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1. INTRODUCTION 

Corres~ondence analysis is a scaling technique which assigns a score 

to each of' the categories of' a cross-classification. Though it has come into 

wides~read use in the ecology literature~ e.g.~ Hill (1973)~ Swan (1970) or 

Whittaker (1967), it has received little statistical attention or investiga-

tion of its ~ro~erties. Hill (1974) has demonstrated the equivalence 

between corres~ondence analysis of' a two-way table of counts and canonical 

analysis of a contingency table and be~~een corre~ondence analysis and 

~rinci~al components analysis. O'Neill (1978a, 1978b, 1981) has derived 

distributions f'or the canonical roots in contingency tables which thus may 

be used in some types of corres~ondence analysis. In corres~ondence analysis, 

attention focuses equally or more intently on the scores. Using work by 

Anderson (1963) on princi~al components analysis, the work of O'Neill is 

elaborated and extended. It is also shown how the same theorems can be used 

to handle the asymptotic distribution theory for ~rinci~al components analy-

sis ~erf'ormed on correlation matrices from a multivariate normal sam~le. 

2. ASYMPTOTIC DISTRIBUTION THEORY 

Anderson (1963, Theorem 1) derives the asymptotic distribution theory 

f'or the eigenvalues and eigenvectors of the sample variance-covariance matrix, 

A 

.E~ when the sam~le is f'rom a multivariate normal distribution with variance-

covariance matrix .E • The ~roof can be divided into three ~arts: 

A 

1. Establishing asymptotic normality of the normalized elements of L: • 

2. Establishing the functional convergence of' the solutions of certain 
A 

matrix equations as L:-+ L: • 

3. Deriving conclusions about the distributions of the eigenvectors and 

A 

eigenvalues of L: using 1 and 2 above and Rubin's Theorem. 
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'!he key point is that many of: the conclusions hold when the assumpti011- _ 

of multivariate normality of the observations is replaced by the assumpticn 

that ni(£- ~) is asymptotically normal. Notably, part two of: the proof remains 

intact. These conclusions are embodied in Theorem l. The results are only 

stated for distinct roots, though, as in Anderson (1963), the results for sets 

of equal roots are straightforward. 

Theorem 2 is a parallel theorem 'for the singular value decomposition of 

a sample matrix, as opposed to its spectral decomposition (as is used in prin-

cipal components analysis). 

Since we will be working with matrix distributions, we will make use of 

some special matrix results and it is convenient to introduce them now. The 

vee(·) operator is a matrix operator which stacks the columns of a matrix one 

upon the other to make a large column vector, i.e., the (i,j) element of A 
mXn 

is the n(i -l) + j element of the mn X l column vector, vee A • A salient 

property of the vee(·) operator is that 

vec(ABC) = ( C' ®A)vecB 

where ® denotes the Kronecker product. A special matrix we will make use of, 

connected with the above, is the commutation matrix, K (Magnus and Neudecker, 
m,n 

1979). We will use the following property of: K , 
m,n 

vee( A)= K vee( A') 
mXn m,n nxm 

For descriptions of these and other results see Henderson and Searle (1979). 

Suppose that ~ is positive definite with spectral decomposition given by 

~ = r.Ar' 
pXp ' 
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where IT I = r 'f = Ip and A = diag{ Al' •.. ' ~} We assume 

that Y .. > 0 so that r is uniquely defined. Write a similar decomposition ::for 
].]. 

A 

~, which is assumed to be positive de::finite with probability one, 

A AAA 

~ = fAf' 
pXp 

Theorem l. Write r = (!1, ! 2, · • ·, !p) • Notation as above. Assume 
1 A 

n2(vec ~-vee ~)""'AN(O, V), then 

1 A 

n2(A.- A.) -AN(O, WA) 
~ ~ A. 

(2.1) 

niGk- _:yk) -AN(o, wk) k = 1, 2, ... ,p (2.2) 

(2.3) 

where (W~).k = [(Y~®Y!)V(Yk®Yk)].k and Wk is specified by (2.3). 
~ J ~J ~J ~ ~ J 

Proof. See the Appendix. 

