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Decision trees and decision tree ensembles are widely used nonparametric statistical

models. A decision tree is a binary tree that recursively segments the covariate space

along the coordinate directions to create hyper rectangles as basic prediction units for

fitting constant values within each of them. A decision tree ensemble combines multiple

decision trees, either in parallel or in sequence, in order to increase model flexibility and

accuracy, as well as to reduce prediction variance. Despite the fact that tree models have

been extensively used in practice, results on their asymptotic behaviors are scarce. In this

thesis we present our analyses on tree asymptotics in the perspectives of tree terminal

nodes, tree ensembles and models incorporating tree ensembles respectively. Our study

introduces a few new tree related learning frameworks for which we can provide provable

statistical guarantees and interpretations.

Our study on the Gini index used in the greedy tree building algorithm reveals its

limiting distribution, leading to the development of a test of better splitting that helps

to measure the uncertain optimality of a decision tree split. This test is combined with

the concept of decision tree distillation, which implements a decision tree to mimic the

behavior of a block box model, to generate stable interpretations by guaranteeing a unique

distillation tree structure as long as there are sufficiently many random sample points.

Meanwhile, we apply mild modification and regularization to the standard tree boost-



ing to create a new boosting framework named Boulevard. The major difference Boule-

vard has in contrast to the original framework is our integration of two new mechanisms:

honest trees, which isolate the tree terminal values from the tree structure, and adaptive

shrinkage, which scales the boosting history to create an equally weighted ensemble. With

carefully chosen rates, we establish consistency and asymptotic normality for Boulevard

predictions. This theoretical development provides us with the prerequisite for the practice

of statistical inference with boosted trees.

Lastly, we investigate the feasibility of incorporating existing semi-parametric models

with tree boosting. We study the varying coefficient modeling framework with boosted

trees applied as its nonparametric effect modifiers, because it is the generalization of sev-

eral popular learning models including partially linear regression and functional trees. We

demonstrate that the new framework is not only theoretically sound as it achieves consis-

tency, but also empirically intelligible as it is capable of producing comprehensible model

structures and intuitive visualization.
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CHAPTER 1

DECISION TREES AND DECISION TREE ENSEMBLES

1.1 Statistical Learning

One can image countless situations in our everyday life when we have to make a decision

out of a few observations. To give a handful of examples: A psychiatrist may need to

diagnose a patient with depression based on their response on a mental health question-

naire. A dealer may want to price a used car based on its make, model, year, milage and

history report. An outdoor person may intend to choose a location for their weekend hike

based on local temperature, chance of precipitation, trail length and trail difficulty. And

a hungry graduate student may have to decide where to grab a meal based on the type of

food, average waiting time, price and whether the place is open at a certain time.

Most, if not all, of these situations can be described mathematically under the settings

of statistical classification and regression. We have some observations X which are called

covariates, predictors or features depending on the subject area, that can be numeric (price

of food, milage of car) or categorical (answer to a yes-no question, type of food) and

a response Y between which we want to summarize and justify certain relationship f

connecting them so that

Y ≈ f (X).

When we have a sample consisting of a sizable number of X’s and Y’s, the predictive

perspective of statistics helps to determine f , and the inferential perspective of statistics

1



helps to study the properties of f . In particular, we call these analyses classification when

Y is a categorical label, and regression when Y is a numeric value. We call f parametric if

the shape of f is determined by a fixed number of parameters independent of the sample

size, and nonparametric otherwise. In spite of various terminologies involved, the shared

crucial idea behind all is that we want to apply a statistical methodology to study the

relationship between the covariates and the responses.

This data driven procedure has a modern name called learning partially due to the

explosion of data and the practice of using machines (computers) intensively to perform

the underlying modeling. Since we will mostly focus on the statistical perspectives of this

procedure, we will refer to it as statistical learning in this thesis.

1.2 Decision Trees

Classification and Regression Trees (CART), or Decision Trees, have become a popular

branch and an iconic choice of nonparametric statistical learning methods since its first

introduction by Breiman et al. (1984). As per its original design, a decision tree is a

binary tree splitting the covariate space along the coordinate directions to create hyper

rectangles called terminal nodes. Each split in the tree is determined by a greedy strategy

to best distinguish the observations in its two branches respectively, or in other words, to

minimize a given impurity measure. After that, each terminal node in the tree is assigned

a fitted value that is usually decided by the average or the majority vote. Figure 1.1 is

an example of a classification tree, and the following algorithm demonstrates the generic

2



steps of constructing a decision tree.

Algorithm 1.1 (CART).

• Start at the root node corresponding to the full covariate space.

• Given a node, enumerate all possible candidate splits by going over all covariates

and collecting all possible split values.

• Choose a split yielding the maximal impurity reduction based on an impurity mea-

sure to separate the node, thus the corresponding covariate subspace, into two child

branches.

• Work recursively in the child node to further split until a stopping criterion is met.

• Prune the tree.

• Calculate the fitted value in each of the terminal nodes.

Besides the actual greedy building algorithm, there are multiple alternative perspec-

tives to view decision trees.

• A decision tree is a piecewise constant estimate of the underlying relation between

covariates and responses. It is the finite linear combination of hyper rectangular

indicator functions. This point of view allows a potentially deep decision tree to

reach any given level of accuracy thanks to the Littlewood’s three principles stating

any Lebesgue measurable function can be approximated by a finite sum of scaled

interval indicators to any required precision.

3



Figure 1.1: A classification tree predicting labels on a two dimensional covariate
space. LHS is the spatial segmentation, and RHS the visualized tree.

• A decision tree is an adaptive nearest neighbor smoother where the adaptive dis-

tance measure between two points is given by the likelihood of them being in the

same terminal node compared to other methods relying on a metric on the covariate

space. In other words, a decision tree is capable of creating a topology on the co-

variate space adaptively describing the similarity between observations should we

keep expanding the tree.

• A decision tree is the exclusive and exhaustive combination of binary decision paths

mimicking human decision making, where a decision rule consists of evaluating di-

chotomously a few if-then predicates. Meanwhile, the states of all predicates sum-

marize all possible results of all decision rules.

Due to these advantages, decision trees can achieve decent empirical performance
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without relying on structural assumptions regarding the underlying space. However, they

remain mathematical intractable as the result of several characteristics.

• Decision trees are nonparametric. Their behavior cannot be described by using a

few parameters.

• Decision trees are step functions, therefore they are neither smooth, Lipshitz nor

even continuous. Methods including the use of differentiation or with the underlying

assumption of continuity, for instance the attempt to Taylor expand a decision tree,

are not directly compatible with trees.

• Decision trees are adaptive to the training sample through their greedy building al-

gorithm, which forces the analyses to condition on the sample. This behavior may

challenge us to discover a feasible mathematical formulation for the greedy algo-

rithm, as well as create potential difficulties when we intend to isolate the tree from

the data to reach unconditioned conclusions.

• The space of all decision trees within a certain depth is not closed under addition.

Moreover, the completion of the space of all decision trees contains all measurable

functions. In other words, the model space is oversized, and for meaningful sub-

spaces there is no proper low dimensional description, for instance basis expansion,

to serve as an analyzable mathematical simplification.

Endeavors have been made to modify the building algorithm in an attempt to enable

and simplify the analysis of decision trees. Most of these modifications target the mecha-

nism used for deciding where to place the splits.

5



• Completely randomized trees or uniform trees (see Biau et al., 2008; Biau, 2012;

Scornet et al., 2015; Scornet, 2016) that construct trees while ignoring the impurity

measure. They place random split locations in the trees, and retrospectively decide

the fitted values in the terminal nodes using the sample.

• Semi-randomized trees (see Wager and Walther, 2015; Wager and Athey, 2017) re-

quire that each covariate has a minimal chance of being selected as the splitting

covariate for any split in the tree. This guarantee is achieved by a partially random

split rule.

• Dyadic trees (see Blanchard et al., 2004, 2007) only evaluate splits at the midpoints

of each of the intervals of possible covariates.

• Two sample trees (honest trees) (see Wager and Athey, 2017) utilize another in-

dependent sample to decide the tree structure in the CART manner, then decide

terminal values with the actual sample.

The common idea behind the aforementioned methods is the partial separation of the train-

ing sample and the greedy algorithm so that the worst case behavior of the resulting tree

can be controlled by the tree structures untethered from the training sample. These modi-

fications help to develop the asymptotic properties of decision trees while preserving most

of their tree characteristics. However, the cost we pay for this theoretical soundness is the

empirical practicality and the intuitive comprehensibility.

6



1.3 Decision Tree Ensembles

Creating an ensemble of weak learners is an effective practice to scale up model complex-

ity, improve accuracy and reduce variance, leading us to tree ensembles when the involved

weak learners are decision trees. Popular tree ensembles, which are listed below, differ in

the ways of how many trees there are in the ensemble, how much randomness they cast

into training each component tree, and how much dependence each tree is allowed with

the rest of the ensemble.

• Bagging, short for bootstrap aggregating (Breiman, 1996; Bühlmann et al., 2002).

Bagging creates a tree ensemble of any size by training each tree on a randomly

selected subsample and averaging all trees.

• Random forests (Breiman, 2001). Random forests are similar to bagging with the

difference that each split covariate in any component tree is now chosen in a ran-

domly selected subset of covariates as well.

• Boosting (Friedman, 2001). Gradient boosted decision trees create a sequential en-

semble of trees during whose construction the last tree is fitted on the mismatch

described by the functional gradient of its current status of the tree ensemble.

• Additive groves (Sorokina et al., 2008), which fix the number of trees and construct

the ensemble by extending the depth of its component trees through backfitting.

• Bayesian additive regression trees (Chipman et al., 2010), which also create an en-

semble of a given size. They are similar to additive groves in the sense that back-
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fitting is used to update the ensemble, while each update selects the structure of the

tree based on a Bayesian prior on all tree shapes.

Among all mentioned methods, bagged trees and random forests maintain a certain

level of conditional independence among their component trees, therefore are easier to

analyze. On the other hand, the mathematical formulation of boosted trees belongs to

the domain of time inhomogeneous Markov processes which, despite being more efficient

in practice, possess a sequentially dependent structure that changes along the boosting

history. This fact, along with the ambiguity induced by the greedy tree building strategy,

introduces more difficulties to the analyses of boosted ensembles.

1.4 Outlines

In brief, we would like to try answering the following three main questions in this thesis.

1. How should we construct decision trees to assure their stability or honesty?

2. How can we guarantee the asymptotic behaviors of tree boosting?

3. How can we properly interpret the results produced by tree models?

We will separate our answers and further discussions in the following chapters.

There is a decent amount of recent literature discussing the potential approaches to

study tree ensembles with alternative tree building strategies and carefully chosen rates.
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Stochastic inequalities are introduced to establish concentration bounds for trees without

thoroughly investigating their structures. For random forests, the U-statistics framework

is effective and has produced substantial results on the asymptotic normality of random

forest predictions and as a consequence, a few variance estimators.

For tree boosting we anticipate two plausible solutions both of which suggest us to for-

mulate better mathematical profiles for boosted trees. One is through modifying and reg-

ularizing the behavior of boosting for the purpose of obtaining a mathematically friendly

form, which is mostly done by adaptively weighting the component trees in the ensemble.

The other one is through empirical process theories that relate boosting to its population

version process. This approach is more dense in mathematics but has more flexibility as

long as the population counterpart of boosting generates tractable mathematical objects.

On interpretability, we would like to treat the interpretability of a statistical learning

model from two angels. One is the statistical interpretability, meaning the extent to which

we can guarantee the behavior of the model and perform sophisticated statistical infer-

ences. The other is the perceptional interpretability, in other words, model transparency

and feasibility that we can point to and explain the exact actions undertaken by the model.

Decision trees are inherently intelligible models that can be utilized to perform model dis-

tillation for complex black boxes. They align well with our understanding of perceptional

interpretability as a universal tool to reason for decision making processes. We will dis-

cuss a few practices to make them more effective. Meanwhile, decision tree ensembles

are black boxes with few statistical tools to estimate and infer their behavior. Our plans

for them will concentrate more on the statistical interpretability in order to develop a set
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of conclusions with which we get more knowledge of their doings and perform statistical

inferences accordingly.
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CHAPTER 2

DISTILLATION TREES AND THEIR STABILITY MEASURE

2.1 Interpreting Black Boxes

Random forests (RF) (Breiman, 2001) and other statistical learning methods have been

widely used across different disciplines and are acknowledged for their outstanding pre-

dictive power (Caruana and Niculescu-Mizil, 2006). However, statistical learning mod-

els may suffer from a trade-off between predictive accuracy and model interpretability

(Breiman et al., 2001; Friedman et al., 2001). Black box models, to which we refer

as models with complex inherent structures that are relatively impenetrable by standard

mathematical analyses, are usually found to be capable of achieving high predictive ac-

curacy due to their fitting power and flexibility. A modern example of black boxes is the

deep neural network, which has been extensively used in areas of image, sound and nat-

ural language processing while its inner working is still hard to explain and tune. On the

other hand we have the concept of glass boxes which are models transparent for inspec-

tion. With the presence of both model calsses, in Domingos (1997) the author introduced

and experimented the concept of Combined Multiple Models(CMM) that learns a glass

box from a black box. Its modern revision can be approached by developing intelligible

student models which mimic the predictions of the original teacher black box: a strategy

encompassed by the term model distillation. Within model distillation, common student

models are generalized additive models (GAMS: see Lou et al. (2012); Tan et al. (2017),

Hooker (2007) provides a link between these and PDPs) and decision trees (Breiman et al.,

11



1984; Quinlan, 1987), which are our focus. Similar work can be found in Johansson et al.

(2011, 2010) where the authors discussed the concept of coaching a decision tree by a

complex model. He et al. (2012) showed such procedure has desirable theoretical and

empirical performance.

Decision trees are attractive as a statistical learning technique. However, the greedy

algorithm used to build trees results in high variability and poor performance when used

directly on training data. This is because small perturbations of the data used to build the

tree can result in dramatically different models as when, for example, a different covariate

is chosen in a high-level split with consequences that cascade through the rest of the tree

structure. In the context of model distillation, this instability is an important concern: an

explanation or interpretation of a learning outcome that is sensitive to small changes in the

data may be viewed as unreliable.

In order to obtain a stabilized structure for a decision tree, we take advantage of our

ability to generate an arbitrarily large data set from the teacher model. Specifically, we

follow Gibbons et al. (2013) in generating pseudo data from a kernel density estimate

based on the observed covariates and using the value of the teacher model at these points

as a response. In this chapter we additionally ensure that, were this pseudo data to be

re-generated, the same tree structure would be chosen with high probability. To carry

this out, at each node we assess the stability of the selected split via a hypothesis testing

framework; when splitting, we generate a large enough corpus of pseudo data to ensure

that separation between the Gini index split criterion at the chosen split and that of other

candidates is large enough to be consistently selected. This framework is repeated at each
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split to obtain a stabilized tree, generating new pseudo data as needed.

As our experiments show, this can result in the need to generate very large sets of

pseudo-data when competing splits produce very similar improvement and achieving a

stabilized tree can be computationally demanding. We think that this is an important ob-

servation: that many existing uses of decision trees in model distillation may produce un-

stable model interpretations or explanations and our understanding of these models may

rest more on the particular data used to generate the approximation tree than on the un-

derlying structure of the teacher. There are some subtle distinctions to be made here: if a

distillation tree replaces the learned model when making predictions, we might reasonably

choose to present it as an explanation for how a prediction is made, even if the structure

of the tree was originally determined partially by chance. However, if we also hope to

interpret reasoning behind the prediction, or expect the tree to explain something about

the teacher, we would require explanations to be reproducible.

2.1.1 Gini Indices

Most tree building procedures, i.e. C4.5 (Quinlan, 2014), select splits based on maxi-

mizing the information gain (minimizing the impurity) that results from each candidate

split point. There are multiple choices of defining the information gain in the literature

(Breiman et al., 1984; Loh and Shih, 1997). In this chapter, we will focus on the Gini

information associated with the Gini index as its empirical estimator. For the distribution
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of (X,Y) where Y ∈ {1, . . . , k} the category labels of X, one way to write the Gini gain g is

g =
∑
i, j

P(Y = i)P(Y = j) = 1 −
k∑

i=1

P(Y = i)2. (2.1)

The empirical version of this formula defines the corresponding Gini index. It is worth

noticing that this conventional definition implies more information with a smaller value,

meaning smaller Gini indices implies less discrepancy among responses. The formula also

indicates its relation with the sample variance.

When splitting a node in the decision tree, we divide the sample space into two subsets

within each of which the responses are more uniform than in the whole space, increasing

the total information gain. This value is estimated by the weighted sum of the two Gini

indices after splitting, hence the split with the maximal Gini index implies the best infor-

mation gain and is therefore employed. In the following sections we will show that, in our

approximation setting, we can determine our sample size to get more precise estimate of

the Gini indices, thereby stabilizes the split at each node.

2.2 A Test of Better Split

In this section, we will develop a means of assessing the stability of a node splitting proce-

dure via the use of hypothesis tests. This will then be employed to ensure that we generate

enough data to reliably choose the same split points.

Consider a multiclass classification problem. The original sample consist of covariates

and responses {(X̃i, Ỹi)}
n0
i=1 where X̃i ∈ R

m, Ỹi ∈ {1, 2, . . . , k}, m the dimension of covariate

14



space, and k the levels of responses. We obtain a black box classifierF from the sample. F

will later serve as the oracle we try to mimic, generating points (pseudo sample) {(Xi,Yi)}ni=1

of arbitrary size n. Here Xi = (X1
i , . . . , X

m
i ) ∈ Rm, and Yi = (Y1

i , . . . ,Y
k
i ) ∈ Rk are the F -

predicted class probabilities over responses. To approximate F , our tree classifiers will be

constructed from {(Xi,Yi)}ni=1.

We now wish to control the probability that two different pseudo sample points,

{(Xi,Yi)}ni=1 and {(X∗i ,Y
∗
i )}ni=1 would result in different splits. Here, we make pairwise com-

parisons between the current best split, and the list of candidate alternatives. For each

alternative, the p-value for a test that the difference in Gini gains is greater than zero gives

us an estimate of the probability that a different dataset would choose the alternative over

the current best split. Summing these probabilities gives a bound on the likelihood of

splitting the current node a different way and we then select n to control this probability.

2.2.1 Asymptotic Distribution of Gini Indices

A theoretical discussion of the evaluation of splits can be found in Banerjee et al. (2007).

In our specific case, we compare the Gini indices of candidate splits: To do so, we examine

their asymptotic behavior and obtain a central limit theorem (CLT) so normal based tests

can be developed. (2.1) implies an averaging over sample when calculating the Gini index,

suggesting the existence of this CLT.

To examine two perspective splits G1 and G2 with the same sample, their Gini gains
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are

g1 = 1 − π1,l

 k∑
j=1

θ2
1,l, j

 − π1,r

 k∑
j=1

θ2
1,r, j

 ,
g2 = 1 − π2,l

 k∑
j=1

θ2
2,l, j

 − π2,r

 k∑
j=1

θ2
2,r, j

 ,
where π represents the covariate distribution of X̃ and θ the conditional probability of Ỹ

given X̃. Subscripts are arranged in the order of the split (1 for G1 and 2 for G2), the left

(denoted as l) or right (denoted as r) child, and the class label from 1 to k. For instance,

π1,l = P(G1(X) = 0), π1,r = P(G1(X) = 1), θ1,l, j = P(Y = 1|G1(X) = j),

and respectively for G2. The empirical versions, Gini indices, are

ĝ1,n = 1 −
n1,l

n

k∑
j=1

(
θ̂1,l, j

)2
−

n1,r

n

k∑
j=1

(
θ̂1,r, j

)2
,

ĝ2,n = 1 −
n2,l

n

k∑
j=1

(
θ̂2,l, j

)2
−

n2,r

n

k∑
j=1

(
θ̂2,r, j

)2
.

Moving to the two children of both splits, we denote the numbers of sample and the ratios

of class labels in each child by, for p ∈ {1, 2}, j ∈ {1, . . . , k},

np,l =

n∑
i=1

1{Gp(Xi)=0}, θ̂p,l, j =
1

np,l

n∑
i=1

Y j
i · 1{Gp(Xi)=0},

np,r =

n∑
i=1

1{Gp(Xi)=1}, θ̂p,r, j =
1

np,r

n∑
i=1

Y j
i · 1{Gp(Xi)=1},

and create the following stacked vectors to denote the sample version and the population

version of the number of pseudo-sample points that should fall in each category as in the
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CLT, which is for p ∈ {1, 2}, q ∈ {l, r},

Np,q =


np,qθ̂p,q,1

...

np,qθ̂p,q,k

 , Θp,q =


πp,qθp,q,1

...

πp,qθp,q,k

 ,
√

n


1
n



N1,l

N1,r

N2,l

N2,r


−



Θ1,l

Θ1,r

Θ2,l

Θ2,r




−→ N(0,Σ).

To relate this limiting distribution to the difference of Gini indices we shall employ the

δ-method. Consider the analytic function f : R4k → R s.t.

f (x1, . . . , x4k) = −
1
π1,l

k∑
i=1

x2
i −

1
π1,r

2k∑
i=k+1

x2
i +

1
π2,l

3k∑
i=2k+1

x2
i +

1
π2,r

4k∑
i=3k+1

x2
i .

The δ-method imples that

√
n


f


1
n



N1,l

N1,r

N2,l

N2,r




− f





Θ1,l

Θ1,r

Θ2,l

Θ2,r






−→ N(0,ΘT ΣΘ), (2.2)

where

Θ = f ′





Θ1,l

Θ1,r

Θ2,l

Θ2,r




= 2



−Θ1,l

−Θ1,r

Θ2,l

Θ2,r


∈ R4k, Σ = cov



N1,l

N1,r

N2,l

N2,r


= cov



Y · 1{G1(X)=0}

Y · 1{G1(X)=1}

Y · 1{G2(X)=0}

Y · 1{G2(X)=1}


∈ R4k×4k.

We should point out that while (2.2) provides us with the CLT we need to assess the

difference between two Gini indices: expanding (2.2) yields

√
n
(
(ĝ1,n − ĝ2,n) − (g1 − g2)

)
−→ N(0,ΘT ΣΘ).
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or asymptotically,

(ĝ1,n − ĝ2,n) − (g1 − g2) ∼ N
(
0,

ΘT ΣΘ

n

)
.

Hence, by replacing Θ,Σ by the empirical versions from the pseudo sample, we write

ĝ1,n − ĝ2,n ∼ N
(
g1 − g2,

Θ̂T Σ̂Θ̂

n

)
. (2.3)

2.2.2 Comparing Two Splits

The above formula (2.3) gives rise to the following test when comparing two splits with

different batches of pseudo sample. Suppose we have two prospective splits G1 and G2.

