effect  

 

We will consider this and other alternatives of this model with the objective to find 

one that takes care of the heterogeneity of the variance and behavior of the coefficient 

of the convolution.  That is, we plan to introduce an interaction term between the 

weight factor and the covariates 𝜉𝑖𝑗𝑣𝑒𝑙  𝑤  and 𝜉𝑖𝑗𝑎𝑐𝑐𝑒𝑙  𝑤   to see how the change in 

driving behavior variables and weight load impacts the production of particulate 

matter.  We also will look at different estimates of the variance  𝜎𝑗
2( 𝑡 − 𝑠 ) by 

considering either the samples of one specific vehicle or the different driving cycles.   

Furthermore, we will explore the effect of introducing a random effect in the variance.  

We use cross-validation procedure similar to the one discussed in chapter 2 to estimate 

this random.  In conclusion, we expect to find a general mean model that provides 

informative and valid estimates for this case study.  
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