Similar results can be derived for the singular values of a sample matrix. 

As we will see in Section 3, the distributions o::f the decomposing matrices can 

be found using Theorem 1, so we will concentrate on the sample singular values. 

A 

Suppose that B (p .s: q) is an estimator of B such that 

Suppose also that B has singular value decomposition (Seber, 1977, p. 393) 

given by 

B = S(~ O)T' ' 
where 

SS' = S 'S = I , s .. > 0 
p 11 

'IT' = T'T = I , (2.4) 
q 

~ = diag( cr 1 , cr 2, •.. , cr }, cr >cr >···>cr >0 p 1 2 p 
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This decom:posi tion is unique, except perhaps f'or the last p- q columns of' T 

( t t • • ·, t ) and has the property that 
-p+l' -P+2' _q 

i =1,2, .•. ,p 

Theorem 2. Write S = ( s1 , • •• , s ) and T = ( t , ..• , t ) • 
- -P. -1 -q 

Notation as 

above. Under the above as~tions, 

l. " n2(a- a)- A._T'l(O, W"') 
- - a ' 

where 

= [(t!®s!)Z(t~ ®sk)].k 
-J -J ~ - J 

Proof. See the Appendix. 

The utility of' these two theorems is that they translate the statements 

about the asymptotic nonnali ty of' sample matrices into asymptotic normality 

of' decomposing matrices. 

3. ASYMPTOTIC DISTRIBUTIONS FOR CORRESPONDENCE ANALYSIS 

The simplest f'orm of' correspondence analysis, that of a two-way canting-

ency table of' counts, is equivalent (Hill, 1974) to a canonical analysis of 

the contingency table. The canonical vectors are interpreted as scores in an 

ordination procedure. That is, the scores are used to order the row categories 

and the column categories. The ordinations are then interpreted as a gradient, 

hopefully making sense in the problem at hand. 

Let n .. be the count in the (i,j) cell of' a contingency table (i =1,2, ... ,p, 
l.J 

j =1,2, .. ·,q, ps: q) and assume that the counts are multinomially distributed 

with E[n .. ] = n p.. . In the usual notation, n. ,n . and p. ,p . denote the 
l.J • • l.J ]. • • J ]. • • J 

marginal totals and marginal probabilities. Let B = [n .. /(n. n .}i] and 
l.J ]. • • J 

suppose it has singular value decomposition as in (2.4), 
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A A.A. A 

B = S(L. O)T' , 
where 

and 
A A A A 

T = ( t 1 , t 2, • • • , t ) - - _q 
A A 

Sets of' scores are then found from (s.,t.) i=l,2,···,p and are used f'or 
-~ -~ 

ordination. These sets of scores are ordered in importance by their singular 

A 

values, cri, just as sets of canonical vectors are ordered by eigenvalues in a 

canonical correlation analysis. The ties between correspondence analysis and 

canonical analysis of' contingency tables are that 

1. The usual X2 test for independence is related to the singular values 

p q 
X2 = 2: 2: (n .. -n. n ./n )2 /(n. n ./n ) = n . ~J ~· •J .• ~· •J .• i=l J=l 

p ...... 
E cr~ 

i=2 ~ 

2. The canonical vectors or canonical polynomials (~, ~, 0 'Neill, 1978b) 
~ J 

A A 

are related to the decomposing matrices S and T: 

The asymptotic distribution theory for correspondence analysis can be ob-
A.A. A 

tained by applying Theorem l to BB' and Theorem 2 to B . Let us first 
A 

consider the sample singular values, cri • 

Lemma 1. 
A ~ A AA .!_ 

Let B = [n .. /(n. n .)a] = [p .. /(p. p .)2] 
~J ~. • J ~J ~. . J Then 

.!_ A 

n2(vec B- vee B)-AN(O,Z) 
' 

where 

-1 3 -1 
V = diag( vee B} ( diag [vee P} - 4 !q.!q ® R 

-:£C-l®1 1' +t1 ®Q®1' +i1q'®Q®1 )diag{v€!c B} 
- p.;:;p _q - p - .::p 

(3.1) 