After drawing pseudo sample {(Xi,Yi)}ni=1 and observing without loss of generality that

∆̂n = ĝ1,n − ĝ2,n < 0. We intend to claim that G1 is better than G2. In order to ensure

this split is chosen reliably, we can run a single-sided test to check whether we would

obtain the same decision when accessing ∆̂∗n = ĝ∗1,n − ĝ∗2,n < 0 with another independently-

generated set of pseudo sample {(X∗i ,Y
∗
i )}ni=1. Assume that {(Xi,Yi)}ni=1 and {(X∗i ,Y

∗
i )}ni=1 are

independent samples, (2.3) implies

∆̂∗n − ∆̂n ∼ N
(
0,

2Θ̂T Σ̂Θ̂

n

)
,

which gives,

∆̂∗n

∣∣∣∣∣ (∆̂n = ĝ1,n − ĝ2,n

)
∼ N

(
ĝ1,n − ĝ2,n,

2Θ̂T Σ̂Θ̂

n

)
.

This distribution leads to a prediction interval based on which we would get the prediction

of the Gini difference using a different pseudo sample. In order to control P(∆̂∗n < 0) at a
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confidence level 1 − α, we need

ĝ1,n − ĝ2,n < Zα ·

√
2Θ̂T Σ̂Θ̂

n
, (2.4)

where Z is the inverse c.d.f. of a standard normal. With a sufficiently large n it is possible

to always determine the better split between G1 and G2 should they have any difference.

In addition, by combining this test with a pairwise comparisons procedure, we are capable

of finding the best split among multiple prospective splits.

2.2.3 Sequential Testing

The power of this better split test increases with n. Since we need to determine n to reveal

any detectable difference between two splits, when no prior knowledge is given regarding

the magnitude of the difference, we need an adaptive approach to increasing n accordingly.

For a fixed confidence level α, suppose we have tested at sample size n and get p-value

pn > α. Referring to (2.4), we have

√
n ·

ĝ1,n − ĝ2,n√
2Θ̂T Σ̂Θ̂

= Zpn .

Notice that
ĝ1,n − ĝ2,n√

2Θ̂T Σ̂Θ̂
is the estimator of

g1 − g2
√

2ΘT ΣΘT
which is an intrinsic constant with

respect to the pairwise comparison. Hence in order to reach a p-value less than α we may

increase sample size to n′ such that

√
n′ ·

ĝ1,n − ĝ2,n√
2Θ̂T Σ̂Θ̂

= Zα,
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which yields that √
n
n′

=
Zpn

Zα
. (2.5)

Due to pseudo sample randomness, a few successive increments are required before

we land in the confidence level. We also need an upper bound for n′ and a default split

order in case the difference between two splits is too small to identify.

2.2.4 Multiple Testing

So far we have obtained a method to compare a pair of splits. But when splitting a cer-

tain node we usually need to choose the best split among multiple G1, . . .Gm. If we still

want to test at a certain significance α whether the split with the lowest estimated Gini

index, i.e, ĝn,(1), is the optimal, we can perform multiple pairwise comparison and con-

trol the familywise error rate using standard procedure like Bonferroni (Dunnett, 1955)

or Benjamini-Hochberg (Hochberg and Benjamini, 1990). For example using Bonferroni,

we can

• test the hypotheses Hi,0 : g(1) = g(i), i = 2, . . . , t. Get the p-values p2, . . . , pt, and

• use
∑t

i=2 pt as the p-value of the multiple comparison.

This test aggregates all significance levels into one, presumably resulting in a conservative

estimate as we ignore much of the correlation structure of the splits. In this scenario, the

updates of sample size made in sequential testing should also be modified as we are now
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taking the aggregated significance level. A quick and feasible fix is to replace the pn in

(2.5) by the aggregated significance level. Alternatively, we may just test between the best

two splits.

Because of the computational cost, when we have two splits that cannot be distin-

guished, the sequential and multiple testing procedure may end up demanding an ex-

tremely large number of points to make the test significant. In practice, we halt the testing

early at a cutoff of certain amount Nps of points, and choose the current best split. This

compensation for computation time might lower the real power of the test, leading to a

less stable result.

2.3 Stable Distillation

To build an approximation tree, we replace the greedy splitting criterion by our stabilized

version within the CART construction algorithm. At each node, we first generate an ini-

tial number of pseudo sample points belonging to this node from the black box. Then

we compare prospective splits simultaneously based on this set and decide whether we

either choose the one with the smallest Gini index with certain confidence or request more

pseudo sample points. In the latter case, we keep generating until the pseudo sample size

reaches what is required by the sequential testing procedure. This is repeated until we

distinguish the best split. We perform this procedure on any node that needs to split during

construction to get the final approximation tree.

Algorithm 2.1 (Black Box Distillation).
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• take input: black box predictor F , covariate distribution of X.

• return output: approximating tree T .

• for current approximating tree V, we check

– if V satisfies some stopping condition, then return V.

– otherwise, we generate n pseudo sample points from F and find prospective

splits G1, · · · ,Gm.

– we keep running sequential testing and generating more pseudo sample points

were we not able to distinguish the best split among G1, · · · ,Gm.

– expand V accordingly.

There are several parameters to tune for this algorithm. We first need all the parameters

for CART, for instance the maximal depth of the tree, or maximal and minimal number

sample points in each leaf node. We must also choose α to control the significance of the

test of better split, and Nps which controls the maximal amount of pseudo sample points

we require at each node.

2.3.1 Choice of Prospective Splits

Most methods of finding prospective splits for a decision tree are compatible with our

method once they target at optimazing some information gain (Quinlan, 2014, 1987). In

building an approximating tree, we only consider making splits at those points which

would have been employed in a tree generated from the original training data. We look at
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the original sample points that have been carried along the path and take the possible com-

binations of the covariates and their middle points of adjacent values that have appeared

in those sample points.

The reason for deciding prospective splits on the data rather than the black box itself

is due to the fact that the black box does not carry any information regarding the true

generative distribution of covariates. We would like to estimate the distribution by the

empirical distribution plus some random perturbation in the purpose of learning how the

black box extrapolates. We will show this in detail in the following section.

Although this method will initially generate a large number of prospective splits, be-

cause of the sequential testing scheme, most of those splits will be identified as far worse

than the best after a few tests and can be discarded, leaving a negligible effect on the over-

all performance. In practice, we implement a scheme (Benjamini and Hochberg, 1995) to

adaptively discard splits that perform far worse than the current best. All splits are ordered

by their p-values against the current best split, and the splits fall below the threshold are

discarded.

2.3.2 Generating Points

To generate the pseudo sample, we first generate pseudo covariates then obtain predictions

from the black box to get the responses. It is worth noticing that the first step here may

encounter the obstacle that, in practice, we do not have the true generative distribution of

covariates.
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There are quite a few conventional statistical methods we can implement here. Some

methods focus on estimating the underlying distribution by smoothers (Wand and Jones,

1994), while the others use bootstrapping or residual permutation to directly manipulate

and reorganize the sample points to generate more sample points. In the purpose of ex-

ploring more of the covariate space, we take the first approach and use a Gaussian kernel

smoother upon the empirical distribution of the sample points. This translates to generat-

ing pseudo covariates from observed covariates plus random noise. In the case of discrete

covariates, we choose a neighboring category with a small probability. These steps should

be considered as a prerequisite information of our method as its main target is to approxi-

mate the empirical distribution, which diverges from our oracle coaching task. Therefore

the variance of the random noise and the probability of jumping to a neighboring category

should be empirically decided.

When we go further down the approximating tree, the covariate space may be narrowed

down by the splits along the path. A feasible covariate generator can thus be produced

by only smoothing the empirical distribution of those original sample points that have

been carried on by this path. We further check the boundary condition to ensure that the

covariates we generated agree within the region divided by the splits along the path.

2.3.3 Stopping Rules

Another crucial point to this algorithm is the stopping rule deciding when there is no need

to further split a node. Our test is capable of distinguishing any small gap between two
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candidate splits at the presence of a sufficiently large pseudo sample, as a result we can

ideally build until each node is constant, which is definitely impractical.

We can consider three approaches. The first one, as well as the most straightforward

one, is to keep expanding the tree to a preset depth. The advantage of this fixed depth

strategy is mostly on the practical side when we want to have the tree depth to either make

sense for the actual application (i.e. the length of a decision making path) or to be able to

model interactions to the extent reflecting the number of covariates along the path, which

is also the order of interaction.

The second approach is through configuring a threshold so that only when all candi-

date split pairs have a discrepancy below the threshold do we cease the expansion. The

occurrence of such situation is a sign indicating the unnecessariness of further splitting.

Notice that it is also directly compatible with our test of better split as to model the split

discrepancy. The obstacle we encounter for this method is that we can theoretically ex-

haust all possible candidate splits, which adds much overhead to the multiple testing and

actual computation. The performance will depend on our choice of candidate splits to

compare.

Alternatively, we can take a third approach to test the signal level in the current node

to decide whether the signal is heterogenous enough to support further splits, or in other

words, whether the variability inside the node is purely caused by noise. This method

requires a measure of the inner node uncertainty, which can be done using tools of random

forest variance estimate (Mentch and Hooker, 2016). The development of this stopping

rule requires more mathematical justification and is out of the scope of this thesis.
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For our empirical study in the following section we choose the use the straightforward

strategy of setting the tree depth a priori.

2.4 Empirical Study

In this section we choose random forests (RF) as the black box prediction function, thus

in the following context RF and black box may be used interchangably. However, our

method and analysis can be easily generalized for other predictors by using their prediction

instead. We have conducted empirical studies on both simulated and real data to show how

the performance of approximating tree compares with both decision trees and RFs. The

performance is mainly assessed in three ways: prediction accuracy, consistency with the

RF (mimicking accuracy), and stability.

2.4.1 Simulated Data

We experiment our method on a simple simulated dataset to check its behavior. Assume

X̃ ∈ R5 and Ỹ ∈ {0, 1}, and let the covariate distribution X̃ = (x1, . . . , x5) ∼ Unif[0, 1]5.
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Write p = P(Ỹ = 1|X̃) and let

logit(p) =



2, x1 > 0.5, x2 > 0.7,

−3, x1 > 0.5, 0.7 ≥ x2 > 0.2,

−4, x1 > 0.5, x2 ≤ 0.2,

3, x1 ≤ 0.5, x5 ≤ 0.5, x3 + x2
4 ≥ 1.4,

2, x1 ≤ 0.5, x5 ≤ 0.5, 1.4 > x3 + x2
4 ≥ 0.5,

−2, x1 ≤ 0.5, x5 ≤ 0.5, x3 + x2
4 < 0.5,

2, x1 ≤ 0.5, x5 > 0.5.

The generative distribution is intentionally set to be almost tree-structured so the result

should reflect our method working under ideal conditions. We do so to avoid extreme

cases during our check, while general distributions will be tested on using real datasets.

We compare across three methods: classification trees (CART), random forests (RF)

and our proposed approximating tree (AppTree). During each replication, we generate

1,000 sample points from above distribution and obtain a standard RF consisting of 100

trees and a 5-layer CART tree. Then we build a 5-layer approximating tree via the algo-

rithm above. The significant level α for the test of better split is set to be 0.1, and the

maximal number of pseudo sample points at each node Nps is set to be 104, 105 and 106

respectively. For each Nps we have 100 replications. For assessing stability, we use the

same setting above but fix one RF as an oracle and learn it by an approximating tree 100

times with 104, 105 and 106 respectively.

In order to evaluate predictive accuracy and consistency, we generate new covariates
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Figure 2.1: Predictive accuracy of RF, CART and AppTree. Results of RF and
CART are recalculated for but are theoretically not affected by differ-
ent values of Nps.

Figure 2.2: Mimicking accuracy. PROB compares RF and AppTree by the L1 dif-
ference of their class probabilities. CLASS compares by the predicted
class labels.
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Figure 2.3: Stability of AppTree with different Nps values. The top 4 layers and
top 5 layers of the trees are summarized respectively. In each column,
a single black bar represents a unique structure of the tree, while the
height of the bar represents the number of occurrence of that structure
out of 100 replications.

and measure how much the predictions of approximating tree agree with those of the

RF. To measure stability, which is defined in our case as the structural uniqueness, we

construct multiple approximating trees out of a single RF and look into the variation in

their structures. The better split test does not always guarantee a consistent pick through

multiple trials due to the pseudo sample randomness, hence we hope to see small variation

among all the trees built. We also examine the trees at different depths to capture the

variation along the tree growth. In this chapter, we are more interested in the consistency

with RF and the stability of the approximating tree. However, we will still compare the

predictive accuracy of approximating trees with other models.

Figure 2.1 shows the predictive accuracy of the three methods on new test points. On
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average they share similar predictive accuracy; RF has the smallest variance, followed by

AppTree. This meets our expectation that AppTree is capable of inheriting stability from

the RF after learning how the RF extrapolates. Since the relation between the covariates

and the responses is relatively simple, increasing Nps does not significantly improve the

performance.

Figure 2.2 shows the comparison between RF and AppTree in terms of the L1 differ-

ence of their predicted class probability, and the disagreement of their class labels. Again

the increase of Nps does not bring significant improvement to performance. AppTree has

achieved 95% agreement on average with the RF. By expanding the trees to larger sizes

the mimicking accuracy can still be marginally increased by “overfitting” the RF.

Figure 2.3 shows the stability of AppTree viewing from its top 4 layers and top 5 layers.

It can be seen that by increasing the cap on the maximal number of pseudo sample points

AppTree can generate, its stability gets increased significantly. One unique structure is

obtained when Nps = 106, which means that some node actually require ∼ 106 points to

detect the best split. Two key observations can be made here. Our control of α is relatively

conservative due to our sequential testing and multiple testing steps. The maximal number

of pseudo sample needed may be quite large to detect the best split. Overall, this initial

check shows results as we expected.
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2.4.2 Real Datasets

In this section we will show the results of our method on eight datasets. Seven of them

are available on the UCI repository (Lichman, 2013) and one is the CAD-MDD data used

by Gibbons et al. (2013). We manually split each dataset into train and test for cross

validation. Table 2.1 shows the number of covariates, training and testing sample size and

the levels of responses for each dataset.

Name #Cov #Train #Test Response Levels

CAD-MDD 88 500 336 0,1
BreastCancer(Mangasarian et al., 1995) 30 350 218 0,1

Car 6 1000 727 0,1
ClimateModel(Lucas et al., 2013) 18 400 140 0,1

Abalone 10 3133 1044 0,1,2,3
Cardiotocography 30 1126 1000 0,1,2

WineRed 11 1100 499 0,1,2
WineWhite 11 3000 1898 0,1,2

Table 2.1: Dataset description showing the number of covariates, the number of
training points, the number of testing points and the levels of responses
for each dataset.

To decide the generative distribution of covariates before running our algorithm, we

perturb the empirical distribution by Gaussian noise whose variances are approximately

1/50 of the ranges of corresponding covariates. Probability of jumping to neighboring

category for discrete covariates is set to be 1/7.

We compare across four methods here: classification trees (CART), random forests

(RF), our proposed approximating tree (AppTree), and a baseline method (BASE). Pre-

vious work (Johansson and Niklasson, 2009; Johansson et al., 2010) fixes the number of
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pseudo sample points from the oracle during the coaching procedure. Analogously, we

set BASE to be a non-adaptive version of our AppTree which requests a pseudo sample

set from the RF only once at the root node and uses it all the way down. The pseudo

sample size is set to be 9 times the size of the training data, which is larger than what was

being used in (Johansson and Niklasson, 2009; Johansson et al., 2010) and is designed as

a reasonable blind decision without any prior information.

We use the same setting for all datasets for consistency. For each dataset, we train

a RF containing 200 trees, a CART, then 100 AppTrees and 100 BASEs iteratively ap-

proximating the RF. Nps = 500, 000, which means each node of AppTree can generate

approximately at most 5 × 105 pseudo sample points to decide its split. CART, BASE and

AppTree all grow to the 6th layer including the root. Confidence level α is set to be 0.1.

2.4.3 Binary Classification

Figure 2.4 shows the evaluation of methods on binary classification datasets. Johansson

et al. (2011) has pointed out that a single decision tree is already capable of mimicking

an oracle predictor (the teacher) to make highly accurate predictions given the oracle is

not overly complicated. Our simulation shows similar results, as all three methods CART,

BASE and AppTree tightly follow the ROC curves of the RF and there is no significance

difference among them. Consistency is measured as the frequency of a model agreeing

with the RF when predicting on same input covariates. We use a moving threshold as

the classification bound, and evaluate the consistency on both the testing data and the
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Figure 2.4: Performance evaluation on binary classification datasets. From top to
bottom: CAD-MDD, BreastCancer, Car, ClimateModel. From left to
right: ROC curves, consistency with RF on testing set, consistency
with RF on new data points.
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extrapolated new data (as marked “test” and “new” in the plot). First, all three 6-layer

trees can approximate the RF with over 80% probability for almost any given classification

threshold, and there is no significant difference among them. Further, the behaviors of

both “test” and “new” plot seem similar, which shows support to our generative covariate

distribution estimation. While the overall 80% consistency may seem not powerful enough

to make those trees aligned with the oracle RF, we can build the trees deeper to better

“overfit” the RF.

2.4.4 Multiclass Classification

Figure 2.5 demonstrates the evaluation on 3 multiclass classification datasets. We observe

similar patterns as we did in binary cases that all three tree methods work similarly. ROC

curves of RF are less ideal this time, and ROC curves of three tree methods are a bit

off, which is a sign that deeper trees might be necessary. In general, it is reasonable to

believe that by extending the tree we could approximate a given black box as accurate

as possible, especially when the black box is a RF which shares with trees the similar

pattern to orthogonally segment the covariate space. On the other hand, we also expect

different black box prediction functions when any shallow tree approximation should not

be effective to approximate the RF.

In terms of consistency, all tree methods are again capable of agreeing with the RF on

about 80% of the predictions made by RF on the testing data. We have therefore shown that

our stability request of AppTree does not undermine its predictive power and consistency
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Figure 2.5: Performance evaluation on multiclass (3-class) classification datasets.
ROC curves are plotted in a one v.s. all fashion. Consistency is
only checked on testing data. From top to bottom: Cardiotocography,
WineRed, WineWhite.
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with the black box when compared with other tree methods.

2.4.5 Stability

Stability is the major concern in our simulation study. We measure how many different

tree structures BASE and AppTree report out of their 100 replications of approximating the

same RF, and count how many times each individual tree structure (both splitting covariate

and splitting value) occurs. Table 2.2 shows the number of different tree structures and

number of occurrences of the top 3 frequent structures for both BASE and AppTree on

each dataset. Figure 2.6 and 2.7 visualize the results.
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Figure 2.6: BASE and AppTree stability measured on binary classification
datasets. From left to right: CAD-MDD, BreastCancer, Car, Climate-
Model. In each column, a single black bar represents a unique struc-
ture of the tree, while the height of the bar represents the number of
occurrence of that structure out of 100 replications.
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Figure 2.7: BASE and AppTree stability measured on multiclass classification
datasets. From left to right: Cardiotocography, WineRed, WineWhite,
Abalone. In each column, a single black bar represents a unique struc-
ture of the tree, while the height of the bar represents the number of
occurrence of that structure out of 100 replications.

BASE is supposed to be a non-adaptive version of AppTree that only requests pseudo

sample points once at the root node. Our simulation setting guarantees that BASE and

AppTree have access to the same set of all possible splitting covariates and values. If

we compared AppTree with BASE equipped with an enormous amount of pseudo sam-

ple points at the beginning such that at each node BASE had no fewer sample points than

AppTree, we should expect similar behavior between those two methods. However, BASE

fails to stabilize the tree structure in our experiment as almost every 6-layer tree it produces

has an identical structure, whereas AppTree manages to generate a small number of dom-

inant tree structures with a confidence control of α = 0.1. It proves that our test of better

split and adaptive increment of pseudo sample size significantly contribute to the stability

of the decision tree we obtain from the coaching procedure as the approximating tree.
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BASE AppTree
Name #Struct Top 3 Cnt #Struct Top 3 Cnt

CAD-MDD 100 1, 1, 1 6 86, 5, 4
BreastCancer 99 2, 1, 1 6 69, 15, 9

Car 70 7, 4, 3 41 13, 10, 9
ClimateModel 100 1, 1, 1 4 86, 12, 1

Abalone 93 4, 2, 2 14 26, 22, 15
Cardiotocography 100 1, 1, 1 9 68, 12, 5

WineRed 100 1, 1, 1 26 18, 15, 11
WineWhite 100 1, 1, 1 25 30, 28, 5

Table 2.2: Stability of BASE and AppTree. The table shows the number of identi-
cal structures out of 100 replications and counts the occurrences of the
top 3 structures in each case. Cnt for counts. Boldfaced numbers show
the occurrences of the dominant tree structure out of 100 replications
generated by AppTree for each dataset.

Notice that 0.9531 ≈ 0.2, which means if we choose α = 0.05 and train with with

infinitely many pseudo sample points, we should have the most dominant 6-layer tree

structure occurring about 20 out of 100 replications. Our results on most of the datasets

have already attained such stability with α = 0.1 and Nps = 5 × 105, therefore the control

of α is relative conservative while the choice of the pseudo sample cap Nps = 5 × 105 is

sufficient. The significance level α controls the stability at a split-wise level. It is possible

to extend this to further stabilize the tree by again introducing the FWER at the tree level.

Notice this procedure may also increase the number of pseudo sample points we need at

each split.
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2.5 Model Fitting v.s. Distillation

Our theory simulation study suggests the need for a massive number of pseudo sample

points to optimize a single split in the context of tree distillation. However, such scenario

also applies to the ordinary CART training when we collect data and fit decision trees to

classify or regress, while the teacher model now is the actual underlying distribution on

the covariate space and the means to inquire the teacher model is through experimental

design and data collection. Our results provide the evidence that decision tree splits are

unstable without the presence of big training sets. This relates to the trade off between

sample size, model stability and model interpretability. We will show in later chapters that

the standard CART building strategy with Gini indices is quite flawed in terms of allow-

ing mathematical analyses because of its inherent greediness which repels an analyzable

mathematical description. We have to choose between two factions: either to follow stan-

dard tree method and utilize big samples, or to embrace uncertainties in trees and gain

mathematical advantages.

However, certain aspects of constructing a stable tree distillation are not particularly

tethered to decision trees, whereas they can be treated as alternative difficulty measures or

model selection criteria for mode fitting. For example, when a model distillation can at

the same time achieve the predictive accuracy and the coherence of a given black box, it

implies that either the black model works as an interpretable glass box, or the underlying

learning task is too simple for the chosen black box. Notice the crucial difference between

contrasting models trained by a black box and a glass box simultaneously, and analyzing a

glass box model trained stably as the distillation from a black box model. The latter pays
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more attention to evaluating the inherent behavior of the black box, therefore can be used

to evaluate how much a chosen black box matches the learning problem.
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CHAPTER 3

BOULEVARD BOOSTED TREES AND THEIR ASYMPTOTICS

3.1 Gradient Boosted Decision Trees and Boulevard

Analyses of RFs have relied on a subsampling structure to express the estimator in the form

of a U-statistic from which central limit theorems can be derived. By contrast, GBDT

produces trees sequentially with the current tree depending on the values in those built

previously, requiring a different analytical approach. While the algorithm proposed in

Friedman (2001) is intended to be generally applicable to any loss function, in this chapter

we focus specifically on nonparametric regression (Stone, 1977, 1982). Given a sample of

n observations (x1, y1), . . . , (xn, yn) ∈ [0, 1]d × R, assume they follow the relation

X ∼ µ, Y = f (X) + ε

which satisfies the following:

(M1) µ the density is bounded from above and below, i.e. ∃0 < c1 < c2 s.t. c1 ≤ µ ≤ c2.

(M2) f is bounded Lipschitsz, i.e. | f (x)| ≤ M f < ∞, and ∃α > 0 s.t. | f (x1) − f (x2)| ≤

α|x1 − x2|,∀x1, x2 ∈ [0, 1]d.

(M3) ε is sub-Gaussian error with E [ε] = 0, E
[
ε2

]
= σ2

ε , E
[
ε4

]
< ∞.

GBDT builds correlated trees in a sequential fashion so that each tree predicts the

gradient of current training error so as to perform gradient descent in functional space
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(Friedman et al., 2000). A typical GBDT estimating f̂ = E [Y |X], is represented as a

tree ensemble version of the Robbins-Monro algorithm (Robbins and Monro, 1951), and

combines standard GBDT with L2 loss leading to an iterative fitting of residuals. The

procedure is given as

Algorithm 3.1 (GBDT).

• start with f̂0 = 0;

• For b = 1, . . . , given f̂b, calculate the gradient

zi , −
∂

∂ui

n∑
i=1

1
2

(ui − yi)2
∣∣∣∣
ui= f̂b(xi)

= yi − f̂b(xi);

• construct a tree regressor tb(·) on (x1, z1), . . . , (xn, zn);

• update by a small learning rate λ > 0,

f̂b+1 = f̂b + λtb.

Gradient boosting developed from attempts to understand adaboost (Freund et al.,

1999) in Friedman et al. (2000). Mallat and Zhang (1993) studied the Robbins-Monro

algorithm and showed the convergence when the additive components are taken from a

Hilbert space. As for the tree version of the Robbins-Monro algorithm, Bühlmann (2002)

showed the consistency under L2 norm. From a broad point of view, discussions on con-

sistency and convergence of general L2 boosting framework can be found in Bühlmann

and Yu (2003), Zhang et al. (2005) and Bühlmann and Hothorn (2007).
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There are a number of variations on the algorithm presented above. Friedman (2002)

incorporated subsampling in each iteration and empirically showed significant improve-

ment in predictive accuracy. Rashmi and Gilad-Bachrach (2015) argued that GBDT is

sensitive towards the beginning, requiring lots of later trees to make an impact. They bor-

rowed the idea of dropout (Wager et al., 2013; Srivastava et al., 2014) which trains and

weighs each new iteration with a subset of the existing ensemble to handle such imbal-

ance which they called “over specification”. Similarly, Rogozhnikov and Likhomanenko

(2017) suggested to sequentially scale down the learning rate and studied the convergence

of the boosting path when the learning rate is small enough to guarantee contraction.

All methods mentioned above attempt to regularize boosting to avoid excessive depen-

dence on the initial trees in the ensemble which may lead GBDT to be trapped in local

minima. We hope to unify those methods by carefully combining both subsampling and

adaptive learning rate shrinkage into gradient boosted trees to study its asymptotic behav-

ior, leading to a predictive model capable of statistical inference.

This chapter is particularly inspired by the recent development of the RF inferential

framework (Mentch and Hooker, 2016; Wager and Athey, 2017; Mentch and Hooker,

2017), in which the averaging structure of random forests results in an analysis based

on U-statistics and Hájek projection leading to the asymptotic normality. Similarly, in

classic stochastic gradient methods, Ruppert-Polyak (Polyak and Juditsky, 1992; Ruppert,

1988) averaging is used in achieving asymptotic normality for model parameter estima-

tors by averaging the gradient descent history. The boosting framework we present results

in a model that also exhibits this averaging structure which we can therefore leverage.
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To contrast the sequential development in GBDT with RF we have named this algorithm

Boulevard.

Because of the mathematical difficulties of analyzing the greedy splitting rules of trees,

most current analyses of RFs have been based on variations of the procedure originally pro-

posed in Breiman (2001). Both Mentch and Hooker (2016) and Wager and Athey (2017)

replace bootstrap sampling with subsampling. Wager and Athey (2017) also imposes an

honesty condition via subsample splitting to make the tree structure independent of leaf

values. While these may improve performance, other simplifications such as the use of

completely randomized trees are unlikely to be practically useful, but did allow the devel-

opment of initial consistency results in Biau (2012) and a connection to kernel methods

in Davies and Ghahramani (2014) and Scornet (2016). In a similar fashion, we believe

that the use of subsampling and shrinkage are important for our results. However, we

also assume a global independence between tree structures and leaf values which we term

“non-adaptivity”. We think this condition can be relaxed and that doing so is important for

the performance of Boulevard.

So far as we are aware, these represent the first results on a distributional limit for

GBDT and hence the potential for inference using this framework; we hope that they in-

spire further refinements. Bayesian Additive Regression Trees (BART) (Chipman et al.,

2010) were also motivated by GBDT and allow the development of Bayesian credible in-

tervals. However, the training procedure for BART resembles backfitting a finite number

of trees, resulting in a somewhat different model class. Nonetheless, we expect that some

of the stochastic contraction mapping results developed below may be useful in demon-
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strating frequentist properties for the resulting BART estimators.

3.1.1 Boulevard

Algorithm 3.2 provides a formal statement of the Boulevard algorithm. This incorporates

both subsampling and on-the-fly shrinkage into GBDT.

Algorithm 3.2 (Boulevard).

• Start with f̂0 = 0.

• Given f̂b, calculate the gradient

zi , −
∂

∂ui

n∑
i=1

1
2

(ui − yi)2
∣∣∣∣
ui= f̂b(xi)

= yi − f̂b(xi). (3.1)

• Generate a subsample w ⊂ {1, 2, . . . , n}.

• Construct a tree regressor tb(·) on {(xi, zi), i ∈ w}.

• Update by learning rate 1 > λ > 0,

f̂b+1 =
b − 1

b
f̂b +

λ

b
tb =

λ

b

b∑
i=1

ti.

This design transforms the ensemble to be an average over all trees instead of con-

tinually adding trees together. The benefit of this is twofold. First, shrinkage makes the

ensemble less sensitive to any particular tree. It leaves part of the signal in the gradient

guaranteeing that no tree is fit to entire error. Second, subsampling reduces overfitting. As
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a result, the final form of the predictor sits between an ordinary GBDT and a random for-

est. The name Boulevard comes from the fact that during construction, older trees shrink

but all trees are eventually of equal importance, just as if we were walking on a boulevard

and looking backwards.

3.2 Honest Trees and Forests

3.2.1 Honest Trees and Honest Forests

We illustrate in this section the construction of base tree leaners in the Boulevard algo-

rithm. A decision tree (Breiman et al., 1984) predicts by iteratively segmenting the co-

variate space into disjoint subsets (i.e. leaves) within each of which the average (or the

majority vote) of observations serves as the leaf value. Therefore we can represent a re-

gression tree as a linear combination of observations.

Suppose a regression tree tn(·) segments certain covariate space Ω into a disjoint union

Ω =
⊔m

j=1 A j. We also refer to {A j}
m
j=1 as the leaves or the tree structure. In our case,

Ω = [0, 1]d and {A j}
m
j=1 hyper-rectangles. We explicitly express tn(·) as

tn(x) =

n∑
i=1

sn,i(x)yi,

where, given x ∈ A j,

sn,k(x) =
I(xk ∈ A j)∑n
i=1 I(xi ∈ A j)

.

46



Slight changes should be made to this expression when a subsample is used instead of the

full sample to calculate the leaf value. For given subsample w ⊂ {1, . . . , n}, we write

tn(x; w) =

n∑
i=1

sn,i(x; w)yi.

In this case, for any x ∈ A j,

sn,k(x) = sn,k(x; w) =
I(xk ∈ A j)∑n

i=1 I(xi ∈ A j)I(i ∈ w)
=

I(xk ∈ A j)I(k ∈ w)∑
xi∈A j

I(i ∈ w)
.

In both cases, we call sn(x) = (sn,1(x), . . . , sn,n(x))T the (column) structure vector of x,

and

S n =


sn,1(x1) . . . sn,n(x1)

...
. . .

sn,1(xn) . . . sn,n(xn)

 =


sn(x1)T

...

sn(xn)T


the structure matrix as the stacked structure vectors of the sample.

The greedy algorithms typically used to build decision trees have proved particularly

challenging for mathematical analysis. It is difficult to provide guarantees that it will not

isolate sample points with large observation errors, i.e. outliers, thereby de-stabilizing

the resulting predicted values. We describe this behavior as “chasing order statistics”.

As a result, most results on trees and tree ensembles rely on randomization, for example,

using completely randomized splits or retaining a small chance of making randomized split

covariates (Bühlmann et al., 2002; Biau, 2012; Scornet, 2016; Wager and Athey, 2017).

In particular, Wager and Athey (2017) introduced the concept of honesty through

double-sample trees which apply two different subsamples: one to decide tree structure

and another to calculate leaf values. While this strategy allows the sample to determine
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the tree structure, it creates conditional independence between the tree structure and the

leaf values to prevent trees from being doubly influenced by clustered outliers. In a simi-

lar manner, our analysis requires stringent isolation between these two steps. One way to

achieve so is by not looking at the training responses while deciding the tree structure, as

shown in the second step of the clarification of our honest tree strategy with subsampling

given in Algorithm 3.3.

Algorithm 3.3 (Honest Trees).

• Start with a sample of size n, (x1, y1), . . . , (xn, yn).

• Obtain the tree structure q = {A j}
m
j=1 independently of y1, . . . , yn.

• Uniformly subsample an index set w ∈ {1, . . . , n} of size θn.

• Decide the leaf values, hence tn(·), merely w.r.t w as for x ∈ A j,

tn(x) =
∑
xi∈A j

I(i ∈ w)∑
xl∈A j

I(l ∈ w)
· yi,

with 0/0 defined to be 0.

However, a disadvantage of honest trees is the possibility that there could be no sub-

sample points in a terminal leaf when deciding the leaf values by the second subsample.

We choose to predict 0 for expediency, in which case the corresponding tree structure

vector for points in such leaf will be zeroes. We refer to this issue as missing terminal sub-

sample and will later show that it can be avoided asymptotically by selecting a sufficiently

large subsample rate.

48



The following theorem shows the properties we obtain by applying the honest tree

strategy. One major contribution of honesty is the symmetry of the expected structure

matrix, which connects it to the kernel form of a subsample decision tree.

Theorem 3.1. Denote Ew as the expectation over all possible subsample index sets. For a

fixed segmentation (tree structure) q = {A j}
m
j=1,

(i) Ew [S n] is element-wisely nonnegative, symmetric.

(ii) Ew [S n] is positive semi-definite.

(iii) ‖Ew [S n]‖ ≤ 1.

We now move from a single tree to a tree ensemble, starting from random forests

(Breiman, 2001). The concept of subsampling and bagging has been intensely used in the

construction of random forests whose component trees have distinct structures due to the

random set of sample points and splitting covariates. Denote by (Qn,Qn) the probability

space of all possible tree structures given sample (x1, y1), . . . , (xn, yn) of size n and an

approach of deciding tree structures with randomness, where q = {Ai}
mq

i=1 ∈ Qn is the

structure of a single possible tree. On one hand, if each tree in the forest is honest, we

could write the expected random forest prediction on the sample as

Ŷ = Eq [Ew [S n]] · Y = Eq,w [S n] · Y,

where Y = (y1, . . . , yn)T and Eq the expectation w.r.t. probability measure Qn. On the other

hand, supposing we build a single honest tree deciding tree structure from the structural

space Qn with probability measureQn, Eq,w [S n] is also the expected structure matrix which

carries most properties of Ew [S n].
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Corollary 3.2. Denote Eq,w as the expectation over all possible tree structures and sub-

sample index sets, then

(i) Eq,w [S n] is symmetric, element-wisely nonnegative.

(ii) Eq,w [S n] is positive semi-definite.

(iii)
∥∥∥Eq,w [S n]

∥∥∥ ≤ 1.

Here Eq,w [S n] is similar to the random forest kernel defined by the corresponding tree

structure space, subsampling strategy and tree structure randomization approach.

3.2.2 Adaptivity of Boosted Trees

As mentioned above, when building a random forest, the current ensemble has no influence

on either the structure or the leaf values of the following trees. We could also imagine

an ideal boosting scenario that has reached stationarity, after which all subsequent trees

should behave identically regardless of the current ensemble. One common property is

that the distribution of tree structures should be identical across trees. We refer to this

property as the (non)-adaptivity of tree ensembles, which is defined formally as follows.

Definition 3.1. Denote (Qn,b,Qn,b) the probability space of all possible tree structures given

sample (x1, y1), . . . , (xn, yn) of size n after b trees have been built. A tree ensemble is non-

adaptive if (Qn,b,Qn,b) is identical across b. A tree ensemble is eventually non-adaptive if

(Qn,b,Qn,b) is identical for sufficiently large b.
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The non-adaptivity of random forests contributes to the convenience of taking expecta-

tion of the ensemble since all trees are independent and identically distributed. In contrast,

conventional gradient boosted trees are adaptive. For each new tree, both the structure and

the leaf values use the latest gradient that changes along with the growing ensemble. As

a result, any analysis has to condition on the current ensemble state. Honesty and non-

adaptivity resolve this issue on different levels. In terms of a single decision tree, building

an honest tree helps to reduce the dependence by untying the tree structure from the gra-

dient. In terms of the entire tree ensemble, non-adaptivity further simplifies the analysis

that we use a shared tree structure space and distribution.

In contrast, eventual non-adaptivity is a necessary condition should boosting predic-

tions become stationary after enough iterations. We will discuss the details in Section

5.

In practice, there are a few possible means to enforce non-adaptivity by deciding all

tree structures independently of the gradient. One is through completely randomized trees

for which the gradient only influences the leaf values. An alternative strategy is to ac-

quire another independent sample (x′1, y
′
1), . . . , (x′n, y

′
n) solely for determining tree struc-

tures. We will refer to the Boulevard algorithm equipped with this mechanism as non-

adaptive Boulevard for the rest of the thesis.
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3.3 Boulevard Convergence

Following from Zhang et al. (2005), a first heoretical issue of analyzing boosting method

is the difficulty of attaining convergence. As a starting point we will show that Boulevard

guarantees point-wise convergence under finite sample settings.

3.3.1 Stochastic Contraction and Boulevard Convergence

To prove convergence of the Boulevard algorithm, we introduce the following definition,

lemmas and theorem inspired by the unpublished manuscript by Almudevar (Almude-

var) regarding a special class of stochastic processes. We refer the readers to the original

manuscript, but key points of the proof are briefly reproduced and extended here for the

study of Boulevard asymptotics.

Theorem 3.3 (Multidimensional Stochastic Contraction). Given Rd stochastic process

{Zt}t∈N, a sequence of 0 < λt ≤ 1, define

F0 = ∅,Ft = σ(Z1, . . . ,Zt),

εt = Zt − E [Zt|Ft−1] .

We call Zt a (multidimensional) stochastic contraction if the following properties hold

(C1) Vanishing coefficients

∞∑
t=1

(1 − λt) = ∞, i.e.
∞∏

t=1

λt = 0.
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(C2) Mean contraction

||E [Zt|Ft−1] || ≤ λt ‖Zt−1‖ , a.s..

(C3) Bounded deviation

sup ‖εt‖ → 0,
∞∑

t=1

E
[
‖εt‖

2
]
≤ ∞.

In particular, a multidimensional stochastic contraction exhibits the following behavior

(i) Contraction

Zt
a.s.
−−→ 0.

(ii) Kolmogorov inequality

P
(
sup
t≥T
‖Zt‖ ≤ ‖ZT ‖ + δ

)
≥ 1 −

4
√

d
∑∞

t=T+1 E
[
ε2

t

]
min{δ2, β2}

, (3.2)

where β = ‖ZT ‖ + δ −
√

d supt>T ‖εt‖ > 0.

The proof is provided in Appendix 3.7.2. The Kolmogorov inequality, which is novel

from the original manuscript, is a direct corollary from the original proof in Almudevar

(Almudevar).

Working with non-adaptive Boulevard, adaptive shrinkage grants it the structure of a

stochastic contraction. We now apply Theorem 3.3 to show the convergence.

Theorem 3.4. Given sample (x1, y1), . . . , (xn, yn). If we construct gradient boosted trees

non-adaptively with identical tree structure space (Qn,Qn) and honest regression trees, by
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choosing M � max{M f , y1, . . . , yn} and defining ΓM(x) = sign(x)(|x| ∧ M) as a truncation

function, let Boulevard iteration take form of

f̂b(x) =
b − 1

b
f̂b−1(x) +

λ

b
sb(x)(Y − ΓM(Ŷb−1)), (3.3)

where Y = (y1, . . . , yn)T the observed response vector, Ŷb = ( f̂b(x1), . . . , f̂b(xn))T the pre-

dicted response vector by the first b trees, sb the random tree structure vector. Hence

Ŷb −→

[
1
λ

I + E [S n]
]−1

E [S n] Y,

where E [·] = Eq,w [·], S n the random tree structure matrix defined above.

Proof. Due to non-adaptivity S n is independent of Ŷb for any b. Notice that Y∗ =

λE [S n] (Y − Y∗) for Y∗ =
[

1
λ
I + E [S n]

]−1
E [S n] Y . Define the filtration Fb = σ(Ŷ0, . . . , Ŷb)

and consider the sequence Zb = Ŷb − Y∗. This sequence satisfies the stochastic contraction

condition. First, ‖Z0‖ = ‖Y∗‖ ≤ ∞. Notice

‖E [Zb|Fb−1]‖ =

∥∥∥∥∥∥E
[
b − 1

b
Ŷb−1 +

λ

b
S n(Y − ΓM(Ŷb−1)) − Y∗

∣∣∣∣Fb−1

]∥∥∥∥∥∥
=

∥∥∥∥∥b − 1
b

(Ŷb−1 − Y∗) +
λ

b
E [S n] (Y − ΓM(Ŷb−1)) −

1
b

Y∗
∥∥∥∥∥

≤
b − 1

b

∥∥∥Ŷb−1 − Y∗
∥∥∥ +

∥∥∥∥∥λbE [S n] (Y − ΓM(Ŷb−1)) −
λ

b
E [S n] (Y − Y∗)

∥∥∥∥∥
≤

b − 1 + λ

b

∥∥∥Ŷb−1 − Y∗
∥∥∥ , kb ‖Zb−1‖ ,

where
∑∞

b=1(1 − kb) = ∞. Since entries and row sums of are both ≤ 1,

‖S n‖ ≤
√
‖S n‖∞ ‖S n‖1 ≤

√
1 × n =

√
n.

Therefore

‖εb‖ = ‖Zb − E [Zb|Fb−1]‖ =

∥∥∥∥∥λb (E [S n] − S n)(Y − ΓM(Ŷb−1))
∥∥∥∥∥ ≤ λ

b
(1 +

√
n)2
√

nM.
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Hence
∞∑

b=1

E
[
‖εb‖

2
]
≤

 ∞∑
b=1

1
b2

 · λ2(1 +
√

n)24nM < ∞.

We conclude that Zb
a.s.
−−→ 0, i.e. Ŷb

a.s.
−−→ Y∗. �

This theorem guarantees the convergence of Boulevard path under finite sample setting

once we threshold it by a large M. Non-adaptivity serves here to decompose every tree

model into the multiplication of an independent structure matrix and a predictable response

vector.

As a corollary we obtain the expression of the prediction at any point of interest x. The

result takes the form of a kernel ridge regression with the random forest kernel (Scornet,

2016).

Corollary 3.5. By defining f̂ = limb→∞ f̂b,

f̂ (x) = E [sn(x)]
[
1
λ

I + E [S n]
]−1

Y. (3.4)

Ridge regression tends to shrink the predictions towards 0 and so does (3.4). The

iterative averaging of Boulevard algorithm along with λ results in Boulevard predictions

covering λ
1+λ

of the signal instead of the full signal. We will prove and discuss in details

this behavior in Section 3.4.5.
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3.3.2 Beyond L2 Loss

Besides regression, other tasks may require alternative loss functions for boosting, for in-

stance, the exponential loss L(w, y) = exp(−wy) in adaboost (Freund and Schapire, 1995).

Analogous to the proof for L2 loss, we can write the counterparts for any general loss

L(u) =
∑

i L(ui, yi) whose non-adaptive Boulevard iteration takes the form of

Ŷb =
b − 1

b
Ŷb−1 −

λ

b
S n∇wL(w)

∣∣∣∣
w=Ŷb−1

.

Suppose the existence of the fix point Ŷ∗ = −λE [S n]∇wL(w)
∣∣∣∣
w=Ŷ∗

, then

E
[
Ŷb − Ŷ∗|Fb−1

]
=

b − 1
b

(Ŷb−1 − Ŷ∗) −
λ

b
E [S n]

(
∇wL(w)

∣∣∣∣
w=Ŷb−1

− ∇wL(w)
∣∣∣∣
w=Ŷ∗

)
.

If the gradient term is bounded and Lipschitz (which could be enforced by truncation), i.e.∥∥∥∥∥∇wL(w)
∣∣∣∣
w=w1
− ∇wL(w)

∣∣∣∣
w=w2

∥∥∥∥∥ ≤ M ‖w1 − w2‖ ,

we can similarly show such Boulevard iteration converges by choosing λ ≤ M−1. However,

the closed form of Ŷ∗ can be intractable to obtain and potentially non-unique. For example

for AdaBoost, Ŷ∗ is the solution to Ŷ∗ = −λE [[] S n](exp(−Ŷ∗1y1), . . . , exp(−Ŷ∗nyn))T .

3.4 Asymptotic Normality

Inspired by recent results demonstrating the asymptotic normality of random forest pre-

dictions, in this section we prove the asymptotic normality of predictions from Boulevard.

Before detailing these results, we need some prerequisite discussion on the rates used for

56



decision tree construction in order to ensure asymptotic local behavior. In general, the

variability of model predictions comes from two sources: the variability of the random

sample we use to train the model, and the variability of the response errors. The strategy

for our proof is as follows: we first consider the fixed design case where the sequence

of increasing samples are supposedly determined and have the properties we require, so

only the response errors contribute to the variability. We then establish the uniformity over

almost all random sample sequences to extend the limiting distribution to random design

cases, showing that it is still the response errors that dominate the prediction variability.

3.4.1 Building Deeper Trees

Decision trees can be thought as k-nearest-neighbor (k-NN: Altman, 1992) models where

k is the leaf size and the distance metric is given by whether two points are in the same

leaf. This adapts the metric to the local geometry of the response function. As the conclu-

sions on k-NN predictions require growing-in-size and shrinking-in-radius neighborhoods

(Gordon and Olshen, 1984), so are the counterparts of building deeper trees. Assuming

non-adaptivity, the following assumptions are sufficient for our analysis below. Recall the

notation that A ∈ q ∈ Qn means any leaf A of a tree structure q in the structure space Qn.

We make the following assumptions of the tree building process:

(L1) Asymptotic locality. Writing diam(A) = supx,y∈A|x − y|, we require

sup
A∈q∈Qn

diam(A) = O(dn), dn → 0.
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(L2) Minimal leaf size. If we write V(·) as the volume function in terms of Lebesgue

measure, we require that

inf
A∈q∈Qn

V(A) ≥ O(vn) > 0.