' 
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and P=(p .. ), R=diag[p. }, C=diag{p .}, Q=(p .. jp. p .) and 1'=(11··-l)lX • 
l.J 1 • • J l.J 1 • • J -n n 

A 

Proof. It is convenient to first work with tn btl. Using a theorem of 

1.. 
Bishop, Fienberg and Holland (1975, Theorem 14.6-4), n2 (tnbkt -.tnbtl) is 

asymptotically multivariate nonnal with means zero and covariances given by 

i A i A 
asy. cov(n tn btl' n .tn ~, t,) 

However, 

()i.n~ otnbk f .e f A A 

= Z::: Z::: Z::: Z::: ( PP )( oP )cov(pgh' Pg 'h') 
g g f h h f gh g 'h f 

0tnbkt 0 tn~'.t' [ ~tnbk.t ] [ ~tn~'.t' l 
= Z::: z:::( o )( o \n h- Z::: Z::: c p h X Z::: Z::: () pg 'h' . 

g h Pgh pgh rg g h Pgh g g' h' Pg'h' 

(5 .. is the Kronecker delta) 
l.J 
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Using the 8-method (Bishop, Fienberg and Holland, 1975, Theorem 14.6-2) to go 

1,. A iA 1,. A 
from. the distribution of n2i,n~,e to n bkt yields the result that n2 (bk..t - ~) 

are asymptotically multivariate normal with means zero and covariances given 

by 

This can be written in matrix notation as 

ni(vecB- vecB)-AN(O,Z) , 

where 

Z = diag{ vee B} [diag -l{ vec(p .. )} - ~1 1 1 ® diag -l(p. } 
~J _q_q ~· 

Theorem 3. 

position, 

1 p .. 
- ~diag- { P •} 1 1 I + il ® ( ~J ) ® 1 I 

·J -P-P _q P· P · -P 
~· •J 

+ i1 1 ® ( pji )® 1 ]diag{ vee B} 
_q p. p . -P J. • ~ 

Let the matrix B = [p .. /(p. p .)i] have singular value decom-
~J ~- • J 

B = S(L: O)T' 

A A A A 1.. 
as in (2.4), with a similar decomposition forB= [pij/(Pi.P·j)2 ], 

A A A A 

B = S(L: O)T' , 
then 
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= (t!®s!)z(t_ ®sk) 
-J -J -K -

A 

Proof. Applying Theorem 2 to B gives the desired result. 

Calculating the asymptotic distribution as in Theorem 3 obviates the need 

of specif'yi.ng particular preliminary transformations, as in O'Neill (1978a, b). 

It also represents the results in matrix notation. 

Although O'Neill (1978b, equation 19) calculates an asymptotic expansion 

A 

for the vectors s., he never explicitly calculates the limiting normal distri-
-J. 

bution. With the use of Theorem 1 we now calculate the limit distribution of 

A A 

s. and t .. 
-J. -J 

Since B = S(L. O)T', we have 

and therefore S is the decomposing matrix in the spectral decomposition of BB'. 
A AA 

To get the asymptotic distribution of s. we may apply Theorem l to BB' • First 
-J. 

"" we need a lemma about the asymptotic normality of BB' • 

Lemma 2. Notation as above. 

1 - * n~(vec S 'BB 'S- vee L:2 ) -AN(O, V ) 
' 

where 

v* = (I 2+K )(S'®L:T1')Z(S®T1L:)(I 2+K ) p p,p p p,p 
, 

and 

= ( tl, t2, ••• ' t ) • 
- - -P 
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~ AA 