These assumptions together bound the space occupied by any leaf of any possible tree

from being either too extensive or too small. It indicates that any leaf is a geometrically

shrinking neighborhood of the points it contains, while the the number of neighborhood

points increases. We will later specify the rates we require for Boulevard.

3.4.2 Fixed Design

We first consider a fixed sequence of samples with increasing sizes, i.e. for each n, the

sample (xn,1, yn,1), . . . , (xn,n, yn,n) is given. The first subscript n will be dropped when there

is no ambiguity. We specify the rates for the size of leaf nodes as:

(R1) For some ε1 > 0,

dn = O
(
n−

1
d+2−ε1

)
.

(R2) For some ε2 > ε1 > 0,

inf
A∈q∈Qn

n∑
i=1

I(xi ∈ A) ≥ O
(
n

2
d+2−dε2

)
.

One compatible realization is

dn = O
(
n−

1
d+1

)
, inf

A∈q∈Qn

n∑
i=1

I(xi ∈ A) ≥ O
(
n

1
d+2

)
.
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For simplicity all our proofs are under this setting. However, any other rates satisfying

these conditions are also sufficient.

3.4.3 Missing Terminal Subsample

Starting here we use the abbreviations that

kT
n = E [sn(x)] , Kn = E [S n] , rT

n = kT
n

[
1
λ

I + Kn

]−1

.

We take a close look at the missing terminal subsample issue due to which we can only

guarantee ‖kn‖1 ≤ 1. Working with the tree construction rate as above, the subsample rate

θ effectively determines how far ‖kn‖1 is from 1.

Without loss of generality, let each terminal leaf contains no fewer than n
1

d+2 sample

points before subsampling according to our assumed rates. If the subsample size is θn =

n
d+1
d+2 log n, i.e. θ = n−

1
d+2 log n, the chance of missing terminal subsample in a given leaf is

p(n, θ) =

(
n−n

1
d+2

θn

)(
n
θn

) =
(n − θn)(n − θn − 1) · · · (n − θn − n

1
d+2 + 1)

n(n − 1) · · · (n − n
1

d+2 + 1)

≤

(
n − θn

n − n
1

d+2

)n
1

d+2

=

1 − n−
1

d+2 log n

1 − n−
d+1
d+2

n
1

d+2

≤ e ·
(
1 − n−

1
d+2 log n

)n
1

d+2

≤ O
(
1
n

)
.

Therefore, for any x, 1 − ‖kn‖1 ≤ O
(

1
n

)
if we use subsample size at least of n

d+1
d+2 log n.

This requires the subsample to be relatively large, which is compatible with, practically,
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both constant subsample rate i.e. θ is constant, or log n subsample rate i.e. θ = (log n)−1.

We will refer to p(n, θ) as the missing weight in subsequent proofs.

To reach a similar statement for rn, we first examine Kn since every row and column

of Kn suffers from missing terminal subsample. The conclusion is summarized in the

following lemma, whereas the detail calculations are in Appendix 3.7.3.

Lemma 3.6. Using above settings and notations,∣∣∣∣∣∣∣
n∑

i=1

rn,i −
λ

1 + λ

∣∣∣∣∣∣∣ ≤ O
(
1
n

)
.

3.4.4 Exponential Decay of Influence and Asymptotic Normality

The prediction that Boulevard makes at a point is a linear combination of responses

y1, . . . , yn whose coefficients are given by rn. Distant points ideally are less influential

on the prediction, and such decay of influence in our case is exponential. To show this,

we first introduce the notation of vector component selection. Given any n-vector v and an

index set D, denote

v
∣∣∣
D

=


v1 · I(1 ∈ D)

...

vn · I(n ∈ D)

 .
Easy to verify that v = v

∣∣∣
D

+ v
∣∣∣
Dc .

Lemma 3.7. Given sample (x1, y1), . . . , (xn, yn), a point of interest x, set ln =
log n
− log λ =
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c1 log n, and define index set Dn = {i : |xi − x| ≤ ln · ·dn}, then

∥∥∥∥rn

∣∣∣
Dc

n

∥∥∥∥
1
≤ O

(
1
n

)
.

Lemma 3.7 indicates that Boulevard trees will asymptotically rely on a log n shrinking

neighborhood around the point of interest. Given sample size n and a point of interest x,

we can therefore define Bn =
{
i
∣∣∣|xi − x| ≤ dn

}
and Dn =

{
i
∣∣∣|xi − x| ≤ ln · dn

}
. Bn contains

all points that have direct influence on x in a single tree, and Dn contains the points that

dominate the prediction at x. |Bn| and |Dn| follow Binomial distributions with parameters

depending on the local covariate density. These two quantities will appear in later proofs

through the following lemma, whose proof results from simply verifying the Lindeberg-

Feller condition for sums of Bernoulli random variables.

Lemma 3.8. Assume X1, . . . , Xn, . . . , independent binomial random variables s.t. Xi ∼

Binom(n, pn) and npn → ∞.

Xn − npn√
npn(1 − pn)

d
−−→ N(0, 1).

We are now ready to show the limiting distribution of fixed design cases. We check the

Lindeberg-Feller condition for the sequence of predictions f̂n(x) .The following lemma is

used to bound ‖kn‖ and ‖rn‖.

Lemma 3.9. With increasing n and sample (xn,1, yn,1), . . . (xn,n, yn,n) at size n, assume |Bn| ≥

O
(
n · dd

n

)
and

inf
A∈q∈Qn

n∑
i=1

I(xn,i ∈ A) ≥ O
(
n

1
d+2

)
,
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then

O
(
n−

1
2

1
d+1

)
≤ ‖kn‖ , ‖rn‖ ≤ O

(
n−

1
2

1
d+2

)
.

Theorem 3.10. For given x ∈ [0, 1]d, suppose we have fixed sample (xn,1, yn,1), . . . , (xn,n, yn,n)

for each n s.t.
∥∥∥kT

n

∥∥∥
∞
≤ O

(
n−

1
d+2

)
. Write f (Xn) = ( f (x1), . . . , f (xn))T , then

f̂n(x) − rT
n f (Xn)∥∥∥rT

n

∥∥∥ d
−−→ N(0, σ2

ε ).

Proof. Notice that

f̂n(x) − rT
n f (Xn) = rT

n~εn.

To obtain a CLT we check the Lindeberg-Feller condition of rT
n~εn, i.e. for any δ > 0,

lim
n

1
‖rn‖

2 σ2
ε

n∑
i=1

E
[
(rniεi)2I(|rniεi| > δ ‖rn‖σε)

]
→ 0.

Since ‖kn‖∞ ≤ O
(
n−

1
d+2

)
and

[
1
λ
I + Kn

]−1
having row sums of λ

1+λ
+ O

(
n−1

)
, we have

‖rn‖∞ ≤ ‖kn‖∞ ·

∥∥∥∥∥∥∥
[
1
λ

I + Kn

]−1
∥∥∥∥∥∥∥

1

≤ O
(
n−

1
d+2

)
.

Furthermore, since ‖rn‖ ≥ O
(
n−

1
2

1
d+1

)
, we get

‖rn‖∞

‖rn‖
≤ O

(
n−

1
d+2 + 1

2
1

d+1
)
,

which justifies the Lindeberg-Feller condition when ε is sub-Gaussian by

n∑
i=1

E
[
(rniεi)2I(|rniεi| > δ ‖rn‖σε)

]
≤

n∑
i=1

r2
ni

√
E

[
ε4

i

]
· E

[
I(|rniεi| > δ ‖rn‖σε)2]

≤

n∑
i=1

r2
ni

√
E

[
ε4

i

]
·

√
P

(
|εi| ≥

δ‖rn‖σε

rni

)
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≤

n∑
i=1

r2
ni

√
E

[
ε4

i

]√
2 exp

− 1
2σ2

ε

·

(
δ‖rn‖σε

rni

)2
≤ ‖rn‖

2 exp
(
−O

(
n

2
d+2−

1
d+1

))
−→ 0,

since

P(ε > t) ≤ exp
(
−

t2

2σ2
ε

)
for sub-Gaussian ε. �

3.4.5 Random Design

In this section we analyze the random design case where the covariates x1, . . . , xn are

considered randomly drawn from the underlying distribution. To extend the scope of the

fixed design limiting distribution to the random design, we start from the following lemma.

Lemma 3.11. Assume X : Ω1 → S , independent of ε : Ω2 → S , { fn : S ×S → R} sequence

of measurable functions. Assuming for a.s. x ∈ Ω1,

fn(x, ε)
d
−→ N(0, 1).

Then

fn(X, ε)
d
−→ N(0, 1).

The idea behind the lemma is to incorporate the sample randomness by showing an

almost sure point-wise convergence conclusion in a well-defined probability space. To

translate the lemma into our context, we extend the original covariate and error space by
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Kolmogorov’s extension theorem. Define (x1, . . . ) = X ∈ [0, 1]d×N and ε = (ε1, . . . ) ∈ RN,

where the probability measures on [0, 1]d×N and RN are uniquely decided by the product

measures on the cylinder spaces reflecting i.i.d. sampling i.e. yi = f (xi) + εi for i ∈ N.

Write πi the cumulative coordinate projection, i.e. πi(a1, . . . , an, . . . ) = (a1, . . . , ai).We can

calculate kn and Kn w.r.t. Πn = (πn(X), πn(ε)). Thus

ρn(X, ε) =
f̂n(x; Πn) − kT

n (x; Πn)[ 1
λ
I + Kn(Πn)]−1 f (Πn)∥∥∥kn(x; Πn)T [ 1

λ
I + Kn(Πn)]−1

∥∥∥
reflects the prediction after using a random sample of size n. Using Lemma 3.11, CLT of ρn

requests an almost surely claim of Theorem 3.10 where the sequence of (x1, y1), . . . , (xn, yn)

comes from (πn(X), πn(ε)).

To help develop our analysis, we further increase the leaf size by a small amount

assuming that the minimal terminal leaf geometric volume vn follows

vn =
n

1
d+2 +ν

n
= n−

d+1
d+2 +ν ≤ n−

d
d+1 = O

(
dd

n

)
for small ν > 0. The following lemma shows the asymptotic normality where the mean

depends on the random sample, whose proof is in Appendix 3.7.3.

Lemma 3.12. For given x ∈ [0, 1]d, suppose we have random sample (x1, y1), . . . , (xn, yn)

for each n. If we restrict the cardinality of tree space Qn by

|Qn| ≤ O
(
1
n

exp
(
1
2

n
1

d+2

))
,

then
f̂n(x) − rT

n f (Xn)∥∥∥rT
n

∥∥∥ d
−−→ N(0, σ2

ε ).
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The proof of Lemma 3.12 also allows us to substitute all O (·) by Op (·) in the analyses

of random design. Further, we can replace the data driven mean rT
n f (Xn) by its population

version λ
1+λ

f (x). Combining all above we obtain the main theorem of this chapter that the

limiting distribution of the random design in our case is normal.

Theorem 3.13. For given x ∈ [0, 1]d,

f̂n(x) − λ
1+λ

f (x)∥∥∥rT
n

∥∥∥ d
−−→ N(0, σ2

ε ).

Proof. We first show that for given x ∈ [0, 1]d,

rT
n f (Xn) − λ

1+λ
f (x)∥∥∥rT

n

∥∥∥ p
−−→ 0.

Recall the index set Dn = {i : |xi − x| ≤ ln · dn}. Denote ∆ = λ
1+λ
−

∑n
i=1 rn,i = O

(
n−1

)
and

f̃ (x) = ( f (x), . . . , f (x))T an n-vector. We split

rT
n f (Xn) − λ

1+λ
f (x)∥∥∥rT

n

∥∥∥ =
rT

n [ f (Xn) − f̃ (x)]∥∥∥rT
n

∥∥∥ −
∆ · f (x)∥∥∥rT

n

∥∥∥
= −

∆ · f (x)∥∥∥rT
n

∥∥∥ +
rn

∣∣∣
Dn
· [ f (Xn) − f̃ (x)]

∣∣∣
Dn

‖rn‖
+

rn

∣∣∣
Dc

n
· [ f (Xn) − f̃ (x)]

∣∣∣
Dc

n

‖rn‖
.

By replacing O (·) in the fixed case by Op (·) in the random design case, recall that

Op

(
n−

1
2

1
d+1

)
≤ ‖kn‖ , ‖rn‖ ≤ Op

(
n−

1
2

1
d+2

)
.

On one hand, we notice that∣∣∣∣rn

∣∣∣
Dc

n
· [ f (Xn) − f̃ (x)]

∣∣∣
Dc

n

∣∣∣∣ ≤ ∥∥∥∥rn

∣∣∣
Dc

n

∥∥∥∥
1
·

∥∥∥∥[ f (Xn) − f̃ (x)]
∣∣∣
Dc

n

∥∥∥∥
∞
≤ Op

(
1
n
· 2M f

)
= Op

(
n−1

)
.

Therefore
rn

∣∣∣
Dc

n
· [ f (Xn) − f̃ (x)]

∣∣∣
Dc

n

‖rn‖

p
−−→ 0.

65



And similarly since |∆| ≤ O
(
n−1

)
,

∆ · f (x)
‖rn‖

p
−−→ 0.

On the other hand, we can show similarly as |Bn| that |Dn| = O
(
n · (ln · dn)d)

)
a.s. and

therefore ∣∣∣∣rn

∣∣∣
Dn
· [ f (Xn) − f̃ (x)]

∣∣∣
Dn

∣∣∣∣
‖rn‖

≤

∥∥∥∥rn

∣∣∣
Dn

∥∥∥∥ ∥∥∥∥[ f (Xn) − f̃ (x)]
∣∣∣
Dn

∥∥∥∥
‖rn‖

≤

∥∥∥∥[ f (Xn) − f̃ (x)]
∣∣∣
Dn

∥∥∥∥
≤ Op

( √
n · (lndn)d · (lndn · α)2

)
= Op

(√
n · logd+2

n ·dd+2
n

)
= Op

(√
n · logd+2

n ·n−
d+2
d+1

)
= Op

(
(log n)

d+2
2 n−

1
2

1
d+1

)
.

Therefore
rn

∣∣∣
Dn
· [ f (Xn) − f̃ (x)]

∣∣∣
Dn

‖rn‖

p
−−→ 0.

Combining the above calculations gives the result that

rT
n f (Xn) − λ

1+λ
f (x)∥∥∥rT

n

∥∥∥ p
−−→ 0.

Therefore by Slutsky’s Theorem,

f̂n(x) − λ
1+λ

f (x)∥∥∥rT
n

∥∥∥ =
f̂n(x) − rT

n f (Xn)∥∥∥rT
n

∥∥∥ +
rT

n f (Xn) − λ
1+λ

f (x)∥∥∥rT
n

∥∥∥ d
−−→ N(0, σ2

ε ).

�
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Instead of the whole signal, Boulevard converges to λ
1+λ

of it. In standard boosting, we

expect to converge to the whole signal. Boosting after this point will result in a random

forest regressing on pure noise, which is redundant. In comparison, Boulevard down-

weighs the boosting history to regularize that each tree in the finite ensemble reflects partial

signal. It thus avoids being dominated by the first few trees then repeatedly fitting on noise.

In practice, as we showed that the prediction from Boulevard is consistent w.r.t λ
1+λ

f (x),

we simply rescale it by 1+λ
λ

to retrieve the whole signal.

3.4.6 Undersmoothing, Tree Space Capacity and Subsampling

In the expression in Theorem 3.13, the mean is deterministic, but the variance is random.

From results on kernel ridge regression, we would expect that this stochastic variance con-

verges in probability if the random forest kernel behaves as generic kernel with a shrinking

bandwidth. From a theoretical perspective, the optimal rate of
∥∥∥rT

n

∥∥∥ is bounded from be-

low by O
(
n−

1
2

1
d+1

)
, which corresponds to the optimal nonparametric regression rate using

1
2 -Hölder continuous functions as base learners (Stone, 1982). In practice,

∥∥∥rT
n

∥∥∥ relies on

the specific method of growing the boosted trees, therefore may vary from case to case.

Furthermore, this demonstrates that with carefully structured trees the prediction is

consistent while the variance involves no signal but the error. It acts like an undersmoothed

local smoother whose bias term shrinks faster than the variance term.

We have a strict requirement that the tree terminal node size grows at a rate between

O
(
n

1
d+1

)
and O

(
n

1
d+2

)
to guarantee undersmoothing. Any log term is allowed to be added
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to the existing polynomial result without changing the behavior. We notice that different

subsample rates (i.e. log n in Wager et al. (2014),
√

n in Mentch and Hooker (2016)) have

been applied for measuring uncertainty. In comparison, Boulevard algorithm requires a

relatively restricted rate between these. In addition, though Boulevard training implements

subsampling at each iteration, this does not influence the asymptotic distribution. The

impact of subsampling is on the possible deviation from the mean process therefore the

convergence speed if we assume non-adaptivity.

In the proof we have required the size of tree space to scale at a rate of 1
n exp

(
1
2n

1
d+2

)
.

In comparison, Wager and Walther (2015) have shown that, in fixed dimension, any tree

can be well approximated by a collection of O(exp(log n)2) hyper rectangles. Therefore

the capacity of our designated tree space is decently large from a practical perspective.

3.5 Eventual Non-adaptivity

All the results mentioned above have assumed the non-adaptivity of the boosting proce-

dure of Boulevard in order to separate the tree structure from the leaf values. In standard

boosting however, it is conventional and reasonable to decide tree structures on the current

gradients in order to better exploit the gap between the prediction and the signal. Such

procedures are known for their tendency to overfit which can be relieved by subsampling.

However, when seeking to extend our results to this case we lose the easy identifiability of

a Boulevard convergence point since the tree structure distribution changes at each itera-

tion. We therefore need more assumptions and further theoretical development to extend
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the asymptotic normality to a more practical Boulevard algorithm that allows the current

gradient to determine tree structure.

A first approach to this is to relax non-adaptivity to eventual non-adaptivity. We pos-

tulate a convergent sequence of predictions, indicating that underlying the tree spaces will

be stabilized after boosting for sufficiently long time. Here we introduce the notation

E
[
S n(Y, Ŷ)

]
where Y = (y1, . . . , yn)T and Ŷ = ( f̂ (x1), . . . , f̂ (xn))T indicating the expected

tree structure given the gradient of the loss between observed responses and current predic-

tions. In regression this is Y − Ŷ , and we will take this form into the following discussion

instead of a generic gradient expression.

It is also worth noticing we can also justify non-adaptivity asymptotically in contrast

to pursue eventual non-adaptivity, . Consider building decision trees at a given rate with-

out pruning. When sample size increases, the tree structure also gets more and more

granular until n gets sufficiently large that the granular segmentation is very similar to

the segmentation given by randomized trees without using the greedy building strategy.

This understanding is also supported by the current practice of honest trees that partially

diminish the influence of responses on the tree structure.
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3.5.1 Local Homogeneity and Contraction Regions

We start with trees whose splits are based on the optimal Gini gain (Breiman et al., 1984).

For (x1, z1), . . . , (xn, zn), the chosen split minimizes the impurity in the form of

inf
L,R

∑
i∈L

(zi − z̄L)2 +
∑
i∈R

(zi − z̄R)2, (3.5)

where L ⊂ {1, . . . , n},R = LC. Once the optimal split is unique, i.e. the optimum has

a positive margin over the rest, we could allow a small change of all y’s values without

changing the split decision. This also holds true if the split is decided by a subsample

instead. In terms of adaptive boosting, this observation demonstrates local homogeneity

that, except a set Ω0 ⊂ R
n with Lebesgue measure 0 where (z1, . . . , zn)T = Y − Ŷ ∈ Ω0 has

multiple optima for (3.5), we can segment Rn, the space of possible Y − Ŷ , into subsets⊔α
i=1 Ci = Rn\Ω0 s.t. E

[
S n(Y, Ŷ)

]
= E

[
S n(Y, Ŷ ′)

]
for Y − Ŷ ,Y − Ŷ ′ ∈ Ci the same subset.

Notice that Gini gain is insensitive to scaling, i.e. multiplying (y1, . . . , yn) by a nonzero

factor. Therefore all Ci’s are open double cones in Rn.

Definition 3.2 (Contraction Region). Given the sample (x1, y1), . . . (xn, yn). Write Y =

(y1, . . . , yn) and current prediction Ŷ = (ŷ1, . . . , ŷn). Following the above segmentation⊔α
i=1 Ci = Rn\Ω0. We call Ci a contraction region if Y∗ ∈ Ci for the following Y∗

Y∗ = λE
[
S n(Y, Ŷ)

]
(Y − Y∗), i.e. Y∗ =

[
1
λ

I + E
[
S n(Y, Ŷ)

]]−1

E
[
S n(Y, Ŷ)

]
Y,

for any Y − Ŷ ∈ Ci, where E
[
S n(Y, Ŷ)

]
is the unique structural matrix in this region.

The intuition behind this definition is that, as long as a Boulevard process stays inside a

contraction region, the subsequent tree structures will be conditionally independent of the
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predicted values. Therefore the path becomes non-adaptive, collapsing to Y∗. To achieve

this eventual non-adaptivity, we would like to know when a Boulevard path is permanently

contained in a contraction region.

We should point out here that we have not shown the existence and the uniqueness of

such contraction regions. Such an analysis would rely on the split proposing methods, the

sample and the choice of λ.

3.5.2 Escaping the Contraction Region

In this section we explore possible approaches to restrict a Boulevard process inside a

contraction region. Assuming the existence of contraction regions, we recall Theorem 3.3

which indicates that the Boulevard process has positive probability of not moving far from

the fixed point. We formally state this as follows.

Theorem 3.14. Denote B(x, r) the open ball of radius r centered at x in Rn. Suppose

C ⊂ R a contraction region, Y∗ ∈ C the contraction point and B(Y, 2r) ⊂ C for some r > 0.

Write Ŷb the Boulevard process. For sufficiently large t,

P
(
Ŷb ∈ C,∀b ≥ t

∣∣∣Ŷt ∈ B(Y∗, r)
)
−→ 1, t → ∞.

Proof. We refer to Theorem 3.3. Choose δ = r, and choose T s.t. ∀t > T,

λ

t

(
1 +
√

n
)

2
√

nM ≤
r
√

d
, i.e. sup ‖εt‖ ≤

r
√

d
,
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In this case, β =
∥∥∥Ŷt

∥∥∥ + δ −
√

d supt≥T ‖εt‖ ≥ δ = r. By the conditional independence of Ŷt

and εb, b > t in the contraction region,

P
(
Ŷb ∈ C,∀b ≥ t

∣∣∣Ŷt ∈ B(Y∗, r)
)
≥ P

(
sup
b>t

∥∥∥Ŷb − Y∗
∥∥∥ ≤ ∥∥∥Ŷt − Y∗

∥∥∥ + δ
∣∣∣∣Ŷt ∈ B(Y∗, r)

)
= P

(
sup
b>t

∥∥∥Ŷb − Y∗
∥∥∥ ≤ ∥∥∥Ŷt − Y∗

∥∥∥ + δ

)
≥ 1 −

4
√

d
∑∞

b=t+1 E
[
ε2

b

]
r2 −→ 1.