First note that (S'BB'S) .. = s!BB's .. Working fro~ the 
1J -1 -J 

.J.. AA l.. A 1._ A 1,_ A A 

n ~ s .' ( BB ' - BB ' ) s . = nlf s .' B ( B - B) 's . + n2 s .' ( B - B) B ' s . + n2 s .' ( B - B)( B - B) ' s . 
-1 -J -1 -J -1 -J -1 -J 

we obtain 

l_ AA t A ~ A 

n2(s.'BB's. -cr.cr.o .. ) = n s.'B(B-B)'s.+n2s.'(B-B)B's. +o (l) 
-1 -J 1 J 1J -1 -J -1 -J p 

(3.2) 

l. """ 
by Lemma l. Also by Lemma l, (3.2) shO'"..-s that n2(vec S 'BB'S- vee 2:2 ) is asymp-

totically normal with variance-covariance matrix given by 

:lf:: l.A l..A 
v· = asy. var[vec S'Bn2(B-B)'S+vec S'nlf(B-B)B'S] 

l_ A 

= asy. var[(K +I 2 )vec s•:an2(B-B)S] 
p,p p 

~ A . 

=(I 2 +K )(S'®S'B)asy. ra..r[n2 vec(B-B)](S®B'S)(I 2 +K ) p p,p p p,p 

where T1 is a matrix consisting of the first p columns of T . 

l_ A 

Remark. If we write u .. = n2[s.'(B- B)t. ], then another way to represent 
l.J _1 -J 

l. 
the results of this lemma is n2(s.'~'s. -0'.0'.0 .. ) = cr.u .. +cr.u .. +o (l) we 

_1 _J 1. J 1J 1 l.J J J1 p 
A A 

are now ready to derive the asymptotic distributions of the s. and t .• 
-1 -J 

Theorem 4. Notation and assumpticns as in Theorem 3, and let 

then 

w b d = asy. cov[s '(B- B)t.., s '(B- B)td] 
a c -a -D -c -

l_ A 

n2(s. - s.) 
-1 -1 

l. 
n2(t. - t.) 

-J -J 

i=l,2,···,p 
' 

j=l,2,···,p 
' 

, 

are asymptotically multivariate normalllith means zero and variances and covari-

ances given by 
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= 2: 2: 8 s, cri crm wi.tmk +cri crkwi.tkm +cr .t crm w .timk. +cr .tcrk w .tikm 

.t~i m~k-.t.::m Ccrf-~)(~-~) 

l. "' l. "' asy. cov[n2(t. -t.),n2(t -t )] 
-J -J -n -n 

p p 
= 2: 2: t~t' -JJ-m 

.t=l m=l 

.tf=j m~n 

O".W.n +O".,Wn. 
J JJJnm "" ..r.Jnm 

(~-~)cr 
J ..r. n 

q p 

+ 2: 2: ~i~~ 
.t=p+l m=l 

m~n 

cr w . ~ +cr w . n 
n J..r.nm m J""mn 

( cr2-cr2) cr . n m J 

i,k::::l,2,···,p 

"' 

(3-3) 

(3.4) 

(3. 5) 

Proof'. To derive the asymptotic distribution of' the s. we can apply Lemma 
-1. 

2 and Theorem l to conclude that 

.!_ A 

n2 (s. -s.)-AN(O,Wk) , 
-J. -J. 

with variances and covariances given by 

l_ A l_ A 

asy. cov[n2(s.- s. ),n2(s. - s. )] 
-J. -J. -K -K 
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v(t-l)p+i,(m-l)p+k' or following the Remark, as 

A A 

This completes the proof for the s .• To derive the distribution oft. (jsp) 
-1 -J 

we use the relation 

Arguing as in Lemma 2 shows that 

A A-~ A 

t. = cr.J3 1 s. 
-J J J 

]_ A I 1,_ A-1 -1 I 1,_ A -1 
n2(t. -t.) = B s.n2(cr. -cr.) +B n2(s. -s.)cr. 