�

Theorem 3.14 guarantees neither the existence or the uniqueness of the contraction

region. A possible ad hoc solution to the existence is to apply a tail snapshot which uses

the tree space that applies to some iteration b∗ for the rest of the boosting steps when

the Boulevard path begins to become stationary. This manually enforces the conditional

independence between tree structures and boosting gradients, leading to non-adaptivity

after b∗. An example of Boulevard regression implementing the tail snapshot is detailed in

Algorithm 3.4.

Algorithm 3.4 (Tail Snapshot Boulevard).

• Start with f̂0 = 0.

• For b = 1, . . ., given f̂b, calculate the gradient

zi , −
∂

∂ui

n∑
i=1

1
2

(ui − yi)2
∣∣∣∣
ui=ΓM( f̂b(xi))

= yi − ΓM( f̂b(xi));
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• If b∗ is not found, update by 1 > λ > 0 and the tree structure space Qb decided by

all subsamples of current gradient,

f̂b+1(x) =
b

b + 1
f̂b(x) +

λ

b + 1
sb(x; Qb)(z1, . . . , zn)T ,

where sb(x; Q) denotes the random tree structure vector based on tree space Q. If

b∗ is found, update by Qb∗ instead, i.e.

f̂b+1(x) =
b

b + 1
f̂b(x) +

λ

b + 1
sb(x; Q∗b)(z1, . . . , zn)T .

• When b∗ is not found, check the empirical training loss as a measure of the distance

to the fixed point.

Lb+1 =
1

2n

n∑
i=1

(
λ

1 + λ
yi − f̂b+1(xi)

)2

.

If Lb+1 < L∗ a preset threshold, we claim Boulevard is close enough to a fixed point

and choose the current b + 1 to be b∗.

3.6 Empirical Study

We have conducted a minimalist empirical study to demonstrate the performance of Boule-

vard. Despite the fact that our purpose in developing Boulevard lies in statistical inference,

we require its accuracy to be on par with other predominant tree ensembles, which is as-

sessed on both simulated and real world data. In addition, we inspect the empirical limiting

behavior of non-adaptive Boulevard to show its agreement with our theory.
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3.6.1 Predictive Accuracy

We first compare Boulevard predictive accuracy with the following tree ensembles: Ran-

dom Forest (RF), gradient boosted trees without subsampling (GBDT), stochastic gradient

boosted trees (SGBDT), non-adaptive Boulevard achieved by completely randomized trees

(rBLV), adaptive Boulevard whose tree structures are influenced by gradient values (BLV).

All the tree ensembles build same depth of trees throughout the experiment.

Results on simulated data are shown in Figure 3.1. We choose sample size of 5000 and

use the following two settings as underlying response functions: (1) y = x1 + 3x2 + x3x4

(top), and (2) y = x1 + 3x2 + (1 − x3)2 + x4x5 + (1 − x6)6 + x7 (bottom). Error terms

are Unif[-1,1] (left) and equal point mass on {−1, 1} (right). Training errors are evaluated

on the training set with noisy responses, while testing errors are evaluated using the truth

from the underlying signal on a separate test set, which is why testing errors appear to be

smaller than training errors. BLV and rBLV are comparable with RF, while all the three

equal-weight tree ensembles are slightly inferior to GBM and SGBM.

Results on four real world data sets selected from UCI Machine Learning Repository

(Dheeru and Karra Taniskidou, 2017; Tüfekci, 2014; Kaya et al., 2012) are shown in Figure

3.2. All curves are averages after 5-fold cross validation. Different parameters are used

for different data sets. Rankings of the five methods in comparison are quite volatile here,

nevertheless rBLV and BLV manage to achieve decent performance on test sets despite the

fact that BLV has the lowest training error which is a common indicator for overfitting.
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Figure 3.1: Training and testing error curves of tree ensembles on silmulated data.

3.6.2 Limiting Distribution

To examine the limiting behavior of non-adaptive Boulevard, we start with the model

y = x1 + 3x2 + x2
3 + 2x4x5. (3.6)

A set of 10 fixed test points are used along the experiments. We set a sample size of 1000,

add different sub-Gaussian error terms to this signal and built non-adaptive Boulevard

until ensemble size reaches 2000. This is repeated 1000 times with a new sample each
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Figure 3.2: Training and testing error curves of tree ensembles on real world data
sets.

time and we plot the distribution of the predictions in Figure 3.3. All these curves are

undistinguishable from normal distribution by Kolmogorov-Smirnov test.

In addition, Table 3.1 shows the experiment in which we apply symmetric uniform

errors and observe the scaling of prediction standard deviation along with the increase of

error standard deviation.
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Figure 3.3: Distributions of predictions of test points with different error terms.
The errors are N(0,1), Unif[-1,1], equal point mass at {−1, 1}, and half
chance -1 half chance Unif[0,2], respectively.

3.6.3 Reproduction Interval

Similar to prediction intervals which quantify the uncertainty of future predictions, we

introduce the reproduction interval as the uncertainty measure for where the prediction

would be if it were made on another independent sample. Theorem 3.13 is used to create

reproduction intervals for Boulevard. kn in the stochastic variance is empirically estimated

directly using the ensemble, while [ 1
λ
I + Kn]−1 is conservatively simplified to its largest

possible norm λ. We then scale the variance estimate by 2 to account for having separate
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Error\Fixed Point 1 2 3 4 5

0 0.030 0.044 0.044 0.049 0.050
Unif[-1,1] 0.067 0.089 0.096 0.087 0.096
Unif[-2,2] 0.119 0.154 0.172 0.158 0.162
Unif[-4,4] 0.243 0.271 0.278 0.278 0.288

Error\Fixed Point 6 7 8 9 10

0 0.037 0.038 0.033 0.032 0.040
Unif[-1,1] 0.083 0.081 0.074 0.071 0.082
Unif[-2,2] 0.152 0.122 0.139 0.137 0.145
Unif[-4,4] 0.317 0.284 0.289 0.318 0.254

Table 3.1: Prediction standard deviations scale with error standard deviations.

independent samples. We use the training sample to create reproduction intervals for the

test points, then repeatedly train and predict each test point for another 100 times with a

different sample each time. Figure 3.4 shows the 95% reproduction intervals we capture

under different settings. We anticipate more accurate results with larger sample size.

Furthermore, we notice the uniform pattern of biases in those plots. This bias comes

from two known causes. One is that we are using small samples which are far from

guaranteeing the consistency. The other is because of the edge effects; the distance of the

ten chosen test points to the center of the hypercube is respectively 0.000, 0.671, 0.894,

0.894, 0.894, 0.693, 0.520, 0.436, 0.510 and 0.469. We in general expect biased prediction

when the point is near the boundary.
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Figure 3.4: Reproduction intervals. Boxplots show distributions of predictions;
red intervals are reproduction intervals; blue dots are truths. Sample
sizes are 1000 (top row) and 5000 (bottom row), error terms Unif[-
1,1] (left column) and Unif[-2, 2] (right column). Coverage is shown
by numbers next to interval centers.

3.7 Proofs

In this section we list the complete proofs of all theorems covered above.
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3.7.1 Properties of Tree Structure Matrices

Proof to Theorem 3.1

Proof. To prove (1), element-wise non-negativity is trivial. To show symmetry, consider

any given i , j and assume xi ∈ A and x j ∈ A′ under the assumption of subsample

uniformity,

Ew [S n]i, j = Ew

[
sn, j(xi)

]
=

1(
n
θn

) ∑
w

I(x j ∈ A)I( j ∈ w)∑
xl∈A I(l ∈ w)

Ew [S n] j,i = Ew

[
sn,i(x j)

]
=

1(
n
θn

) ∑
w

I(xi ∈ A′)I(i ∈ w)∑
xl∈A′ I(l ∈ w)

Therefore Ew [[] S n]i, j = Ew [S n] j,i = 0 if A , A′.

In the cases of A = A′, I(x j ∈ A) = I(xi ∈ A′) = 1. We consider the following

possibilities of w.

(a) For i < w, j < w,
I( j ∈ w)∑

xl∈A I(l ∈ w)
=

I(i ∈ w)∑
xl∈A I(l ∈ w)

= 0.

(b) For i ∈ w, j ∈ w,

I( j ∈ w)∑
xl∈A I(l ∈ w)

=
I(i ∈ w)∑

xl∈A I(l ∈ w)
=

1∑
xl∈A I(l ∈ w)

.

(c) For i ∈ w, j < w, consider w′ = w\{i} ∪ { j} s.t.
∑

xl∈A I(l ∈ w) =
∑

xl∈A I(l ∈ w′),

I( j ∈ w′)∑
xl∈A I(l ∈ w′)

=
I(i ∈ w)∑

xl∈A I(l ∈ w)
=

1∑
xl∈A I(l ∈ w)

.

(d) Similarly, for i < w, j ∈ w, consider w′ = w\{ j} ∪ {i},

I( j ∈ w)∑
xl∈A I(l ∈ w)

=
I(i ∈ w′)∑

xl∈A I(l ∈ w′)
=

1∑
xl∈A I(l ∈ w)

.
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Since all w’s are equally likely, we conclude by symmetry that Ew [S n]i, j = Ew [S n] j,i,

hence Ew [S n] is symmetric.

To prove (2), notice ∀xi, x j, xk ∈ A,

Ew [S n]k,i =
1(
n
θn

) ∑
w

I(i ∈ w)∑
xl∈A I(l ∈ w)

= Ew [S n] j,i .

Therefore Ew [S n], after proper permutation to gather points in same leaves together, is

diagonally blocked with equal entries in each diagonal block and 0 elsewhere, thus positive

semi-definite.

To show (3), notice that S n has row sums of ≤ 1 (not exactly 1 due to cases of missing

subsample points in the leaf), so does Ew [S n]. Thus ‖Ew [S n]‖1 ≤ 1. Similarly, Ew [S n] has

column sums of ≤ 1 due to symmetry and ‖Ew [S n]‖∞ ≤ 1. By the Hlder inequality,

ρ(Ew [S n]) = ‖Ew [S n]‖ ≤
√
‖Ew [S n]‖1 ‖Ew [S n]‖∞ ≤ 1.

�

3.7.2 Stochastic Contraction

Definition 3.3 (Stochastic Contraction). Given real-valued stochastic process {Xt}t∈N, a

sequence of 0 < λt ≤ 1, define

F0 = ∅,Ft = σ(X1, . . . , Xt),

εt = Xt − E [Xt|Ft−1] .

We call Xt a stochastic contraction if the following is satisfied
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• Vanishing coefficients

∞∑
t=1

(1 − λt) = ∞, i.e.
∞∏

t=1

λt = 0.

• Mean contraction

λtXt−1I(Xt−1 ≤ 0) ≤ E [Xt|Ft−1] ≤ λtXt−1I(Xt−1 ≥ 0), a.s..

• Bounded deviation

sup |εt| → 0,
∞∑

t=1

E
[
ε2

t

]
≤ ∞.

Lemma 3.15. If {Xt}t∈N is a stochastic contraction.

• Almost sure convergence

Xt
a.s.
−−→ 0.

• Kolmogorov maximal inequality. For any T, δ s.t. β = |XT | + δ − supt>T |εt| > 0,

P
(
sup
t≥T
|Xt| ≤ |XT | + δ

)
≥ 1 −

4
∑∞

t=T+1 E
[
ε2

t

]
min{δ2, β2}

.

Proof. Define the stopping time of sign changes

T0 = 0,Tk = inf{t > Tk−1|Xt−1 ≤ 0, Xt > 0 or Xt−1 ≥ 0, Xt < 0}.

We now look at every realized path and examine the segment of the process holding the

same sign. W.o.l.g., suppose Xt ≥ 0 for Tk < t < Tk+1. Easy to check

Xt = E [Xt|Ft−1] + εt ≤ λtXt−1 + εt ≤ Xt−1 + εt ≤ XTk +

t∑
s=Tk+1

εs. (3.7)
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Therefore |Xt| ≤
∣∣∣XTk

∣∣∣ + ∣∣∣∑t
s=Tk+1 εs

∣∣∣ , same for the negative case. Since εt’s are independent

and
∑∞

t=1 E
[
ε2

t

]
≤ ∞,

∑∞
t=1 εt exists a.s.. Write N = supk{Tk ≤ ∞} the number of sign

changes.

If there are infinite sign changes, i.e. N = ∞, by sending k → ∞,
∣∣∣XTk

∣∣∣ a.s.
−−→ 0 and∣∣∣∑Tk+n

s=Tk+1 εs

∣∣∣ a.s.
−−→ 0,∀n > 0. Hence Xt

a.s.
−−→ 0.

If there are finite sign changes, we assume w.l.o.g. that for some k, Xt ≥ 0,∀t ≥ Tk.

(3.7) can be written as Xt−εt ≤ Xt−1 which indicates Xt−
∑t

s=Tk+1 εs is decreasing, therefore

has a limit (−∞). Since
∑∞

s=Tk+1 εs exists a.s., Xt
a.s.
−−→ c ≥ 0. Assume c > 0,

∞∑
s=Tk+1

εs ≥

∞∑
s=Tk+1

Xs − λsXs−1 = −λTk+1XTk +

∞∑
s=Tk+2

(1 − λs)Xs−1 = ∞,

which is a contradiction. Therefore Xt
a.s.
−−→ 0.

To show the maximum inequality, we take the same notations above, and also look at

segmentations by sign changes. For any t in the same segment as T ,

|Xt| ≤ |XT | +

∣∣∣∣∣∣∣
t∑

s=T+1

εt

∣∣∣∣∣∣∣ ≤ |XT | + sup
T ′>T

∣∣∣∣∣∣∣
T ′∑

s=T+1

εs

∣∣∣∣∣∣∣ .
For any t in a different segment starting at T ′,

|Xt| ≤
∣∣∣X′T ∣∣∣ +

∣∣∣∣∣∣∣
t∑

s=T ′+1

εt

∣∣∣∣∣∣∣ ≤ ∣∣∣X′T ∣∣∣ + sup
S>T ′

∣∣∣∣∣∣∣
S∑

s=T ′+1

εs

∣∣∣∣∣∣∣ ≤ sup
s>T
|εs| +

∣∣∣∣∣∣∣
S∑

s=T ′+1

εs

∣∣∣∣∣∣∣ .
Now we consider any possible sequence of {εt, t > T } and allow T ′, S to change. Kol-

mogorov maximal inequality implies

P

sup
i, j>T

∣∣∣∣∣∣∣
j∑

s=i

εs

∣∣∣∣∣∣∣ ≤ x

 ≥ P

sup
i>T

∣∣∣∣∣∣∣
i∑

s=T

εs

∣∣∣∣∣∣∣ ≤ x
2

 ≥ 1 −
4
∑∞

s=T E
[
ε2

s

]
x2 .
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The conclusion is obtained by noticing that |Xt| ≤ |XT | + δ for any {εt}t>T satisfying

sup
i, j>T

∣∣∣∣∣∣∣
j∑

s=i

εs

∣∣∣∣∣∣∣ ≤ min{δ, β}.

�

Proof to Theorem 3.3

Proof. The idea is to define a sequence of adaptive orthonormal rotations Rt ∈ Ft−1 to align

the expected update with the previous step so that we can apply the R result component-

wisely. Define RtE [Zt|Ft−1] = γt−1Zt−1, for some γt−1 > 0, γt−1 ∈ Ft−1. The contraction

assumption also implies that γt−1 ≤ λt−1. Define a new process Z∗i satisfying

1. Z∗1 = Z1,R1 = I,

2. writing R∗t =
∏n

i=1 Ri ∈ Ft−1 s.t. Z∗t = R∗t Zt = R∗t εt + R∗tE [Zt|Ft−1] .

Above implies ‖Zt‖ =
∥∥∥Z∗t

∥∥∥, thus we need to prove the equivalence that Z∗t
a.s.
−−→ 0. Notice

that Here
∑n

i=1 R∗i εi is component-wisely a martingale with

∞∑
i=1

E[
∥∥∥R∗i εi

∥∥∥2
] =

∞∑
i=1

E[‖εi‖
2] < ∞,

hence
∑n

i=1 R∗i εi exists a.s.. Since the construction aligns Z∗t with E
[
Z∗t |Ft−1

]
we apply

Lemma 3.15 to obtain almost sure convergence to 0 component-wisely, thus
∥∥∥Z∗t

∥∥∥ a.s.
−−→

0. �
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Proof to Corollary 3.5

Proof. Expanding f̂ (x) gives

f̂ (x) = lim
B→∞

1
B

B∑
b=1

sb(x)(Y − Ŷb)

= lim
B→∞

1
B

B∑
b=1

sb(x)(Y − Y∗ + Y∗ − Ŷb)

= lim
B→∞

1
B

B∑
b=1

sb(x)(Y − Y∗) + lim
B→∞

1
B

B∑
b=1

sb(x)(Y∗ − Ŷb)

= E [sb(x)] (Y − Y∗) + 0

= E [sn(x)]
[
1
λ

I + E [S n]
]−1

Y.

�

3.7.3 Asymptotic Normality

Proof to Lemma 3.6

Proof. Consider the expansion[
1
λ

I + Kn

]−1

= λ

∞∑
i=0

(
(λ)2iK2i

n − (λ)2i+1K2i+1
n

)
.

We examine the column sums of each of the matrix powers. Start with K2
n ,

∑
i=1

(K2
n)i,1 =

n∑
i=1

n∑
j=1

(Kn)i, j(Kn) j,1 =

n∑
j=1

(Kn) j,1

n∑
i=1

(Kn)i, j.
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Since Kn consists of structure vectors of sample points, for some c > 0,

1 −
c
n
≤

n∑
j=1

(Kn)i, j =

n∑
j=1

(Kn)i, j ≤ 1, i = 1, . . . , n.

Given Kn is nonnegative,(
1 −

c
n

)2
≤

∑
i=1

(K2
n)i,1 =

n∑
j=1

(Kn) j,1

n∑
i=1

(Kn)i, j ≤ 1.

Repeating the same discussion yields(
1 −

c
n

)m
≤

∑
i=1

(Km
n )i,1 ≤ 1.

Therefore,

λ

(
1

1 − λ2(1 − c
n )2 −

λ

1 − λ2

)
≤

n∑
j=1

[
1
λ

I + Kn

]−1

j,1

= λ

 ∞∑
i=0

(λ)2i(K2i
n ) j,1 − (λ)2i+1(K2i+1

n ) j,1


≤ λ

(
1

1 − λ2 −
λ

1 − λ2(1 − c
n )2

)
,

where both the LHS and RHS reduce to λ
1+λ

+ O
(

1
n

)
. So is true for any column sum of[

1
λ
I + Kn

]−1
. Now given kn is nonnegative and 1−‖kn‖1 ≤ O

(
1
n

)
we reach the assertion. �

Proof to Lemma 3.7

Proof. Under locality, kn j = 0 if |xi−x j| > dn, while [Kn]i, j = 0 if |xi−x j| > dn. Recursively,

if |xi − x j| > ln · dn then [Kl
n]i, j = 0 for l ≤ ln. As kn and Kn are element-wisely nonnegative,

we again expand the matrix inverse∥∥∥∥rn

∣∣∣
Dc

n

∥∥∥∥
1

=
∑

|x−xi |>ln·dn

|rni| =
∑

|x−xi |>ln·dn

∣∣∣∣∣∣∣∑j

kn j

[
1
λ

I + Kn

]−1

j,i

∣∣∣∣∣∣∣
86



=
∑

|x−xi |>ln·dn

∣∣∣∣∣∣∣∣
∑

|x−x j |≤dn

kn j

[
1
λ

I + Kn

]−1

j,i

∣∣∣∣∣∣∣∣
≤

∑
|x−x j |≤dn

kn j

∑
|x−xi |>ln·dn

∣∣∣∣∣∣∣
[
1
λ

I + Kn

]−1

j,i

∣∣∣∣∣∣∣
≤

∑
|x−x j |≤dn

kn j

∑
|xi−x j |>(ln−1)·dn

∣∣∣∣∣∣∣
[
1
λ

I + Kn

]−1

j,i

∣∣∣∣∣∣∣
≤

∑
|x−x j |≤dn

kn j

∑
|xi−x j |>(ln−1)·dn

λ

∞∑
l=ln

λl[Kl
n] j,i

≤
∑

|x−x j |≤dn

kn j

∞∑
l=ln

λl+1

≤

∞∑
l=ln

λl+1 =
λ

1 − λ
1
n
.

�

Proof to Lemma 3.9

Proof. The idea is to bound kn j from both above and below. The condition

inf
A∈q∈Qn

n∑
i=1

I(xi ∈ A) ≥ O
(
n

1
d+2

)
implies that kn j ≤ O

(
n−

1
d+2

)
. Given ‖kn‖1 ≤ 1,

‖kn‖ ≤
√
‖kn‖1 ‖kn‖∞ ≤ O

(
n−

1
2

1
d+2

)
On the other hand, given |Bn| ≥ O

(
n · dd

n

)
, there are at most

O
(
n · dd

n

)
= O

(
n

1
d+1

)
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kn j’s that are positive. Since ‖kn‖1 ≥ 1 − O(n−1),

‖kn‖ ≥ O


√(

n−
1

d+1

)2
· n

1
d+1

 = O
(
n−

1
2

1
d+1

)
.

Those bounds also work for ‖rn‖ given

λ

1 + λ
≤ eigen

[1
λ

I + Kn

]−1 ≤ λ.
�

Proof to Lemma 3.11

Proof. Probabilistic DCT guarantees that

lim
n

P( fn(X, ε) ≤ t) = lim
n

∫ ∫
1{ fn(x,ε)≤t}dµxdµε

= lim
n

∫
P( fn(x, ε) ≤ t)dµx

=

∫
lim

n
P( fn(x, ε) ≤ t)dµx

=

∫
Φ(t)dµx = Φ(t).

�

Proof to Lemma 3.12

Proof. In order to prove the lemma, we combine Lemma 3.9, Theorem 3.10 and Lemma

3.11 and show that all assumptions are met from a point-wise perspective on [0, 1]d×N, i.e.

fixed sample sequence are given by θnX, n ≥ 1.
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i) We show for a.s. X,
∣∣∣B∗n∣∣∣ = |Bn(θnX)| ≥ O

(
n · dd

n

)
. Consider random X. Noticing

E [|Bn|] = nan = O
(
ndd

n

)
and referring to CLT for binomials as ndd

n → ∞,

|Bn| − nan
√

nan(1 − an)
d
−−→ N(0, 1).

Take fixed 0 < c < 1,

P (|Bn| ≤ c · nan) −→Φ

(
(c − 1)nan
√

nan(1 − an)

)
≤Φ((c − 1)

√
nan)

≤O
(

1
√

nan
exp

(
−

(c − 1)2nan

2

))
.

Further, since nan = O
(
ndd

n

)
= O

(
n

1
d+1

)
,

∞∑
n=1

1
√

nan
exp

(
−

(c − 1)2nan

2

)
≤ ∞.