-J J -J J J -J -J J 

.l._ A -1 
+ n"2" ( B - B) 1 s • cr. + o ( l) 

-J J p 

(3.6) 

Let us simplif'y (3.6) term by term. Using Theorem 2 and the 5-method shows 

that ni(~:1 -cr:1 ) =- (u .. /cr~) +o (l). Since B's.=cr.t., the first term sim-
J J JJ J p -J J-J 

plifies to -t.(u .. /cr.)+ o (l) • The second term can be represented using the 
-J JJ J p 

first part of the proof as 

The third term can be rewritten as 

~ A -1 - ( q I) i A - -1 _ q -1 n (B-B)s.cr. - 2:: t~t~ n (B B)s.cr. - 2:: ttu.~cr. 
-J J t=l-,t,-,.;, -J J t=l- J.t~ J 

Combining the results and simplif'ying yields the result, 

1.. "' n2 ( t. - t.) 
-J -J 

p 

= 2:: _!;t 
t=l 
t:fj 



-12-

The remainder of the proof follows. 

l. A 

Remark. As it appears in (3.5) it seems that asy. var[n2(t. -t.)] cannot 
-J -J 

be consistently estimated since it depends on t. with j > p • The representa­
-J 

tion given in (3.6) shows this is not the case. 

4. AN EXAMPLE 

We illustrate the previous computations with a condensed version of an 

example due to Maung (1941) and used in Lancaster (1958), reproduced in Table 

l. 

-TABLE l HERE-

The data are a cross-classification of school children by eye and hair 

color. The matrix 

A 

B 
2X3 

·and has singular value decomposition, 

A A A A 

B = S(L: O)T' 

[.&76681 .481072][1 0 
= 

.481072 -.876681 0 -32669 :] 

.635599 

.282126 

.508810 

.692941 

.321250] 

.476424 

.565038 .649495 

.178869 -.698455 

.510828 -.8o5443 .300528 

The interpretation of the second column of T is that the hair categories are 

assigned scores of .565, .179 and -.805 and are ordered as expected from dark 

to light. 

Also, 
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.A l. A "" asy. cov[ ri!i (vee B- vee B)] ::: z 

ll 21 l2 22 13 23 
ll .262645 -.lll469 -.140913 .052254 -.o85351 .o672&7 

21 .2978o9 .026959 -.o68904 .020903 -.105565 

12 .23238o -.195244 -.109226 .118375 
= 

22 .497738 .o67634 -.342oo6 

13 . 357031 -.338267 

23 • 77CJ758 

/'\. A A /'\. A 

and (T'®S')Z(T®S) is given by 

ll 21 12 22 13 23 
ll 0 0 0 0 0 0 

21 .223319 -072956 -.079895 0 -.040394 

l2 .223319 -.008299 0 -.068420 

22 ·971995 -.o61822 -. 31CJ744 

13 .250000 -.036913 

23 .749728 

The numbers across the top and sides are to indicate which entries are referred 

to in the original matrix. From this WA = asy. c~v[nt(~- cr)] can be read off 
cr - -

as 

[
0 0 ] "" W""-

A. - 0 .971995 

A 

The zero entries are to be expected since cr1 = 1 • Fran this an approximate 

confidence interval for cr2 can be found as 
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so the result is 

l. 2l768 -. 92644 • 64849 

asy. v~[nf(~2 - ~2 )] = .96888 -.43476 

-35838 

This could be used to set individual asymptotic confidence intervals on the 

A A 

~2 or to set a confidence ellipsoid on t 2 • 

5. ASYMPTOTIC DISTRIBUTIONS FOR PRINCIPAL CQ.iPONENTS ANALYSIS 

BASED ON A CORRELATION MATRIX 

Theorem l can also be used to derive the asymptotic distribution of the 

eigenvectors and eigenvalues of the sample correlation matrix. Let R = (r .. ) 
J.J 

A I A A 1.. - I i = [cr. . (cr .• cr •. )2] and R = [cr. . (cr •. cr .. ) ] • 
J.J J.J. JJ J.J J.J. JJ 