As per Borel-Contelli, since

∞∑
n=1

P(|Bn(θnX)| ≤ c · nan) ≤ ∞,

then for a.s. X, events of |Bn(θnX)| ≤ c · nan happens finite times. Since an is uniformly

bounded away from 0 due to µ(x) is bounded, we reach our conclusion.

ii) To show

inf
A∈q∈Qn

n∑
i=1

I(xi ∈ A) ≥ O
(
n

1
d+2

)
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for a.s. X, evaluate the CLT of binomial again

P

∃A ∈ q ∈ Qn s.t.
n∑

i=1

I(xi ∈ A) ≤ n
1

d+2


≤O

|Qn| · |q| · P

 n∑
i=1

I(xi ∈ A) ≤ n
1

d+2


≤O

|Qn| · n
d+1
d+2 · Φ

 n
1

d+2 − n
1

d+2 +ν√
n

1
d+2 +ν

(
1 − n−

d+1
d+2 +ν

)



≤O
(
|Qn| · n

d+1
d+2 · Φ

(
−n

1
2 ( 1

d+2 +ν)))
≤O

(
|Qn| · n

d+1
d+2 · n−

1
2 ( 1

d+2 +ν) exp
(
−

1
2

n
1

d+2 +ν

))
≤O

(
exp

(
−

1
2

n
1

d+2 +ν

))
−→ 0.

Therefore, noticing that

∞∑
n=1

exp
(
−

1
2

n
1

d+2 +ν

)
=

∞∑
n=1

n−
n

1
d+2 +ν

2 log n < ∞,

the Borel-Cantelli theorem indicates our assertion. Hence, for a.s. X∗, θnX∗ satisfies the

assumptions in Theorem 3.10. �

90



CHAPTER 4

TREE BOOSTED VARYING COEFFICIENT MODELS AND THEIR

ASYMPTOTICS

4.1 Combining Parametric Models with Boosting

In this chapter we study the amalgamation of gradient boosting, especially gradient

boosted decision trees (GBDT or GBM: Friedman, 2001), and varying coefficient mod-

els (VCM: Hastie and Tibshirani, 1993). A varying coefficient model is a semi-parametric

model with coefficients that change along with each input. Under a general statistical

learning setting with a set of covariates and some response of interest, a VCM isolates part

of those covariates as effect modifiers based on which model coefficients are determined

through a few varying coefficient mappings. These coefficients then get joined with the re-

maining covariates to generate a parametric prediction. To elaborate, consider performing

least square regression on (X,Z,Y) ∈ Rp × A × R, i = 1, . . . , n where X = (X1, . . . , Xp), X

and Z are the covariates and Y the response. One VCM regression can take the form of

g(E [Y |X,Z]) = β0(Z) +

p∑
i=1

βi(Z)Xi, (4.1)

with the parametric part being a generalized linear model with the link function g. In this

context we would like to refer to X as the predictive covariates and Z the action covariates

(effect modifiers) which are drawn from A the action space. βi(·) : A → R, i = 0, 1, . . . , p

are, conventionally nonparametric, varying coefficient mappings. While (4.1) maintains

the linear structure, due to the dependence of β on any given Z, the model belongs to
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a more complicated and flexible model space rather than the corresponding generalized

linear model.

Our proposed model, tree boosted VCM, utilizes ensembles of gradient boosted deci-

sion trees as the varying coefficient mappings β. To demonstrate, for each βi, i = 0, . . . , p,

let

βi(z) =

b∑
j=1

ti
j(z),

an additive boosted tree ensemble of size b with each ti
j a decision tree constructed se-

quentially through gradient boosting. We will postpone the details of model construction

to Section 2. This strategy yields a model of

g(E [Y |X,Z]) =

b∑
j=1

t0
j (Z) +

p∑
i=1

 b∑
j=1

ti
j(Z)

 Xi. (4.2)

Introducing VCM aligns with our attempt to answer the rising concern about model

intelligibility and transparency, around which there are two branches of methods. We

can either apply post hoc methods such that state-of-the-art “black box” models are con-

structed before we grant them meanings through analyzing their results. There is a sizable

literature on this topic, from the appearance of local methods (Ribeiro et al., 2016) to

recent applications on neural nets (Zhang and Zhu, 2018), random forests (Mentch and

Hooker, 2016; Basu et al., 2018) and complex model distillation (Lou et al., 2012, 2013;

Tan et al., 2017). However, objectivity is one inevitable challenge of tying explanations to

models, especially in the presence of plentiful universal local methods capable of dealing

with most models. Any use of post hoc analysis may be subject to justify the chosen ex-
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planatory method over the others, which is likely to add an additional explanation selection

phase on top of the existing model selection.

On the other hand, another branch of methods attempts to build interpretability into

model structures, meaning that models should be the integration of simple and intelligible

building blocks that they become accountable by human inspection once trained. Exam-

ples of this range from simple models as generalized linear models and decision trees, to

models that guarantee monotonicity (You et al., 2017; Chipman et al., 2016) or have iden-

tifiable components (Melis and Jaakkola, 2018). Although having the advantage of not re-

quiring post hoc examination, in contrast to the aforementioned methods, self-explanatory

models are restricted by their possible model complexity and flexibility, potentially limit-

ing their accuracy. This lack of flexibility also implies that such a model, unless possessing

a granular structure, may only provide global interpretation because all observations are

reasoned via an identical procedure. Such behavior prevents us from zooming into a small

region in the sample space.

Following this discussion, VCM belongs to the second category as long as the involved

parametric models are intelligible. It is an instant generalization of parametric methods to

allow the use of local coefficients, which leads to improvements in model complexity and

accuracy, whereas the predictions are still produced through parametric relations between

predictive covariates and coefficients. This combination demonstrates a feasible means to

balance the trade-off between flexibility and intelligibility.

A great amount of research has been conducted to study the asymptotic properties of

different VCMs when splines or kernel smoothers are implemented as the nonparametric
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varying coefficient mappings. We refer the readers to Park et al. (2015) for a comprehen-

sive review. In this chapter we intend to conclude similar results regarding the asymptotics

of tree boosted VCM.

4.1.1 Models under VCM

Under the settings of (4.1), Hastie and Tibshirani (1993) pointed out that VCM is the

generalization of generalized linear models, generalized additive models, and various other

semi-parametric models with careful choices of the varying coefficient mapping β.

We would like to mention two special cases that have drawn our attention. One is the

functional trees introduced in Gama (2004). A functional tree segments the action space

into disjoint regions, after which a parametric model gets fitted within each region using

sample points inside. Logistic regression trees, for which there is a sophisticated building

algorithm (LOTUS: Chan and Loh, 2004), belong to such model family. Their prediction

on (x0, z0) is

P(ŷ0 = 1) =

K∑
i=1

1

1 + e−xT
0 βi
· I (z0 ∈ Ai) =

1

1 + e−xT
0 βk
,

provided A =
∐K

i=1 Ai the tree segmentation, z0 ∈ Ak and βk = β(z),∀z ∈ Ak. The conven-

tional approach to determine functional tree structure is to recursively enumerate through

candidate splits and choose the one that reduces the training loss the most between before

and after splitting. Despite of the guaranteed stepwise improvement, such greedy strategy

has the side effect of being both time consuming and mathematically intractable.
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Another case is the partially linear regression that assumes

Y = XTβ + f (Z) + εZ, εZ ∼ N(0, σ2(Z)),

where β is a global linear coefficient (see Härdle et al., 2012). It is equivalent to a least

square VCM with all varying coefficient mappings except the intercept being constant.

4.1.2 Trees and VCM

While popular choices of varying coefficient mappings are either splines or kernel

smoothers, it is a natural transition to consider exercising decision trees (CART: Breiman

et al., 1984) and decision tree ensembles to serve as these nonparametric mappings. Us-

ing trees enables us to work adaptively with any action space A compatible with decision

tree splitting logic, for example an arbitrary high dimensional mixture of continuous and

discrete quantities, whereas traditional methods require to craft model structures case by

case depending on the given A.

We start with the straightforward attempts to utilize a single decision tree as varying

coefficient mappings (Buergin and Ritschard, 2017; Berger et al., 2017). Although having

a simple form, these implementations are also subject to the instability caused by the

greedy tree building algorithm. Moreover, the mathematical intractability of decision trees

prevents these single-tree based varying coefficient mappings from provable optimality.

This instead suggests implementations through tree ensembles of either random forests or

gradient boosting. One example is to use the linear local forests introduced in Friedberg

et al. (2018) that perform local linear regression with an honest random forest kernel, while
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the predictive covariates X are reused as the action covariates Z. In terms of boosting

methods, Wang and Hastie (2014) proposed the first tree boosted VCM algorithm. They

reduced the empirical risk by boosting using functional trees to fit the residuals to improve

model coefficients, resulting in models of

g(E [Y |X,Z]) =

 b∑
j=1

t j(Z)


T

(1, X),

where each t j returns a (p + 1) dimensional response. However, building a functional tree

ensemble requires the construction and comparison of massive amounts of submodels and

the joint optimization of all coefficients. In contrast, we aim to perform gradient boosting

down on the coefficient level to comply with the standard boosting framework in order to

separate the coefficients and to make tree boosted VCM coherent with existing boosting

theories.

In the following sections, we explore the feasibility and statistical properties of adopt-

ing generic gradient boosted decision trees to serve as the nonparametric varying coeffi-

cient mappings for VCM. In Section 2, we share the perspective of analyzing such models

as local gradient descent which creates functional coefficients and optimizes using local

information. We will prove the consistency of this method in Section 3 and present a few

empirical study results in Section 4. Further discussions on potential variations of this

method follow in Section 5.
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4.2 Tree Boosted Varying Coefficient Models

4.2.1 Notations

We will use the following notations in our discussion. We use superscripts 0, . . . , p to

indicate individual components, i.e. β = (β0, . . . , βp)T , and subscripts 1, . . . , n to indicate

sample points or boosting iterations. For any X when there is no ambiguity we assume X

contains the intercept column, i.e. X = (1, X1, . . . , Xp), so that XTβ = β0 +
∑p

i=1 Xiβi can

be used to specify a linear regression.

4.2.2 Boosting Framework

We start by looking at a parametric generalized linear model with coefficients β ∈ Rp+1

using gradient descent. Given sample (x1, z1, y1), . . . , (xn, zn, yn) and a loss function l, gra-

dient descent minimizes the empirical risk to search for the optimal β̂∗ as

L(β̂) =
1
n

n∑
i=1

l(yi, xT
i β̂), β̂∗ = arg min

β̂
L(β̂).

To improve an interim β̂, we move it in the negative gradient direction

∆β̂ = ∇βL = −∇β

1
n

n∑
i=1

l(yi, xT
i β)

∣∣∣∣
β=β̂

 ,
to obtain a new iteration β̂′ = β̂ + λ∆β̂ for a positive and small learning rate λ � 1.

In order to extend this setting to varying coefficient models, we instead consider β to

be a mapping β = β(z) : A → Rp+1 so that it will apply to the covariates based on their
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values in the action space. Writing estimate of β by β̂ : A → Rp+1, the empirical risk

remains a similar form

L(β̂) =
1
n

n∑
i=1

l(yi, xT
i β̂(z)).

We perform the same gradient calculation as above, but only pointwisely for now. It

produces the negative gradient direction at the point zi

∆β(zi) = −∇βl(yi, xT
i β)

∣∣∣∣
β=β̂(zi)

. (4.3)

As a result, we get the functional improvement of β̂ captured at each of the sample points,

i.e. (z1,∆β(z1)), . . . , (zn,∆β(zn)). This observation leads us to employ gradient descent in

functional space, also known as boosting (Friedman, 2001). For any function family T

capable of regressing ∆β(z1), . . . ,∆β(zn) on z1, . . . , zn, the corresponding ordinary boosting

framework works as follows.

Algorithm 4.1 (Boosting coefficients).

(B1) Start with an initial guess of β̂0(·).

(B2) For each component j = 0, . . . , p of β̂b, b ≥ 0, we calculate the pseudo gradient at

each point as

∆
j
βi

= −
∂l(yi, xT

i β)
∂β j

∣∣∣∣
β=β̂b(zi)

,

for i = 1, . . . , n.

(B3) For each j, find a good fit t j
b+1 ∈ T : A→ R on (zi,∆

j
βi

), i = 1, . . . , n.
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(B4) Update β̂b with learning rate λ � 1.

β̂b+1(·) = β̂b(·) + λ


t0
b+1(·)
...

tp
b+1(·)

 .

When the spline method is implemented, T is closed under addition so that we will

expect the result of (B4) to be expressed as a set of coefficients of basis functions for T .

On the other hand, when we apply decision trees in place of (B3):

(B3’) For each j, build a decision tree t j
b+1 : A→ R on (zi,∆

j
βi

), i = 1, . . . , n,

the resulting varying coefficient mapping will be an additive tree ensemble, whose model

space varies based on the ensemble size. We will refer to this method as tree boosted VCM.

Notice that the strategy of building a decision tree in (B3’) influences the properties

of the obtained tree boosted VCM. Recall that the standard CART strategy executes as

follows.

(D1) Start at the root node.

(D2) Given a node, numerate candidate splits and evaluate them using all (zi,∆
j
βi

) such

that zi is contained in the node.

(D3) Split on the best candidate split.

(D4) Keep splitting until stopping rules are met to form terminal nodes.
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(D5) Calculate fitted terminal values in each terminal node using all (zi,∆
j
βi

) such that zi

is contained in the terminal node.

As mentioned, recent developments on decision trees also suggest alternative strategies

that produce better theoretical guarantees. We may consider subsampling that generates a

subset w ⊂ {1, . . . , n} and only uses sample points indexed by w in (D2).

(D2’) Given a node, numerate candidate splits and evaluate them using all (zi,∆
j
βi

) such

that i ∈ w and zi is contained in the node.

We may also consider honest trees which avoids using the responses, in our case ∆
j
βi

,

twice during both deciding the tree structure and deciding terminal values. Similarly as

Boulevard, we can use a version of completely random trees which chooses the splits using

solely zi without evaluating the splits by the responses ∆
j
βi

in place of steps (D2) and (D3).

(D2*) Given a node, choose a random split based on zi’s contained in the node.

4.2.3 Local Gradient Descent with Tree Kernels

Decision tree fits in (B3’) generate local linear combinations of pseudo-gradients thanks

to the grouping effect carried by decision tree terminal nodes. To elaborate from a generic

viewpoint, for all tree building strategy we discussed above we can introduce a kernel
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smoother K : A × A→ R such that the estimated gradient at any new z is given by

∆β(z) = −

n∑
i=1

(
∇βl(yi, xT

i β)
∣∣∣∣
β=β̂(zi)

)
·

K(z, zi)∑n
j=1 K(z, z j)

. (4.4)

In other words, with a fast decaying K, (4.4) can estimate the gradient at z locally using

weights given by

S (z, zi) =
K(z, zi)∑n

j=1 K(z, z j)
.

We would like to define such method as local gradient descent.

During standard tree boosting employing CART strategy, after a decision tree is con-

structed each iteration, its induced smoother K assigns equal weights to all sample points

in the same terminal node. If we write A(zi) ⊂ A the region in the action space correspond-

ing to the terminal node containing zi, we have K(z, zi) = I(z ∈ A(zi)) and we define the

following

K(z, zi) , S (z, zi) =
I (z ∈ A(zi))∑n

j=1 I(z j ∈ A(zi))

to be the tree structure function mentioned before where we also use the convention that

0/0 = 0. The denominator is the size of zi’s terminal node and is equal to
∑n

j=1 I(z j ∈ A(z))

when z and zi fall in the same terminal node. In the cases where subsampling or completely

random trees are employed for the purpose of variance reduction, K will be taken to be the

expectation such that

K(z, zi) , E [S (z, zi)] = E

[
I(z ∈ A(zi))I(i ∈ w)∑n

j=1 I(z j ∈ A(zi))I(i ∈ w)I( j ∈ w)

]
.

This expectation is taken over all possible tree structures and, if subsampling is applied,

all possible subsamples w of a fixed size, and the denominator in the expectation is again

the size of zi’s terminal node.
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In particular, by carefully choosing the rates for tree construction, this tree structure

function is related to the random forest kernel introduced in Scornet (2016) that takes the

expectation of the numerator and the denominator separately as

KRF(z, zi) =
E [I (z ∈ A(zi))]

E
[∑n

j=1 I
(
z j ∈ A(zi)

)] ,
in the sense that the deviations from these expectations are mutually bounded by constants.

Gradient boosting applied under nonparametric regression setting has to be accompa-

nied by regularization such as using a complexity penalty or early stopping to prevent over-

fitting. When decision trees are implemented as the base learners, the complexity penalty

is implicitly embedded in the tree parameters such as tree depth and terminal node size,

while early stopping can be enforced during training. In fact, while we keep the parametric

linear structure in VCM, local neighborhood weighting used for fitting the nonparametric

coefficient mappings still adds to the model complexity. Therefore moderate restrictions,

especially growth rates, have to be applied to avoid building saturated models with respect

to the action space.

4.2.4 Examples

Tree boosted VCM generates a two-phase model such that the varying coefficient map-

pings generate effect modifiers and these effect modifiers join with predictive covariates

linearly. In order to understand the varying coefficient mappings on the actions space, we
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provide a visualized example here by considering the following data generating process:

X ∼ Unif[0, 1]3,Z = (Z1,Z2) ∼ Unif[0, 1]2, ε ∼ N(0, 0.25),

Y = XT


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 · I(Z1 + Z2 < 1) + XT


−5

10

0

 · I(Z1 + Z2 ≥ 1) + ε.

We generate a sample of size 1,000 from the above distribution, apply the tree boosted

VCM with 400 trees, and obtain the following estimation of the varying coefficient map-

pings β on Z in Figure 4.1. Our fitted values accurately capture the true coefficients.

Figure 4.1: Example of varying coefficient mappings on the action space under
the OLS settings.

Switching to logistic regression setting and assuming similarly that

logitP(Y = 1) = XT


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 · I(Z1 + Z2 < 1) + XT


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 · I(Z1 + Z2 ≥ 1),

with a sample of size 1,000, Figure 4.2 presents equivalent plots for our tree boosted VCM.

These results are less clear since logistic regression produces more volatile gradients.
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Figure 4.2: Example of varying coefficient mappings on the action space under
the logistic regression settings.

In both cases our methods correctly identify β(z) as segmenting along the diagonal in

z, providing clear visual identification of the behavior of β(z). These figures are evidence

of the capability of tree boosted VCM to find the varying coefficients without posting

structural assumptions on the action space. Further empirical studies are presented in

Section 4.

4.3 Asymptotics

There is a large literature providing statistical guarantees and asymptotic analyses of dif-

ferent versions of VCM with varying coefficient mappings obtained via splines or local

smoothers (Park et al., 2015; Fan et al., 1999, 2005). In this section we will demonstrate

the asymptotic analyses of tree boosted VCM under mild conditions.
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4.3.1 Tree Boosted VCM with L2 Loss

Consider L2 boosting setting for regression. Given the relationship

Y = f (X,Z) + εZ, εZ ∼ N(0, σ2
Z),

we work with the following assumptions.

(E1) Unit support of X that supp X = {1} × [−1, 1]p, which is achievable by standardizing

without loss of generality for any finitely supported X.

(E2) Uniform bounded noise variance that σZ ≤ σ
∗.

(E3) L2 loss that L(u, y) = 1
2 (u − y)2.

Under these conditions, evaluating the pseudo-gradient given in (4.3) yields

∆β(zi) = −∇βl(yi, xT
i β)

∣∣∣∣
β=β̂(zi)

= (yi − xT
i β̂(zi)) · xi.

For an existing terminal node R ⊆ A, as per (4.4), the decision tree update in R is

∆β(z ∈ R) =

∑n
i=1(yi − xT

i β̂(zi)) · xi · I (zi ∈ R)∑n
i=1 I (zi ∈ R)

, (4.5)

and should subsample w be present

∆β(z ∈ R; w) =

∑n
i=1(yi − xT

i β̂(zi)) · xi · I (zi ∈ R) I (i ∈ w)∑n
i=1 I (zi ∈ R) I (i ∈ w)

.

105



4.3.2 Decomposing Decision Trees

We assume the action space A involves only continuous and categorical covariates, there-

fore we will consider its embedding into a Euclidean space Rd where d = dim(A) is the

dimension of the embedding. Denote R = {(a1, b1] × · · · × (ad, bd]| − ∞ ≤ ai ≤ bi ≤ ∞}

the collection of all hyper rectangles in A. This set includes all possible terminal

nodes of any decision tree built on A. Given the distribution (Z, 1, X) ∼ P, we define

the inner product 〈 f1, f2〉 = EP
[
f1 f2

]
, and the norm ‖·‖ = ‖·‖P,2 on the sample space

A × {1} × [−1, 1]p. For a sample of size n, we write the (unscaled) empirical counterpart

by 〈 f1, f2〉n =
∑n

i=1 f1(xi, zi) f2(xi, zi), such that n−1 〈 f1, f2〉n → 〈 f1, f2〉 by the law of large

numbers, with a corresponding norm ‖·‖n.

Consider the following classes of functions on A × {1} × [−1, 1]p.

• H = {hR(x, z) = I (z ∈ R) |R ∈ R}, indicators of hyper rectangles.

• G =
{
gR, j(x, z) = I (z ∈ R) · x j|R ∈ R, j = 0, . . . , p

}
constants and coordinate map-

pings in hyper rectangles in R. In particular we write 1 = x0 so that gR,0 = hR.

Bühlmann (2002) established a consistency guarantee for tree-type basis functions for

L2 boosting, in which the key point is to bound the gap between the boosting procedure

and its population version by the uniform convergence in distribution of the family of

indicators for hyper rectangles. We take a similar approach, for which we have to extend

the uniform convergence to a broader function class defined as G as defined above. The

following lemma provides uniform bounds on the asymptotic variability pertaining to G
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using Donsker’s theorem (see van der Vaart and Wellner, 1996).

Lemma 4.1. For given L2 function f and random sub-Gaussian noise ε, the following

empirical gaps

1. ξn,1 = supR∈R

∣∣∣‖hR‖
2
− 1

n ‖hR‖
2
n

∣∣∣ ,
2. ξn,2 = supR∈R, j=0,...,p

∣∣∣∣∥∥∥gR, j

∥∥∥2
− 1

n

∥∥∥gR, j

∥∥∥2

n

∣∣∣∣ ,
3. ξn,3 = supR∈R, j=0,...,p

∣∣∣∣〈 f , gR, j

〉
− 1

n

〈
f , gR, j

〉
n

∣∣∣∣ ,
4. ξn,4 = supR∈R, j=0,...,p

∣∣∣∣1
n

〈
ε, gR, j

〉
n

∣∣∣∣ ,
5. ξn,5 = supR1,R2∈R, j,k=0,...,p

∣∣∣∣〈gR1, j, gR2,k

〉
− 1

n

〈
gR1, j, gR2,k

〉
n

∣∣∣∣ ,
6. ξn,6 =

∣∣∣1
n ‖ f + ε‖2n − ‖ f + ε‖2

∣∣∣ ,
satisfy that ξn = max6

i=1 ξn,i = Op

(
n−

1
2

)
.