As in Section 3, the asymptotic 

A 

normality of ~ implies the asymptotic normality of R • 

Lemma 4. Let R be the sample correlation matrix from a random sample of 

size n from a multivariate nonnal distribution with positive definite variance-

covariance matrix, ~ • Then 

l. 
n2(vec R-vec R)-AN(O,VR) , 

where VR has entries given by 

1.. 1.. 
asy. cov(n2r .. ,n2r. , . , ) = 

J.J J. J 

cr •• ,cr .• ,+cr •• ,~ .. , 
- - { J.J JJ. J.J. JJ 
r .. r. '.' J.J J. J cr •. cr.,., 

J.J J. J 

+ _2l[?. • 1 + ?. • I + ?. • I + ?. • I J} J.J. JJ J.J JJ. 
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"' "' """" _TQ get confidence intervals for the s. or t. we need asy. cov of vee BB' • 
-~ -J --,.. 

We will illustrate for the _!j • 

"" [ .1. ,.. ,.. ( r,2 0):1 The asy. var n"D"vec(T'B 'BT) -vee 0 0 J is given by 

ll 21 31 12 22 32 13 

ll 0 0 0 0 

21 .1995 0 .1995 

31 .2500 0 

12 .1995 

22 

32 

13 

23 

33 

From this we can obtain, for example, 

We have 

.508810 

" _!;1 = • 692941 

.51o828 

0 0 0 

-.Oll6 .018o 0 

.o4o4 .0121 .2500 

-.0116 .0180 0 

.4149 -.0663 .o4o4 

.o8oo .0121 

.2500 

.649495 

"' ~3 = -.698455 , 

-300528 

cr2 = • 32669 

V4 4 = .1995 , 
wl223 = -. o6842o 
w2312 = -.o6842o 

23 33 
0 0 

.018o 0 

.0121 0 

.618o 0 

-.o663 0 

.o8oo 0 

.0121 0 

.08oo 0 

0 
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l_ A 

Proof. Since n2(vec ~-vee ~) is asymptotica~ multivariate normal we 

can again apply the 5-method as long as· we are caref'ul to only use the func-

tionally independent entries of E • Let us work only with the entries r. . and 
~J 

A 

cr .. with i ~ j • The distributions of r .. (i < j) will follow from the fact that 
~J ~J 

1.. -
r .. = r.. • Using the 5-method again, n2 (.tnr .. - .tnr .. ) are asymptotically multi-
~J J~ ~J ~J 

variate normal with means zero can covariances given by 

1.. i asy. cov(n2.tnr .. ,n .tnr. , . , ) 
~J 1 J 

().tnr .. o .tnr. , . , 
cov(~gh';;g'h') = ~ ~ ~ ~ 

~J ~ J 

g h g' h' ()crgh ()crg'h' 
~h g':2:b.' 

= ~ ~ 
g h 
g~h 

(
5 ·' r 5 ·'h' 1 5i'g' 5i'h' 1 5j 'g'5j'h') ( ) 

X ~ g J -2 --2 x cr h'crh '+cr_ ,crhh, 
(J i ' j ' (J i ' i ' (J j ' j ' g g gg 

l :'"2 :-2 ::-2 :-2 + -2[r:-.' +r:., +r:-., +r:. ,] 
~1 JJ ~J J1 

Thus, ni(vec R- vee R) is asymptotically multivariate normal with variance-

covariance matrix VR' say. The entries of VR can be found from 

asy. 

+ _21[?..' +?..' +?..' +?.. ,]} 
~~ JJ ~J J~ 
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We may now apply Theorem 1 to derive the asymptotic distributions of' the eigen-

vectors and eigenvalues of R • 

Theorem 5. Assumptions as in Lemma 4. Let the matrix R have spectral 

decomposition, 

R = EAE I 

' 

where EE'=E 1E=I (e .. >O) and A= diag(A.1 , ···,A.} (A.1 >L>···>A. >0). Let p ~~ p .'"2 p 

R have a similar decomposition, 

AA A 

R = EAE I 

' 

where E = (~1, ~2, • • ·, ~ ) • Then the asymptotic distribution of the eigenvectors 
~ ~ ~P 

and eigenvalues is given by 

!. " 
n2(A.- A.) -AN(O, v~) 

.d,. " 
nlil (_:k- _:k) -AN(O, Vk) k=l,2,···,p 

' 
where 

(V~) jk = (e!®e!)VR(ek®e.) 
~J ~J ~ ~K 

and 

Proof. Use Theorem l and Lemma 4. 

Remark. The above asymptotic results can be expected to take effect very 

slowly considering the slow approach to normality of' r. . • 
~J 
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6. SUMMARY 

This paper has shown how results of Anderson [1963] can be applied to 

asymptotic eigenvector and eigenvalue analyses of matrices other than the sample 

variance-covariance matrix from a multivariate normal population. Results are 

derived for correspondence analysis and principal components analysis for corre­

lation matrices. The results are considerably more complicated than the results 

for principal components of the sample variance-covariance matrix. In that case, 

the covariance structure of r •rr (from Theorem 1) takes a particularly simple 

form. 
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APPENDIX: PROOFS OF THEOREMS l AND 2 

Both of the following proofs follow Anderson (1963) closely: 

Proof of Theorem l. 
A 

Denote T = f 'L.f and let 

l. A l. 
u = n2(r 'L.f- A) = n2(T- A) 

Let the spectral decomposition of T be given by 

T = EAE' ' 
(Al) 

A 

where EE 1 = E'E =I and e .. >0. A appears since T has the same eigenvalues 
p u. 

A 

as L. and the requirement that e .. > 0 is to guarantee that the elements of E 
J.J. 

and A are nniquely specified. Also define 

H = n~(A- A) (A2) 

(A3) 
k=L 

Using the convention that diag( A } is an n X n diagonal matrix with the same 
nXn 

diagonal elements as A, we can write, 

= EAE' 
A 

= (diag(E} +E- diag(E}) A(diag(E} +E- diag(E})' 
_.l. A l. 

= (diag(E} +n-a-F) A(diag(E} +n2F) 1 

= diag( E} Adiag(E} + n -iF Adiag( E} 

+ n -idiag(E} AF 1 + n -~AF' 

A 

Solving (A2) for J\. and inserting into the above yields the equation, 
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A+n ~U = diag[E} Adiag{E} +n-idiag(E}Hdiag(E} 

+ n -iFAdiag{E} +n -~diag(E} 

Since E is orthogonal, 

+ n ~diag(E} AF' +n -ldiag(E}HF' 

+ n -~AF' + n - 3/ 2FHF' 

I = EE' 

~ -~ 
= (diag(E}+n 2F)(diag(E}+n 2F)' 

g[ _1 
= dia E} diag£ E} + n 2Fdiag[ E} 

+ n-idiag(E}F' +n-~' 

The on- and off-diagonal equations from the above matrix equation are 

k, J., = l, 2, •.• , 'P 
kf=J., 

In matrix notation (A5) can be written 

diag{E} diag{E} = I - n -ldiag(FF '} , 

which implies that 

diag(E} Adiag(E} = A-n -ldiag(FF'} A 

Using this in (A4) yields 

...l. -l ( } _1,. £ A+ n 2U = A-n diag FF' A+n 2diag E}Hdiag(E} 

+ n -}F Adiag{ E} + n-~diag£ E} 

-.1. -l . 
+ n 2diag(E} AF' +n diag(E}HF' 

+ n -~ AF' + n-3/ 2FHF' 

(A4) 

(A5) 

(A6) 

Cancelling A from both sides, the on- and off-diagonal equations can be written 

as 
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-.!. '\k = ~~ + n 2 or smaller terms k ""l, 2, ••• ,p (A7) 

(A8) 

To derive the asymptotic distributions from (A7) and (A8) we need to show that 

diag[E}, H and F converge as U converges. This is proved in Anderson (l963, 

Section 7). Thus, in the limit, 

'\± = e~~ ' 

uk..e = ~f£kekk + "A.;/.tke.t£ , 

l - 2 
- ~ ' 

0 = fk.te .t£ + f .tk~ , 

determine the asymptotic distribution of the ~' ~ and !k . Thus, ·by 

Rubin's Theorem, the asymptotic distributions can be found as 

ekk~l ' 
(A9) 