Introduce the empirical remainder function r̂b such that

r̂0(x, z) = f (x, z) + ε, r̂b(x, z) = f (x, z) + ε − β̂b(z)T x, b > 0,

i.e. the remainder term after b-th boosting iteration. Further, consider the b-th iteration uti-

lizing p+1 decision trees whose disjoint terminal nodes are R j
1, . . . ,R

j
m ∈ R for j = 0, . . . , p

respectively. (4.5) is equivalent to the following expression for the boosting update of the

remainder r̂b

r̂b+1 = r̂b − λ

m∑
i=1

p∑
j=0

n−1
〈
r̂b, gR j

i , j

〉
n

n−1
∥∥∥∥hR j

i

∥∥∥∥2

n

gR j
i , j
, (4.6)
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or, for simplicity, we flatten the subscripts when there is no ambiguity such that

r̂b+1 = r̂b − λ

m(p+1)∑
i=1

n−1 〈
r̂b, gb,i

〉
n

n−1
∥∥∥hb,i

∥∥∥2

n

gb,i,

where as defined above, gb,i = gR j
i , j

= I
(
z ∈ R j

i

)
· x j. Although the update involves

m(p + 1) terms, only p + 1 of them are applicable for a given (x, z) pair as the result of

using disjoint terminal nodes.

Further, Mallat and Zhang (1993) and Bühlmann (2002) suggested that we consider

the population counterparts of these processes defined by the remainder functions starting

with r0 = f and

rb+1 = rb − λ

m(p+1)∑
i=1

〈
rb, gb,i

〉∥∥∥hb,i

∥∥∥2 gb,i, (4.7)

with the same boosted trees used. They concluded that these processes converge to the

consistent estimate in the completion of the decision tree family T . As a result, we can

achieve asymptotic consistency as long as the gap between the sample process and this

population process diminishes fast enough along with the increase of sample size.

4.3.3 Consistency

Lemma 4.1 helps to quantify the discrepancy between tree boosted VCM fits and their

population versions conditioned on the sequence of trees used during boosting by decom-

posing a decision tree having terminal nodes in R into several hyper rectangles. This

strategy also applies to tree boosted VCM. To further achieve consistency, we pose several

additional conditions.
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(C1) In practice we require the learning rate λ to satisfy that λ ≤ (1+ p)−1, while in proofs

we use λ = (1 + p)−1.

(C2) All terminal nodes of the trees in the ensemble should have at least Nn observations

such that Nn ≥ O
(
n

3
4 +η

)
for some small η > 0, in which case we will have

1
n
‖hR‖

2
n =

1
n

n∑
i=1

I (zi ∈ R) ≥ O
(
n−

1
4 +η

)
for all R ∈ R that appear as terminal nodes in the ensemble.

(C3) We apply early stopping, allowing at most B = B(n) = o(log n) iterations during

boosting.

(C4) From the optimization perspective, we also require that trees in the ensemble have

terminal nodes that effectively reduce the empirical risk. Consider the best functional

rectangular fit during the b-th population iteration

g∗ = arg max
g∈G

| 〈rb, g〉 |
‖g‖

.

We expect to empirically select at least one (R∗, j) pair during the iteration to ap-

proximate g∗ such that
|
〈
rb, gR∗, j

〉
|∥∥∥gR∗, j

∥∥∥ > ν ·
| 〈rb, g∗〉 |
‖g∗‖

,

for some 0 < ν < 1. Lemma 4.1 indicates that by choosing the sample version

optimum

ĝ∗ = arg max
g∈G

| 〈rb, g〉n |
‖g‖n

,

the above requirement can be hold true in probability for a fixed number of iterations.

(C5) ‖ f ‖2 = M ≤ ∞. In addition, due to the linear models in the VCM, to achieve

consistency we require that f ∈ span(G).
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(C6) We also require the identifiability of linear models such that the distribution of X

conditioned on any choice of Z = z should spread uniformly, i.e.

inf
R∈R, j=0,...,p

∥∥∥gR, j

∥∥∥
‖hR‖

= α0 > 0.

(C7) A stronger version of (C6) is to assume the existence of s > 0, c > 0 s.t. ∀z a.e.,

there exists an open ball Bz(x0, s) ∈ [−1, 1]p centered at x0 = x0(z) inside of which

P(X = (1, x)|Z = z) is bounded below by c. In other words, conditioned on any

choice of Z = z there is enough spreading sample points in an open region of X that

assures model identifiability.

Among all proposed conditions, (C4) is the hardest one to justify using finite sample

due to its required optimality. This is when building adaptive trees becomes appealing

as to effectively guarantee the optimality in a greedy way with respect to the sample. In

contrast, building completely randomized trees is of less an issue asymptotically, as long

as the fine segmentation reaches the resolution of detecting micro structures on the action

space. This observation refreshes the idea we talked before that the asymptotic analysis of

tree methods will favor randomized trees more than adaptive trees.

During local gradient descent, unwanted behaviors can take place when there is local

dependent relation between X and Z in the vicinity of some Z = z. Extreme cases include

P(X1 = X2|Z = z) = 1, two covariates being collinear, or P(X1 = x|Z = z) = 1, some

covariates having degenerate conditional distributions. These cases prevent the local para-

metric model from being identifiable, and the introduction of (C6) and (C7) avoids those

cases.
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Theorem 4.2. Under conditions (C1)-(C5), consider function f ∈ span(G),

E(x∗,z∗)

[
|β̂B(z∗)T x∗ − f (x∗, z∗)|2

]
= op(1), n→ ∞,

for making predictions at a random point (x∗, z∗) which are independent from but identi-

cally distributed as the training data.

Corollary 4.3. If we further assume (C6),

β̂B(z∗)
p
−−→ β(z∗), n→ ∞.

Corollary 4.3 justifies the varying coefficient mappings as valid estimators for the true

varying linear relationship. Although we have not explicitly introduced any continuity

condition on β, it is worth noticing that (C5) requires β to have relatively invariant local

behavior. Although one region in A of any size can be eventually detected by the growing

n to fit into a terminal node with sufficient sample points required by (C2), such rate is

too loose to guarantee the detection of a small area with a small sample. As a result, tree

boosted VCM should be the most ideal when A is heterogeneous with a few big and flat

regions. When we consider the interpretability of tree boosted VCM, consistency is also

the sufficient theoretical guarantee for local fidelity discussed in Ribeiro et al. (2016) that

an interpretable local method should also yield accurate local relation between covariates

and responses.
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4.4 Empirical Study

4.4.1 Identifying Signals

Our theory suggests that tree boosted VCM is capable of identifying local linear struc-

tures and their coefficients accurately. To demonstrate this in practice, we apply it to the

following regression problem with higher order feature interaction on the action space.

z = (z1, z2, z3, z4), z1, z2 ∼ Unif{1, . . . , 10}, z3, z4 ∼ Unif[0, 1].

x ∈ R7, x ∼ N(0, I7), ε ∼ N(0, 0.25).

The data generating process is describe by the following pseudo code.

if z1 < 4 : y = 1 + 3x1 + 7x2

else if z1 > 8 : y = −5 + 2x1 + 4x2 + 6x3

else if z2 = 1, 3 or 5 : y = 5 + 5x2 + 5x3

else if z3 < 0.5 : y = 10 + 10x4

else if z4 < 0.4 : y = 10 + 10x5

else if z3 < z4 : y = 5 − 5x2 − 10x3

else : y = −10x1 + 10x3

We utilize a sample of size 10, 000 and use 100 trees of maximal depth of 6 for boosting

with constant learning rate of 0.2. Figure 4.3 plots the fitted distribution of each coeffi-

cient in red against the ground truth in grey, with reported MSE 3.28. We observe that all
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peaks and their intensities properly reflect the coefficient distributions on the action space.

Despite the linear expressions, we have tested interaction among all four action covariates

of a tree depth of 6 and have not yet achieved convergence, which we conclude as the rea-

sons for large MSE. It manifests the effectiveness of our straightforward implementation

of decision trees segmenting the action space.

Figure 4.3: Histograms of distributions of fitted coefficient values. Color code:
ground truth (grey) and tree boosted VCM (red).

4.4.2 Model Accuracy

To show the accuracy of our proposed methods, we have selected 12 real world datasets

and run tree boosted VCM (marked as TVCM) against other benchmark methods. Table

4.1 demonstrates the results under classification settings with three benchmarks: GLM

as logistic regression, GLM(S) as a partially saturated logistic regression model where
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each combination of discrete action covariates acts as fixed effect with its own level, and

AdaBoost. Table 4.2 demonstrates the results under regression settings. The three bench-

marks we choose here are: LM as linear model, LM(S) as a partially saturated linear

model, and GBM as the gradient boosted trees. Although with additional structural as-

sumptions, tree boosted VCM performs nearly on a par with both GBM and AdaBoost. It

benefits from its capability of modeling the action space without structural conditions to

outperform the fixed effect linear model in certain cases.

NAME GLM GLM(S) ADABOOST TVCM

MAGIC04 0.208(0.007) 0.209(0.0065) 0.13(0.0076) 0.209(0.0072)
BANK 0.111(0.0044) 0.1(0.0044) 0.098(0.0035) 0.114(0.0043)

OCCUPANCY 0.014(0.0042) 0.0129(0.0034) 0.00567(0.0016) 0.0126(0.0048)
SPAMBASE 0.0749(0.011) 0.0732(0.012) 0.0564(0.0098) 0.0616(0.0097)

ADULT 0.188(0.004) 0.155(0.0046) 0.136(0.0049) 0.154(0.0028)
EGRIDSTAB 0.289(0.014) 0.227(0.018) 0.179(0.009) 0.177(0.015)

Table 4.1: Prediction accuracy of classification and 0-1 loss for six UCI data sets through
tenfold cross validation. Results are shown as mean(sd). Sources of some
datasets are: BANK(Moro et al., 2014) and OCCUPANCY(Candanedo and
Feldheim, 2016).

4.4.3 Visual Interpretability: Beijing Housing Price

Here we show the results of applying tree boosted VCM on the Beijing housing data

(Kaggle, 2018). We take the housing unit price as the target regressed on covariates of

location, floor, number of living rooms and bathrooms, whether the unit has an elevator

and whether the unit has been refurbished. Specially, location has been treated as the action

space represented in pairs of longitude and latitude. Location specific linear coefficients
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NAME LM LM(S) GBM TVCM

BEIJINGPM 6478(227) 5041(203) 3465(176) 3942(178)
BIKEHOUR 24590(1630) 12190(818) 5791(419) 6596(597)

STARCRAFT 1.135(0.0622) 1.116(0.0645) 1.045(0.0594) 1.161(0.0596)
ONLINENEWS 0.8544(0.0331) 0.8377(0.0328) 0.7826(0.0298) 0.8183(0.0337)

ENERGY 18.01(4.42) 9.801(2.16) 0.5633(0.162) 9.864(2.27)
EGRIDSTAB 1.01e-03(4.5e-05) 6.92e-04(3e-05) 4.31e-04(1.4e-05) 4.27e-04(8.3e-06)

Table 4.2: Prediction accuracy of regression and mean square error for six UCI data
sets through tenfold cross validation. Results are shown as mean(sd).
Sources of some datasets are: BEIJINGPM(Liang et al., 2015), BIKE-
HOUR(Fanaee-T and Gama, 2014), ONLINENEWS(Fernandes et al., 2015)
and ENERGY(Tsanas and Xifara, 2012).

of other covariates are displayed in Figure 4.4. We allow 200 trees of depth of 5 in the

ensemble with a constant learning rate of 0.05.

Figure 4.4: Beijing housing unit price broken down on several factors.

The urban landscape of Beijing is pictured by its old inner circle with a low skyline
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gradually transitioning to its modern outskirt rim of skyscrapers housing a young and new

workforce. Our model intercept provides the baseline of the unit housing prices in each

area. Despite their high values, most buildings inside the inner circle are old and not

suitable for replanning, so elevators and number of bathrooms are of low contribution to

the final price, while their refurbishment gets more attention. In contrast, outskirt housing

gains more value if the unit has a complementary elevator and is on higher floor.

Figure 4.4 provides clear visualization of the fitted tree boosted VCM. Usually these

irregular patterns are more likely to be outputs of nonparametric models, while behind each

point on our plot is a location-specific linear model predicting the housing price breaking

down to different factors.

4.4.4 Fitting Other Model Class

As mentioned, since VCM is the generalization of many specific models, our proposed

fitting algorithm and analysis should apply to them as well. We take partially linear mod-

els as an example and consider the following data set from Cornell Lab of Ornithology

consisting of the recorded observations of four species of vireos along with the location

and surrounding terrain types. We apply a tree boosted VCM under logistic regression set-

ting using longitude, latitude and year as the action space and all rest covariates as linear

effects, obtaining the model demonstrated by Table 4.4.4. The intercept plot suggests the

trend of observed vireos favoring cold climate and inland environment, while the slopes of

different territory types indicate a strong preference towards the low elevation between de-
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ciduous forests and evergreen needles. It can also be used to compare the baselines across

different years in the past decade.

Covariate Slope

Elevation 9.65e-04
Shallow Ocean -1.88e+03

CoastShore Lines -6.51e+01
Shallow Inland 9.39e+01

Moderate Ocean -1.18e+03
Deep Ocean -5.12e+03

Evergreen Needle -4.54e+02
Grasslands -4.49e+02
Croplands -4.29e+02

Urban Built -6.62e+02
Barren -1.59e+03

Evergreen Broad 2.77e+02
Deciduous Needle 2.57e+02
Deciduous Broad 2.72e+02

Mixed Forest 7.32e+01
Closed Shrubland -1.19e+03
Open Shrubland 8.60e+01
Woody Savannas -5.75e+02

Savannas -7.46e+02

Table 4.3: Fitting a partially linear model using tree boosted VCM. Plot on the
left shows the nonparametric intercept. Table on the right shows the
coefficients of predictive covariates.

4.5 Shrinkage, Selection and Serialization

Tree boosted VCM is compatible with any alternative boosting strategy in place of the

boosting steps (B3) and (B4), such as the use of subsampled trees (Friedman, 2002), uni-

variate or bivariate trees (Lou et al., 2012; Hothorn et al., 2013) or adaptive shrinkage

(dropout) (Rashmi and Gilad-Bachrach, 2015; Rogozhnikov and Likhomanenko, 2017).
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While these alternative approaches have been empirically shown to help avoid overfitting

or provide more model interpretability, we also anticipate that the corresponding vary-

ing coefficient mappings would inherit certain theoretical properties. For instance, our

Boulevard boosting guarantees finite sample convergence and asymptotic normality of its

predictions. Incorporating Boulevard into our tree boosted VCM framework requires the

changes to (B3) and (B4) such that

(B3*) For each j, find a good fit t j
b+1 ∈ T : A → R on (zi,∆

j
βi

) for i ∈ w ⊂ {1, . . . , n} a

random subsample.

(B4*) Update β̂b with learning rate λ < 1.

β̂b+1(·) =
b

b + 1
β̂b(·) +

λ

b + 1
ΓM




t0
b+1(·)
...

tp
b+1(·)



 ,
where ΓM truncates the absolute value at some M > 0.

By taking the same approach in the original paper, we can show that boosting VCM with

Boulevard will also yield finite sample convergence to a fixed point.

Boulevard modifies the standard boosting strategy to the extent that new theoretical

results have to be developed specifically. In contrast, there are other boosting variations

that fall directly under the theoretical umbrella of tree boosted VCM. Our discussion so far

assumes we run boosting iterations with a distinct tree built for each coefficient component

while these trees are simultaneously constructed using the same batch of pseudo-residuals.

Despite the possibility to utilize a single decision tree with multidimensional response to
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produce all components, as long as we build separate trees sequentially, the question arises

that whether we should update the pseudo-residuals on the fly.

One advantage of doing so is the minimized boosting iteration from (1 + p) trees down

to one tree, allowing us to use much larger learning rate λ ≤ 1/2 instead of λ ≤ (1 + p)−1

without changing the arguments we used to establish the consistency. We also anticipate

that doing so in practice moderately reduces the cost as the gradients become more accu-

rate for each tree. Here we will consider two approaches to conduct the on-the-fly updates.

In Hothorn et al. (2013) the authors proposed the component-wise linear least squares

for boosting where they select which β to update using the stepwise optimal strategy, i.e.,

choose jb and update β jb if

jb = arg min
j=0,...,p

n∑
i=1

l(yi, xT
i (β̂b + λt j

be j)(zi)),

the component tree that reduces the empirical risk the most. As a result, (B4) in Algorithm

now updates

β̂b+1 = β̂b + λt jb
b+1e jb .

Notice that finding this optimum still requires the comparison among all components,

therefore does not save any training cost when there are no better means or prior knowl-

edge to help detect which component stands out. That being said, the optimal move is

compatible with the key condition (C4) we posed to ensure consistency. Namely, it still

guarantees that the population counterpart of boosting is efficient in reducing the gap be-

tween the estimate and the truth. However, this greedy strategy also complicates the pat-

tern of the sequence in which β’s get updated.
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Serialization refers to the cases when the β’s are being updated in some predetermined

order. A similar model is covered by Lou et al. (2012, 2013) where the authors ap-

plied univariate generalized additive models (GAM) to perform model distillation, which

was refined in Tan et al. (2017) using decision trees. Their models can either be built

through backfitting which eventually produces one additive component for each covariate,

or through boosting that generates a sequence of additive terms.

Applying the rotation of coordinates to tree boosted VCM, we can break each of the

original boosting iterations into (p+1) micro steps to write

β̂b, j = β̂b, j−1 − λ∇β jl(y, xTβ)
∣∣∣∣
β=β̂b, j−1(z)

,

with j rotating through 0, . . . , p. This procedure immediately updates the pseudo-residuals

after each component tree is built. There are two feasible approaches if we intend to

employ tree boosted VCM to achieve the same univariate GAM model. Either we can

place all covariates into the action space and use only univariate decision trees to perform

the serialized boosting, or we can directly apply tree boosted VCM to get additive models

that are univariate with respect to the predictive covariates.

However, this procedure is not compatible with our consistency conclusion as the se-

rialized boosting fails to guarantee (C4): each micro boosting step on a single coordinate

relies on the current pseudo gradients instead of the gradients before the entire rotation.

One solution is to consider an alternative to the determined updating sequence by ran-

domly and uniformly proposing the coordinate to boost. In this regard,

β̂b = β̂b − λ∇β jl(y, xTβ)
∣∣∣∣
β=β̂b(z)

,
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where j ∼ Unif{0, . . . , p}. This stochastic sequence solves the compatibility issue by

satisfying (C4) with a probability bounded from below.

4.6 Proofs

In this section we list the complete proofs of all theorems covered above.

Proof to Lemma 4.1

Proof. ξn,6 is simply CLT. For the rest, we will conclude the corresponding function classes

are P−Donsker. The collection of indicators for hyper rectangles (−∞, a1]×. . . , (−∞, ap] ⊆

Rp is Donsker. By taking difference at most p times we get all elements in H , therefore

G, the indicators of R, is Donsker. Thus ξn,1 = Op

(
n−

1
2

)
.

The basis functions E = {1, x j, j = 1, . . . , p} is Donsker since all elements are

monotonic and bounded since x ∈ [−1, 1]p. So G = H × E is Donsker, which gives

ξn,2 = Op

(
n−

1
2

)
and ξn,4 = Op

(
n−

1
2

)
.

In addition, for fixed f , fG is therefore Donsker, which gives ξn,3 = Op

(
n−

1
2

)
. And

G × G is Donsker, which gives ξn,5 = Op

(
n−

1
2

)
.

�
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Proof to Theorem 4.2

To supplement our discussion of norms, it is immediate that
∥∥∥gR, j

∥∥∥ ≤ ‖hR‖ ≤ 1. Another

key relation is
∥∥∥gR, j

∥∥∥
n,1
≤ ‖hR‖n,1 = ‖hR‖

2
n . We also assume that all R’s satisfy the terminal

node condition.

Lemma 4.4. ‖r̂b+1‖n ≤ ‖r̂b‖n, ‖rb+1‖ ≤ ‖rb‖.

Proof. Consider the p + 1 trees used for one boosting iteration with the terminal nodes

denoted as R j
i , 0 = 1, . . . , p, i = 1, . . . ,m, write IR = I (z ∈ R).

‖r̂b+1‖n =

∥∥∥∥∥∥∥∥∥∥r̂b − λ

p∑
j=0

m∑
i=1

n−1
〈
r̂b, gR j

i , j

〉
n

n−1
∥∥∥∥hR j

i

∥∥∥∥2

n

gR j
i , j

∥∥∥∥∥∥∥∥∥∥
n

≤

p∑
j=0

∥∥∥∥∥∥∥∥∥∥
m∑

i=1

λr̂bIR j
i
−

n−1
〈
λr̂bIR j

i
, gR j

i , j

〉
n

n−1
∥∥∥∥hR j

i

∥∥∥∥2

n

gR j
i , j


∥∥∥∥∥∥∥∥∥∥

n

=

p∑
j=0


∥∥∥∥∥∥∥∥∥∥

m∑
i=1

λr̂bIR j
i
−

n−1
〈
λr̂bIR j

i
, gR j

i , j

〉
n

n−1
∥∥∥∥hR j

i

∥∥∥∥2

n

gR j
i , j


∥∥∥∥∥∥∥∥∥∥

2

n


1
2

=

p∑
j=0


m∑

i=1

∥∥∥∥∥∥∥∥∥∥λr̂bIR j
i
−

n−1
〈
λr̂bIR j

i
, gR j

i , j

〉
n

n−1
∥∥∥∥hR j

i

∥∥∥∥2

n

gR j
i , j

∥∥∥∥∥∥∥∥∥∥
2

n


1
2

≤

p∑
j=0

 m∑
i=1

∥∥∥∥λr̂bIR j
i

∥∥∥∥2

n


1
2

=

p∑
j=0

‖λr̂b‖n = ‖r̂b‖n ,

given
∥∥∥∥hR j

i

∥∥∥∥2

n
≥

∥∥∥∥gR j
i , j

∥∥∥∥2

n
. Same argument can be applied to the population version hence we

get the second part.
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Lemma 4.5. For any b ≤ 0, as defined in (4.7),

sup
x,z
|rb+1(x, z)| ≤ 2 sup

x,z
|rb(x, z)|.

Proof. As implied by (4.6), for (x, z) such that z ∈ R,

rb+1(x, z) = rb(x, z) − λ
p∑

i=0

〈
rb, gR, j

〉
‖hR‖

2 gR, j(x, z).

The key observation is that∣∣∣∣∣∣
〈
rb, gR,i

〉
‖hR‖

2

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

rbI (z ∈ R) x jdP∫
I (z ∈ R)2 dP

∣∣∣∣∣∣∣ ≤ sup
x,z
|rb(x, z)|.

Therefore, provided |gR,i| ≤ 1 and write z ∈ Rz,

sup
x,z
|rb+1| ≤ sup

x,z
|rb| + λ sup

x,z

p∑
i=0

∣∣∣∣∣∣∣∣
〈
rb, gRz,i

〉
∥∥∥hRz

∥∥∥2

∣∣∣∣∣∣∣∣
∣∣∣gRz,i

∣∣∣
≤ sup |rb| + λ

p∑
i=0

sup |rb| · 1

= 2 sup
x,z
|rb|.