~ has the same asymptotic distribution as '\:k ' 
(AlO) 

f.tk has the same asymptotic distribution as -fk..e ' 
(All) 

f£k has the same asymptotic distribution as u£k/(~-"A..t). (Al2) 

Thus the asymptotic distributions translate directly from those of U • Since 

1 A 

n2(vec L:- vee L:)-AN(O, V), we have 

1 
n2(vec U-vec A)-AN[O,(f'®r)V(f®r)] (Al3) 

Since ~ = ni(~k- ~), (Al3) together with (A9) and (AlO) prove (2.l). To 

A 

prove (2.2) note that f = fE, so 
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Since~~ l, 

l. "' ir'' ( ) asy. cov(n2y.,n Yk) = asy. cov ~ f~ -Y~, ~ f_,~y 
-J - .t1j ~J-~ m1k ~m 

= E ~ y~y' asy. cov(f~ .,fmk) 
.t1j m1k-~m ~J 

Asymptotic normality follows from the asymptotic normality of the u.tk . 

Proof of Theorem 2 

"' Denote R = S'BT and let 

l. "' 1. 
Z = n2[S'BT-(~ 0)] = n2(R-(~ 0)] (Al4) 

Let the singular value decomposition of R be given by 

R = E(E O)G' (Al5) 

A A 

~ appears since R has the same singular values as B • Also define 

K = ni(£- ~) , 

F = nf(E- diag(E}) 

H = ni(G- diag(G}) 

Using (Al4) and (Al5) we can write 

' 

(Al6) 
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(2: o) - n -i'z = R 
A 

= E(2: O)G' 

= ( diag(E} + E-dia.g[E} ){£ 0)( diag( G} + G- diag( G}) 

= (diag(E} +n ~F)(E O)(diag(G} +n ~H) 
A ~ A 

= diag( E}( 2: 0) diag( G} + n2F (2: 0) diag{ G} 

+ n -idiag{E}(£ O)H' +n -~(£ O)H' 

A 

Solving (Al6) f'or 2: and inserting in the above equation yields the equation, 

(2: 0) +n-iz = diag(E}(2: O)dia.g(G} +n-idiag(E}(K O)diag(G} 

+ n-iF(2: O)diag(G} +n-~(K O)diag(G} 

+ n-idiag(E}(2: O)H' +n-ldiag(E}(K O)H' 

+ n -~(2: O)H' +n -J/2F(K O)H' 

Since E and G are orthogonal we have 

and 

which imply 

-l 
diag(E}diag{E} = I-n diag(FF'} 

diag[ G} diag{ G) = I-n -ldiag{HH'] , 

-l 
~ = l + n or smaller terms k=l,2,···,q 

-l 
g u, = l + n or smaller tex:ns .t=l,2,···,p. 

Using these in (Al7) yields the following 

Z = diag(E}(K O)diag(G} +F(2: O)diag(G} + diag(E}(2: O)H' 

+ n -i' or smaller terms • 

(Al7) 

(AlB) 

Since E is the diagonalizing matrix f'or RR', convergence of R implies converg-

ence of diag(E}, F and K by exactly the same argument as in the proof of 
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Theorem 1. 
. -1 

SJ.nce f!.. = Re.a. (i =1,2, • • .,p), 
'1. -l. J. this also implies convergence 

of~ and~ {k,.t =1,2, •• .,p) . 'Ihus, in the limit, (Al.8) becomes 

By Rubin's Theorem, we obtain 

e .. ~1 J.J. 
pr 

gii ~ 1 

1 = e .. J.J. and 1 = ~i 

kii has the same asymptotic distribution as zii 

Since nlvec z-AN[O, (T' ® S ')Z(T® S) ], the result follows. 
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Table 1 

Hair color 

Eye color Fair Medium Dark Total 

Light to medium 5,335 8,634 3,217 17,186 

Dark 454 2,103 2,618 5,175 

TotaJ. 5,789 10,737 5,835 22,361 