Recursively we can conclude that supx,z |rb| ≤ 2b supx,z |r0|. �

Lemma 4.6. Under conditions (C1)-(C6),

‖r̂B‖
2 = ‖rB‖

2 + σ2
ε + op (1) ,

where σ2
ε = ‖ε‖2.
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Proof. Recall that

r̂b+1 = r̂b − λ

p∑
j=0

m∑
i=1

n−1
〈
r̂b, gR j

i , j

〉
n

n−1
∥∥∥∥hR j

i

∥∥∥∥2

n

gR j
i , j

= r̂b − λ

m(p+1)∑
i=1

n−1 〈
r̂b, gb,i

〉
n

n−1
∥∥∥hb,i

∥∥∥2

n

gb,i,

and

rb+1 = rb − λ

p∑
j=0

m∑
i=1

〈
rb, gR j

i , j

〉
∥∥∥∥hR j

i

∥∥∥∥2 gR j
i , j

= rb − λ

m(p+1)∑
i=1

〈
rb, gb,i

〉∥∥∥hb,i

∥∥∥2 gb,i.

Therefore

r̂b+1 − rb+1 = (r̂b − rb) + λ

p∑
j=0

m∑
i=1


〈
rb, gR j

i , j

〉
∥∥∥∥hR j

i

∥∥∥∥2 −

n−1
〈
r̂b, gR j

i , j

〉
n

n−1
∥∥∥∥hR j

i

∥∥∥∥2

n

 gR j
i , j

= (r̂b − rb) + λ

m(p+1)∑
i=1


〈
rb, gb,i

〉∥∥∥hb,i

∥∥∥2 −
n−1 〈

r̂b, gb,i
〉

n

n−1
∥∥∥hb,i

∥∥∥2

n

 gb,i

, (r̂b − rb) + λδb

= (r̂0 − r0) + λ

b∑
j=0

δ j = ε + λ

b∑
j=0

δ j.

Since for each fixed j, all R j
i are disjoint, we therefore define that

γb =

p∑
j=0

sup
i=1,...,m

∣∣∣∣∣∣∣∣∣∣
〈
rb, gR j

i , j

〉
∥∥∥∥hR j

i

∥∥∥∥2 −

n−1
〈
r̂b, gR j

i , j

〉
n

n−1
∥∥∥∥hR j

i

∥∥∥∥2

n

∣∣∣∣∣∣∣∣∣∣ ,
which guarantees supx,z |δb| ≤ γb. To bound γb, without loss of generality, we consider a

single term involved such that

〈rb, gb〉

‖hb‖
2 −

n−1 〈r̂b, gb〉n

n−1 ‖hb‖
2
n

,

(
u
v
−

û
v̂

)
=

(
u − û

v
+

(
1
v
−

1
v̂

)
û
)
.
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First consider

û − u =
1
n
〈r̂b, gb〉n − 〈rb, gb〉

=
1
n

〈
ε + rb +

b−1∑
j=0

δ j, gb

〉
n

− 〈rb, gb〉

=
1
n
〈ε, gb〉n +

(
1
n
〈rb, gb〉n − 〈rb, gb〉

)
+

 b−1∑
j=0

1
n

〈
δ j, gb

〉
n

 .
Per Lemma 4.5, we have ∣∣∣∣∣1n 〈ε, gb〉n

∣∣∣∣∣ ≤ ξn

and, by iteratively applying Lemma 4.5 and setting C0 = max(supx,z | f |, 1),∣∣∣∣∣1n 〈rb, gb〉n − 〈rb, gb〉

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣1n
〈

f − λ
b−1∑
j=0

m(p+1)∑
i=1

〈
r j, g j,i

〉
∥∥∥h j,i

∥∥∥2 g j,i, gb

〉
n

−

〈
f − λ

b−1∑
j=0

m(p+1)∑
i=1

〈
r j, g j,i

〉
∥∥∥h j,i

∥∥∥2 g j,i, gb

〉∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣1n 〈 f , gb〉n − 〈 f , gb〉

∣∣∣∣∣ + λ

b−1∑
j=0

m(p+1)∑
i=1

∣∣∣∣∣∣∣∣1n
〈〈r j, g j,i

〉
∥∥∥h j,i

∥∥∥2 g j,i, gb

〉
n

−

〈〈r j, g j,i

〉
∥∥∥h j,i

∥∥∥2 g j,i, gb

〉∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣1n 〈 f , gb〉n − 〈 f , gb〉

∣∣∣∣∣ + λ

b−1∑
j=0

m(p+1)∑
i=1

∣∣∣∣∣∣∣∣
〈
r j, g j,i

〉
∥∥∥h j,i

∥∥∥2

∣∣∣∣∣∣∣∣
∣∣∣∣∣1n 〈

g j,i, gb

〉
n
−

〈
g j,i, gb

〉∣∣∣∣∣
≤ξn + λ

b−1∑
j=0

sup |r j|m(p + 1)ξn

≤ξn + C0

b−1∑
j=0

2 jmξn

≤C02bmξn.

The last term could be bounded by∣∣∣∣∣∣∣
b−1∑
j=0

1
n

〈
δ j, gb

〉
n

∣∣∣∣∣∣∣ ≤ 1
n

b−1∑
j=0

∥∥∥δ j

∥∥∥
n,∞
‖gb‖n,1 ≤

1
n

b−1∑
j=0

γ j ‖hb‖
2
n ,
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where

‖gb‖n,1 =

n∑
i=1

|gb(xi)|,
∥∥∥δ j

∥∥∥
n,∞

= sup
i=1,...,n

|δ j(xi)|.

Hence

|û − u| ≤ C02bmξn +
1
n

b−1∑
j=0

γ j ‖hb‖
2
n .

In order to bound |û|, we notice

|û| =
∣∣∣∣∣1n 〈r̂b, gb〉n

∣∣∣∣∣ ≤ (
1
n
‖r̂n‖

2
n

) 1
2

·

(
1
n
‖gb‖

2
n

) 1
2

≤

(
1
n
‖r̂0‖

2
n

) 1
2

·

(
1
n
‖gb‖

2
n

) 1
2

=

(
1
n
‖ f + ε‖2n

) 1
2

·

(
1
n
‖gb‖

2
n

) 1
2

≤ (M + σ2
ε + ξn) · ‖gb‖

≤ (M0 + ξn) · ‖hb‖ .

Therefore, we get an upper bound for∣∣∣∣∣∣〈rb, gb〉

‖hb‖
2 −

n−1 〈r̂b, gb〉n

n−1 ‖hb‖
2
n

∣∣∣∣∣∣ ≤ |û − u|
|v|

+

∣∣∣∣∣1v − 1
v̂

∣∣∣∣∣ |û|
=

C02bmξn + n−1 ∑b−1
j=0 γ j ‖hb‖

2
n

‖hb‖
2 +

ξn · (M0 + ξn) · ‖hb‖

‖hb‖
2
· n−1 ‖hb‖

2
n

≤
C02bmξn

‖hb‖
2 +

b−1∑
j=0

γ j

(
1 +

ξn

‖hb‖
2

)
+

ξn(M0 + ξn)
‖hb‖ (‖hb‖

2
− ξn)

.

Denote h be the global minimum of the ensemble that h = minb,i, j

∥∥∥∥hR j
i

∥∥∥∥, since m ≤ (h2 −

ξn)−1, we obtain

γb ≤ (p + 1)

 C02bξn

h2(h2 − ξn)
+

b−1∑
j=0

γ j

(
1 +

ξn

h2

)
+
ξn(M0 + ξn)
h(h2 − ξn)

 .
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We would like to mention the elementary result that for a series {xn} satisfying

xn ≤ 2na +

n−1∑
i=0

bxi + c,

the partial sums satisfy

n∑
i=0

xn ≤ a

1 −
(

2
1+b

)n+1

1 − 2
1+b

 (1 + b)n −
c
b
.

Hence, we can verify this upper bound that

B−1∑
j=0

γ j ≤ (1 + p)B

 C0

h2 − ξn

(
2 +

ξn

h2

)B
1 −

1 − ξn
h2

2 +
ξn
h2

B−1 − ξn(M0 + ξn)

h(h2 − ξn)
(
1 +

ξn
h2

)
Recall the rates that B = o(log n), h2 = Op

(
n−

1
4 +η

)
, ξn = Op

(
n−

1
2

)
, thus

(
2 +

ξn

h2

)B

= 2B · Op (1) , 1 −

1 − ξn
h2

2 +
ξn
h2

B−1

=
ξn

h2 · Op (1) ,

ξn(M0 + ξn)

h(h2 − ξn)
(
1 +

ξn
h2

) =
ξn

h3 · Op (1) .

Hence,

B−1∑
j=0

γ j ≤ (1 + p)B
(C0

h2 · 2
B ·

ξn

h2 −
ξn

h3

)
Op (1) = op(1),

which is equivalent to ∥∥∥∥∥∥∥
B−1∑
j=0

δ j

∥∥∥∥∥∥∥ ≤
B−1∑
j=0

∥∥∥δ j

∥∥∥ ≤ B−1∑
j=0

γ j = op (1) .

Combining all above we have

‖r̂B‖
2 =

∥∥∥∥∥∥∥rB + ε + λ

B−1∑
j=0

δ j

∥∥∥∥∥∥∥
2
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≤ ‖ε‖2 + ‖rB‖
2 + λ2

∥∥∥∥∥∥∥
B−1∑
j=0

δ j

∥∥∥∥∥∥∥
2

+ 2λ ‖rB + ε‖

∥∥∥∥∥∥∥
B−1∑
j=0

δ j

∥∥∥∥∥∥∥
= σ2

ε + ‖rB‖
2 + op (1) .

�

Lemma 4.7. Under condition (C1)-(C6), for any ρ > 0 there exists B0 = B0(ρ) and

n0 = n0(ρ) such that for all n > n0,

P
(∥∥∥rB0

∥∥∥ ≤ ρ) ≥ 1 − ρ.

Proof. Lemma 3 in Bühlmann (2002) proves this statement for rectangular indicators. By

fixing λ = (1 + p)−1 and introducing conditions (C3) and (C4), formula (11) in Bühlmann

(2002) still holds in terms of the single terminal node in each of the trees that corresponds

to our defined R∗. Therefore cited Lemma 3 holds for our boosted trees. The conclusion is

therefore reached by the assumption that f ∈ span(G). �

Proof to main Theorem. For a given ρ > 0, since r̂B(x∗, z∗) − f (x∗, z∗) is independent of ε,

E(x∗,z∗)

[
|β̂B(z∗)T x∗ − f (x∗, z∗)|2

]
= E(x∗,z∗)

[
|r̂B(x∗, z∗) − f (x∗, z∗) − ε|2

]
− ‖ε‖2

= ‖r̂B‖
2
− ‖ε‖2

≤ ‖rB‖
2 + op (1)

≤
∥∥∥rB0

∥∥∥2
+ op (1)

≤ ρOp (1) + op (1) .

We reach the conclusion by sending ρ→ 0. �
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Proof to Corollary 4.3

Proof. We prove by contradiction. Assume there exists 0 < ε0 < s, c0 > 0 s.t.

P(‖βB(z∗) − β(z∗)‖2 > ε0) ≥ c0

for any sufficiently large n. Fix n and consider any z0 s.t. ‖βB(z0) − β(z0)‖ > ε0. The

corresponding open ball B(x0, s) has volume v0 = O(sp). Write β =

 β
0

β−0

 ,
∫

B(x0,s)

〈1x
 , βB(z0) − β(z0)

〉2

dPx|z0

≥c
∫

B(x0,s)

〈1x
 , βB(z0) − β(z0)

〉2

dx

≥cv0

〈 1

x0

 , βB(z0) − β(z0)
〉2

+ c
∫

B(0,s)

〈1x
 , βB(z0) − β(z0)

〉2

dx

≥cv0(βB(z0)0 − β(z0)0)2 + ct0

∥∥∥βB(z0)−0 − β(z0)−0
∥∥∥2

≥c min(v0, t0)ε0.

where t0 =
∫

B(0,s)
x2

1dx = O(sp). That is equivalent to

E(x∗,z∗)

[
|β̂B(z∗)T x∗ − f (x∗, z∗)|2

]
> c min(v0, t0)ε0,

contradicting Theorem 4.2. �
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CHAPTER 5

DISCUSSION AND POTENTIAL FUTURE WORK

5.1 U-statistics and Boosting

The design of Boulevard boosting reflects our intention to create a tree ensemble whose

component trees are equally weighted. This idea originates from the successful analysis of

random forests using U-statistics. A U-statistic, defined as the average of the exhaustive

permutation of a symmetric estimate kernel function hk, takes the following form as an

estimator for an unknown coefficient which in our case is the prediction at a new point,

U(x1, . . . , xn) =
1(
n
k

) ∑
x′1,...,x

′
k

hk(x′1, . . . , x
′
k),

where x′1, . . . , x
′
k iterates through all combinations of k elements in x1, . . . , xn.

While U-statistics directly yields asymptotic normality, its incomplete version which

averages a subset of all possible permutations, and infinite order version whose kernel size

inflates with the sample size at certain rate, produce similar results (Van der Vaart, 2000;

Mentch and Hooker, 2014). These generalizations can be applied to random forests after

adjusting for the randomness involved in tree building.

Attempting to apply this U-statistic strategy to boosting, we managed to implement

Boulevard with subsampling to create a kernel form. However, the actual difficulty comes

from the serial dependence between boosted trees. There are two immediate solutions: the

first is to verify that the covariance between component trees is of a lower magnitude than
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of the variability caused by the error term conditioned on the given covariates, while the

second is to verify that the gap between any Boulevard result and a proper U-statistic con-

verges to zero at a rate faster than the U-statistic variance. Unfortunately, both the greedy

tree building algorithm and the completely randomized tree strategy can complicate the

relations between two particular trees, especially when their indices are far apart. There-

fore though empirical studies yield good results, neither of the two immediate solutions is

easy to justify theoretically.

Despite the existence of some up-to-date U-statistic research (Han and Qian, 2016), we

still cannot take an easy approach to squeeze a covariance term into the U-statistic kernel.

This is the reason why we choose to bruteforce the asymptotic distribution in our analysis

of Boulevard.

5.2 Stochastic Contraction, Shrinkage, Dropout and Second Order

Method

In terms of the ordinary boosting framework, one characteristic pattern of boosting iter-

ations is that the signal is not uniformly distributed in time. The first few base learners,

or trees in the context of this thesis, tend to be exposed to most of the signal, whereas the

rest of the ensemble fits on small remainder terms or even random fluctuation if there is

stationarity. This behavior brings two issue up. Empirically, tree boosting is dominated by

the first few trees (as mentioned, over-specification), which complicates the training when
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we involve stochastic strategies. Even with the same training data, the actual training paths

and results may be substantially different once two boosting iterations do not agree at the

beginning. Together with the volatility of decision trees, we can imagine the circumstance

when the starting trees are by chance inaccurate, leading to the necessity of more trailing

trees to correct. Theoretically, the decay of signal strength justifies the exercise of early

stopping, requiring certain early stopping rate and invalidating any analysis that assumes

we can build the ensemble to infinite size. However, the infinite ensemble is a better object

to study its limiting distribution in the presence of either convergence or stationarity.

Compared to this ordinary framework, the shrinkage used in Boulevard results in an

averaged ensemble. From the perspective of signal distribution, all trees are guaranteed

to be exposed to certain signal level during training because of the shrinkage of training

history. This effect, diminishing the influence of the starting trees, provides a means to

balance the ensemble.

Instead of deterministically shrinking, another practice to adaptively weight the en-

semble is through dropout. At each training iteration, some trees are randomly dropped

out of the ensemble before we calculate the gradient, after which these trees are added

back to the ensemble with smaller weights. While dropout is shown empirically to have

improved the performance of boosted trees, a balanced dropout should as well produce

an equally weighted ensemble, therefore can be viewed as a stochastic version of Boule-

vard. It is worth noticing that both Boulevard and dropout involve shrinkage that creates a

contraction leading to potential convergence.

However, the side effect of introducing stochastic contraction is that the fixed point
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cannot achieve consistency: the contraction on the training data should end somewhere

strictly between the starting guess, which is 0 most of the time, and the observations Y ,

which is the target, preventing the fixed point from landing on the full signal in Y . As

shown above, for Boulevard with L2 loss we can rescale the prediction to compensate for

this effect. However, the same strategy does not apply to general cases.

As suggested by original boosting implementation, the ideal learning rate λ∗ should be

decided by the second derivative in a Newton-Raphson style approximation to the root of

the first order condition. Looking at Algorithm. 3.1 and using a generic loss function l,

the optimal update to make at any point xi should be

zi , −
∂l(ui, yi)
∂ui

(
∂2l(ui, yi)
∂u2

i

)−1 ∣∣∣∣
ui= f̂b(xi)

.

When l is square loss whose second order is constant 1, this calculation reduces to

Algorithm. 3.1. In practice, the (inverse of) second order term is sometimes omitted for

both gradient descent and gradient boosting since the constant learning rate yields similar

performance while preventing both the computation of the second order and the tendency

of converging to a saddle point. However, this second order update is a better value for

quantifying the signal level in the residuals.

This observation in particular brings an issue to any method involving shrinkage. As

long as shrinkage reduces the signal level in the ensemble, in order for the stochastic

contraction to land on a meaningful fixed point, we need to bridge between the fixed

point and the actual signal. Their relation is decided by the learning rate that controls the

location of the fixed point, and the curvature (second order) structure of the loss function
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which controls the signal level of the fixed point. Any study attempting to justify the

asymptotic behavior of such processes should provide a clear relationship between these

two key factors.

5.3 Partially Linear Model Inference

Tree boosted VCM is not the only way to integrate tree boosting and partially linear mod-

els. One can easily fit a semi-parametric partially linear model by first fitting a linear

model using the predictive covariates, then fitting ordinary boosted trees on the residuals.

However, without the presence of proper regulations, it is hard to evaluate both the finite

sample and the asymptotic behavior of this nonparametric tree ensemble, preventing us

from performing inference with respect to the parametric part of the model. Moreover,

after building the tree ensemble, we have no guarantee that the new residuals will be or-

thogonal to the linear part, creating a potential need for backfitting.

One solution to this concern is by interleaving the linear model and the nonparametric

model with a boosting framework capable of providing distributional conclusions. Boule-

vard is a natural choice. We have the following algorithm for partially linear models with

sample points as tuples of (xi, zi, yi), i = 1, . . . , n.

Algorithm 5.1 (Partially Linear Regression with Boulevard).

• Start with an initial nonparametric estimate f̂0 = 0.
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• For a given current estimate f̂b, determine linear model coefficients β̂b on(
xi, yi − f̂b(zi)

)
, i = 1, . . . , n using least square.

• Calculate the gradient for the nonparametric part using residuals yi − β̂
T
b xi − f̂b(zi),

δi , −
∂

∂ui

n∑
i=1

1
2

(ui − yi)2
∣∣∣∣
ui=β̂

T
b xi+ f̂b(zi)

= yi − β̂
T
b xi − f̂b(zi); (5.1)

• Generate a subsample w ⊂ {1, 2, . . . , n}.

• Construct a tree regressor tb(·) on {(xi, δi), i ∈ w}.

• Update the nonparametric part by learning rate 1 > λ > 0,

f̂b+1 =
b − 1

b
f̂b +

λ

b
tb =

λ

b

b∑
i=1

ti.

We can show that, by writing K the corresponding tree structure matrix and H the hat

matrix for the linear model, the nonparametric part of the model is estimated by

f̂ (Z) = K(I − H)
( I
λ

+ K(I − H)
)−1

Y,

whose form is similar to Boulevard. One future direction is to make analogous analysis

to show its asymptotic behavior. In particular, this asymptotic analysis can lead to the

inferential framework for the linear coefficients.

5.4 Varying Coefficient Models, Functional Trees and Tree Distilla-

tion

Functional trees in practice have good interpretability due to their clear covariate space

segmentation. As mentioned above, functional trees can be treated as a special case of tree
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boosted varying coefficient models when the varying coefficient mappings are piecewise

constants showing the common linear coefficients in a flat region.

While standard functional trees inherit the building algorithm directly from CART by

greedily evaluating the impurity reduction using submodels, our varying coefficient model

and decision tree distillation provide an alternative that does not involve the construction

and evaluation of numerous submodels.

Algorithm 5.2 (Functional Trees through Tree Boosted VCM).

• Start with sample (x1, y1), . . . , (xn, yn), i = 1, . . . , n.

• Duplicate x to create action covariates zi = xi.

• Construct a tree boosted varying coefficient model with varying coefficient mappings

β̂ as tree ensembles.

• Distill ensemble β̂ to single trees β∗.

• Return the functional tree as ŷ = g(xTβ∗(x)) with g the link function.

One possible future direction is to theoretically and empirically justify this method

compared to the performance of standard functional tree construction.

5.5 Model Extrapolation and Manipulation

Different from the ordinary learning scheme, there are more and more circumstances

nowadays where the purpose of fitting a predictive model is no longer to study the un-
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derlying relationship between covariates and responses, but as a means to assign every

covariate (subject) a score. One example is learning to rank, also referred to as infor-

mation retrieval. It is a supervised learning problem with the input being a query and a

set of subjects and the response being the ranks among the subjects indicating how well

they match the properties of the given query. Imagine an online vendor selling apparels

to customers. The query can be a generic description of what a customer wants, and the

response should be a list of apparels matching their intent.

The common practice for learning to rank now is done through relevance scoring,

which assigns a score for each query subject pair assessing how well they match after pro-

jecting them onto certain covariate space. The final ranking list is produced in the descend-

ing order of the relevance scores. In contrast to standard statistical inference discussing

the behavior of the model with a new input, people may also be interested in knowing

the feasibility of manipulating the model and the possible consequences afterwards. For

example, this online vendor may decide to give higher scores to older products for clear-

ance purposes and wonder, first, how to achieve so with their current learning model, and

second, what outcomes they should expect.

This circumstance adds another dimension to our current understanding of model inter-

pretability. Conceptually, we can name it model extrapolation, representing the feasibility

and the expectation of perturbing the model itself once learned. Another motivation be-

hind tree boosted varying coefficient models is due to this new aspect, as the linear model

is easy to perturb by directly changing the coefficients, and is easy to analyze its outcome.

Beside the vendor example we mentioned above showing the need for manually modifying
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the model, we can in addition consider the following scenarios.

• Model monotonicity. From the point of view of model fairness we may intend to

assure a monotonic relationship between certain covariate and the response. For

instance, it is reasonable to expect that one is more likely to get a loan approved

if they have a higher credit score, given that everything else on their profile stays

the same. For tree boosted VCM, this relationship is described by the sign of the

coefficient. Should post hoc adjustment be necessary, we can simply modify the

corresponding coefficient to guarantee monotonicity.

• Expansion of the support of covariates. It may also be referred to as warm start,

meaning that we want to improve an existing predictive model when new combina-

tions of covariates emerge, in contrast to cold start for which we recollect training

data and retrain the model when the covariate distribution changes. When the ap-

pearance of new covariate values takes place in the action space, tree boosted VCM

can extrapolate the corresponding local parametric relationship using the existing

model and certain similarity measure.

Further research can be done to expand these ideas based on suitable practical real world

questions.
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